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ABSTRACT 
The formation of brine channels during the solidification 

process has a significant impact on the structure of the two-
phase zone (mushy layer). They are responsible for the 
formation of another crystallization scenario and the generation 
of corrugations of the sea ice–ocean interface. The physical 
mechanism relies on brine flows developing in the sea ice due 
to Bernoulli suction by flow of ocean past the liquid–mushy 
layer interface. This mechanism should be particularly very 
important during sea ice freezing in wind-maintained coastal 
polynyas and in leads changing thermal fluxes and the heat and 
mass balance of the Arctic sea ice cover. Generally speaking, a 
true criterion of the formation of such a regime is connected 
with the morphological stability analysis of the mushy layer 
crystallization with respect to small perturbations of its 
morphology. In the present paper, we develop the 
morphological stability analysis of the directional 
crystallization with brine channels in a two-phase region and 
give a new stability criterion taking into account perturbations 
in the impurity concentration (salinity) and solid fraction 
distributions for the case of nonturbulent and turbulent 
boundary conditions at the mush–ocean interface. 

 
INTRODUCTION 

Directional solidification of melts and liquids underlies 
many technologies employed in traditional and new industries 
(metallurgy, crystal growth, energetics, chemistry, aerospace 
engineering, electronics) and describes natural processes 
(formation of ices, crystallization of lava-streams, crystal 
growth in supersaturated solutions). In spite of the extended 
history of study of solidification, many aspects of the physics of 
this phenomenon remain unclear. Aspects of forming of various 
types of micro- and macrostructures in solids and liquids, the 
physical mechanisms of which remain to a large degree 
unclear, are of particular importance. Traditionally the study of 
solidification was and is performed within the framework of the 

classical model, leading to the Stefan-type boundary value 
problem [1,2]. In this approach it is assumed that the liquid and 
solid phases are separated by a clearly expressed smooth 
interface between the phases, heat transfer occurs by 
conduction according to the Fourier law and the velocity of the 
crystallization front is controlled by the absorption of heat by 
the solid phase. The mathematical formulations corresponding 
to these physical models belong to the class of highly-nonlinear 
problems with moving boundaries. In spite of the appreciable 
progress attained in investigating these problems, it became 
clear during the past several years that this approach is limited. 
This is because the developments of experimental data on 
materials with specified properties necessitate investigating a 
number of new dynamic phenomena typical of the 
solidification process. These phenomena include the formation 
of cellular and dendritic structures and the formation of 
transition mushy regions that separate the crystal and the liquid.  

NOMENCLATURE 
 
c [J/kgK] Specific heat capacity 
C [psu] Salinity 
D [m2/s] Diffusion coefficient 
gr  [m/s2] Acceleration due to gravity 

G [K/m] Linear temperature gradient in the mushy layer 
i [-] Imaginary unit 
k [J/mKs] Thermal conductivity coefficient 
k0 [-] Equilibrium partition coefficient 
L [J/kg] Latent heat released per unit mass 
m [K/psu] Liquidus slope 
nr  [-] Unit normal at the interface pointing into the ocean 
p1 [kg/ms2] Pressure 
t [s] Time 
T [K] Temperature 
∗T  [K] Phase transition temperature of the pure mixture 

ur  [m/s] ‘Darcy’ velocity, which is the volume flux of brine per 
unit perpendicular, cross-sectional area flowing between 
the ice crystals 

∗u  [m/s] Friction velocity 
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U [m/s] Velocity of a uniform flow in the ocean parallel to the 
undisturbed interface 

V [m/s] Normal growth velocity of the mushy layer - ocean 
interface 

x [m] Spatial coordinate directed along the mushy layer – ocean 
interface 

z [m] Spatial coordinate directed from the mushy layer to the 
ocean 

 
Special characters 
α  [1/m] Wave number of the perturbation 

hα   [-] Turbulent coefficient for heat 
sα  [-] Turbulent coefficient for salt 

β  [-] Coefficient of permeability (anisotropy) 
γ  [1/m] Coefficient of inhomogeneity (heterogeneity) 
ζ̂  [m] Perturbation amplitude of the mushy layer – ocean 

interface 
θ̂  [K] Perturbation amplitude of the temperature field 
μ  [kg/ms] Dynamic viscosity 
ν  [m2/s] Kinematic viscosity 
ρ  [kg/m3] Density 
σ  [1/s] Growth rate of perturbations 
ϕ  [-] Solid fraction in the mushy layer 

0ϕ
 [-] Unperturbed solid fraction in the mushy layer 

Π  [m2] Permeability 
hΠ  [m2] Permeability to horizontal flows 
vΠ  [m2] Permeability to vertical flows 

Φ  [m2/s] Velocity potential 
Φ̂  [-] Perturbation amplitude of the solid fraction 
 
Subscripts 
b  Designates the physical parameters on the mushy layer – 

ocean interface 
l  Designates the physical parameters in the liquid phase 
m  Designates the physical parameters in the mushy layer 
s  Designates the physical parameters in the solid phase 
∞   Designates the physical parameters in the ocean far from 

the mushy layer 
 

In addition, it has been currently recognized that in order to 
explain the real structure of solid materials it is necessary to 
take account of the actual supercooling (undercooling) of the 
liquid and the consequence of appearance of metastability. 
Analysis of available data allows singling out several 
fundamental theoretical and applied problems. Firstly, the 
colossal complexity of the physical problems that arise when 
making allowance for phase transitions requires developing 
radically new approach to constructing models of solidification, 
which would include various kinds of nonlinear phenomena. 
An important role among these are nucleation, kinetics, fluid 
flows, convection and evolution of a new phase in a metastable 
medium, which in themselves require refining established and 
developing new approaches. Secondly, this gives rise to the 
need of mathematical formulation of the corresponding 
mathematical models, which requires establishing new classes 
of crystallization problems and developing methods for 
investigating them. 

A number of important contributions to the study of these 
problems has been made previously. Ivantsov [3] demonstrated 
that, under certain conditions, a region of impurity - induced 
supercooling i.e., one in which the temperature is lower than 
the temperature of the phase transition, forms in the melt. 
Subsequent to this, a relationship between this phenomenon and 
the structure of the solid and liquid phases was rather rapidly 
recognized, which has brought about intensive studies of the 

crystallization dynamics. Mathematical models of 
crystallization are complicated by the need to apply boundary 
conditions at solid/liquid interfaces which are evolving with 
time and whose positions must be found as part of the 
calculation. The case of a pure melt being cooled by conduction 
of heat to its boundaries is relatively straightforward since the 
geometry of the solidification front is similar to that of the 
bounding walls [4]. However, if a pure melt is supercooled (has 
a temperature below its freezing point), so that latent heat is 
conducted away from the solidification front through the liquid, 
then the solidification front becomes extremely convoluted and 
forms intricate branching patterns [5]. Snowflakes provide a 
common example of this phenomenon. When the liquid is an 
alloy (a mixture of two or more components) such behavior is 
commonplace even when the liquid is not initially supercooled. 
At present, analytical techniques cannot follow the evolution of 
such convolutions far beyond initial perturbations from a flat 
interface. However, for many applications including metallurgy 
[6], solidification in magma chambers [7], and the structure of 
the Earth’s inner core [8,9], it is the gross features of the solid-
liquid matrix which forms as a result of the convolutions. The 
matrix or region of mixed phase is termed a “mush” or “mushy 
layer”. By treating the mush as a new single phase, and the 
macroscopic envelope of the convoluted solid as a phase 
boundary, it is necessary to follow the evolution of two-phase 
boundaries: the solid/mush interface and the mush/liquid 
interface. Hills, Loper and Roberts [10] develop a full set of 
thermodynamic equations for a mushy zone, and solved a 
mushy-reduced set of them approximately for the constrained 
growth of a binary alloy. Also, these model equations were 
solved approximately by Fowler [11]. Hereafter, a fuller 
analyses and exact analytical solutions of them were suggested 
by Alexandrov [12-14]. More general sets of nonstationary 
equations and their self-similar solutions have been proposed 
by Worster [15] based upon simple considerations of local heat 
and mass balances. After, this model has been developed for 
the description of convective flows in the mushy layer in the 
absence of solute diffusion in the mush [16,17]. This 
phenomenon leads to the formation of chimneys (channels), 
which are narrow, dendrite-free regions that form within the 
mushy layer as a result of convection. This striking 
phenomenon is known to occur within solidifying alloys [18], 
where it is responsible for undesirable material properties; 
within sea-ice [19], where it has a significant effect on ocean 
dynamics; within magma chambers [20], where it influences 
mineral deposits, and it may occur at the Earth’s inner-outer 
corner boundary [21,22]. When the convection is sufficiently 
strong, the solute-rich material that flows out of the mushy 
layer locally depresses the melting temperature, redissolving 
some of the dendrites. In this paper, we develop a mathematical 
model and give its stability analysis for the mushy layer filled 
with chimneys. By virtue of the fact that many laboratory and 
field observations are connected with the evolution of saltwater, 
let us give a short summary on the phase evolution of sea ices. 

Recent studies of the ice cover changes have refocused 
attention on the correct description of local processes that have 
large scale consequences. For instance, the growth and decay of 
sea ice in the polar regions is the high-latitude equivalent of the 
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evaporation-precipitation cycle in the remainder of the world’s 
oceans [23]. The evolution of brine channels in the sea ice 
mushy layer is responsible for the global climate consequences. 
Since the seasonal difference in sea ice coverage is  km2 
in the Arctic and  km2 in the Antarctic, the dynamics of 
the brine rejection processes has a substantial impact on the 
stability of the oceanic mixed layer and the flux of fresh water 
into the North Atlantic Ocean, indicating that sea ice export is 
an important control in convective stability [24]. Another 
example is connected with cracks in the perennial ice cover, 
known as leads. Field observations in the Arctic show that the 
heat loss through these cracks can be up to 300 Wm-2, or fifteen 
times that from the surrounding ice [25]. Although leads 
occupy less than 10% of the surface area, they are responsible 
for roughly half of the total oceanic heat loss. It is known that 
sea ice growth can be sufficiently fast. Its depth in 8-10 cm can 
be attained in the first twenty-four hours [26,27]. A rapid 
growth of such young sea ice produces the greatest heat flux, so 
the role of brine drainage on the phase evolution is significant 
in determining the overall heat budget.  

6108 ⋅
61018 ⋅

When a binary liquid mixture (sea water) is cooled and 
solidified from above, the process can be described within the 
framework of the Stefan model with a planar front for as long 
as the impurity concentration gradient at the front is less than 
the temperature one [3,15]. Once this inequality has been 
broken up by the impurity displacement, the solid growing 
from such a liquid mixture usually forms a porous two-phase 
layer (mushy layer) in which concentrated liquid surrounds 
nearly pure solid matrix [28]. The dense, enriched liquid can be 
trapped within the matrix if it has insufficient negative 
buoyancy to overcome dynamically the resistance provided by 
the solid phase. Laboratory experiments [29] show that the 
composition remains essentially constant in the liquid region in 
the early stages of the mushy layer solidification. In other 
words, there is little transport of salt out of the mushy layer. 
Once the mushy layer has reached a critical thickness , the 
concentration of salt in the liquid region suddenly begins to 
increase (see, for example, figures in refs. [29,30]). This 
increase is associated with the appearance of convective 
plumes, which emanate from channels within the mushy 
layer.The brine draining through channels in the mushy layer is 
replaced by fresher liquid from below with a greater phase 
transition temperature. This liquid allows further growth of ice 
in the mushy layer, which increases its solid fraction affecting 
the thermal, acoustic, electromagnetic, and mechanical 
properties of sea ice. Therefore, the solid fraction is an 
important variable of sea ice which increases rapidly once 
internally driven convection begins [30]. An important point is 
that the brine channels, which have been observed both in the 
laboratory [29,31] and in the field [32,33] occupy the full 
thickness of the mushy region. 

Ch

The formation of brine channels during crystallization 
process has a significant impact on the structure of the mushy 
layer. They are responsible for the formation of another 
solidification scenario and generation of corrugations of the sea 
ice – ocean interface. The physical mechanism relies on brine 
flows developing in the sea ice due to Bernoulli suction by flow 

of ocean past the liquid – mushy layer interface. This 
mechanism should be particularly very important during sea ice 
freezing in wind-maintained coastal polynyas and in leads. 
Generally speaking, a true criterion of the formation of such 
regime is connected with the morphological instability analysis 
of the mushy layer crystallization with respect to small 
perturbations of its morphology. Such flow-induced 
morphological instability analysis with some model 
simplifications in the absence of the diffusion transport in the 
mush and liquid was carried out in refs. [16,17]. In the present 
study, we develop the morphological instability analysis of the 
directional crystallization with brine channels in a mushy layer 
and give a new instability criterion taking into account 
perturbations in the diffusion and solid fraction distributions for 
the case of nonturbulent and turbulent boundary conditions at 
the mush – ocean interface. 
 

THE MATHEMATICAL MODEL 
Let us consider a unidirectional crystallization process 

illustrated in Figure 1. 

 
Figure 1 The geometry of the sea ice – ocean interface. The 

dashed line shows perturbations of the sea ice – ocean interface 
caused by a uniform flow in the ocean 

 
The mushy layer (sea ice) and liquid (ocean) phases occupy 

regions 0<z  and , respectively. Convective conservation 
of heat and solute in the mushy layer can be expressed in 
differential form as:   

0>z
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where the terms proportional to t∂∂ϕ  express the release 
of latent heat into the mush and of solute into the interstitial 
fluid. Condition (3) represents the liquidus equation in a linear 
form. The thermal properties of the mush are assumed to be 
volume-fraction-weighted averages of the properties of the 
individual phases [34]: 

( ) ( ) ϕϕϕ slm kkk +−= 1 , ( ) ( )ϕϕ −= 1lm DD   (4) 

( ) ( ) ϕρϕρϕρ ssllmm ccc +−= 1      
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Expressions (4) are realistic for elongated crystals met in 
natural condions during seawater freezing [27]. 

At the mushy layer – liquid interface we have the following 
boundary conditions [15,35]: 

( ) llmbmbs TnkTnkVL ∇⋅−∇⋅=
rr

ϕϕρ    (5) 

( ) ( ) llmblbb CnDCnDVCk ∇⋅−∇⋅−=−
rr

ϕϕ 11 0   (6) 

where subscript ‘ b ’ designates the corresponding value at the 
phase transition boundary. The boundary conditions (5) and (6) 
hold true in the case of a laminar fluid flow in the ocean. 

In the case of turbulent flow, the rate of motion of the phase 
transition boundary ‘mushy layer – liquid’ undoubtedly 
depends on the turbulent motion in the ocean. Therefore, let us 
write down the boundary conditions as follows [36-38]: 

( ) ( )bllhmbmbs TTucTnkVL −−∇⋅ ∞∗ραϕϕρ r=  (7) 

( ) ( ) ( bsmblbb CCuCnDVCk −−∇⋅−− ∞∗ )αϕϕ
r

1=1 0   (8) 

The ratio of exchange coefficients sh αα /  depends on the 
molecular diffusivities for heat (κ ) and salt ( ) at that 

 [17] with  [39,40] (we put 
lD

( )nlsh D/=/ καα 4/5<<2/3 n
70/35 ≤≤ sh αα  after Notz et al. [36]). 

The interstitial brine flows within sea ice are caused by the 
buoyancy forces and pressure gradients. The flushing of melt 
water through the ice matrix during the spring-summer season 
is caused by the pressure head of standing melt water on the ice 
surface [41]. The mechanism of buoyancy driven convection 
(gravity drainage) during sea ice crystallization has been 
discussed by Wettlaufer et al. [29,42] and Weeks [43]. The 
fluid mechanics of brine flows in the mushy region is 
fundamentally the same as that of flows within porous medium 
[44,45]. Therefore, let us use the simplest form of a momentum 
equation in the mushy layer: 

( ) ppgu l ∇Π−=∇−Π= 1
rr ρμ     (9) 

The latter is Darcy’s equation, used to describe flow in a 
porous medium of permeability ( )ϕΠ , which is a second-rank 
tensor because the resistance to flow within sea ice is 
anisotropic and is a function of the brine fraction  ϕ−1  and the 
geometry of the internal phase boundaries (for details, see, 
among others, ref. [46]). Generally speaking, the permeabilities 
to vertical and horizontal flows are different. This is caused by 
the anisotropic structure of sea ice such as underformed 
congelation ice frequently met in the Arctic Ocean (the platelets 
of this ice are aligned perpendicular to the sea ice – ocean 
interface). Therefore, the permeability to vertical flows vΠ  
corresponds to the direction parallel to the platelets. Then, the 
permeability to horizontal flows can be written as , 
where 

vh Π=Π 2β
10 ≤≤ β  [17]. Temperature and salinity gradients in the 

mushy layer of sea ice cause a gradient of solid fraction leading 
to a fall in permeability toward the sea ice – atmosphere 
interface. Taking into account the latter, we model the 
permeability by a decaying exponential [17]: 

 

( ) ( ) ( )zz vv γexp0Π=Π      (10) 

where γ  is a mushy layer parameter. Its value can be estimated 
on the basis of experimental data  K-1 [47]. 11 ≈−Gγ

  

MORPHOLOGICAL INSTABILITY 
Let us consider a semi-infinite layer of sea ice ( 0<z ) 

floating upon the ocean ( ), in which there is a uniform 
flow  parallel to the undisturbed interface (

0>z
U 0=z ). Let the 

mushy layer – ocean interface will be perturbed by the fluid 
flows in the ocean. Consider a behavior of a small perturbation 
(corrugation) to the equilibrium sea ice – ocean interface 0=z  
in the form of ( ) ( txitxz σαζζ +== expˆ, ) . In the case of 
irrotational flow in the ocean , where, from continuity, 
the velocity potential satisfies . Further, let us consider 
the following approximation: the sea ice is practically 
impermeable to the external flow  because the flow of brine in 
the mushy layer is much slower than the flow in the ocean, i.e. 

Φ∇=u
r

02 =Φ∇

0=Φ∇⋅n
r  on ζ=z . In this case, the velocity potential is: 

( )( )zixU αζ −−=Φ exp      (11) 

Substituting Φ  from (11) into the linearized Bernoulli 
equation, we get the pressure at the interface: 

( ) ( )txUtxp l ,, 2ζαρ−=      (12) 

Now, combining equations (9), (10) and continuity of brine 
flow 0=⋅∇ u

r , we find an equation determining the pressure in 
the mushy layer: 

02

2

2

2
2 =

∂
∂

+
∂
∂

+
∂
∂

z
p

z
p

x
p γβ      

Its solution is given by: 

( ) ( ) ( )
22

4 222 γβαγ
−

+
=qqztxUtzxp l exp,,, 2ζαρ−= ,  (13) 

Note, that expression (13) goes over into expresiion (12) at the 
phase transition interface. 

As a rule, the temperature field in the mushy layer and solid 
phase can be regarded as a linear function of the spatial 
coordinate [26,48-50]. This is due to the fact that the 
temperature conductivities are several orders of magnitude 
higher than the corresponding solute diffusivities so that the 
concentration relaxation time exceeds greatly the temperature 
one. Then, we have the following perturbed temperature 
distribution ( ) ( ) ( txizGzTtzxT b σαθ +++= expˆ,, ) . Now, the 
perturbed salinity field is completely determined by expression 
(3). The amplitude of temperature perturbations can be found 
by means of equations (1)-(3) and expressions (4) and (13). To 
do this let us present the solid fraction in the form of the 
unperturbed contribution and perturbations as 
( ) ( ) ( )txiztzx σαϕϕ +Φ+= expˆ,, 0 . Further, we use the quasi-

stationary approximation 0→∂∂ t , which implies that the sea 
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ice freezing (melting) is sufficiently slow process, and the 
temperature, salinity and solid fraction fields evolve to the 
steady-state profiles. Numerical calculations show that the 
quasi-stationary approximation gives accurate stability curves 
[16]. 

Eliminating the salinity field from equation (2) by means of 
expression (3), we come to two nonlinear equations for 
perturbations from the governing set (1) and (2). Further, 
eliminaiting from these equations summands proportional to 

0ϕ  and , we arrive at the differential equation for the 
determination of temperature amplitude: 

Φ̂

( )[ zqA
dz
d

+=− γθαθ expˆˆ
2

2

2

]    (14) 

( ) ( )
κν

ζακ ˆ011
2qGU

KD
KA v
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Π
⎟⎟
⎠
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⎜⎜
⎝

⎛ −
+=     

ll

s

c
k
ρ

κ = , 
l

s

k
kK = , 

lρ
μν =      

where, for the sake of simplicity, we have ignored the 
acceleration due to gravity. Note, that  is bounded as θ̂ −∞→z  
and . Taking into account these boundary 
conditions, we find the solution of equation (14): 

( ) ζθ ˆ0ˆ G−=

( ) ( ) ( )( ) ([ ]
( )

)
22

expexpexpˆˆ
αγ

αγαζθ
−+
−+

+−=
q

zzqAzGz   (15) 

for the anisotropic and heterogeneous permeability ( 1≠β  and 
0≠γ ), and: 

( ) ( ) ( )zAzzGz α
α

αζθ exp
2

expˆˆ +−=     (16) 

for the isotropic and homogeneous permeability ( 1=β  and 
0=γ ). 
Now, eliminating bϕ  from expressions (5) and (6), and 

keeping in mind the boundary condition of marginal 
equilibrium [15]: 
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we obtain the following relation at the phase transition 
interface: 

( ) ( )
l
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ss D

VTTkk
z

T
kLV ∗−−

+
∂
∂

= 01
ρ    (17) 

Expanding (17) in a series in perturbations in the neighborhood 
of a point  and taking into account only linear terms, after 
substitution of expressions (15) and (16), we get the growth rate 
of perturbations in the classical non-turbulent case: 
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Now, eleminating bϕ  from the boundary conditions (7) and 
(8), we have the following expression at the mushy layer – 
ocean interface: 
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As before, expanding (19) in series, we come to the growth rate 
of perturbations in the case of turbulent fluxes in the ocean: 
 

( ) ( )( )
5

322014321 1
a

uaucaVkaGaaDakaDP shlllll ∗∗ −+−−+−+
=

ααρ
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ˆ
ˆ dzdP = , 

5
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aDa
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( )bhlll TTucGka −−= ∞∗αρ1 , ( )( ) 202 1 VkTTGDa bl −−−= ∗  

( )GkkLVa lss −−= 23 ρ , ( )( ) 10
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5 1 akTT
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 ( ) ( )[ ]bslls TTmCuGDkka +−+−= ∗∞∗α4  

Substitution dzdθ̂  at 0=z  from (15) or (16) in (20) gives the 
growth rate for the anisotropic and heterogeneous or isotropic 
and homogeneous permeability. The case of negative values of 
σ  corresponds to morphological stability of the process, 
whereas the opposite case of positive σ  describes convective 
instability caused by fluid flows in the mushy layer. 

 

DISCUSSION 
Expressions (18) and (20) are the central result of our 

theory. Figures 2 and 3 demonstrate that the non-turbulent 
theory under consideration taking into account perturbations of 
the salinity and bulk fraction distributions essentially differs 
from the formely known criterion of the “purely” thermal 
problem deduced in ref. [17]. 

The neutral stability curves (solid and chain-dotted lines) 
give different stability domains: the present theory shows that 
the instability domain becomes widely for each of the curves. 
From the physical point of view this is due to the fact that the 
impurity displacement by the growing solid material increases 
brine salinity and decreases phase transition temperature, and in 
its turn increases structural and phase inhomogeneitis in the 
mushy layer and leads to its instability. 
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Figure 2 Neutral stability curves ( 0=σ ) calculated for 
non-turbulent (solid lines, scale of values on the left, 

expressions (18)) and turbulent (dashed lines, scale on the left, 
expressions (20)) conditions. Chain-dotted lines demonstrate 
approximate theory developed in ref. [17] (scale on the right); 

1.0=β  - (1) and 1=β  - (2), 10=γ  m-1. System parameters 
are  m2/s,  m2/s,  m2, 910−=lD 61007.1 −⋅=ν 810−=Π 22.2=sk  

J/(m.s.K),  J/(m.s.K),   kg/m3, 59.0=lk 310=lρ 920=sρ  kg/m3, 
J/(kg.K), K/m, K/psu,   J/kg, 

 m/s, 
50=G 2103.5 −⋅=m 51035.3 ⋅=L

4105 −
∗ ⋅=u 0095.0=hα , 35hs αα = , K, 274=∞T 35=∞S  

psu, K, K,  271=bT 273=∗T 00 =k

 
Figure 3 Neutral stability curves ( 0=σ ) calculated for 

non-turbulent (solid lines, scale on the left, expressions (18)) 
and turbulent (dashed lines, scale on the left, expressions (20)) 
conditions. Chain-dotted lines demonstrate approximate theory 
developed in ref. [17] (scale on the right); 1=γ  m-1 - (1) and 

100=γ  m-1 - (2), 1.0=β . Regions of morphological instability 
and stability lie above and under each curve, respectively 

Figure 2 illustrates that decreasing the coefficient of 
permeability β  gives more wide stability region for a fixed 
value of wavenumber α  due to weakening of the convective 
transfer in the phase transition domain. At the same time an 
increase in the coefficient of inhomogeneity γ  results in a build 

up of instability region because of increased heat and mass 
transfer (Figure 3). 

Let us emphasize several features of the instability criterion 
(18). The enhancement of viscocity ν  decreas es parameter  
and moves the system into stability region. The opposite case 
occurs when the fluid velocity U  increases. If this velocity is 
fixed, an increase  of the wave number 

∗A

α  leads the process into 
instability whereas the criterion obtained in ref. [17] gives the 
opposite tendency (solid and chain-dotted lines in Figures 2 and 
3). From the physical point of view this conclusion can be 
explained as follows: perturbations with a small wave length 
(inversly proportional to α ) form more easily different 
inhomogeneities. It is reasonable to expect that perturbations 
form inhomogeneities whose length is of the order of a 
characteristic length of perturbations (to form a smaller size of 
inhomogeneity we need to overcome a smaller energy barrier). 

Let us calculate the growth rate of corrugations responsible 
for the turbulent flows near the phase transition interface. 
While estimating σ  in (18) as s-1, we see that a 1 cm 
corrugation will grow to several times in size for several hours. 
A detailed description of this problem can be performed within 
the framework of the nonlinear stability theory. Such instability 
analysis devoted to the evolution of oscillatory instability near 
the neutral stability curve can be carried out in the spirit of 
works [51,52]. 

45 1010 −− −

Comparing corresponding solid and dashed lines in Figures 
2 and 3 it is easily seen that the stability region becomes wider 
in the turbulent model at fixed velocity U .The same behavior 
occurs with increasing the friction velocity and turbulent 
coefficient for heat (compare corresponding curves in Figure 
4). This is due to the fact that the turbulent boundary conditions 
involve taking account of friction forces at the mushy layer – 
ocean interface playing the role of a stabilizing factor. 

 
Figure 4 Neutral stability curves ( 0=σ ) calculated for 

turbulent conditions:   m/s,  4105 −
∗ ⋅=u 0095.0=hα  - (1),   

m/s,  310−
∗ =u 0095.0=hα  - (2),    m/s,  4105 −

∗ ⋅=u 0035.0=hα  - 
(3). Regions of morphological instability and stability lie above 

and under each curve, respectively 
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CONCLUSION 
Since the two-phase region appears as the result of the 

concentration supercooling and development of morphological 
instability of the plane front described in a classic study [53], 
only the dynamic instability consisting of oscillations of the 
two-phase region as a whole with a zero wave number is 
possible in the absence of convection. The stability of the phase 
transition region with respect to such oscillations, which are 
most dangerous (growing), was investigated previously in [54]. 
It is shown in Figure 5 that the convective instability extends 
the region of dynamic instability (the solid line extends the 
region of dynamic instability I to the region of convective 
instability I and II determined by the solid curve). In this case, 
as the velocity of the convective flow increases, the instability 
region substantially broadens (solid and dash-and-dot lines in 
Figure 5). In actual processes, the phase transition almost 
always occurs in the extended region and in the presence of 
convective flows of the liquid. 

 
Figure 5 Dependence of the instability parameter on the 

crystallization rate. The solid and dash-and-dot lines are 
constructed by formula (18) at α = 10 m–1, β = 0.5, γ =10 m–1, 

U = 8 × 10–3 m/s, and U = 11 × 10–3 m/s, respectively. The 
dashed line is constructed by formula (38) from [54] (the scale 
σ is increased by a factor of 1000). The points of intersection of 
the curves with the horizontal line show the transition through 

the curve of neutral stability. Vertical lines border three regions 
of the process: region I corresponds to the dynamic and 

convective instability, region II corresponds to the dynamic 
stability and convective instability, and region III is the 

dynamic and convective stability 

In conclusion, let us denote that the instability criteria (18) 
and (20) determine different regimes of the crystallization 
process with a mushy layer in the presence ( 0>σ ) or absence 
( 0<σ ) of brine channels leading to the formation of a 
corrugated sea ice – ocean interface, redistributions of the 
salinity and solid fraction in the mushy layer and changes in the 
heat flux between the ocean and the atmosphere.  
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