
HEFAT2011 
8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 

11 – 13 July 2011 
Pointe Aux Piments, Mauritius 

 

EFFECT OF A FORCED FLOW ON 3D DENDRITIC GROWTH IN BINARY SYSTEMS  
 
 

Alexandrov D.V.,*1 Malygin A.P.1 and Galenko P.K.2,3  
*Author for correspondence 

1Department of Mathematical Physics, 
Urals State University, 
Ekaterinburg, 620083, 

Russian Federation, 
2Institut für Materialphysik im Weltraum, 

Deutsches Zentrum für Luft- und Raumfahrt (DLR), 
Köln, 51170, Germany, 

3Institut für Festkörperphysik, 
Ruhr-Universität Bochum, 
Bochum 44780, Germany, 

E-mail: dmitri.alexandrov@usu.ru 
 
 

ABSTRACT 
The effects of a forced flow on dendritic growth rate in 

binary systems are studied theoretically. By using the Oseen 
approximation of the Navier-Stokes equation, the linear 
stability analysis and the solvability criterion, one determines a 
scaling factor VDd T

2
0

* 2 ρσ =  as a function of the velocity of 
the forced flow and the impurity concentration in the melt in 
the three-dimensional model. The criterion obtained rallies 
analytic results for dendrite growth under forced convection in 
a pure system [1] and dendrite growth in a stagnant binary 
system [2].  

 
INTRODUCTION 

It is well-known that the mechanisms of dendrite growth 
determine the microstructure evolution during solidification of 
melts and solutions [3-5]. These mechanisms are dependent, in 
particular, on the tip kinetics during free dendritic growth into 
undercooled liquid [6-8] as well as on effects of liquid 
convection [9] and diffusion of impurities partially rejected by 
the moving interface [2]. One of the theoretically and 
practically important problems consists in obtaining stable 
crystallization mode of the growing dendrite. The problem of 
finding a stability criterion for the growing dendrite comes 
from the linear and nonlinear stability theories [10-18]. After 
establishing robust stable conditions for the dendritic tip 
growing into a one-component stagnant liquid [19,20], these 
were extended to the one-component dendritic growth under 
forced flow [1,21,22] as well as to the binary dendritic growth 
in a stagnant media [2]. However, in many cases, knowledge of 
stable dendritic growth in binary system mode is a crucial 
question in evaluation and verification of the dendritic theory 

predictions in comparison with experimental data [23]. 
Therefore, the present analytical investigation extending the 
boundaries of the two-dimensional analysis of ref. [24] is 
devoted to the problem of a selection criterion for the 
crystalline dendritic tip growing into a binary liquid under 
forced convective flow within the framework of the three-
dimensional model. 

NOMENCLATURE 
 
cp [J/m3K] Heat capacity 
Ci [at%] Concentration at the solid-liquid interface 
Cl [at%] Concentration of impurity 

∞C  [at%] Concentration in the liquid far from the solid-
liquid interface 

d [m] Capillary length 
d0 [m] Capillary constant 
DC [m2/s] Diffusive coefficient for concentration 
DT [m2/s] Diffusive coefficient for temperature 
i [-] Imaginary unit 
k [1/m] Wave-number of the perturbations 
k0 [-] Equilibrium partition coefficient 
m [K/at%] Liquidus slope 
nr  [-] Unit normal at the interface pointing into the 

liquid 
p [kg/ms2] Pressure 

Tf DUP 2ρ=  [-] Peclet number associated to the flow 

Tg DVP 2ρ=  [-] Peclet number associated to the crystal growth 
Q [J/m3] Latent heat per unit volume of solid 

R1  [1/m] Local curvature 

νρU=ℜ  [-] Reynolds number 
t [s] Time 
Ti [K] Temperature at the solid-liquid interface 
Tl [K] Temperature in the liquid phase 
Ts [K] Temperature in the solid phase 
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0T  [K] Crystallization temperature of the pure liquid 

∞T  [K] Temperature in the liquid far from the solid-
liquid interface 

ϕηξ uuu ,,  [m/s] Parabolic components of the fluid velocity 

U [m/s] External flow velocity far ahead of the crystal 
V [m/s] Growth velocity 
vr  [m/s] Solidification velocity directed along the normal 

vector to the interface 
wr  [m/s] Fluid velocity 
x,y [m] Spatial coordinates directed perpendicular to the 

crystal growth 
z [m] Spatial coordinate directed along the crystal 

growth 
 
Special characters 
β  [-] Anisotropic factor 

ϕηξ ,,  [-] Parabolic coordinates 
ν  [m2/s] Kinematic viscosity of the liquid 
ρ  [m] Tip radius 

1ρ  [kg/m3] Density of the liquid phase 
σ  [J/m2] Effective anisotropic liquid-solid surface tension 

*σ  [-] Scaling factor 
ω  [1/m] Frequency of the perturbations 
 
Subscripts 
i  Designates the physical parameters at the solid-

liquid interface 
l  Designates the physical parameters in the liquid 

phase 
s  Designates the physical parameters in the solid 

phase 
 

THE MODEL OF DENDRITE GROWTH 
We consider a forced convection heat and momentum 

transfer problem when the crystal interface is assumed to be 
rough so that the Gibbs-Thomson relation determines the 
interface temperature as a function of the local curvature 1/R of 
the solid-liquid interface:  

QR
T

TTi
σ0

0 −=       (1) 

The temperature field satisfies the diffusion equation in the 
solid and liquid phases: 

sT
s TD

t
T

Δ=
∂
∂ , ( ) lTl

l TDTw
t
T

Δ=∇⋅+
∂
∂ r    (2) 

and the concentration of impurity satisfies: 

( ) lCl
l CDCw

t
C

Δ=∇⋅+
∂
∂ r      (3) 

in the liquid only. Here the advection of heat and mass by the 
fluid velocity field  is taken into account. wr

At the interface, the temperature continuity holds. Also, the 
conservation of heat and mass must be satisfied, i.e.: 

lil mCTT −= , , ls TT = ( ) ( ) nTTcDnvQ lspT
rrr
⋅∇−∇=⋅  (4) 

( )( ) ( ) 01 0 =∇⋅+⋅− lCl CnDnvkC rrr     (5) 

The velocity field wr  in the case of the small Reynolds 
number limit can be described by the so-called Oseen and mass 
conservation equations: 

wp
z
wU r
r

Δ+
∇

−=
∂
∂ ν

ρ1

, 0=⋅∇ wr     (6) 

The three-dimensional solid-liquid interface of the growing 
dendrite is assumed parabolic, of tip radius ρ , and moves at 
the velocity V  along the z -direction. The external flow at 
infinity is parallel to the Oz axis and is directed to the crystal. 
Consequently, we consider a case of the so-called “up-stream 
branch forced flow”. The Cartesian coordinates are connected 
with the parabolic coordinates as: 

ϕξηρ cos=x , ϕξηρ sin=y , ( ) 2ξηρ −=z  (7) 

where the crystal surface 1=η  has a tip radius ρ . Solution for 
the velocity field can be found in the Oseen approximation 
under consideration. Omitting tedious and combersome 
mathematical manipulations  (for detailes, see ref. [25]), one 
can find the following expressions for the parabolic 
components of the fluid velocity: 

( )
ηξ

η
η +

−=
fu , ( )( )ηη

ηηξ
ξ

ξ f
d
du

+
= , 0=ϕu  (8) 

where: 
( ) ( ) ( )ηηη UgVUf 2−+= ,    (9) 

( ) ( ) ( )
( )

( )
( )22

2
2

2exp2exp

1

1

1 ℜ
ℜ

+
ℜℜ

ℜ−−ℜ−
=

E
E

E
g ηη

η
ηη  (10) 

 
Here ( )τ1E  is the exponential integral and is given by: 

( ) ( )
∫
∞ −

=
τ

ψ
ψ

ψτ dE exp
1

 

Using Eqs. (7) and (8), one can integrate the Eqs. (2) and (3) of 
heat and mass transport in the liquid in their steady-state 
approximation. Seeking for a simple solution depending on η  
only and rewriting Eqs. (2) and (3) supplemented by the 
boundary conditions (4) and (5) in parabolic coordinates (see 
ref. [21]), we arrive at:        

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
=

∂
∂

η
η

ηηξηρηη
lTl T

d
dDTu 2     (11) 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
=

∂
∂

η
η

ηηξηρηη
lCl C

d
dDCu 2    (12) 

g
p

l P
c
QT

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=1ηη
, ( )

C

Tg
i

l

D
DP

CkC
0

1

1−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=ηη
 

From Eqs. (11) and (12), solutions for temperature and 
concentration fields are: 
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( ) ( ) ( )
( )∞−+= ∞ I

ITTTT iil
ηη , ( ) ( ) ( )

( )∞−+= ∞
1

1

I
ICCCC iil
ηη  (13) 

with: 

( ) ( ) ( )∫ ∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=

η σ

σ
σσ

γ
γγη

1 1

1
1

1 1

11
1

2exp dPPdgPI gff
 

( ) ( ) ( )∫ ∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=

η σ

σ
σσ

γ
γγη

1 1

1
1

1 1

11
1

1

2exp d
D
DPPdg

D
DPI

C

T
gf

C

T
f

 

( ) ( )∞++= ∞ IPP
c

QP
TT fg

p

g
i exp  

( ) ( )[ ] ( ) CTgCTfg
i DDIPDDPPk

CC
∞+−−

= ∞

10 exp11
 (14) 

It is noteworthy that the Ivantsov parabolas are no longer 
solutions of the free-boundary problem when surface tension 
effects are taken into account. However, in the case of weak 
surface tension effects, steady solutions can be found close to 
an Ivantsov parabola if a solvability condition is satisfied 
[1,26]. We use here the solvability condition previously derived 
by Pelce and Bensimon [26] as the vanishing of an oscillating 
integral in the form: 

( )[ ] ( )∫
+∞

∞−

= 00 dllYlXG m
,   (15) ( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
= ∫

l

mm dllkilY
0

11exp

The main interest of this formulation is that it is adaptable 
to other kinds of fronts, e.g. to the Saffman-Taylor finger [22]. 
One needs the curvature operator G  and a continuum of 
solutions  from which the function  of the local non-
zero marginal mode of the conjugate dispersion equation for the 
perturbations is deduced. The condition of application of the 
solvability criterion is that  is large compared to the 
inverse of the scale of the unperturbed solution. It is obtained 
using Wentzel-Kramers-Brillouin approximation which has 
been applied to the flame propagation [27] and dendritic growth 
[28]. In other related problems, e.g., in description of the 
Saffman-Taylor fingers [29,30], it has been shown that one can 
get non-trivial solvability condition by considering elements 

 (they vary on a wavelength scale 

( )lX0 ( )lkm

( )lkm

( )lYm λ , which is small 
compared to the tip radius of the parabola).  

LINEAR STABILITY ANALYSIS  
We use the linear stability theory provided by Bouissou 

and Pelce [1] in which the growth rate of a perturbation has a 
wavelength small compared to the characteristic spatial scale of 
the unperturbed solution. We consider that a perturbation 
disturbs the fluid on a distance of the order of λ . The latter 
enables us to expand the stationary velocity components (8) in 
a series in 1−η  around the parabola 1=η . Taking into account 
only the main contributions, we arrive at: 

( ) ( )[ ]1
1

−ℜ+
+

= η
ξ

ξ
ξ UaVu , 

ξη +
−=

1
Vu   (16) 

where: 

( ) (

Hence, from Eqs. (16) and (17) it follows that only the tangent 
fluid velocity  is dependent of the forced flow close to the tip 
of the growing dendrite.  

ξu

For the following analysis, we introduce new local Cartesian 
coordinates ( )cc yx ,  fixed to the crystal, where  and  are, 
respectively the tangent and normal axes to the solid-liquid 
interface at a point where the normal to the interface has an 
angle 

cx cy

θ  with the growing axis. These coordinates enable us to 
rewrite the velocity components (16) in the form of a shear 
flow whose magnitude is a function of θ  as: 

cyaUVu θθ
ρ

θ cossinsin −−= , θcosVv −=   (18) 

where u  and v  designate the tangent and normal velocity 
components to the interface. Let us express temperature and 
concentration derivatives from (4) and (5) as: 

pTc

l

cD
vQ

dy
Td

= , ( )
C

i

c

l

D
vkC

dy
Cd 01−

=  at   (19) 0=cy

A similar expansion in series for the temperature and 
concentration fields in the liquid is obtained as follows: 

c
pT

l y
cD

QVTT θcos0 −= , ( )
c

C

i
il y

D
VkCCC θcos1 0−

−=  (20) 

Let us now pay our attention to the linear stability theory of 
the aforementioned problem. Let u ,  and ′ v′ T ′  designate the 
perturbations of the stationary field, ξ′  corresponds to the 
perturbation of the steady solid-liquid interface with a 
wavelength λ  assumed very small compared to ρ . The 
solutions of the perturbed temperature conductivity Eq. (2) in 
the solid and hydrodynamic Eq. (6) within the framework of the 
Oseen approximation can be written in the form:  

( )cc kyikxtiu εωεω −+Σ−=′ exp , ( )cc kyikxtv εωω −+Σ−=′ exp  

( )cc kyikxt εωξ −+Σ=′ exp , ( )ccss kyikxtTT εω −+=′ exp0  (21) 
where a relation tv ∂′∂−=′ ξ  at the solid-liquid interface 
between perturbations is taken into consideration. Here 
parameter ε  has the same sign as real part of k  since all 
perturbations cannot diverge as  goes to cy ∞+ , Σ and  are 
the perturbation amplitudes of the interface and temperature 
field in the solid. 

0sT

Consider the perturbed form of nonlinear equation for the 
temperature in the liquid. Keeping in mind only linear terms in 
perturbations, one obtains: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

′∂
+

∂
′∂

=′+
∂

′∂
+

∂
′∂

+
∂
′∂

2

2

2

2

c

l

c

l
T

c

l

c

l

c

ll

y
T

x
TD

dy
Tdv

y
Tv

x
Tu

t
T   (22) 

If the forced flow is negligible, the solution has the similar 
form to sT ′  at large k  consistent with the well-knownMullins-
Sekerka criterion [11] for  within the framework of the 
thermal problem of solidification of a pure melt (see, among 
others, [1]). Substituting: 

k

( ) ( )cccl kyikxtygT εω −+=′ exp     (23) 
into Eq. (22) and taking into account Eq. (20), one can get the 
following equation for the new amplitude function ( )cyg : )

( )2
2exp

1 ℜ
ℜ−

=ℜ
E

a      (17) 
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( )( cc
cc

yygL
dy
dgk

dy
gd ,22

2

=− ε )     (24) 

where:  

( ) ( )
+⎥

⎦

⎤
⎢
⎣

⎡
−−+=

T

c
c D

ygyiaUkikVL
ρ

θθεθεω cossinexp  (25) 

Σ+ 2
cos

TpDc
QV θω  

We search for a solution of Eq. (24) around the Mullins-
Sekerka solution [11] with a constant amplitude 

. Substitution  in the right-hand side of 
(24) gives the first order approximation for . The result is: 
( ) constTyg lc == 0 0lT

( )cyg

( ) ( )⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+−=

T

l
lc D

Ti
k

aUiV
k

Tyg 0
0 4

cossinexp
22 ρ

θθεθ
ε
ω  

2
02 4

cossin
2

cos
cl

T
c

pT

yiT
D

aUy
kcD

QV
ερ

θθ
ε
θω

+
⎥
⎥
⎦

⎤
Σ+    (26) 

where the strong inequality kDV T <<  is taken into account 
(we estimate k  from the Mullins-Sekerka theory as  m-1 
[11] and 

710
TDV  as  m-1 for metallic binary alloys). 210

Eq. (3) written for the concentration perturbations lC′  in the 
liquid can be solved in the same manner. The result is: 

( ) ( )cccl kyikxtyhC εω −+=′ exp     (27) 

( ) ( ) +
−

−= 2
00 2cos2

cossin
cl

CC
lc yiC

kDVD
aUkCyh

εθρ
θθ  

( )
⎩
⎨
⎧

+⎥
⎦

⎤
⎢
⎣

⎡
−

+−++
C

l

C D
Ci

kDV
aUkikV 0

2cos
cossinexp

ρεθ
θθεθεω  

( )
kDV

y
D

VkC

C

c

C

i

εθ
θω

2cos
cos1

2
0

−⎭
⎬
⎫

Σ
−

+  

Now, expanding the boundary conditions (4) and (5) in 
series, we arrive at the following set of conditions at the solid-
liquid interface : 0=cy

( )
2

2
0 cos1cos

cpC

i
l

pT
l yc

Qd
D

VkmCCm
cD

QVT
∂

′∂
−′

−
+′−′=′

ξξθξθ  

( )
2

2
0 cos1

cpC

i
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Qd
D

VkmCCmT
∂

′∂
+′

−
−′=′

ξξθ  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′−

∂
′∂

+
∂

′∂
=

∂
′∂ ξθξ

pTc

l

c

s
T

p cD
QV

y
T

y
TD

tc
Q

2

22 cos  

( ) ( ) ξθθ ′−
+

∂
′∂

=′−′
−

2

22
000 cos1cos1

C

i

c

l
li

C D
VkkC

y
CCVvC

D
k  (28)  

where 2
0 QTcd pσ=  stands for the capillary length. 

Substitution of perturbations (21), (23) and (27) into the 
boundary conditions (28) gives four linear relations for the 
perturbation amplitudes , , , and . Σ 0lT 0sT 0lC

Let us consider a frame with the normal axis and tangent 
axis to the interface whose origtin moves normally to the solid-
liquid boundary at the velocity θcosV . Because of the 
rotational symmetry of the system, a perturbation of wave 
number  grows with the rate k ( )kω . If now the origin of the 

frame moves in the z -direction with the constant velocity V , 
the growth rate of the same perturbation is ( ) θω siniVkk +  due 
to the tangential velocity of the new frame θsinV  [2]. 
Therefore, replacing ( )kω  by θsiniVk−  at the neutral stability 
curve and eleminating the perturbation amplitudes from 
expressions (28), we arrive at the following equation for the 
wave number k : 

( ) ( ) i
cQdD
NkVmC

V
NdiPi

dD
Vkk

pC

i

T
2

0
2

4

4
cos1

4
exp

2
θθ −

−⎟
⎠
⎞

⎜
⎝
⎛  (29) +=

ρ
θθ cossinaUN = , ( )

pC

Ti

cQD
DkmCP 0121 −

+=  

where, in accordance with our estimates  m-1, 710~k
210~TDV  m-1, 610~CDV  m-1, ,  m,  

m. Here we write down only the terms corresponding to the 
solution in the absence of a forced flow and terms describing 
the influence of this flow for pure thermal and impurity 
problems. The first term in the right-hand side of Eq. (29) 
represents the solution of the thermal problem without 
impurities and external flow [1,22,26], the first two summands 
give the solution of the thermal problem complicated by 
impurity transport in the liquid without external flow [2], the 
first and third summands describe the solution with a forced 
flow in the absence of the solute transport [1]. As a result, 
solution of the complete Eq. (29) gives the critical wave 
number with which perturbations neither grow or decay at the 
dendrite tip growing into the binary system under convective 
flow. 

VU ~ 1010~ −d 510~ −ρ

Let us consider the case of a fourfold symmetry of the 
crystal. Then, the capillary length can be written as 
( ) ( )θβθ 4cos10 −= dd , where 115 <<= cεβ  is the anisotropic 

factor, cε  is the strength of anisotropy of the surface energy at 
the solid-liquid interface. 

Expanding the solution of equation (29) in series in U , we 
can get an approximate expression for the wave-number in the 
form: 

( ) ( )( )
θβ

θθθβθαθ
4cos1

cossin4cos1exp 0

−
−+

=
Ziikk TC

 

 (30) 
where: 

T
TC Dd

VPk
02

−= , 
VP

aUd
ρ

α
4

0
0 = ,    (31) 

( ) ( )θθαθ iZ −−= expcos1 1 , ( ) ( )
pC

Ti

cQPD
DmCkZ 2

2
0

1
14 −

==αθ . 

Let us compare expressions (30) and (31) with known 
theories. Setting 0=U  and , we arrive at the Mullins - 

Sekerka solution [11,22,26]. If , we have the Ben Amar – 
Pelce solution [2]. In the case of , we come to the 
Bouissou – Pelce solution [1]. 

0=iC

0=U
0=iC

Taking into account that: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++−=

θ
θ

θ
θρ

cos
1tanln

cos
tan

2
l  
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(see, among others, ref. [26]), let us rewrite the solvability 
condition (15) by analogy with Bouissou and Pelce [1] in the 
form: 

( ) ( )[ ]∫
+∞

∞−

=Ψ 0exp χχχ α dCG , θχ tan=    (32) 

where: 

( ) ( )( ) ( )[ ]
( )∫ ′

′′′+′+′+
=Ψ

χ

α χ
χχχαχχχ

0

2125211
2 B

dBiii  (33) 

( ) ( ) ( ) 222 811 βχβχχ +−+=B , ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′+
′

+=′
χ
χααχα
i

i
1

1 1
0

 

and constant C  is normalized by a factor ( )TDdVP 0
2 2ρ . 

Let us evaluate this integral in the limit of small anisotropy 
by means of the method developed by Bouissou and Pelce [1]. 
The numerator of the integrand vanishes for χ  close to i=χ  
(stationary phase point) and the denominator for ( )βχ 21−= i  
(point of singularity). As the dominant contribution to the 
integral is determined by the neighborhood of i=χ , function 

( )χαΨ  can be approximated by: 

( ) ( )( )[ ]
∫

−′

′−′′Φ−′
=Ψ

ϕ

β
τ

ϕ
ϕϕϕτϕβϕ

21
2

21227
8789

1
12 d  (34) 

with 
( )ϕβχ 21−= i , αβτ 43452 −−= , 

ϕβ
α

′
−=Φ

2
1 1i  

The integral (34) can be approximately calculated by 
analogy with the similar integral met in the problem of 
dendritic growth in a pure (one-component) system [1]. 
Following the result of this analysis, only two dominant 
contributions to the integral (34) exist: the contribution from 
the loop and the contribution from the stationary phase points. 
The first of them should be calculated between a distance 72~τ  
(a splitting distance of the stationary phase points) at the 
intersection of the steepest descent path and the real axis and 

1=ϕ . It gives an oscillating factor to the exponentially small 
value of the integral which behaves  as 

( )[ ]1011
1

87
1 1cos τβ BCA + . Each stationary phase point 

contributes by a term with oscillating part of the form 
( )[ ]1011

2
87

2 1cos τβ BCA + , where , ,  and  are 
constants. The cancelation of the sum of these contributions in 
Eq. (30) gives the following selected values of C : 

1A 2A 1B 2B

( )[ ]    (35) 1411
0

43
47

2

1 αβ
β

−+= bnC

where  is an arbitrary interger and b  a numerical constant. n
Substitution of the normalization requirement into Eq. (34) 

leads to the expression for the scaling factor  in the form: *σ

( )
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

+
=≡

−
pC

iTT

cQD
mCkD

bV
Dd 0

1411
0

43

47
0

2
0* 121

1
2

αβ

βσ
ρ

σ  (36) 

where 0σ  stands for a numerical constant which can be found 
from the asymptotic analysis [20] or from the fitting of the 
model predictions to experimental data.  

Eq. (36) gives a criterion for the stable mode of a dendritic 
tip in the presence of anisotropy of surface energy and for the 
non-isothermal binary systems under forced flow in the liquid 
phase. This criterion joins results obtained from the dendritic 
model of Boiissou and Pelce [1] and Ben Amar and Pelce [2]. 

With infinite solute diffusion, , the parameters ∞→CD P  
and 0α  in Eqs. (30) and (31) are equal to 1=P  and 

( )VaUd ρα 400 = , respectively. In this case criterion (36) 
transforms into the result extracted from analysis of Bouissou 
and Pelce (Eq. (45) in ref. [1]). Note that with 0=U  and 

00 =α , Eq. (36) further transforms to the case of dendritic 
growth in a pure stagnant system [20,22].  

In Eqs. (30) and (31), the wave-number  being 
consistent with those one given by Ben Amar and Pelce (see 
Eq. (50) in ref. [2]). With the absence of convection, i.e., at 

TCk

0=U  and 00 =α , the system of Eqs. (30) and (31) completely 
merges with the results of ref. [2]. 

The complete stability criterion (36) can be rewritten in the 
following form: 

( ) 1411
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*
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σ
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where: 
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Figure 1 shows the influence of Peclet numbers on stability 
criterion. As is seen, with the increasing the flow Peclet number 

 and decreasing of the growth Peclet number  the 
contribution of the convection into the stability of the dendrite 
tip gradually increases. 

fP gP

 
Figure 1 Ratio 0

**
0=ασσ  as a function of the growth Peclet 

number 
gP

 for different values of the flow Peclet number  in 
accordance with criterion (37). Physical parameters used in 
calculations are closely related to parameters for metallic 

binary systems: 

fP

10=νTD , 5
0 10−=ρd , 195.0=β , 

3105 ⋅=CT DD , 5.00 =k ,  at%, 1=∞C 10=m  K/at%,  
 300=pcQ ,  (1),  (2),  (3). 510−=fP

5105 −⋅ 410−=fP
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CONCLUDING REMARKS 
The three-dimensional problem of a steady-state dendritic 

growth with forced convective flow was taken up in a binary 
system. For the axi-symmetric crystal shape with anisotropy of 
surface energy, the analysis of a stable mode for tip of 
parabolic dendrite is performed. The critical wave-number is 
found as a marginal state at which perturbations neither grow or 
decay. The solvability condition gives a stability criterion (36) 
for a binary system under convective flow. 

As a final note, the criterion (36) is not valid for large 
Reynolds numbers and, as a result, for large growth and flow 
Peclet numbers. This is connected with the Oseen 
approximation of the Navier-Stokes equation used in the 
aforementioned theory. 
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