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ABSTRACT 
A heated vertical plate generates a buoyant boundary layer 

that rises up its surface, growing in width as it rises. If suction 
is applied to the surface of the plate then at some height the 
buoyant layer ceases to grow and its width no longer varies in 
the vertical direction. Analytic expressions exist for this fully 
developed region based on the assumption of uniform suction. 
If however the suction is through holes that have a diameter or 
spacing that is significant with respect to the thickness of the 
thermal boundary layer, then the assumption of uniform suction 
is questionable. This paper uses CFD to model the flow for this 
case of non-negligible hole diameter and spacing, and presents 
results for how the heat transfer differs from the case of 
uniform suction. 

NOMENCLATURE 
cp [J/kg.K] Specific heat 
D [m] Hole diameter 
q’ [W/m] Heat flow per unit length 
q” [W/m2] Heat flux 
P [m] Hole pitch 
u0 [m/s] Suction velocity (flow rate/plate surface area) 
V [-] Non-dimensional vertical velocity 
y [m] Distance from bottom of plate 
 
Special 
characters 
 

 

α [m2/s] Thermal diffusivity of the fluid 
δT [m] Nominal width of thermal boundary layer 
δ0 [m] Reference length based on equation (4) 
θ [-] Non-dimensional temperature 
υ [m2/s] Kinematic viscosity of fluid 
ρ [kg/m3] Density 
 
Subscripts 
 

  

bl  Boundary layer 
norm  Normalised with respect to solution for uniform suction 
w  Wall 
0  Reference 
∞  Ambient 

 
INTRODUCTION 

Free convection of a fluid heated by a vertical plate is a 
classical problem of buoyancy induced convective heat 
transfer. The plate heats the adjacent fluid resulting in a 
buoyant heated layer that rises up the plate. For a laminar plate 
held at a constant temperature the width of this boundary layer 
grows as y1/4, where y is the distance from the bottom of the 
plate [1], with fluid being entrained into the boundary layer 
from the surroundings. 

If a uniform suction is applied to the plate then the growth 
of the boundary layer is decreased, until a fully developed 
region is reached where the rate of entrainment of fluid into the 
boundary layer equals the rate of suction at the wall. Above this 
height the boundary layer is vertically homogeneous, with the 
velocity and temperature profiles no longer varying with height 
[2]. The temperature profile in this region is only dependent on 
the ratio of wall suction to the thermal diffusivity, whilst the 
profile of vertical velocity further depends on the Prandtl 
number of the fluid and the Rayleigh number of the flow and 
thermal conditions. 

The theory proposed by Parikh et al. in [2] is for uniform 
suction and has been applied to the modelling of transpired 
solar collectors, which are perforated panels heated by the sun 
where air is heated by the panel and then drawn in through the 
perforations [3]. When the holes and their spacing are less than 
the thickness of the boundary layer then uniform suction may 
be a good approximation of the flow. However, for a typical 
solar collector the hole size and spacing may be an order of 
magnitude larger than the boundary layer thickness, and the 
validity of the approximation is doubtful. 

In this paper we first review the theory for convection with 
uniform suction. We then use a CFD model to examine how the 
properties of the flow differ when the suction can no longer be 
assumed uniform, but instead is through holes that have a size 
and spacing that is similar to the thickness of the buoyant 
boundary layer. 
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FREE CONVECTION WITH UNIFORM SUCTION 
As discussed in the introduction, a heated plate generates a 

layer of buoyant fluid that rises up the surface of the plate. This 
boundary layer entrains fluid as it rises, growing in width. 
However, if suction is applied to the plate there reaches a 
height where the rate of entrainment matches the suction 
through the plate, resulting in a fully developed region where 
the width of the plume no longer varies in the vertical axis. 

In this fully developed region of the boundary layer the 
scales for the flow and heat transfer are the temperature 
difference between the plate and the surroundings, ∆T = Tw − 
T∞, the mean suction velocity u0, the Prandtl number Pr, and the 
Rayleigh or Grashof number (Ra or Gr). The temperature may 
be non-dimensionalised as: 

T
TT

Δ
∞−
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For the case of uniform suction u0, the temperature profile 
in the fluid is given by [2] as: 
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Since the flow is independent of height, a reference length 
needs to be defined to non-dimensionalise the distance from the 
wall, and to allow the definition of a Rayleigh number. A 
suitable characteristic width of thermal boundary layer is:  
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Using this expression to define a reference length δ0, the 
temperature profile given in equation (2) gives:  

0
0 u
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The expression for the temperature profile then becomes:  
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The horizontal velocity is uniformly –u0. It can be shown 
that for a fluid with a Prandtl number of 1 the vertical velocity 
has a profile of: 
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Here the Rayleigh number Raδ is based on δ0. These 
temperature and velocity profiles are shown in Figure 1. It is 
interesting to note that the temperature profile depends only 
upon δ0, the ratio of the thermal diffusivity and the suction 
velocity. The profile of the dimensional vertical component of 
velocity depends additionally on the Prandtl number, and for a 
Prandtl number of 1 has a magnitude proportional to the 
Rayleigh number.  

For a vertical wall that is being used as a solar collector, 
two heat flows are of interest. Firstly we are interested in the 

rate of heat transfer from the plate to the fluid. Since the flow is 
fully developed and does not vary in the vertical direction, this 
must equal the enthalpy of the suction fluid drawn through the 
plate, if we take the reference enthalpy of the ambient fluid to 
be zero. 

 

Figure 1 Profiles of temperature and vertical velocity for a 
buoyant boundary layer on a plate with uniform suction. 
 
Using the temperature profile given in (2), the heat flux 

from the plate to the fluid is: 
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Since the fluid at the wall is at the same temperature as the 
wall, then the enthalpy flux of the suction fluid is: 

Tucq psuction Δ0ρ−=′′      (8) 

These are seen to be equal and opposite; the negative sign 
for (8) is due to the fluid leaving the domain. 

The second heat flow of interest is the vertical heat flow 
rate of the fluid rising in the buoyant boundary layer. This 
energy is lost to the environment when the boundary layer 
leaves the collector as a buoyant plume at the top of the plate. 
This vertical flow of thermal energy is solely due to convection 
and is calculated by integrating the product of the mass flow 
and enthalpy profiles. The profiles in equations (5) and (6) 
therefore give a vertical heat flow per unit width of:  

TRaucdxvTcq Tppbl Δδρρ δ04
1

0

==′ ∫
∞

   (9) 

For a plate held at a constant temperature, increasing the 
suction velocity would increase the heat flow  from the plate. 
However, for a solar collector the incident radiation that heats 
the plate is a constant, so increasing the velocity would simply 
decrease the plate temperature. However, there may be a 
benefit to decreasing the plate temperature in this manner, since 
decreasing the plate temperature would reduce the loss due to 
radiation.  

For the plate as a whole the vertical heat flow rate of the 
buoyant boundary layer is the overall convective heat loss. To 
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reduce this loss either the temperature difference ΔT or the 
thermal boundary layer width δT should be minimised, the latter 
requiring maximising the suction velocity. 

 

FREE CONVECTION WITH DISCRETE SUCTION 
The analysis in the previous section was based on a panel 

that had uniform suction across its surface. However, in general 
solar collectors do not have uniform suction but instead are 
constructed from sheet metal with holes drilled or punched 
through the surface. If the diameter of the holes, D, and their 
spacing or pitch, P (Figure 2), are small compared to the width 
of the thermal boundary layer then uniform suction may be a 
good approximation. However, if these dimensions are equal or 
greater than the boundary layer thickness then we would expect 
the discrete nature of the suction to have some effect on the 
flow. 

 

 y 

 z

 x 

P 

  P 

D 

 
Figure 2 Hole geometry for plate 

 
A test rig at the University of Auckland to model solar 

collectors has holes of 1.5 mm diameter spaced at a pitch of 
20 mm [4]. For typical experiments the temperature difference 
between the plate and the surrounds was approximately 10 K 
for suction velocities that varied between 10 and 20 mm/s. This 
gives a thermal boundary layer thickness of approximately 2 to 
1 mm, which is of the order of the hole diameter and an order 
of magnitude less than the hole pitch. Clearly for such a flow 
condition the discrete nature of the suction can no longer be 
ignored. A question remains regarding how having non-
uniform suction changes the heat transfer to the fluid drawn 
through the holes, the thermal boundary layer thickness, and the 
thermal energy contained in the wall plume. 

To model the effect of this non-uniform or discrete suction, 
the flow was calculated for the geometry shown in Figure 3. 
The same non-dimensionalisation as was used as for the case of 
uniform suction, and the flow and temperature fields are again 
both dependant on the nominal boundary layer thickness δ0, the 
Prandtl number, and the Rayleigh or Grashof number. In 
addition the flow fields also depend on the diameter D and 
pitch P of the holes in the plate.  

Again we are interested in the heat transfer from the plate to 
the fluid, and the vertical heat flow rate of the buoyant 
boundary layer. These quantities can be normalised with 

respect to their values for the case of uniform suction to see 
how far they depart from this idealised case.  

 

Outlet: p=0 

Inlet:  u=(-u0,0,0)
           θ=0 

  Wall: θ=1 

  Periodic: 

Symmetry plane: 

  Periodic: 

Symmetry plane: 

Figure 3 Boundary conditions for the CFD model. 
 

THE NUMERICAL MODEL 
The free convection flow was modelled using the CFD 

package CFX 12.1, the flow being modelled as a laminar 
constant property flow with buoyancy being modelled using the 
Boussinesq approximation.  

The geometry of a representative domain is shown in 
Figure 3. An inlet condition at the high x boundary has fluid 
entering the domain with a constant horizontal velocity of –u0, 
zero vertical velocity, and a temperature T∞. Symmetry 
conditions were imposed at the high and low z boundaries, and 
the flow was periodic across the upper and lower y boundaries. 
The plate was modelled as an isothermal no-slip wall at 
temperature Tw. Fluid could only exit the domain through the 
end of the pipe where a constant static pressure outlet condition 
was imposed. Since we were only interested in the heat transfer 
from the front of the plate, the perimeter of the hole was 
modelled as an adiabatic no-slip wall. 

For comparison with the analytic model for uniform 
suction flow, the calculations were performed for a fluid with a 
Prandtl number of 1. Calculations were performed for Rayleigh 
numbers in the range 1 to 1000, with hole diameters of D/δ0 of 
0.1 to 10, and hole pitches of 2 D to 10 D. These could be 
compared with analytic solutions for uniform suction which 
was considered to be the limiting case of D/δ0 = 0. 

RESULTS  
Physical reasoning suggests that as D/δT→0 and P/δT→0 the 

flow should tend to the solution for uniform suction. However, 
as the hole diameter or pitch increases the solution should 
deviate from this model. 

We will first consider the heat flux from the plate, which is 
equal to the enthalpy flow rate of the suction fluid divided by 
the area of the plate. For hole diameters and pitches that are less 
than the boundary layer thickness we would expect the suction 
heat flux to be given by equation (8). However, if the hole 
diameter is of the same magnitude or larger than the thermal 
boundary layer one might assume that not all of the fluid drawn 
into the hole is drawn from within the thermal boundary layer, 
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with some being drawn from the cooler exterior fluid. The 
suction of this colder fluid would be expected to decrease the 
enthalpy of the suction flow. 

 

 
Figure 4 Temperature profiles along vertical centreline and 

isotherm of θ = 0.3 for D/δ0 = 5, P/D = 5 and Raδ = 1. 
 

 
Figure 5 Streamlines and wall temperatures for D/δ0 = 5, 

P/D = 5 and Raδ = 1. 
 
Increasing the hole pitch would have the effect of increasing 

the velocity at the mouths of the holes and would have a similar 
effect, with fluid again being drawn in from outside the thermal 
boundary layer.  

These assumptions are borne out in Figure 6 which shows 
that increasing the hole diameter decreases the suction heat 
flux, as does increasing the pitch. The flow structure for the 
case of D/δ0 = 5, P/D = 5 is shown in Figure 5, showing fluid 

being drawn in from outside the boundary layer, whilst the 
temperature contours and isotherm in Figure 4 show cold fluid 
entering the mouth of the hole. 

 
Figure 6 Normalised suction heat flux for Raδ = 100. 

 
Figure 7 Normalised suction heat flux for hole pitch P/D = 5. 

 
Figure 7 shows the effect of varying the Rayleigh number of 

the thermal boundary layer. Increasing the Rayleigh number 
(which for a given plate and fluid would correspond to 
increasing the temperature difference or decreasing the suction 
velocity) increases the enthalpy of the flow drawn into the hole. 
This is thought to be due to the higher vertical velocity of the 
high Rayleigh number flows which creates a jet of warm fluid 
across the mouth of the hole increasing the temperature of the 
inlet flow. Figure 8 shows the jet of warm fluid across the 
mouth of the hole, whilst Figure 9 reveals how the streamlines 
for the suction flow are drawn from the wall flow, and not from 
the flow external to the thermal boundary layer. One interesting 
effect shown in Figure 9 is the formation of a roll in the mouth 
of the hole, with the flow resembling driven cavity flow. 

Figure 10 shows that increasing the hole diameter and pitch 
has the effect of increasing the thickness of the thermal 
boundary layer. This increase in boundary layer thickness is 
understandable when one considers that increasing the hole 
diameter or pitch reduces the heat flux from the plate surface. 
All things being equal, this decrease in heat flux must be 

371



    

matched by a corresponding decrease in temperature gradient, 
which results in a thicker thermal boundary layer.  

 
Figure 8 Temperature profiles along vertical centreline and 
isotherm of θ = 0.87 for D/δ0 = 1, P/D = 5 and Raδ = 1000. 

 

 
Figure 9 Streamlines and wall temperatures for D/δ0 = 1, 

P/D = 5 and Raδ = 1000. 
 

Finally the effect of hole diameter and pitch upon the 
vertical heat flow rate in the boundary layer is plotted in Figure 
11. The increased heat flow rate over that for uniform suction 
may be explained by the increased depth of the thermal 
boundary layer. This results in both a higher mean temperature, 
and so a higher mean enthalpy, and a higher flow rate due to 
larger buoyancy forces. 

This last diagram is perhaps the most important. For a solar 
collector the rate of energy lost from the collector is the sum of 
radiation back to the environment, and the heat flow rate of the 
buoyant plume at the top of the collector. For the cases 
considered here, the collector with discrete suction has up to 30 
times the convective loss of the case of uniform suction. 

 
Figure 10 Thickness of thermal boundary layer with varying 

hole diameter and pitch. 

 
Figure 11 Boundary layer vertical heat flow per unit width of 

the plate for varying hole diameter and pitch. 

CONCLUSIONS  
The thermal boundary layer and buoyant wall flow up a 

heated plate have been modelled for the case of uniform 
suction, and suction through discrete holes. It is shown that 
compared to the case of uniform suction, when for hole 
diameters and spacing are of the order of the thermal boundary 
layer thickness or larger, the heat flux from the plate is 
decreased, the thickness of the thermal boundary layer 
increases, and the vertical heat flow rate of the boundary layer 
increases. This would result in a decrease in the rate that energy 
is captured by a solar collector. 
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