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ABSTRACT

Natural convection/isothermal flows, described by
the unsteady Boussinesq approximation and the Navier-
Stokes equations, are studied numerically using a simple
projection method, based on an operator splitting, af-
ter a convenient time discretization is made. The whole
process involves four steps: one for the energy equation
(temperature step) and three for the momentum and con-
tinuity equations (motion steps). The numerical scheme
is independent of the dimension of the space and of the
shape of the region where the flow is developed. 2D
numerical experiments are reported in rectangular cav-
ities: natural convection flows in cavities filled with air
for Raleigh numbers Ra ≤ 106 and isothermal flows in
the well known lid-driven cavity problem for Reynolds
numbers Re ≤ 1000.

INTRODUCTION

Natural convection flows modeled by the unsteady Boussi-
nesq approximation and isothermal flows modeled by the un-
steady Navier-Stokes equations are studied in this work. The
numerical scheme is based on a simple projection method in-
volving an operator splitting of four steps for the temperature,
momentum, and continuity equations in the time discretiza-
tion: From one of the steps the temperature is computed,
called the temperature step, and from the second to the fourth
step the pressure and the velocity are computed; two of these
latter sub-steps involve the computing of two intermediate
velocities, one of which satisfies the incompressibility condi-
tion, and the solution of a Poisson equation for the pressure
with Neumann boundary condition, and the fourth step gives
the final velocity through the solution of a vectorial ellip-
tic equation, with Dirichlet boundary condition. Then, the
difficulties associated with the non-linearity and the incom-
pressibility constraint are decoupled; no iteration at each time
step is required. For isothermal flows the temperature step is
eliminated. Although 3D fluid flows can be handled by the
numerical method, only 2D flows in rectangular cavities are
reported here.

The numerical procedure, in its isothermal restriction, is
very close to the one reported in Badalassi et al. [1] for multi-
phase flows, which are more complicated than the ones con-
sidered here, which in turn is close to the one in Karnadiakis
et al. [2]; no one of these works considers thermal flows and
other discretizations tools, very different of the ones consid-
ered here, are used because of their particular needs: high
order discretizations in time in [2], spectral methods for the
spatial discretization, to handle accurately those more com-
plicated flows, in [1]. A crucial problem to solve efficiently
for the pressure is discussed in [2], based on some considera-
tions pointed out before, Orszag [3]; this discussion has been
continued, say in [1], Gresho and Sani [4], and Sani et al. [5].
From those discussions, an efficient solution for the pressure
seems to be the one obtained by solving a Poisson equation
for the pressure, through an operator splitting procedure ap-
plied to the whole problem, with an appropriate Neumann
boundary condition obtained from the normal projection of
the gradient of the pressure in the semi-discrete momentum
equation.

The evolution of the natural convection flows presented
here depends on the parameter given by the Rayleigh num-
ber Ra and that of isothermal type depends on the Reynolds
number Re, and both evolutions depend on the aspect ratio
A (A=ratio of the height to the width) of the cavity. All
the natural convection flows are complemented with the lo-
cal Nusselt number Nu and the global Nusselt number Nu
to measure the heat transfer of the flow. With the values of
Nu and the graph of Nu and some characteristic values of
the stream function and/or the components of the velocity
the influence of the parameters Ra and A on the evolution of
thermal flows, concerning the activity of the fluid motion and
of the heat transfer, can be described as well as that of isother-
mal flows without considering Nu and Nu. All the flows we
are reporting are asymptotic converged ones to their steady
state, then the time Tss when the steady state is reached,
according to the discrete absolute stopping criterion in all
the cavity, is reported. Then, how Tss varies as Ra, Re, or A
varies gives another mean to find out about the activity of the
flow. On the other hand, the numerical results are obtained
with significant coarse meshes which, together with the fact
that no iteration is required, makes the numerical procedure
very efficient computationally speaking.



MATHEMATICAL MODEL

Let Ω ⊂ RN (N = 2, 3) be the region of the flow of an
unsteady, thermal, viscous, incompressible fluid, and Γ its
boundary, this kind of flows can be modeled, in Ω and for
t > 0, by the dimensionless system

ut + (u · ∇)u +∇p = 1
Re
∇2u + f (a)

∇ · u = 0 (b) (1)

θt + (u · ∇)θ = 1
RePr

∇2θ (c)

known as the Boussinesq approximation if f = Ra
PrRe2 θ e, with

e the unitary vector in the gravitational direction; where u, p,
and θ are the velocity, pressure, and temperature of the flow
respectively. The continuity equation (1.b) is also known as
the incompressibility condition. If the flow does not depend
on the temperature the coupling with (1.c) disappears and f
does not depend on θ, then (1.a−1.b) give the Navier-Stokes
equations for isothermal flows. The dimensionless parameters
Re, Ra and Pr represent the Reynolds, Rayleigh and Prandtl
numbers.

The system must be supplemented with initial conditions,
for instance θ(x, 0) = θo(x) and u(x, 0) = uo(x) in Ω and
with boundary conditions, say u = g and Bθ = 0 on Γ, t ≥
0, where B is a temperature boundary operator which can
involve Dirichlet, Neumann or mixed boundary conditions.

The difficulties of the system are: the non linearity of the
equations, the coupling among them, there is not enough in-
formation to compute the pressure and to satisfy the incom-
pressibility condition. A convenient semi-implicit time dis-
cretization combined with an operator splitting, solving sim-
pler subproblems, may be used to overcome these obstacles.

NUMERICAL PROCEDURE

The time derivatives in (1.a) and (1.c) are approximated
by the second-order finite differences

ht(x, (n + 1)∆t) = 3hn+1−4hn+hn−1

2∆t
(2)

with n ≥ 1, x ε Ω; where hr ≡ h(x, r∆t) and ∆t, the time
step.

Thus, the corresponding semi-discrete problem for system
(1), in Ω, reads

3
2un+1−2un + 1

2un−1

∆t
+ 2(u · ∇u)n

−(u · ∇u)n−1 + ∇p n+1 = 1
Re
∇ 2un+1

+ f n+1, (a)

∇ · un+1 = 0, (b) (3)

3θn+1−4θn+θn−1

2∆t
+ 2(u · ∇θ)n

−(u · ∇θ)n−1 = 1
RePr

∇2θn+1. (c)

as it can observed, the non-linear terms (u·∇)u and (u·∇)θ, in
(1.a) and (1.c), are approximated with a linear extrapolation
of the values of the two previous time levels.

Then, following closely [1] and [2], the operator splitting of
four step that is applied at each time level is given by

Step 1)

3θn+1−4θn+θn−1

2∆t
− 1

RePr
∇2θn+1

= −2(un · ∇)θn + (un−1 · ∇)θn−1 in Ω

Bθn+1|Γ = 0

Step 2)

u∗−2un+ 1
2un−1

∆t
= −2(un · ∇)un+

(un−1 · ∇)un−1 + Ra
PrRe2 θ n+1 e in Ω, (4)

Step 3)

u∗∗−u∗
∆t

= −∇p n+1 in Ω,

Step 4)

3
2un+1−u∗∗

∆t
= 1

Re
∇2un+1 in Ω

un+1|Γ = g,

where fn+1 has been replaced by Ra
PrRe2 θn+1e; u∗ and u∗∗ are

intermediate velocities, the latter satisfies the incompressibil-
ity condition

∇ · u∗∗ = 0 (5)

Taking the divergence in step 3), using (5), an equation of
Poisson type for the pressure is obtained, in Ω,

∇2pn+1 = 1
∆t

u∗, (6)

for which a convenient Neumann boundary condition can be
determined by taking the normal component in the semi-
discrete momentum equation (3.a)

∂p n+1

∂n
= n·[ 1

∆t
(− 3

2
un+1 + 2un − 1

2
un−1)

−2((un · ∇)un + 1
Re
∇× (∇× un)) + (7)

((un−1 · ∇)un−1 + 1
Re
∇× (∇× un−1)

+ Ral
PrRe2 θ n+1 e] on Γ.

In (7) can be observed that the laplacian of the velocity has
been substituted by the double curl of u, using the identity
∇2u = ∇(∇ · u) − ∇ × ∇ × u with the incompressibility
condition, and then applying a linear extrapolation of the
two previous time levels.

It is known that elliptic problems with Neumann bound-
ary condition, like the one given by (6) and (7), do not
have a unique solution, it is unique only within an arbitrary
constant if a compatibility condition holds, [2], Glowinski
[6], and Temam [7]. It is also known, see for instance [7]
that the pressure equation with Neumann boundary condi-

tion ∂p n+1

∂n
|Γ = 0 is equivalent that u∗∗ be the projection of

u∗ onto the divergence-free subspace of vector fields, provided
that u∗∗|Γ = 0 which, in our case, does not have any influence
in the calculation of u∗∗ in step 2; however, as pointed out by

some authors ∂p n+1

∂n
|Γ = 0 is not good neither for numerical

purposes [2] nor to satisfy the exact pressure [7].

It should noted: In step 1) (temperature step) the tem-
perature θn+1 is computed; in steps 2)-4) (motion steps), u∗



is computed in step 2), then the pressure pn+1 is computed
in step 3) through the Poisson equation (6) with Neumann
boundary condition (7), once pn+1 has been computed the
intermediate velocity u∗∗, to be used in step 4), is computed
in step 2); finally the velocity un+1 is computed in step 4).

Thus, we must solve two elliptic scalar problems to obtain
θn+1, pn+1 and a vectorial one, with Dirichlet boundary con-
dition, to obtain un+1, whereas the intermediate velocities,
u∗ and u∗∗, are computed explicitly. For isothermal flows the
temperature step is not considered. It must be noted that
the scheme is independent of the spatial dimension and of the
shape of the region Ω.
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FIG. 1: Geometry of the model

In this work, 2D numerical experiments taking place on
rectangular cavities Ω = (0, a) × (0, b) are reported. Then,
the second order approximation (2) on boundary points and
central finite differences in interior points are used to dis-
cretize the right hand side terms. The elliptic problems are
solved with the second order approximation option, based on
finite differences, of the Fishpack solver [8], which uses an
efficient cyclic reduction iterative method to solve the corre-
sponding algebraic linear systems, [9], and the non-uniqueness
of the pressure partial differential problem is handled through
a weighted minimal least square solution on the algebraic sys-
tem.

Once the final velocity u is obtained, at each time level, the
vorticity ω and the stream function ψ are computed through
the relations

ω = ||∇ × u|| in Ω

∇2ψ = −ω in Ω

The heat tranfer on the hot wall, of natural convection
flows, is measured with the local, Nu(y), and global, Nu,
Nusselt numbers, defined by

Nu(y) = ∂θ
∂x
|x=0 and

Nu = 1
b

∫ b

0
Nu(x)dx ;

the derivative is approximated by (2) and the integral by the
second order trapezoidal rule.

NUMERICAL RESULTS

For natural convection the walls of the cavity are fixed and
solid, then by viscosity the boundary condition for the velocity
is u = 0; the one for the temperature, given so far implicitly
on the boundary operator B, is given by

θ|x=0 = 1, θ|x=a = 0; ∂θ
∂n
|y=0,b = 0

which means that the left wall is the hot wall, the right wall is
the cold one, and the horizontal walls are insulated, Figure 1
shows the geometry of the model; the respective initial condi-
tions for the velocity and the temperature are uo(x) = (0, 0)
and θ(x) = 0. For isothermal flows, the lid-driven cavity prob-
lem is considered, then the u boundary condition is u = (1, 0)
on the moving wall, y = b, and u = 0 elsewhere; the initial
condition is the same of natural convection flows. In both
cases flows at the steady state, based on the absolute stopping
criterion in all the cavity, Báez and Nicolás [10] and Nicolás
and Bermúdez [11], with tolerance 10−5, are reported in terms
of the isotherms and/or the streamlines and the isocontours
of the vorticity.

FIG. 2: Ra = 106, A = 1, ∆t = 10−5, h = 1/30 and Tss =
.1167

FIG. 3: Ra = 106, A = 3, ∆t = 10−5, hx×hy = 1/30×3/90
and Tss = .2243

For natural convection flows Re = 1, Gunsburguer [12], and
the results are obtained in cavities filled with air, Pr = 0.71,
and Ra = 106 and 107; some comments for Ra = 104 and
Ra = 105 are made. For isothermal flows, the case with
Re = 1000 is studied. Rectangular cavities with aspect ratio
A=1 and 3 are considered for both cases. The discretization
parameters, mesh sizes hx × hy (h = hx = hy) and the time
step ∆t, will be indicated in each case under study.

Results for natural convection with Ra = 106 and A =
1 are presented in Figure 2. The isotherms tend to adhere
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FIG. 4: local Nusselt number for Ra = 106 and A = 1

Nu

y

FIG. 5: local Nusselt number for Ra = 106 and A = 3

towards the vertical walls which leads a high heat transfer
on the hot wall. This situation influences on the streamlines
and on the isocontours of the vorticity, since the first ones
are more concentrated near the lateral walls, which indicates
a strong motion of the fluid, whereas the second ones show
areas of high activity near the boundary walls; these results
show concordance with those obtained in [10] and by Henkes
and Hoogendoorn [13]. If the aspect ratio increases to A = 3,
Figure 3, a very similar behaviour to the former is observed,
however some distortions appear in the isotherms, streamlines
and isocontours of the vorticity close to the left upper and
the right lower corners due to the interaction against the top
and bottom walls of the hot fluid going up and the cold one
going down. It can be observed, from Figures 4 and 5, that
the respective maximum of the local heat transfer, is located
near the lower corner of the hot wall, but this value is slightly
higher for A = 3 than that one for A = 1.

Table I. Comparison of some results for Ra = 106.

Ref. |ψ|max Nu Numax Numin

[14] 20.914 9.027 14.215 1.749

[15] - 8.754 17.872 1.232

(T) 19.934 9.892 17.381 0.983

For Ra = 106 with A = 1, in Table I, a comparison is made
of some numerical values between our results (T) and those
obtained by Vahl Davis [14], using h = 1

20
, and by Markatos

and Pericleous [15]; these two works use another formulation
of the problem and a different numerical approach. In Table
II, the corresponding results for Ra = 107 with A = 1 are
compared with those obtained by Lequéré [16]; neither [14]
nor [15] reports numerical values for this Ra.

Some of the results show good agreement since the dif-
ferences are less than 10 %; however, some of them show a

FIG. 6: Ra = 107, A = 1, ∆t = 10−6, h = 1/80 and Tss =
.07674

FIG. 7: Ra = 107, A = 3, ∆t = 10−6, hx × hy = 1/30× 3/90
and Tss = 0.1443

significant difference, mainly the global Nusselt number Nu
compared with [16] in Table II.

Table II. Comparison of some results for Ra = 107.

Ref. |ψ|max Nu Numax Numin

[16] - 16.523 39.395 1.366

(T) 47.162 18.620 39.153 1.303

For Ra = 107, from Figures 6 - 9 a more vigorous motion
of the fluid is obtained since the isotherms, the streamlines,
and the isocontours of the vorticity show a more remarkable
adherence to the vertical walls of the cavity than those ob-
served for Ra = 106; on the other hand, the respective local
Nusselt number, for A = 1 and A = 3, indicate that the local
heat transfer has been increased also.

Table III. Results for Ra = 106 and 107 with A = 3.

Ra |ψ|max Nu Tss

106 47.162 8.115 0.224

107 71.379 15.254 0.134

Table III shows the values of |ψ|max, Nu and Tss of our
results for Ra = 106 and 107 with A = 3.

About our results in Tables I, II and III it is observed that
when Ra increases, with A fixed, the motion of the fluid and
the global heat transfer, measured by ψ and Nu respectively,
are also increased, but the time to reach the steady state Tss

diminishes. On the other hand, although the motion of the
fluid is also stronger when A increases, with Ra fixed, the
global Nusselt number decreases. This last behaviour, when
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FIG. 8: local Nusselt number for Ra = 107 and A = 1
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FIG. 9: local Nusselt number for Ra = 107 and A = 3

A = 2, occurs also for Ra = 105, ; however, for Ra = 104, it
is observed that |ψ|max and Nu have increased when A = 2,
but when A = 3, although |ψ|max increases, Nu diminishes.
This flow pattern, until A = 2, occurs also with the velocity-
vorticity formulation; Table IV shows the comparison with
the results of such formulation in Bermúdez and Nicolás [17].
It must be noted that our results (T)in Table IV are obtained
with mesh sizes hx = 1

24
× hy = 1

24
, hx = 1

24
× hy = 2

48
, and

hx = 1
24
× hy = 3

72
, all of them with ∆t = 0.0001, whereas

those in [17] with hx = 1
64
× hy = 1

64
, ∆t = 0.0001, and

hx = 1
64
× hy = 2

128
, ∆t = 0.00001, respectively.

Table IV. Results for Ra = 104 with A = 1.

Ref. A |ψ|mid Nu

[17] 1 7.515 2.259

(T) 1 6.976 2.265

[17] 2 10.160 2.363

(T) 2 13.201 2.383

[17] 3 - -

(T) 3 17.520 2.262

For isothermal flows, Figures 10 and 11 show results with
Re = 1000 and A = 1, 3 respectively; for those in the square
cavity, one primary and two secondary vortices appear in the
streamlines while three primary vortices and one small sec-
ondary vortex only, in the right lower corner, for A = 3; the
isocontours of the vorticity indicate a high activity in almost
all the zone around the center when A = 1, and in the up-
per region, near of the moving wall for A = 3. Results for
the square cavity show very good concordance with those ob-
tained by Ghia et al. [18] and with the streamlines reported by
Erturk (the isocontours of the vorticity are no showed in this

FIG. 10: Re = 1000, h = 1
80

, ∆t = 0.01, Tss = 31.15

FIG. 11: Re = 1000, A = 3, hx×hy = 1
100

× 3
300

, ∆t = 0.0001
and T = 150

work) [19]; for A = 3 the results in this work show a very good
agreement with those obtained by Nicolás and Bermúdez [11],
except in this last work, the small secondary vortex appears
in the left lower corner. In all those works we are comparing
with finer meshes than ours are used.

CONCLUSIONS

The numerical results obtained by applying a simple pro-
jection method to the mathematical model of natural convec-
tion/isothermal flows, formulated in terms of the primitive
variables, indicate that the scheme is able to reach steady
state flows, as those shown here, for moderate values of Ra or
Re, and aspect ratios A ≤ 3; preliminary results show that it
is also possible to obtain satisfactory results, for steady state
or time depending flows of higher values of Ra or Re, and of
A with coarser meshes than those used by other authors using
other methods, either in stream function-vorticity variables,
[11], or in velocity-vorticity variables, [17]; on this matter, is
remarkable the difference in mesh size of our natural convec-
tion flows as well as the isothermal ones, in particular with
those in [17], as Table IV shows, for Ra = 104, obtaining
nevertheless the same conclusion until A = 2 about Nu, and



given some indication, because of A = 3, that if A would in-
crease then Nu may be oscillatory. For thermal fluids, the
effect of increasing one of the two values, Ra or A, and the
other fixed, is observed on the fluid motion, on the heat trans-
fer, and on the time to reach the steady state. For isothermal
flows, the corresponding effect on the fluid motion and on the
time to reach the steady state is shown only for the case when
A increases and Re = 1000 fixed. Although in this work only
2D fluid flows are reported, the numerical procedure can be
applied to 3D problems and there is not problem at all to
extend the scheme to mixed convection thermal problems.
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