
HEFAT2008
6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

30 June to 2 July 2008
Pretoria, South Africa
Paper number: GM1

LEAST-SQUARES SPECTRAL ELEMENT METHODS FOR
COMPRESSIBLE FLOWS

Marc Gerritsma
Faculty of Aerospace Engineering,

Delft University of Technology,
Kluyverweg 1, 2629 HS Delft.

The Netherlands.
Email: M.I.Gerritsma@TUDelft.nl

ABSTRACT

This paper describes the application of the least-
squares spectral element method to compressible
flow problems. The method is described and re-
sults are presented for subsonic, transonic and
supersonic flow problems over a bump.

INTRODUCTION

Compressible flows

The least-squares spectral element method has
been applied successfully to compressible and in-
compressible viscous flows, [32, 30, 31, 29, 36, 33,
34, 35], but the method has not been applied to
compressible inviscid flows. The numerical sim-
ulation of inviscid, compressible flow problems
has been an active area of research over the last
decades. Transonic and supersonic flows admit
discontinuous solutions and a proper numerical
setting is required to predict the correct shock
location and shock strength. In addition, many
compressible flow problems are not well-posed in
the sense that they do not possess a unique so-

lution. The physical solution – the entropy so-
lution1 – is the solution obtained by taking the
limit of the (unique) viscous problem for the vis-
cosity tending to zero, [26].
An important feature in compressible flows is the
use of a conservative scheme which means that
the conservation laws (mass, momentum and en-
ergy) are satisfied at the discrete level. The
Rankine-Hugoniot relations which relate discon-
tinuities before and after a shock are essentially
a restatement of these conservation laws in the
vicinity of the shock. So by employing a conser-
vative scheme many of the continuous relations
also hold true at the discrete level. This is the
main reason why finite volume methods are so
popular in compressible flow dynamics, see for
instance [21, 27, 42].
The converse is however not true: conserva-
tive schemes are not necessary to converge to
the exact solution. Least-squares formulations
are known to suffer from lack of conservation,
[3, 11, 35, 20], and it is therefore rather challeng-

1The entropy condition is a restatement of the vanish-
ing viscosity limit



ing to apply this weak formulation to problems
which contain discontinuous solutions (shocks,
contact discontinuities).
The aim of this paper is to show that LSQSEM
is capable of approximating the discontinuous so-
lutions of non-linear hyperbolic equations. In
combination with adaptive strategies such as de-
scribed in [13], this might be a viable alternative
to finite volume methods.

Higher order/spectral

Very little work has been done on inviscid, com-
pressible flow problems in the framework of
higher order/spectral methods. The main reason
why so little work has been done in this field us-
ing spectral methods is mainly due to the appear-
ance of shocks and contact discontinuities. Spec-
tral methods work best when the coefficients of
the higher orthogonal basis functions in the solu-
tion decay sufficiently fast, [23], in which case ex-
ponential convergence to the exact solution may
result. The smoothness of the solution dictates
the decay rate of the coefficients of the global
spectral basis functions, see for example Gottlieb
and Hesthaven, [16]. In case of discontinuous so-
lutions the coefficients of the higher order modes
decay very slowly and the approximate solution
tends to oscillate in the vicinity of large gradi-
ents. These wiggles are prone to pollute the en-
tire computational domain. Damping or filter-
ing of these unwanted oscillations is therefore re-
quired. The application of spectral methods to
non-linear hyperbolic equations has been mainly
restricted to one dimensional model problems,
such as the Burgers equation, see for instance
[17, 28, 39] and references therein.

Least-squares formulation

The least-squares formulation is gaining renewed
interest due to some favorable properties. The
least-squares formulation often shows optimal
convergence, in contrast to the conventional
Galerkin approximation which generally yields
sub-optimal convergence rates. Furthermore, the
least-squares formulation is inherently stable and

does not require artificial dissipation/viscosity
to stabilize the scheme. In addition, a well-
posed least-squares approximation always leads
to symmetric, positive definite (SPD) systems
which is very convenient from a computational
point of view since only half of the system ma-
trix needs to be computed and SPD systems
are highly amenable to well-established iterative
solvers such as the preconditioned conjugate gra-
dient algorithm.
Despite these attractive features, very little work
has been done in the field of linear and non-linear
hyperbolic equations. In the least-squares finite
element (LSFEM) framework work has been done
by Jiang, [24]. De Sterck et al., [9, 10], showed
that the use of the conservative formulation em-
ployed by Jiang is necessary for a proper de-
scription of non-linear hyperbolic equations. For
the Burgers equation it is shown that the so-
lution is not in H1, but the velocity-flux pair
(u, f) is a member of H(div). This analysis
has been used by De Maerschalck and Hein-
richs in the least-squares spectral element con-
text, [6, 8, 4, 7, 19, 18].
Taghaddosi et al., [40, 41], applied the least-
squares finite element formulation to the two-
dimensional Euler equations in combination with
grid adaptation.
For a general overview of the least-squares for-
mulation, the reader is referred to [1, 24] and ref-
erences therein.

COMPRESSIBLE FLOWS

Compressible flows in the absence of dissipative
terms are governed by the Euler equations. There
are several ways in which the Euler equations in
differential form can be written, but only the con-
servative form in terms of conservation quantities
will be presented.
The two-dimensional Euler equations in conser-
vation form are given by

∂

∂t


ρ
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ρv
ρE

 +
∂
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∂
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0
0
0
0

 .

These equations express conservation of mass,



conservation of momentum in the x- and y-
direction and conservation of energy, respec-
tively. Here ρ is the local density, p is the pressure
and (u, v) denotes the fluid velocity. The total
energy per unit mass is denoted by E . The total
energy can be decomposed into internal energy e
and the kinetic energy per unit mass

ρE = ρe+
ρ

2
(
u2 + v2

)
=

p

γ − 1
+
ρ

2
(
u2 + v2

)
,

where in the last equality we assume a calorically
ideal, perfect gas. The total enthalpy, H, is de-
fined as

H = E +
p

ρ
.

For steady flows the enthalpy is constant along
the streamlines.
If the spatial fluxes depend continuously on the
conserved quantities u = (ρ, ρu, ρv, ρE)T we can
write the governing equation in non-conservative
form as

ut +A(u)ux +B(u)uy = 0 , (1)

where A(u) and B(u) are the Jacobian matrices.

LEAST-SQUARES FORMULA-
TION

The least-squares formulation is based on the
equivalence of the residual in a certain norm
and the error in an associated norm. If this
equivalence is established, one aims to minimize
the residual norm which then provides an upper
bound for the error in the associated norm.
In order to explain the method, consider the ab-
stract differential equation given by

Lu = f , x ∈ Ω , (2)

with

Ru = g , x ∈ Γ ⊂ ∂Ω . (3)

Here L denotes a linear (or linearized) partial dif-
ferential operator, which for the linearized Euler

equations is given in [14, 43]. R denotes a lin-
ear trace operator by which Dirichlet boundary
conditions are prescribed. The data f and g are
known vectors. Without loss of generality we can
set g = 0.
If the problem is well-posed, the operator (L,R)
will be a continuous mapping from the underlying
Hilbert space X = X(Ω) onto the Hilbert spaces
Y = Y (Ω) and Z = Z(Γ), with a continuous
inverse. Here Γ ⊂ ∂Ω is the part of the boundary
where boundary conditions are prescribed. This
can be expressed by the following inequalities

C1‖u‖X ≤ ‖Lu‖Y +‖Ru‖Z ≤ C2‖u‖X , ∀u ∈ X .

(4)

These inequalities establish norm equivalence be-
tween the residuals and the error. We assume
that the exact solution uex ∈ X, then by the
linearity of L and R we have

C1‖u− uex‖X ≤ ‖Lu− f‖Y + ‖Ru− g‖Z
≤ C2‖u− uex‖X , ∀u ∈ X .

(5)

These inequalities state that if the residuals of the
differential equation measured in the Y -norm and
the traces measured in the Z-norm go to zero, the
exact solution is approximated in the X-norm.
Based on this observation, we introduce the least-
squares functional

I(u) =
1
2

(
‖Lu− f‖2Y + ‖Ru− g‖2Z

)
, ∀u ∈ X .

(6)

Minimization of this functional with respect to u
gives the weak formulation

(Lu,Lv)Y +W (Ru,Rv)Z =
(f,Lv)Y +W (g,Rv)Z , ∀v ∈ X . (7)

Generally, the least-squares method is applied
to over-determined systems where one has more
equations than unknowns, see for instance [22].
The least-squares solution is the solution which
minimizes the residual in the L2-norm. By



adding weights larger than one to some of the
equations, one can force the solution to reduce
the residual for that particular equation. By tak-
ing a weight smaller than one, one allows the
residual of these particular equations to become
larger. Here a weighing factor W is inserted
for the boundary terms which allows one to in-
crease or decrease the contribution of the bound-
ary residuals to the overall residual norm. In case
the trial solution satisfies the condition Ru = 0
the boundary terms vanish from the weak formu-
lation.
For numerical calculations we need to restrict the
infinite dimensional space X to a finite dimen-
sional subspace, denoted by Xh ⊂ X. Here h
denotes a generic discretization parameter which
in this paper will refer to the mesh size or the
polynomial degree used in the approximation.

SPECTRAL ELEMENTS

Instead of seeking the minimizer over the infi-
nite dimensional space X we restrict our search
to a conforming subspace Xh ⊂ X by perform-
ing a domain decomposition where the solution
within each sub-domain is expanded with re-
spect to a polynomial basis. The domain Ω is
sub-divided into K non-overlapping quadrilateral
sub-domains Ωk:

Ω =
K⋃
k=1

Ωk ,
◦
Ωk ∩

◦
Ωl= ∅ , k 6= l . (8)

Each sub-domain is mapped onto the unit cube
[−1, 1]d, where d = dim(Ω). Within this unit
cube the unknown function is approximated by
polynomials. In this paper a spectral element
method based on Legendre polynomials, Lk(x)
over the interval [−1, 1], is employed, [2, 12, 25].
We define the Gauss-Lobatto-Legendre (GLL)
nodes by the zeroes of the polynomial

(
1− x2

)
L′N (x) , (9)

and the Lagrange polynomials, hi(x), through

these GLL-points, xi, by

hi(x) =
1

N(N + 1)
(x2 − 1)L′N (x)
LN (xi)(x− xi)

for i = 0, . . . , N , (10)

where L′N (x) denotes the derivative of the Nth
Legendre polynomial. For multi-dimensional
problems tensor products of the one-dimensional
basis functions are employed in the expansion
of the approximate solution. We can therefore
expand the approximate solution in each sub-
domain in terms of a truncated series of these La-
grangian basis functions, which for d = 2 yields

uN (x, y) =
N∑
i=0

N∑
j=0

ûijhi(x)hj(y), (11)

where the ûij ’s are to be determined by the least-
squares method. Since we have converted a gen-
eral higher order PDE to an equivalent first order
system, C0-continuity suffices to patch the solu-
tions on the individual subdomains together.
The integrals appearing in the least squares
formulation, (7), are approximated by Gauss-
Lobatto quadrature∫ 1

−1

f(x) dx ≈
P∑
i=0

f(xi)wi, (12)

where wi are the GL weights given by

wi =
2

P (P + 1)
1

L2
P (xi)

, i = 0, . . . , P ≥ N .

(13)

It has been shown in [5] that it is beneficial for
non-linear equations possessing large gradients to
choose the integration order P higher than the
approximation of the solution, N .

RESULTS

In this section results are given for the flow over
a circular bump in a 2D channel. Results will
be given for subsonic flow, M∞ = 0.5, transonic
flow, M∞ = 0.85 and supersonic flow, M∞ = 1.4.



Figure 1: The general geometry of the 2D channel
with a circular bump.

Figure 2: The mesh used for the subsonic test
case. The height of the bump is 10% of the chord
length and 33 elements are used.

This is a difficult test problem over the entire
Mach range for spectral methods due to the pres-
ence of stagnation points at the leading and trail-
ing edge of the bump.
The general geometry for the channel flow with
a circular bump is shown in Fig. 1. The bump is
modeled by curved elements using the transfinite
mapping by Gordon and Hall, [15].
The entropy variation s in the domain is calcu-
lated with the freestream entropy as a reference:

s =
ŝ− ŝ∞
ŝ∞

, where ŝ = pρ−γ . (14)

Results for subsonic flow

To test a subsonic flow problem the chord length
of the bump is set at c = 1. The length of the
channel is three times the chord length whereas
the height is set equal to the chord length. The
height of bump is 10% of the chord length. The
mesh contains 33 elements (Fig. 2) and the poly-
nomial degree chosen is N = 6. An integration
order P = 8 is chosen, see (12).
At the outflow boundary the exit pressure is set
at p = 1. At the inflow boundary the density

Figure 3: Pressure contours for the subsonic flow
with boundary weight W = 1 and ∆t = 0.1.

Figure 4: The mesh used for the transonic test
case. The height of the bump is 4.2% of the chord
length and 100 elements are used.

is prescribed and set at ρ = 1.4; the velocity
components are fixed at u = 0.5 and v = 0.
Pressure contours are given in Fig. 3.

Results for transonic flow

To investigate the transonic flow over a bump the
geometry is the same as that for the transonic
flow problems described by Spekreijse, [38], and
Rizzi and Viviand, [37].
As in the subsonic case, the chord length of the
bump is c = 1. The length of the channel how-
ever, is 5 times the chord length and the height is
set at 2.073 times the chord length. The height
of the bump is 4.2% of the chord length. The
mesh used for this test case is shown in Fig. 4.
The polynomial degree is N = 5 whereas the in-
tegration order is P = 6.
In Fig. 5 the Mach contours at an inflow Mach
number of M = 0.85 and a time step of ∆t =
0.075 are compared to the finite volume results
produced by Spekreijse, [38].
The shock is positioned at approximately 86% of



Figure 5: Comparison of the iso-Mach lines for
transonic flow, M = 0.85 obtained by LSQSEM
(green) and Finite Volume Method by Spekreijse
[38], (black).

Figure 6: The mesh used for the supersonic test
case. The height of the bump is 4% of the chord
length and 120 elements are used.

the bump with the Mach number just upstream
of the shock being M ≈ 1.32. These results are
quantitatively in agreement with the finite vol-
ume results obtained by Spekreijse.

Results for supersonic flow

The geometry used for the supersonic test case is
similar to that considered for the subsonic flow
test case. The only difference is the height of the
bump which is 4% of the chord length for this
test case. The mesh has a total of 120 elements
as can be seen in Fig. 6.
At inflow the density is set to ρ = 1.4 and the
pressure to p = 1. The Mach number of the flow
at the inlet boundary is M = 1.4.
The iso-Mach contours for this test case are
shown in Fig. 7 together with the results obtained
by Spekreijse, [38]. This figure reveals that the
shock structure over the bump agrees.

Figure 7: Iso-Mach lines and shock structure ob-
tained by LSQSEM (green) and Finite Volume
Method by Spekreijse [38]

CONCLUSIONS

This paper described the least-squares spectral
element formulation in which time stepping was
used to reach steady state solutions.
In the transonic and supersonic test case over a
circular bump shocks develop. Direct comparison
with results from literature demonstrates that
the LSQSEM method is capable of solving these
type of flow problems.

Despite the fact that the least-squares formula-
tion is not conservative and the fact that high
order polynomials tend to oscillate in the vicin-
ity of shocks, the results presented in this paper
demonstrate that the least-squares formulation is
able to cover the whole Mach range.
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G. Guèvremont, and D. Ait-Ali-Yahia.
An adaptive approach least-squares method
for the compressible Euler equations. Int. J.
Numer. Meth. Fluids, 31:1121–1139, 1999.

[42] E.F. Toro. Riemann Solvers and Numerical
Methods for Fluid Dynamics – A Practical
Introduction. Springer Verlag, Berlin Hei-
delberg New York, 1999.



[43] R. van der Bas. Least-squares spectral el-
ement method for 2-D hyperbolic systems
of equations. Technical Report Stagiaire
Report 2007-07, Von Karman Institute for
Fluid Dynamics, Belgium, 2007.


