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ABSTRACT  

The flow of non-Newtonian fluids through an annulus is 
often encountered in various industrial processes such as 
transportation of drilling fluids in petroleum industry and 
extrusion of polymers (in a mandrel region). 

Roughly speaking there are two approaches how to cope 
with the description of these flow situations. The numerical 
approach aims at a calculation of the quantities (e.g. velocity 
components, flow rate) describing the concrete problem, and 
with an arbitrary change of the entry parameters (geometry, 
kinematics, rheological characteristics) it is necessary to repeat 
the whole procedure from the beginning.  

The other approach lays emphasis on the functional 
participation of the individual entry parameters in the whole 
solution. This method enables to decide which parameters 
should be altered (and in which way) to obtain more favourable 
results e.g. from the viewpoint of production rate. In this case 
the optimum approach is represented by an explicit solution. 
However in more complicated problems the chance to obtain an 
explicit solution is rather limited.  

A number of papers have aimed at an analytical solution of 
an axial annular flow of power-law fluids, especially a relation: 
volumetric flow rate vs. pressure gradient. No complete 
analytical solution has been yet achieved. The only analytical 
solutions - that have been hitherto derived - concern the 
limiting cases of the geometrical parameter κ (inner-to-outer 
diameters ratio) or flow behaviour index n.  

The present contribution discusses an applicability of these 
limiting solutions for a broader region of entry parameters and 
proves that in many cases usage of these relations is fully 
acceptable (and comparable with an inaccuracy in experimental 
determination of flow behaviour index n and consistency 
parameter k of the power-law model). 
 

INTRODUCTION 
Starting with a paper by Fredrickson and Bird [1] 

published in 1958, a derivation of the analytical relation 
volumetric flow rate vs. pressure gradient for steady laminar 
isothermal flow of incompressible axial annular flow of power-
law fluids (see Fig.1) with no-slip at the boundaries has 
become an intensively studied topic up to now (for references 
see e.g. Escudier et al. [2], Filip and David [3]). Unlike laminar 
Newtonian flow, where complexity is caused almost 
exclusively by the geometric conditions of the given problem, 
for laminar non-Newtonian flow this complexity is intensified 
by nonlinear dependence between shear stress and shear rate. 

In this case a power-law model is governed by the relation 
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where n represents the flow behaviour index, k the consistency 
parameter, vz the axial velocity component (see Fig.1), and γ  is 
the shear rate. 

Each hitherto published semi-analytical solution encounters 
the problem how to determine a parameter λ, where λR 
represents the radial location of maximum of axial velocity 
component and simultaneously the point where shear stress 
nullifies.  

Hanks and Larson [4], and Prasanth and Shenoy [5] 
independently (using different approaches) derived the relation 
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where Qax stands for the volumetric flow rate, P is the pressure 
drop defined as a change of pressure per unit of length (ΔP/L). 
The parameter λ is necessary to determine numerically from an 
integral equation introduced already in Fredrickson and Bird [1] 
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The term in the square brackets (rel.(2)) represents a weight 
function reducing an axial annular flow rate from that through a 
pipe given by two remaining terms in rel.(2). 
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Fig.1. A definition sketch. 
 

There are approximately three possibilities how to eliminate 
a necessity to solve numerically the integral equation (3) 
1)  to express an approximate relation for the parameter λ; 
2)  to propose a fully analytical (algebraic) form Qax vs. P 

eliminating λ; 
3)  determination of quasisimilarity transformations providing 

almost exact relation Qax vs. P in a broad region of entry 
parameters. 

 
ad 1)  
Substituting the approximate relations for pseudoplastic fluids 
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proposed by David et al. [6] into rel.(2) the deviations of Qax 
from the exact values do not exceed 4% for a pseudoplastic 
case (κ ≥ 0.5, 0.1 ≤ n ≤1) and 0.15% for a dilatant case (0 < κ < 
1, n ≥ 1). 
 
ad 2)  
David and Filip [7] proposed an explicit approximate algebraic 
expression relating volumetric flow rate with pressure gradient 
in the form 
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where for pseudoplastic fluids 
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and for dilatant fluids    
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The deviation of these expressions from the exact values for 
0.025 < κ < 1 in the whole pseudoplastic region 0 < n < 1 does 
not exceed 2.15%. For 0.5 < κ < 1 the deviation is even less 
than 0.4%; for 0.6 < κ <1 less than 0.16%. In the case of 
dilatant fluids the situation is even better, the deviation does not 
exceed 1.5% for 0.025 < κ  < 1 and 0.1% for 0.4 < κ < 1. 
 
ad 3)  
The given problem is also possible to treat from the viewpoint 
of similarity behaviour. It was shown (David and Filip [8]) that 
the relation Qax vs. P exhibits various features of similarity 
behaviour – not in an exact form but only approximately (it 
implies the term ‘quasisimilarity’). Nevertheless, even this 
‘weak’ similarity enables one to derive a ‘universal’ solution 
which is possible to rewrite to a concrete form for given entry 
parameters by means of certain derived transformations. This 
fully eliminates the role of the parameter λ; however, 
quasisimilarity is not valid in the whole range of entry 
parameters κ, n (it was shown in the region κ ≥ 0.4 and 
(1-κ)1.8/n ≤ 2.44). In this connection it is still necessary to have 
in mind that the notion ‘exact solution’ is only hypothetical 
with respect to the approximate determination of the entry 
rheological parameters k and n. 
 
 
LIMITING CASES 

Parallely to the papers referred to in ad 1), 2), 3), there is a 
group of the papers using for a determination of the relation Qax 
vs. P the limiting values of the parameter λ(κ,n) both for A) a 
flow behaviour index n and B) an annular aspect ratio κ. 
 
ad A)   
In the case of a flow behaviour index n Vaughn [9] proved that 
for all aspect ratios κ the following relations are exact 
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It implies that for power-law fluids whose behaviour 
approaches that of solid-like materials (see e.g. Sitzer and 
Durban [10]) it is possible to use rel.(11) as a first 
approximation. 

    



Rel.(12) valid for Newtonian liquids was applied by Luo 
and Peden [11] as the approximation for power-law fluids 
because no exact solution of rel.(3) is known for n≠1. In this 
case the deviation of the approximate value of λ (rel.(12)) from 
the exact one does not exceed approximately 3% in the region 
0.3 < κ < 1 and 0.5 < n < 1 as illustrated by Luo and Peden [11, 
Fig.1]. 

Rel.(13) indicates that for strongly dilatant fluids a location 
of the parameter λ for any κ roughly corresponds to its location 
for the case of parallel-plate geometry.   
 
ad B)   
In the case of an annular aspect ratio κ there are two limiting 
cases, either κ→0 (pipe flow) or κ→1 (flow between parallel 
plates) for which    
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A combination of the flow situations for which there are 

valid rels.(13,14) elucidates why for a description of dilatant 
fluids in a narrow annular gap an application of the relation 
λ(κ,n)=(1+κ)/2 is fully justified and provides almost exact 
results. 
 
 
SOLUTION FOR A PARALLEL-PLATE GEOMETRY AS 
A STARTING POINT 

In this case there is no problem with a determination of the 
parameter λ, moreover this relation does not depend on a flow 
behaviour index n  
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There are approximately four papers trying to use a solution for 
the parallel-plate geometry for that describing flow through an 
annular passage. 
 
1) Worth [12] studied the deviations of the exact solutions Q 
vs. P from those for an equivalent parallel-plate geometry (i.e. 
a width between the parallel plates corresponds to a clearance 
between the cylinders) for the following four cases of 
concentric annular flows: tangential drag flow, tangential 
pressure flow, axial drag flow, and axial pressure flow. In his 
analysis of axial pressure flow he concentrated to a region 0.5 ≤ 
κ ≤ 1, and n = 1/5, 1/4, 1/3, 1/2, and 1. His choice of the 
individual n's as the reciprocal values of the natural numbers 
reflects the results of Fredrickson and Bird [1] as rel.(2) was 
not yet known. Worth [12, Fig.8] compared graphically the 
flow rate Qax(κ,k,n,λ,P) for a given annular geometry, 
pseudoplastic power-law fluids and pressure drop with the 
corresponding flow rate Qpar pl(W,k,n,P) for the parallel plate 
geometry (with a width W=(1-κ)R, λ=(1+κ)/2). He showed that 
the ratio 
Qax/Qpar pl monotonously decreases (from the value 1) with 
decreasing annular aspect ratio κ and flow behavior index n, 
but for greater κ and n this ratio is very close to one. 
 

2) Bird et al.[13] succeeded in eliminating the parameter λ from 
the relation Qax against P using a variational method supposing 
one-parametrical velocity profile. However, their relation is 
only approximate. It seems that there is no possibility to 
improve their result using two- or multi-parametrical velocity 
profile as the resulting algebraic equations for determination of 
individual variational parameters are more complex than the 
original integral equation for a determination of λ (rel.(3)). In 
fact, their resulting relation (see rel.(4.3-37), p.203) 
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coincides with the relation for volumetric flow rate between 
parallel plates (rel.(3-101), p.102 in McKelvey [14]). As stated 
in Bird et al. [14] the inaccuracy of rel.(16) related to the exact 
rel.(2) is less than 2% for κ ≥ 0.5, n ≥ 0.5; this deviation 
corresponds to Fig.8 in Worth [12].  
 
3) Tuoc and McGiven [15] proposed a generalised Mooney-
Rabinowitsch equation (independent on a specific non-
Newtonian constitutive model) respecting the limiting cases of 
flow in cylindrical pipes and between parallel plates. This 
equation was tested applying a power-law model and examined 
using the experimental data in an annular flow. 
 
4) Based on the quasisimilarity behaviour of axial annular flow 
(David and Filip [8]), i.e. the continuous convergence (for 
κ→1) of flow to the parallel-plate flow, in other words 
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it is possible to propose the approximate relation 
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for volumetric flow rate of axial annular flow, see Filip and 
David [16]. This algebraic relation does not explicitly depend 
on the relative radial location λ of the maximum velocity, and 
therefore eliminates the necessity of computation of the integral 
equation (3). The relative deviations do not exceed 3.5% in the 
region  κ ≥ 0.1, n  ≥ 0.1; for  κ ≥ 0.1, n ≥ 0.6 or κ ≥ 0.4, n ≥ 0.1 
the relative deviations are less than 1%. 
 
 
RESULTS AND DISCUSSION 

The above analysis proves that not always it is 
indispensable to apply numerical procedures for calculating a 
set of integro-differential equations describing the balance 
equations of the chosen problem, as e.g. a flow through a 
concentric annulus. Sometimes it is more efficient to compare a 
deviation of the limiting case (parallel-plate geometry) from the 
exact values and to 'suppress' this discrepancy through a weight 
function, see rel.(18). This approach gives the possibility to 
determine how the individual entry parameters influence the 
resulting relation volumetric flow rate vs. pressure drop, and 
thus how to simply encounter the demands from practice. If in 
rel.(18) we compare the relative deviations (less than 3.5%) in 
the region  κ ≥ 0.1, n ≥ 0.1 with the experimental errors in 
determining flow behaviour index n and consistency parameter 

    



k, we can conclude that the proposed relation (18) is from the 
practical point of view fully acceptable. 
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