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1. Introduction

In 1886, an important result about the monotonicity properties of zeros of orthogonal
polynomials with respect to a parameter was obtained by A. Markoff (cf. [1], [14, Thm.
6.12.1]). Since then, related problems have been studied extensively.

The monotonicity of all the zeros as well as the extreme zeros of polynomials satisfying
recursion formulas, referred to as birth and death processes, were considered in [2–4]
using a finite dimensional version of the Hellman-Feynman Theorem. Refer to [5] for
a summary of these results and [6] together with the list of references in [6] for more
applications. The result obtained in [2, Thm. 4] by making use of the Hellman-Feynman
Theorem can be stated as follows.

Lemma 1.1. [5, Thm. 7.3.6] If {pn}∞n=0 is a sequence of polynomials satisfying the
recurrence relation

xan(τ)pn(x) = pn+1(x) + pn−1(x), (1)

with p0(x) = 1, p1(x) = x, then the positive zeros of pn(x) are decreasing (increasing)
function of τ when an(τ) is an increasing (decreasing) function of τ .
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The problem of finding the extremal function f(s) that forces the product f(s)xsn,k,
k = 1, 2, . . . , n to reverse the monotonicity with respect to the parameter s for the ze-
ros xsn,k of an n-th degree polynomial dependant on parameter s, was investigated in

[7–13] using various techniques involving, amongst others, Sturm Liouville differential
equations, Sturm’s theorem (cf. [14, Thm. 1.82.1] and the Routh-Hurwitz criterion. The
monotonicity of all the zeros of polynomials satisfying second order ordinary linear dif-
ferential equations is discussed in [15, 16].

The manner in which the zeros of a polynomial change as the parameter changes can
be used to study comparison and interlacing properties of the zeros [17–21]. Markoff’s
theorem can be used to show that the zeros of classical orthogonal polynomials like La-
guerre and Jacobi polynomials are monotone functions of the parameter(s) involved by
using the derivative of the weight function with respect to the parameter(s). A slightly
generalised version of Markoff’s theorem, stated as an exercise in [22, Chap. 3, ex. 15]
and proved in [5, Thm. 7.1.1] (see also [23, Thm. 1]) can be applied to discrete orthog-
onal polynomials such as Meixner and Hahn polynomials as well as orthogonal Laurent
polynomials. However, weight functions of orthogonal polynomials are not always easy
to compute and even when they are known, they do not necessarily satisfy the conditions
of Markoff’s theorem and its generalisations, especially if the weight function changes
monotonicity on the interval of orthogonality or, as in the examples in [24–26], the mea-
sure of orthogonality has discrete parts where the location of the masses depends on the
parameter.

In this paper, we extend the result of Markoff, to cases where the weight function is even.
It is well-known in this case that the zeros of the corresponding orthogonal polynomials
are symmetric about the origin which implies that the positive and the negative zeros have
opposing monotonicity and the result of Markoff and its generalisation no longer apply.
As a result of this symmetry, it suffices to study only the monotonicity and interlacing of
the positive zeros. A classical example is Gegenbauer polynomials which have the weight
function w(x;α) = (1 − x2)α−1/2, α > 1, x ∈ (−1, 1) that changes monotonicity at the
origin. If {xν = xν(α)} denote the zeros of the Ultraspherical polynomial in decreasing
order, then

∂xν
∂α

< 0, ν = 1, 2, . . . , [n/2]. (2)

The proof of Szegö [14, Thm. 6.21.1] was based on the relation between Ultraspherical
polynomials and Jacobi polynomials (cf. [14, (6.21.2)]) whereas Stieltjes proved it from
the differential equation (cf. [27, p. 77]).

The structure of our paper is as follows. In Section 2 we state and prove the main results.
Section 3 provides various applications of the results. These include the monotonicity
properties of zeros of, for example, Freud-type orthogonal polynomials and Al-Salam-
Chihara polynomials. Furthermore, interlacing properties of zeros of symmetric Meixner-
Pollaczek polynomials are considered which yield a proof of a special case of a conjecture
pointed out by Jordaan and Toókos in [28].

2. Main results

Theorem 2.1 is analogous to [5, Thm. 7.1.1] and utilises some specific properties of
orthogonal polynomials whose weight function is even.

Theorem 2.1. Let {pn(x, τ)}∞n=0 be orthogonal with respect to dα(x, τ) = w(x, τ)dα(x)
where w(x, τ) is an even function on the interval [−a, a], a > 0 depending on a parameter
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τ such that w(x, τ) is positive and continuous for −a < x < a, τ1 < τ < τ2. Also, suppose
that the partial derivative wτ (x, τ) for −a < x < a, τ1 < τ < τ2 exists and is continuous,
and the integrals ∫ a

−a
xνwτ (x, τ)dα(x), ν = 0, 1, 2, . . . , 2n− 1,

converge uniformly in every closed interval [τ
′
, τ

′′
] ⊂ (τ1, τ2). If the positive zeros of

pn(x, τ) are denoted by x1(τ) > x2(τ) > · · · > x[n/2](τ) > 0, where [x] denotes the largest
integer smaller than x, then the νth zero xν(τ) (for a fixed value of ν) is an increasing
(decreasing) function of τ provided that wτ/w is an increasing (decreasing) function of
x, 0 ≤ x < a.

Proof. The mechanical quadrature formula (cf. [5, (2.4.1)])

∫ a

−a
ρ(x)dα(x, τ) =

n∑
ν=1

λν(τ)ρ(xν(τ)), (3)

holds for polynomials ρ(x) of degree at most 2n− 1. Differentiating (3) with respect to
τ , we obtain

∫ a

−a
ρ(x)wτ (x, τ)dα(x) =

n∑
ν=1

λν(τ)ρ
′
(xν)x

′

ν(τ) +

n∑
ν=1

λ
′

ν(τ)ρ(xν).

Now we choose

ρ(x) =
{pn(x, τ)}2

x− xν
,

then, since xν is a removable singularity, ρ
′
(xν) = {p′

n(xν , τ)}2 while ρ
′
(xµ) = 0 if µ ̸= ν

and hence ∫ a

−a
wτ (x, τ)

{pn(x, τ)}2

x− xν
dα(x) = λν(τ){p

′

n(xν , τ)}2x
′

ν(τ). (4)

In view of the orthogonality the integral∫ a

−a

{pn(x, τ)}2

x− xν
w(x, τ)dα(x) = 0,

so (4) can be rewritten as

∫ a

−a

{
wτ (x, τ)−

wτ (xν , τ)

w(xν , τ)
w(x, τ)

}{pn(x, τ)}2

x− xν
dα(x) = λν(τ){p

′

n(xν , τ)}2x
′

ν(τ). (5)

In addition, since the weight function w(x, τ) is even, the corresponding orthogonal
polynomials satisfy p2n−1(−x, τ) = −p2n−1(x, τ) while p2n(−x, τ) = p2n(−x, τ) for n =
1, 2, . . . and therefore {pn(−x, τ)}2 = {pn(x, τ)}2. This, together with the fact that
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wτ (x, τ) is also an even functions of x, yields∫ 0

−a

{
wτ (x, τ)−

wτ (xν , τ)

w(xν , τ)
w(x, τ)

}{pn(x, τ)}2

x− xν
dα(x)

= −
∫ a

0

{
wτ (x, τ)−

wτ (xν , τ)

w(xν , τ)
w(x, τ)

}{pn(x, τ)}2

x+ xν
dα(x). (6)

Substituting (6) into (5), we obtain∫ a

0

{wτ (x, τ)

w(x, τ)
− wτ (xν , τ)

w(xν , τ)

}
{pn(x, τ)}2

2xνw(x, τ)

(x− xν)(x+ xν)
dα(x) = λν(τ){p

′

n(xν , τ)}2x
′

ν(τ).

(7)
The integrand in (7) has a constant sign, so the positivity of the so-called Christoffel
numbers λν(τ) [14, p. 48] establishes the result.

The following result is a straightforward consequence of Theorem 2.1.

Theorem 2.2. Let w(x) and W (x) be two weight functions on [−a, a], both positive,
even and continuous for x ∈ [−a, a]. Let W (x)/w(x) be increasing on [0, a). Then, if xν
and Xν , ν = 1, 2, . . . , [n/2] denote the positive zeros in decreasing order of the orthogonal
polynomials of degree n associated with w(x) and W (x) respectively, we have

xν < Xν , ν = 1, 2, . . . , [n/2].

Proof. The proof follows along the same lines of the proof of Theorem 6.12.2. in [14].

3. Application of results

3.1 Ultraspherical polynomials

The weight function of Ultraspherical polynomials is w(x, α) = (1−x2)α. Since the ratio
wα

w = log(1− x2) is decreasing for x ∈ [0, 1), (2) can be obtained directly from Theorem
2.1.

3.2 Freud-type polynomials

The advantage of our approach can also be illustrated by considering the family {pn(x)},
n ∈ N, of polynomials which are orthonormal with respect to the Freud-type weight

w(x; t) =

√
2

t

1

K1/4(t2/2)
exp(−x4 + tx2 − t2

4
), x ∈ (−∞,+∞), t > 0, (8)

where Kν(z) denotes the Bessel function of the second kind. The polynomials pn(x)
satisfy the recurrence relation (cf. [29])

xpn(x) = an+1pn+1(x) + anpn−1(x),

where the coefficients an are recursively defined by the so-called string equation

n = 4a2n(a
2
n+1 + a2n + a2n−1 − t), n ∈ N.
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The explicit expression of an(τ) in (1) cannot be obtained in an obvious way and therefore
it seems difficult to make use of Lemma 1.1 to obtain the monotonicity of the zeros of
pn(x). However, using Theorem 2.1 we have the following theorem.

Theorem 3.1. Let {xν = xν(t)} be the zeros of the Freud-type polynomials, orthonormal
with respect to the weight (8), in decreasing order, then

∂xν
∂t

> 0, ν = 1, 2, . . . , [n/2].

Proof. It is easy to check that

lnw(x; t) =
1

2
(ln 2− ln t)− ln(K1/4(t

2/2))− x4 + tx2 − t2

4
. (9)

Differentiating (9) with respect to t, we have

∂lnw(x; t)

∂t
= − 1

2t
−

tK
′

1/4(t
2/2)

K1/4(t2/2)
+ x2 − t

2
,

which is an increasing function of x for x ∈ (0,+∞). Hence, we can conclude from
Theorem 2.1 that the positive zeros of pn(x) increase as a function of t, for t ∈ (0,+∞).
This completes the proof.

3.3 Symmetric Meixner-Pollaczek polynomials

For the sake of brevity, we denote the symmetric Meixner-Pollaczek polynomials in the
present paper by P λ

n (x) instead of the standard notation P λ
n (x, π/2). P

λ
n (x) are defined

by (cf. [14])

P λ
n (x) =

(2λ)n
n!

e
nπi

2 2F1

(−n,λ+ix

2λ

∣∣∣2)
and are orthogonal on R for λ > 0 with respect to the weight function
w(x, λ) = |Γ(λ+ ix)|2. Substituting the expression (cf. [30, p.72])

(c+ n) 2F1

(
−n− 1, b+ 1

c

∣∣∣ z)
= (n+ b+ 1)(1− z) 2F1

(
−n, b+ 1

c

∣∣∣ z)+ (c− 1− b) 2F1

(
−n, b
c

∣∣∣ z)
into (cf. [31, eqn. (7)])(

c

b+ n+ 1
− z

)
2F1

(
−n, b
c

∣∣∣ z)
=

c

(b+ n+ 1)
2F1

(
−n− 1, b+ 1

c

∣∣∣ z)+
(b− c)nz2

c(c+ 1)
2F1

(
−n+ 1, b+ 1

c+ 2

∣∣∣ z)
and then applying [30, p. 71, eqn. (1)], we obtain
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b(c+ n)(b− c)z2

c(c+ 1)
2F1

(
−n+ 1, b+ 1

c+ 2

∣∣∣ z)
= (cz − c− bz) 2F1

(
−n, b
c

∣∣∣ z)− c(z − 1) 2F1

(
−n+ 1, b

c

∣∣∣ z) . (10)

Replacing b = λ+ ix, c = 2λ and z = 2 in (10), we obtain

(λ2 + x2)(2λ+ n)

λ(2λ+ 1)
P λ+1
n−1 (x) = ixP λ

n (x) + λP λ
n−1(x), n = 0, 1, 2, · · · (11)

Using equation (11) and Theorem 2.2, we derive the following important theorem,
which will be used to prove a special case of a conjecture mentioned in [28].

Theorem 3.2. Let λ > 0, t ∈ (0, 1) and
0 < x[n/2] < x[n/2]−1 < · · · < x2 < x1 be the positive zeros of P λ

n (x);

0 < y[(n−1)/2] < y[(n−1)/2]−1 < · · · < y2 < y1 be the positive zeros of P λ
n−1(x);

0 < t[(n−1)/2] < t[(n−1)/2]−1 < · · · < t2 < t1 be the positive zeros of P λ+t
n−1(x);

0 < z[(n−1)/2] < z[(n−1)/2]−1 < · · · < z2 < z1 be the positive zeros of P λ+1
n−1 (x).

If n is even, then

0 < x[n2 ]
< y[n−1

2 ] < t[n−1

2 ] < z[n−1

2 ] < x[n2 ]−1 < · · · < z2 < x2 < y1 < t1 < z1 < x1; (12)

and if n is odd, then

0 < y[n−1

2 ] < t[n−1

2 ] < z[n−1

2 ] < x[n2 ]
< y[n−1

2 ]−1 < · · · < z2 < x2 < y1 < t1 < z1 < x1.

(13)

Proof. The gamma function may be defined by an infinite product (cf. [33, (6.1.3)])

Γ(z) =

∏∞
r=1 e

z/r

zeγz
∏∞

r=1(1 + z/r)
, (14)

where γ is the Euler-Mascheroni constant. Since Γ(z̄) = Γ(z) (cf. [33, (6.1.23)]), it follows
from (14) that

|Γ(λ+ ix)|2 = Γ(λ− ix)Γ(λ+ ix) =
1

(λ2 + x2)e2γλ

∞∏
r=1

e
2λ

r

(1 + λ
r )

2 + (xr )
2
,

which implies that

|Γ(λ+ 1 + ix)|2

|Γ(λ+ t+ ix)|2
= e2γ(t−1) (λ+ t)2 + x2

(λ+ 1)2 + x2

∞∏
r=1

(r + λ+ t)2 + x2

(r + λ+ 1)2 + x2

∞∏
r=1

e
2(1−t)

r . (15)

From (15), by using the product rule, it can be seen that the ratio w(x, λ+1)/w(x, λ+t),

t ∈ (0, 1) is an increasing function of x for x ∈ (0,∞), since the function a2+x2

b2+x2 is
positive and increasing for x ∈ (0,∞) when 0 < a < b. Similarly we can show that

6



November 30, 2013 Integral Transforms and Special Functions Monotonicity*for*even*weight*revision

w(x, λ + t)/w(x, λ) is increasing for x ∈ (0,∞). Theorem 2.2 then implies that yν < tν
and tν < zν for each ν = 1, 2, 3, · · · , [(n− 1)/2], that is

yν < tν < zν , ν = 1, 2, 3, · · · , [(n− 1)/2]. (16)

On the other hand, it is well-known from the classic orthogonal polynomial theory that
the zeros of P λ

n (x) and P λ
n−1 are interlacing, that is, when n is even,

0 < x[n/2] < y[n−1/2] < x[n/2]−1 < · · · < x2 < y1 < x1. (17)

Next, we prove that the zeros of P λ
n (x) interlace with those of P λ+1

n−1 . Evaluating (11) at
x = xk and x = xk+1, k = 1, 2, · · · , [(n− 1)/2], we obtain

(λ2 + x2k)(λ
2 + x2k+1)

(
2λ+ n

λ(2λ+ 1)

)2

P λ+1
n−1 (xk)P

λ+1
n−1 (xk+1) = λ2P λ

n−1(xk)P
λ
n−1(xk+1) < 0,

for each k = 1, 2, · · · , [n−1]/2 since the zeros of P λ
n (x) and P λ

n−1(x) interlace. So there is

at least one zero of P λ
n (x) lying in the interval (xk, xk+1) for each k = 1, 2, · · · , [n− 1]/2

which implies that

x[n/2] < z[(n−1)/2] < x[n/2]−1 < z[(n−1)/2]−1 < · · · < z2 < x2 < z1 < x1, (18)

Now (18), (16) and (17) yield (12). The proof of (13) follows along the same lines.

Considering that when the weight function is even, the zeros of pn(x) are symmetric
about the origin with a zero at the origin when n is odd, we have the following corollary.

Corollary 3.3. With the same symbols as Theorem 3.2, we have for n odd that

xn < yn−1 < tn−1 < zn−1 < xn−1 < · · · < z2 < x2 < y1 < t1 < z1 < x1

while for n even

xn < yn−1 < tn−1 < zn−1 < xn−1 < · · · < z[n−1

2 ]+2 < x[n2 ]+1 < 0

and

0 < x[n2 ]
< y[n−1

2 ] < t[n−1

2 ] < z[n−1

2 ] < x[n2 ]−1 < · · · < z1 < x1

with

y[n−1

2
+1] = t[n−1

2
+1] = z[n−1

2
+1] = 0.

In [28], the authors guess that the zeros of P λ
n (x;ϕ) and P λ+t

n−1(x;ϕ), t ∈ (0, 1) interlace.
Their conjecture is confirmed by Corollary 3.3 when ϕ = π

2 , except for the multiple zeros
at the origin when n is even due to the symmetry, but the general case where
0 < ϕ < π remains an open problem. The monotonicity of the zeros of general Meixner-
Pollaczek polynomials with respect to ϕ was proved in a recent paper by Dimitrov and
Sri Ranga (cf. [34]).
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3.4 Al-Salam-Chihara polynomials

The Al-Salam-Chihara polynomials (cf. [35, (14.8.1)]) which we will denote by Qn(x; a, b)
are orthogonal on (−1, 1) with respect to the weight function

w(x) =
h(x, 1)h(x,−1)h(x, q1/2)h(x,−q1/2)

h(x, a)h(x, b)

when a, b ∈ R or a = b̄ and max{|a|, |b|} < 1 where 0 < q < 1 and

h(x, α) =

∞∏
k=0

(1− 2xαqk + α2q2k).

When a = −b,

w(x, a) =
h(x, 1)h(x,−1)h(x, q1/2)h(x,−q1/2)

h(x, a)h(x,−a)

is an even function and we can apply Theorem 2.1. We will consider 0 < a < 1 without
loss of generality due to the symmetry of w(x, a) with respect to a.

Theorem 3.4. Let 0 < q < 1, 0 < a < 1, 0 < t < 1− a and denote by xν and Xν , ν =
1, 2, . . . , [n/2] the positive zeros in decreasing order of Qn(x; a,−a) and Qn(x; a+t,−a−t)
respectively. Then

xν < Xν for ν = 1, 2, . . . , [n/2].

Proof. The ratio of the weight functions of Qn(x; a,−a) and Qn(x; a+ t,−a− t) is

w(x, a+ t)

w(x, a)
=

∞∏
k=0

(1 + a2q2k)2 − 4a2q2kx2

(1 + (a+ t)2q2k)2 − 4(a+ t)2q2kx2

=

(
a

a+ t

)2 ∞∏
k=0

x2 −
(
1+a2q2k

2aqk

)2

x2 −
(
1+(a+t)2q2k

2(a+t)qk

)2

=

(
a

a+ t

)2 ∞∏
k=0

x2 − c2k
x2 − d2k

.

Assume that 0 < q < 1, 0 < a < 1 and 0 < t < 1 − a. Then, for each k = 0, 1, 2, ..., we
have that 0 < (a+ t)qk < 1 which yields

0 < (1− (a+ t)qk)2 < (1− aqk)2 < 1, k = 0, 1, 2, ... (19)

and, since we also know that

0 <
1

2(a+ t)qk
<

1

2aqk
, k = 0, 1, 2, . . . , (20)

we deduce from (19) and (20) that dk < ck for each k = 0, 1, 2, .... This implies that for

each k = 0, 1, 2, . . . , the function x2−c2k
x2−d2

k
is positive and increasing for x ∈ (−dk, dk). Since
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dk > 1, the ratio w(x,a+t)
w(x,a) will be positive and increasing for x ∈ (0, 1) and the result

immediately follows from Theorem 2.2.

Remark 3.5.(i) The limiting relation as q → 1 for Al-Salam-Chihara polynomials that
yields Meixner-Pollaczek polynomials (cf. [35, 14.8.19]) cannot be used in conjunction
with Theorem 3.4 to obtain any monotonicity or interlacing results for zeros of Meixner-
Pollaczek polynomials since the condition a = −b in Theorem 3.4 is not satisfied by
the substitutions a = qλe−iϕ and b = qλeiϕ, even for the special case where ϕ = π

2 .
(ii) Theorem 2.2 can also be applied, if not in general, at least to special cases of other

q-orthogonal polynomials. Examples include Askey-Wilson, q-Meixner-Pollaczek, Con-
tinuous q-Jacobi, Continuous q-Ultraspherical and Continuous q-Legendre polynomi-
als.

4. Concluding remark

Although Theorem 2.1 allows application to polynomials that are orthogonal with respect
to a discrete weight, the well-known discrete orthogonal polynomials in the Askey and
q-Askey scheme (cf. [35]) are not orthogonal on intervals that are symmetric about the
origin, while other examples of discrete orthogonal polynomials such as Gram polynomi-
als [36], Lommel polynomials [5, section 6.5] and Tricomi-Carlitz orthogonal polynomials
[37] also do not satisfy the specific conditions of Theorem 2.1.
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[1] A. Markoff, Sur les racines de certaines équations (Second note), Math. Ann., 27 (1886),
177-182.

[2] M.E.H. Ismail, The variation of zeros of certain orthogonal polynomials, Advances in Appl.
Math., 8 (1987), 111-118.

[3] M.E.H. Ismail. Monotonicity of zeros of orthogonal polynomials, in q-Series and Partitions,
(D. Stanton, Ed), p 177-190, Springer-Verlag, New York, 1989.

[4] M.E.H Ismail, M.E. Muldoon, A discrete approach to monotonicity of zeros of orthogonal
polynomials, Trans. Amer. Math. Soc., 323 (1991), 65-78.

[5] M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Vol. 98 of
Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge,
2005.
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