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Abstract. In this dissertation we develop aspects of ergodic the-
ory for C*-dynamical systems for which the C*-algebras are al-
lowed to be noncommutative. We define four ergodic properties,
with analogues in classic ergodic theory, and study C*-dynamical
systems possessing these properties. Our analysis will show that, as
in the classical case, only certain combinations of these properties
are permissable on C*-dynamical systems. In the second half of
this work, we construct concrete noncommutative C*-dynamical
systems having various permissable combinations of the ergodic
properties. This shows that, as in classical ergodic theory, these
ergodic properties continue to be meaningful in the noncommuta-
tive case, and can be useful to classify and analyse C*-dynamical
systems.
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I wish to thank Prof. Anton Ströh for introducing me to this fas-
cinating field several years ago in WTW710 when he arranged a first
meeting between myself and Dr. Rocco Duvenhage for an Honours es-
say. I wish to extend special thanks to Rocco for all of the guidance
and insight he has given me ever since in my ongoing quest to establish
myself as a successful researcher in this challenging field. For tremen-
dously helpful and insightful discussions related to the many challenges
encountered during the course of this dissertation, I wish to especially
thank Prof. Johan Swart, Prof. Elemer Rosinger and Dr. Gusti van
Zyl. For her heroic patience with my closed door on every second
weekend, and abundant servings of healthy brain food throughout my
university career, I wish to also thank my mother Louise Snyman. Last
but not least, as always, I wish to extend my eternal gratitude to 1,3,7-
trimethylxanthine, trimethylxanthine, theine, methyltheobromine.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



INTRODUCTION 5

Introduction

Ergodic theory, in the most general sense, is the study of the asymp-
totic behaviour of some dynamical system, where the latter term is used
very loosely. This description, by no accident, also describes statisti-
cal mechanics. A little less generally, ergodic theory is the study of the
conditions under which a dynamical system’s asymptotic behaviour has
certain preferred/interesting properties. These are the ergodic proper-
ties in the sense that, if a system has ergodic property A, then that
tells us something about how the system evolves in the long term, i.e.
asymptotically. In ergodic theory there are

ergodic systems
weakly mixing systems
strongly mixing systems
compact systems

which, note, do not form a partition. There is a significant body of
knowledge around these properties in the classical case, i.e. commu-
tative case, the most standard of which is a measure space X with a
measure preserving transformation T : X → X, or a whole group of
measure preserving transformations {Tg : g ∈ R}. Usually the mea-
sure space is finite and is then normalized to a probability space. In
this setting, it is known that there are several different, but equiva-
lent, formulations, and interesting relationships between the various
properties. There is also no manner of shortage of concrete dynamical
systems having various combinations of these ergodic properties.

Our main objective is to define analogues of these properties on
noncommutative dynamical systems, and to determine whether these
properties can then be similarly (to the classical case) analysed and
identified on concrete noncommutative dynamical systems. By a non-
commutative dynamical system we mean for example a quantum dy-
namical system which, in the C*-algebraic formulation of quantum
dynamics, has an observable algebra given by a noncommutative C*-
algebra. For example, the observable algebra of the quantum harmonic
oscillator is the operator algebra L (L2(R)) which contains the position
measurement projection XV and momentum measurement projection
PV , for any Borel set V ⊆ R, with XV PV 6= PVXV in general. C*-
dynamical systems provide a fertile ground for such noncommutative
dynamical systems and so will form the basis of our study. The study
of C*-dynamical systems play a prominent role in quantum mechanics,
and [4, p. 3-p. 15] provides historical context and an outline of how
the importance of these systems were gradually understood.

It would be a great pity to dive headlong into the C*-dynamical
formulations of these ergodic properties without first giving a brief ac-
count of the elegant theoretical considerations that naturally gave rise
to them, and in so doing develop a deeper understanding of what these
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properties represent, at least classically. We will then also be afforded
the opportunity to understand how these properties can be translated
to a C*-algebraic setting. As a bonus we will also learn why the ergodic
property, ergodicity, is the namesake of the entire field of ergodic the-
ory. An excellent, and far more detailed, account of the development
of ergodic theory is given in [15], which will also act as the inspiration
for the discussion to follow.

A general starting point is a measure space (X,µ), with σ-algebra
Σ, and a one-parameter group of measure preserving transformations
{Tt : X → X : t ∈ R}. The motivation for these mathematical struc-
tures comes from the evolution of a system governed by Hamiltonian
equations and a fundamental theorem from statistical mechanics. The
state space of a system of N particles is R6N and the Hamiltonian equa-
tions determine the Hamiltonian flow {Tt : R

6N → R6N : −∞ < t <
∞} of the system. That is, if the system is initially in state x0 ∈ R6N ,
then after time t it is in state xt = Ttx0. According to Liouville’s The-
orem, the Hamiltonian flow preserves the Lebesgue measure on R2n for
any n ∈ N. The Hamiltonian flow is therefore a one-parameter group
of Lebesgue measure preserving transformations on X = R6N . It is
within the context of statistical mechanics, i.e. when N is very large,
that Ludwig Boltzmann started to think in terms of asymptotic be-
haviour to get past physical problems he encountered. We will return
to this a little later, and will first look at some of the questions raised
by Poincaré which, even though it came later, is simpler and more nat-
ural from a purely mathematical perspective. Nonetheless, Poincaré
himself was also motivated by physical problems.

Returning to (X,µ) and {Tt : t ∈ R}, we would like to make two
simplifications for the sake of this introductory discussion. Firstly, let
us suppose measurements occur only at discrete time intervals in R, so
that our time group in effect becomes Z, i.e. we consider Tnt0 = T n

t0
for

all n ∈ Z and t0 ∈ R\{0}. So, instead of the one-parameter group {Tα},
we only work with a single T representing time evolution over a fixed
time interval. We will cover more general “time” groups, including R as
a special case, later on in the dissertation. Secondly, let us assume that
X is a finite measure space. Even though R6n is not a finite measure
space, in many cases the system can be restricted to a subset of R6n

with finite measure. That is, there is a set with finite measure in R6n

that is invariant under the Hamiltonian flow. For example, this would
be the case for a classical gas in a closed container.

Some of the earlier asymptotic questions were raised by Poincaré.
If x ∈ E ⊆ X then x is called recurrent, with respect to E, if T nx ∈ E
for some positive integer n. This lead to the recurrence theorem:

Theorem 0.1. (The Recurrence Theorem) If T : X → X is a
measure preserving transformation on a space X of finite measure, and

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



INTRODUCTION 7

E ⊆ X is a measurable set, then almost every point of E is recurrent.
Moreover, for almost every point x ∈ E there is a sequence (ni) ∈ N

such that T nix ∈ E for all i ∈ N

The Recurrence Theorem states that, not only does almost every
point of E return to E eventually, it does so infinitely often. Naturally
one can now ask, if a point x ∈ E returns to E infinitely often, how
long does it spend in E on average? If we consider the orbit of x,
{T nx : n ∈ N}, then the ratio of the number of these points in E to
the total number of points, after n “steps” is given by

(1)
1

n

n−1∑

k=0

f(T kx)

where f is the characteristic function of E, i.e. χE. How long the orbit
of x spends in E on average, is then given by the limit of (1) as n
tends to infinity. An ingenious generalization comes from relaxing the
restriction that f is a characteristic function. Of course the immediate
question then becomes: when does limn→∞

1
n

∑n−1
k=0 f(T

kx) exist, i.e.
when does the sequence f(T nx) converge in the sense of Cesàro? If we
define U : f 7→ f ◦ T , then U defines an operator between function
spaces. We say that T induces the operator U . The investigation of
U yielded some undoubtedly surprising results. Restricted to L2(X),
the induced operator U : L2(X) → L2(X) is a linear isometry, and
if T : X → X is an invertible measure preserving transformation,
then the invertibility carries over to U . L2(X) is of course a Hilbert
space, and any linear invertible isometry on a Hilbert space is a unitary
operator. The problem of Cesàro convergence thus reduces to the study
of the limiting behaviour of

(2)
1

n

n−1∑

k=0

Ukx

where U is a unitary operator on a Hilbert space H and x ∈ H. That
mean convergence, i.e. the limits of these Cesàro averages, always takes
place in the strong topology, is considered the starting point of modern
ergodic theory. It is addressed in two important theorems, the mean
ergodic Theorem of von Neumann and the pointwise ergodic theorem of
G.D. Birkhoff. The mean ergodic theorem establishes the convergence
of (2) for unitary operators U , and the individual ergodic theorem
directly establishes the convergence of (1). In this dissertation, we will
rely on the Hilbert space approach, instead of the pointwise approach,
and so we focus on the former case. [15] focuses more on the pointwise
approach. A precise formulation of the mean ergodic theorem, in the
case of discrete time, is contained in Theorem 0.2.

Theorem 0.2. (Mean Ergodic Theorem) If U is a contraction on a
complex Hilbert space H and if P is the projection onto the fixed point
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space of U , {x ∈ H : Ux = x}, then

lim
n→∞

1

n

n−1∑

k=0

Ukx = Px for all x ∈ H.

This theorem naturally leads to the notion of ergodicity which we
now explain. Ergodicity is one of the formulations of the natural, and
preferred, asymptotic behaviour wherein a transformation does a good
job of stirring up the points of the space it acts upon. A precise, and
quite straight-forward, formulation is as follows: T is ergodic if and
only if

T−1(E) = E ⇒ µ(E) = 0 or µ(X\E) = 0

for all measurable sets E ⊆ X. The connection between this formu-
lation and a transformation that mixes up the space, is quite clear.
However it is not especially convenient, so an immediate incentive is
to find more useful formulations of ergodic transformations. A more
useful, and equivalent, formulation is: T is ergodic if and only if ev-
ery measurable invariant function is constant up to a set of measure
zero. An L2 function f is invariant if f ◦ T = f . This formulation can
now show the connection of ergodicity with its historic anchorage. If
the measure space X is finite, µ(X) < ∞, and T is ergodic then, by
Theorem 0.2

lim
n→∞

1

n

n−1∑

k=0

f ◦ T k = Pf =

(
1

µ(X)

∫

X

f dµ

)
Ω

where Ω = 1 ∈ L2(X). Here P denotes the projection P = 1
µ(X)

Ω⊗ Ω

in L2, i.e. Pf = 1
µ(X)

Ω〈Ω, f〉L2 . What we are looking at here is an

L2 version of the highly sought after conclusion of Boltzmann’s ergodic
hypothesis, that the phase space mean of a physical variable f (right)
should equal the, generally harder to obtain, time mean of the variable
(left). All that was wrong with the hypothesis was the premise. Boltz-
man speculated that if the orbit of a point reached all corners of the
space X then this conclusion should follow. So, the ergodic property as
we formulated it, yields the conclusion of the ergodic hypothesis and
the subsequent further development of these ideas became known as
ergodic theory.

For convenience, we will now assume that µ(X) = 1, if µ(X) < ∞.
This is mostly the standard framework for work in ergodic theory, and
it is what we will generalize to C*-dynamical systems.

So how are the other ergodic properties formulated? From our ini-
tial definition of ergodic transformations it is not exactly clear how a
variation in the definition might suggest other interesting asymptotic
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INTRODUCTION 9

behaviours. This is one of the advantages in alternate equivalent for-
mulations, as we shall shortly observe. Not only can an equivalent
formulation prove to be more useful analytically, it can also suggest
other interesting properties worth investigating. Let us humour two
additional formulations of ergodic transformations, one because it will
lead us to the weak mixing and strong mixing property, and the other
since it connects to spectral properties of U , which will prove to be
very useful.

First the latter, which follows from the discussion above regarding
invariant functions. The ergodic property of a transformation T has a
surprising influence on the spectral properties of the unitary operator
induced by T , as discussed earlier.

Theorem 0.3. A measure preserving transformation T : X → X
on a probability space X is ergodic if and only if 1 is a simple eigenvalue
of U , or equivalently, the fixed point space of U is one-dimensional,
namely CΩ.

In Chapter 2 we will prove this for the C*-dynamical case using the
mean ergodic theorem, albeit a generalized version.

For the former, again consider an ergodic transformation T on a
probability space X. Consider any measurable F,G ⊆ X and let f =
χF , g = χG. Using the mean ergodic theorem we can show that

lim
n→∞

1

n

n−1∑

k=0

µ(F ∩ T−k(G)) = lim
n→∞

1

n

n−1∑

k=0

〈χF , U
kχG〉

= 〈χF , PχG〉
= 〈χF ,Ω〈Ω, χG〉〉
= µ(F )µ(G)(3)

In fact, conversely it can easily be shown that if (3) holds for all mea-
surable F,G ⊆ X, then T is ergodic. The formulation of ergodicity as
in (3) readily allows us to formulate other possible properties that a
system may have:

lim
n→∞

1

n

n−1∑

k=0

∣∣µ(F ∩ T−kG)− µ(F )µ(G)
∣∣ = 0 ∀ F,G ∈ Σ(4)

lim
n→∞

µ(F ∩ T−nG) = µ(F )µ(G) ∀ F,G ∈ Σ(5)

It is easy to see that (5)⇒(4)⇒(3). If a transformation T satisfies
(5), we call it strongly mixing, and if T satisfies (4) we call it weakly
mixing. It turns out that these properties are very useful in classifying
dynamical systems, and indeed there are systems that are ergodic but
not weakly mixing, weakly mixing but not strongly mixing, and systems
which are strongly mixing.
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Weak mixing in particular is of particular structural importance,
In a sense it is one type of “extreme” behaviour a system can have,
with the “opposite extreme” being compactness. This will be discussed
further below and in Chapter 2, by building on the theory developed
in Chapter 1.

The simplest way to transfer these ergodic properties to a C*-
algebraic setting is to consider a C*-algebraic formulation of the clas-
sical setting described above, and to literally translate (3),(4) and (5)
in terms of C*-algebraic related structures.

All of the physical information of the system (X,µ, T ) is given by
real, or complex, valued measurable functions on X. Mathematically,
we are thus looking at a C*-algebra A of functions, e.g. the space
B∞(X) of all bounded complex valued measurable functions on X.
There are other spaces as well, such as L∞(X), or C(X) if X is topo-
logical. Suppose that A = B∞(X). We can recover all of the probabil-
ities from the functions in B∞(X) since for any measurable W ⊆ X,
µ(W ) =

∫
X
χW dµ, and χW ∈ B∞(X). For instance, if

f : X → R

represents some physical quantity of the system, defined at each point
of the phase space X, then the quantity after one step is given by f ◦T
and the probability that, at some initial time, the quantity will have a
value in V ⊆ R is

∫

X

χf−1(V ) dµ = µ(f−1(V ))

So, the probabilities are given by the mapping

ω : A → C : g 7→
∫

X

g dµ

and the time evolution by the mapping

τ : A → A : f 7→ f ◦ T
ω is a state on A and τ is a ∗-automorphism of A. We delay precise
definitions until Chapter 2.

So let us see what (3) translates into, in terms of the C*-algebra A,
state ω and ∗-automorphism τ . Let f = χF , and g = χG for measurable
F,G. Then

lim
n→∞

1

n

n−1∑

k=0

µ(F ∩ T−kG) = µ(F )µ(G)

becomes

lim
n→∞

1

n

n−1∑

k=0

ω(fτ k(g)) = ω(f)ω(g)(6)
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INTRODUCTION 11

(6) is precisely how ergodicity is formulated in a C*-algebraic system,
for a general, possibly noncommutative, C*-algebra A, ∗-automorphism
τ and τ -invariant state ω. Of course the weak mixing and strong mixing
properties’ formulation may similarly be obtained. The triple (A, ω, τ)
is called a C*-dynamical system. We will however opt for a more
general approach not confined to discrete time. That is, in the preced-
ing discussion, time evolution operated in a discrete manner through
iterations of the measure preserving transformation T , or translated,
iterations of the ∗-automorphism τ . We say the time evolution of the
system is a Z-action. Instead we will allow for more general groups
G that determine a group of ∗-automorphisms {τg : g ∈ G} such that
τg ◦ τh = τgh for all g, h ∈ G.

To allow for the successful characterization of the ergodic proper-
ties on a dynamical system that evolves under the action of a general
group G, certain structural features will have to be assumed on G.
These assumptions, the definition of a C*-dynamical system and the
characterization of the ergodic properties on C*-dynamical systems
will be the topic of the first two sections of Chapter 2. The rest of
Chapter 2 will be devoted to analysing the defined properties to deter-
mine what combinations of the properties are permissable on the same
C*-dynamical system. This will be done by deriving different, but
equivalent, characterizations of the ergodic properties. Some impor-
tant tools and results used to this end form the entirety of Chapter 1.
We will show in Chapter 2 how the group G may always be represented
by a group of unitary operators on a Hilbert space, known as the GNS
representation, and how the ergodic properties can be characterized in
terms of this representation. We will show that ergodicity relates to the
fixed point space of the representation, and the weak mixing and com-
pactness properties to the eigenspace of the representation. We will
prove that a C*-dynamical system is weak mixing if and only if the
eigenspace of the GNS representation is one dimensional. The other
end of this extreme, is when the eigenspace spans the entire Hilbert
space in which case the C*-dynamical system will be called compact.
Why the property is coined “compact” is explained in Chapter 2.

By the end of Chapter 2 we will know which combinations of the
ergodic properties on a C*-dynamical system are ruled out by general
theory. It will then become our final objective to obtain/construct
concrete examples of C*-dynamical systems exhibiting the remaining
combinations. We will consider C*-dynamical systems on three differ-
ent noncommutative C*-algebras:

(i) Quantum mechanical systems with discrete energy spectrums
on L (H), with H separable (Chapter 3),

(ii) Systems of algebraic origin on reduced group C*-algebras (Chap-
ter 4),

(iii) Two types of systems on quantum tori (Chapter 5).
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These examples are not arbitrary and do carry significance, which we
will elaborate on in their respective Chapters. Here we only note that
these examples are either basic in quantum physics (namely the quan-
tum harmonic oscillator as a special case of a system with discrete en-
ergy spectrum), or are built on C*-algebras, which are some of the most
important examples of noncommutative C*-algebras other than L (H)
(namely the reduced group C*-algebras and quantum tori). These
examples are therefore very natural in the noncommutative context.
This is a relevant point, since in principle we could simply take classi-
cal systems with various combinations of properties and extend them
to L (H) using the GNS representation U of T , to obtain noncom-
mutative systems with the same combinations of properties. However,
unlike the examples mentioned above, this would not be very natu-
ral or interesting from the point of view of quantum physics or even
C*-algebras, and would therefore not have any true significance.

The ultimate goal of this dissertation is to show that the various
ergodic properties discussed above, remain meaningful in the noncom-
mutative case. In particular one would like to know that there are
noncommutative systems having the various properties, and that the
properties are indeed distinct, as they are in the classical case. Our
study of these systems will yield all of the combinations, except for two,
and the possible resolution of this shortcoming will form part of the
discussion in the section “Further research”. To connect the beginning
with the end, we end by providing a summary of what our efforts will
yield:

The last column on the following page list the examples we obtained
having the properties indicated in the various rows, and indicates the
combinations of properties which are impossible to have in the same
system due to general theory. It is important to note that aside from
the combinations marked “?”, this is in exact correspondence to the
classical case, where the same combinations are impossible, and there
are classical examples satisfying the remaining combinations.
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ergodic weakly mixing strongly mixing compact examples
(a) × × × × ReFG3

QTA3(θ)
(b) × × × X DESS2

ReFG2
QTA2(θ)

(c) × × X × impossible
(d) × × X X impossible
(e) × X × × impossible
(f) × X × X impossible
(g) × X X × impossible
(h) × X X X impossible
(i) X × × × ?
(j) X × × X DESS1

QTT(θ)
(k) X × X × impossible
(l) X × X X impossible
(m) X X × × ?
(n) X X × X impossible
(o) X X X × ReFG1

QTA1(θ)
(p) X X X X impossible

X : property present, × : property absent

For more details, consult:

(a) ReFG3 : Def. 3.3, Proposition 3.6, Theorems 5.1 and 5.2
QTA3(θ) : Def. 6.4, Proposition 6.7, Theorems 5.1 and 5.2

(b) DESS2 : Def. 2.4, Proposition 2.6 and Theorem 5.1
ReFG2 : Def. 3.3, Proposition 3.5, Theorems 5.1 and 5.2
QTA2(θ) : Def. 6.4, Proposition 6.6, Theorems 5.1 and 5.2

(j) DESS1 : Def. 2.4, Proposition 2.5 and Theorem 5.3
QTT(θ) : Def. 3.2, Propositions 4.4, 4.5 and Theorem 5.3

(o) ReFG1 : Def. 3.3, Proposition 3.4, Theorems 5.1, 5.2 and 5.3
QTA1(θ) : Def. 6.4, Proposition 6.5, Theorems 5.1 - 5.3

(c),(d),(k),(l) : Theorem 5.2
(f),(g),(h) : Theorem 5.1
(n),(p) : Theorem 5.3

(i),(m) : refer to the section “Further research”
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Index of Symbols and Conventions

N : natural numbers, {1, 2, 3, ...} Z : set of Integers
R : real field C : complex field
S1 : unit circle in C T2 : torus,T× T ≡ R2/2πZ2

Q : rational numbers
X : Banach space H : Hilbert space
A : C*-algebra B : Borel σ-algebra

L (X) : space of bounded linear operators X → X
U(X) : collection of unitary operators in L (X)
C(K) : space of continuous functions on the compact set K

X* : continuous dual of X
κ : canonical mapping X → X*, with κ(x)(f) = f(x) for all x ∈

X
〈h, x〉 : alternative notation for h(x), with h ∈ X* and x ∈ X, used in

Chapter 1
T * : adjoint operator in L (X*) of T ∈ L (X), defined 〈T *h, x〉 =

〈h, Tx〉 for all x ∈ X
A* : adjoint operator in L (H) of A ∈ L (H)

Ω⊗ Ω : projection operator in L (H) defined x 7→ Ω〈Ω, x〉
id : identity mapping of a space onto itself

Em,n : the function T2 → T2 : (x, y) 7→ eimxeiny

1 : either 1 ∈ R, unit element of a group, unit element of a C*-
algebra or a constant valued function with value 1 ∈ R

χ
V

: characteristic/step function of V
Aut (A) : collection of all ∗-automorphisms of A

wo- : weak operator topology prefix w- : weak topology prefix
so- : strong operator topology prefix w*- : weak* topology prefix

z : complex conjugate of z ∈ C

Re(f) : real part of f , Re(f)(x) := 1
2

(
f(x) + f(x)

)

Im(f) : imaginary part of f , Im(f)(x) := i
2

(
f(x)− f(x)

)

f+ : positive part of f , f(x) := max{0, f(x)}
f− : negative part of f , f(x) := max{0,−f(x)}

xn −→ x : convergence in associated metric/norm topology
� : partial order on a directed set

cl V : closure of V in associated topology
co (V ) : convex hull of V
co (V ) : norm closure of co (V )
span V : vector/algebra span of V depending on whether V is a subset

of a vector space or algebra
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(i) Unless explicitly stated otherwise, any vector space or algebra
will be over the field of complex numbers.

(ii) A locally compact space will always be assumed to be Haus-
dorff.

(iii) An inner product in a Hilbert space will always be taken to
be linear in the second argument and conjugate linear in the
first argument.

(iv) Concerning the function space L2, we will adopt the customary
approach as pointed out in [26]: L2 is a not a function space
but a space whose elements are equivalence classes of functions,
however, for the sake of simplicity of language we relegate this
distinction to the status of a tacit understanding and continue
to speak of L2 as a function space.
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CHAPTER 1

Splitting Theorem of Jacobs-Deleeuw-Glicksberg

In this chapter we review the splitting Theorem of Jacobs-Deleeuw-
Glicksberg, closely following [19, 2.4 p. 103 -p. 109], but expanding and
expounding the arguments and proofs given there. The results that we
shall derive are for semigroups of continuous linear operators in Banach
Spaces. In Chapter 2 we will restrict these results to the case of Hilbert
spaces, and use them to derive the spectral formulations of a weakly
mixing C*-dynamical system and a compact C*-dynamical system, in
terms of the GNS representation. The advantage in deriving these
spectral formulations will be twofold. First, it will illuminate more
clearly the relationship between the two properties. Secondly, for the
majority of systems that we will consider, it will be a far simpler matter
to determine whether a system is weak-mixing or compact using these
spectral formulations. The reason, as we shall see, will be due to the
relative ease in which the GNS representation can be obtained in most
cases, and the remarkably concise formulation of the two properties in
terms of the GNS representation.

The reason that the results are proved for Banach spaces and not
for Hilbert spaces, which is all that we need, is that it is serves as a
great example of the richness of Banach spaces even when compared to
Hilbert spaces. Several of the results to follow are far easier to obtain
when the space under consideration is not only a Banach space but also
a Hilbert space. Yet, perhaps surprisingly, the results hold even when
all that we know is that the space under consideration is a Banach
space. In addition, adopting such a general framework also opens the
door for possible further work on ergodic properties within the context
of Banach spaces.

The main results in this chapter are Theorems 2.8, 2.13 and 2.18.
Theorem 2.8 is the Splitting Theorem, and it is states how a complex
Banach space can be “split” into a direct sum derived from a semigroup
of bounded linear operator with certain properties. Theorems 2.13 and
2.18 then derive alternate characterizations of the the closed subspaces
in the direct sum of Theorem 2.8. Theorem 2.18 is a modified version
of [19, Theorem 4.7].

17
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18 1. SPLITTING THEOREM OF JACOBS-DELEEUW-GLICKSBERG

Take note that in this section X will always refer to a complex
Banach space and that the value of a functional h ∈ X* at x ∈ X will
be denoted 1 by 〈h, x〉.

1. Locally convex topologies

Apart from the norm topology on X, we will consider three dif-
ferent topologies in this chapter, on X and on L (X) = {T : X →
X : T is bounded linear}. L (X) is equipped with the operator norm
of its bounded linear operators, and under this norm it is itself a Ba-
nach space. There is the weak topology (w-topology) on X, the weak*
topology (w*-topology) on X* and the weak operator topology (wo-
topology) on L (X).

(i) In the w-topology on X each x ∈ X has a base of neighbour-
hoods consisting of all sets of the form :
Vx,h1,...,hn,ǫ = {z ∈ X : |〈hj, x〉 − 〈hj, z〉| < ǫ ∀ j = 1, ..., n}
where ǫ > 0 and h1, ..., hn ∈ X*.

(ii) In the w*-topology on X* each h ∈ X* has a base of neigh-
bourhoods consisting of all sets of the form :
Vh,x1,...,xn,ǫ = {g ∈ X* : |〈h, xj〉 − 〈g, xj〉| < ǫ ∀ j = 1, ..., n}
where ǫ > 0 and x1, ..., xn ∈ X.

(iii) In the wo-topology on L (X) each T ∈ L (X) has a base of
neighbourhoods consisting of all sets of the form :
VT,x1,...,xn,h1...hn,ǫ =
{R ∈ L (X) : |〈hj, Txj〉 − 〈hj, Rxj〉| < ǫ ∀ j = 1, ..., n}
where ǫ > 0,h1, ..., hn ∈ X* and x1, ..., xn ∈ X.

It it is easy to see that the w-topology on X is the smallest topol-
ogy such that all elements in X* are continuous and is therefore coarser
than the norm-topology of X. Similarly the w*-topology is the small-
est topology such that the mappings x̂ : X* → C : h 7→ 〈h, x〉,
where x ∈ X, are continuous. The wo-topology is the smallest topol-
ogy such that the mappings L (X) → C : T 7→ 〈h, Tx〉 , where
h ∈ X* and x ∈ X, are continuous. Hence it can be seen that the
wo-topology is coarser than the operator-norm topology of L (X). The
w-topology, w*-topology and wo-topology are typically defined as the
smallest topologies for which the above mappings are, respectively, con-
tinuous. That their bases are of the above forms is then easily derived.

1This notation is akin to attaching a Ferrari badge to a Porsche Boxster and
painting it red. It might look a bit like a Ferrari but it wont get you around the
Nurburgring quite as fast...
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1. LOCALLY CONVEX TOPOLOGIES 19

Two tools, in particular, from functional analysis are of indispens-
able use when working with these topologies. The first, unsurpris-
ingly, is the Hahn-Banach theorem [20, Theorem 4.3-2] and the second
Banach-Alaoglu [8, V.4.2]. The latter states that the closed unit ball in
X* is w*-compact. As a first application of the Hahn-Banach theorem,
we show that a w-compact set of X is w-closed and bounded in the
norm of X.

Theorem 1.1. Consider a subset V ⊆ X. If h(V ) is bounded in
C, for all h ∈ X*, then V is bounded in the norm of X.

Proof. If h(V ) is bounded in C for all h ∈ X*, then it follows that
for any h ∈ X* there is some Mh > 0 such that |〈h, x〉| < Mh for all
x ∈ X. Therefore, for any ǫ > 0 and h ∈ X*, it follows that

∃ δ > 0 : x ∈ V, ‖x‖ > δ ⇒ |〈h, x〉| < ǫ‖x‖

which can be seen to follow from the fact that for any x ∈ V and δ > 0

‖x‖ ≥ δ ⇒ ‖x‖
δ

≥ 1 ⇒ |〈h, x〉| < Mh

δ
‖x‖.

Suppose that V is unbounded, so for all N ∈ N there is some x ∈ V for
which ‖x‖ > N . Since for any x ∈ X there exists, by the Hahn-Banach
Theorem, an h ∈ X* such that 〈h, x〉 = ‖x‖ and ‖h‖ = 1, we can define
a sequence (hn) in X* in the following way:

h1 : Pick any x1 ∈ V such that ‖x1‖ 6= 0. Choose an h1 ∈ X*

such that 〈h1, x1〉 = ‖x1‖ and ‖h1‖ = 1
hn : Pick any xn, large enough, such that

(n > 1) |〈h1, xn〉|, ..., |〈hn−1, xn〉| ≤ 1
3n+1‖xn‖ and ‖xn‖ ≥ 3nn.

Choose an hn ∈ X* such that 〈hn, xn〉 = ‖xn‖ and ‖hn‖ = 1

As ‖hn‖ = 1 for all n ∈ N, the sequence

{
m∑

n=1

1

3n
hn

}

m∈N

is clearly Cauchy and hence convergent in X*. Define

h′ :=
∞∑

n=1

1

3n
hn
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20 1. SPLITTING THEOREM OF JACOBS-DELEEUW-GLICKSBERG

Thus h′ ∈ X*. However it can be shown that h′(V ) is unbounded as
for any m ∈ N, with m ≥ 2, it follows that

|h′(xm)| = |
∞∑

n=1

1

3n
hn(xm)|

=

∣∣∣∣∣
1

3m
hm(xm) +

m−1∑

n=1

1

3n
hn(xm) +

∞∑

n=m+1

1

3n
hn(xm)

∣∣∣∣∣

≥ 1

3m
|hm(xm)| −

∣∣∣∣∣

m−1∑

n=1

1

3n
hn(xm) +

∞∑

n=m+1

1

3n
hn(xm)

∣∣∣∣∣

≥ 1

3m
|hm(xm)| −

m−1∑

n=1

1

3n
|hn(xm)| −

∞∑

n=m+1

1

3n
|hn(xm)|

≥ 1

3m
‖xm‖ −

m−1∑

n=1

1

3n+m+1
‖xm‖ −

∞∑

n=m+1

1

3n
‖xm‖

=
1

3m
‖xm‖

(
1−

m−1∑

n=1

1

3n+1
−

∞∑

n=1

1

3n

)

≥ 1

3m
‖xm‖

(
1− 1

3
· 1
2
− 1

2

)

=
1

3m
‖xm‖

1

3

≥ m

3

Thus h′ has arbitrarily large values on V which, since h′ ∈ X*, contra-
dicts the premise that h(V ) is bounded for all h ∈ X*. �

Corollary 1.2. If V is a w-compact subset of X, then it is w-
closed and bounded in the norm of X.

Proof. If V is w-compact, then h(V ) is compact for all h ∈ X*, by
the w-continuity of the elements of X*. Thus h(V ) ⊆ C is bounded for
all h ∈ X* from which it follows that V is norm bounded by Theorem
1.1.

Since the w-topology is Hausdorff, all w-compact sets are w-closed
[21, Theorem 26.3]. �

The bases generating these weak topologies suggest that communi-
cation between them ought to be fairly easy. This is indeed the case
with several easily verifiable relationships between the topologies. For
the sake of completeness and easy reference, we include in the follow-
ing theorems those that will most aid our analysis in the subsequent
section.
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1. LOCALLY CONVEX TOPOLOGIES 21

For any T ∈ L (X), the adjoint operator of T is the operator

T * : X* → X*

with 〈T *h, x〉 = 〈h, Tx〉 for all x ∈ X, h ∈ X*. T * ∈ L (X*) and

‖T *‖ = sup
‖h‖=1

‖T *h‖

= sup
‖h‖=1

sup
‖x‖=1

|〈T *h, x〉|

= sup
‖h‖=1

sup
‖x‖=1

|〈h, Tx〉|

≤ ‖T‖ sup
‖h‖=1

sup
‖x‖=1

‖h‖‖x‖

= ‖T‖

Theorem 1.3. Let (Tα)α∈Λ be a net in L (X), and T an operator
in L (X). Then the following are equivalent:

(1) lim〈h, Tαx〉 = 〈h, Tx〉 ∀ x ∈ X, h ∈ X*

(2) wo-lim Tα = T
(3) w-lim Tαx = Tx ∀ x ∈ X
(4) w*-lim T *

αh = T *h ∀ h ∈ X*

Proof. (1)⇒(2) Let W be a wo-neighbourhood of T . It follows
that there are x1, ..., xn ∈ X, h1, ..., hn ∈ X* and an ǫ > 0 such that

T ∈ V = VT,x1,...,xn,h1,...,hn,ǫ ⊆ W

where

VT,x1,...,xn,h1,...,hn,ǫ

= {R ∈ L (X) : |〈hi, Rxi〉 − 〈hi, Txi〉| < ǫ ∀ i = 1, ..., n}.
Clearly, V =

⋂n

i=1 VT,hi,xi,ǫ. For each i = 1, ..., n it follows that, as
〈hi, Tαxi〉 −→ 〈hi, Txi〉, there is a βi ∈ Λ such that |〈hi, Tαxi〉 −
〈hi, Txi〉| < ǫ for all α � βi, i.e. Tα ∈ VT,hi,xi,ǫ for all α � βi. As
there is a β ∈ Λ with β � βi for all i = 1, ..., n, it thus follows that
Tα ∈ ⋂n

i=1 VT,hi,xi,ǫ = V ⊆ W for all α � β, and as W was arbitrary,
(2) follows.

(2)⇒(3) Let x ∈ X be arbitrary and let W be a w-neighbourhood
of Tx. It follows that there are h1, ..., hn ∈ X* and an ǫ > 0 such that

Tx ∈ V := VTx,h1,...,hn,ǫ ⊆ W

where

VTx,h1,...,hn,ǫ = {z ∈ X : |〈hi, z〉 − 〈hi, Tx〉| < ǫ ∀ i = 1, ..., n}.
The wo-base element

U := UT,x,h1...hn,ǫ = {R ∈ L (X) : |〈hi, Rx〉−〈hi, Tx〉| < ǫ ∀ i = 1, ..., n}
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22 1. SPLITTING THEOREM OF JACOBS-DELEEUW-GLICKSBERG

is a wo-neighbourhood of T so that, since wo-lim Tα = T , there is a
β ∈ Λ such that Tα ∈ U for all α � β. In other words, |〈hi, Tαx〉 −
〈hi, Tx〉| < ǫ , i.e. Tαx ∈ V ⊆ W , for all α � β. As W was arbitrary,
(3) follow for arbitrary x ∈ X.

(3)⇒(4) Let h ∈ X* be arbitrary and let W be a w*-neighbourhood
of T *h. It follows that there are x1, ..., xn ∈ X and an ǫ > 0 such that

T *h ∈ V := VT *x,h1,...,hn,ǫ>0 ⊆ W

where

VT *h,x1...xn,ǫ = {g ∈ X* : |〈g, xi〉 − 〈T *h, xi〉| < ǫ ∀ i = 1, ..., n}.
Clearly V =

⋂n

i=1 VT *h,xi,ǫ
. For each i = 1, ..., n, the w-base element

Ui := UTxi,h,ǫ = {z ∈ X : |〈h, z〉 − 〈h, Txi〉| < ǫ ∀ i = 1, ..., n}
is a w-neighbourhood of Txi so that, since w-lim Tαxi = Tx, there is
a βi ∈ Λ such that Tαxi ∈ Ui for all α � βi. In other words, for each
i = 1, ..., n

|〈h, Tαxi〉 − 〈h, Txi〉| = |〈T *
αh, xi〉 − 〈T *h, xi〉| < ǫ

i.e. T *
αh ∈ VT *h,xi,ǫ

, for all α � βi. As there is a β ∈ Λ such that β � βi,

for each i = 1, ..., n, it thus follows that T *
αh ∈ V =

⋂n

i=1 VT *h,xi,ǫ
⊆ W

for all α � β. As W was arbitrary, (4) follows for arbitrary h ∈ X*.

(4)⇒(1) Let x ∈ X, h ∈ X* and ǫ > 0 be arbitrary. The w*-base
element

V = VT *h,x,ǫ = {g ∈ X* : |〈g, x〉 − 〈T *h, x〉| < ǫ}
is a w*-neighbourhood of T *h so that, since w*-lim T *

α = T *h, there is
a β ∈ Λ such that T *

α ∈ V for all α � β. In other words, |〈h, Tαx〉 −
〈h, Tx〉| = |〈T *

αh, x〉 − 〈T *h, x〉| < ǫ for all α � β, and as ǫ > 0 was
arbitrary, (1) follows. �

As a bounded linear operator between normed spaces, each T ∈
L (X) is continuous with respect to the norm topology of X. That T
is continuous with respect to the weaker w-topology on X, is easy to
show.

Theorem 1.4. If w-lim xα = x, for some net (xα)α∈Λ in X, then
w-lim Txα = Tx for all T ∈ L (X).

Proof. Let T ∈ L (X) be arbitrary and letW be a w-neighbourhood
of Tx. It follows that there are h1, ..., hn ∈ X* and an ǫ > 0 such that

Tx ∈ V := VTx,h1,...,hn,ǫ ⊆ W

where

VTx,h1,...,hn,ǫ = {z ∈ X : |〈hi, z〉 − 〈hi, Tx〉| < ǫ ∀ i = 1, ..., n}.
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1. LOCALLY CONVEX TOPOLOGIES 23

Clearly V =
⋂n

i=1 VTx,hi,ǫ. For each i = 1, ..., n, the w-base element

Ui := Ux,T *hi,ǫ
= {z ∈ X : |〈T *hi, z〉 − 〈T *hi, x〉| < ǫ ∀ i = 1, ..., n}

is a w-neighbourhood of x so that, since w-lim xα = x, there is a βi ∈ Λ
such that xα ∈ Ui for all α � βi. In other words, |〈hi, Txα〉−〈hi, Tx〉| =
|〈T *hi, xα〉 − 〈T *hi, x〉| < ǫ, i.e. Txα ∈ VTx,hi,ǫ, for all α � βi. Since
there is a β ∈ Λ such that β � βi for each i = 1, ..., n, it thus follows
that Txα ∈ V =

⋂n

i=1 VTx,hi,ǫ ⊆ W for all α � β, and as W was
arbitrary the result follows. �

If (xα) and (cα) are nets in X and C respectively then, if xα −→ x,
i.e. in the norm topology, and cα −→ c, for some x ∈ X and c ∈ C,
then it easy to show that cαxα −→ cx. Of greater significance to us is
that the same result holds in the w-topology.

Theorem 1.5. If w-lim xα = x and lim cα = c for nets (xα)α∈Λ ⊆
X and (cα)α∈Λ ⊆ C, then

w-lim cαxα = cx

Proof. Let W be a w-neighbourhood of cx. It follows that there
are h1, ..., hn ∈ X* and an ǫ > 0 such that

cx ∈ V := Vcx,h1,...,hn,ǫ ⊆ W

where

Vcx,h1,...,hn,ǫ = {z ∈ X : |〈hi, z〉 − 〈hi, cx〉| < ǫ ∀ i = 1, ..., n}.

Clearly V =
⋂n

i=1 Vcx,hi,ǫ. For each i = 1, ..., n it follows that

|〈hi, cαxα〉 − 〈hi, cx〉| ≤ |〈hi, cαxα〉 − 〈hi, cxα〉|+ |〈hi, cxα〉 − 〈hi, cx〉|
= |cα − c||〈hi, xα〉|+ |〈chi, xα〉 − 〈chi, x〉|.

Since hi is w-continuous and w-lim xα = x, 〈hi, xα〉 −→ 〈hi, x〉. Thus
|〈hi, xα〉| −→ |〈hi, x〉| so that if we fix some M > |〈hi, x〉| then there is
a ρ1 ∈ Λ such that |〈hi, xα〉| < M for all α � ρ1. Since cα −→ c there
is a ρ2 ∈ Λ such that |cα − c| < ǫ

2M
for all α � ρ2. Since chi ∈ X*, and

is therefore w-continuous, we likewise have that 〈chi, xα〉 −→ 〈chi, x〉.
Thus there is a ρ3 ∈ Λ such that |〈chi, xα〉−〈chi, x〉| < ǫ

2
for all α � ρ3.

As there is a β ∈ Λ such that βi � ρj for j = 1, 2 and 3,

|cα − c||〈hi, xα〉|+ |〈chi, xα〉 − 〈chi, x〉| < M
ǫ

2M
+

ǫ

2
= ǫ

for all α � βi. In other words, cαxα ∈ Vcx,hi,ǫ for all α � βi, so that
as there is a β ∈ Λ such that β � βi for all i = 1, ..., n, cαxα ∈
V =

⋂n

i=1 Vcx,hi,ǫ ⊆ W for all α � β. As W was arbitrary, the result
follows. �
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24 1. SPLITTING THEOREM OF JACOBS-DELEEUW-GLICKSBERG

2. The splitting theorem

We will now begin our study of a more abstract version of the Z

actions briefly considered in the introduction. Our aim is simply to
be able to consider more general group actions than the Z case. We
also mentioned, that if a dynamical system has a G action, where G
is a general group, then G has a representation as a group of unitary
operators on a Hilbert space in terms of which we can describe the time
evolution of the system. This will be described in detail in Chapter 2.
To consider this in a more abstract setting we will focus on semigroups
on which we assume, but do not explicitly mention, the presence of a
unit element. In particular we will consider semigroups of operators in
L (X), containing the identity operator.

For an abstract semigroup we will denote by, and refer to, the semi-
group operation as multiplication.

If S is an abstract semigroup equipped with some topology then
multiplication in S is said to be separately continuous if for each s ∈ S
the mappings S → S : t 7→ st and S → S : t 7→ ts are continuous. The
multiplication is said to be jointly continuous if the mapping S×S :→
S : (s, t) 7→ st is continuous.

Definition 2.1. A semitopological semigroup is a semigroup which
is a Hausdorff space in which multiplication is separately continuous,
and a topological semigroup is a semigroup which is a Hausdorff space
in which multiplication is jointly continuous.

Theorem 2.2. Any compact Abelian semitopological semigroup S
contains a unique minimal ideal K, the kernel of S. K is contained in
any ideal, and

(7) K =
⋂

t∈S
tS

Furthermore, K is a group, and if q denotes the unit of this group, then
K = qS.

Proof. If J1, ..., Jk are ideals in S, their product J1 · ... · Jk is
nonempty, and is contained in their intersection J1∩ ...∩Jk. Therefore
the collection of all closed ideals of S has the finite intersection property.
As S is compact it thus follows that the intersection of all closed ideals
is nonempty [21, Theorem 26.9], and is itself an ideal which we take to
be K.

If J is an ideal in S and t ∈ J then tS ⊆ J and since clearly
ts1s2, s2ts1 ∈ tS for all s1, s2 ∈ S, tS is itself an ideal. As the contin-
uous image of a compact set in a Hausdorff space, tS is compact and
therefore a closed ideal contained in J . As each ideal contains a closed
ideal of the form tS, it follows that K is the intersection of all ideals in
S. Thus K is minimal and necessarily unique. As each ideal contains
a closed ideal of the form tS, and each tS is a closed ideal, (7) follows.
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2. THE SPLITTING THEOREM 25

For any s ∈ K, sK is an ideal contained in K which, by the mini-
mality ofK, is equal toK. Thus since sK = K there exists some q ∈ K
such that sq = s. If t ∈ K is arbitrary, then again since sK = K, there
is some r ∈ K such that sr = t. It follows that

qt = qsr = sr = t

which reveals that q is the unit element in K. Similarly, since sK = K,
there is some s′ ∈ K such that ss′ = q. Therefore every element in K
can be seen to have an inverse and we have that K is a group.

The last assertion follows from the fact that qS ⊆ K, since q is an
element of the ideal K, and the fact that K = qK ⊆ qS. �

We now move towards semigroups of operators in L (X) and start
by proving some preliminary results.

Proposition 2.3. Multiplication in L (X) is separately continuous
with respect to the wo-topology.

Proof. LetR ∈ L (X) be arbitrary, and consider any wo-convergent
net (Tλ)λ∈Λ in L (X) with, say, wo-lim Tλ = T . To establish the sepa-
rate continuity we wish to show that wo-lim TλR = TR and wo-lim RTλ =
RT . By Theorem 1.3

wo-lim Tλ = T ⇔ 〈h, Tλx〉 −→ 〈h, Tx〉 ∀ x ∈ X, h ∈ X*(8)

Therefore, in particular, we have that

〈h, TλRx〉 −→ 〈h, TRx〉 , and
〈h,RTλx〉 = 〈R*h, Tλx〉 −→ 〈R*h, Tx〉 = 〈h,RTx〉

for all x ∈ X, h ∈ X* and R ∈ L (X). Hence, by (8), wo-lim TλR =
TR and wo-lim RTλ = RT as required. �

Proposition 2.3 allows us to easily show that any semigroup in
L (X) becomes a semitopological semigroup under its wo-closure.

Proposition 2.4. If S is a semigroup in L (X), then S :=
wo-cl S is a semigroup, and in particular a semitopological semigroup.
If S is Abelian, then so is S .

Proof. We will chiefly rely on the separate continuity of L (X),
in terms of the wo-topology, established in Proposition 2.3.

Since S is a semigroup, S S ⊆ S and therefore, by the separate
continuity of L (X), S S ⊆ S . Applying separate continuity once
more it follows that S S ⊆ S . To see why, consider any R, T ∈
S . Hence there are two wo-convergent nets, say (Rγ)γ∈Γ and (Tλ)λ∈Λ,
in S converging to R and T respectively. Since RγTλ ∈ S , for all

γ ∈ Γ and λ ∈ Λ, RγT = wo-limλ RγTλ ∈ S for all γ ∈ Γ, and thus

RT = wo-limγ RγT ∈ S . Thus S is a semigroup, and in particular
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26 1. SPLITTING THEOREM OF JACOBS-DELEEUW-GLICKSBERG

a semitopological semigroup since it is a wo-closed subspace of L (X)
on which we have separate continuity.

To show that S is Abelian if S is Abelian, let us again consider
the arbitrary operators R, T ∈ S . It similarly follows that TRγ =

wo-limλ TλRγ ∈ S for all γ ∈ Γ, and TR ∈ S = wo-limγ TRγ. Since,
now, TλRγ = RγTλ for all λ ∈ Λ and γ ∈ Γ, RT = TR follows from
the uniqueness of limits in the Hausdorff space L (X). �

Lemma 2.5. A subset S ⊆ L (X) is conditionally wo-compact if
and only if S x is conditionally w-compact in X for each x ∈ X. In
this case S is norm bounded in L (X), and S x = w-cl (S x) holds
for all x ∈ X.

Proof. Consider the mapping

px : L (X) → X : T 7→ Tx

for an arbitrary x ∈ X and, to communicate compactness between X
and L (X), let us proceed by showing that px is wo-w-continuous. If
T ∈ L (X) is arbitrary and U is some w-neighbourhood of px(T ) = Tx,
then there is some w-open set of the form

V = VTx,h1,...,hn,ǫ = {z ∈ X : |〈hj, Tx〉 − 〈hj, z〉| ∀ j = 1, ..., n}
such that V ⊆ U . Therefore, if

W = WT,x,h1,...,hn,ǫ = {R ∈ X : |〈hj, Tx〉 − 〈hj, Rx〉| ∀ j = 1, ..., n}
then W is a wo-neighbourhood of T and it clear that px(W ) ⊆ V ⊆ U
which, as T and U were arbitrary, establishes the continuity of px.

Now, if S is conditionally wo-compact, then S is wo-compact, by
definition, and S x is w-compact as the image of a wo-compact set
under the continuous mapping px. Since the w-topology is Hausdorff,
S x is w-closed and hence S x ⊇ w-cl (S x). To show the forward
inclusion let Tx ∈ S x be arbitrary, with T ∈ S . Thus T = wo-lim Tλ

for some net (Tλ) in S . It follows by the continuity of px that

Tx = px(T ) = px(wo-lim Tλ) = w-lim px(Tλ) = w-lim Tλx

which, as Tλx ∈ S x for all λ, shows that Tx = w-lim Tλx ∈ w-cl (S x).
Thus, S x = w-cl (S x) for all x ∈ X, and we already know the former
to be w-compact. Thus S x is conditionally w-compact for all x ∈ X.

Note that the inclusion S x ⊆ w-cl(S x) holds in general, as to
show it, we did not require the conditional wo-compactness of S .

Conversely, assume that S x is conditionally w-compact for all x ∈
X. Then by Corollary 1.2 w-cl (S x) is norm bounded for all x ∈ X.
Since S x ⊆ w-cl(S x), as established in the first part, it follows by the
uniform boundedness principle [8, II.3.21], that S is norm bounded by,
say M > 0.
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2. THE SPLITTING THEOREM 27

For each x ∈ X, let Ex = w-cl(S x) and E =
∏

x∈X Ex be the
Cartesian product of the spaces Ex with the product topology. Since
each Ex is w-compact, E is compact by Tychonoff’s Theorem [21,
Theorem 37.3]. Now let (Tλ)λ∈Λ be an arbitrary net in S . The wo-
compactness of S will follow if we can identify a wo-convergent subnet
of (Tλ)λ∈Λ. Since S x ⊆ w-cl (S x) for each x ∈ X, ((Tλx)x∈X)λ∈Λ is a
net in E, which, by its compactness, contains a subnet ((Tλβ

x)x∈X)β∈Λ′
converging to some element in E, say (θx)x∈X . We will now show that
w-lim Tλβ

x = θx, for all x ∈ X, and that the operator

T : X → X : x 7→ θx(9)

is the wo-limit of (Tλβ
)β∈Λ′ , a subnet of (Tλ)λ∈Λ. To show that w-lim Tλβ

x =
θx in X, for all x ∈ X, consider any y ∈ X and w-neighbourhood V of
θy in X. The set

W =
∏

x

{Ax : Ax = Ex if x 6= y and Ay = Ey ∩ V }

is a neighbourhood of (θx) in the product topology of E. Hence, as
(θx) is the limit of the subnet ((Tλβ

x)x∈X)β∈Λ′ , and (Tλβ
x)x∈X ∈ W if

and only if Tβy ∈ V , we have that

∀ ǫ > 0 ∃ ϕ ∈ Λ′ : β � ϕ ⇒ Tβy ∈ V.

In other words, w-lim Tβy = θy.
Now we wish to show that (9) defines an operator in L (X). Since

T : x 7→ w-lim Tλβ
x(10)

it is easy to see that T is linear. To see why T is bounded linear,
consider any x ∈ X and let g ∈ X* be a functional such that 〈g, Tx〉 =
‖Tx‖ and ‖g‖ = 1. That there is such a g ∈ X*, follows by the Hahn-
Banach Theorem. By (10), 〈h, Tx〉 = limβ〈h, Tβx〉 for all h ∈ X*.
Hence, in particular, for any ǫ > 0, there is a ν such that for any β � ν

‖Tx‖ = |〈g, Tx〉| ≤ |〈g, Tλβ
x〉|+ ǫ ≤ Mx+ ǫ.

Thus ‖Tx‖ ≤ M‖x‖ for all x ∈ X and we have that T is a bounded
linear operator in L (X). To complete the proof we need only recall
from Theorem 1.3 that, for an operator T ∈ L (X), and net {Tα} ⊆
L (X)

wo-lim Tα = T ⇔ w-lim Tαx = Tx ∀ x ∈ X.

Thus, by (10), T = wo-lim Tβ which completes the proof. �

Definition 2.6. Let S ⊆ L (X) be a semigroup. A vector x ∈ X
is called reversible if for any T ∈ S there exists an R ∈ S with
RTx = x. A vector x ∈ X is called a flight vector if there exists an
S ∈ S with Sx = 0. The set of reversible vectors is denoted by Xrev

and the set of flight vectors by Xfl.
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28 1. SPLITTING THEOREM OF JACOBS-DELEEUW-GLICKSBERG

For our intended purposes, the real interesting and useful properties
of reversible and flight vectors are obtained, when instead of considering
general semigroups in L (X), we consider only those semigroups under
which the elements of X have “almost” compact orbits:

Definition 2.7. A semigroup S ⊆ L (X) of continuous linear
operators in a Banach space X is called weakly almost periodic if for
any x ∈ X the orbit S x = {Tx : T ∈ S } is conditionally w-compact,
i.e. if w-cl(S x) is w-compact.

Clearly, Xrev ∩Xfl = {0}. We shall only consider the case in which
S is weakly almost periodic, i.e. when w-cl (S x) is w-compact for
all x ∈ X. By Lemma 2.5 this means that S wo-compact, and the
identity S x = w-cl (S x) then yields

Xrev = {x ∈ X : y ∈ w-cl (S x) ⇒ x ∈ w-cl (S y)}
Xfl = {x ∈ X : 0 ∈ w-cl (S x)}

If S is an Abelian weakly almost periodic semigroup in L (X)
then, by Proposition 2.4, S is a semitopological Abelian semigroup.
By Lemma 2.5, S is wo-compact and we can therefore apply Theorem
2.2 to S .

Theorem 2.8. (Jacobs-Deleeuw-Glicksberg). Let S be an Abelian
weakly almost periodic semigroup in L (X) and Q the unit in the kernel
K of S . Then Xrev = QX and Xfl = Q−1(0) = (1−Q)X where 1 is
the unit operator in L (X). In particular, X is the direct sum of the
w-closed subspaces Xrev and Xfl, which are both invariant under S .

The restriction of S to Xrev is a group.

Proof. If x ∈ QX, then x = Qy for some y ∈ X. By Theorem
2.2, for any T ∈ S , TQ = QT ∈ K and therefore there is an R ∈ K
such that RTQ = Q. Thus RTx = RTQy = Qy = x, which shows
that x ∈ Xrev. Conversely if x ∈ Xrev, then there is an R ∈ S such
that x = RQx = QRx, which reveals that x ∈ QX. Hence

Xrev = QX.(11)

It is clear that Q−1(0) ⊆ Xfl. Conversely, if x ∈ Xfl then Tx = 0

for some T ∈ S . Thus QTx = 0 and since, by Theorem 2.2, QT ∈ K
there is an R ∈ K such that RQT = Q. Therefore Qx = RQTx = 0
revealing that x ∈ Q−1(0). Hence Xfl = Q−1(0) follows.

By the projection property Q2 = Q it is clear that (1 − Q)X ⊆
Q−1(0). Conversely, if Qx = 0 for some x ∈ X then Qx = x − x or,
rearranged, x = x−Qx = (1−Q)x. Thus Q−1(0) ⊆ (1−Q)X and we
have that

Xfl = (1−Q)X.(12)
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2. THE SPLITTING THEOREM 29

(11) and (12) clearly show that Xrev and Xfl are subspaces invariant

under S , since S is Abelian. By Theorem 1.4, Q is w-continuous
and hence Xfl = Q−1(0) is w-closed. If (Qxα) is any w-convergent
net in QX = Xrev with, say, w-lim Qxα = x, then w-lim Qxα =
w-lim Q2xα = Qx by Theorem 1.4. Since the w-topology is Hausdorff,
limits are unique, and thus x = Qx ∈ QX = Xrev. That is, Xrev is
w-closed.

Any x ∈ X can be written in the form x = x1 + x2 with x1 ∈
QX, x2 ∈ (1−Q)X by setting

x1 = Qx and x2 = (1−Q)x.(13)

Conversely, if x = x1 + x2 with x1 ∈ QX, x2 ∈ (1 − Q)X, then since
Qx1 = x1 and Qx2 = 0, we have that Qx = Qx1 + Qx2 = x1 and
consequently x = Qx+ x2, or x2 = x−Qx. Hence, the decomposition
(13) is necessarily unique and we conclude that X is the direct sum of
Xrev and Xfl.

The group property of S restricted to Xrev, S |Xrev
= {T |Xrev

:
T ∈ S }, follows from

S |Xrev
= S |QX = SQ|QX = QS |QX

since Q2 = Q and S is Abelian. That is, S |Xrev
= QS |QX is a group

by Theorem 2.2.
The group property of S in Xrev follows from the group property

of K. �

Definition 2.9. A nonzero vector x ∈ X is called an eigenvector of
S ⊆ L (X) if there is a map λ : S → C such that Tx = λ(T )x for all
T ∈ S . We say that the eigenvalues of x is given by λ. If |λ(T )| = 1 for
all T ∈ S , then x is called an eigenvector with unimodular eigenvalues.
The norm closure of the subspace of X spanned by all eigenvectors of
S with unimodular eigenvalues is denoted by Xuds.

We will show that, in the case that S is an Abelian weakly almost
periodic semigroup, any reversible vector can be approximated to an
arbitrary accuracy by a linear combination of eigenvectors with uni-
modular eigenvalues, which motivates the definition of Xuds. This will
be our next main result. However, we first prove some useful properties
of the eigenvectors in definition 2.9.

Proposition 2.10. For any S ⊆ L (X), if x is an eigenvector
with unimodular eigenvalues, of S , and the eigenvalues of x given by
λ : S → C, then λ is wo-continuous.

Proof. Let T ∈ S , ǫ > 0 be arbitrary and let h ∈ X* be a func-
tional, obtained with the Hahn-Banach Theorem, such that 〈h, x〉 =
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30 1. SPLITTING THEOREM OF JACOBS-DELEEUW-GLICKSBERG

‖x‖. The set

V := VT,x,h,ǫ‖x‖ =
{
R ∈ S : |〈h,Rx〉 − 〈h, Tx〉| < ǫ‖x‖

}

=
{
R ∈ S : |λ(R)‖x‖ − λ(T )‖x‖| < ǫ‖x‖

}

is a wo-neighbourhood of T in S and it directly shows that if R ∈ V
then |λ(R) − λ(T )| < ǫ. As ǫ > 0 and T ∈ S were arbitrary, the
wo-continuity of λ : S → C follows. �

Proposition 2.11. For any S ⊆ L (X), if x ∈ X is an eigenvec-
tor with unimodular eigenvalues, of S , then x is also an eigenvector
with unimodular eigenvalues, of S .

Proof. Suppose that x ∈ X is an eigenvector with unimodular
eigenvalues of S ⊆ L (X), given by λ : S → C, and consider any
T ∈ S . If we let (Tα) be any net in S such that wo-lim Tα = T ,
then the numbers λ(Tα) necessarily converge to a uniquely determined
ωT ∈ C, and if T ∈ S then ωT = λ(T ). To see why this is the case,
recall from Theorem 1.3 that

wo-lim Tα = T ⇔ 〈h, λ(Tα)y〉 = 〈h, Tαy〉 −→ 〈h, Ty〉 ∀ y ∈ X, h ∈ X*.

In particular, using the Hahn-Banach theorem, for y = x and an h ∈
X* such that 〈h, x〉 = ‖x‖ we have that λ(Tα)‖x‖ −→ 〈h, Tx〉 and
therefore that λ(Tα) −→ 〈h, Tx〉‖x‖−1. If we let ωT = 〈h, Tx〉‖x‖−1,
then it promptly follows that 〈h, λ(Tα)x〉 −→ 〈h, ωTx〉 for all h ∈ X*

and therefore that w-lim λ(Tα)x = ωTx. As wo-lim Tα = T implies
that w-lim λ(Tα)x = w-lim Tαx = Tx, by Theorem 1.3, it follows by
the uniqueness of the weak-limit that Tx = ωTx. If T ∈ S , then
Tx = λ(T )x which shows why ωT = λ(T ). If the limit T 6∈ S , i.e. if
T ∈ S \S , then this reveals that x is also an eigenvector of S and
that λ can be extended to all of S , by simply setting λ(T ) = ωT .
To show that |λ(T )| = 1 consider again the wo-convergent net (Tα) in
S . By Proposition 2.10, λ is wo-continuous so that λ(T ) = limα λ(Tα)
from which it follows that

|λ(T )| = lim
α

|λ(Tα)| = lim
α

1 = 1.

�

There is a convenient feature in how the space Xuds is defined and
to see that, let us denote, temporarily, the w-closure of the subspace
of X spanned by the eigenvectors with unimodular eigenvalues, of
S ⊆ L (X), by Xw

uds. Since Xuds is convex, as the norm-closure of
convex set, Xuds is w-closed by [8, V3.13]. Hence, Xw

uds ⊆ Xuds. How-
ever, as the w-topology is coarser than the norm topology, Xuds ⊆ Xw

uds.
Thus Xuds = Xw

uds, or in other words, Xuds is also the w-closure of the
subspace of X spanned by all eigenvectors of S with unimodular eigen-
values.
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In the theorem to follow we will investigate the relationship between
Xuds,Xrev and find that in our case, i.e. when S is an Abelian weakly
almost periodic semigroup, the two spaces are in fact the same. How-
ever, a simple question of geometric nature will be encountered that
we wish to consider beforehand: If a ∈ S1, then is there a sequence
(ni) ⊆ N such that ani −→ 1 ? The question is geometric in the sense
that, if a = eiθ, then the powers of a correspond to rotations on S1 ⊆ C

by multiples of θ. In the event that θ is of the form m
n
π, for some

m,n ∈ Z, then the answer to the question is obviously affirmative.
The more interesting case is when the rotations are instead irrational.
For irrational rotations the answer is still affirmative and this can be
proven directly, barring some unpleasant algebraic wizardry2. Instead,
we will find the solution in classic ergodic theory.

Lemma 2.12. For any a ∈ S1, there is a sequence (ni)i∈N of natural
numbers such that ani −→ 1.

Proof. The transformation

Ta : S
1 → S1 : z 7→ az

for any a ∈ S1, is an example of a measure preserving transformation
on S1. Suppose first that a is not a root of unity, i.e. a is not in the
form ei

m
n
π with m,n ∈ N. By [28, Theorem 1.8] Ta is ergodic if and

only if a is not a root of unity. Thus Ta is ergodic, so that by [28,
Theorem 1.9], {an : n ∈ Z} is dense in the compact group S1. To see
that {an : n ∈ N} is therefore also dense in S1, let z ∈ S1 and d > 0 be
arbitrary. Since {an : n ∈ Z} is dense in S1, we can find n1 < n2 ∈ Z

such that an1 , an2 ∈ Bz,d = {x ∈ S1 : |x − z| < d}. Let n = n2 − n1.
Then n ∈ N and it is easy to see that amn ∈ Bz,d for some m ∈ N.
Hence, as z ∈ S1 and d > 0 was arbitrary, it follows that {an : n ∈ N}
is dense in S1 as well, from which a sequence (ni)i∈N can readily be
found such that ani −→ 1.

If a = ei
m
n
π, for some m,n ∈ N, then a2n = 1 so that the lemma

follows trivially. �

Theorem 2.13. (Jacobs-Deleeuw-Glicksberg). If S is an Abelian
weakly almost periodic semigroup in L (X), then Xrev = Xuds.

Proof. To show that Xrev ⊇ Xuds, consider any eigenvector x of
S , with unimodular eigenvalues, and any T ∈ S . It follows from the
identity T nx = λ(T )nx, and Lemma 2.12, that a sequence (ni) ⊆ N

may be found such that T nix −→ x. As a consequence, for any h ∈ X*

and ǫ > 0, the set

Wh,ǫ = {R ∈ S : |〈h,RTx− x〉| ≤ ǫ}
2The author worked out a proof, misplaced it, and made no effort to find it

again.
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is non-empty and any finite intersection of such sets is non-empty. This
simply follows from the fact that |〈h,RTx− x〉| ≤ ‖h‖‖RTx− x‖ can
be made as small as needed by setting R = T ni−1 and choosing i large
enough. Moreover, Wh,ǫ is closed, which can be seen by letting (Rα)α∈Λ
be any net in Wh,ǫ with, say, wo-lim Rα = R and establishing that R ∈
Wh,ǫ. As the limit of a net in S , R ∈ S . Since 〈h,Rαy〉 −→ 〈h,Ry〉
for all y ∈ X implies that 〈h,RαTy〉 = 〈R*

αh, Ty〉 −→ 〈R*h, Ty〉 =
〈h,RTy〉 for all y ∈ Y , it follows by Theorem 1.3 that wo-lim RαT =
RT and furthermore that, for any δ > 0, there is a β ∈ Λ such that
|〈h,RαTx〉 − 〈h,RTx〉| ≤ δ for all α � β. Thus

|〈h,RTx〉 − 〈h, x〉| ≤ |〈h,RTx〉 − 〈h,RαTx〉|+ |〈h,RαTx〉 − 〈h, x〉|
≤ δ + ǫ

which, since δ > 0 is arbitrary, shows that |〈h,RTx−x〉| = |〈h,RTx〉−
〈h, x〉| ≤ ǫ. That is, R ∈ Wh,ǫ as required. By the wo-compactness of S
it now follows that the intersection over all sets of the form Wh,ǫ is non-

empty. Consequently, there is an S ∈ S such that |〈h, STx−x〉| ≤ ǫ for
all ǫ > 0 and h ∈ X*, in particular for h ∈ X* such that 〈h, STx−x〉 =
‖STx − x‖. But then STx = x and since T ∈ S was arbitrary, this
shows that x ∈ Xrev. Thus Xrev contains all eigenvectors with unimod-
ular eigenvalues. By Theorem 2.8 we know that Xrev is a w-closed, and
hence norm closed, subspace of X. Thus, as Xuds is the norm closure
of the span of all eigenvectors of S with unimodular eigenvalues, it
follows that Xuds ⊆ Xrev.

The proof of the converse will be lengthy and technical and so it is
prudent to first summarize the argument that we will follow:

(i) Let Γ be the dual group of K where K is the kernel, in the
sense of Theorem 2.2, of S . Establish that K is compact,
equip it with the normalized Haar measure ̺ and for each
γ ∈ Γ,x ∈ X cleverly define a functional Φγ,x ∈ X** using ̺.

(ii) Show that for each γ ∈ Γ and x ∈ X, Φγ,x corresponds to
κ(zγ,x), for some zγ,x in a certain w-compact set A ⊆ X, where
κ is the natural/canonical mapping of X into X**

(iii) For each γ ∈ Γ, use the correspondence x 7→ zγ,x to define a
operator Tγ : X → X.

(iv) Show that the range of these operators Tγ consist of eigenvec-
tors with unimodular eigenvalues.

(vi) Define U to be the norm-closure of the span of the ranges of
these operators {Tγ} so that U ⊆ Xuds.

(vii) By using the result from harmonic analysis that Γ is a total
orthonormal set in L2(K, ̺), show that for any Qx ∈ Xrev (see
Theorem 2.8), Qx is necessarily an element of U .
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Our proof of the converse starts with the kernel K of S obtained
by yet again applying Theorem 2.2 to S . By Theorem 2.2

K =
⋂

T∈S

TS(14)

and is a group. We know that S is wo-compact and that multiplication
in L (X) is separately continuous. Thus TS is wo-compact and hence
wo-closed for all T ∈ S . Therefore (14) ensures that K is wo-closed as
well, and as K ⊆ S , K is wo-compact. It now follows, by Proposition
2.4, that K is a semitopological group. That K is in fact a topological
group follows from [13, Theorem 2] where Ellis shows that any locally
compact Hausdorff semitopological group is necessarily a topological
group.

Let Γ be the dual group of K as in [14, p. 88], that is, the group
of continuous homomorphisms K → S1 also known as characters. Let
̺ be the normalized Haar measure on K. For any γ ∈ Γ, γ will denote
the complex conjugate of γ, which is itself a character. For each γ ∈ Γ
and x ∈ X, define

(15) Φγ,x : X* → C : h 7→
∫

K

〈h, γ(T )Tx〉d̺(T ).

To show that Φγ,x is well defined we consider the mapping

(16) K → C : T 7→ 〈h, γ(T )Tx〉
which we need to show is integrable. (16) is the composition of h :
X → C, which is w-continuous, and ϑ : K → X : T 7→ γ(T )Tx,
which we can easily show to be wo-w-continuous. Let (Tα) be a wo-
convergent net in K with wo-lim Tα = T for some T ∈ K. Then
w-lim Tαx = Tx by Theorem 1.3, and γ(Tα) −→ γ(T ) since γ is a
character, from which it follows that w-lim γ(Tα)Tαx = γ(T )Tx, by
Theorem 1.5. Thus (16) is wo-continuous and hence measurable with
respect to the Haar measure ̺. Furthermore, S and in particular K
are bounded in norm, by Lemma 2.5, and so it is clear that (16) is a
bounded mapping. Since K is compact, ̺(K) < ∞, and we thus have
that (16) is integrable.

It is clear in addition that Φγ,x is bounded linear and thus defines
a functional in X**.

As the image of a compact set under a continuous mapping, the set
ϑ(K) = {γ(T )Tx : T ∈ K} is w-compact. By the Krein-Shmulian the-
orem [8, V.6.4], the norm closure of its convex hull, co {γ(T )Tx : T ∈
K} =: A is w-compact. We will now show that Φγ,x is an element of
the canonical embedding of A in X**, denoted κA. Since the canonical
embedding κ : X → X** is continuous with respect to the w-topology
on X and w*-topology on X**, which is easy to confirm, it follows that
κA is w*-compact and thus w*-closed. Therefore to show that Φγ,x
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34 1. SPLITTING THEOREM OF JACOBS-DELEEUW-GLICKSBERG

is an element of κA, it suffices to show that any w*-neighbourhood of
Φγ,x contains an element of κA.

Let W be a w*-neighbourhood of Φγ,x. It follows that there are
h1, ..., hm ∈ X* and an ǫ > 0 such that

Φγ,x ∈ V := VΦγ,x,h1,...,hm,ǫ ⊆ W

where

VΦγ,x,h1,...,hm,ǫ

= {ξ ∈ X** : |ξ(hi)− Φγ,x(hi)| < ǫ , i = 1, ...,m }

= {ξ ∈ X** : |ξ(hi)−
∫

K

〈hi, γ(T )Tx〉d̺(T )| < ǫ , i = 1, ...,m }

We will now proceed to define, though a measure theoretic construc-
tion, a vector z ∈ A such that ẑ ≡ κ(z) : X* → C : h 7→ 〈h, z〉 is an
element in V .

Let us use the notation Θi(T ) = 〈hi, γ(T )Tx〉. So, as shown above,
for all i = 1, ..,m, Θi : K → C is w-continuous on K and bounded
with, say, |Θi(K)| < Mi < ∞. Let M = maxi Mi. Define

Wn,i,p,q = Θ−1i

((
M

n
p,

M

n
(p+ 1)

]
×
(
M

n
q,

M

n
(q + 1)

])

It is easy to see that, for all i = 1, ...,m and n ∈ N, Wn,i,p,q for p, q =
−n, ..., n−1 defines a measurable partition of K. The partition Wn,i,p,q

for p, q = −n, ..., n−1 is relative to hi only. However, for any n ∈ N, we
would like a common partition relative to all hi. Therefore we consider,
for each n ∈ N, the common refinement of these partitions. So, for a
given n we consider all intersections of the form

m⋂

i=1

Wn,i,pi,qi

where p1, ..., pm, q1, ..., qm ∈ {−n, ..., n−1}. The collection of all nonempty
intersections of this form now forms a new partition of K which we de-
note by

Vn,1, ..., Vn,rn

for some rn ∈ N, the number of nonempty intersections. Using this
partition, we define a simple function by first taking, for all n ∈ N and
j ∈ {1, ..., rn}, Tn,j to be any element of Vn,j. Then, for each i = 1, ...,m
and n ∈ N we define a simple function K → C as follows:

Θi,n =
rn∑

j=1

χ
Vn,j

Θi(Tn,j)

It can now be shown that, for each i = 1, ...,m, Θi,n(T ) −→ Θi(T )
for all T ∈ K. To see why, consider any R ∈ K, i ∈ {1, ...,m} and
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2. THE SPLITTING THEOREM 35

ǫ > 0. Let k ∈ N be a number such that M
k

< ǫ√
2
. Now, consider

any n ≥ k and the partition Vn,1, ..., Vn,rn of K. Hence R ∈ Vn,j for
some j ∈ {1, ..., rn}, so that by the definition of Vn,j it follows, for any
T ∈ Vn,j, that

|Θi(T )−Θi(R)| ≤

√(
M

n

)2

+

(
M

n

)2

=
√
2
M

n
< ǫ

In particular, for Tn,j ∈ Vn,j,

|Θi,n(R)−Θi(R)| = |Θi(Tn,j)−Θi(R)| < ǫ

holds for our arbitrary choice in n ≥ k. Thus limn Θi,n(R) = Θi(R) =
〈hj, γ(R)Rx〉.

For all i ∈ {1, ...,m}, the fact that |Θi(K)| < M < ∞ clearly
implies that Θi,n is “dominated” by the measurable L1(K) function
with constant valueM overK. Consequently, by Lebesgue’s dominated
convergence theorem for complex measurable functions [26, 1.34]

(17)

∫

K

Θi,n(T )d̺(T )
n−→
∫

K

〈hi, γ(T )Tx〉d̺(T )

However, by the definition of Θi,n,
∫

K

Θi,n(T )d̺(T ) =
rn∑

j=1

̺(Vn,j)Θi(Tn,j)

=
rn∑

j=1

̺(Vn,j)〈hi, γ(Tn,j)Tn,jx〉

= 〈hi,Sn〉
where Sn =

∑rn
j=1 ̺(Vn,j)γ(Tn,j)Tn,jx. Importantly, Sn ∈ A for all

n ∈ N since ̺(K) = 1 and the sets Vn,j form a partition of K.
Let us now again consider the w*-neighbourhood V . By (17), for

every i ∈ {1, ...,m}, there is an ni ∈ N such that |
∫
K
Θi,n(T )̺(dT ) −∫

K
〈hi, γ(T )Tx〉̺(dT )| < ǫ for all n ≥ ni, or in other words, such that

|〈hi,Sni
〉 − Φγ,x(hi)| < ǫ

That is, in terms of the canonical mapping κ : K → X**,

|κ(Sni
)(hi)− Φγ,x(hi)〉| < ǫ

Thus, if n′ = maxi ni then it is clear that κ(Sn′) ∈ V ⊆ W . As W
was arbitrary and κ(Sn′) ∈ κA and since w*-closed we thus have that
Φγ,x ∈ κA for our arbitrary choice in γ ∈ Γ and x ∈ X.

Since Φγ,x ∈ κA there is, for each x ∈ X, a necessarily unique
element zγ,x ∈ A such that Φγ,x(h) = 〈h, zγ,x〉 for all h ∈ X*. We can
now, for all γ ∈ Γ define the operator

Tγ : X → X : x 7→ zγ,x
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36 1. SPLITTING THEOREM OF JACOBS-DELEEUW-GLICKSBERG

Thus, for any h ∈ X*

〈h, Tγx〉 =
∫

K

〈h, γ(T )Tx〉d̺(T ).

We will now show that the range of this operator consists only of eigen-
vectors with unimodular eigenvalues. Consider any R ∈ K. Then, for
any x ∈ X, h ∈ X* it follows by the invariance of ̺ that

〈h,RTγx〉 = 〈R*h, Tγx〉

=

∫

K

〈R*h, γ(T )Tx〉d̺(T )

=

∫

K

〈h, γ(R)γ(R)γ(T )RTx〉d̺(T )

= γ(R)

∫

K

〈h, γ(RT )RTx〉d̺(T )

= γ(R)

∫

K

〈h, γ(T )Tx〉d̺(T )

= γ(R)〈h, Tγx〉
= 〈h, γ(R)Tγx〉.

Thus, for every x ∈ X, RTγx = γ(R)Tγx, or simply,

(18) RTγ = γ(R)Tγ ∀ R ∈ K.

In particular, for the unit Q ∈ K, γ(Q) = 1 and therefore QTγ = Tγ.

Now consider any S ∈ S . Since SQ ∈ K we may apply (18) to find
that

(19) STγ = S(QTγ) = (SQ)Tγ = γ(SQ)Tγ ∀ S ∈ S .

Therefore S(Tγx) = γ(SQ)Tγx for all x ∈ X, which thus reveals that

TγX consists of eigenvectors of S with unimodular eigenvalues.
To conclude the proof we will now show that Xrev is contained in

the space U , the norm-closure, which is contained in the w-closure, of
the span of the spaces TγX,γ ∈ Γ. Suppose we consider some nonzero
z ∈ Xrev. If 〈h, z〉 = 0 for all those h ∈ X* that vanish on U then
we must have that z ∈ U . This is a consequence of the Hahn-Banach
theorem [16, Corollary 1.2.13] for if z 6∈ U then there has to be a
h′ ∈ X* that vanishes on U but is nonzero at z, which is a contradiction.

Consider any h ∈ X* that vanishes on U and any element Qx ∈
QX = Xrev. We wish to show that 〈h,Qx〉 = 0 so let us assume that
〈h,Qx〉 6= 0 and attempt to obtain a contradiction. We know that,
since h vanishes on U ,

(20)

∫

K

〈h, γ(T )Tx〉d̺(T ) = 〈h, Tγx〉 = 0 ∀ γ ∈ Γ.

We will now show that 〈h,Qx〉 6= 0 necessitates the existence of a
character γ ∈ Γ for which the integral in (20) is nonzero. As Z :
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2. THE SPLITTING THEOREM 37

K → C : T 7→ 〈h, Tx〉 is wo-continuous and 〈h,Qx〉 6= 0, there is a wo-
neighbourhood F ofQ such that either 〈h, Tx〉 > 0 or 〈h, Tx〉 < 0 for all
T ∈ F . Since the collection of all translations RF ,R ∈ K forms a wo-
open covering of K which is wo-compact, there is a finite subcollection
of translations R1F, ..., RnF that covers K. Hence, as ̺(K) = 1 and
̺(RiF ) = ̺(F ) for all i, ̺(F ) > 0. Therefore

∫
K
χ

F
〈h, Tx〉d̺(T ) 6= 0.

However, as the characters γ ∈ Γ of K form an orthonormal basis
for L2(K, ̺) (see [9, XI.1.6] and [14, Prop 4.3]), there is a sequence
Sn =

∑mn

i=1 an,iγn,i, with an,i ∈ C, in span Γ such that Sn −→ χF in
L2(K, ̺). Therefore

〈Sn,Z 〉L2 −→ 〈χ
F
,Z 〉L2 ,

in other words
n∑

i=1

ai

∫

K

〈h, γi(T )Tx〉d̺(T ) −→
∫

K

χ
F
〈h, Tx〉d̺(T ) 6= 0 ,

from which we deduce the existence of a character γ such that

〈h, Tγx〉 =
∫

K

〈h, γj(T )Tx〉d̺(T ) 6= 0 ,

which contradicts (20). Thus 〈h,Qx〉 = 0 and as h ∈ X* was an
arbitrary functional vanishing on U , Qx ∈ U . The result therefore
follows since Qx ∈ Xrev was arbitrary, and U is clearly contained in
Xuds. �

Remarks 2.14. There are a couple of important remarks to be
made regarding this proof, all relevant to the proposition to follow. To
that end we continue to use the symbols and definitions used in the
proof.

Although it was not needed in the above proof, for the proposition
to follow it will be required to know that Tγ ∈ L (X), for all γ ∈ Γ.
This can easily be shown. Since 〈h, Tγx〉 =

∫
K
〈h, γ(T )Tx〉̺(dT ), it is

clear that, for any c1, c2 ∈ C and x1, x2 ∈ X

〈h, Tγ(c1x1 + c2x2)〉 = 〈h, c1Tγx1 + c2Tγx2〉
for all h ∈ X*. Thus Tγ(c1x1 + c2x2) = c1Tγx1 + c2Tγx2 and we have
that Tγ is linear for all γ ∈ Γ.

Let x ∈ X be arbitrary and let h ∈ X* be a functional, obtained
with the Hahn-Banach theorem, such that 〈h, Tγx〉 = ‖Tγx‖ and ‖h‖ =
1. It follows that

‖Tγx‖ = |〈h, Tγx〉| =
∣∣∣∣
∫

K

〈h, γ(T )Tx〉̺(dT )
∣∣∣∣

≤ M‖x‖
where M = sup{‖T‖ : T ∈ K} < ∞ since |〈h, γ(T )Tx〉| ≤ M‖x‖.
Thus, for all γ ∈ Γ, Tγ ∈ L (X).

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



38 1. SPLITTING THEOREM OF JACOBS-DELEEUW-GLICKSBERG

Consider any R ∈ K. Similar to how (18) was derived, it follows
for any x ∈ X, h ∈ X* that

〈h, TγRx〉 = γ(R)

∫

K

〈h, γ(TR)TRx〉d̺(T )

= γ(R)

∫

K

〈h, γ(T )Tx〉d̺(T )

= 〈h, γ(R)Tγx〉.
Thus, since x ∈ X, h ∈ X* and R ∈ K was arbitrary, it follows that

(21) TγR = γ(R)Tγ.

In Theorem 2.13 we established an equivalent characterization of
Xrev, namely Xuds. In the following proposition we consider Xfl and
discover that its elements are exactly those that are mapped to zero
by the eigenvectors of S * in X* with unimodular eigenvalues. Take
note that, in the proof, we will continue working with the operators Tγ

and character group Γ introduced in the proof of Theorem 2.13 and in
remarks 2.14.

Proposition 2.15. If S is an Abelian weakly almost periodic semi-
group in L (X), then x ∈ X is a flight vector if and only if 〈h, x〉 = 0
for all eigenvectors h ∈ X* of S * having unimodular eigenvalues.

Proof. Let x ∈ Xfl be arbitrary and consider any eigenvector
h ∈ X* of S * with unimodular eigenvalues λ : S * → S1. By definition
there is a T ∈ S such that Tx = 0. Let (Tα)α∈Λ be a net in S such
that wo-lim Tα = T . By Theorem 1.3,

〈h, Tαx〉 −→ 〈h, Tx〉 = 0

and as h is an eigenvector of S *, 〈h, Tαx〉 = 〈T *
αh, x〉 = λ(T *

α)〈h, x〉 so
that we have

λ(T *
α)〈h, x〉 −→ 0.

Thus, as |λ(Tα)| = 1 for all α ∈ Λ, 〈h, x〉 = 0 follows.

Conversely, consider any x ∈ X such that 〈h, x〉 = 0 for all eigen-
vectors h ∈ X* of S * with unimodular eigenvalues. By Theorem 2.8,
x = xrev + xfl, so to show that x ∈ Xfl it will suffice to show that
xrev = 0. By the same Theorem xfl = z − Qz for some z ∈ X. Thus,
for any γ ∈ Γ, Tγxfl = Tγz − TγQz = Tγz − Tγz = 0 by (21), since
γ(Q) = 1, so we have that

(22) Tγx = Tγxrev ∀ γ ∈ Γ.

By Theorem 2.8, Xrev = QX, and therefore Qxrev = xrev since Q
2 = Q.

We saw in the final part of the proof of Theorem 2.13 that if

(23) 〈h, xrev〉 = 〈h,Qxrev〉 6= 0 for some functional h ∈ X*
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2. THE SPLITTING THEOREM 39

then

(24) 〈h, Tγx〉 = 〈h, Tγxrev〉 6= 0 for some character . γ ∈ Γ

Note that the negation of (24), implies the negation of (23) which is
that xrev = 0. To establish the negation of (24) we first consider any
γ ∈ Γ, x ∈ X and h ∈ X*. Then it follows from (21), that for any
R ∈ S ,

〈R*T *
γh, x〉 = 〈h, TγRx〉

= 〈h, γ(R)Tγx〉
= 〈γ(R)T *

γh, x〉.

Thus R*T *
γh = γ(R)T *

γh, or in other words, T *
γh is either zero or an

eigenvector of S * = {T * : T ∈ S } with unimodular eigenvalues.
Therefore 〈h, Tλx〉 = 〈T *

λh, x〉 = 0 as required. �

We can now prove the final result in this chapter which, as men-
tioned at the beginning of the chapter, will be a modified version of
[19, Theorem 4.7]. To that end we first define what we mean by an
invariant mean and by a function with zero average. An invariant mean
is defined prior to [19, Theorem 4.7] but we will be using a different
definition. [19] defines it as a kind of linear functional on the space of
all bounded complex valued functions g on S . However in Chapter
2, we will have an interest in defining an invariant mean in terms of
an integral, and so it will not be defined for all complex functions. In
other words, [19, Theorem 4.7] is too general for our intended purpose.

Definition 2.16. For any S ⊆ L (X) and function g : S → C,
we say that g has zero average if, for any ǫ > 0 there are real values
a1, ..., an with

∑n

i=1 ai = 1 and operators J1, ..., Jn ∈ S such that

n∑

i=1

aig(TJi) < ǫ ∀ T ∈ S

As a matter of convenience in the definition to follow, for any R ∈
L (X), we denote by R the composite mapping

R : L (X) → L (X) : T 7→ T ◦R ≡ TR.

Definition 2.17. If S ⊆ L (X), then an invariant mean on G ,
a space of bounded complex valued functions S → C containing the
constant function 1 : G → C : g 7→ 1, is a linear functional L : G → C

such that

g ∈ G , g ≥ 0 ⇒ L(g) ≥ 0 ,

L(1) = 1 ,

L(g ◦ U) = L(g) ∀ g ∈ G , U ∈ S .
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40 1. SPLITTING THEOREM OF JACOBS-DELEEUW-GLICKSBERG

Theorem 2.18. Let S be an Abelian weakly almost periodic semi-
group in L (X), x ∈ X and L an invariant mean on a subspace G ′

of

G = span {gx,h, 1 : x ∈ X, h ∈ X*}
where gx,h : S → C : T 7→ |〈h, Tx〉|. Assume that G ′ contains all
g ∈ G with zero average, and that the Banach space X(x) generated
by S x is norm-separable. Then the following are equivalent, for any
x ∈ X:

(a) x ∈ Xfl

(b) there is a sequence (Tn) in S such that w-lim Tnx = 0

(c) for every h ∈ X* we have gx,h ∈ G
′ and L(gx,h) = 0

Proof. (a) ⇒ (b) Consider any nonzero x ∈ Xfl. Hence there is

some T ∈ S such that Tx = 0. In the event that Tx ∈ S x, (b)
follows trivially. So suppose that Tx 6∈ S x. To find a sequence (Tn)
in S such that Tnx converges weakly to zero, we will prove that 0 is
a w-limit point of S x in the w-topology and that the w-topology on
co(S x) ⊇ S x is given by a metric. Once we have the metric it will
be a simple matter to find the sequence.
To show that 0 ∈ X is a w-limit point of S x, let W be a w-neighbourhood
of 0. It follows that there are h1, ..., hn ∈ X* and an ǫ > 0 such that

0 ∈ V := V0,h1,...,hn,ǫ = {z ∈ X : |〈hi, z〉| < ǫ ∀ i = 1, ..., n} ⊆ W.

The wo-base element

U := UT,x,h1,...,hn,ǫ = {R ∈ L (X) : |〈hi, Rx〉−〈hi, Tx〉| < ǫ ∀ i = 1, ..., n}
is a wo-neighbourhood of T . Thus, since T ∈ S := wo-cl (S ), there is
an S ∈ S such that S ∈ U , i.e. such that |〈hi, Sx〉 − 〈hi, Tx〉| < ǫ for
all i = 1, ..., n. In other words Sx ∈ V ⊆ W since Tx = 0. If Sx = 0
then (b) follows trivially. If Sx 6= 0 then, since W was arbitrary, we
have that 0 is a w-limit point of S x.

co (S x) is convex and therefore so is its norm closure co (S x).
By [8, V.3.13], co (S x) is w-closed. Since S x is w-compact, co (S x)
is w-compact by the Krein-Smulian Theorem [8, V.6.4]. Thus, as
co (S x) ⊆ co (S x), it follows that co (S x) is w-compact. At this
point it is important to understand that the w-topology of the Banach
space X(x) is the subspace topology of the w-topology of X on X(x).
This is a consequence of the Hahn Banach theorem in that g ∈ X(x)*
if and only if g = h|X(x) for some h ∈ X*. Hence, for any y ∈ X(x)

{z ∈ X(x) : |〈g, z〉−〈g, y〉| < ǫ} = X(x)∩{z ∈ X : |〈h, z〉−〈h, y〉| < ǫ}
which shows us how the weak topology of X(x) and the weak topology
of X on X(x) share a common basis. Thus, since co (S x) ⊆ X(x),
co (S x) is also compact in the w-topology of X(x). It now follows
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2. THE SPLITTING THEOREM 41

that the subspace topology of the w-topology of X(x) on co (S x) is
metric by [8, V6.3], since X(x) is separable.

Now, since 0 is a limit point of S x in the w-topology of X, and
S x ⊆ co (S x), 0 is a limit point of S x in the subspace topology of
the w-topology of X on co (S x). Hence, by the preceding observa-
tion, 0 is therefore a limit point of S x in the subspace topology of
the w-topology of X(x) on co (S x). Since the latter topology, say T,
is metric, there is a sequence (Tnx) in S x that converges to 0 in T.
Since T is, again by the above observation, the same as the subspace
topology of the w-topology of X on co (S x), it is easy to see that
w-lim Tnx = 0, i.e. that (Tnx) converges to 0 in the w-topology of X.

(b) ⇒ (c) By the Banach-Alaoglu Theorem, the closed unit ball
B ⊆ X* is w*-compact. For each n ∈ N define a function fn ∈ C(B)
as follows

fn : B → C : h 7→ |〈h, Tnx〉|.
As the composition of the continuous mapping C → C : a 7→ |a|, and
the clearly w*-continuous mapping X* → C : h 7→ 〈h, Tnx〉 restricted
to B, fn ∈ C(B) is well defined. By recalling from Lemma 2.5 that S is
norm bounded, it follows that for each n ∈ N, fn is bounded by M‖x‖,
where M = sup{‖T‖ : T ∈ S }. It also follows, since w-lim Tnx = 0
and each h ∈ X* is w-continuous, that fn(h) = 〈h, Tnx〉 −→ 0 for all
h ∈ B. That is, the sequence (fn) converges pointwise to 0 ∈ C(B).
We will show that these results are sufficient to show that fn converges
weakly to 0 ∈ C(B).

Consider any positive functional Λ ∈ C(B)*. Since the w*-topology
on X* is Hausdorff and B is w*-compact, we may apply The Riesz
Representation Theorem [26, 2.14 Theorem] to Λ. Thus, for all g ∈
C(B), Λ(g) =

∫
B
g dµ for some finite positive measure µ on B. Hence,

M‖x‖1 ∈ L1(µ) with 1 ∈ C(B) the constant function with value 1.
As the sequence (fn) is uniformly bounded by ‖x‖M1 and converges
pointwise to 0 ∈ C(B), it therefore follows by Lebesgue’s Dominated
Convergence Theorem for complex valued functions [26, 1.34], that

lim
n→∞

Λ(fn) = lim
n→∞

∫

B

fn dµ =

∫

B

0 dµ = 0.

Thus, for an arbitrary ǫ > 0, there is an N ∈ N such that |Λ(fn)| < ǫ
for all n ≥ N .

More generally, if Λ ∈ C(B)* is such that Λ =
∑m

k=1 bkΛk where
each Λk ∈ C(B)* is positive, then for each k = 1, ..,m there is an Nk

such that |Λk(fn)| < ǫ
|bk|m so that

|Λ(fn)| = |
m∑

k=1

bkΛk(fn)| ≤
m∑

k=1

|bk||Λk(fn)| < ǫ.
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42 1. SPLITTING THEOREM OF JACOBS-DELEEUW-GLICKSBERG

Thus in this case Λ(fn) −→ 0 as well. If Λ ∈ C(B)* is completely
arbitrary, then Λ is the linear combination of at most four positive
functionals in C(B)*, by [16, Corollary 4.2.4], so it still follows that
Λ(fn) −→ 0. We conclude therefore, that fn converges to 0 in the weak
topology of C(B). This will be sufficient to show that gx,h ∈ G ′ for all
h ∈ X*.

Fix an arbitrary nonzero h ∈ X*. It now follows by Mazur’s The-
orem [29, Theorem 2 p. 120] that, for any ǫ > 0, there is a convex
combination

∑m

i=1 aifni
such that

∥∥∥∥∥

m∑

i=1

aifni

∥∥∥∥∥
C(B)

=

∥∥∥∥∥

m∑

i=1

aifni

∥∥∥∥∥
∞

<
ǫ

‖h‖

Therefore
∑m

i=1 ai|〈h′, Tni
x〉| < ǫ

‖h‖ for all h
′ ∈ B, hence, for any T ∈ S

(
m∑

i=1

aigx,h ◦ T ni
)(T ) =

m∑

i=1

aigx,h(TTni
)

=
m∑

i=1

ai|〈h, TTni
x〉|

=
m∑

i=1

ai(‖T *h‖+ 1)

∣∣∣∣
〈

T *h

(‖T *h‖+ 1)
, Tni

x

〉∣∣∣∣

= (‖T *h‖+ 1)
m∑

i=1

ai

∣∣∣∣
〈

T *h

(‖T *h‖+ 1)
, Tni

x

〉∣∣∣∣

< (‖T *h‖+ 1)
ǫ

‖h‖(25)

≤ ǫM +
ǫ

‖h‖(26)

where (25) follows from the fact that T *h
(‖T *h‖+1)

∈ B, and (26) follows

from the fact that if ‖T‖ ≤ M , then ‖T *‖ ≤ M . As ǫ > 0 was arbitrary
this shows that gx,h has zero average and is therefore an element of G ′.
Since L is now known to be defined at gx,h it follows from the invariance
of L under translations by Tni

that

L(gx,h) =
∑

aiL(gx,h)

=
∑

aiL(gx,h ◦ T ni
)

= L(
∑

aigx,h ◦ T ni
)

≤ ǫM(27)

The last inequality follows from the observation that

ǫM ≥ (
∑

αigx,h ◦ T ni
)(T ) =: h′(T )
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2. THE SPLITTING THEOREM 43

which shows that h′ ≤ ǫM1 and therefore that ǫM1 − h′ ≥ 0. Thus,
L(ǫM1 − h′) = ǫM − L(h′) ≥ 0, which yields (27). As ǫ > 0 was
arbitrary, (c) follows for our arbitrary choice of a nonzero h ∈ X*. If
h = 0 then gx,h = 0 and (c) follows trivially since L is linear.

(c) ⇒ (a) If h ∈ X* is an eigenvector of S * with unimodular eigen-
values then gx,h(T ) = |〈h, Tx〉| = |〈T *h, x〉| = 〈h, x〉 for all T ∈ S . In
other words gx,h = 〈h, x〉1 and therefore, by (c) and the definition of an
invariant mean, 〈h, x〉 = L(gx,h) = 0. Hence (a) follows from Proposi-
tion 2.15. �
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CHAPTER 2

C*-dynamical systems

The ergodic properties of noncommutative C*-dynamical systems,
and in particular W*-dynamical systems in terms of von Neumann
algebras, remain a relevant and active research field. For some of the
more recent advances in this field, the reader is referred to [3],[24] and
[1].

In this chapter C*-dynamical systems are defined as well as several
ergodic properties that such systems can possess. The second half of
the chapter consists of the derivation of equivalent Hilbert space and
spectral characterizations of the ergodic properties. It is in some of
these spectral characterizations that the theory from Chapter 1 will
be used. The chapter concludes with an investigation into the ergodic
properties’ interrelationships. In particular, we will find which combi-
nations of properties are impossible.

1. Basic definitions and concepts

The following definition shows how a dynamical system can be de-
fined on a C*-algebra, given a state on the C*-algebra, and a group of
∗-automorphisms under which the state is invariant. Beyond the def-
inition we will show how such systems can be represented on Hilbert
space level by a group of unitary operators on a Hilbert space H, called
the GNS representation. The systems defined in the following defini-
tion are quite abstract, however this definition provides a convenient
setting for the GNS representation. Once the GNS representation is
in place, we will identify a subset of such systems on which to develop
our ergodic ideas.

Definition 1.1. Let ω be a state on a unital C*-algebra A, i.e.
ω : A → C is linear and

ω(A) ≥ 0 for all A ≥ 0

ω(1) = 1

Let G be a group and let τ : G → Aut (A) : g 7→ τg be a group
homomorphism, i.e. a mapping into the group of ∗-automorphisms of
A that satisfies

τg ◦ τh = τgh , ∀ g, h ∈ G

If ω is τ -invariant, i.e. if

ω ◦ τg = ω ∀ g ∈ G

45
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46 2. C*-DYNAMICAL SYSTEMS

then we call (A, ω, τ, G) an abstract dynamical system.

Note that, in the above definition, it follows that τ1 = id where
1 ∈ G is the unit element of G.

We now proceed towards the definition of a GNS representation
of an abstract dynamical system, which allows us to relegate much of
our study of an abstract dynamical system to a C*-algebra of bounded
linear operators on a Hilbert space H. The first step in finding a GNS
representation, is to identify an appropriate cyclic representation of
(A, ω), which we describe next.

Definition 1.2. A representation of a C*-algebra A is a pair
(H, π), where H is a complex Hilbert space and π : A → L (H) is
a ∗-homomorphism. A cyclic representation of a C*-algebra A is a
triple (H, π,Ω), where (H, π) is a representation of A and Ω ∈ H is a

cyclic vector, i.e. π(A)Ω = {π(A)Ω : A ∈ A} = H.

If we were to consider some cyclic representation (H, π,Ω) of a C*-
algebra A and define

ωΩ : A → C : A 7→ 〈Ω, π(A)Ω〉
then it is easy to see that ωΩ is a state over A, provided Ω has unit norm.
This is referred to as a vector state of the representation, in Ω. What
the Gelfand-Naimark-Segal construction (GNS construction) shows is
that every state ω over a C*-algebra A is the vector state of some cyclic
representation (H, π,Ω) of A, in Ω. Moreover, and importantly, such a
cyclic representation is unique up to unitary equivalence [4, Theorem
2.3.16]. That is if (H ′, π′,Ω′) is a another cyclic representation such
that ω is the vector state of (H ′, π′,Ω′) in Ω′ then there is a unitary
operator U ∈ L (H,H ′) satisfying

U−1π′(A)U = π(A) ∀ A ∈ A

UΩ = Ω′.

Thus, combined, these two properties give

Uπ(A)Ω = π′(A)Ω′ ∀ A ∈ A

revealing that U ∈ L (H,H ′) is necessarily uniquely determined since

π(A)Ω = H. Hence we can call (H, π,Ω) the cyclic representation
of (A, ω). That is, (H, π,Ω) is a cyclic representation of A such that
ω is the vector state of (H, π,Ω) in Ω. If we consider an abstract
dynamical system (A, ω, τ, G) and a cyclic representation (H, π,Ω) of
(A, ω), then it can easily be seen that, for all g ∈ G, (H, π ◦ τg,Ω) is
also a cyclic representation of (A, ω), since ω ◦ τg = ω. Therefore there
exists a unique unitary operator Ug ∈ L (H) such that Ugπ(A)Ω =
π ◦ τg(A)Ω for all A ∈ A [4, Corollary 2.3.17]. This is how we will
define the GNS representation of a C*-dynamical system.
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1. BASIC DEFINITIONS AND CONCEPTS 47

Definition 1.3. Let (A, ω, τ, G) be an abstract dynamical system
and let (H, π,Ω) be the cyclic representation of (A, ω). Define U : G →
L (H) : g 7→ Ug by

Ug : π(A)Ω 7→ π(τg(A))Ω ∀ A ∈ A,

(H, π,Ω, U) is called the GNS representation of the abstract dynamical
system (A, ω, τ, G), and U the GNS representation of τ .

Several important properties of the GNS representation in Defini-
tion 1.3 can immediately be derived, which constitutes the following
proposition. The GNS representation is a representation of the group
G, the ∗-automorphisms τg can be expressed in terms of the GNS rep-
resentation, and it is an important fact that the GNS representation
always has at least one nonzero fixed vector:

Proposition 1.4. Let (H, π,Ω, U) be the GNS representation of
an abstract dynamical system (A, ω, τ, G). Then

UgUh = Ugh,

Ugπ(A)U
−1
g = π(τg(A)) ∀ A ∈ A, and

UgΩ = Ω

for all g, h ∈ G.

Proof. Let g, h ∈ G and A ∈ A be arbitrary. It follows that

UgUhπ(A)Ω = Ugπ(τh(A))Ω

= π(τg ◦ τh(A))Ω
= π(τgh(A))Ω

= Ughπ(A)Ω.

Since A ∈ A was arbitrary, and π(A) = H, we have that UgUh = Ugh.
Let g ∈ G be arbitrary and consider any A,B ∈ A. Then, τg(D) =

B for some D ∈ A. It follows that

Ugπ(A)U
−1
g π(B)Ω = Ugπ(A)U

−1
g π(τg(D))Ω

= Ugπ(A)π(D)Ω

= Ugπ(AD)Ω

= π(τg(A))π(B)Ω.

Thus Ugπ(A)U
−1
g = π(τg(A)) on π(A)Ω, and therefore on π(A)Ω = H.

For the third assertion, we have

UgΩ = Ugπ(1)Ω = π(τg(1))Ω = π(1)Ω = Ω

for all g ∈ G. �

We wish to define and study various ergodic properties on non-
commutative dynamical systems, such as abstract dynamical systems.
However, as [4, p. 400] highlights, apart from a few general results,
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48 2. C*-DYNAMICAL SYSTEMS

it would be difficult to develop and elaborate on the theory without
further assumptions on the structure of the group G and the continu-
ity of its action τ : G 7→ τg. In Definition 1.6, we state these further
assumptions, and define abstract dynamical systems for which these
assumptions hold, as C*-dynamical systems. These systems will be the
object of our subsequent study. However, we first include a preliminary
definition

Definition 1.5. A locally compact group G is called amenable if
it possesses a Følner sequence (Λn), i.e. a sequence of compact sets
(Λn) ⊆ G, with µ(Λn) > 0, such that

lim
n→∞

µ(Λn∆(Λng))

µ(Λn)
= 0 ∀ g ∈ G

where µ is a right Haar measure on G and ∆ denotes the symmetric
difference.

What we are stating here as a definition of amenability is actually a
derived result from amenable group theory, for locally compact groups.
Amenability for a locally compact group is defined in terms of the
existence of a certain invariant mean, hence the term ameanable (see
[25, p. 1]). It can then be proven that amenability on locally compact
groups, under certain conditions, is equivalent to the existence of such
Følner sequences. However, we wish to avoid delving into amenability,
and the derivation of the Følner conditions, as our only interest at this
stage is in groups that possess such sequences. We opt to use the term
amenable for such groups, as in Definition 1.5, simply because it is
more convenient than to say “group with a Følner sequence”.

For the locally compact groups that we will encounter in our exam-
ples, which will either be Z,R or R2, it will not be necessary to go to
any great lengths to prove amenability. Some familiarity with these el-
ementary groups will be sufficient to identify a Følner sequence, and so
when encountered for the first time we will deem it sufficient to supply
an example of a Følner sequence without any additional motivation.

Definition 1.6. A C*-dynamical system is an abstract dynamical
system (A, ω, τ, G) where

(i) G is a separable Abelian amenable group.
(ii) The GNS representation U : G 7→ U(H) : g 7→ Ug of τ is

continuous in the strong operator topology, where U(H) is the
group of all unitary operators in L (H).

Recall that the strong operator topology (so-topology) on L (H) is
the locally convex topology generated by the family of seminorms

px : L (H) → R+ : T 7→ ‖Tx‖
for all x ∈ H. So so-continuity of U is equivalent to g 7→ Ugx being
continuous in the norm of H, for all x ∈ H. We can immediately
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1. BASIC DEFINITIONS AND CONCEPTS 49

establish two important properties of C*-dynamical systems. The first
will be needed when we apply Theorem 2.18 in section 2.4.

Proposition 1.7. Let (A, ω, τ, G) be a C*-dynamical system with
GNS representation (H, π,Ω, U). Then the Hilbert space spanned by
the orbit {Ugx : g ∈ G} is separable in H, for all x ∈ X.

Proof. Consider any x ∈ X and denote by H(X) the Hilbert
space spanned by the orbits {Ugx : g ∈ G}. Since G is separable
it has a countable dense subset Γ ⊆ G. Let g ∈ G and ǫ > 0 be
arbitrary. Suppose now that z ∈ span {Ugx : g ∈ G} is arbitrary, say
z =

∑n

k=1 akUgkx, with ak 6= 0. By the strong continuity of U , for
every k = 1, ..., n there is a hk ∈ Γ such that ‖Uhk

x − Ugkx‖ < ǫ
n|ak| .

Let y =
∑n

k=1 akUhk
x. It follows by the triangle inequality that

‖y − z‖ < ǫ

Let F = {∑n

j=1 bjUhj
x : hj ∈ Γ, bj ∈ Q+ iQ, n ∈ N} ⊆ span {Uhx :

h ∈ Γ}. Then F is countable, and it is easy to see that F is dense
in span {Uhx : h ∈ Γ}. Now, let z ∈ H(x) and ǫ > 0 be arbitrary.
It follows by the definition of H(x) and the preceding arguments that
there is a z′ ∈ span {Ugx : g ∈ G} such that ‖z − z′‖ < ǫ

3
, a y′ ∈

span {Uhx : h ∈ Γ} such that ‖z′ − y′‖ < ǫ
3
and a y ∈ F such that

‖y′ − y‖ < ǫ
3
. We thus have that

‖z − y‖ ≤ ‖z − z′‖+ ‖z′ − y′‖+ ‖y′ − y‖ < ǫ

so that since z ∈ H and ǫ > 0 was arbitrary, F is dense in H. As F is
countable, the separability of H follows. �

The second property is relevant for the definition of ergodic prop-
erties in the next section.

Proposition 1.8. Let (A, ω, τ, G) be a C*-dynamical system. Then
the mapping

G 7→ C : g 7→ ω(Aτg(B))

is continuous for all A,B ∈ A.

Proof. Let (H, π,Ω, U) be the GNS representation of (A, ω, τ, G).
Let (gα) be an arbitrary convergent net in G, with limα gα = g for some
g ∈ G. Since G → L (H) : g 7→ Ug is so-continuous, limα Ugαx = Ugx
for all x ∈ H, and hence

(28) lim
α
〈π(A*)Ω, Ugαπ(B)Ω〉 = 〈π(A*)Ω, Ugπ(B)Ω〉

for any A,B ∈ A, by the continuity of the inner product. Since
〈π(A*)Ω, Uhπ(B)Ω〉 = 〈Ω, π(A)π(τh(B))Ω〉 = ω(Aτh(B)), (28) becomes

lim
α

ω(Aτgα(B)) = ω(Aτg(B)).

Thus G 7→ C : g 7→ ω(Aτg(B)) is continuous. �
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50 2. C*-DYNAMICAL SYSTEMS

Remarks 1.9. As a final note before we proceed with the definition
of the ergodic properties, it should be noted that the properties in Def-
inition 1.6 are trivially satisfied when G = Z. In such a case, i.e. when
we have a Z action, we will opt to abuse the notation somewhat: The τ
in (A, ω, τ,Z) will not denote a homomorphism Z → Aut (A), but an el-
ement of Aut (A) itself, with the homomorphism then given by n → τn.
Similarly, if (H, π,Ω, U) is the GNS representation of (A, ω, τ,Z), then
U will denote the unitary operator H → H : π(A)Ω 7→ π(τ(A))Ω, in-
stead of a homomorphism of Z into the collection of unitary operators
in L (H). The homomorphism is then given by n 7→ Un.

2. Ergodic properties

In this section we will define what is meant by an ergodic C*-
dynamical system, a weak-mixing C*-dynamical system, a strong-mixing
C*-dynamical system and a compact C*-dynamical system. These are
the ergodic properties that will occupy us for the remainder of the dis-
sertation. For the remainder of the chapter, µ will be used to denote a
Haar measure on the Abelian locally compact group G in question.

Definition 2.1. A C*-dynamical system (A, ω, τ, G) is said to be
ergodic if

lim
n→∞

1

µ(Λn)

∫

Λn

ω(Aτg(B)) dµ(g) = ω(A)ω(B)

for all A,B ∈ A and some Følner-sequence (Λn) in G.

Definition 2.2. A C*-dynamical system (A, ω, τ, G) is said to be
weakly mixing if

lim
n→∞

1

µ(Λn)

∫

Λn

|ω(Aτg(B))− ω(A)ω(B)| dµ(g) = 0

for all A,B ∈ A and some Følner-sequence (Λn) in G.

Note that the integrals in the definitions above are well defined by
Proposition 1.8 and the fact that Λn is compact. It will be seen in
section 2.4 that the above definitions are in fact independent of the
Følner sequences used.

The following ergodic property will only be defined for actions on
the group Z, since this will be sufficient for our later purposes.

Definition 2.3. If G = Z then a C*-dynamical system (A, ω, τ, G)
is said to be strongly mixing if

lim
n→∞

ω(Aτn(B)) = ω(A)ω(B)

for all A,B ∈ A.
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2. ERGODIC PROPERTIES 51

The final ergodic property that we will consider is defined in terms
of the concept of total boundedness. A set B in a pseudo metric space
(X, d) is said to be totally bounded if, for all ǫ > 0, there exists a finite
set Mǫ ⊆ X such that

∀ x ∈ B ∃ y ∈ Mǫ : d(x, y) < ǫ.

Definition 2.4. A C*-dynamical system (A, ω, τ, G) is said to be
compact if, for all A ∈ A, the set {τg(A) : g ∈ G} is totally bounded
in the semi normed space (A, ‖ · ‖ω) where, for all A ∈ A, ‖A‖ω :=√

ω(A*A).

It is our intention to study the interrelationship between these prop-
erties, however, we will not do this for C*-dynamical systems in gen-
eral. The reason is that C*-dynamical systems as defined, allow for
certain systems that are entirely uninteresting from an ergodic point of
view, in that all four the ergodic properties are trivially present on such
systems. We wish to identify and exclude these kind of systems from
consideration. In the following proposition we show how such triviality
can come about.

Proposition 2.5. If a C*-dynamical system (A, ω, τ, G) has a
GNS representation (H, π,Ω, U) in which H is one dimensional, then
the C*-dynamical system is ergodic, weakly mixing and compact. If
G = Z then it is also strongly mixing.

Proof. Since H is one dimensional, H = CΩ so that since π maps
into L (H) it follows, for any A ∈ A, that

π(A)Ω = cAΩ

for some uniquely determined cA ∈ C. Thus, for any A ∈ A, we have
that

ω(A) = 〈Ω, π(A)Ω〉 = cA〈Ω,Ω〉 = cA

and therefore for any A,B ∈ A that

ω(AB) = 〈Ω, π(AB)Ω〉
= 〈Ω, π(A)π(B)Ω〉
= cAcB

= ω(A)ω(B).(29)

In particular then,

(30) ω(Aτg(B)) = ω(A)ω(τg(B)) = ω(A)ω(B) ∀ g ∈ G

since ω ◦τg = ω for all g ∈ G. From (30), (A, ω, τ, G) can easily be seen
to be ergodic and immediately seen to be weakly mixing. If G = Z,
then (30) also immediately reveals the system to be strongly mixing.
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52 2. C*-DYNAMICAL SYSTEMS

Finally, consider the orbit of an arbitrary A ∈ A, {τg(A) : g ∈ G}.
As per the definition of total boundedness, let ǫ > 0 be arbitrary and
let M = {A}. Then, for all g ∈ G,

‖A− τg(A)‖2ω = ω((A− τg(A))
*(A− τg(A)))

= ω(A*A)− ω(τg(A)
*A)− ω(A*τg(A)) + ω(τg(A)

*τg(A))

= ω(A*A)− ω(τg(A
*)A)− ω(A*τg(A)) + ω(τg(A

*)τg(A))

= 0

by (29) and (30). Thus it follows immediately and trivially from the
definition of compactness that (A, ω, τ, G) is compact. �

The existence of a cyclic representation of a C*-dynamical system
allows all of the ergodic properties to be expressed in terms of the GNS
representation. This of course, is due to the fact that ω(A) can be re-
placed with 〈Ω, π(A)Ω〉. Proposition 2.5 shows that, because of this, if
the representation is trivial in that its Hilbert space H is one dimen-
sional, then the system is trivially ergodic, weak-mixing, strong-mixing
and compact. However, we do not have to look at a cyclic representa-
tion to determine whether it’s Hilbert space is one dimensional. When-
ever the state of a C*-dynamical system preserves algebraic structure
this one dimensionality manifests, and conversely:

Proposition 2.6. Let (H, π,Ω) be a cyclic representation of a C*-
dynamical system (A, ω, τ, G). Then H is one dimensional if and only if
ω : A → C is a homomorphism, i.e. if and only if ω(AB) = ω(A)ω(B)
for all A,B ∈ A.

Proof. That ω(AB) = ω(A)ω(B) for all A,B ∈ A if H is one-
dimensional, was proved in Proposition 2.5.

Conversely, suppose that ω(AB) = ω(A)ω(B) for all A,B ∈ A.
Define ω′ : A → L (C) : A 7→ ω′(A) by

ω′(A) : C → C : c 7→ ω(A)c.

ω′ is linear, and since ω(AB) = ω(A)ω(B) for all A,B ∈ A, ω′ is a

homomorphism. In addition, since ω(A*) = ω(A) for all A ∈ A by [4,
Lemma 2.3.10], it follows that ω′ is a ∗-homomorphism. It is now easy
to see that (C, ω′, 1) is a cyclic representation of (A, ω). Hence, by the
uniqueness of a cyclic representation, up to unitary equivalence, H is
necessarily one dimensional since C is one dimensional. �

Wemay therefore now define what we mean by a trivial C*-dynamical
system.

Definition 2.7. A C*-dynamical system (A, ω, τ, G) is said to be
trivial if ω is a homomorphism.

It is important to note that, by this definition, a C*-dynamical
system is trivial only with respect to its ergodic properties, which we
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3. HILBERT SPACE CHARACTERIZATION OF ERGODIC PROPERTIES 53

do not state in the definition precisely because our main objective is
the ergodic analysis of C*-dynamical systems. That is, these systems
are trivial from our point of view.

3. Hilbert space characterization of ergodic properties

For any C*-dynamical system, the existence of the GNS represen-
tation (H, π,Ω, U), allows us to completely characterize the ergodic
properties of the preceding section in terms of (H,Ω, U), i.e. purely in
Hilbert space terms.

Proposition 3.1. Consider a C*-dynamical system (A, ω, τ, G)
with GNS representation (H, π,Ω, U).

(a) For any Følner sequence (Λn) in G

(31) lim
n→∞

1

µ(Λn)

∫

Λn

ω(Aτg(B)) dµ(g) = ω(A)ω(B) ∀ A,B ∈ A

if and only if

(32) lim
n→∞

1

µ(Λn)

∫

Λn

〈x, Ugy, 〉 dµ(g) = 〈x,Ω〉〈Ω, y〉 ∀ x, y ∈ H.

(b) For any Følner sequence (Λn) in G

(33) lim
n→∞

1

µ(Λn)

∫

Λn

|ω(Aτg(B))− ω(A)ω(B)| dµ(g) ∀ A,B ∈ A

if and only if

(34) lim
n→∞

1

µ(Λn)

∫

Λn

|〈x, Ugy〉 − 〈x,Ω〉〈Ω, y〉| dµ(g) ∀ x, y ∈ H.

(c) If G = Z, then

(35) lim
n→∞

ω(Aτn(B)) = ω(A)ω(B) ∀ A,B ∈ A

if and only if

(36) lim
n→∞

〈x, Uny〉 = 〈x,Ω〉〈Ω, y〉 ∀ x, y ∈ H.

Proof. (a) Suppose (31) holds and consider any x, y ∈ H. Let ǫ >
0 be arbitrary. Since {π(A)Ω : A ∈ A} is dense inH there are sequences
(Ak), (Bk) ⊆ A such that xk := π(Ak)Ω −→ x, yk := π(Bk)Ω −→ y.
Therefore by the continuity of the inner product, and since ‖Ug‖ = 1
there is a K1 ∈ N such that |〈x, Ugy〉 − 〈xk, Ugyk〉| < ǫ

3
for all k ≥ K1
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54 2. C*-DYNAMICAL SYSTEMS

and all g ∈ G. Therefore
∣∣∣∣

1

µ(Λn)

∫

Λn

〈x, Ugy〉 dµ(g)−
1

µ(Λn)

∫

Λn

〈xk, Ugyk〉 dµ(g)
∣∣∣∣

<
1

µ(Λn)

∫

Λn

ǫ

3
dµ(g)

=
ǫ

3

for all n ∈ N and k ≥ K1. Also, as 〈xk,Ω〉 −→ 〈x,Ω〉 and 〈Ω, yk〉 −→
〈Ω, y〉, there is a K2 ∈ N such that

|〈xk,Ω〉〈Ω, yk〉 − 〈x,Ω〉〈Ω, y〉| < ǫ

3

for all k ≥ K2. Let K = max{K1, K2}. By (31) there is an N ∈ N

such that∣∣∣∣
1

µ(Λn)

∫

Λn

〈xK , UgyK〉 dµ(g)− 〈xK ,Ω〉〈Ω, yK〉
∣∣∣∣

=

∣∣∣∣
1

µ(Λn)

∫

Λn

〈π(AK)Ω, Ugπ(BK)Ω〉 dµ(g)− 〈π(AK)Ω,Ω〉〈Ω, π(BK)Ω〉
∣∣∣∣

=

∣∣∣∣
1

µ(Λn)

∫

Λn

〈Ω, π(AK)
∗π(τg(BK))Ω〉 dµ(g)− 〈Ω, π(AK)

∗Ω〉〈Ω, π(BK)Ω〉
∣∣∣∣

=

∣∣∣∣
1

µ(Λn)

∫

Λn

〈Ω, π(A∗Kτg(BK))Ω〉 dµ(g)− 〈Ω, π(A∗K)Ω〉〈Ω, π(BK)Ω〉
∣∣∣∣

=

∣∣∣∣
1

µ(Λn)

∫

Λn

ω(A∗Kτg(BK)) dµ(g)− ω(A∗K)ω(BK)

∣∣∣∣

<
ǫ

3

for all n ≥ N . It now follows that
∣∣∣∣
1

Λn

∫

Λn

〈x, Ugy〉 dµ(g)− 〈x,Ω〉〈Ω, y〉
∣∣∣∣

≤
∣∣∣∣
1

Λn

∫

Λn

〈x, Ugy〉 dµ(g)−
1

Λn

∫

Λn

〈xK , UgyK〉 dµ(g)
∣∣∣∣

+

∣∣∣∣
1

Λn

∫

Λn

〈xK , UgyK〉 dµ(g)− 〈xK ,Ω〉〈Ω, yK〉
∣∣∣∣

+ |〈xK ,Ω〉〈Ω, yK〉 − 〈x,Ω〉〈Ω, y〉|
≤ ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ

for all n ≥ N . Hence, as ǫ > 0 was arbitrary,

lim
n→∞

1

µ(Λn)

∫

Λn

〈x, Ugy, 〉 dµ(g) = 〈x,Ω〉〈Ω, y〉
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3. HILBERT SPACE CHARACTERIZATION OF ERGODIC PROPERTIES 55

and as x, y ∈ H was arbitrary (32) follows.

Conversely, suppose that (32) holds and consider any A,B ∈ A.
Set x = π(A∗)Ω and y = π(B)Ω. Then, by (32)

lim
n→∞

1

µ(Λn)

∫

Λn

〈x, Ugy, 〉 dµ(g) = 〈x,Ω〉〈Ω, y〉

lim
n→∞

1

µ(Λn)

∫

Λn

〈Ω, π(A)Ugπ(B)Ω, 〉 dµ(g) = 〈Ω, π(A)Ω〉〈Ω, π(B)Ω〉

lim
n→∞

1

µ(Λn)

∫

Λn

ω(Aτg(BK)) dµ(g) = ω(A)ω(B).

As A,B ∈ A was arbitrary, (31) follows.

(b) The proof of (33) ⇒ (34) is as for (31) ⇒ (32), except we use
the following instead:

1

µ(Λn)

∫

Λn

|〈x, Ugy〉 − 〈x,Ω〉〈Ω, y〉| dµ(g)

≤ 1

µ(Λn)

∫

Λn

|〈x, Ugy〉 − 〈xk, Ugyk〉|dµ(g)

+
1

µ(Λn)

∫

Λn

|〈xk, Ugyk〉 − 〈xk,Ω〉〈Ω, yk〉| dµ(g)

+
1

µ(Λn)

∫

Λn

|〈xk,Ω〉〈Ω, yk〉 − 〈x,Ω〉〈Ω, y〉| dµ(g)

≤ ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.

The proof of (34) ⇒ (33) is overly similar to that of (32) ⇒ (31).

(c) We do not include any technical details as, again, (c) follows by
arguments wholly similar to part (a), modified for the simpler case of
G = Z and the absence of integrals. �

To characterize compactness on the Hilbert space H of the GNS
representation we first have to understand how the GNS representa-
tion connects totally bounded orbits in the C*-algebra, with totally
bounded orbits in H, from which it will then be a simple task to derive
the characterization of compactness on H.

Proposition 3.2. Let A be a C*-algebra with state ω, and let
(H, π,Ω) be a cyclic representation of (A, ω). Then for any V ⊆ A, V
is totally bounded in (A, ‖ · ‖ω), if and only if π(V )Ω is totally bounded

in H, if and only if π(V )Ω is compact in H.
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56 2. C*-DYNAMICAL SYSTEMS

Proof. Consider any V ⊆ A and suppose that V is totally bounded
in (A, ω). Then, for any ǫ > 0 there is a finite set Mǫ ⊆ A such that,
for any A ∈ V , there is a B ∈ Mǫ such that

ǫ > ‖A− B‖ω =
√
ω((A− B)*(A− B))

=
√

〈Ω, π((A− B)*(A− B))Ω〉
= ‖π(A)Ω− π(B)Ω‖.(37)

Hence, for any x ∈ π(V )Ω, there is a y in the finite set π(Mǫ)Ω such
that ‖x − y‖ < ǫ. As ǫ > 0 was arbitrary, it follows that π(V )Ω is
totally bounded in H.

Conversely, consider any V ⊆ A and suppose that π(V )Ω is to-
tally bounded in H. Then, for any ǫ > 0 there is a finite set MH =
{x1, ..., xn} ⊆ H such that, for any A ∈ V , there is a y ∈ M such that

‖π(A)Ω− y‖ <
ǫ

2
.(38)

We know that π(A)Ω is dense inH so we can find a setMA = {B1, ..., Bn}
such that ‖xi − π(Bi)Ω‖ < ǫ

2
. Hence, if y = xj in (38) for some

j = 1, ..., n, then

‖π(A)Ω− π(Bj)Ω‖ ≤ ‖π(A)Ω− xj‖+ ‖xj − π(Bj)Ω‖
<

ǫ

2
+

ǫ

2
= ǫ

or, by (37), ‖A − Bj‖ω < ǫ. As ǫ > 0 was arbitrary, it follows that V
is totally bounded in (A, ‖ · ‖ω).

The final “if and only if” follows from the fact that any set in
a complete metric space is totally bounded if and only if the set is
conditionally compact, by [20, Lemma 8.2-2]. �

Comparing Proposition 3.2 to Definition 2.4 we immediately obtain
the following corollary:

Corollary 3.3. Let (A, ω, τ, G) be a C*-dynamical system with
GNS representation (H, π,Ω, U). Then (A, ω, τ, G) is compact if and
only if, for all A ∈ A, the orbits {Ugπ(A)Ω : g ∈ G} are totally bounded
in H, which in turn holds if and only if said orbits have compact clo-
sures in H.

As promised in the introduction, Corollary 3.3 indicates why com-
pact C*-dynamical systems are referred to as such.

4. Spectral characterization of ergodic properties

In this section we will see how to characterize ergodic, weak mixing
and compact C*-dynamical systems in terms of the fixed point space
and eigenspace of the GNS representation. These characterizations,
together with the characterizations in Section 2.3, will become our main
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4. SPECTRAL CHARACTERIZATION OF ERGODIC PROPERTIES 57

tools in identifying these ergodic properties on C*-dynamical systems.
The results of Chapter 1 will be used in the case of weak mixing and
compactness, while ergodicity is more elementary to handle, given the
mean ergodic theorem.

Whether or not a C*-dynamical systems is ergodic, is a question
that can be translated in terms of the dimension of the fixed point
space of the GNS representation, i.e. {x ∈ H : Ugx = x ∀ g ∈ G}.
The mean ergodic theorem plays the role of the translator. 1 The form
of the the mean ergodic theorem that will be of greatest use is stated
in terms of a Gelfand integral, which provides a way of integrating a
function with values in a Hilbert space. Consider a function f : G → H
where G is a locally compact group with right Haar measure µ, and H
a Hilbert space, such that G → C : g 7→ 〈f(g), x〉 is Borel measurable
for every x ∈ H. If Λ is a Borel set with µ(Λ) < ∞ and f is bounded
then

H → C : x 7→
∫

Λ

〈f(g), x〉 dµ(g)

is a bounded linear functional on H. Using the Riesz-representation
theorem for bounded linear functionals on Hilbert spaces, we then de-
fine

∫
Λ
f dµ ∈ H by

(39)

〈∫

Λ

f dµ, x

〉
=

∫

Λ

〈f(g), x〉 dµ(g) ∀ x ∈ H.

∫
Λ
f dµ is referred to as a Gelfand integral (see [7, p. 53,p. 58]). Note

that (39) is equivalent to

(40)

〈
x,

∫

Λ

f dµ

〉
=

∫

Λ

〈x, f(g)〉 dµ(g) ∀ x ∈ H

Theorem 4.1. (The mean ergodic theorem) Let G be a locally com-
pact group with right Haar measure µ, and H a Hilbert space. Let
U : G → L (H) : g 7→ Ug be such that ‖Ug‖ ≤ 1, UgUh = Ugh for
all g, h ∈ G, and G → C : g 7→ 〈Ugx, y〉 is Borel measurable for all
x, y ∈ H. Take P to be the projection of H onto V = {x ∈ H : Ugx =
x for all g ∈ G}. For any Følner sequence (Λn) in G we then have

lim
n→∞

1

µ(Λn)

∫

Λn

Ugx dµ(g) = Px

for all x ∈ H.

A detailed proof of this particular version of the mean ergodic the-
orem can be found in [10, The mean ergodic theorem, p. 68] where it
is proved in a slightly more general form.

1The mean ergodic Theorem is akin to a horse. Horses are found all over the
world but their appearance always differ slightly, typically due to the different roles
in society that they have been bred for.
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58 2. C*-DYNAMICAL SYSTEMS

Theorem 4.2. Let (A, ω, τ, G) be a C*-dynamical system with GNS
representation (H, π,Ω, U). If P is the projection of H onto the closed
subspace V = {x ∈ H : Ugx = x for all g ∈ G} ⊆ H then (A, ω, τ, G)
is ergodic if and only if P = Ω⊗Ω, where (Ω⊗Ω)x := Ω〈Ω, x〉 for all
x ∈ H.

Proof. The mean ergodic Theorem is applicable to U . We know
that UgUh = Ugh and since the operators Ug are unitary, ‖Ug‖ = 1 for
all g in the Abelian locally compact amenable group G. The mapping
G → C : g 7→ 〈Ugx, y〉 is continuous for all x, y ∈ H by definition 1.6.

Suppose that limn→∞
1

µ(Λn)

∫
Λn

ω(Aτg(B)) dµ(g) exists. From the

mean ergodic theorem it follows that

lim
n→∞

1

µ(Λn)

∫

Λn

ω(Aτg(B)) dµ(g)

= lim
n→∞

1

µ(Λn)

∫

Λn

〈π(A*)Ω, Ugπ(B)Ω〉 dµ(g)

= lim
n→∞

1

µ(Λn)

〈
π(A*)Ω,

∫

Λn

Ugπ(B)Ω dµ(g)

〉
(41)

=〈π(A*)Ω, Pπ(B)Ω〉 ,
where (41) follows from (40), so in particular the limit exists.

Now, assume that (A, ω, τ, G) is ergodic. Then, from Definition 2.1
it follows that, for all A,B ∈ A

〈π(A*)Ω, P (π(B)Ω)〉 = ω(A)ω(B)

= 〈Ω, π(A)Ω〉〈Ω, π(B)Ω〉
= 〈π(A*)Ω, 〈Ω, π(B)Ω〉Ω〉
= 〈π(A*)Ω,Ω⊗ Ω(π(B)Ω)〉

Therefore, since {π(A)Ω : A ∈ A} = H, it follows that P = Ω⊗ Ω.
Conversely, suppose that P = Ω⊗ Ω. Then

lim
n→∞

1

µ(Λn)

∫

Λn

ω(Aτg(B)) dµ(g) = 〈π(A*)Ω,Ω⊗ Ω(π(B)Ω)〉

= 〈π(A*)Ω, 〈Ω, π(B)Ω〉Ω〉
= 〈Ω, π(A)Ω〉〈Ω, π(B)Ω〉
= ω(A)ω(B)

Therefore (A, ω, τ, G) is ergodic. �

Theorem 4.2 states that, if the C*-dynamical system is ergodic, the
fixed point space of its GNS representation is the one-dimensional space
CΩ. Conversely, if the fixed point space V of the GNS representation
of a C*-dynamical system is one-dimensional, then V = CΩ since,
necessarily, Ω ∈ V by Proposition 1.4. And if V = CΩ then the
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4. SPECTRAL CHARACTERIZATION OF ERGODIC PROPERTIES 59

projection operator is clearly Ω ⊗ Ω. We state this as a corollary to
Theorem 4.2.

Corollary 4.3. Let (A, ω, τ, G) be a C*-dynamical system with
GNS representation (H, π,Ω, U). Then (A, ω, τ, G) is ergodic if and
only if the fixed point space of U is one-dimensional

The above characterization of ergodicity is remarkable for at least
two reasons. First, it is significantly simpler than our original defini-
tion, and secondly, it answers a question that we have been deliber-
ately avoiding up to this point. Our original definition states that a
C*-dynamical system is ergodic if

(42) lim
n→∞

1

µ(Λn)

∫

Λn

ω(Aτg(B)) dµ(g) = ω(A)ω(B)

for all A,B ∈ A and some Følner sequence (Λn). The question we
avoided was: If (42) holds/fails for some Følner sequence, does it also
hold/fail for any other Følner sequence? The answer, of course, deter-
mines whether or not we should include the term “ergodic with respect
to the Følner sequence (Λn)” in the definition of ergodicity. Corol-
lary 4.3 informs us that this is not necessary, as ergodicity can be
completely characterized by the GNS representation which has no con-
nection whatever to Følner sequences. In other words, we can conclude
that if (42) holds(fails) for some Følner sequence, it also holds(fails) for
any other Følner sequence.

As was the case with ergodicity, whether or not a C*-dynamical
system is weak mixing, is a question that can be translated in terms
of its GNS representation, not in terms of its fixed point space, but
in terms of its eigenspace, which we define shortly. Theorem 2.18 in
Chapter 1 will play the role of the translator this time round. Since
Theorem 2.18 pertains to weakly almost periodic semigroups in L (X),
with X a Banach space, we start by identifying such semigroups in our
C*-dynamical system.

Proposition 4.4. Let S be an Abelian semigroup of contractions
on a Hilbert space H. Then S is an Abelian weakly almost periodic
semigroup in L (H).

Proof. We have to show that

w-cl (S x) = w-cl {Ux : U ∈ S } is w-compact in H

for all x ∈ H, so let x ∈ H be arbitrary. Since each U ∈ S is a
contraction, S x ⊆ {z ∈ H : ‖z‖ ≤ ‖x‖}, that is, S x is contained in
the closed ‖x‖-ball B‖x‖ in H. It therefore suffices to show that B‖x‖ is
w-compact and w-closed since then w-cl (S x) ⊆ w-cl (B‖x‖) = B‖x‖,
from which it would follow that w-cl (S x) is w-compact. Since a
Hilbert space is reflexive we have that B1, the closed unit ball in H, is
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60 2. C*-DYNAMICAL SYSTEMS

w-compact by Banach-Alaoglu [8, V.4.7]. As B‖x‖ is the image of B1

under the w-continuous mapping H → H : z 7→ ‖x‖z, it follows that
B‖x‖ is w-compact. Finally, B‖x‖ is w-closed since the w-topology is
Hausdorff and compact sets in a Hausdorff topology are closed. Thus
the result follows. �

Proposition 4.4 reveals that, for a C*-dynamical system (A, ω, τ, G),
if U is the GNS representation of τ , then {Ug : g ∈ G} is an Abelian
weakly almost periodic semigroup. Of course in this case {Ug : g ∈ G}
is in fact a group. We now define, as per Definition 2.6, Hfl to be
the collection of all flight vectors, and Hrev to be the collection of all
reversible vectors, relative to S = {Ug : g ∈ G}. As per Definition 2.9,
we define Huds to be the norm closure of the span of all eigenvectors of
S = {Ug : g ∈ G}. We will refer to Huds as the eigenspace of the GNS
representation.

Proposition 4.5. For any Abelian weakly almost periodic semi-
group S in L (H) that is closed under the taking of adjoints, H⊥

fl =
Hrev.

Proof. Consider any x ∈ Hfl and any eigenvector y of S = {Ug :

g ∈ G} with unimodular eigenvalues. Thus Ax = 0 for some A ∈ S

and since S * = S , for any net (Aα) such that wo-lim Aα = A, it is
clear from Theorem 1.3 (a) that wo-lim A*

α = A* ∈ S . It now follows
by Proposition 2.11 that A*y = cy for some c ∈ S1 so that

〈x, y〉 = 1

c
〈x,A*y〉 = 1

c
〈Ax, y〉 = 0.

Thus by the linearity of the inner product, x is perpendicular to any
element in the span of all eigenvectors with unimodular eigenvalues, so
that by the continuity of the inner product, x ⊥ y for all y ∈ Huds. By
Theorem 2.13 we thus have that x ⊥ y for all y ∈ Hrev so that since
H = Hfl ⊕Hrev, we must have that H⊥

fl = Hrev. �

Now that we know where Abelian weakly almost periodic groups are
to be found in our C*-dynamical context, we restrict the final result,
Theorem 2.18, to Hilbert spaces and to a specific invariant mean. This
is done in the proof of the next result.

Theorem 4.6. Consider a representation U : G → L (H) : g 7→
Ug, of an Abelian locally compact group G, as contractions on any
Hilbert space H. Assume that G → C : g 7→ 〈x, Ugy〉 is Borel mea-
surable, that G possesses a Følner-sequence (Λn) and that the Hilbert
space spanned by {Ugx : g ∈ G} is separable for every x ∈ H. Denote a
Haar measure on G by µ. Then, for any y ∈ H we have that: y ∈ Hfl,
i.e. y is a flight vector, if and only if

lim
n→∞

1

µ(Λn)

∫

Λn

|〈x, Ugy〉| dµ(g) = 0 ∀ x ∈ H
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Proof. By Proposition 4.4 S = {Ug : g ∈ G} is an Abelian
weakly almost periodic semigroup in L (H), and by assumption the
Hilbert space spanned by S = {Ugx : g ∈ G} is separable for all
x ∈ H. Therefore the proposition follows as a special case of Theorem
2.18 provided we prove that

(a) L : G ′ → C : f 7→ limn→∞
1

µ(Λn)

∫
Λn

f(Ug) dµ(g) is an in-

variant mean on G ′ ⊆ G = span ({hx,y : x, y ∈ H} ∪ {1}) where
hx,y : S → C : Ug 7→ |〈x, Ugy〉|, 1 : S → C : Ug 7→ 1 and G ′ is simply
the subspace of all f ∈ G for which the limit L(f) exists.

(b) G ′ contains each element of G which has zero average.

(a) It is clear that G , and therefore G ′, consist of bounded complex
valued functions on S , and that 1 ∈ G ′ since

(43) lim
n→∞

1

µ(Λn)

∫

Λn

1(Ug) dµ(g) = lim
n→∞

1

µ(Λn)

∫

Λn

1 dµ(g) = 1.

It is clear that L(f) ≥ 0 for any f ∈ G ′ with f ≥ 0 and by (43) that
L(1) = 1. For L : G ′ → C to be an invariant mean, it remains to show
that, for any Uh ∈ S and f ∈ G ′, L(f) = L(f ◦ Uh). This can be
shown from the invariance of µ and that (Λn) is a Følner sequence. For
any T = Uh ∈ S and f ∈ G ′, it follows that
∣∣∣∣

1

µ(Λn)

∫

Λn

f(Ug) dµ(g)−
1

µ(Λn)

∫

Λn

f ◦ T (Ug) dµ(g)

∣∣∣∣

=

∣∣∣∣
1

µ(Λn)

∫

Λn

f(Ug) dµ(g)−
1

µ(Λn)

∫

Λn

f(Ugh) dµ(g)

∣∣∣∣

=

∣∣∣∣
1

µ(Λn)

∫

Λn

f(Ug) dµ(g)−
1

µ(Λn)

∫

Λnh

f(Ug) dµ(g)

∣∣∣∣

=

∣∣∣∣
1

µ(Λn)

∫

Λn\(Λn∩Λnh)

f(Ug) dµ(g)−
1

µ(Λn)

∫

Λnh\(Λn∩Λnh)

f(Ug) dµ(g)

∣∣∣∣

≤ 1

µ(Λn)

∫

Λn\(Λn∩Λnh)

|f(Ug)| dµ(g) +
1

µ(Λn)

∫

Λnh\(Λn∩Λnh)

|f(Ug)| dµ(g)

=
1

µ(Λn)

∫

Λn△Λnh

|f(Ug)| dµ(g)

≤µ(Λn△Λnh)

µ(Λn)
sup
Ug∈S

|f(Ug)|

which, since (Λn) is a Følner sequence, is arbitrarily small for large
enough n. Therefore, we can conclude that

lim
n→∞

1

µ(Λn)

∫

Λn

f ◦ T (Ug) dµ(g) = lim
n→∞

1

µ(Λn)

∫

Λn

f(Ug) dµ(g)
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and in particular that this limit exists. In other words, f ◦ T ∈ G ′ and
L(f ◦ T ) = L(f). Therefore, as T ∈ S and f ∈ G ′ was arbitrary, the
final condition for L to be an invariant mean has been met.

(b) Similar to (a), to prove (b), we use the facts that that (Λn) is
a Følner sequence and that µ is a Haar measure. Let Uh ∈ S , f ∈
G , ǫ > 0 be arbitrary and set M = supg∈G |f(Ug)|. It follows from the
inequality above that there is an N ∈ C such that

(44)

∣∣∣∣
1

µ(Λn)

∫

Λn

f(Ug) dµ(g)−
1

µ(Λn)

∫

Λnh

f(Ug) dµ(g)

∣∣∣∣ <
ǫ

2

for all n ≥ N .
Now assume that f has zero average. If we let ǫ > 0 be arbitrary

then there are g1, ..., gm ∈ G and α1, .., αm > 0, with
∑m

i=1 αi = 1, such
that ∣∣∣∣∣

m∑

i=1

αif(UgUgi)

∣∣∣∣∣ <
ǫ

2
∀ g ∈ G.(45)

We have from (44) that there are z1, ..., zm ∈ C with |zi| < ǫ
2
such that

1

µ(Λn)

∫

Λn

f(Ug) dµ(g)

=
m∑

i=1

αi

1

µ(Λn)

∫

Λn

f(Ug) dµ(g)

=
m∑

i=1

αi

(
1

µ(Λn)

∫

Λngi

f(Ug) dµ(g) + zi

)

=
1

µ(Λn)

∫

Λn

m∑

i=1

αif(UgUgi) dµ(g) +
m∑

i=1

αizi

for n ≥ N , for some N ∈ N. Note that
∣∣∣∣∣

m∑

i=1

αizi

∣∣∣∣∣ ≤
m∑

i=1

αi|zi| <
m∑

i=1

αi

ǫ

2
=

ǫ

2
.

Hence, since by (45)
∣∣∣∣∣

1

µ(Λn)

∫

Λn

m∑

i=1

αif(UgUgi) dµ(g)

∣∣∣∣∣ <
µ(Λn)

µ(Λn)

ǫ

2

we have that
∣∣∣ 1
µ(Λn)

∫
Λn

f(Ug) dµ(g)
∣∣∣ < ǫ

2
+ ǫ

2
= ǫ for n ≥ N . As ǫ > 0

was arbitrary, limn→∞
1

µ(Λn)

∫
Λn

f(Ug) dµ(g) = 0, which, since the limit

exists, shows that f ∈ G ′. �
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4. SPECTRAL CHARACTERIZATION OF ERGODIC PROPERTIES 63

As a fairly straightforward consequence of Theorem 4.6 and Propo-
sition 4.5 we have the following:

Proposition 4.7. Let (A, ω, τ, G) be a C*-dynamical system with
GNS representation (H, π,Ω, U). Then (A, ω, τ, G) is weakly mixing if
and only if dim Hrev = 1, i.e. if and only if dim Huds = 1.

Proof. Since UgΩ = Ω for all g ∈ G, it follows from Proposition
1.4 that

CΩ ⊆ Huds

and therefore

H⊥
uds ⊆ CΩ⊥.(46)

Assume first that (A, ω, τ, G) is weakly mixing and consider any
y ∈ H perpendicular to Ω, i.e. such that 〈Ω, y〉 = 0. Then it follows
by Proposition 3.1 that

0 = lim
n→∞

1

µ(Λn)

∫

Λn

|〈x, Ugy〉 − 〈x,Ω〉〈Ω, y〉| dµ(g)

= lim
n→∞

1

µ(Λn)

∫

Λn

|〈x, Ugy〉| dµ(g)

for all x ∈ H. By Proposition 1.7 we can apply Theorem 4.6, from
which it thus follows that y ∈ Hfl. Thus we have that

H⊥
uds ⊆ CΩ⊥ ⊆ Hfl

and since H⊥
fl = Hrev = Huds by Proposition 4.5 and Theorem 2.13, we

have that CΩ = Huds.
Now assume that Huds is one dimensional. Since CΩ ⊆ Huds, we

thus have that Huds = CΩ. Let x, y ∈ H be arbitrary. Then, by
Theorems 2.8 and 2.13, x = x0 + x1 and y = y0 + y1 for some x0, y0 ∈
Huds and x1, y1 ∈ Hfl. Since x0, y0 ∈ CΩ, Ugx0 = x0 and Ugy0 = y0 for
all g ∈ G, by Proposition 1.4. Since Hfl ⊥ Huds and Ω ∈ Huds, we also
have that 〈x1,Ω〉 = 〈Ω, y1〉 = 0. It now follows by 4.6 that

lim
n→∞

1

µ(Λn)

∫

Λn

|〈x, Ugy〉 − 〈x,Ω〉〈Ω, y〉| dµ(g)

= lim
n→∞

1

µ(Λn)

∫

Λn

|〈x, Ugy1〉+ 〈x, Ugy0〉 − 〈x0,Ω〉〈Ω, y0〉| dµ(g)

= lim
n→∞

1

µ(Λn)

∫

Λn

|〈x, Ugy1〉+ 〈x0 + x1, y0〉 − 〈x0, 〈Ω, y0〉Ω〉| dµ(g)

= lim
n→∞

1

µ(Λn)

∫

Λn

|〈x, Ugy1〉+ 〈x0, y0〉 − 〈x0, y0〉| dµ(g)

= 0.

Thus (A, ω, τ, G) is weakly mixing by Proposition 3.1 (b). �
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64 2. C*-DYNAMICAL SYSTEMS

Note how Proposition 4.7 implies that if (33) holds for one Følner
sequence it also holds for any other as Huds has no connection with any
Følner sequence. Thus, similar to ergodicity, we do not have to include
the term “weakly mixing with respect to a Følner sequence (Λn)” in the
definition of a weak-mixing system.

We know that UgΩ = Ω always, so if a C*-dynamical system is
weak mixing, the one dimensional eigenspace of its GNS representa-
tion is given by CΩ.

Again applying the results of Chapter 1, we will now see how a
compact C*-dynamical system can also be characterized in terms of
the eigenspace of its GNS representation. We start by taking a closer
look at the notion of total boundedness and find that it has two easily
verifiable properties.

Lemma 4.8. If A,B are two totally bounded sets in a semi normed
space, then for any α, β ∈ C, αA+ βB is also totally bounded.

The proof of Lemma 4.8 is extremely elementary and is therefore
not included.

Proposition 4.9. Consider a group S of unitary operators on a
Hilbert space H. Then Huds, for S , is precisely the set of all elements
x ∈ H whose orbits S x are totally bounded.

Proof. Define the set

Htb = {x ∈ H : S x is totally bounded}.

By lemma 4.8, Htb is a vector space. Let E be the set of eigenvectors
of S with unimodular eigenvalues, or simply the set of all eigenvectors
of S since all eigenvectors of a unitary operator necessarily have uni-
modular eigenvalues. By definition, Huds is the norm closure of span E,
so we therefore have to show that span E = Htb. We can easily show
that span E ⊆ Htb:

Consider any x ∈ E. Since, for all Ug ∈ S , Ugx = cgx for some
cg ∈ S1 we have that Sx ⊆ {cx : c ∈ S1} which is a totally bounded
set in H since it is compact. Thus E ⊆ Htb and, by Lemma 4.8,
span E ⊆ Htb.

Consider any sequence (xn) in Htb with xn −→ x for some x ∈ H.
Let ǫ > 0 be arbitrary. There is an N ∈ N such that ‖xn − x‖ < ǫ

2
for

all n ≥ N . Since S xN is totally bounded there is a finite set M ⊆ H
such that for any U ∈ S

‖UgxN − z‖ <
ǫ

2
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4. SPECTRAL CHARACTERIZATION OF ERGODIC PROPERTIES 65

for some z ∈ M , and therefore

‖Ugx− z‖ ≤ ‖Ugx− UgxN‖+ ‖UgxN − z‖
= ‖Ug(x− xN)‖+ ‖UgxN − z‖
= ‖x− xN‖+ ‖UgxN − z‖
< ǫ.

Thus x ∈ Htb and hence Htb is closed, from which we have that
Huds = span E ⊆ Htb

To prove that Htb ⊆ Huds, let x ∈ Htb be arbitrary. By Proposition
4.4 S is a weakly almost periodic semigroup in L (H), so that by
Theorems 2.8 and 2.13, x = x0+xfl for some x0 ∈ Huds and xfl ∈ Hfl.
Since x ∈ Htb and x0 ∈ Htb, from the first part, xfl = x − x0 ∈ Htb

follows from Lemma 4.8. Therefore, for all 1 > ǫ > 0 there is a finite
set Mǫ ⊆ H such that, for any R ∈ S , ‖Rxfl−z‖ < ǫ for some z ∈ Mǫ

Since xfl ∈ Hfl, Txfl = 0 for some T ∈ wo-cl S by Definition 2.6.
Thus wo-lim Tα = T for some net (Tα)α∈Λ in S . By Theorem 1.3,
and Riesz’s representation Theorem for bounded linear functionals on
a Hilbert space,

〈z, Tαxfl〉 −→ 〈z, Txfl〉 = 0

for all z ∈ H. In particular, for all z in the finite set Mǫ, we obtain

(47) |〈z, Tαxfl〉| < ǫ

for all z ∈ Mǫ and all α � β, for some β ∈ Λ. As mentioned above,
‖Tβxfl − z′‖ < ǫ for some z′ ∈ Mǫ. It now follows that

|〈Tβxfl, Tβxfl〉| − |〈Tβxfl, z
′〉| ≤ |〈Tβxfl, Tβxfl − z′〉|

≤ ‖Tβxfl‖‖Tβxfl − z′‖
≤ ‖xfl‖ǫ

which gives

‖xfl‖2 = ‖Tβxfl‖2 ≤ |〈Tβxfl, z
′〉|+ ǫ‖xfl‖ < ǫ+ ǫ‖xfl‖

by (47). As ǫ > 0 was arbitrary we must have that ‖xfl‖ = 0. Thus
x = x0 + xfl = x0 ∈ Huds which completes the proof. �

Theorem 4.10. Let (A, ω, τ, G) be a C*-dynamical system with
GNS representation (H, π,Ω, U). Then (A, ω, τ, G) is compact if and
only if Huds = H.

Proof. Suppose that (A, ω, τ, G) is compact. Then, by Proposi-
tion 3.2 and Corollary 3.3, {Ugπ(A)Ω : g ∈ G} is totally bounded for
all A ∈ A. By Proposition 4.9, with S = {Ug : g ∈ G}, π(A)Ω ⊆ Huds.

Therefore, as π(A)Ω = H and Huds is closed, it follows that H = Huds
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66 2. C*-DYNAMICAL SYSTEMS

Conversely, if H = Huds, then since π(A)Ω ⊆ H and Huds is the set
of all elements x ∈ H with totally bounded orbits in S by Proposition
4.9, it follows that

{Ugπ(A)Ω : g ∈ G}
is totally bounded in H for all A ∈ A. Thus (A, ω, τ, G) is compact by
Corollary 3.3. �

5. Interrelationships of ergodic properties

In this section we investigate the relationships between the ergodic
properties, using the various characterizations developed in the pre-
ceding sections. In particular this will tell us which combinations of
ergodic properties are impossible.

Theorem 5.1. If a C*-dynamical system is weakly mixing, then it
is ergodic.

Proof. Suppose that a C*-dynamical system is weak mixing. Then
the eigenspace of its GNS representation is one dimensional by Propo-
sition 4.7. Thus the fixed point space of the GNS representation, which
is contained in the eigenspace, is also one dimensional. Therefore the
C*-dynamical system is ergodic by Corollary 4.3. �

Theorem 5.2. If a C*-dynamical system is strongly mixing, then
it is weakly mixing.

Proof. Consider a C*-dynamical system (A, ω, τ,Z). If (A, ω, τ,Z)
is strongly mixing then

lim
n→∞

ω(Aτn(B)) = ω(A)ω(B)

for any A,B ∈ A. Thus, for any ǫ > 0 there is a K ∈ N such that

|ω(Aτn(B))− ω(A)ω(B)| < ǫ

for all n > K. For each n ∈ N, let Λn = {1, ..., n}. Then (Λn) is a
Følner sequence of Z relative to the counting measure µ on Z. Suppose
that

K∑

j=1

∣∣ω(Aτ j(B))− ω(A)ω(B)
∣∣ = δ

and select an M ∈ N such that δ
M

< ǫ. Let N = max{K,M}. Then
1

µ(Λn)

∫

Λn

|ω(Aτn(B))− ω(A)ω(B)| dµ

=
1

n

(
δ +

n∑

j=K+1

∣∣ω(Aτ j(B))− ω(A)ω(B)
∣∣
)

< ǫ+
(n−K)ǫ

n
< 2ǫ
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5. INTERRELATIONSHIPS OF ERGODIC PROPERTIES 67

for all n > N . Since ǫ > 0 was arbitrary,

lim
n→∞

1

µ(Λn)

∫

Λn

|ω(Aτn(B))− ω(A)ω(B)| dµ(n) = 0

follows. Since A,B ∈ A were also arbitrary, it follows that (A, ω, τ,Z)
is weak mixing. �

Theorem 5.3. A non-trivial C*-dynamical system cannot be both
weakly mixing and compact.

Proof. Consider a non-trivial C*-dynamical system (A, ω, τ, G).
Thus ω is not a homomorphism so that the Hilbert space H of the
GNS representation is at least two dimensional by Proposition 2.6. If
(A, ω, τ, G) is weak mixing then dim Huds = 1 by Proposition 4.7.
Therefore (A, ω, τ, G) cannot be compact, since otherwise H = Huds

by Theorem 4.10, which would contradict dim H ≥ 2. �
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CHAPTER 3

Quantum Systems with Discrete Energy Spectrum

In this chapter we will study the ergodic properties of quantum
systems with discrete energy spectrums. This simply means the set of
possible energies of the system is countable or even finite, i.e. E1, E2, ....
Standard examples of such systems which are of great importance in
quantum physics include the harmonic oscillator and the spin 1

2
systems

(qubits), as well as systems consisting of finite collections of these.
We will study such systems with discrete energy spectrums in a more
general context, by starting with any Hilbert space H that possesses a
countable total orthonormal basis {hn}, and making no assumption on
the energy values E1, E2, ... beyond it being a sequence of real numbers.
Furthermore, we consider states of such systems which have physical
relevance, in particular states which include the canonical ensemble in
quantum statistical mechanics as a special case. This chapter therefore
gives an indication of how ergodic properties fit into quantum physics,
albeit in a fairly simple context.

1. Construction of the C*-dynamical system

We start by showing how, given a Hilbert space with a countable
total orthonormal basis {hn}, an abstract dynamical system can be
defined on L (H), provided we have an appropriate state on L (H).
Since we are interested in physical time, our group G from Chapter 2
will now be taken to be R.

Proposition 1.1. Let H be a Hilbert space possessing a total or-
thonormal basis {hn}n∈N, and let (En)n∈N be a sequence of real num-
bers. Then, for each t ∈ R, there is a uniquely determined operator
Vt ∈ L (H) such that

Vthn = e−iEnthn

for all n ∈ N. Moreover, for each t ∈ R, the operator Vt is unitary and

(48) τt : L (H) → L (H) : A 7→ V *

t AVt

defines a ∗-automorphism on the C*-algebra L (H). Furthermore, if
ω : L (H) → C is a state, such that ω ◦ τt = ω for all t ∈ R, then
(L (H), ω, τ,R) is an abstract dynamical system with τ : t 7→ τt.

69
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70 3. QUANTUM SYSTEMS WITH DISCRETE ENERGY SPECTRUM

Proof. Let H = span {hn : n ∈ N}, fix an arbitrary t ∈ R, and
consider the mapping

(49) W : H → H :
n∑

k=1

αkhk 7→
n∑

k=1

αke
−iEkthk

on the normed subspace H of H. W is clearly linear and for any
s ∈ span {hn : n ∈ N}, say s =

∑m

j=1 αjhj, it follows that

‖Ws‖2 =
∥∥∥∥∥

m∑

j=1

αje
−iEjthj

∥∥∥∥∥

2

=
m∑

j=1

∣∣αje
−iEjt

∣∣2

=
m∑

j=1

|αj|2

= ‖s‖2.

Thus, W ∈ L (H). Hence, as H = H, there is a unique operator

W̃ ∈ L (H) such that W = W̃ on H, by [20, Theorem 2.7-11]. It is

now clear that Vt = W̃ .
The mapping

W ′ : H → H :
n∑

k=1

αkhk 7→
n∑

k=1

αke
iEkthk

is in L (H) as well, for the same reason that W is, and has the property
WW ′ = W ′W = id. It also follows that, for any s1, s2 ∈ H with, say,
s1 =

∑n

j=1 αjhnj
and s2 =

∑m

k=1 βkhmk
,

〈s1,Ws2〉H =
∑

j:nj=mj

αjβje
−iEmj

t

=
∑

j:nj=mj

eiEnj
tαjβj

= 〈W ′s1, s2〉.(50)

Let V ′t ∈ L (H) be the bounded linear extension of W ′ to H. Since
V ′t Vt = VtV

′
t = id on H, V ′t Vt = VtV

′
t = id on H. That is, V ′t = V −1t ,

and in particular Vt is bijective and thus possesses an inverse. By (50)
and the continuity of the inner product 〈x, Vty〉H = 〈V ′t x, y〉H for all
x, y ∈ H. That is, V −1t = V ′t = V *

t and we have that Vt is unitary.
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1. CONSTRUCTION OF THE C*-DYNAMICAL SYSTEM 71

τt is clearly linear, and for any A ∈ L (H), τt(VTAV
*
t ) = A and

τt(A
*) = V *

t A
*Vt = (V *

t AVt)
* = τt(A)

*. Thus τt defines a ∗-automorph-
ism on L (H), for any t ∈ R.

For any s, t ∈ R and z ∈ H, say z =
∑n

k=1 αkhnk
, it follows that

VsVtz = Vs

n∑

k=1

αne
−iEkthnk

=
n∑

k=1

αne
−iEk(s+t)hnk

= Vst.

Thus VsVt = Vst on H, and hence also on H. It therefore follows, for
any A ∈ A, that

τs ◦ τt(A) = VsVtAV
*
t V

*
s = VsVtA(VsVt)

* = τst(A).

Since A was arbitrary, τs ◦ τt = τst follows for the arbitrary choice in
s, t ∈ R. All the conditions are now met for (L (H), ω, τ,R) to be an
abstract dynamical system. �

For the remainder of the chapter, the notation of Proposition 1.1
will be implicitly assumed.

What remains is to construct concrete examples of the states re-
quired in Proposition 1.1. Since we require ω ◦τt = ω it makes physical
sense to construct them from the energy eigenstates hm. A key prob-
lem that needs to be addressed is to identify the GNS representation
corresponding to whichever states we construct. We will then be able
to determine whether the conditions of Definition 1.6 are met. Our ap-
proach will be to define a suitable state in very general terms. We will
then identify two different states as special cases so that the separate
C*-dynamical systems defined by them have distinct ergodic proper-
ties. We will require a GNS representation sturdy enough for this
general case, and to that end we proceed by first identifying a suitable
Hilbert space.

Theorem 1.2. Let H be a Hilbert space and define

H⊕ =

{
(xn)n∈N : xn ∈ H ∀ n ∈ N,

∞∑

n=1

‖xn‖2 < ∞
}

Then H⊕, with addition and scalar multiplication defined by

(xn) + (yn) = (xn + yn)(51)

a(xn) = (axn)(52)
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72 3. QUANTUM SYSTEMS WITH DISCRETE ENERGY SPECTRUM

for all (xn), (yn) ∈ H⊕ and a ∈ C, is a vector space. H⊕ is a complex
Hilbert space if equipped with the inner product defined

(53) 〈(xn), (yn)〉 =
∞∑

n=1

〈xn, yn〉

for all (xn), (yn) ∈ H⊕.

Proof. See [8, IV.4.19] �

We now consider a Hilbert space that is a generalization of H⊕, and
which will be general enough for our purposes.

Proposition 1.3. Let H be a Hilbert space and let p = (pn) be any
sequence in R. Then

Hp⊕ =
{
(xn) ∈ H⊕ : xn = 0 if pn = 0

}

is a Hilbert subspace of H⊕.

Proof. It is clear that Hp⊕ is an inner product subspace of H⊕ so
that we only have to show that Hp⊕ is complete, i.e. that Hp⊕ is closed
in H⊕ which can be shown trivially. Consider any z = (zn) ∈ Hp⊕

and let (xn) be a sequence in Hp⊕ that converges to z in H⊕, where
xn = (xn,k)k ∈ Hp⊕. Then, if we assume that pm = 0, it follows that
xn,m = 0 for all n ∈ N. Now, put wm = zm and wn = 0 if n 6= m and
consider thee sequence (wn) ∈ Hp⊕. We have

‖zm‖2 = 〈zm, zm〉H
= 〈z, w〉H⊕
= lim

n→∞
〈xn, w〉H⊕

= lim
n→∞

〈xn,m, wm〉H
= 0,

since xn,m = 0 for all n. Thus pm = 0 implies zm = 0 and so z = (zn) ∈
Hp⊕ as required. �

Proposition 1.4. Let (L (H), ω, τ,R) be the abstract dynamical
system defined in Proposition 1.1. For any sequence p = (pn) of real
numbers, with pn ≥ 0 for all n ∈ N, such that

∑∞
n=1 pn = 1, the

mapping

ω : L (H) → C : A 7→
∞∑

n=1

pn〈hn, Ahn〉

defines a state on L (H) such that ω◦τt = ω for all t ∈ R. Furthermore,
the GNS representation of (L (H), ω, τ,R) is given by (Hp⊕, π,Ω, U),
where π : L (H) → L (Hp⊕) with π(A) : Hp⊕ → Hp⊕ : (xn) 7→ (Axn)
for all A ∈ L (H), Ω = (

√
pnhn) and

Ut : H
p⊕ → Hp⊕ : (xn) 7→ (e−iEntV *

t xn)(54)
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1. CONSTRUCTION OF THE C*-DYNAMICAL SYSTEM 73

for all (xn) ∈ Hp⊕ and t ∈ R. Finally, (L (H), ω, τ,R) is a C*-
dynamical system.

Proof. We will have to prove that:

(i) π is a ∗-homomorphism.
(ii) ω is a state, ω ◦ τt = ω for all t ∈ R and

ω(A) = 〈Ω, π(A)Ω〉 for all A ∈ L (H).
(iii) Ω is a cyclic vector.
(iv) The GNS representation U : t 7→ Ut of τ is given by (54).
(v) t 7→ Ut is strongly continuous and R is a separable Abelian

amenable group.

(i) Let (xn) ∈ Hp⊕ and A ∈ L (H) be arbitrary. It follows that

‖π(A)(xn)‖2Hp⊕ =
∞∑

n=1

〈Axn, Axn〉 ≤ ‖A‖2
∞∑

n=1

‖xn‖2 = ‖A‖2‖(xn)‖2Hp⊕ .

As π(A) is also clearly linear, π(A) is therefore bounded linear and we
have that π : L (H) → L (Hp⊕) is well defined. Let (yn) be another
arbitrary vector in Hp⊕. It follows that

〈
(xn), π(A

*)(yn)
〉
Hp⊕ =

∞∑

n=1

〈xn, A
*yn〉

=
∞∑

n=1

〈Axn, yn〉

= 〈π(A)(xn), (yn)〉Hp⊕

=
〈
(xn), π(A)

*(yn)
〉
Hp⊕ .

Thus π(A*) = π(A)*. Since π is also clearly linear, π : L (H) →
L (Hp⊕) defines a ∗-homomorphism.

(ii) For anyA ∈ L (H) we have that ω(A*A) =
∑∞

n=1 pn〈Ahn, Ahn〉 ≥
0. Since {hn} is an orthonormal set and

∑
n=1 pn = 1, it is clear that

ω(1) = 1 where 1 ∈ L (H) denotes the identity operator. Since ω is
also clearly linear, ω defines a state on L (H).
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74 3. QUANTUM SYSTEMS WITH DISCRETE ENERGY SPECTRUM

For any t ∈ R and A ∈ L (H) it follows that

ω ◦ τt(A) =
∞∑

n=1

pn〈hn, V
*
t AVthn〉

=
∞∑

n=1

pn〈Vthn, Ae
−iEnthn〉

=
∞∑

n=1

pne
−iEnt〈e−Enthn, Ahn〉

=
∞∑

n=1

pn〈hn, Ahn〉 = ω(A).

Thus ω ◦ τt = ω.
For any A ∈ L (H) it follows that

〈Ω, π(A)Ω〉Hp⊕ =
∞∑

n=1

〈√pnhn,
√
pnAhn〉 =

∞∑

n=1

pn〈hn, Ahn〉 = ω(A).

(iii) Consider any (xn) ∈ Hp⊕ and let

xn,k =

{
xn if n ≤ k,
0 if n > k

Thus (xn,k) = (x1, x2, ..., xk, 0, ...) and it is easy to see that limk→∞(xn,k) =
(xn) in Hp⊕. For any x, y ∈ H, define an operator x ⊗ y ∈ L (H) as
follows:

x⊗ y : z 7→ x〈y, z〉

Ax,y can readily be seen to be a bounded linear operator. For any k ∈ N

it now follows that

π

(
k∑

ℓ=1

1√
pℓ
xℓ ⊗ hℓ

)
Ω =

((
k∑

ℓ=1

xℓ ⊗ hℓ

)
√
pnhn

)

= (xn,k).

Hence, since (xn,k) converges to (xn) in Hp⊕, it follows that (xn) ∈
{π(A)Ω : A ∈ L (H)}. As (xn) ∈ Hp⊕ was arbitrary, it follows that Ω
is a cyclic vector of the representation (Hp⊕, π).
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1. CONSTRUCTION OF THE C*-DYNAMICAL SYSTEM 75

(iv) It follows from (54) and the definition of Vt, that for any A ∈
L (H)

Utπ(A)Ω = Ut(
√
pnAhn)

= (
√
pne

−iEntV *
t Ahn)

= (
√
pnV

*
t AVthn)

= π(V *
t AVt)Ω

= π(τt(A))Ω.

Thus U is the GNS representation of τ .

(v) Consider an arbitrary convergent sequence (tn) in R with, say
tn −→ t. Let (xn) ∈ Hp⊕ also be arbitrary. We wish to show that
Utj(xn) −→ Ut(xn) in Hp⊕ so let ǫ > 0 be arbitrary. We know that
limk→∞(xn,k) = (xn) and so there is a K ∈ N such that ‖(xn,K) −
(xn)‖ < ǫ

9
√
K
. Since {hn} is total in H, for each n ∈ N,

‖xn,K − Sn,K‖ <
ǫ

9K

for some Sn,K ∈ span {hn}. The mapping R → C : r 7→ eiβr is contin-
uous for all β ∈ R, and so for any

∑m

k=1 αkhk ∈ span {hn} and δ > 0
there is an N ∈ N such that

∥∥∥∥∥e
iEntjV *

tj

m∑

k=1

αkhk − eiEntV *
t

m∑

k=1

αkhk

∥∥∥∥∥

=

∥∥∥∥∥

m∑

k=1

αke
i(Ek+En)tjhk −

m∑

k=1

αke
i(Ek+En)thk

∥∥∥∥∥

≤
m∑

k=1

|αk|
∥∥ei(Ek+En)tjhk − ei(Ek+En)thk

∥∥

≤
m∑

k=1

|αk|
∣∣ei(Ek+En)tj − ei(Ek+En)t

∣∣ ‖hk‖

< δ

for all n ∈ {1, ...,m}, if j ≥ N . In particular, there is an N ′ ∈ N such
that

(55)
∥∥∥eiEntjV *

tj
Sn,K − eiEntV *

t Sn,K

∥∥∥ <
ǫ

9
√
K
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76 3. QUANTUM SYSTEMS WITH DISCRETE ENERGY SPECTRUM

for all n ∈ {1, 2, ..., K}, if j ≥ N ′. It now follows that
∥∥Utj(xn)− Ut(xn)

∥∥
Hp⊕

≤
∥∥Utj(xn)− Utj(xn,K)

∥∥
Hp⊕ +

∥∥Utj(xn,K)− Ut(xn,K)
∥∥
Hp⊕

+ ‖Ut(xn,K)− Ut(xn)‖Hp⊕

≤ ǫ

3
+
∥∥Utj(xn,K)− Ut(xn,K)

∥∥
Hp⊕ +

ǫ

3

=
2ǫ

3
+

√√√√
K∑

n=1

∥∥∥e−iEntjV *
tj
xn,K − e−iEntV *

t xn,K

∥∥∥
2

.

Furthermore, by (55) and the fact that V *
r is unitary for all r ∈ R, it

follows for each n = 1, ..., K that
∥∥∥e−iEntjV *

tj
xn,K − e−iEntV *

t xn,K

∥∥∥

≤
∥∥∥V *

tj
xn,K − V *

tj
Sn,K

∥∥∥+
∥∥∥e−iEntjV *

tj
Sn,K − e−iEntV *

t Sn,K

∥∥∥

+
∥∥V *

t xn,K − V *
t Sn,K

∥∥

≤ ǫ

9
√
K

+
ǫ

9
√
K

+
ǫ

9
√
K

=
ǫ

3
√
K

and therefore that

K∑

n=1

∥∥∥e−iEntjV *
tj
xn,K − e−iEntV *

t xn,K

∥∥∥
2

≤ ǫ2

9

for all j ≥ N ′. So we have that

∥∥Utj(xn)− Ut(xn)
∥∥
Hp⊕ ≤ 2ǫ

3
+

√
ǫ2

9
= ǫ

for all j ≥ N ′. That is, Utj(xn) −→ Ut(xn) in Hp⊕ as required.
Finally, R is a locally compact group and can easily be seen to

possess a Følner sequence, for example ({t : |t| ≤ n})n. Thus R is
amenable and of course also separable and Abelian. (L (H), ω, τ,R)
now satisfies all the criteria to be a C*-dynamical system. �

Proposition 1.4 provides us with our first example of a C*-dynamical
system, or rather a collection of C*-dynamical systems due to the free-
dom of choice in the sequence p = (pn). Note that the C*-dynamical
system is non-trivial, as H and therefore Hp⊕ is more than one dimen-
sional. In fact, both Hilbert spaces are infinite dimensional. It will
be convenient to assign a name to these kind of systems. We adopt
the habit of defining this, and all subsequent C*-dynamical systems in
complete detail.
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Definition 1.5. TheDiscrete Energy Spectrum System (DESS(p, En))
is the C*-dynamical system (A, ω, τ,R) given by

(i) A = L (H) where H is a complex Hilbert space with a count-
able total orthonormal basis {hn}n∈N = H.

(ii) p = (pn) is a sequence in R where pn ≥ 0 for all n ∈ N and∑∞
n=1 pn = 1.

(iii) ω : L (H) → C : T 7→∑∞
n=1 pn〈hn, Thn〉.

(iv) τ : R → Aut (A) : t 7→ τt where τt : A → A : T 7→ V *
t TVt and

Vt ∈ A is uniquely defined by its action on H :

Vthn = e−iEnthn

where En ∈ R, for all n ∈ N. E1, E2, ... are called the energy
values of the system.

2. Ergodic properties

To investigate the ergodic properties of our first C*-dynamical sys-
tem, we will utilize the spectral characterizations, and interrelation-
ships, of the ergodic properties derived in Chapter 2. For the examples
of subsequent chapters, however, we will find cases wherein the Hilbert
space characterizations are more efficient.

Proposition 2.1. DESS(p, En) is compact, for any p and any en-
ergy values E1, E2, ....

Proof. Let (Hp⊕, π,Ω, U) be the GNS representation of DESS(p, (En))
obtained from Proposition 1.4.

Let (xn) ∈ Hp⊕ and ǫ > 0 be arbitrary. Then limk→∞(xn,k) = (xn)
in Hp⊕ where (xn,k) = (x1, x2, ..., xk, 0, ...). Thus, there is a K ∈ N

such that

‖(xn)− (xn,k)‖Hp⊕ ≤ ǫ

2
∀ k ≥ K.

Now consider the set

HΩ = {(yn) ∈ Hp⊕ : yℓ = hm for some m, ℓ ∈ N, yn = 0 for all n 6= ℓ}.
Thus, if z ∈ HΩ, then z has an element of the orthonormal basis set
{hn} in one coordinate, and zeros elsewhere. It readily follows that, for
any k ∈ N, there is a qk ∈ span (HΩ) such that ‖(xn,k) − qk‖Hp⊕ < ǫ

2
.

Therefore

‖(xn)− qk‖Hp⊕ ≤ ‖(xn)− (xn,K)‖Hp⊕ + ‖(xn,K)− qK‖Hp⊕ ≤ ǫ

2
+

ǫ

2
= ǫ.

As ǫ > 0 was arbitrary, it follows that (xn) ∈ spanHΩ, and as (xn) ∈
Hp⊕ was arbitrary, we have that spanHΩ = Hp⊕. Thus, if spanHΩ ⊆
Hp⊕

uds, then Hp⊕ = Hp⊕
uds and DESS(p) will be compact by Theorem

4.10.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



78 3. QUANTUM SYSTEMS WITH DISCRETE ENERGY SPECTRUM

Let z = (zn) be any element of HΩ. Thus at some coordinate ℓ ∈ N,
gℓ = hm for some m ∈ N, and gn = 0 for all n 6= ℓ. For any t ∈ R, it
follows by Proposition 1.4 that

Utz = (e−iEntV *
t zn)

= (0, ..., 0, e−iEℓtV *
t hm, 0, ...)

= ei(Em−Eℓ)t(0, ..., 0, hm, 0, ...)

= ei(Em−Eℓ)tz

which reveals z as an eigenvector, with unimodular eigenvalues, of {Ut :
t ∈ R}. Therefore z ∈ Hp⊕

uds and as z ∈ HΩ was arbitrary, we have that
HΩ ⊆ Hp⊕

uds. As Hp⊕
uds is a vector subspace of Hp⊕, spanHΩ ⊆ Hp⊕

uds as
required. �

In contrast to Proposition 2.1, whether or not DESS(p, En) is er-
godic depends on p and the energy values E1, E2, ....

Proposition 2.2. If pk = 1, for some k ∈ N, then DESS(p, En) is
ergodic if and only if En 6= Ek for all n ∈ N\{k}.

Proof. Let (Hp⊕, π,Ω, U) be the GNS representation of DESS(p, (En))
obtained from Proposition 1.4.

Since pk = 1, pn = 0 for all n 6= k, and therefore all vectors in Hp⊕

can only have a nonzero coordinate in the k’th position. Assume first
that En 6= Ek for all n ∈ N. Consider any x ∈ H with 〈x, hm〉 6= 0
for some m 6= k. That is, x “contains” an hm term other than hk. Let
z = (zn) ∈ Hp⊕ be the vector with x as its sole coordinate. Then, for
any t ∈ R, it follows by Proposition 1.4 that

Utz = (e−iEntV *
t zn)

= (0, ..., 0, e−iEktV *
t x, 0, ...)

= (0, ..., 0, e−iEktV *
t

∞∑

j=1

〈hj, x〉hj, 0, ...)

= (0, ..., 0,
∞∑

j=1

ei(Ej−Ek)t〈hj, x〉hj, 0, ...).

In particular, for a t′ ∈ R such that (Em − Ek)t 6= 2πn for all n ∈ N,
we would have that ei(Em−Ek)t

′ 6= 1. It is then clear that Ut′(zn) 6= (zn).
Hence, the only fixed point of {Ut : t ∈ R} in Hp⊕ is the cyclic vector
Ω = (0, ..., 0, hk, 0, ...).

Conversely, suppose that Em = Ek for am 6= k. Let z = (zn) ∈ Hp⊕

be the vector with hm as its sole coordinate. Then, for any t ∈ R, it
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follows by Proposition 1.4 that

Utz = (e−iEntV *
t zn)

= (0, ..., 0, e−iEktV *
t hm, 0, ...)

= (0, ..., 0, ei(Em−Ek)thm, 0, ...)

= (0, ..., 0, hm, 0, ...)

= z.

Thus z = (0, ..., 0, hm, 0, ...) is a fixed point of {Ut : t ∈ R} other than
Ω = (0, ..., 0, hk, 0, ...). Since hm, hk are linearly independent in H, it
follows that z,Ω are linearly independent in Hp⊕. Thus the fixed point
space of U is at least 2 dimensional. Therefore, DESS(p, En) is not
ergodic by Corollary 4.3. �

Even if the energy values E1, E2, ... are all distinct, DESS(p, En)
can still fail to be ergodic:

Proposition 2.3. If pk, pm 6= 0 for some k,m ∈ N with m, k
distinct, then DESS(p, En) is not ergodic.

Proof. Let (Hp⊕, π,Ω, U) be the GNS representation of DESS(p, (En))
obtained from Proposition 1.4.

Let x = (xn) be the vector in Hp⊕ such that xk = hk, and xn = 0
for all n 6= k. Likewise, let y = (yn) be the vector such that ym = hm

and yn = 0 for all n 6= m. For any t ∈ R it follows that

Utx = (e−iEntV *
t xn)

= (0, ..., 0, e−iEmtV *
t hm, 0, ...)

= (0, ..., 0, e−iEmteiEmthm, 0, ...)

= (0, ..., 0, hm, 0, ...) = x.

Thus x, and likewise y, are fixed points of U . Hence, as x, y are clearly
linearly independent, the fixed point space of U is at least 2 dimen-
sional. Therefore, DESS(p, En) is not ergodic by Corollary 4.3. �

By the two above Propositions, any discrete energy spectrum sys-
tem is either ergodic and compact, or compact but not ergodic. Let
us explicitly define two such systems, or at least as explicitly as is
reasonable.

Definition 2.4. Let (En) be a sequence of distinct real num-
bers. Let p = (pn) be a sequence in R such that pk = 1 for some
k ∈ N and pn = 0 for all n 6= k. Let q = (qn) be a sequence of
non-negative real numbers containing at least two nonzero terms and
such that

∑∞
n=1 qn = 1. Discrete Energy Spectrum System 1 (DESS1)

is DESS(p, En) and Discrete Energy Spectrum System 2 (DESS2) is
DESS(q, En).
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80 3. QUANTUM SYSTEMS WITH DISCRETE ENERGY SPECTRUM

Proposition 2.5. DESS1 is ergodic and compact.

Proof. DESS1 is compact by Proposition 2.1 and ergodic by Propo-
sition 2.2. �

Proposition 2.6. DESS2 is compact and not ergodic.

Proof. DESS2 is compact by Proposition 2.1 and not ergodic by
Proposition 2.3. �
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CHAPTER 4

Reduced Group C*-Algebras

It is possible to construct a C*-algebra from any group, which we
call a reduced group C*-algebra, and given a group automorphism of
the group, we can further derive a ∗-automorphism on the C*-algebra
such that a state on the C*-algebra can readily be identified, that is
invariant under the ∗-automorphism. This is all of the ingredients for
a C*-dynamical system with Z action, which we will call a reduced
group C*-dynamical system. We start by establishing the process by
which this is done, and prove some useful results, without making any
assumptions with regard to the nature of the group. By the end of the
first section of this chapter we will know, upon considering any group
with an automorphism, that a functioning C*-dynamical system can
be built on top of it. We will then, in the subsequent section, analyse
the ergodic properties of these systems and find that exactly three
distinct ergodic “profiles” can exist on them: compact but not ergodic,
strongly mixing, and neither ergodic nor compact. In the final section
of this chapter we construct three concrete examples of reduced group
C*-dynamical systems on which these three “profiles” are present. The
group chosen for this purpose is a free group generated from a countable
set.

In contrast to Chapter 3, this chapter’s work does not carry any di-
rect physical significance, however, from a C*-dynamical perspective,
it is very natural. Our interest in reduced group C*-dynamical sys-
tems are twofold. Two of the ergodic “profiles” are new, and we will
find our first concrete examples of C*-dynamical systems with these
ergodic properties among the reduced group C*-dynamical systems.
We already have an example of a system, in DESS2, that is compact
but not ergodic. Secondly, the final C*-dynamical system that we will
construct, on the quantum torus, can be shown to have the same GNS
representation as a reduced group C*-dynamical system, with a par-
ticular group and group automorphism, and therefore have the same
ergodic properties. We will then be spared from performing a sepa-
rate ergodic analysis on this more complicated final system, and will
promptly identify its ergodic properties from the results in this chap-
ter. Specifically, this relates to the so-called cat mappings on the torus
that we will use to construct a C*-dynamical system on the quantum
torus, in the next chapter.

81
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82 4. REDUCED GROUP C*-ALGEBRAS

1. Construction of the C*-dynamical System

Throughout this section Γ will represent an arbitrary group equipped
with the discrete topology, and ρ : Γ → Γ an automorphism of Γ, unless
stated otherwise. Our only assumption about Γ is that it is not trivial,
i.e. it has more than one element. We endow Γ with a measure struc-
ture by equipping it with a counting measure µ defined on its Borel
σ-algebra. Thus, all subsets of Γ are measurable and the measure µ of
any set equals the number of elements in that set.

The Hilbert space L2(Γ) is therefore fully realised and we will de-
fine the reduced group C*-algebra as a C*-subalgebra of L (L2(Γ)).
To isolate the operators of interest in L (L2(Γ)) we proceed by first
identifying a total orthonormal basis for L2(Γ), so that, to characterize
an operator in L (L2(Γ)) one only has to describe its action on the
basis in such a manner that it is well defined when extended to L2(Γ).

For all g ∈ Γ, we define δg : Γ → C by

δg(h) =

{
1 if h = g,
0 otherwise.

Theorem 1.1. The collection {δg : g ∈ Γ} is a total orthonormal
set in L2(Γ).

Proof. Since δgδh = δgδh = 0 for all g 6= h in Γ, and |δg|2 = δg, it is
clear that {δg : g ∈ Γ} is an orthonormal set in L2(Γ). Consider first an
arbitrary integrable function f : Γ → R with f ≥ 0. If s =

∑n

k=1 akχAk

is a simple function such that 0 ≤ s ≤ f then A =
⋃

k Ak is necessarily
a finite set since otherwise

∫
Γ
f dµ ≥

∫
Γ
s dµ = ∞. As each δg is

the characteristic function of the point set {g}, we thus have that
s′ =

∑
g∈A f(g)δg is a simple function satisfying s ≤ s′ ≤ f . Moreover,

since
∑

g∈S f(g)δg is a simple function less than or equal to f for any
finite S ⊆ Γ, it therefore follows that

∫

Γ

f dµ = sup

{∫

Γ

s dµ : 0 ≤ s ≤ f is a simple function

}

= sup

{∫

Γ

∑

g∈S
f(g)δg dµ : S ⊆ Γ is finite

}

= sup

{∫

S

f dµ : S ⊆ Γ is finite

}
.

Let ǫ > 0 and f ∈ L2(Γ) now be arbitrary. Hence |f |2 ≥ 0 is integrable
so that there is a finite set S ⊆ Γ such that

∫

Γ\S
|f |2 dµ =

∫

Γ

|f |2 dµ−
∫

S

|f |2 dµ < ǫ2
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1. CONSTRUCTION OF THE C*-DYNAMICAL SYSTEM 83

from which it promptly follows that

‖f −
∑

g∈S
f(g)δg‖2 =

∫

Γ

|f −
∑

g∈S
f(g)δg|2 dµ

=

∫

Γ−S
|f |2 dµ

< ǫ2.

Thus ‖f−
∑

g∈S f(g)δg‖ < ǫ and as ǫ > 0 and f ∈ L2(Γ) were arbitrary,

this show that {δg : g ∈ Γ} is a total orthonormal set in L2(Γ). �

Since {δg : g ∈ Γ} is a total orthonormal set in L2(Γ) we thus have
that, for any f ∈ L2(Γ)

f = lim
n→∞

sn with sn =
∑

g∈Gn

an,gδg

for some scalars an,g ∈ C and finite subsets Gn ⊆ Γ. As was seen in the
proof of Theorem 1.1, we may take an,g = f(g) for all n ∈ N and g ∈ Sn.

The following proposition is elementary and will see multiple appli-
cations.

Proposition 1.2. For any bijective mapping γ : Γ → Γ,

(56)

∫

Γ

f dµ =

∫

Γ

f ◦ γ dµ

holds for all integrable f : Γ → C.

Proof. Since γ is bijective, it is an invertible measure preserving
transformation on Γ, so that the proposition follows promptly from
elementary measure theory arguments. That is, (56) is first proven for
step functions, then simple functions and then for positive measurable
functions by using the Monotone Convergence Theorem. Finally, the
result follows from the fact that any integrable f is the difference of
two positive measurable functions. �

Proposition 1.3. For any bijective mapping γ : Γ → Γ,

(57) ϑ : L2(Γ) → L2(Γ) : f 7→ f ◦ γ

determines a unitary operator in L (L2(Γ)).
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Proof. Let us first use ϑ to denote the uniquely determined linear
operator on S(Γ) := span {δh : h ∈ Γ} for which (57) holds. That is,

ϑ : S(Γ) → S(Γ) :
n∑

k=1

akδhk
7→

n∑

k=1

ak(δhk
◦ γ)

:
n∑

k=1

akδhk
7→

n∑

k=1

akδγ−1(hk).

For any s ∈ S(Γ) it follows from Proposition 1.2 that

‖ϑs‖2L2 = ‖(s ◦ γ)2‖L1

= ‖s2 ◦ γ‖L1

= ‖s2‖L1

= ‖s‖2L2 .

Thus ϑ ∈ L (S(Γ)). By the same argument, ϑ−1 ∈ L (S(Γ)), where
ϑ−1 : f 7→ f ◦ γ−1. Hence, by [20, Theorem 2.7-11], ϑ and ϑ−1 have
unique extensions in L (L2(Γ)).

For any r, s ∈ S(Γ), it follows by Proposition 1.2 that

〈ϑr, s〉L2 =

∫

Γ

ϑr s dµ

=

∫

Γ

r ◦ γ s dµ

=

∫

Γ

r s ◦ γ−1 dµ

= 〈r, s ◦ γ−1〉L2

= 〈r, ϑ−1s〉L2 .

By the continuity of the inner product, it now follows that 〈ϑf, g〉 =
〈f, ϑ−1g〉 for all f, g ∈ L2(Γ). Thus, ϑ* = ϑ−1, i.e. ϑ is unitary. �

For the bijections of our general group Γ of the form

Γ → Γ : h 7→ g−1h

where g is some element in Γ, we denote the corresponding unitary
operator given by Proposition 1.3 as λ(g). Thus

λ(g)δh = δgh

for all h ∈ Γ. λ : Γ → U(L2(Γ)) is known as the left regular represen-
tation of Γ, since λ(gh) = λ(g)λ(h) and Γ acts on itself from the left
as is clear from λ(g)δh = δgh. We use this representation to generate
our C*-algebra.

Definition 1.4. The reduced C*-algebra of Γ, denoted C∗r (Γ), is
the C*-algebra generated by the collection of unitary operators {λ(g) :
g ∈ Γ}.
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1. CONSTRUCTION OF THE C*-DYNAMICAL SYSTEM 85

A question that immediately arises is what the general form of
an element of C∗r (Γ) is. Since C∗r (Γ) is the C*-algebra generated by
{λ(g) : g ∈ Γ} it follows that any T ∈ C∗r (Γ) is of the form

T = lim
n→∞

Sn

where Sn =
∑mn

k=1 Vn,k and the Vn,k are elements in the span of {λ(g) :
g ∈ Γ}. An element in the span of {λ(g) : g ∈ Γ} is of the form

m∑

i=1

(
ai

ni∏

j=1

λ(gi,j)

)

for some gi,j ∈ Γ. Thus, an operator T ∈ C∗r (Γ) is the limit of a
sequence of finite sums of finite products of λ(g)’s. However, this may
be simplified since λ(g)λ(h) = λ(gh) for any g, h ∈ Γ. That is, an
element in the span of {λ(g) : g ∈ Γ} is of the form

(58)
m∑

i=1

aiλ(gi)

for some ai ∈ C and gi ∈ Γ. Therefore any operator T ∈ C∗r (Γ) is the
limit of a sequence of finite sums of the form (58).

To define a C*-dynamical system with a Z action we still require
a ∗-automorphism on C∗r (Γ) and a state that is invariant under the
∗-automorphism. Similar to the way in which a group Γ yields the
C*-algebra C∗r (Γ), a group automorphism ρ of Γ can be “expanded” to
define a ∗-automorphism on C∗r (Γ). There are many possible states on
C∗r (Γ), so we will identify a “canonical” one with respect to which the
∗-automorphisms created in this way are always invariant.

Proposition 1.5. If ρ : Γ → Γ is a group automorphism, then
the mapping τ : C∗r (Γ) → C∗r (Γ) : A 7→ UAU*, where U : L2(Γ) →
L2(Γ) : f 7→ f ◦ ρ, is a ∗-automorphism on C∗r (Γ). The mapping
ω : C∗r (Γ) 7→ C : A 7→ 〈δ1, Aδ1〉 is a state on C∗r (Γ), where 1 here
denotes the identity element of Γ. Moreover, ω is invariant under τ .

Proof. By Proposition 1.3, as ρ is bijective, U is a well defined
unitary operator in L (L2(Γ)), and thus τ ′ : L (L2(Γ)) → L (L2(Γ)) :
A 7→ UAU* is a well defined mapping. τ ′ is clearly linear, and for any
A,B ∈ C∗r (Γ),

τ ′(AB) = UABU* = UAU*UBU* = τ ′(A)τ ′(B), and

τ ′(A*) = UA*U* = (UAU*)* = τ ′(A)*.

Thus τ ′ is a ∗-homomorphism, and so to show that τ is a ∗-automorphism,
we have to show that τ : C∗r (Γ) → C∗r (Γ) is well defined and bijective.
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To show that τ is well defined, we will show that τ ′(C∗r ) ⊆ C∗r . Let
g, h ∈ Γ be arbitrary. It follows that

τ ′(λ(g))δh = Uλ(g)U*δh

= Uλ(g)δh ◦ ρ−1

= Uλ(g)δρ(h)

= δgρ(h) ◦ ρ
= δρ−1(g)h

where in the final step we used the knowledge that ρ, and therefore
ρ−1, is a group automorphism of Γ. Thus τ ′(λ(g))δh = λ(ρ−1(g))δh
for all h ∈ Γ, so that since span {δh : h ∈ Γ} is dense in L2(Γ),
τ ′(λ(g)) = λ(ρ−1(g)) ∈ C∗r (Γ).

Similarly for any sum of the form

(59) S =
n∑

i=1

αiλ(gi) ∈ C∗r (Γ)

it follows from the linearity of τ ′ that τ ′(S) =
∑n

i=1 αiλ(ρ
−1(gi)) ∈

C∗r (Γ). For a general A ∈ C∗r (Γ), A = limSn for a sequence of finite
sums of the form (59), and as

‖τ ′(Sn)− τ ′(A)‖ = ‖USnU
* − UAU*‖ = ‖Sn − A‖

for all n ∈ N, it follows that τ ′(Sn) −→ τ ′(A). However, since C∗r (Γ) is
closed and τ ′(Sn) ∈ C∗r (Γ) for all n ∈ N, we have that τ ′(A) ∈ C∗r (Γ).

That τ : C∗r (Γ) → C∗r (Γ) is bijective, follows from the preced-
ing argument which similarly shows, by interchanging U and U*, that
U*AU ∈ C∗r (Γ) for allA ∈ C∗r (Γ). Thus, for anyA ∈ C∗r (Γ), τ(U

*AU) =
UU*AUU* = A. Thus τ is surjective, and injective since τ ′ is clearly
injective.

The functional ω clearly defines a state on C∗r (Γ) as it is linear,
ω(1) = 1 and ω(R*R) = ‖Rδ1‖2 ≥ 0 for all R ∈ C∗r (Γ). For any
A ∈ C∗r (Γ) it follows that

ω ◦ τ(A) = 〈δ1, UAU*δ1〉
= 〈U*δ1, AU

*δ1〉
= 〈δ1 ◦ ρ−1, Aδ1 ◦ ρ−1〉
= 〈δρ(1), Aδρ(1)〉
= 〈δ1, Aδ1〉
= ω(A)

where ρ(1) = 1 since ρ is a group automorphism. Thus ω is invariant
under τ . �
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In the proof of Proposition 1.5 we saw that

τ(λ(g)) = τ ′(λ(g)) = λ(ρ−1(g)).

We include this result as a separate proposition.

Proposition 1.6. For any g ∈ Γ,

τ(λ(g)) = λ(ρ−1(g))

To summarize, starting with any group Γ and group automorphism
we can define a C*-algebra C∗r (Γ) (Definition 1.4), a ∗-automorphism
τ and a state ω invariant under the τ (Proposition 1.5). Hence, we
have all of the ingredients for a C*-dynamical system with a Z action
and since it will be convenient to assign a name to such a system, we
introduce a definition, in keeping with Remarks 1.9.

Definition 1.7. If Γ is a group and ρ : Γ → Γ is a group au-
tomorphism, then RG(Γ, ρ) = (A, ω, τ,Z) is a C*-dynamical system
where

(i) A = C∗r (Γ)
(ii) ω : C∗r (Γ) : A 7→ 〈δ1, Aδ1〉
(iii) τ ∈ Aut (A) is given by τ : C∗r (Γ) → C∗r (Γ) : A 7→ UAU* with

U : L2(Γ) → L2(Γ) : f 7→ f ◦ ρ
We call such a system a reduced group C*-algebraic dynamical system
and refer to Γ and ρ as its group and its group automorphism, respec-
tively.

2. Ergodic properties

In this section we will set out to prove that the C*-dynamical
systems constructed in the preceding section, i.e. reduced group C*-
algebraic dynamical systems, can only have one of three ergodic “pro-
files”:

(1) Strong mixing
(2) Compact but not ergodic
(3) Neither compact nor ergodic

Which of these a reduced group C*-algebraic dynamical system pos-
sesses, we will find, depends on a very simple aspect of its group au-
tomorphism. This is to be expected, of course, since the group auto-
morphism determines the ∗-automorphism group of the C*-dynamical
system. That is, the group automorphism determines the time evolu-
tion of the system.

In this section we will carry over the symbols and notations in-
troduced in the preceding section. Specifically, Γ is an arbitrary group
with accompanying group automorphism ρ, which determines a reduced
group C*-dynamical system (C∗r (Γ), ω, τ,Z). The terms are summa-
rized in Definition 1.7.
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Definition 2.1. For any g ∈ Γ\{1}, the set {ρn(g) : n ∈ Z} is
called the orbit of ρ in g. An orbit is called finite if it only contains a
finite number of elements, or infinite if it contains an infinite number
of elements.

Which of the three ergodic “profiles” mentioned above a reduced
group C*-dynamical system possesses, depends on whether its group
automorphism has only finite orbits, only infinite orbits or both finite
and infinite orbits. This is most easily seen on Hilbert space level so we
proceed by first identifying a GNS representation of a reduced group
C*-dynamical system.

Lemma 2.2. If (C∗r (Γ), ω, τ,Z) is a reduced group C*-dynamical
system, and ρ is its group automorphism, then (L2(Γ), id, δ1, U) is the
GNS representation of the system where U : L2(Γ) → L2(Γ) : f 7→ f ◦ρ.

Proof. (L2(Γ), id) is a trivial representation of C∗r (Γ) with ω as
its vector state in δ1. Therefore, for (L2(Γ), id, δ1) to be the cyclic
representation of the system, we only have to show that δ1 is a cyclic
vector, i.e. that {id(T )δ1 : T ∈ C∗r (Γ)} = {Tδ1 : T ∈ C∗r (Γ)} is dense
in L2(Γ). Consider any f ∈ L2(Γ) and let ǫ > 0 be arbitrary. Since
{δg : g ∈ Γ} is a total orthonormal set in L2(Γ) by Theorem 1.1,

‖f −
m∑

j=1

ajδgj‖ < ǫ

for some a1, ..., am ∈ C and g1, ..., gm ∈ Γ. Since S =
∑m

j=1 ajλ(gj) is an

operator in C∗r (Γ) and Sδ1 =
∑m

j=1 ajδgj we thus have that ‖Sδ1−f‖ <

ǫ. As f ∈ L2(Γ) and ǫ > 0 was arbitrary this shows that {Tδ1 : T ∈
C∗r (Γ)} is dense in L2(Γ).

By definition, the GNS representation of τ is given by the mapping

id(A)δ1 7→ id(τ(A))δ1

for all A ∈ C∗r (Γ), and in particular for all g ∈ G by,

δg = λ(g)δ1 7→ Uλ(g)U*δ1 = Uλ(g)δ1 = Uδg.

Thus the GNS representation of τ corresponds with U , used to define
τ , on span {δg : g ∈ G}. Hence, as {δg : g ∈ G} is an orthonormal
basis of L2(Γ), the GNS representation of τ is U ∈ L (L2(Γ)). �

An important observation to be made from Lemma 2.2 is that,
since we are excluding trivial groups consisting of single elements from
consideration, no reduced group C*-dynamical system is trivial. That
is, the Hilbert space of the GNS representation, L2(Γ), with total or-
thonormal basis {δg : g ∈ Γ}, is not one dimensional.

Proposition 2.3. If all of the orbits of a reduced group C*-algebraic
system’s group automorphism are infinite, then the system is strongly
mixing.
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Proof. Let ρ be the group automorphism of a reduced group C*-
dynamical system (C∗r (Γ), ω, τ,Z). By Lemma 2.2, τ has a GNS repre-
sentation given by U : L2(Γ) → L2(Γ) : f 7→ f ◦ ρ.

For any g, h ∈ Γ and n ∈ N, we have that

〈δg, Unδh〉 = 〈δg, δρ−n(h)〉.
If h 6= 1, then there is an N ∈ N such that δρ−n(h) 6= δg for all n ≥ N ,
since otherwise the orbit {ρn(h) : n ∈ N} would be a finite set. That
is, if ρ−m(h) = g and ρ−n(h) = g for distinct m,n ∈ N, then {ρn(h) :
n ∈ N} can consist of at most |m − n| elements. Since {δg : g ∈ Γ}
is an orthonormal set by Theorem 1.1, 〈δg, Unδh〉 = 0 for all n ≥ N .
Hence

(60) lim
n→∞

〈δg, Unδh〉 = 0 = 〈δg, δ1〉〈δ1, δh〉.

If h = 1, then Unδh = δh for all n ∈ N so that

〈δg, Unδh〉 = 〈δg, δh〉
= 〈δg, δ1〉〈δ1, δh〉

since h = 1. Thus

(61) lim
n→∞

〈x, Uny〉 = 〈x, δ1〉〈δ1, y〉

holds for x = δg, y = δh with g, h ∈ Γ arbitrary. Let x, y ∈ span {δg :

g ∈ Γ} be arbitrary with, say x =
∑ℓ

i=1 αiδgi and y =
∑m

j=1 βjδhj
. If

δhj
6= 1 for all j, then by the preceding arguments

〈x, Uny〉 =
ℓ∑

i=1

m∑

j=1

αiβj〈δgi , Unδhj
〉 = 0

for n large enough. Since, 〈δ1, y〉 = 0 in this case, (61) holds. If hk = 1
for some k ∈ {1, ...,m}, then it again follows that for a large enough n

〈x, Uny〉 =
ℓ∑

i=1

αiβk〈δgi , Unδhk
〉

=
ℓ∑

i=1

αiβk〈δgi , δ1〉

= 〈x, δ1〉βk

= 〈x, δ1〉〈δ1, y〉.
This show that (61) holds for any x, y ∈ span {δg : g ∈ Γ}. That (61)
holds for all x, y ∈ L2(Γ), follows from the fact that {δg : g ∈ Γ} is
dense in L2(Γ) and similar arguments utilizing the triangle inequality,
as in the proof of Proposition 3.1. Thus (C∗r (Γ), ω, τ,Z) is strongly
mixing by Proposition 3.1 (c). �
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The condition in Proposition 2.3 is in fact an “if and only if” con-
dition which we will not have to prove, as it will be an immediate
corollary of a later proposition.

Proposition 2.4. A reduced group C*-algebraic system is compact
if and only if all of its group automorphism’s orbits are finite.

Proof. Let ρ be the group automorphism of a reduced group C*-
dynamical system (C∗r (Γ), ω, τ,Z). By Lemma 2.2, τ has a GNS rep-
resentation given by U : L2(Γ) → L2(Γ) : f 7→ f ◦ ρ. We first prove a
preliminary result, from which the proposition will follow readily.

Consider any g ∈ Γ and suppose that {ρn(g) : n ∈ Z} is finite.
Then, since Unδg = δρ−n(g), {Unδg : n ∈ Z} is finite and therefore
trivially totally bounded in L2(Γ). Conversely, suppose that {Unδg :
n ∈ Z} = {δρ−n(g) : n ∈ Z} is totally bounded in L2(Γ). We can then
show that {ρ−n(g) : n ∈ Z} = {ρn(g) : n ∈ Z} must be finite. For

any g, h ∈ Γ, ‖δg − δh‖L2 =
√
2 so fix an ǫ > 0 such that ǫ <

√
2
2
.

Since {δρn(g) : n ∈ Z} is totally bounded there is a finite set M =
{z1, ..., zm} ⊆ L2(Γ) such that for any n ∈ Z, ‖δρn(g)− zk‖ < ǫ for some
k = 1, ...,m and ‖δh − zk‖ ≥ ǫ for all h 6= ρn(g), since otherwise

‖δρn(g) − δh‖ ≤ ‖δρn(g) − zk‖+ ‖zk − δh‖ < 2ǫ <
√
2.

Hence, each open ǫ ball centered at zk, for k = 1, ...,m, contains at
most one element from {δρn(g) : n ∈ Z} and since every element in
{δρn(g) : n ∈ Z} is in one of these ǫ-balls, it follows that {ρn(g) : n ∈ Z}
is finite.

Now, assume that (C∗r (Γ), ω, τ,Z) is compact. By Theorem 4.10
and Proposition 4.9, all f ∈ L2(Γ) have totally bounded orbits relative
to {Un : n ∈ Z} in L2(Γ). In particular, {Unδg : n ∈ Z} is totally
bounded in L2(Γ) for all g ∈ Γ. Then, by the preceding argument,
{ρn(g) : n ∈ Z} is finite for all g ∈ G, or in other words, the group
automorphism ρ has finite orbits.

Conversely, assume that ρ has finite orbits. Then, by the preceding
argument, δg has totally bounded orbits relative to {Un : n ∈ Z}
for all g ∈ Γ in L2(Γ) = H. By Lemma 4.8 and Proposition 4.9,
span {δg : g ∈ Γ} ⊂ Huds. Since Huds is a closed, Huds = H = L2(Γ) by
Theorem 1.1. Thus (C∗r (Γ), ω, τ,Z) is compact by Theorem 4.10. �

Proposition 2.5. If a reduced group C*-dynamical system’s group
automorphism has at least one finite orbit, then the system is not er-
godic.

Proof. Let ρ be the group automorphism of a reduced group C*-
dynamical system (C∗r (Γ), ω, τ,Z). By Lemma 2.2, τ has a GNS repre-
sentation given by U : L2(Γ) → L2(Γ) : f 7→ f ◦ ρ. Suppose that ρ has
a finite orbit in h ∈ Γ\{1}, i.e. {ρn(h) : n ∈ Z} is finite.
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By Corollary 4.3 and Proposition 1.4 we know that (C∗r (Γ), ω, τρ,Z)
is ergodic if and only if

Uf = f ∀ n ∈ Z ⇐⇒ f ∈ Cδ1

The fact that {ρn(h) : n ∈ Z} is a finite set allows us to easily define
an f ∈ L2(Γ) that is a fixed point of U , but not a constant multiple
of δ1. Suppose that {ρn(h) : n ∈ Z} = {h1, ..., hm}. It is clear that∑m

j=1 δρ−1(hj) =
∑m

j=1 δhj
. If we set f =

∑m

j=1 δhj
, then it follows that

Uf = U
m∑

j=1

δhj

=
m∑

j=1

δρ−1(hj)

=
m∑

j=1

δ(hj) = f.

Therefore f is a fixed point of U and since f 6∈ Cδ1, (C
∗
r (Γ), ω, τ,Z) is

not ergodic. �

Since a C*-dynamical system that is strongly mixing is also ergodic,
by Proposition 2.3, Proposition 2.5 has the following corollary.

Corollary 2.6. If a reduced group C*-dynamical system, with
group automorphism ρ, is strongly mixing, then all of the orbits of
ρ are infinite. Furthermore, a reduced group C*-dynamical system is
strongly mixing if and only if it is ergodic.

Finally, if the group automorphism ρ has both finite and infinite
orbits, then the system is not ergodic, by Proposition 2.5, and not
compact by Proposition 2.4. For any reduced group C*-dynamical
system with group automorphism ρ we therefore have in summary:

ρ has only infinite orbits ≡ strongly mixing
ρ has only finite orbits ≡ compact but not ergodic
ρ has both finite orbits and ≡ neither compact nor ergodic

infinite orbits

3. The case of free groups

In the preceding section we learned that to completely specify a re-
duced group C*-dynamical system, we only need to supply a group with
a group automorphism. It was also proven that a reduced group C*-
dynamical system is either compact but not ergodic, strongly mixing
or does not have any of the four ergodic properties that we are consid-
ering. We referred to these as the three different ergodic “profiles” that
are possible. It is now our aim to supply examples of each of these three
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possibilities. With reference to the summary at the end of the previous
section, it is not an altogether difficult exercise to think of three group
and group automorphism pairs that will yield systems having, consecu-
tively, each of these three ergodic “profiles”. It is far more interesting,
however, to consider three reduced group C*-dynamical systems that
share the same group, but with three different group automorphisms.
Ergodic properties depend on the C*-algebra, state and the time evolu-
tion. For any reduced group C*-dynamical system, changing the group
and the automorphism, amounts to changing the C*-algebra, the state
and the time evolution. It would then come as no surprise if the new
system has different ergodic properties. However, if we only change the
group automorphism, then all that changes, is the time evolution of the
system, so we would of course then expect the ergodic properties to be
at risk of changing as well. Therefore, identifying a single group with
three different group automorphisms, such that the resulting three re-
duced group C*-dynamical systems have these three different ergodic
“profiles”, would be a good example this. A group for which this is
readily possible, is the free group of a countable set.

Let S = {..., s−2, s−1, s0, s1, s2, ...} be a countable set and let FS be
the free group generated by S. Thus, each element in S is assigned an
inverse S−1 = {s−1 : s ∈ S} and elements of FS consist of finite strings
of elements of S ∪ S−1 with “elimination” taken into account, i.e. any
substring s−1s or ss−1 is removed. In particular, the identity 1 of FS

is the empty string. Thus

FS = {a1...am : ai ∈ S ∪ S−1 and ai 6= a−1i+1 ∀ i = 1, ...,m− 1}.
For any a, b ∈ FS with, say, a = a1...am and b = b1...bn, the group
operation of FS is given by:

ab = a1...am−kbk...bn

where 0 ≤ k ≤ min{m,n} is the smallest number such that am−k 6= b−1k .

If q : S → S is a bijection then q can be used to define a group
automorphism on FS.

Proposition 3.1. If q : S → S is bijective, then

Qq : Fs → FS : a1...am 7→ q(a1)...q(am)

is a group automorphism on FS if we define

q(1) = 1 and q(s−1) = q(s)−1 ∀ s ∈ S.

Proof. Since q : S → S is bijective, it is clear that

(62) q(s1) = q(s2)
−1 ⇔ s1 = s−12

for all s1, s2 ∈ S ∪ S−1 which shows that Qq : FS → FS is well defined.
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Let a, b ∈ FS be arbitrary with, say, a = a1...am and b = b1...bn.
Let 0 ≤ k ≤ min{m,n} be the smallest number such that am−k 6= b−1k .
Then, by (62),

Qq(a)Qq(b) = q(a1)...q(am−k)q(bk)...q(bn)

= Qq(a1...am−kbk...bn)

= Qq(ab).

Thus Qq : Fs → FS is a group automorphism �

Now that we know that any bijection of S defines a group auto-
morphism of FS it is a simple matter to identify three bijections that
defines three group automorphisms of FS that have, consecutively, in-
finite orbits, finite orbits and neither finite nor infinite orbits. This is
simply because it is easy to identify bijections of S that have, consecu-
tively, infinite orbits, finite orbits and neither finite nor infinite orbits,
which then carry over to FS.

Proposition 3.2. Let m ∈ N. If we define

q1 : S → S : si 7→ si+1 ∀ i ∈ Z

q2 : S → S :

{
si 7→ si+1 ∀ i 6∈ {mn : n ∈ Z},
smn 7→ sm(n−1)+1 ∀ n ∈ Z

q3 : S → S :

{
s2n 7→ s2(n+1) , and
s2n+1 7→ s2n+1 ∀ n ∈ Z

then Qq1 : FS → FS has infinite orbits, Qq2 : FS → FS has finite orbits
and Qq2 : FS → FS has both finite orbits and infinite orbits.

Proof. The proof is elementary. First note that q1 “shifts” each
element ahead by one, q2 shifts every element ahead by one, except if
the element is in a mn position, in which case it is moved backwards
by m units, and so creates an infinite series of consecutive “m-loops”.
Lastly, q3 only moves every second element ahead by two.

It is clear that q1, q2 and q3 have, respectively, infinite orbits, finite
orbits and both finite orbits and infinite orbits in S. Therefore, we
only have to understand that these orbits carry over to FS. Consider
any nonempty string in FS, say a = a1a2...am. Then, for any n ∈ Z,
Qn

qi
(a) = qni (a1)q

n
i (a2)...q

n
i (am).

In the case of Qq1 , since for any s ∈ S ∪ S−1, qn1 (s) is distinct for
all n ∈ Z, it is clear that Qn

q1
(a) 6= a for any n ∈ Z\{0}. That is, Qq1

has infinite orbits.
In the case of Qq2 , we have that qm2 (s) = s for any s ∈ S ∪ S−1, so

that Qmn
q2

(a) = a for all n ∈ Z. That is, Qq2 has finite orbits.
In the case of Qq3 , if a1, ..., am ∈ {s2n+1 : n ∈ Z}, then Qn

q3
(a) = a

for all n ∈ Z. But if ai ∈ {s2n : n ∈ Z} for at least one i, then q3 will
send ai on an infinite cycle of two “shifts” forwards or backwards so
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that Qn
q3
(a) 6= a for all n ∈ Z\{0}. That is, {Qn

q3
(a) : n ∈ Z} is finite

for some a ∈ FS and infinite for others. �

With the free group FS generated from S, and the three group
automorphisms q1, q2, q3 of FS we can now define the three reduced
group C*-dynamical systems using definition 1.7. For convenience, we
wish to give each a name.

Definition 3.3. The reduced free group C*-dynamical systems
1,2 and 3 (ReFG1,ReFG2 and ReFG3) are the reduced group C*-
dynamical systems with group FS and, respectively, group automor-
phisms Qq1 , Qq2 and Qq3 . That is, ReFG1 = FG(FS, Qq1), ReFG2 =
FG(FS, Qq2) and ReFG3 = FG(FS, Qq3).

Proposition 3.4. ReFG1 is strongly mixing.

Proof. Immediate from Propositions 2.3 and 3.2. �

Proposition 3.5. ReFG2 is compact but not ergodic.

Proof. Immediate from Propositions 2.4,2.5 and 3.2. �

Proposition 3.6. ReFG1 is neither ergodic nor compact.

Proof. Immediate from propositions 2.4,2.5 and 3.2. �
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CHAPTER 5

The Quantum Torus

The quantum torus is a very basic example of a noncommutative
C*-algebra that has come up again and again in the literature over the
past thirty years. In particular, the quantum torus has been studied
both in regard to quantum chaos and quantum ergodic theory in the
physics literature. In [23], Heide explains that, to study and define
quantum chaos, a classical chaotic system can be quantized to study
what footprints of the classic chaotic behaviour remains in the quantum
case, and in [5] it is explained that, as maps on the torus offer canonical
examples of chaotic systems, it is natural to test conjectures about the
quantization of chaotic systems by quantizing such maps. Our interest
lies in the quantization of maps on the torus, as this yields a noncom-
mutative dynamical system on which we can attempt ergodic analysis.
In [17], Klimek and Leśniewski explains that quantization of dynam-
ical systems has two components: construction of a quantized phase
space of the dynamical system, given by a noncommutative algebra
of observables, and defining a time evolution on the quantized phase
space. In [18], Klimek and Leśniewski discusses how quantum ergod-
icity can be defined and interpreted on these quantized systems, and
then proceed to study the ergodic properties of two quantized maps on
the torus, the Kronecker map (translation on the torus) and Arnold’s
cat map (group automorphism on the torus).

In this chapter we will quantize two maps on the torus: We will
first quantize the group of translations on the torus, which should not
be confused with the Kronecker map wherein a dynamic is defined with
a Z action using a single translation on the torus. Instead, we will use
the group R2 of all translations on the torus to determine an action.
For our final example we will, similar to [18], quantize the Arnold cat
map albeit in a different manner that fits into our framework, using C*-
dynamical systems. Our approach for both examples will be to start
with the Hilbert space of functions on the torus, L2(T2), and define two
unitary operators in L (H), satisfying a certain commutation relation,
that will act as the generators of the quantum torus Aθ. We will
then define evolution on Aθ by realizing the group of translations, and
Arnold’s cat map as unitary operators in L (L2(T2)), and then defining
evolution in terms of these unitary operators. Our approach to quantize
Arnold’s cat map will be significantly simpler than [18] but our ergodic
analysis will mirror the results of [18].

95
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96 5. THE QUANTUM TORUS

1. Construction of the quantum torus

In this section we will first define what is meant by a quantum
torus, and discuss its relation to the classical torus, before we consider
how a C*-dynamical system can be constructed on top of it. Both the
quantum and classical torus are constructed on top of the topological
torus T2 = R2/2πZ2. Its algebraic, topological and measure structure
are discussed in the appendix. For the sake of brevity, and to safeguard
the simplicity of the expressions to follow, we will adopt a simplified
notation for functions defined on the torus T2 = R2/2πZ2. For any
f : T2 → C and (x, y) + 2πZ2 ∈ T2 we will denote the value of f at
(x, y) + 2πZ2 simply by f(x, y). We will do the same for points on T2

and will write (x, y) ∈ T2 instead of (x, y) + 2πZ2 ∈ T2.
Furthermore, throughout this chapter, ν will denote the normalized

Haar measure on T2, which is compact, and L2(T2) will denote L2(ν).

In the following Theorem we define two unitary operators in L (T2),
which will be the building blocks of the quantum torus.

Theorem 1.1. For any θ ∈ R, let

Uθ,Vθ : L
2(T2) → L2(T2)

be defined by

(Uθf)(x, y) = eixf(x, y − θ

2
)

(Vθf)(x, y) = eiyf(x+
θ

2
, y)

for any f ∈ L2(T2) and x, y ∈ R. Then Uθ and Vθ are unitary operators
in L (L2(T2)). Furthermore

UθVθ = e−iθVθUθ.

Proof. For any f ∈ L2(T2) it follows by the translation invariance
of ν that

∫

T2

|f |2 dν =

∫

T2

|f(x, y − θ

2
)|2 dν(x, y)

=

∫

T2

|eixf(x, y − θ

2
)|2 dν

=

∫

T2

|Uθf |2 dν.

Similarly,
∫
T2 |f |2 dν =

∫
T2 |Vθf |2 dν. Thus Uθ and Vθ, which are also

clearly linear, are well defined isometries in L (L2(T2)). Note that by
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1. CONSTRUCTION OF THE QUANTUM TORUS 97

a completely similar argument, the mappings U′θ,V
′
θ defined by

(U′θf)(x, y) = e−ixf(x, y +
θ

2
)

(V′θf)(x, y) = e−iyf(x− θ

2
, y)

for all f ∈ L2(T2), are also well-defined operators in L (L2(T2)). Clearly

UθU
′
θ = U′θUθ = 1 = VθV

′
θ = V′θUθ

so that, therefore, U′θ = U−1θ and V′θ = V−1θ . Therefore, Uθ and Vθ

are surjective isometries, and hence necessarily unitary by [20, 3.10-6
Theorem (f)].

To obtain the final assertion, let f ∈ L2(T2) be arbitrary. Then,
for any x, y ∈ R we have that

(UθVθf)(x, y) = (Uθ(Vθf))(x, y)

= eix(Vθf)(x, y −
θ

2
)

= eixei(y−
θ
2
)f(x+

θ

2
, y − θ

2
)

= e−iθei(x+
θ
2
)eiyf(x+

θ

2
, y − θ

2
)

= e−iθeiy(Uθf)(x+
θ

2
, y)

= e−iθ(Vθ(Uθf))(x, y).

Thus, UθVθ = e−iθVθUθ. �

Definition 1.2. For any fixed θ ∈ R, the quantum torus is the
C*-subalgebra of L (L2(T2)) generated by the unitary operators Uθ

and Vθ, and is denoted Aθ.

The trigonometric polynomials play a central role in the quantum
torus and that they are dense in C(T2) and L2(T2) is of fundamental
importance. In order to make the proof of this fact more concise, we
include the following lemma, which is a special case of [6, Proposition
7.4.2] extended to complex functions (see bottom of [6, p. 228]).

Lemma 1.3. Let µ be a regular measure on a compact Hausdorff
space X. Then C(X) is dense in L2(µ).

Since the Haar measure ν is regular, by definition [6, Section 9.2],
and T2 is compact, Lemma 1.3 is applicable to (T2, ν).

Theorem 1.4. The trigonometric polynomials span {Em,n : m,n ∈
N} where Em,n(x, y) = eimxeiny, are dense both in C(T2) and L2(T2)
in their respective norms.
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98 5. THE QUANTUM TORUS

Proof. Let Γ = span {eimxeiny : n,m ∈ Z}. As Γ ⊆ C(T2) and
T2 is compact, Γ ⊆ L2(T2). Γ is self-adjoint in the sense that it is
closed under complex conjugation. As the constant function 1 is a
function in Γ, Γ vanishes at no point in T2. Γ also separates the
points of T2 for if (x1, y1) 6= (x2, y2) for some (x1, y1), (x2, y2) ∈ T2 then
f(x1, y1) 6= f(x1, y1) if f = eix or if f = eiy, depending on whether
x1 − x2 6= 2πn or y1 − y2 6= 2πn. Therefore by the Stone-Weierstrass
Theorem, generalized for complex functions, [26, Theorem 7.33], Γ is
dense in C(T2).

For any f ∈ C(T2), in particular any f ∈ Γ, we have that ‖f‖2 ≤
‖f‖∞, so that the topology of L2(T2) restricted to Γ, is weaker than
the topology of C(T2) restricted to Γ. Therefore

clL2(T2)(Γ) ⊇ clC(T2)(Γ) = C(T2)(63)

by the density of Γ in C(T2). By Lemma 1.3, C(T2) is dense in L2(T2)
from which it follows, by (63), that

clL2(T2)(Γ) ⊇ clL2(T2)(C(T2)) = L2(T2)

which shows that clL2(T2)(Γ) = L2(T2). That is, Γ is dense in L2(T2)
�

By [22, Theorem 2.1.15] we can recover T2 from the C*-algebra
C(T2) up to a homeomorphism, and so we refer to C(T2) as the clas-
sical torus, since, at least topologically, it contains all the information
regarding T2. Hence, the classical torus C(T2) is a commutative C*-
algebra as the algebraic operation is pointwise multiplication of the
complex functions. The question immediately arises: In what way, if
any, does the quantum torus generalize the classical torus? The answer
lies in the choice of the parameter θ. As UθVθ = e−iθVθUθ, by Theorem
1.1, it is clear that the quantum torus is commutative if and only if
θ = 0. Thus, the quantum torus, like the classical torus, is commu-
tative if θ = 0. More than that, not wishing to increase the suspense
any further, the quantum torus and the classical torus are ∗-isomorphic
if θ = 0. This important result is a consequence of the fact that the
trigonometric polynomials,

∑
αie

inixeimiy are dense in C(T2), and the
observation that the norm of an operator in A0 is effectively the sup-
norm of C(T2). Before we proceed to prove that the two spaces are
isomorphic, we state the latter more clearly in the following lemma.

Lemma 1.5. For any g ∈ C(T2), the operator

A : L2(T2) → L2(T2) : f 7→ gf

is in L (L2(T2)), and

‖A‖ = ‖g‖∞ = sup
(x,y)∈T2

|g(x, y)|.
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1. CONSTRUCTION OF THE QUANTUM TORUS 99

Proof. Let M = ‖g‖∞. Thus |g(x, y)| ≤ M for all (x, y) ∈ T2 so
that, for any f ∈ L2(T2)

‖Af‖2L2 =

∫

T2

|fg|2 dν ≤ M2

∫

T2

|f |2 dν = M2‖f‖2L2(64)

A is clearly linear, and from (64) we can see that A : L2(T2) → L2(T2)
is well defined, that A ∈ L (L2(T2)) and furthermore that ‖A‖ ≤ M .
If M = 0 we are done, so assume that M > 0.

As |g| is continuous on T2, which is compact, |g(x′, y′)| = M for
some (x′, y′) ∈ T2. Let 0 < ǫ < M be arbitrary. By the continuity of
|g|, there is a nonempty open set (x, y) ∈ Aǫ such that |g(x, y)| > M−ǫ
for all (x, y) ∈ Aǫ. Since ν is a Haar measure, ν(Aǫ) > 0 by [6, Lemma
9.2.2]. Define the function

f : T2 → C : (x, y) 7→ 1√
ν(Aδ)

χ
Aδ
.

Clearly f ∈ L2(T2) and ‖f‖L2 = 1. It follows that

‖Af‖L2 =

√∫

T2

|g 1√
ν(Aǫ)

χ
Aδ
|2 dν =

√
1

ν(Aǫ)

∫

Aǫ

|g|2 dν

≥
√

1

ν(Aǫ)

∫

Aǫ

|M − ǫ|2 dν

= M − ǫ.

Thus ‖A‖ ≥ |M − ǫ|, and as 0 < ǫ < M was arbitrary, ‖A‖ ≥ M . �

Theorem 1.6. If θ = 0, the quantum torus, Aθ, and the classical
torus, C(T2), are ∗-isomorphic through the mapping

ϕ : C(T2) → Aθ

where ϕ(f)h := fh for all f ∈ C(T2) and h ∈ L2(T2).

Proof. ϕ : C(T2) → L (L2(T2)) is well defined by Lemma 1.5, and
clearly determines a homomorphism of C(T2) into L (L2(T2)). For any
f ∈ C(T2) and g, h ∈ L2(T2) we have that

〈
ϕ(f)g, h

〉
L2(T2)

=
〈
fg, h

〉
=

√∫

T2

fgh dν

= 〈g, fh〉
= 〈g, ϕ(f)h〉
= 〈ϕ(f)*g, h〉.

Hence ϕ(f)g = ϕ(f)*g for any g ∈ L2(T2), or in other words, ϕ(f) =
ϕ(f)*. Thus ϕ : C(T2) → L (L2(T2)) is a ∗-homomorphism.
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100 5. THE QUANTUM TORUS

Let Γ = span {Em,n : m,n ∈ Z}. For any m,n ∈ Z and h ∈ L2(T2),

(ϕ(Em,n)h)(x, y) = eimxeinyh(x, y) = (Um
0 V

n
0h)(x, y).

Thus ϕ(Em,n) = Um
0 V

n
0 so that, since ϕ is a homomorphism, we have

that ϕ(Γ) ⊆ A0. If f ∈ C(T2) is arbitrary then, by Theorem 1.4, sn −→
f for some sequence (sn) in Γ. Since ϕ is linear and norm preserving, by
Lemma 1.5, it follows that ϕ(sn) −→ ϕ(f) in L (L2(T2)). Therefore,
since A0 is closed in L (L2(T2)), and ϕ(Γ) ⊆ A0, it follows that ϕ(f) ∈
A0. Thus ϕ : C(T2) → A0 is a ∗-homomorphism. Moreover, ϕ is
injective since for any f, g ∈ C(T2), if fh = gh for all h ∈ L2(T2), then
f = g.

To show that ϕ : C(T2) → A0 is surjective, let A ∈ A0 be arbitrary,
and let (An) be a sequence in span {Um

0 V
n
0 : m,n ∈ Z} converging to A.

Thus (sn) := (ϕ−1(An)) is a convergent sequence in C(T2) converging
to, say, f ∈ C(T2). So, as before, An = ϕ(sn) −→ ϕ(f) so that by the
uniqueness of limits in L (L2(T2)), we have that A = ϕ(f). �

It is worth noting that the ∗-isomorphism, ϕ, established between
C(T2) and A0 effectively does a GNS construction of C(T2). That is,
(L2(T2), ϕ, 1) is a cyclic representation of C(T2).

2. Construction of C*-dynamical systems

To construct a dynamical system on the quantum torus, we look
to the classical torus C(T2) for inspiration. One can easily imagine
some sort of dynamics on the functions in C(T2), and since C(T2)
and A0 are ∗-isomorphic, the dynamics’ “manifestation” on A0 can
be determined. Hopefully one could then generalize the dynamics to
Aθ and obtain a ∗-automorphism, or group of ∗-automorphisms. For
example, if φ : T2 → T2, then it would be natural to consider the
following dynamics on C(T2):

(65) τ : C(T2) → C(T2) : f 7→ f ◦ φ.
Of course, for it to be well-defined we will have to place some conditions
on φ, so lets assume that φ is a homeomorphism and measure preserv-
ing. From the former it can be shown that τ is a ∗-automorphism
on C(T2). If we can identify a suitable state ω, then we will have a
C*-dynamical system of the form (C(T2), ω, τ,Z).

The question now is: Can we generalize (65) to Aθ? By Theorem
1.6, the mapping ϕ : C(T2) → A0 where ϕ(f)h = fh, for any f ∈
C(T2) and all h ∈ L2(T2), determines a ∗-isomorphism between C(T2)
and A0. So, for an arbitrary A ∈ A0, there is a unique f = ϕ−1(A) ∈
C(T2) such that Ah = fh for all h ∈ L2(T2). Hence, we can migrate
(65) to A0 with

(66) τ ′ : A0 → A0 : A 7→ ϕ ◦ τ ◦ ϕ−1(A).

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2. CONSTRUCTION OF C*-DYNAMICAL SYSTEMS 101

Thus, for any A ∈ A0 and h ∈ L2(T2)

τ ′(A)h = ϕ(τ(ϕ−1(A)))h = τ(ϕ−1(A))h = τ(f)h.

That is, Ah = fh and τ ′(A)h = τ(f)h which clearly shows (65)’s
“manifestation” on A0. (66) can be written in a more useful form, if
we define

U : L2(T2) → L2(T2) : f 7→ f ◦ φ.
Then U ∈ L (L2(T2)) is unitary and

(67) τ ′ : A0 → A0 : A 7→ UAU*.

The usefulness of (67) compared to (66) is that, in principle, it can be
directly generalized to Aθ with

(68) τ ′ : Aθ → Aθ : A 7→ UAU*.

For (68) to be valid, we would require UAθU
−1 ⊆ Aθ, however we

would further like (68) to determine a ∗-automorphism of Aθ in which
case we will have succeeded in generalizing (65) to the quantum torus.
So the next question is under what conditions does this occur? This
question is answered, more generally, in the following proposition:

Proposition 2.1. Let θ ∈ R. Let G be a group and U a unitary
representation of G on L (L2(T2)) such that Ug1 = 1 and UgAθU

*
g ⊆

Aθ for all g ∈ G. Define

ω : Aθ → C : A 7→ 〈1, A1〉L2

τ : G → Aut (Aθ) : g 7→ τg

τg : Aθ → Aθ : A 7→ UgAU
*
g

Then (Aθ, ω, τ, G) is an abstract dynamical system. Furthermore,
(L2(T2), id, 1, U) is its GNS representation.

Proof. Aθ is a C*-algebra by definition and it is easy to see that
ω defines a positive linear functional on Aθ such that ω(1) = 1, i.e. ω
defines a state. Since UgAθU

*
g ⊆ Aθ for all g ∈ G, we have that τg

is well defined for all g ∈ G. That, τg ∈ Aut (Aθ), τg ◦ τh = τgh and
ω ◦ τg = ω for all g, h ∈ G, is established in the same way as was done
for the group of automorphisms in Proposition 1.1 where the state and
∗-automorphisms are defined similarly. Thus, (Aθ, ω, τ, G) as defined
is an abstract dynamical system.

(L2(T2), id, 1) is trivially a cyclic representation of (Aθ, ω, τ, G) pro-
vided we know that {id(T )1 : T ∈ Aθ} is dense in L2(T2). Considering
the operators in Aθ that are finite sums of operators of the form Um

θ V
n
θ

it is clear that, as id(Um
θ V

n
θ )1 = Um

θ V
n
θ1 = e−

mθ
2 Em,n,

{id(A)1 : A ∈ Aθ} ⊇ span{Em,n : m,n ∈ N}.
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102 5. THE QUANTUM TORUS

Therefore, by Theorem 1.4, {id(T )1 : T ∈ Aθ} is dense in L2(T2). The
GNS representation is now given by (L2(T2), id, 1, U) since id(τg(A))1 =
UgAU

*
g 1 = UgAU−g1 = UgA1 as required in Definition 1.3. �

To apply Proposition 2.1 we have to supply the group of unitary
operators {Ug : g ∈ G}. We will derive such a group from the group
of translation maps on the torus, and later from a cat mapping on
the torus, so that by Proposition 2.1 we will then have two abstract
dynamical systems. In the case of the cat mapping on the torus, G = Z,
and so it will be immediate that the abstract dynamical system is a C*-
dynamical system. For the case of the group R2 of translations on the
torus, however, we will have to explicitly establish that the abstract
dynamical system obtained from Proposition 2.1 is a C*-dynamical
system, since then G will be equal to R2. We will consider the group
of translations on the torus in the next section.

Proposition 2.1 reveals a remarkably convenient feature of C*-dyn-
amical systems on the quantum torus. If an abstract dynamical system
is constructed in the way described by Proposition 2.1, and it can be
shown to constitute a C*-dynamical system for the particular choice in
G and unitary operators {Ug : g ∈ G}, then the system has the same
GNS representation for all values of θ. Recalling from section 2.3 that
all the ergodic properties of a system can be completely characterized
in terms of the GNS representation, on the Hilbert space of the cyclic
representation, it follows that the ergodic properties of a C*-dynamical
system on the quantum torus Aθ, are the same for all values of θ. That
is, the dynamical systems on the classical and quantum torus have the
same ergodic properties and it is sufficient, therefore, to only consider
the classical case, when θ = 0, which is precisely what we shall do, if
it simplifies the analysis.

3. Dynamics given by translation

In this section we will use the group of all translations on the torus

T2 → T2 : (x, y) 7→ (x+ s, y + t)

to first define an abstract dynamical system on the torus using Propo-
sition 2.1. In the classical case this dynamic reduces to the shifting of
functions in C(T2). We will then show that an abstract dynamical sys-
tem created in this way, using translations, constitutes a C*-dynamical
system.

Proposition 3.1. For any (s, t) ∈ R2, let ρs,t : T
2 → T2 : (x, y) 7→

(x+ s, y + t). Then

Us,t : L
2(T2) → L2(T2) : f 7→ f ◦ ρs,t

satisfies the requirements of Proposition 2.1 and the resulting abstract
dynamical system (Aθ, ω, τ,R

2) is a C*-dynamical system. Further-
more, τs,t(Uθ) = eisUθ and τs,t(Vθ) = eitVθ.
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3. DYNAMICS GIVEN BY TRANSLATION 103

Proof. Let θ ∈ R and (s, t) ∈ R2 be arbitrary. Us,t is easily seen
to be linear, and by the translation invariance of ν

∫

T2

|f |2 dν =

∫

T2

|f(x+ s, y + t)|2 dν.

Thus Us,t : L
2(T2) → L2(T2) is a well defined isometry in L (L2(T2)).

From the definition it is clear that Us,tUs′,t′ = Us+s′,t+t′ for any (s′, t′) ∈
R2, and in particular, Us,tU−s,−t = U−s,−tUs,t = 1 which shows that
Us,t is invertible and therefore unitary, again by [20, Theorem 3.10-6
(f)]. This also shows that G → L (L2(T2)) : g 7→ Ug is a unitary
representation of G. Us,t1 = 1 is immediate.

To show that Us,tAθUs,t ⊆ Aθ first note that the mapping τ ′s,t :

L (L2(T2)) : A 7→ Us,tAU
*
s,t is a ∗-automorphism of L (L2(T2)), as we

have seen before, and is therefore isometric by [22, Theorem 2.1.7].
Now let f ∈ L2(T2) and (x, y) ∈ T2 be arbitrary. It follows that

(
Us,tUθU

*
s,tf
)
(x, y) =

(
UθU

∗
s,tf
)
(x+ s, y + t)

= ei(x+s) (U−s,−tf) (x+ s, y + t− θ

2
)

= eiseixf(x, y − θ

2
)

=
(
eisUθf

)
(x, y).

Thus τ ′s,t(Uθ) = eisUθ, and similarly τ ′s,t(Vθ) = eitVθ. Let

A′θ = span {Um
θ V

n
θ : m,n ∈ Z}.

Then it follows that

Us,tA′θU*
s,t ⊆ A′θ

since τ ′s,t is a ∗-automorphism. If A ∈ Aθ, then An −→ A for some
sequence (An) in A′θ. However, since τ ′s,t is isometric, it follows that
limn→∞ τ ′s,t(An) = τ ′s,t(A), so that since τ ′s,t(Tn) ∈ A′θ ⊆ Aθ for all
n ∈ N, and Aθ is closed, τ ′s,t(A) ∈ Aθ follows. That is, τ ′s,t(Aθ) =

Us,tAθU
*
s,t ⊆ Aθ as required.

Thus Proposition 2.1 applies, and (Aθ, ω, τ,R
2) is an abstract dy-

namical system with GNS representation (L2(T2), id, 1, U). We will
now show that it is a C*-dynamical system.

R2 is Abelian, separable and locally compact. An example of a
Følner sequence in R2 is Λn = {(x, y) ∈ R2 : x2 + y2 ≤ n2}. Thus R2 is
a separable Abelian amenable group.

Consider any convergent sequence (sk, tk) ⊆ R2 with, say (sk, tk) −→
(s, t), for some (s, t) ∈ R2. We wish to show that so-lim Usk,tk = Us,t

which holds if and only if Usk,tkf −→ Us,tf for all f ∈ L2(T2). Consider
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104 5. THE QUANTUM TORUS

first, an arbitrary trigonometric polynomial eimxeiny. It follows that

‖Usk,tkEm,n − Us,tEm,n‖ = ‖eimskeintkEm,n − eimseintEm,n‖
= |eimskeintk − eimseint|‖Em,n‖

so that, since sk −→ s and tk −→ t, we have that eimskeintk −→ eimseint

by the continuity of eimxeiny, and therefore that

(69) Usk,tkEm,n −→ Us,tEm,n.

For any element in span {Em,n : m,n ∈ Z}, say
∑M

j=1 ajEm,n, it follows
that

‖Usk,tk

M∑

j=1

ajEmj ,nj
− Us,t

M∑

j=1

ajEmj ,nj
‖

≤
M∑

j=1

|aj|‖Usk,tkEmj ,nj
− Us,tEmj ,nj

‖

so that, by (69) we still have that

(70) Usk,tkg −→ Us,tg

for all g ∈ span {Em,n : m,n ∈ Z}. Now, for any f ∈ L2(T2) and ǫ > 0
there is, since the trigonometric polynomials are dense in L2(T2) by
Theorem 1.4, an f ′ ∈ span {Em,n : m,n ∈ Z} such that ‖f − f ′‖ < ǫ

3
.

By (70) there is an N ∈ N such that ‖Us,tf
′ − Usk,tkf

′‖ < ǫ
3
for all

k ≥ N . It follows that

‖Us,tf − Usk,tkf‖ ≤ ‖Us,tf − Us,tf
′‖+ ‖Us,tf

′ − Usk,tkf
′‖

+ ‖Usk,tkf
′ − Usk,tkf‖

= ‖f − f ′‖+ ‖Us,tf
′ − Usk,tkf

′‖+ ‖f − f ′‖
≤ ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ

for all k ≥ N . Hence, since ǫ > 0 was arbitrary, Usk,tkf −→ Us,tf , and
as f ∈ L2(T2) was arbitrary, so-lim Usk,tk = Us,t. Thus U : (s, t) 7→ Us,t

is so-continuous as required, and all of the requirements are met for
(Aθ, ω, τ,R

2) to be a C*-dynamical system. �

Proposition 3.1 gives us our first C*-dynamical system on the torus.
As with all other examples already considered, and yet to be considered,
we define the C*-dynamical system in full detail for easy reference.

Definition 3.2. For any fixed θ ∈ R, the Quantum Torus with
Translations (QTT(θ)) is the C*-dynamical system (A, ω, τ,R2) where

(i) A = Aθ

(ii) ω : Aθ → C : A 7→ 〈1, A1〉L2

(iii) τ : R2 → Aut (Aθ) : (s, t) 7→ τs,t where τs,t : Aθ → Aθ :
A 7→ Us,tAU

∗
s,t, Us,t : L2(T2) → L2(T2) : f 7→ f ◦ ρs,t and

ρs,t : T
2 → T2 : (x, y) 7→ (x+ s, y + t)
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4. ERGODIC PROPERTIES OF TRANSLATION 105

In the next section, we will investigate the ergodic properties of
(QTT(θ)).

4. Ergodic properties of translation

By Proposition 2.1, the GNS representation of QTT(θ) as defined
in Definition 3.2 is given by (L2(T2), id, 1, U).

By Corollary 4.3, to determine whether QTT(θ) is ergodic, we wish
to find the dimension of the fixed point space of the GNS representa-
tion. That is, we wish to find all f ∈ L2(T) such that Us,tf = f , or
in other words, such that f = f ◦ ρs,t, for all (s, t) ∈ R2. If all such
fixed points are multiples of the known fixed point 1, the cyclic vector
in L2(T2), then the fixed point space is one dimensional and we have
that QTT(θ) is ergodic by Corollary 4.3. On the face of it, it certainly
appears to be the case here, as how else could a function f satisfy
f = f ◦ ρs,t for all (s, t) ∈ R2 if it is not constant. Note that, this is
obviously true for a function g : R2 → C. However, briefly breaking an
earlier rule regarding the tacit understanding that L2(X) is a space of
equivalence classes,

f = f ◦ ρs,t ∀ (s, t) ∈ R2

strictly speaking means that

f1 = f2 ◦ ρs,t a.e ∀ f1, f2 ∈ [f ], (s, t) ∈ R2.

The question is thus a measure theoretic problem, and it has a non-
trivial conclusion. We will instead derive a stronger condition than
ergodicity for QTT(θ), and show that QTT(θ) is necessarily ergodic
lest we contradict this stronger condition.

Proposition 4.1. In QTT(θ), ω is in fact the unique τ -invariant
state on Aθ, i.e. the only state on Aθ such that ω ◦ τs,t = ω for all
(s, t) ∈ R2.

Proof. Consider any θ ∈ R and let ω′ be any τ -invariant state on
Aθ. Then, for anym,n ∈ Z and all (s, t) ∈ R2, it follows by Proposition
3.1 that

ω′(Um
θ V

n
θ ) = ω′(τs,t(U

m
θ V

n
θ ))

= ω′(eimseintUm
θ V

n
θ )

= eimseintω′(Um
θ V

n
θ ).

Since eimseint 6= 1 for some (s, t) ∈ R2 it follows that ω′(Um
θ V

n
θ ) = 0.

Since, by the same reasoning, ω(Um
θ V

n
θ ) = 0 for arbitrary m,n ∈ Z

it follows that ω = ω′ on span {Um
θ V

n
θ : m,n ∈ Z}. Hence, since

span {Um
θ V

n
θ : m,n ∈ Z} is dense in Aθ, it follows that ω

′ = ω. �

By Proposition 4.1, QTT(θ) has a property called unique ergod-
icity, which is yet another ergodic property with a slightly different

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



106 5. THE QUANTUM TORUS

origin than the properties that we are considering. Whereas the prop-
erties under our consideration have their origin in measure theoretic
dynamics, unique ergodicity has its origin in topological dynamics.

We will now set out to show that the existence of a second fixed
point of the GNS representation, that is not a multiple of 1, which
is precisely what occurs in a system that is not ergodic, allows us to
construct a second different invariant state, contradicting Proposition
4.1. We will require some preliminary results to construct this second
state in general.

Lemma 4.2. For any normalized f ∈ L2(T2) for which |f | 6= 1,
there is an g ∈ C(T2) such that

|〈f, gf〉 − 〈1, g1〉| > 0.

Proof. Since |f | 6= 1, |f |2 6= 1. Therefore

ν
(
{z ∈ T2 : |f(z)|2 > 1}

)
> 0, or(71)

ν
(
{z ∈ T2 : |f(z)|2 < 1}

)
> 0.(72)

First suppose that (71) holds. Since {z ∈ T2 : |f(z)|2 > 1} =
⋃∞

n=1{z ∈
T2 : |f(z)|2 > 1 + 1

n
}, there is an ǫ > 0 such that, if

S = {z ∈ T2 : |f(z)|2 > 1 + ǫ},

then ν(S) > 0. Let h = |f |2 − 1 so that h > ǫ on S and −1 ≤ h ≤ ǫ on
T2 \ S. Without loss of generality we may assume that ǫ < 1 so that
|h| < 1 on T2 \ S. By the regularity of ν, for any δ > 0 we can find
an open set Wδ ⊇ S such that ν(Wδ\S) < δ and since T2 has finite
ν-measure and is Hausdorff, it follows by [6, Proposition 7.2.6] that
there is a compact set K ⊆ S such that ν(K) > 0. Choose δ = ǫν(K).
Utilizing [26, 2.12 Urysohn’s Lemma] we now find a g ∈ C(T2) such
that g : T2 → [0, 1], g = 1 on K and g = 0 on T2 \Wδ. It follows by
these properties of g that

∫

S

hg dν ≥
∫

K

h dν > ǫν(K) = δ

and that

∣∣∣∣
∫

Wδ\S
hg dν

∣∣∣∣ ≤
∫

Wδ\S
|hg| dν ≤

∫

Wδ\S
|h| dν < ǫν(K) = δ.
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4. ERGODIC PROPERTIES OF TRANSLATION 107

It now follows that

〈f, gf〉 − 〈1, g1〉 =
∫

T2

(
|f |2g − g

)
dν

=

∫

T2

hg dν

=

∫

S

hg dν +

∫

T2\S
hg dν

=

∫

S

hg dν +

∫

Wδ\S
hg dν

> 0.

The result in the case that (72) holds follows by a similar argument,
if we define S = {z ∈ T2 : |f(z)|2 < 1− ǫ}, but (71) has to be assumed
not to hold so that h = |f |2−1 is guaranteed to be bounded T2\S. �

Any normalized fixed point f of the GNS representation can be used
to define an invariant state 〈f, (·)f〉 on Aθ, however it is not guaranteed
to necessarily be different from QTT(θ)’s state ω = 〈1, (·)1〉. If a
normalized fixed point f ∈ L2(T2) has the property that |f | 6= 1, then
we can use Lemma 4.2 to define a state that is different from ω, at
some h ∈ C(T2) ≡ A0, which would contradict Proposition 4.1 in the
case that θ = 0. That such an f can be identified when QTT(0) is
assumed to not be ergodic, is established in the following proposition.

Proposition 4.3. Let (L2(T2), id, 1, U) be the GNS representation
of QTT(θ)=(Aθ, ω, τ, U). If f is a fixed point of U such that f 6∈ C1,
where 1 ∈ L2(T2), then there is a normalized fixed point g ∈ L2(T2) of
U such that |g| 6= 1.

Proof. Without loss of generality we may assume that ‖f‖ = 1.
If |f | 6= 1 we are done, so suppose that |f | = 1. That is, ν(f−1{1}) =
ν(T2) = 1. Define the following two functions:

g =
f + 1

‖f + 1‖

h =
f + i

‖f + i‖
Since f 6∈ C1, f 6= −1 and f 6= −i so that ‖f +1‖ 6= 0 and ‖f + i‖ 6= 0.
Thus, g and h are well defined. Furthermore, as a linear combination
of the fixed points 1 and f , g and h are both fixed points of U .

Since |f | = 1, almost all of the function values of g lie on the circle
in C centered at 1+0i and with radius 1

‖f+1‖ . Therefore, if |g| = 1 then

g has at most two function values of the form x + iy and x− iy, with
y 6= 0, and hence f also has at most two distinct function values of the
same form, say, a+ ib and a− ib in T. This is simply because the unit
circle in C and a circle centered at 1+0i in C can only intersect at two
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108 5. THE QUANTUM TORUS

points. Since f 6∈ C1, a+ib and a−ib are the only two function values of
f and they are distinct. That is, ν(f−1(a+ ib)) > 0, ν(f−1(a− ib)) > 0
and ν(f−1(a+ ib)) + ν(f−1(a− ib)) = ν(T2) = 1.

Similarly, if |h| = 1, then similar reasoning shows that f has pre-
cisely two function values of the form c+ id and −c+ id.

Clearly we cannot have that |g| = 1 and that |h| = 1 since f
cannot have function values of the form a + ib, a − ib, c + id,−c + id
and simultaneously have precisely two function values. Thus |g| 6= 1 or
|h| 6= 1. �

Proposition 4.4. QTT(θ) is ergodic.

Proof. By Proposition 2.1 the GNS representation of QTT(θ) is
given by (L2(T2), id, 1, U) which is independent of θ, so without loss of
generality we may assume θ = 0, since ergodicity can be characterized
in terms of the GNS representation. If f ∈ L2(T2) is any normalized
fixed point of the GNS representation, then

ωf : A0 → C : A 7→ 〈f, Af〉

is a τ -invariant state on A0, as for any (s, t) ∈ R2 and A ∈ A0

ωf (τs,t(A)) = 〈f, Us,tAU
*
s,tf〉

= 〈U−s,−tf, AU−s,−tf〉
= 〈f, Af〉
= ωf (A).

Suppose that, QTT(0) is not ergodic. Then, by Corollary 4.3 we
can find a normalized fixed point f ∈ L2(T2) of the GNS representation
such that f 6∈ C1. By Proposition 4.3 we can find a normalized g ∈
L2(T2) that is a fixed point of the GNS representation such that |g| 6= 1.
Thus ωg is a τ -invariant state on A0. Hence, by Lemma 4.2 there is an
h ∈ C(T2) such that

(73) ωg(Ah)− ω(Ah) = 〈g, hg〉 − 〈1, h1〉 6= 0

where Ah is the operator in A0 such that Ahf = hf for all f ∈ L2(T2).
That Ah ∈ A0 follows from Theorem 1.6. What (73) shows is that ωg

is an invariant state on A0 which is different from ω. By Proposition
4.1 we have a contradiction. So QTT(0) is ergodic, and therefore so is
QTT(θ) for all θ ∈ R. �

Proposition 4.5. QTT(θ) is compact.

Proof. By Proposition 2.1 the GNS representation of QTT(θ) is
given by (L2(T2), id, 1, U). Let θ ∈ R be arbitrary. For any m,n ∈ Z
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5. DYNAMICS GIVEN BY A TORAL AUTOMORPHISM 109

and (s, t) ∈ R2 it follows that

Us,tEm,n(x, y) = Em,n(x+ s, y + t)

= eim(x+s)ein(y+t)

= eims+intEm,n(x, y).

Thus Em,n is in the eigenspace L2(T2)uds of the GNS representation.
Since {Em,n : m,n ∈ Z} densely spans L2(T2), Theorem 1.4, it follows
that L2(T2)uds = L2(T2). Hence, QTT(θ) is compact by Theorem
4.10. �

5. Dynamics given by a toral automorphism

In section 3 we used the translations {ρs,t : (s, t) ∈ R2} on the torus
to define the the time evolution of the C*-dynamical system QTT(θ).
In this section we will instead use a homeomorphic group automorphism
ϕ of the torus, or toral automorphism, to define the time evolution. We
will show that the resulting C*-dynamical system, in the noncommu-
tative case when θ = 0, corresponds to a particular case of the the
reduced group C*-dynamical systems constructed in chapter 4, which
will eliminate the need for a separate analysis of the system’s ergodic
properties even when considering the noncommutative case.

For the remainder of this section, ϕ : T2 → T2 will be used to
denote a toral automorphism. As the Haar measure ν is translation
invariant on the torus, that the translations ρs,t are measure preserving,
is automatic. To establish the same for ϕ, however, we will require the
uniqueness, up to normalization, of the Haar measure.

Proposition 5.1. Let ν be the normalized Haar measure on T2,
and ϕ : T2 → T2 a homeomorphic automorphism. Then

ν(ϕ−1(E)) = ν(E)

for all Borel sets E.

Proof. Define a Borel measure µ on the T2 of T2 as follows:

µ : B → R : E 7→ ν(ϕ−1(E))

Since ϕ is continuous and hence Borel measurable, ϕ−1(B) ⊆ B, by
[26, Theorem 1.12 (b)]. Thus µ is well defined and µ can now easily
be seen to define a measure on B. We can show that µ defines a
normalized Haar measure on T2.

Consider any E ∈ B and let ǫ > 0 be arbitrary. Then ϕ−1(E) ∈ B

so that by the outer regularity of ν there is an open set V ⊇ ϕ−1(E)
such that ν(V ) − ν(ϕ−1(E)) < ǫ. Since ϕ = (ϕ−1)−1 and ϕ−1 is con-
tinuous we have that ϕ(V ) is an open set. It follows that

µ(ϕ(V ))− µ(E) = ν(ϕ−1(V ))− ν(ϕ−1(E)).
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110 5. THE QUANTUM TORUS

Thus, as E ∈ B and ǫ > 0 was arbitrary this shows that µ is outer
regular. To show that µ is inner regular, let V be an open set in
T2 and let ǫ > 0 be arbitrary. Then ϕ−1(V ) is open so that by the
inner regularity of ν there is a compact set K ⊆ ϕ−1(V ) such that
ν(ϕ−1(V )) − ν(K) < ǫ. Since ϕ is continuous, ϕ(K) is compact. It
follows that

µ(V )− µ(ϕ(K)) = ν(ϕ−1(V ))− ν(K) < ǫ.

Thus, as the open set V and ǫ > 0 was arbitrary this shows that
µ is inner regular. It is clear that µ is finite on all Borel sets, and in
particular all compact sets. Hence, if µ is also invariant under the group
operation of T2, then it will define a Haar measure, and in particular
a normalized Haar measure since µ(T2) = ν(T2) = 1.

Let z ∈ T2 and E ∈ B be arbitrary. Then z = ϕ(z′) for some
z′ ∈ T2. It now follows by the invariance of ν that

µ(zE) = µ(ϕ(z′)E) = ν(zϕ−1(E)) = ν(ϕ−1(E)) = µ(E).

Thus µ is invariant under the group operation of T2 and so µ = ν by
the uniqueness of the Haar measure up to normalization. Therefore
the result follows from the last two terms in the above equality. �

By [28, Theorem 0.15], the homeomorphic automorphism ϕ of T2

is given by a 2× 2 matrix

Aϕ =

(
a b
c d

)

with determinant ±1, such that for any

(
x
y

)
∈ T2

ϕ

(
x
y

)
=

(
a b
c d

)(
x
y

)

=

(
ax+ by
cx+ dy

)

The action of ϕ−1 is similarly given by the inverse matrix

A−1ϕ =
1

det(Aϕ)

(
d − b
−c a

)

so that for any

(
x
y

)
∈ T2

ϕ−1
(

x
y

)
=

1

det(Aϕ)

(
d − b
−c a

)(
x
y

)

=
1

det(Aϕ)

(
dx− by
−cx+ ay

)
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In Section 3 we used translations on T2 to define unitary operators
satisfying the conditions in Proposition 2.1 to obtain an abstract dy-
namical system on Aθ. We will now define similar unitary operators
using the toral automorphism ϕ with the aim of applying Proposition
2.1.

Proposition 5.2. Let ϕ : T2 → T2 be a homeomorphic automor-
phism with det(Aϕ) = 1. Then

Uϕ : L2(T2) → L2(T2) : f 7→ f ◦ ϕ
is a unitary operator in L (L2(T2)), Uϕ1 = 1 and, for any θ ∈ R,

UϕAθU
*
ϕ ⊆ Aθ. Furthermore UϕUθU

*
ϕ = ei

abθ
2 Vb

θU
a
θ and UϕUθU

*
ϕ =

e−i
cdθ
2 Uc

θV
d
θ

Proof. Let θ ∈ R be arbitrary. Since ϕ is measurable, ϕ−1(E) ∈
B for any E ∈ B, by [26, Theorem 1.12]. Thus, for any f ∈ L2(T2),
f ◦ϕ is measurable and since ϕ is measure preserving, i.e. ν ◦ϕ−1 = ν
it follows that

∫

T2

|f |2 dν =

∫

T2

|f |2 ◦ ϕ dν =

∫

T2

|f ◦ ϕ|2 dν(74)

Hence, if f ∈ L2(T2), then f ◦ ϕ ∈ L2(T2) which shows that Uϕ is
well-defined. Moreover, (74) shows that Uϕ is an isometry so that since
Uϕ(f ◦ ϕ−1) = f for all f ∈ L2(T2), it follows that Uϕ is unitary by
[20, 3.10-6 Theorem (f)].

To show that UϕAθU
*
ϕ ⊆ Aθ, first note that

τ ′ : L (L2(T2)) → L (L2(R2)) : A 7→ UϕAU
*
ϕ

is a ∗-automorphism and hence isometric. To see why det(Aϕ) = 1 is
required, define ∆ := det(Aϕ). Let A′θ = span {Um

θ V
n
θ : m,n ∈ Z}. For

any f ∈ L2(T2) it follows that

τ ′(Uθ) =
(
UϕUθU

*
ϕf
)
(x, y)

= Uθ(f ◦ ϕ−1)ϕ(x, y)
= Uθ

(
f ◦ ϕ−1

)
(ax+ by, cx+ dy)

= ei(ax+by)
(
f ◦ ϕ−1

)(
ax+ by, cx+ dy − θ

2

)

= ei(ax+by)f

((
x
y

)
+ ϕ−1

(
0
− θ

2

))

= ei(ax+by)f

((
x
y

)
+

1

∆

(
b θ
2

−a θ
2

))

= ei(ax+by)f

(
x+

b

2

θ

∆
, y − a

2

θ

∆

)
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112 5. THE QUANTUM TORUS

Since

(
Ua

θV
b
θf
)
(x, y) = eiax

(
Vb

θf
)(

x, y − a
θ

2

)

= e−i
abθ
2 ei(ax+by)f

(
x+ b

θ

2
, y − a

θ

2

)

it is clear that τ(Uθ) = ei
abθ
2 Ua

θV
b
θ ∈ A′θ, if ∆ = 1. We make the

observation that if ∆ = −1, then τ(Uθ) ∈ A−θ which, since A−θ is a
different algebra, gives a good indication that the result does not hold in

general when ∆ = −1. It similarly follows that τ ′(Vθ) = ei
cdθ
2 Uc

θV
d
θ =∈

A′θ if ∆ = 1. Since τ ′ is a ∗-automorphism we therefore have that
τ ′(A′θ) ⊆ A′θ. If A ∈ Aθ, then An −→ A for some sequence (An) in A′θ.
However, since τ ′ is isometric, it follows that limn→∞ τ ′(An)τ

′(A), so
that since τ ′(An) ∈ A′θ ⊆ Aθ for all n ∈ N, and Aθ is closed, τ

′(A) ∈ Aθ

follows. That is, τ ′(Aθ) = UϕAθU
*
ϕ ⊆ Aθ as required.

Uϕ1 = 1 is immediate. �

By feeding the unitary operator defined in Proposition 5.2 to Propo-
sition 2.1, we obtain an abstract dynamical system with Z action, which
is thus a C*-dynamical system.

As with all other examples already considered, we define our final
C*-dynamical system in complete detail, in keeping with Remarks 1.9.

Definition 5.3. For any fixed θ ∈ R, the Quantum Torus with
a toral Automorphism ϕ, (QTA(θ, ϕ)) is the C*-dynamical system
(A, ω, τ,Z) where

(i) A = Aθ

(ii) ω : Aθ → C : T 7→ 〈1, T1〉L2

(iii) det(Aϕ) = 1
(iv) τ : Aθ → Aθ : A 7→ UϕAU

*
ϕ, Uϕ : L2(T2) → L2(T2) : f 7→ f ◦ϕ

and ϕ : T2 → T2 is an automorphism.

6. Ergodic properties of a toral automorphism

QTA(θ, ϕ) shares its ergodic properties with a type of C*-dynamical
system that we have already analysed, namely the reduced group C*-
dynamical systems. In order to notice this note that on Hilbert space
level QTA(θ, ϕ) is equivalent to QTA(0, ϕ) which in turn is precisely
the system in Definition 1.7 for Γ = Z2 as we’ll now explain. Namely,
we will show that C∗r (Z

2) ≡ A0 and that ρ is obtained as the “har-
monic dual” of ϕ, and that the respective states are naturally identified.
Roughly speaking we simply show that C∗r (Z

2) represents the harmonic
dual of Z2, namely T2, as a C*-algebra C∗r (Z

2) ≡ A0, and this identi-
fication allows us to see that QTA(0, ϕ) is equivalent to Definition 1.7
for Γ = Z2.
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6. ERGODIC PROPERTIES OF A TORAL AUTOMORPHISM 113

We start by identifying the linear isomorphism between L2(Z2) and
L2(T2).

Proposition 6.1. The continuous extension ι̃, to L2(T2), of

ι : span {Em,n : m,n ∈ Z} → L2(Z2)

:
k∑

j=1

ajEmj ,nj
7→

k∑

j=1

ajδ(mj ,nj)

is an isometric isomorphism.

Proof. Consider any s ∈ span {Em,n : m,n ∈ Z}, say s =∑n

j=1 ajEmj ,nj
.

Since {δ(m,n) : m,n ∈ Z}, {Em,n : m,n ∈ Z} are orthonormal sets in
L2(Z2), L2(T2), respectively, it follows that

‖s‖2 = ‖ι(s)‖2.

Therefore, as ι is also linear and span {Em,n : m,n ∈ Z} = L2(T2),
it follows that the continuous extension ι̃ : L2(T2) → L2(Z2) is well
defined by [20, Theorem 2.7-11] and clearly also an isometry. Wholly
similar arguments reach the same conclusion for the mapping

ς : L2(Z2) → span {δ(m,n) : m,n ∈ Z}

:
k∑

j=1

ajδ(mj ,nj) 7→
k∑

j=1

ajEmj ,nj

which then gives the inverse of ι̃. Hence ι̃ is bijective. Thus ι̃ is an
isometric isomorphism. �

Proposition 6.1 now allows us to establish the same relationship
between A0 and C∗r (Z

2). Note that for the remainder of this section we
will use ι̃ to denote the isometric isomorphism defined in Proposition
6.1.

Proposition 6.2. The continuous extension π̃, to A0, of

π : span {Um
0 V

n
0 : m,n ∈ Z} → C∗r (Z

2)

:
k∑

j=1

ajU
mj

0 V
nj

0 7→
k∑

j=1

ajλ(mj, nj)

is an isometric ∗-isomorphism. Furthermore,

π̃(A) = ι̃ ◦ A ◦ ι̃−1 =: ι̃Aι̃−1

for all A ∈ A0.
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Proof. Consider any A ∈ span {Um
0 V

n
0 : m,n ∈ Z}, say A =∑N1

j=1 ajU
mj

0 V
nj

0 , and any s ∈ span {Em,n : m,n ∈ Z}, say s =∑N2

k=1 bjEmk,nk
.

It follows by Proposition 6.1 that

‖As‖ =

∥∥∥∥∥

N1∑

j=1

ajU
mj

0 V
nj

0

N2∑

k=1

bkEpk,qk

∥∥∥∥∥

=

∥∥∥∥∥

N1∑

j=1

N2∑

k=1

ajbke
i(mj+pk)xei(nj+qk)y

∥∥∥∥∥
L2(T2)

=

∥∥∥∥∥

N1∑

j=1

N2∑

k=1

ajbkδ(mj+pk,nj+qk)

∥∥∥∥∥
L2(Z2)

=

∥∥∥∥∥

N1∑

j=1

ajλ(mj, nj)

N2∑

k=1

bkδ(pk,qk)

∥∥∥∥∥
‖As‖ = ‖π(A)ι(s)‖(75)

It follows that this then also holds for any s ∈ L2(T2) and therefore
‖π(A)‖ = ‖A‖. Therefore π extends to an isometry π̃ : A0 → C∗r (Z

2).
Wholly similar arguments reach the same conclusion for the mapping

℘ : span {λ(m,n) : m,n ∈ Z} → A0

:
k∑

j=1

ajλ(mj, nj) 7→
k∑

j=1

ajU
mj

0 V
nj

0

and a moment’s reflection will show that π̃℘̃ = ℘̃π̃ = id. Hence π̃ is
bijective.

Recall that, for any group Γ and λ(g), λ(h) ∈ C∗r (Γ), λ(g)λ(h) =
λ(gh). Hence, for any m,n, p, q ∈ Z, λ(m,n)λ(p, q) = λ(m+ p, n+ q).
It can therefore be easily seen that, for any A,B ∈ span{Um

0 ,V
n
0 :

m,n ∈ Z}, π(AB) = π(A)π(B). Since π is also linear

π̃(aA+ bB) = aπ̃(A) + bπ̃(B)

π̃(AB) = π̃(A)π̃(B)

for all A,B ∈ A0 and a, b ∈ C. Thus the bijective π̃ is an iso-
morphism. To show that it is a ∗-isomorphism, again consider any
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6. ERGODIC PROPERTIES OF A TORAL AUTOMORPHISM 115

T ∈ span{Um
0 V

n
0 : m,n ∈ Z}, say A =

∑N

j=1 U
mi

0 V
ni

0 . It follows that

π(A*) = π

(
N∑

j=1

(Umi

0 )*(Vni

0 )*

)

= π

(
N∑

j=1

U
−mi

0 V
−ni

0

)

=
N∑

j=1

λ(−mj,−nj)

=

(
N∑

j=1

λ(mj, nj)

)∗

= π(B)*

Therefore, for any A ∈ A0, π̃(A
*) = (π̃(A))*, for if (xn) is any sequence

in a C*-algebra, then xn −→ x if and only if x*
n −→ x*, as the norm

of an element and its adjoint are equal. Thus π̃ is a ∗-isomorphism.

For the final assertion first note that, since ι̃ : L2(T2) → L2(Z2)
is an isometric isomorphism, ι̃Aι̃−1 ∈ L (L2(Z2)) for all A ∈ A0 ⊆
L (L2(T2)). For any m,n ∈ Z it follows that

π̃(U0)δ(m,n) = λ(1, 0)δ(m,n)

= δ(m+1,n)

= ι̃Em+1,n

= ι̃U0Em,n

= ι̃U0ι̃
−1δm,n

from which it follows that π̃(U0) = ι̃U0ι̃
−1 on span {δ(m,n) : m,n ∈ Z}

and consequently on L2(Z2). Similarly, π̃(V0) = ι̃V0ι̃
−1, and so since

π̃ and ι̃ are isomorphisms, it follows that π̃(A) = ι̃Aι̃−1 for all A ∈
span {Um

0 V
n
0 : m,n ∈ Z}. Since π̃ and ι̃ are isometric, it follows that

π̃(A) = ι̃Aι̃−1 for all A ∈ A0. �

We denote the transpose of Aϕ by AT
ϕ and will now show that

(AT
ϕ)
−1 is the “harmonic dual” of ϕ referred to earlier.

Proposition 6.3. There is a cyclic representation for QTA(0, ϕ)
and a cyclic representation for RG(Z2, (AT

ϕ)
−1), with respect to which

the dynamics of the two C*-dynamical systems are represented by the
same unitary operator. That is, the GNS representation of the ∗-
automorphisms on A0 and C∗r (Z

2) are given by the same unitary oper-
ator.
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Proof. By Lemma 2.2, (L2(Z2), id, δ(0,0)) is a cyclic representation
of RG(Z2, (AT

ϕ)
−1). Proposition 6.2 identifies a mapping π̃ : A0 →

C∗r (Z
2) ⊆ L (L2(Z2)) that is a ∗-isomorphism. (L2(Z2), π̃, δ(0,0)) is the

cyclic representation of QTA(0, ϕ) since π̃(A0)C
∗
r (Z

2) and δ(0,0) is cyclic
for the latter, and

〈δ(0,0), π̃(A)δ(0,0)〉 = 〈ι̃−1δ(0,0), Aι̃−1δ(0,0)〉 = 〈1, A1〉

for all A ∈ A0 so δ(0,0) indeed gives the state of QTA(0, ϕ).
Next, we show that the dynamics of both systems are given by the

same unitary operator U on L2(Z2). This is in fact very easy to show,
provided we can navigate the sea of notation involved when simultane-
ously considering two C*-dynamical systems’ GNS representations. In
the case of RG(Z2, (AT

ϕ)
−1), the unitary representation of the dynamics,

i.e. the GNS representation of (AT
ϕ)
−1, is given by

V : L2(Z2) → L2(Z2) : f 7→ f ◦
(
AT

ϕ

)−1

and in the case of QTA(0, ϕ) the unitary representation of the dynamics
is given by

U : L2(Z2) → L2(Z2) : π̃(A)δ(0,0) 7→ π̃(UϕAU
*
ϕ)δ(0,0)

: ι̃Aι̃−1δ(0,0) 7→ ι̃UϕAU
*
ϕι̃
−1δ(0,0)

: ι̃A1 7→ ι̃UϕA1.

We wish to show that V = U . For any m,n ∈ Z it follows that

(UϕEm,n)(x, y) = Em,n(ϕ(x, y))

= Em,n(ax+ by, cx+ dy)

= eim(ax+by)ein(cx+dy)

= ei(am+cn)xei(bm+dn)y

= EAT
ϕ (m,n)(x, y)

and therefore

Uδm,n = Uι̃Em,n = ι̃UϕEm,n

= ι̃EAT
ϕ (m,n)

= δAT
ϕ (m,n)

= δm,n ◦
(
AT

ϕ

)−1

= V δm,n.

Therefore, as U, V ∈ L (L2(Z2)) and span {δm,n : m,n ∈ Z} is dense in
L2(Z2), it follows that U = V . Thus QTA(0, ϕ) and RG(Z2, (AT

ϕ)
−1)

have the same GNS representation. �
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By propositions 6.3 and 2.1 we know that QTA(θ, ϕ) and RG(Z2, (AT
ϕ)
−1)

have the same ergodic properties for all values of θ, and by proposi-
tions 2.3, 2.4 and 2.5 we know that RG(Z2, (AT

ϕ)
−1) can have only one

of three combinations of the ergodic properties:

(i) strongly mixing if AT
ϕ only has only infinite orbits

(ii) compact, but not ergodic, if AT
ϕ only has only finite orbits

(iii) neither compact nor ergodic, if AT
ϕ has both finite and infinite

orbits

It is a simple task to find three 2×2 integer matrices with determinant
1 having, respectively, only infinite, only finite and a both of finite
orbits and infinite orbits. Let

A1 =

(
1 1
1 2

)

A2 =

(
−1 3
−1 2

)

A3 =

(
1 2
0 1

)

A1, A2 and A3 are group automorphisms on Z2. A1 only has only
infinite orbits which can be seen by inspection. A2 only has only finite
orbits as (A2)

6 = (A2)
−6 = id. A3 has both finite orbits and infinite

orbits, which can also be seen by inspection. Since A1, A2 and A3 are
integer matrices with determinant 1 it follows that each, together with
the inverse of its transpose, determines an automorphism on T2. Let

φ1 : T
2 → T2 : (x, y) 7→ (2x− y,−x+ y)

φ2 : T
2 → T2 : (x, y) 7→ (2x+ y,−3x− y)

φ3 : T
2 → T2 : (x, y) 7→ (x,−2x+ y)

Then (AT
φ1
)−1 = A1, (A

T
φ2
)−1 = A2 and (AT

φ3
)−1 = A3. For ease in later

reference, let us devote a final definition to the last three C*-dynamical
systems on the torus using these toral automorphisms.

Definition 6.4. For any θ ∈ R, the quantum tori with automor-
phism 1,2 and 3 (QTA1(θ), QTA2(θ) and QTA3(θ)) are the quan-
tum tori with, respectively, toral automorphisms φ1, φ2 and φ3. That
is, QTA1(θ) = QTA(θ, φ1), QTA2(θ) = QTA(θ, φ2) and QTA3(θ) =
QTA(θ, φ3)

Proposition 6.5. QTA1(θ) is strongly mixing.

Proof. QTA1(θ) has the same ergodic properties as RG(Z2, A1)
which, since A1 has only infinite orbits, is strongly mixing by Proposi-
tion 2.3. �

Proposition 6.6. QTA2(θ) is compact but not ergodic.
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Proof. QTA2(θ) has the same ergodic properties as RG(Z2, A2)
which, since A2 has only finite orbits, is compact but not ergodic by
propositions 2.4 and 2.5. �

Proposition 6.7. QTA3(θ) is neither compact nor ergodic.

Proof. QTA3(θ) has the same ergodic properties as RG(Z2, A3)
which, since A3 has both finite and infinite orbits, is neither compact
nor ergodic by propositions 2.4 and 2.5. �

QTA(θ, ϕ) therefore gives the same ergodic possibilities as RG(Z2, ρ)
systems, but it is a different type of example, since on C*-algebra level,
C∗r (Z

2) is “deformed” by θ, and this is of interest in C*-algebras and
even quantum physics, and therefore QTA(θ, ϕ) is an important exam-
ple.
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Further Research

The first combination that we did not find a concrete example of
is a system that is weakly but not strongly mixing. There are several
examples in classic ergodic theory of systems that are weakly but not
strongly mixing. However, these systems do not necessarily have a read-
ily identifiable noncommutative analog that is of interest. An example
with a possible noncommutative analog is discussed in [2, Section 2]
where a SL(2,Z) action is studied on the 2 dimensional torus T2. In
Chapter 5 the time evolution given by a translation T is generalized
from the classical case. That is, if θ = 0, then the time evolution
reduces to C(T2) → (T2) : f 7→ f ◦ T . The same holds for automor-
phisms on the torus in our QTA examples. So in principle, we could
also attempt to generalize the example studied by [2] to Aθ and find an
example of a weak mixing C*-dynamical system, that is not strongly
mixing on the quantum torus. However, such a generalization will
require us to modify aspects of our development of noncommutative
ergodic theory. For example, SL(2,Z) is not Abelian and therefore in
particular not an Abelian locally compact amenable group. The most
significant casualty in our development forgoing Abelian group actions,
is the Splitting Theorem of Jacobs-Deleeuw-Glicksberg. Furthermore,
as is, we would require SL(2,Z) to be amenable, and it reasonable to
expect that it is not (see [25, (0.7) Example, p6]). So, our formulation
of the weak mixing property in terms of a Følner sequence will not be
appropriate for such a generalization. Our definition of the strong mix-
ing property, for a Z action, is even less appropriate. One possible way
to proceed is to use the spectral formulations as the definitions them-
selves. For example Proposition 4.7 could be used to define a weakly
mixing system. One would then have to find a spectral characterization
of the strong mixing property as well.

The other combination for which we did not find a concrete exam-
ple is a system that is ergodic, but does not possess the other three
ergodic properties. A natural question to ask is whether, given two dy-
namical systems, a “combination” or “product” of the two systems can
be defined to obtain a new dynamical system whose ergodic properties
derives from its constituents. For example, could two systems with the
same ergodic properties as DESS1 and ReFG be “combined” to form
a system that is ergodic but does not possess any of the other three

119
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120 FURTHER RESEARCH

ergodic properties? A possible way in which this might be achieved
is through the use of tensor products and joinings of W*-dynamical
systems [11], which are subsets of C*-dynamical systems.
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Appendix : The Torus

There are different ways to define the torus T 2. It can be defined as
the quotient space T2 = R2/2πZ2 or as the product space T = S1 × S1

where S1 is the unit circle in C. An incentive to use one definition
over the other can be provided by the structure on the torus that is of
greatest interest. For instance the measure structure on the torus has a
clearer connection with the Lebesgue measure on R2 when the torus is
viewed as a quotient space whereas the topological structure is simpler
when the torus is viewed as a product space. This is in contrast to the
group structure on the torus which is entirely straight forward in either
case. We have a greater interest in the group and measure structure
on the torus, however, we would like to know that the torus is compact
and Hausdorff. To obtain the benefit of both formulations we define
the torus as

T2 = R2/2πZ2

and show that there is a homeomorphism between T2 and T . We then
gather, and transfer, the compactness and Hausdorff property of T to
T2 which will then allow us to equip T2 with its measure structure: the
normalized Haar measure on its Borel σ-algebra.

Proposition 6.8. The function f : R → S1 : x 7→ eix is an open
mapping.

Proof. Let V ⊆ R be an open set. Since every point of V is an
interior point of V , it is possible to write V =

⋃
α∈Λ(xα − rα, xα + rα)

where, for all α ∈ Λ, xα ∈ V and rα > 0. Without loss of generality
we may assume that rα < π for all α ∈ Λ. Since each of the intervals
(xα − rα, xα + rα) has a length less than 2π it is clear that

fα := f |(xα−rα,xα+rα) : (xα − rα, xα + rα) → S1

121
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122 APPENDIX : THE TORUS

is bijective for all α ∈ Λ and that f−1α is a branch of the complex
logarithm, and therefore continuous. Hence

f(V ) =
⋃

α∈Λ
f(xα − rα, xα + rα)

=
⋃

α∈Λ
fα(xα − rα, xα + rα)

=
⋃

α∈Λ
(f−1α )−1(xα − rα, xα + rα)

which is a union of open sets. �

The following is an alternative proof that does not directly utilize
the continuity of the logarithm. It is included purely for novelty pur-
poses as the author found it interesting.

Proof. We start by considering the “distance” between f(x), f(y)
for arbitrary x, y ∈ R :

|eix − eiy|2 = | cosx+ i sin x− cos y − i sin y|2

= (cosx− cos y)2 + (sin x− sin y)2

= 2− 2 cosx cos y − 2 sin x sin y

= 2− 2 cos(x− y)

We note from this result that if |x− y| ∈ (π
2
, 3π

2
), then |eix− eiy| >

√
2.

Let x ∈ R, y ∈ [x− π, x + π) be arbitrary and consider an 0 < ǫ ≤ π
2
.

Observing that cosx ≤ 1 − 8
π3x

3 for all x ∈ [0, π
2
] we deduce that if

π
2
≥ |x− y| ≥ ǫ then

cos(x− y) ≤ 1− 8

π3
|x− y|3(76)

2− 2 cos(x− y) ≥ 2
8

π3
|x− y|3 ≥ 16

π3
ǫ3(77)

|eix − eiy| ≥ κǫ
3
2(78)

where κ = 4√
π3
. The converse of this result thus states that for any

x ∈ R, y ∈ [x − π, x + π) and 0 < ǫ ≤ π
2
, if |eix − eiy| < κǫ

3
2 , then

|x− y| < ǫ or |x− y| > π
2
. The latter case is impossible since, as noted

earlier, if |x− y| > π
2
then |eix − eiy| >

√
2 = κ(π

2
)
3
2 ≥ κǫ

3
2

Let V ⊂ R be open and consider any z ∈ f(V ). Thus z = eix for some
x ∈ V and since V is open there is a δ

′

> 0 such that |x−y| < δ
′ ⇒ y ∈

V . Let us now consider an arbitrary z
′ ∈ S1, so z′ = eiy where without

loss of generality we may assume that y ∈ [x − π, x + π). Suppose z
′

satisfies |z − z
′ | < κδ

3
2 , where δ = min {π

2
, δ
′}. By using the converse
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of the earlier result it thus follows that

|z − z
′ | < κδ

3
2 ⇒ |x− y| < δ

⇒ y ∈ V

⇒ f(y) = z
′ ∈ f(V )

What this shows is that for an arbitrary z ∈ f(V ), there exist a δ > 0

such that z ∈ S1 ∩ B(z, κδ
3
2 ) ⊂ f(V ), where B(w, r) is the open ball

of radius r in C centered at w. Since S1 ∩ B(z, κδ
3
2 ) is open in S1

we therefore have that z is an interior point of f(V ) in the subspace
topology. Since z ∈ f(V ) was taken as arbitrary it follows that f(V )
is open. �

Corollary 6.9. The function f̌ : R2 → T : (x, y) 7→ (eix, eiy) is a
continuous open mapping.

Proof. The continuity of f̌ follows from the continuity of

f : R → S1 : x 7→ eix

as follows: Let U be an open set in S1. Thus U =
⋃

α∈Λ Uα × Vα for
some indexed open sets Uα, Vα in S1. It now follows by the continuity
of f that

f̌−1(U) =
⋃

α∈Λ
f−1(Uα)× f−1(Vα)

which is open in R2 since for each α ∈ Λ, f−1(Uα)× f−1(Vα) is in the
basis of the R2 topology. Thus f̌ is continuous.

To prove that f̌ is an open mapping mapping, consider any open
set in R2 of the form U × V where U and V are open sets in R. Since
f is an open mapping it follows that f̌(U × V ) = f(U)× f(V ) is open
in S1. Since any open set in R2 can be written as the union of open
sets of the form U × V , with U and V open, it follows that f̌(W ) is
open for any open set W in R2. Thus f̌ is an open mapping �

Theorem 6.10. The mapping

(79) δ : T2 → T : (x, y) + 2πZ2 7→ (eix, eiy)

is a group isomorphism and a homeomorphism.

Proof. δ is clearly bijective and with the group operations

T2 × T2 → T2 :

(x1, y1) + 2πZ2 × (x2, y2) + 2πZ2 7→ (x1 + x2, y1 + y2) + 2πZ2, and

T × T → T :

(eix1 , eiy1)× (eix1 , eiy1) 7→
(
ei(x1+x2), ei(y1+y2)

)

it is clear to see that δ defines a group isomorphism.
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Consider any open set V ⊆ T2. By definition of the quotient topol-
ogy, p−1(V ), where p : R2 → T2 = R2/2πZ2 is the quotient map, is
open in R2. Thus, by Corollary 6.9, f̌(p−1(V )) is open in T . Now we
only have to note that, as for any x, y,

(x, y) ∈ p−1(V ) ⇔ (x, y) + 2πZ2 ∈ V , and

f̌(x, y) = δ
(
(x, y) + 2πZ2

)
= (eix, eiy)

we have that δ(V ) = f̌(p−1(V )) is open.
Conversely, consider any open set U ⊆ T . (f̌)−1(U) is open by the

continuity of f̌ established in Corollary 6.9. Note that

p−1(p((f̌)−1(U))) = (f̌)−1(U)

which follows simply because (x, y) ∈ (f̌)−1(U) if and only if (x, y) +
2π(m,n) ∈ (f̌)−1(U) for all m,n ∈ Z. Since p−1(p((f̌)−1(U))) is there-
fore open, p((f̌)−1(U)) is open by definition of the quotient topology.
Now we only have to note that, as for any x, y

(x, y) ∈ (f̌)−1(U) ⇔ (eix, eiy) ∈ U , and

p(x, y) = δ−1(eix, eiy) = (x, y) + 2πZ2

we have that δ−1(U) = p((f̌)−1(U)) is open.
Therefore, the bijective mapping δ is an open mapping and contin-

uous, or in other words, a homeomorphism. �

In Theorem 6.10 we also showed that T2 and T2 are group isomor-
phisms of one another and are therefore effectively one and the same
space.

Since S1 is compact in the plane, T = S1 × S1 is compact in the
product topology by [21, Theorem 37.3 (Tychonoff’s theorem)]. Hence,
T2 is compact by Theorem 6.10. Furthermore, S1 × S1 is clearly a
compact group, i.e. its group operation is continuous, and so T2 is also
a compact group by Theorem 6.10. Similarly T2 is Hausdorff since S1,
and hence T = S1 × S1, are Hausdorff spaces. As a compact group,
in particular a locally compact group, we equip T2 with the unique
normalized Haar measure ν on its Borel σ-algebra B.

In Chapter 5 we will encounter several instances where the unique-
ness of ν and the invariance of ν under T2’s group operation are im-
portant.
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