
 
 
 

FACULTY OF ECONOMIC & MANAGEMENT 
SCIENCES 

 
DEPARTMENT OF STATISTICS 

 
MODELING OF GENERALIZED FAMILIES OF 

PROBABILITY DISTRIBUTIONS IN THE QUANTILE 

STATISTICAL UNIVERSE 
 

paul j. van staden 
 
 

Submitted in fulfillment of the requirements for the 
PhD in Mathematical Statistics 

 
Study Leaders: Dr Hermi Boraine & Dr Robert A.R. King 

 
2013 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

i 
 

 

Con todo mi amor, dedicado a Mercedes. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

ii 
 

__________________________________________ 
 

ABSTRACT 
__________________________________________ 
 

This thesis develops a methodology for the construction of generalized families of probability 

distributions in the quantile statistical universe, that is, distributions specified in terms of their 

quantile functions. The main benefit of the proposed methodology is that it generates 

quantile-based distributions with skewness-invariant measures of kurtosis. The skewness and 

kurtosis can therefore be identified and analyzed separately. 

The key contribution of this thesis is the development of a new type of the generalized 

lambda distribution (GLD), using the quantile function of the generalized Pareto distribution 

as the basic building block (in the literature each different type of the GLD is incorrectly 

referred to as a parameterization of the GLD – in this thesis the term type is used). The 

parameters of this new type can, contrary to existing types, easily be estimated with method 

of L-moments estimation, since closed-form expressions are available for the estimators as 

well as for their asymptotic standard errors. The parameter space and the shape properties of 

the new type are discussed in detail, including its characterization through L-moments. A 

simple estimation algorithm is presented and utilization of the new type in terms of data 

fitting and approximation of probability distributions is illustrated. 
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__________________________________________ 
 

1. INTRODUCTION 
__________________________________________ 
 

1.1 AIMS AND OBJECTIVES 

The main aim of this thesis is the development of a methodology for the construction of 

quantile-based families of distributions possessing skewness-invariant kurtosis measures. 

With this methodology, specified and proved in Proposition 2.8.1 in Chapter 2, the quantile 

function of a generalized quantile-based distribution is obtained by taking the weighted sum 

of the quantile function of an asymmetric distribution on bounded or half-infinite support and 

the quantile function of the reflection of this asymmetric distribution. 

The methodology is utilized to build a new type of the generalized lambda distribution, 

defined in Definition 4.2.1 in Chapter 4. The parameters of this new type can, contrary to 

existing types, easily be estimated with method of L-moments estimation, since closed-form 

expressions are available for the estimators as well as for their asymptotic standard errors. 

 

1.2 FAMILIES OF DISTRIBUTIONS 

As part of the development of continuous univariate distributions, the construction of 

generalized families of probability distributions has featured prominently in the literature. 

These distributional families include, amongst others, the Pearson family (Pearson, 1895), the 

Burr family (Burr, 1942, 1968, 1973; Burr & Cislak, 1968) and the family of S distributions 

(Voit, 1992), where each of these families is defined through a differential equation. 

Examples of transformation-based families of distributions are the Johnson families, which 

include transformations to the normal distribution (Johnson, 1949), Laplace distribution 

(Johnson, 1954) and logistic distribution (Tadikamalla & Johnson, 1982), the kappa family of 

distributions (Mielke, 1973; Hosking, 1994), which include transformations from the 

exponential, Gumbel and logistic distributions, and Tukey’s lambda family of distributions 

(Hastings et al., 1947; Tukey, 1960, 1962; Ramberg & Schmeiser, 1972, 1974; Freimer et al., 

1988) obtained through transformation of the uniform distribution. 
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A central motivation for using these various families of distributions is their ability to 

explain and control extensive levels of skewness and kurtosis and, by doing so, providing 

approximations to a wide variety of observed distributions and data sets. The flexibility in 

distributional shape allowed by these families is accomplished through the inclusion of at 

least two shape parameters. Usually two shape parameters are sufficient, since the gain in 

flexibility afforded by additional shape parameters seldom warrants the increase in 

complexity of computation and mathematical manipulation. Hence, including also location 

and scale parameters for describing location and spread, each family typically possesses four 

parameters. 

 

1.3 TUKEY’S LAMBDA FAMILY OF DISTRIBUTIONS 

Among the distributional families listed above, Tukey’s lambda family of distributions is 

unique in two ways. Firstly, this family is defined exclusively through its quantile function, 

also known as the inverse cumulative distribution function, and is therefore a quantile-based 

distribution. No closed-form expressions exist for either its probability density function or 

cumulative distribution function. Consequently exploration and utilization of this family are 

in some ways more challenging. However, there are also distinctive opportunities available 

by modeling the family through its quantile function. 

Secondly, all the members from any selected type from the lambda family possess a 

single functional form given by that type’s quantile function. In contrast, different members 

of the other listed families in Section 1.2 have different functional forms. A single functional 

form is beneficial in that one does not need to move from one function to another when 

exploring different distributional shapes. 

 Collectively the various generalizations of the lambda family are referred to as the 

generalized lambda distribution (GLD), where each generalization is a distinct type. 

Unfortunately in the literature each different type of the GLD is incorrectly referred to as a 

“parameterization” of the GLD. When a distribution has different parameterizations, the 

parameters of the one parameterization can be transformed to the parameters of the other 

parameterization and vice versa. For example, the uniform distribution can be parameterized 

by its minimum and maximum parameters, a and b, or by its location and scale parameters, 

a=α  and ab −=β . With the GLD there exist no simple transformations between different 

“parameterizations”. Therefore in this thesis the term “type” is used instead of the term 

“parameterization”. 
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The two types of the GLD by Ramberg & Schmeiser (1972, 1974) and by Freimer et al. 

(1988), labeled the Ramberg-Schmeiser (RS) and the Freimer-Mudholkar-Kollia-Lin 

(FMKL) Types respectively, have become the types of choice in theoretical development as 

well as practical application. A drawback of both these types is that parameter estimation is 

computationally difficult. Various estimation methodologies have been proposed in the 

literature, but none of these methodologies yield closed-form expressions for the parameters’ 

estimators. This is firstly due to the absence of closed-form expressions for the GLD’s 

probability density and cumulative distribution functions, and secondly because of the 

complex relation between the shape parameters and the shape characteristics of the GLD 

(which is not unique to this family). In particular, with the RS and FMKL Types of the GLD, 

the two shape parameters jointly explain the skewness and kurtosis. Numerical optimization 

techniques are therefore required for all of the proposed estimation methods. 

A key contribution of this thesis is the construction of an alternative type of the GLD for 

which closed-form expressions for method of L-moments estimators are available. The 

problem of parameter estimation is therefore approached from a different angle by, instead of 

developing another new estimation method, developing a type for which method of L-

moments estimation yields closed-form expressions for the estimators. This new type of the 

GLD utilizes a linkage existing between Tukey’s lambda distribution and the generalized 

Pareto distribution (GPD). The history of the development of this type of the GLD, labeled 

the GPD Type in the rest of the thesis, is briefly outlined below. 

 

1.4 INITIAL DEVELOPMENT OF THE NEW TYPE OF THE GLD 

In 2008, M.T. (Theodor) Loots completed his Honors Essay under my supervision, focusing 

on the theory and application of L-moments (Loots, 2008). To illustrate the interpretation of 

L-skewness, Loots utilized the skew logistic distribution (SLD) of Gilchrist (2000), while he 

used Tukey’s lambda distribution (Hastings et al., 1947; Tukey, 1960, 1962) to demonstrate 

the interpretation of L-kurtosis. The SLD has a single shape parameter controlling the L-

skewness ratio and has a constant value for its L-kurtosis ratio. Tukey’s lambda distribution is 

symmetric and its shape parameter controls the L-kurtosis ratio. 

Upon noting furthermore that the expressions for the L-kurtosis ratios of Tukey’s lambda 

distribution and the GPD are exactly the same, we realized that a new type of the GLD could 

be constructed from the GPD. In the resulting GPD Type of the GLD, the shape properties of 

both the SLD and Tukey’s lambda distribution are incorporated. Specifically the L-kurtosis 
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ratio of the GPD Type is explained by just one of its shape parameters. As a result, the GPD 

Type has closed-form expressions for method of L-moments estimation. Basic results for the 

GPD Type of the GLD were given in van Staden & Loots (2009a). 

Subsequently, exploring the distributional properties of the GPD Type in more depth, it 

was found that the quantile-based measures of kurtosis of this type also exhibit skewness-

invariance. This led to the development of a general methodology for the construction of 

families of quantile-based distributions with skewness-invariant kurtosis measures. The GPD 

Type of the GLD is an example of such a quantile-based distribution. 

 

1.5 OUTLINE OF THESIS 

Chapter 2 explores the techniques, functions and measures used in the modeling and 

description of quantile-based distributions. The focus is on the building of new distributional 

models through the transformation of quantile functions. The measuring and description of 

the location, spread and shape of distributions through L-moments, developed by Hosking 

(1990), as well as quantile-based measures are explained. The concept of skewness-invariant 

measures of kurtosis is discussed and in the main result of the thesis, Proposition 2.8.1, a 

methodology is presented for the creation of quantile-based distributions with skewness-

invariant kurtosis measures. 

Chapter 3 focuses on the GLD, a well established quantile-based distribution. Specifically 

the functions, measures and properties of the RS and FMKL Types of the GLD are examined. 

Where necessary, results not appearing in the literature before, such as the characterization of 

the FMKL Type by L-moments, are presented. 

Chapter 4 uses the model construction methodology proposed in Proposition 2.8.1 of 

Chapter 2 to add to the existing types of the GLD a new type which has considerably simpler 

expressions for its L-moments. A detailed analysis of this new type of the GLD, specified in 

terms of its quantile function in Definiton 4.2.1, is presented. In particular, due to the 

simplicity of their expressions, the new type of the GLD is characterized through its L-

moments. The shape characteristics of this type of the GLD is examined, focusing on the 

skewness-invariance of its L-kurtosis ratio as well as its quantile-based kurtosis measures. 

The use of method of L-moments estimation is advocated, with an estimation algorithm for 

computing method of L-moments estimates presented. 

Chapter 5 summarises the main findings of the thesis and provides recommendations for 

further development in the area of quantile modeling. 
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1.6 CONTRIBUTIONS OF THESIS 

As indicated in Section 1.1, the main contributions of this thesis are the development of a 

methodology for the construction of quantile-based families of distributions possessing 

skewness-invariant kurtosis measures, and the utilization of this methodology to create a new 

type of the GLD with closed-form expressions for its parameter estimators and  their standard 

errors. Apart from these main contributions, the other new contributions from each chapter 

are listed below. 

 

Chapter 2 

o A new quantile-based measure of kurtosis, named the κ -functional, is introduced in 

Section 2.6. The κ -functional is related to the ratio-of-spread functions, proposed by 

MacGillivray & Balanda (1988), but has the added advantage of being a bounded kurtosis 

functional, hence simplifying interpretation. 

o In Section 2.7 a decomposition for the spread function governing the existence of 

skewness-invariant kurtosis measures is formulated. 

o It is shown in Section 2.7 that the logistic-exponential distribution, introduced by Lan & 

Leemis (2008), has skewness-invariant kurtosis measures. 

o Formulae for the moments of the SLD of Gilchrist (2000) are listed in Section 2.4, with 

the derivations of these formulae presented in Section 2.13.1. 

o In Section 2.6 expressions for the SLD’s quantile-based measures of location, spread and 

shape are presented. As indicated in Section 2.7, the quantile-based kurtosis measures of 

the SLD are skewness-invariant. 

o Expressions for the SLD’s L-moments are presented in Section 2.8. In Section 2.9 an 

estimation algorithm for method of L-moments estimation for the SLD is given. In this 

algorithm, closed-form expressions for the method of L-moments estimators are specified, 

as are closed-form expressions for their asymptotic standard errors, derived in Section 

2.13.2. 

 

Chapter 3 

o The complete set of formulae for the moments of the FMKL Type of the GLD is given in 

Section 3.6. Formulae for the moments of the limiting cases of the FMKL Type are 

derived in Section 3.17.1. 
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o In Section 3.7 the FMKL Type is characterized through its L-moments, whose 

expressions are derived in Section 3.17.2. 

 

Chapter 4 

o Formulae for the moments of the GPD Type of the GLD are given in Section 4.5. These 

formulae are derived in Section 4.13.1. 

o In Section 4.6 the GPD Type of the GLD is characterized through its L-moments. 

o Expressions for the quantile-based measures of location, spread and shape for the GPD 

Type of the GLD are listed in Section 4.7. It is shown that the quantile-based kurtosis 

measures are skewness-invariant. 

o In Sections 4.4 and 4.8 a comprehensive analysis of the distributional properties and 

shape characteristics of the GPD Type of the GLD is done. 

o An estimation algorithm for method of L-moments estimation for the GPD Type of the 

GLD is given in Section 4.9. Closed-form expressions for the method of L-moments 

estimators as well as their asymptotic standard errors are presented. The expressions for 

the asymptotic standard errors are derived in Section 4.13.3. 
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__________________________________________ 
 

2. QUANTILE MODELING 
__________________________________________ 
 

2.1 INTRODUCTION 

In statistical modeling the various functions utilized for specifying the probability 

distributions of random variables can be divided into two distinct categories. The first 

category contains functions based on the classical concepts of densities and probabilities and 

is hence labeled the classical statistical universe. Functions based on quantiles belong to the 

second category and provide an alternative yet complementary view to the functions in the 

classical statistical universe. The second category is called the quantile statistical universe 

and is the focus of this thesis. 

The functions in the classical statistical universe played a central role in the development 

of the foundations of mathematical statistics in the late 1800s and early 1900s, in which the 

ideas of Pearson (1894, 1895) featured prominently (thence the use of the term classical to 

describe their universe). These functions’ properties and their use in statistical modeling are 

well-documented. Standard textbooks on mathematical statistics such as Bain & Engelhardt 

(1992), the books on probability distributions by Johnson et al. (1994, 1995) and 

Balakrishnan & Nevzorov (2003) and also the monograph of Stuart & Ord (1994) on 

distribution theory can be consulted for details. 

Quantiles were formally introduced by Galton (1881), but their use in statistical modeling 

only became more prominent in the 1960s and 1970s with Parzen and Tukey the pioneers. In 

particular, Parzen (1979) presented a seminal discussion on the use of quantile-based 

functions, measures and methods in statistical modeling, incorporating and extending ideas 

from Tukey (1962, 1965, 1977). More recently Gilchrist (2000) presented a detailed book-

length account on statistical modeling in the quantile statistical universe, which will 

henceforth simply be referred to as quantile modeling. Lampasi (2008) discussed the 

quantile-based approach to measurement activities and applications. He was the first to refer 

to the two categories as universes. 
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In this chapter procedures applicable to and utilized in the quantile statistical universe are 

presented. In Section 2.2 the probability-based and quantile-based functions from the 

respective statistical universes are given. As highlighted by Lampasi (2008), and shown in 

Figure 2.1, it is possible to move from one statistical universe to the other. Each statististical 

universe has unique strengths and weaknesses. Specifically functions from the quantile 

statistical universe can be used to build new distributional models with a set of construction 

rules discussed in Section 2.3. 

While functions in terms of probabilities or quantiles are used to specify probability 

distributions, the description of the characteristics of probability distributions, such as 

location, spread, skewness and kurtosis, are done with measures, which include the well-

known moments considered in Section 2.4. Alternative measures called L-moments, which 

are based on order statistics, and measures based on quantiles are discussed in Sections 2.5 

and 2.6 respectively. It is shown that, in the quantile statistical universe, these measures are 

often easier to deal with than moments. A new bounded measure of kurtosis, labeled the κ -

functional, is proposed in Section 2.6. The concept of skewness-invariant measures of 

kurtosis is explained in Section 2.7. 

The main result in the thesis is presented in Proposition 2.8.1 in Section 2.8. This 

proposition outlines a methodology for the construction of generalized families of quantile-

based distributions with skewness-invariant measures of kurtosis. Three- and four-parameter 

distributions constructed with this methodology possess closed-form expressions for 

estimation methods based upon L-moments from Section 2.5 and, in the case of three-

parameter distributions, closed-form expressions for estimation methods predicated on 

quantile-based measures in Section 2.6. 

In this thesis method of L-moments estimation is utilized. Therefore a discussion on this 

estimation method is given in Section 2.9. Model validation is considered in Section 2.10. In 

Section 2.11 it is explained how the tail behavior of quantile-based distributions is analyzed. 

Concluding remarks are given in Section 2.12. 

Throughout Chapter 2 a special quantile-based distribution, the skew logistic distribution 

of Gilchrist (2000), is used to illustrate the various concepts discussed. Many of the results 

for the skew logistic distribution given and derived in this chapter are new, including the 

expressions for its moments in Example 2.4.1, its quantile-based measures for location, 

spread and shape in Example 2.6.1, and its L-moments in Example 2.8.1, as well as the 

expressions for the skew logistic distribution’s method of L-moments estimators and their 

asymptotic standard errors presented in the estimation algorithm in Example 2.9.1. In 
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particular the expressions for the moments of the skew logistic distribution are derived in 

Section 2.13.1, while the covariance matrix for the method of L-moments estimators is 

derived in Section 2.13.2. 

Appendix 2.14 contains information regarding mathematical functions and ratios 

occurring in some of the expressions and derivations in the thesis. This information is 

summarized in a table in Section 2.14.1. Because shifted Legendre polynomials appear 

prominently in the formuale of L-moments, a brief discussion on these polynomials is 

presented in Section 2.14.2. 

In Section 2.14.3 of Appendix 2.14 an extensive set of tables summarizing the properties, 

functions and expressions of various probability distributions is given. Full discussions of 

these distributions are beyond the scope of this thesis. The set of tables is included as a 

reference resource and combines information collected and derived while doing literature 

research for the thesis. 

 

2.2 CLASSICAL AND QUANTILE STATISTICAL UNIVERSES 

As indicated in the introduction in Section 2.1, each of the functions for specifying the 

probability distribution of a random variable X belongs to one of two complementary 

statistical universes, the classical statistical universe and the quantile statistical universe. 

 

2.2.1   CLASSICAL STATISTICAL UNIVERSE 

The classical statistical universe contains probability-based functions defined in terms of x. 

As demonstrated in Figure 2.1, these functions include the cumulative distribution function, 

 ∞<<∞−≤= xxXPxF ,)()( , 

and, if X has an absolutely continuous distribution, the probability density function, 

 ∞<<∞−= xxf
dx

xdF
,)(

)(
. 

 

2.2.2   QUANTILE STATISTICAL UNIVERSE 

In the quantile statistical universe the distribution of X is specified with quantile-based 

functions expressed in terms of p, where 10 << p . The most prominent of these functions is 

the quantile function, )( pQ , defined for a random variable X with cumulative distribution 

function )(xF  by 

 { } 10,)(:inf)( <<≥= ppxFxpQ . 
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The fundamental relation between the cumulative distribution function and the quantile 

function is that, for ∞<<∞− x  and 10 << p , 

xpQpxF ≤⇔≥ )()( .       (2.1) 

 

 

Figure 2.1: The relations between the functions in the classical statistical universe and the quantile statistical universe. 

 

When X has an absolutely continuous distribution, then 

 { } 10,)(:inf)( <<== ppxFxpQ , 

and ( ) ppQF =)(  so that )()( 1
pFpQ

−= . Thus, if X is a real-valued random variable, then 

the quantile function is the inverse of the cumulative distribution function and )( pQ  is 

therefore often referred to as the inverse cumulative distribution function. As illustrated in 

Figure 2.1, the classical and quantile statistical universes are connected through this inverse 

relationship between the cumulative distribution function and the quantile function.  

Two other important quantile-based functions are obtained through differentiation of 

)( pQ  and of ( ) ppQF =)( . The quantile density function is the derivative of the quantile 

function (see Figure 2.1), 

 10,)(
)(

<<= ppq
dp

pdQ
. 

Taking derivatives on both sides of ( ) ppQF =)(  gives 

 
( ) ( ) 1)()()()(

)(
=== pqpfpqpQf pdp

pQdF
,     (2.2) 

where 

 ( ) 10,)()( <<= ppQfpf p , 

called the density quantile function, is the density function for the distribution of X expressed 

in terms of p instead of x. In effect, )(xf  is the density function in the classical statistical 
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universe, while )( pf p  is the corresponding density function in the quantile statistical 

universe. It follows from (2.2) that 

 
)(

1)(
pqp pf = , 

so the density quantile function and the quantile density function are reciprocals of each other 

(see again Figure 2.1). 

Since )(xF  is a non-decreasing function with 

 0)(lim =
−∞→

xF
x

 

and 

 1)(lim =
∞→

xF
x

, 

)( pQ  is a non-decreasing function over the interval 10 << p . Consequently both )( pq  and 

)( pf p  are non-negative over the interval 10 << p . 

 

2.2.3   PROBABILITY-BASED AND QUANTILE-BASED FUNCTIONS OF DISTRIBUTIONS 

All the probability-based and quantile-based functions in the two statistical universes exist for 

any absolutely continuous distribution. Table 2.11 and Table 2.12 in Section 2.14.3 of 

Appendix 2.14 present expressions for various distributions’ functions from the classical 

statistical universe and the quantile statistical universe respectively. Details regarding the 

parameters and support as well as references for all the distributions covered in Tables 2.11 

and 2.12 are listed in Table 2.10 in Section 2.14.3. 

Table 2.1 summarizes the expressions for the probability-based and quantile-based 

functions of the uniform, exponential and logistic distributions, which are examples used to 

represent distributions with bounded, half-infinite and infinite support. The expressions are 

presented in location-scale form (to be explained in Section 2.2.5). The simplicity of their 

quantile-based functions allows these three distributions to play prominent roles in theoretical 

development in the quantile statistical universe. Hence, where applicable, these distributions 

are used in the rest of the chapter to illustrate various concepts. Figure 2.2 depicts the 

probability-based functions of these three distributions graphically, while their quantile-based 

functions are shown in Figure 2.3. In order to facilitate easy comparison in Figures 2.2 and 

2.3, the location and spread of the three distributions have been made equivalent in the 

various graphs by setting 01 =L  and 12 =L  for all three distributions ( 1L  and 2L  are 

respectively the L-location and L-scale to be discussed in Section 2.5). 
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Table 2.1: Functions defining the uniform, exponential and logistic distributions. 

Function Uniform Exponential Logistic 

Cumulative distribution function β
α−= xxF )(  











−−= −

β
αxxF exp1)(  













−+

=
−
β
αx

xF

exp1

1
)(  

Probability density function β
1)( =xf  











−= −

β
α

β
xxf exp)( 1  2

1

exp1

exp

)(





















−+













−

=

−

−

β
α

β
α

β

x

x

xf  

Quantile function ppQ βα +=)(  ]1log[)( ppQ −−= βα  




+=

− p

p
pQ

1
log)( βα  

Quantile density function β=)( pq  
p

pq
−

=
1

)(
β

 
)1(

)(
pp

pq
−

=
β

 

Density quantile function β
1)( =pf p  

β
p

p pf
−

=
1

)(  
β

)1(
)(

pp
p pf

−
=  

 

  

Figure 2.2: Cumulative distribution and probability density functions of the uniform, exponential and logistic distributions, all with 

01 =L  and 12 =L . The line types indicated in graph (a) also apply to graph (b). 

 

The uniform, exponential and logistic distributions are examples of distributions which 

possess expressions for both their probability-based and quantile-based functions. This is 

however not the case with all distributions. In effect, although all the functions in the two 

statistical universes exist for any absolute continuous distribution, not all distributions 

possess closed-form expressions for all their functions. 

Distributions such as the normal, half-normal, log-normal and gamma distributions are 

specified through their probability density functions. The expressions for these distributions’ 

cumulative distribution functions contain error, gamma and other special mathematical 

functions, which are defined in terms of integrals (see Table 2.9 in Section 2.14.1), and hence 

these expressions cannot be written in closed form. As a result, the expressions for all their 

quantile-based functions can also not be given in closed form. Although the cumulative 

distribution and quantile-based functions of these distributions can be evaluated numerically 
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using almost any statistical software package, it is easier to work with these distributions in 

the classical statistical universe (through their probability density functions) than in the 

quantile statistical universe. 

 

  

 

Figure 2.3: Quantile, quantile density and density quantile functions of the uniform, exponential and logistic distributions, all with 

01 =L  and 12 =L . The line types indicated in graph (a) also apply to graphs (b) and (c). 

 

Tukey’s lambda distribution and its generalizations (to be discussed in detail in Chapters 

2 and 3) and the Davies distribution are examples of distributions which are specified in 

terms of their quantile-based functions, particularly in terms of their quantile functions. No 

closed-form expressions exist for these distributions’ functions in terms of x. It is thus not 

ideal to work with these quantile-based distributions in the classical statistical universe. It is 

however common practice to display a distribution graphically by plotting its density curve, 

that is, by plotting )(xf  against x. For quantile-based distributions, the plot of the density 

curve can be obtained by selecting equally spaced values of p, say 999.0...,,002.0,001.0=p , 
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evaluating )( pQ  and )( pf p  for these chosen values of p, and plotting the points 

( ))(),( pfpQ p  to obtain a plot of the corresponding points ( ))(, xfx . 

 

2.2.4   Q-TRANSFORMATIONS 

When transformations are applied to random variables, the resulting behavior of their 

quantile functions plays a key role in quantile modeling. Parzen (1979) considered this 

important property of quantile modeling, focusing on transformations based on non-

decreasing functions. Theorem 2.2.1 below deals with transformations based on non-

decreasing as well as non-increasing functions. Note that the proof of Theorem 2.2.1(a) was 

presented by Parzen (1979). The proof of Theorem 2.2.1(b) is structured in a similar manner. 

 

Theorem 2.2.1 

Assume that X and Y are real-valued random variables related through the transformation 

)(XTY =  and with )(xFX  and )( yFY  the cumulative distribution functions and )( pQX  and 

)( pQY  the quantile functions of their respective distributions. 

(a) Then, if )(XTY =  is a non-decreasing function of X, 

 ( ))()( pQTpQ XY = .        (2.3) 

(b) In contrast, if )(XTY =  is a non-increasing function of X, then 

( ))1()( pQTpQ XY −= .       (2.4) 

 

Proof 

(a) When )(XTY =  is a non-decreasing function of X, 

 ( ))()( 1
yTFyF XY

−= . 

Therefore, 

( )

( ).)(

)()(

)()(

1

1

pQTy

pQyT

pyTFpyF

X

X

XY

≥⇔

≥⇔

≥⇔≥

−

−

 

But from (2.1) we have )()( pQypyF YY ≥⇔≥ , hence (2.3) follows. 

(b) When )(XTY =  is a non-increasing function of X, 

 ( ))(1)( 1
yTFyF XY

−−= . 

Then 
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( )

( ).)1(

)1()(

1)()(

1

1

pQTy

pQyT

pyTFpyF

X

X

XY

−≥⇔

−≥⇔

−≥⇔≥

−

−

 

Using again (2.1), that is, )()( pQypyF YY ≥⇔≥ , (2.4) follows. 

■ 

 

The transformations in (2.3) and (2.4) were termed Q-transformations by Gilchrist (2000). 

Examples of (2.3) include the logarithmic transformation, [ ])(log)( pQpQ XY =  if ]log[XY =  

for 0>X , and the power transformation, ( )λ
)()( pQpQ XY =  if 

λ
XY =  for 0>X  and 

0>λ . The reflecting transformation, )1()( pQpQ XY −−=  if XY −= , and reciprocal 

transformation, 
)1(

1)(
pQY

X
pQ

−
=  if 

X
Y 1=  for 0≠X , are examples of (2.4). As will be 

shown in Section 2.3, Q-transformations form part of a simple quantile approach based on a 

set of construction rules for building new distributional models. 

Another important consequence of Q-transformations is the relation between the quantile 

functions of the location-scale form and the standard form of a distribution. This relation is 

discussed in Section 2.2.5. 

 

2.2.5   LOCATION-SCALE AND STANDARD FORMS OF DISTRIBUTIONS 

The probability-based functions for all the distributions in Table 2.11 are presented in 

location-scale form, 

 ( )
β

α−= xFxF 0)(  

and 

 ( )
β

α
β

−= xfxf 0
1)( , 

where α  and 0>β  are respectively location and scale (spread) parameters, and ( )
β

α−xF0  and 

( )
β

α−xf0  denote the cumulative distribution and probability density functions of the standard 

form of the distribution, in effect, the standard distribution. The corresponding 

representations of the quantile-based functions for the distributions in Table 2.12 are of the 

form 

 )()( 0 pQpQ βα += ,        (2.5) 

 )()( 0 pqpq β=  
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and 

 )()( 0;
1 pfpf pp β

= , 

with )(0 pQ , )(0 pq  and )(0; pf p  denoting the quantile, quantile density and density quantile 

functions of the standard distribution. 

The linear transformation in (2.5) is a special Q-transformation controlling the relation 

between the location-scale form and the standard form in the quantile statistical universe. In 

quantile modeling it is convenient to ignore the location and the spread of distributions during 

the distributional model building process by applying the construction rules to the quantile 

functions of standard distributions. At the end of the distributional model building process, 

the location and scale parameters (α  and β ) can simply be included with the linear 

transformation in (2.5). This linear transformation adjusts the location and spread of the 

distribution while preserving its distributional shape. Therefore, if a distribution possesses 

any shape parameters (denoted by λ  and δ  for the relevant distributions in the tables in 

Section 2.14.3 of Appendix 2.14), both )( pQ  and )(0 pQ  will contain these parameters. 

In the next section the application of Q-transformations in the distributional model 

building process is explained. 

 

2.3 CONSTRUCTION RULES FOR DISTRIBUTIONAL MODEL BUILDING 

An important advantage of quantile modeling, compared to statistical modeling with 

probability-based functions, is that new distributional models can be constructed through the 

addition, multiplication and transformation of quantile-based functions. This distributional 

model building process is guided by a set of construction rules which were outlined by 

Gilchrist (2000). The basic underlying condition to all these rules is that the resulting quantile 

function must be non-decreasing over the interval 10 << p . The rules required for the 

construction of specific generalized families of distributions, such as the new type of the 

generalized lambda distribution proposed in Chapter 4, are highlighted below. 

 

2.3.1   UNIFORM TRANSFORMATION RULE 

The standard uniform distribution is a foundation distribution in quantile modeling in that any 

continuous distribution can be generated from this distribution through the application of Q-

transformations to its quantile function. That is, if U is a real-valued random variable having 

a standard uniform distribution with quantile function 
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ppQU =)(0; ,         (2.6) 

then, for )(UTX =  a non-decreasing function of U, the standard distribution of X has 

quantile function 

 ( ) )()()( 0;0; pTpQTpQ UX == , 

while the standard distribution of X has quantile function  

 ( ) )1()1()( 0;0; pTpQTpQ UX −=−=  

if )(UTX =  is a non-increasing function of U. 

 

Example 2.3.1 

Suppose U has a standard uniform distribution with quantile function given in (2.6). Assume 

that ]log[)( UUTX −==  so that X is a non-increasing function of U. Then 

 

( )
[ ]

,]1log[

)1(log

)1()(

0;

0;0;

p

pQ

pQTpQ

U

UX

−−=

−−=

−=

       (2.7) 

which is the quantile function of the standard exponential distribution. The quantile functions 

of the standard uniform and standard exponential distributions are shown in Figure 2.4. 

 

 

Figure 2.4: Quantile functions of the standard uniform distribution and of the standard exponential distribution, obtained with the 

uniform transformation rule. 

 

This example illustrates how multiple Q-transformations can be combined to build a 

distributional model. In this case both the logarithmic transformation and the reflecting 

transformation are used in the uniform transformation rule to obtain the quantile function of 

the standard exponential distribution. 

□ 
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2.3.2   REFLECTION RULE 

The reflecting transformation is typically applied to the quantile function of an asymmetric 

distribution (the reflection of a symmetric distribution is simply the distribution itself). 

Assume that X is a real-valued random variable with )(0; pQX  the quantile function of the 

standard distribution of X. Suppose XXTY −== )(  so that the standard distribution of Y is 

the reflection of the standard distribution of X about the line 0=x . Then, since Y is a non-

increasing function of X, the quantile function of the standard distribution of Y is 

 ( ) )1()1()( 0;0;0; pQpQTpQ XXY −−=−= . 

 

Example 2.3.2 

Consider X having a standard exponential distribution with support ),0[ ∞  and quantile 

function given in (2.7). Then XY −=  has a standard reflected exponential distribution with 

support ]0,(−∞  and corresponding quantile function 

 .]log[

)1()( 0;0;

p

pQpQ XY

=

−−=
       (2.8) 

Figure 2.5 illustrates the quantile functions of the standard exponential and the standard 

reflected exponential distributions. 

 

 

Figure 2.5: Quantile functions of the standard exponential distribution and of the standard reflected exponential distribution, obtained 

with the reflection rule. 

□ 

 

2.3.3   ADDITION RULE 

Since the sum of two non-decreasing functions is also non-decreasing, the sum of any two 

quantile functions is also a quantile function. So, if X and Y are two real-valued random 
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variables with )(0; pQX  and )(0; pQY  the quantile functions of their standard distributions, 

then the quantile function of the standard distribution of another random variable, say W, can 

be obtained through the addition rule with 

 )()()( 0;0;0; pQpQpQ YXW += . 

Furthermore, because the derivative of the sum of two functions is equal to the sum of the 

derivatives of the functions, adding any two quantile density functions produces another 

quantile density function. Thus, if )(0; pqX  and )(0; pqY  are the quantile density functions for 

the standard distributions of X and Y, then 

 )()()( 0;0;0; pqpqpq YXW +=  

is the quantile density function of the standard distribution of W. 

The addition rule can of course be generalized to more than two quantile functions and 

quantile density functions. If niX i ...,,2,1: =  are real-valued random variables with n a 

positive integer, and )(0; pQ
iX  and )(0; pq

iX  are the quantile and quantile density functions 

for the standard distribution of the i
th

 variable, then 

 ∑
=

=
n

i

XW pQpQ
i

1

0;0; )()(        (2.9) 

and 

 ∑
=

=
n

i

XW pqpq
i

1

0;0; )()(        (2.10) 

are the quantile and quantile density functions of the standard distribution of the random 

variable W. 

Returning to the bivariate case, 2=n , when adding the quantile function of an 

asymmetric distribution on bounded or half-infinite support to the quantile function of the 

reflection of this distribution, the distribution of the resulting quantile function will be 

symmetric. In effect, the distribution with quantile function 

 

)1(

)1()(

)()()(

0;

0;0;

0;0;0;

pQ

pQpQ

pQpQpQ

W

XX

YXW

−−=

−−=

+=

      (2.11) 

is symmetric. 
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Example 2.3.3 

Suppose X has a standard exponential distribution, with quantile function given in (2.7). 

Then, as shown in Example 2.3.2, XY −=  has a standard reflected exponential distribution 

with quantile function given in (2.8). Adding the quantile functions of the standard 

exponential and standard reflected exponential distributions gives 

 

.log

]log[]1log[

)()()(

1

0;0;0;





=

+−−=

+=

− p

p

YXW

pp

pQpQpQ

      (2.12) 

The quantile density functions of X and Y are respectively 
pX pq

−
=

1
1

0; )(  and 
pY pq 1

0; )( = , 

and the sum of these two functions is 

 

.

)()()(

)1(
1

1
1

1

0;0;0;

pp

pp

YXW pqpqpq

−

−

=

+=

+=

 

)(0; pQW  and )(0; pqW  are respectively the quantile function and the quantile density function 

of the standard logistic distribution, which is a symmetric distribution. The quantile and 

quantile density functions of the standard exponential, standard reflected exponential and 

standard logistic distributions are depicted in Figure 2.6. 

 

  

Figure 2.6: Quantile and quantile density functions of the standard exponential distribution and standard reflected exponential 

distribution, and of the standard logistic distribution obtained with the addition rule. The line types indicated in graph (a) 

also apply to graph (b). 

□ 
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2.3.4   INTERMEDIATE RULE 

The addition rule for quantile functions in (2.9) and for quantile density functions in (2.10) 

can be further generalized by considering linear combinations of quantile functions and of 

quantile density functions. That is, if nici ...,,2,1: =  are non-negative constants with n a 

positive integer and niX i ...,,2,1: =  are real-valued random variables with
 

)(0; pQ
iX  and 

)(0; pq
iX  the quantile and quantile density functions for the standard distribution of the i

th
 

variable, then 

 ∑
=

=
n

i

XiW pQcpQ
i

1

0;0; )()(  

and 

 ∑
=

=
n

i

XiW pqcpq
i

1

0;0; )()(  

are the quantile and quantile density functions of the standard distribution of the random 

variable W. 

A special situation arises in the bivariate case, 2=n , if δ=1c  and δ−= 12c  where 

10 ≤≤ δ  so that 121 =+ cc . That is, suppose X and Y are two real-valued random variables 

with )(0; pQX  and )(0; pQY  the quantile functions of their standard distributions. Consider 

another random variable, W, whose quantile function is defined as the weighted sum of 

)(0; pQX  and )(0; pQY , 

 )()1()()( 0;0;0; pQpQpQ YXW δδ −+= .     (2.13) 

If, for a given value of p, )()( 0;0; pQpQ YX ≥ , then )()()( 0;0;0; pQpQpQ YWX ≥≥  for that 

value of p. In effect, the weighted sum of two quantile functions is bounded by these two 

quantile functions. This result is known as the intermediate rule for quantile functions. 

It was shown in Section 2.3.3 that a distribution with quantile function obtained with 

(2.11) is symmetric. The reason is that the percentage of weight allocated to the quantile 

functions of the distributions of X and Y is 50% each, in effect, equal. The transformation in 

(2.13) can be used to introduce skewness by taking the weighted sum of the quantile function 

of an asymmetric distribution on bounded or half-infinite support and the quantile function of 

the reflection of this distribution. That is, the distribution with quantile function 

 
,)1()1()(

)()1()()(

0;0;

0;0;0;

pQpQ

pQpQpQ

XX

YXW

−−−=

−+=

δδ

δδ
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is an asymmetric distribution where δ  can be viewed as a weight parameter which controls 

the level of skewness through the allocation of weight to )(0; pQX  and to 

)1()( 0;0; pQpQ XY −−= . In effect, δ  is a shape parameter. Note that W has a symmetric 

distribution for 
2
1=δ . 

 

Example 2.3.4 

Consider again X having a standard exponential distribution with quantile function given in 

(2.7) and XY −=  having a standard reflected exponential distribution with quantile function 

given in (2.8). Then 

 
]log[)1(]1log[

)()1()()( 0;0;0;

pp

pQpQpQ YXW

δδ

δδ

−+−−=

−+=
     (2.14) 

is the quantile function of a skewed form of the standard logistic distribution with 10 ≤≤ δ  a 

shape parameter. Using the linear transformation in (2.5) to include location and scale 

parameters (α  and β ), the quantile function of the resulting three-parameter asymmetric 

distribution, aptly named the skew logistic distribution by Gilchrist (2000), is 

 







−−−+= ]1log[]log[)1()( pppQ δδβα .     (2.15) 

The skew logistic distribution, which will be abbreviated SLD, is symmetric for 
2
1=δ , 

negatively skewed for 
2
1<δ  and positively skewed for 

2
1>δ . The reflected exponential, 

symmetric logistic and exponential distributions are all special cases of the SLD for 0=δ , 

2
1=δ  and 1=δ  respectively. The SLD’s quantile density and density quantile functions are 

 







=








+=

−

−−+

−
−

)1(

)1)(1(

1
1)(

pp

pp

pp
pq

δδδδ ββ      (2.16)
 

and 

 









−−+

−
=

)1)(1(

)1(
)(

pp

pp

p pf
δδβ

.       (2.17) 

As with Tukey’s lambda distribution (and its generalizations) and the Davies distribution, the 

probability-based functions of the SLD cannot be expressed in closed-form (except of course 

for its special cases mentioned above). The SLD is thus a quantile-based distribution. The 

quantile, quantile density, density quantile and probability density functions of the standard 

SLD are shown in Figure 2.7 for 1,,,,0
4
3

2
1

4
1=δ . 
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Figure 2.7: Quantile, quantile density, density quantile and probability density functions of the standard SLD for various values of δ . 

The line types indicated in graph (a) also apply to the other graphs. 

 

The intermediate rule for quantile functions is evident from Figure 2.7(a), with the SLD’s 

quantile function bounded by the quantile functions of the exponential and reflected 

exponential distributions. Furthermore, as can be seen in Figure 2.7(d), the SLD is J-shaped 

with half-infinite support for 0=δ  and 1=δ , and unimodal with infinite support for 

10 << δ . Note that, since no closed-form expression exists for the SLD’s probability density 

function, Figure 2.7(d) was obtained by plotting the points ( ))(),( 0;0 pfpQ p  to obtain a plot 

of the corresponding points ( ))(, 0 xfx . 

□ 

 

Note that the quantile-based SLD presented in Example 2.3.4 is not the only type of skew 

logistic distribution in existence. Wahed & Ali (2001) and Nadarajah (2009) studied a skew 

logistic distribution based upon the skewing methodology introduced by Azzalini (1985, 

1986), with probability density function in standard form given by 
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 )()(2)( 000 xFxfxg λ= , 

where )(0 xf  and )(0 xF  are the probability density and cumulative distribution functions of 

the standard logistic distribution and λ  is a shape parameter. This density-based skew 

logistic distribution is in no way related to the quantile-based SLD considered in this thesis. 

 It was shown in Section 2.3 how probability distributions can be created through the 

application of model building construction rules to quantile functions. In Sections 2.4 to 2.8 

measures of location, spread and shape for probability distributions are considered. 

Specifically it is proved in Section 2.8 that a distribution whose quantile function is given by 

the weighted sum of the quantile function of an asymmetric distribution on bounded or half-

infinite support and the quantile function of the reflection of this asymmetric distribution 

possesses certain measures of kurtosis which are skewness-invariant. 

 

2.4 MOMENTS 

In the classical statistical universe it is common practice to use moments and moment ratios 

to describe the location, spread and shape characteristics of a probability distribution. 

Following conventional notation, if X is a real-valued random variable, then ][ r
r XE=′µ  is 

the r
th

 order uncorrected (crude) moment and ])[( r
r XE µµ −=  is the r

th
 order corrected 

(central) moment, where 1µµ ′= , the first order uncorrected moment, is the mean of X and a 

measure of location. The second order corrected moment, 2
2 µσ = , is the variance of X and a 

measure of spread. The skewness and kurtosis moment ratios, defined as 

 
3

3

3 σ

µ
α =  and 

4

4

4 σ

µ
α = ,        (2.18) 

are used to describe the shape of the distribution. Expressions and values for the mean, 

variance, skewness moment ratio and kurtosis moment ratio of the uniform, exponential and 

logistic distributions are presented in Table 2.2.  

 

Table 2.2: Moments for the uniform, exponential and logistic distributions. 

Measure Uniform Exponential Logistic 

Mean βαµ
2
1+=  βαµ +=  αµ =  

Variance 
2

12
12 βσ =  22 βσ =  

2

3

2 2

βσ π=  

Skewness moment ratio 03 =α  23 =α  03 =α  

Kurtosis moment ratio 
5
9

4 =α  94 =α  5
21

4 =α  
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The moments and moment ratios can also be used in the quantile statistical universe, since 

 ( )∫=′
1

0

)( dppQ
r

Xrµ  

and 

 ( )∫ −=
1

0

)( dppQ
r

Xr µµ , 

where 

 ∫=
1

0

)( dppQXµ . 

However, often the formulae obtained for the moments and moment ratios of quantile-based 

distributions are not straightforward, complicating the use of these measures. Therefore 

alternative measures of location, spread and shape are discussed in Sections 2.5 and 2.6. 

 

Example 2.4.1 

The mean, variance, skewness moment ratio and kurtosis moment ratio of the SLD are 

 )12( −+= δβαµ ,        (2.19) 

 







+−= ωδβσ π

3

222 2

)12( ,       (2.20) 

 































−−−= )3(341)12(2

3

3

3 ζωδα
σ

β
     (2.21) 

and 

 































−−+








−−+=

15

22
4

4

4

4

16)49(4)12(29 π

σ

β ωπδωα ,   (2.22) 

with )1( δδω −=  and where )(aζ  is Riemann’s zeta function – see Section 2.14.1 for 

details. These formulae, which have not been given in the literature before, are derived in 

Section 2.13.1. As will be seen in subsequent sections, the formulae for other measures of 

location, spread and shape of the SLD are considerably simpler. 

□ 
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2.5 L-MOMENTS 

The theory of L-moments was compiled by Hosking (1990). He extended and unified 

theoretical results and techniques described by Sillitto (1951, 1964, 1969), Downton (1966), 

Chan (1967), Konheim (1971), Mallows (1973) and Greenwood et al. (1979). L-moments are 

expectations of linear combinations of order statistics. Let nnnn XXX ::2:1 ... ≤≤≤  denote the 

order statistics for a random sample of size n from the distribution of X. The r
th

 order L-

moment of X is then defined by 

 ( ) ...,3,2,1,)1(
1

0

:
11 =




−= ∑

−

=
−

−−
rXErL

r

k

rkrk

rk
r .  

Note that in the literature the r
th

 order L-moment is usually denoted by rλ . However, the 

parameters of the generalized lambda distribution in Chapter 3 are also denoted by rλ . 

Therefore in this thesis the r
th

 order L-moment will be denoted by rL  instead of rλ , to avoid 

confusion with the parameters of the generalized lambda distribution. 

Hosking (1990) showed that the r
th

 order L-moment of X can be written in terms of its 

quantile function as 

 ∫ −=
1

0

*
1 )()( dppPpQL rr ,       (2.23) 

where 

 ∑
=

+−


















−=

r

k

k

k

kr

k

rkr
r ppP

0

*
)1()(       (2.24) 

is the r
th

 order shifted Legendre polynomial. See Section 2.14.2 of Appendix 2.14 for a brief 

explanation on Legendre polynomials. 

The first order L-moment, referred to as L-location, is simply the mean, µ=1L . The 

second order L-moment, 2L , is called the L-scale. 2L  is a measure of spread and is related to 

Gini’s mean difference statistic (Gini 1913–1914). L-moment ratios are defined as 

 ...,5,4,3,
2

== r
L

L

r
rτ .       (2.25) 

The L-skewness ratio, 3τ , and L-kurtosis ratio, 4τ , are of particular interest in that they are 

measures of shape. Symmetric distributions have 03 =τ .  

Compared to conventional moments, L-moments possess a number of superior 

characteristics. For instance, L-moment ratios are bounded, simplifying their interpretation 
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compared to conventional moments. Specifically, as proven by Hosking (1990) and Jones 

(2004), the boundaries of the L-skewness and L-kurtosis ratios are 

 11 3 <<− τ  and ( ) 115 4
2
34

1 <≤− ττ .      (2.26) 

Furthermore, Hosking (1990) proved that, if the mean of a probability distribution exists, then 

all the L-moments exist and the distribution is uniquely characterized by its L-moments. 

Expressions and values for the L-moments of the uniform, exponential and logistic 

distributions are given in Table 2.3. The expressions and values for the L-moments of these 

three distributions as well as for various other well-known distributions were provided by 

Hosking (1986, 1990, 1992) and Hosking & Wallis (1997). Other sources for expressions of 

the L-moments of specific distributions include Jones (2002a, 2002b, 2009) for Student’s 

t(2), the cosine and Kumaraswamy’s distribution respectively, and Gupta & Kundu (2001) for 

the generalized exponential distribution. Table 2.13 in Section 2.14.3 of Appendix 2.14 

presents expressions for the L-location and L-scale of the distributions considered in Tables 

2.10 to 2.12 in this appendix, while expressions for the L-skewness and L-kurtosis ratios of 

these distributions are presented in Table 2.14 in Section 2.14.3. 

 

Table 2.3: L-moments for the uniform, exponential and logistic distributions. 

L-moment Uniform Exponential Logistic 

L-location βα
2
1

1 +=L  βα +=1L  α=1L  

L-scale β
6
1

2 =L  β
2
1

2 =L  β=2L  

L-skewness ratio 03 =τ  
3
1

3 =τ  03 =τ  

L-kurtosis ratio 04 =τ  6
1

4 =τ  
6
1

4 =τ  

 

Returning to Table 2.3, the uniform and logistic distributions are symmetric, so they have 

03 =τ . It is furthermore interesting to note that the exponential distribution and the logistic 

distribution both have 
6
1

4 =τ . 

As explained by Hosking & Wallis (1997), the L-moment ratio diagram is a convenient 

graphical representation for the L-skewness and L-kurtosis ratios in that it indicates the 

( )43,ττ  space attained by different distributions. No distribution’s ( )43,ττ  space can extend 

beyond the boundary given by (2.26). Figures 2.8 to 2.14 depict the L-moment ratio diagrams 

of the distributions considered in Table 2.14 in Section 2.14.3. As can be seen in these 

figures, especially Figure 2.8(b), a distribution which possesses only location and scale 

parameters and no shape parameters appears as a single point in the L-moment ratio diagram. 
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A distribution with a single shape parameter, say λ , is plotted with a line, where each 

point on the line indicates the values of 3τ  and 4τ  obtained for the corresponding value of 

λ . Figure 2.8 illustrates the values of 3τ  and 4τ  obtained by the distributions with shape 

parameter λ  from Table 2.14. Figure 2.9 presents the L-moment ratio diagram for the various 

generalized distributions considered by Hosking (1986) and Hosking & Wallis (1997). Note 

that the log-normal, generalized normal, gamma and generalized gamma distributions do not 

have simple expressions for their L-skewness and L-kurtosis ratios. The values of 3τ  and 4τ  

for these distributions can be calculated using rational-function approximations given by 

Hosking & Wallis (1997). 

 

  

Figure 2.8: L-moment ratio diagrams for the two- and three-parameter distributions in Table 2.14 in Appendix 2.14. The line types 

indicated in diagram (a) also apply to diagram (b). The uniform, normal, logistic and exponential distributions are denoted 

in diagrams (a) and (b) by U, N, L and E respectively, while A, C, SH, DE, t(2), G, HN and R, in diagram (b) denote the 

arcsine, cosine, secant hyperbolic, Laplace (double exponential), Student’s t(2), Gumbel, half-normal and Rayleigh 

distributions. The reflected distributions of the exponential and the Gumbel are indicated in diagram (b) with RE and RG. 

 

Distributional families with multiple shape parameters cover areas of 3τ  and 4τ  values 

corresponding to the values of these shape parameters. Figures 2.10 to 2.14 show the L-

moment ratio diagrams for the Burr Types III and XII distributions, the Davies distribution, 

the kappa distribution, Kumaraswamy’s distribution and the Schmeiser-Deutsch distribution, 

all possessing two shape parameters, say λ  and δ . Different colours are used to distinguish 

between the various areas of 3τ  and 4τ  values attained for the values of λ  and δ  as detailed 

in Table 2.14. Special and limiting distributions obtained by the Burr Types III and XII, 

Davies, kappa, Kumaraswamy’s and Schmeiser-Deutsch distributions are also indicated. 
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Figure 2.9: L-moment ratio diagram for generalized distributions in Table 2.14 in Appendix 2.14, considered by Hosking (1986) and 

Hosking & Wallis (1997). The uniform, normal, logistic, exponential and Gumbel distributions, which are special or 

limiting cases of these generalized distributions, are denoted by U, N, L, E and G respectively. 

 

  

Figure 2.10: L-moment ratio diagrams for the Burr Type III and Burr Type XII distributions. The uniform, logistic, exponential, 

reflected exponential, Gumbel and reflected Gumbel distributions are indicated in diagrams (a) and (b) by U, L, E, RE, G 

and RG respectively. In diagram (a), the purple- and the red-shaded areas are the ( )43 , ττ  spaces obtained by the Burr 

Type III distribution for 1>λ . But the purple-shaded area in diagram (a) is also obtained by the Burr Type III distribution 

when 1<λ . In effect, in the purple-shaded area there is not a one-to-one relation between the shape parameters of the Burr 

Type III distribution and the L-skewness and L-kurtosis ratios. In diagram (b), the purple- and blue-shaded areas are the 

( )43 , ττ  spaces obtained by the Burr Type XII distribution when both 1<λ  and 1<δ . The purple-shaded area is also 

obtained by the Burr Type XII distribution for 1>λ  and 1<δ . So in the purple-shaded area there is not a one-to-one 

relation between the shape parameters of the Burr Type XII distribution and the L-skewness and L-kurtosis ratios. When 

1<λ  and 1>δ , the Burr Type XII distribution attains the green-shaded area in diagram (b). 
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In general a distribution which covers a larger area of the ( )43,ττ  space is more flexible 

with respect to distributional shape. For instance, as indicated in Figure 2.10, the Burr Type 

III distribution covers a larger area compared to the Burr Type XII distribution, indicating its 

higher flexibility in terms of shape. This is interesting since the Burr Type XII distribution is 

the most popular of the Burr family of distributions – Tadikamalla (1980) made a similar 

observation in terms of the ( )43, αα  space attained by the Burr Type III and Type XII 

distributions. 

Figure 2.10 also indicates that there does not always exist a one-to-one correspondence 

between the shape parameters of a distribution and the distribution’s L-skewness and L-

kurtosis ratios. This can be problematic when L-moments are used for parameter estimation. 

The coverage of the ( )43,ττ  space by the Davies distribution shown in Figure 2.11 is 

equivalent to the coverage of the ( )43,ττ  space by the Burr Type III distribution shown in 

Figure 2.10(a). But the expressions of the L-moments of the Davies distribution are 

considerably simpler than the expressions of the L-moments of the Burr Type III distribution 

– see Tables 2.13 and 2.14. This suggests that the Davies distribution could be used as a 

proxy for the Burr Type III distribution in studies involving L-moments. 

 

 

Figure 2.11: L-moment ratio diagram for the Davies distribution. The uniform, logistic, exponential and reflected exponential 

distributions are indicated by U, L, E and RE. In the light-shaded area there is a one-to-one relation between the shape 

parameters of the Davies distribution and the L-skewness and L-kurtosis ratios. In the dark-shaded area, two different pairs 

of values for λ  and δ  produce the same pair of values for the L-skewness and L-kurtosis ratios. In effect, there is not a 

one-to-one relation between the shape parameters and the L-skewness and L-kurtosis ratios in the dark-shaded area. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. QUANTILE MODELING 

 31 

Both the kappa distribution and Kumaraswamy’s distribution cover extensive areas of the 

( )43,ττ  space as shown in Figures 2.12 and 2.13. Importantly these two distributions’ 

coverage of the ( )43,ττ  space extends all the way to the lower boundary for 4τ  given by 

(2.26), that is, 

 ( )15 2
34

1
4 −= ττ . 

However, apart from the Schmeiser-Deutsch distribution in Figure 2.14, none of the other 

families of distributions considered in Figures 2.10 to 2.13 cover the area of the ( )43,ττ  

space given by 

 11 3 <<− τ  and ( ) 115 4
2
36

1 <≤− ττ ,      (2.27) 

where the lower boundary of the excluded region of 4τ  in (2.27), in effect, 

( )15 2
36

1
4 −= ττ , 

is given by the generalized logistic distribution. It will be shown in Chapters 2 and 3 that the 

generalized lambda distribution does cover this important area of the ( )43,ττ  space which is 

representative of heavy-tailed distributions with moderate to large levels of skewness. 

 

 

Figure 2.12: L-moment ratio diagram for the kappa distribution. The uniform, exponential, logistic and Gumbel distributions are 

indicated by U, E, L and G. The purple- and blue-shaded areas are the ( )43 , ττ  spaces obtained for 01 <<− δ , the green- 

and red-shaded areas are the ( )43 , ττ  spaces obtained for 10 << δ , and the yellow- and orange-shaded areas are the 

( )43 , ττ  spaces attained for 1>δ . In the purple-, red- and orange-shaded areas, 01 <<− λ , while 0>λ  in the blue-, 

green- and yellow-shaded areas. 
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Figure 2.13: L-moment ratio diagram for Kumaraswamy’s distribution. The uniform and exponential distributions are indicated by U 

and E, while RE and RG denote the reflected exponential and reflected Gumbel distributions. The purple-shaded area is the 

( )43 , ττ  space obtained for 10 << λ  and 10 << δ . When both 1>λ  and 1>δ , the blue-shaded area is attained. The 

red- and green-shaded areas are the ( )43 , ττ  spaces covered by Kumaraswamy’s distribution for 10 << λ  and 1>δ  and 

for 10 << δ  and 1>λ  respectively. 

 

 

Figure 2.14: L-moment ratio diagram for the Schmeiser-Deutsch distribution. The uniform distribution is indicated by U. The purple- 

and blue-shaded areas are the ( )43 , ττ  spaces attained for 1<λ , while the purple- and red-shaded areas are the ( )43 , ττ  

spaces attained when 1>λ . So it follows that there does not exist a one-to-one relation between the shape parameters of 

the Schmeiser-Deutsch distribution and the L-skewness and L-kurtosis ratios in the purple-shaded area. 

 

Hosking (1990) provided unbiased estimators for L-moments. Let nnnn xxx ::2:1 ... ≤≤≤  

denote an ordered data set of sample size n. Then, based upon the theory of U-statistics 

(Hoeffding, 1948), the r
th

 order sample L-moment is represented by 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. QUANTILE MODELING 

 33 

 nrxr
r

k

nik

rk

niii
r

n
r kr

r

...,,2,1,)1(
1

0

:
11

...1

1

...
21

=




−





= ∑∑∑∑

−

=

−−

≤<<<≤

−

−
l ,  (2.28) 

while the r
th

 order sample L-moment ratio is given by 

 nrt r

r ...,,4,3,
2

==
l

l
.       (2.29) 

In particular the first four sample L-moments are 

 xx
n

i

nin
== ∑

=1

:
1

1l ,        (2.30) 
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and 

 ( )nlnknjni

lkji

n
xxxx ::::

1

44
1

4 33 −+−




= ∑∑∑∑

>>>

−

l .    (2.33) 

The interpretation of the sample L-moments is analogous to the population L-moments in 

that x=1l , 2l , 3t  and 4t  are respectively the sample L-location (sample mean), sample L-

scale, sample L-skewness ratio and sample L-kurtosis ratio. The sample L-moments can thus 

be used as alternatives to conventional sample moments for describing the location, spread 

and shape of a data set and, as will be shown in Section 2.9, they may be used to fit a 

distribution to the data set with method of L-moments estimation. In fact, because the sample 

L-moments are linear functions of the data values, they are less adversely affected by 

sampling variability than the conventional sample moments, Hosking (1990), and more 

robust to extreme values in the data. It is thus not surprising that L-moments are popular in 

extreme event analysis. For example, Hosking & Wallis (1997) gave a thorough account of 

the use of L-moments in regional frequency analysis in environmental applications. 

 

2.6 QUANTILE-BASED MEASURES OF LOCATION, SPREAD AND SHAPE 

As suggested by the name, quantile-based measures of location, spread and shape for a 

distribution are defined as functions of the quantiles of the distribution and are therefore 

ideally suited for use in the quantile statistical universe. They are of course also utilized in the 

classical statistical universe. If the distribution under consideration possesses a simple 

expression for its quantile function, the associated expressions of the quantile-based measures 
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will also be simple. Unlike conventional moments and L-moments, quantile-based measures 

exist for all parameter values of a distribution.  

The 50th percentile, that is, the median, 

 ( )
2
1Qme = ,         (2.34) 

is an obvious choice as measure of location. The spread function, introduced by MacGillivray 

& Balanda (1988), is given by 

 1,)1()()(
2
1 <<−−= uuQuQuS .      (2.35) 

From the linear transformation in (2.5) it follows immediately that 

 

,)1()(

)1()()(

00

00
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−−=
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


−+−


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
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uQuQ

uQuQuS

β

βαβα

     (2.36) 

so the spread function is location-invariant. Furthermore, since uu −> 1  and hence 

)1()( uQuQ −> , we have 0)( >uS . Thus the spread function satisfies the basic requirements 

for measures of spread. Special cases of the spread function include the interquartile range 

(IQR) and interdecile range (IDR), obtained respectively for 
4
3=u  and 

10
9=u . 

Several measures of shape have been proposed in the literature. These measures include 

location- and scale-invariant shape functionals. Analogous to the spread function, shape 

functionals are not just evaluated at specific quantiles, but are analyzed as functions 

themselves. In fact, just as the IQR and IDR are special cases of the spread function for 
4
3=u  

and 
10
9=u , quantile-based measures of shape are often special cases of shape functionals, 

attained for selected quantiles. 

As part of a study in which she compiled a skewness structure of ordering for identifying 

the roles of various skewness measures and for classification of the skewness properties of 

distributions, MacGillivray (1986) considered two skewness functionals. The first of these, 

the γ -functional, is given by 

 1,)(
2
1

)(

2)1()(

)1()(

2

1
2)1()(

<<==
−−+

−−









−−+

uu
uS

meuQuQ

uQuQ

QuQuQ

γ .   (2.37) 

Originally suggested by David & Johnson (1956), the γ -functional can be viewed as a 

functional generalization of the well-known quartile-based measure of skewness attributed to 

Bowley (1902). Bowley’s measure of skewness, referred to by some authors (Johnson et al., 

1994; Gilchirst, 2000) as Galton’s measure of skewness, is obtained by evaluating the γ -
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functional at 
4
3=u . The γ -functional preserves the skewness ordering 

γ

m
2≤  (MacGillivray, 

1986) in that 

 )()(2 uuGF GF
m γγ

γ

≤⇔≤ . 

In effect, distribution G has greater skewness to the right than distribution F if 

)()( uu FG γγ > . MacGillivray (1992) proposed 

 )(sup
1

2
1

u
u

γ
ε−<<

 

as a measure of overall skewness for the central )%21(100 ε−  of a distribution. 

The second skewness functional, named the η -functional by King (1999), is 

 1,),(
2
1

)(

)1()()1()(

)1()(

)1()()1()(
<<<==

−−−−+

−−

−−−−+
uvvu

vS

vQvQuQuQ

vQvQ

vQvQuQuQη . (2.38) 

The η -functional is linked to the skewness ordering 
star

2
m≤  (MacGillivray, 1986) in that it 

proves 

 ),(),(
star

2 vuvuGF GF
m ηη ≤⇒≤ . 

The skewness of a distribution can also be measured by comparing the relative weight 

allocated to the two tails of the distribution. For instance, the left-right tail-weight ratio, 

 1,)(
2
1

)(

)1(

2

1
)(

)1(
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1

<<==
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



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


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−−



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



uuTWR
meuQ

uQme

QuQ

uQQ

, 

was utilized by Karian & Dudewicz (1999) in their proposed percentile-based estimation 

method for the generalized lambda distribution – see Section 3.13. The tail-weight ratio can 

be evaluated for any 1
2
1 << u  and hence it is a shape functional, but it is typically only 

evaluated for a specific value of u. For instance, Karian & Dudewicz (1999) promoted the use 

of 
10
9=u  in their proposed estimation method. Both the numerator and the denominator of 

the tail-weight ratio are positive, so 0)( >uTWR . Since the tail-weight ratio measures the 

relative tail weights of the left tail (in the numerator) to the right tail (in the denominator), 

1)( <uTWR  indicates that the distribution is positively skewed, 1)( =uTWR  for a symmetric 

distribution, and a negatively skewed distribution has 1)( >uTWR . 

Following van Zwet (1964a), a measure of skewness should preferably be zero for a 

variable with a symmetric distribution, and, if two random variables are related through 
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XY −= , then the measures of skewness for the distributions of X and Y should only differ in 

terms of sign. These criteria hold for the skewness moment ratio and L-skewness ratio and 

also for both the γ -functional and η -functional. However, for the tail-weight ratio we have 

 [ ] 1
)()(

−
= uTWRuTWR YX , 

that is, an inverse relation around the symmetric value of 1)( =uTWR . The interpretation of 

the tail-weight ratio is therefore more complex than for the γ -functional or the η -functional. 

Interpretation of skewness measures is further simplified if the measure under consideration 

is bounded, as is for example the L-skewness ratio – see again (2.26). Akin to the skewness 

moment ratio, the η -functional is not bounded, but, as proven by King (1999), the γ -

functional is bounded, 1)(1 <<− uγ . 

Turning to kurtosis, one of the initial quantile-based measures proposed in the literature is 

the measure of Kelley (1921), 
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Karian & Dudewicz (1999) utilized a similar measure in their percentile-based estimation 

method for the generalized lambda distribution, 
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labeled by them the tail-weight factor. As with the tail-weight ratio, Karian & Dudewicz 

(1999) promoted the use of 
10
9=u . The tail-weight factor is then simply the ratio of the 

interquartile range to the interdecile range and we have 
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The octile-based measure of kurtosis (Moors, 1988; Moors et al., 1996), 
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and the quintile-based measure of kurtosis (Jones et al., 2011), 
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can both be viewed as natural extensions of Bowley’s quartile-based measure of skewness. 
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A shape functional for kurtosis, the ratio-of-spread functions, was proposed by 

MacGillivray & Balanda (1988),  

 1,),(
2
1

)(

)(
<<<= uvvuR

vS

uS
.      (2.43) 

The ratio-of-spread functions, referred to as the spread-spread function by some researchers 

in the literature (Seier & Bonett, 2003; Kotz & Seier, 2008), is linked to the plot of ( ) 1−
FG SS  

for distributions F and G, called the spread-spread plot by Balanda & MacGillivray (1990). In 

the spread-spread plot the spread function of distribution G, )(uSG , is plotted on the vertical 

axis against the spread function of distribution F, )(uSF , on the horizontal axis. Linking the 

spread-spread plot to kurtosis orderings, Balanda & MacGillivray (1990) extended van 

Zwet’s ordering S≤  (van Zwet, 1964a, 1964b) to skewed distributions, defining 

 ( )( ) 1forconvex )(
2
11

<<⇔≤
−

uuSSGF FGS . 

That is, if the spread-spread plot is convex for 1
2
1 << u , then distribution G has greater 

kurtosis than distribution F. Conversely distribution F has greater kurtosis than distribution G 

if the spread-spread plot is concave. For example, in Figure 2.15 the spread-spread plot for 

the logistic distribution against the uniform distribution is convex indicating the logistic 

distribution’s greater kurtosis compared to the uniform distribution. 

 

 

Figure 2.15: Spread-spread plot for the logistic distribution with spread function )(uSG  against the uniform distribution with spread 

function )(uSF . For both distributions the value of β  is set to one in their respective spread functions, given in Table 2.4. 

 

Because 0)( >uS  for any 1
2
1 << u , the values obtained for Kelley’s measure, the tail-

weight factor, the octile-based measure of kurtosis and the ratio-of-spread functions are 

always positive. Furthermore, since )()( vSuS >  for 1
2
1 <<< uv , it follows that both 
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Kelley’s measure and the tail-weight factor are bounded above in that their values cannot 

exceed one. Thus 10 << K  and 1)(0 << uTWF  and therefore, like the L-kurtosis ratio, these 

two measures are bounded measures of kurtosis – see again (2.26) for the bounds of the L-

kurtosis ratio. 

However, a drawback of Kelley’s measure and the tail-weight factor is that they operate 

in an opposite direction to the other measures of kurtosis. For Kelley’s measure and the tail-

weight factor, smaller values (in effect, values closer to zero) are indicative of heavier tails, 

while larger values (that is, values closer to one) indicate shorter tails. The more intuitive 

interpretation delivered by the other measures of kurtosis is that an increase in the value of 

any of these measures signifies an increase in kurtosis. 

In fact, comparing their expressions, we see that the tail-weight factor is a special case of 

the inverse of the ratio-of-spread functions,  

 ( )[ ] 1

4
3,)(

−
= uRuTWF . 

This inverse relation between the ratio-of-spread functions and the tail-weight factor suggests 

a newly proposed functional for kurtosis which is bounded. Because )()( vSuS >  for 

1
2
1 <<< uv , we have 1),( >vuR , and hence the inverse of the ratio-of-spread functions is 

bounded, in effect, [ ] 1),(0
1

<<
−

vuR . The new functional for kurtosis, to be called the κ -

functional, is then defined as one minus the inverse of the ratio-of-spread functions and 

given, after simplification, by 

 [ ] 1,),(1),(
2
1

)(

)()(1
<<<=−=

−−
uvvuRvu

uS

vSuSκ .    (2.44) 

The κ -functional is thus a bounded functional for kurtosis, 1),(0 << vuκ . More 

importantly, the κ -functional preserves the ordering S≤  given above and, in doing so, 

adheres to the directional interpretation of kurtosis delivered by the majority of measures (an 

increase in value implies an increase in kurtosis). 

The median, the spread function, the γ -functional and η -functional, and the ratio-of-

spread functions and κ -functional will be the respective quantile-based measures of location, 

spread, skewness and kurtosis utilized in the rest of this thesis. Table 2.4 presents the 

expressions (and values) for these measures for the uniform, exponential and logistic 

distributions. 
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Table 2.4: Quantile-based measures of location, spread and shape for the uniform, exponential and logistic distributions. 

Measure Uniform Exponential Logistic 

Median βα
2
1+=me  ]2log[βα +=me  α=me  

Spread function β)12()( −= uuS  




=

−u
uuS

1
log)( β  





=

−u
uuS

1
log2)( β  

γ -functional 0)( =uγ  







−
−=

−u
u

uu
u

1
log

)]1(4log[
)(γ  

0)( =uγ  

η -functional 0),( =vuη  













−=

−

−

−

v
v

vv

uu

vu

1

)1(

)1(

log

log

),(η  0),( =vuη  

Ratio-of-spread functions 
12
12),(

−
−=

v
uvuR

 












=

−

−

v
v

u
u

vuR

1

1

log

log

),(
 













=

−

−

v
v

u
u

vuR

1

1

log

log

),(
 

κ -functional 
12

)(2
),(

−

−
=

u

vu
vuκ  













=

−

−

−

u
u

uv

vu

vu

1

)1(

)1(

log

log

),(κ  













=

−

−

−

u
u

uv

vu

vu

1

)1(

)1(

log

log

),(κ  

 

Because they are symmetric distributions, both the uniform and logistic distributions have 

0),()( == vuu ηγ . Regarding kurtosis, it is interesting to note that the ratio-of-spread 

functions of the exponential and logistic distributions are exactly the same, as are the κ -

functional of these distributions. Recall that these two distributions are special cases of the 

SLD, introduced in Example 2.3.4. The SLD’s quantile-based measures of location, spread 

and shape are considered in Example 2.6.1. 

 

Example 2.6.1 

Substituting the SLD’s quantile function in (2.15) into the expressions for the median in 

(2.34), the spread function in (2.35), the γ -functional and η -functional in (2.37) and (2.38), 

and the ratio-of-spread functions and κ -functional in (2.43) and (2.44) and simplifying gives 

 ]2log[)12( −+= δβαme , 

 [ ]
u

uuS
−

=
1

log)( β ,        (2.45) 

 
[ ]

u
u

uu
u

−

−−
−=

1
log

)]1(4log[)12(
)(

δ
γ , 

 
[ ]

[ ]
v

v

vv

uu

vu

−

−

−
−

−=

1

)1(

)1(

log

log)12(
),(

δ
η , 

 
[ ]

[ ]
v

v

u
u

vuR

−

−
=

1

1

log

log
),(

        (2.46)
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and 

 
[ ]
[ ]

u
u

uv

vu

vu

−

−

−

=

1

)1(

)1(

log

log
),(κ ,        (2.47)  

where 1
2
1 <<< uv . The shape functionals of the SLD are location- and scale-invariant in that 

they are all independent of the location and scale parameters (α  and β ). Furthermore, the 

two kurtosis functionals of the SLD in (2.46) and (2.47) are independent of the shape 

parameter, δ . In Section 2.7 this result is explained. 

□ 

 

2.7 SKEWNESS-INVARIANT KURTOSIS MEASURES 

Careful examination of the various kurtosis measures discussed in Section 2.6 reveals that 

they are all of the general form 

 

∑

∑

∑

∑

=

=

=

=



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
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


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uQuQb

uQuQa

uSb

uSa

,     (2.48) 

where 1...,,2,1: nja j =  and 2...,,2,1: nkbk =  are constants with 1n  and 2n  positive 

integers. In effect, all the kurtosis measures in (2.39) to (2.44) are defined as ratios of linear 

combinations of spread functions. The general form in (2.48) was considered by Jones et al. 

(2011) in a seminal discussion on skewness-invariant kurtosis measures. 

Before focusing on skewness-invariance, it should be noted that all kurtosis measures of 

the general form (2.48) are location- and scale-invariant. It was already indicated through 

(2.36) that the spread function is location-invariant. Scale-invariance is imposed via ratios in 

that (2.48) can be rewritten as 

 

.

)1()(

)1()(

)1()(

)1()(

)(

)(
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1

2

1

2

1

1
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1
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Now, suppose the distribution under consideration possesses a shape parameter, denoted 

in general by ς  (depending on the distribution under consideration ς  will be either λ  or 

δ ), and it is possible to express the spread function for this distribution by 

 )()()( uGguS ςβ= .        (2.49) 

That is, assume the spread function can be expressed as the product of β  (the scale 

parameter) and two other components, where the first component, )(ςg , is a function of ς  

but independent of u, and the second component, the function )(uG , is independent of ς . 

Then the distribution will have quantile-based kurtosis measures of the general form 

 

,

)(

)(

)()(

)()(
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)(

2

1

2

1

2

1

1

1

1

1

1

1

∑

∑

∑
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∑

∑

=

=

=

=

=

=
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j
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k
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j
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which are skewness-invariant with respect to ς . 

 

Example 2.7.1 

Comparing the spread function of the SLD in (2.45) with (2.49), it follows that 1)( =ςg , 

where δς =  is the shape parameter, and [ ]
u

uuG
−

=
1

log)(  for the SLD. The SLD thus has 

skewness-invariant quantile-based kurtosis measures, since 

 

[ ]

[ ]∑

∑

∑

∑

=
−

=
−

=

=
=

2

1

2

1

1
1

1
1

1

1
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)(

)(

n

k
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u
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j
u

u

j

n

k

kk

n

j

jj

k

k

j

j

b

a

uGb

uGa

.      (2.50) 

Examples of these skewness-invariant measures include the ratio-of-spread functions and the 

κ -functional, given in (2.46) and (2.47). 

□ 

 

Example 2.7.2 

Recently Lan & Leemis (2008) introduced the logistic-exponential distribution, a flexible 

survival distribution with half-infinite support, ),0[ ∞ , and quantile function given by 
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 












+=

−

c

p

p

b
pQ

1

1
1 1log)( , 

where 0>b  and 0>c  are respectively scale and shape parameters. For 1>c  the logistic-

exponential distribution is unimodal and has upside-down bathtub-shaped failure rates. The 

distribution is J-shaped for 1≤c  and reduces to the exponential distribution with a constant 

failure rate when 1=c . Bathtub-shaped failure rates are obtained for 1<c .  

In this thesis a slight reparameterization of the logistic-exponential distribution is 

considered. This parameterization is obtained by letting 
b
1=β  and 

c
1=λ  and by including a 

location parameter, α , not restricted in sign (in effect, α  may assume negative values), so 

that the distribution has support ),[ ∞α . The corresponding quantile function is 

 












++=

−

λ

βα
p

p
pQ

1
1log)( . 

See Tables 2.10 to 2.12 in Section 2.14.3 for the distribution’s other properties and functions. 

The spread function of the logistic-exponential distribution for 1
2

1 << u  is 

 

( ) ( )

( )
( )

( )[ ]
[ ].log

0for   sincelog

1

1
log

1log1log

)1()()(

1

1

1
1

1

1

1
1

1

u
u

z

z
u

u

u
u

u
u

u
u

u
u

zz

uQuQuS

−

+

+
−

−

−

−
−

=

≠==















+

+
=



















++−


















++=

−−=

−

βλ

β

β

βαβα

λ

λ

λ

λλ

 

It follows that λλς == )()( gg , with λς =  the shape parameter, and [ ]
u

uuG
−

=
1

log)( . Thus 

 

[ ]

[ ]∑

∑

∑

∑

=
−

=
−

=

=
=

2

1

2

1

1
1

1
1

1

1

log

log

)(

)(

n

k
u

u

k

n

j
u

u

j

n

k

kk

n

j

jj

k

k

j

j

b

a

uGb

uGa

 

and the quantile-based kurtosis measures of the logistic-exponential distribution are hence 

skewness-invariant. Furthermore, as indicated in Table 2.14 and illustrated in Figure 2.8, the 

L-kurtosis ratio of the logistic-exponential distribution is 
6
1

4 =τ  and hence also skewness-

invariant with respect to the shape parameter. 

□ 
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2.8 PROPOSITION: QUANTILE-BASED DISTRIBUTIONS WITH SKEWNESS-

INVARIANT KURTOSIS MEASURES 

In this section the main proposition in the thesis is presented. This proposition provides a 

methodology for the construction of quantile-based families of distributions possessing 

skewness-invariant measures of kurtosis. 

 

Proposition 2.8.1 

Assume that X is a real-valued random variable with an asymmetric distribution on bounded 

or half-infinite support and with r
th

 order L-moment and r
th

 order L-moment ratio denoted by 

rXL ;  and rX ;τ . Let )(0; pQX  denote the quantile function of the standard distribution of X. 

Suppose XY −=  so that the standard distribution of Y is the reflection of the standard 

distribution of X about the line 0=x  with quantile function )1()( 0;0; pQpQ XY −−= . 

Consider a random variable W with quantile function 

 







−−−+= )1()1()()( 0;0; pQpQpQ XXW δδβα ,    (2.51) 

where α  is a location parameter, 0>β  is a scale parameter and 10 ≤≤ δ  is a weight 

parameter. 

(a) The first order L-moment of W is 

1;1; )12( XW LL −+= δβα ,       (2.52) 

its r
th

 order L-moment for 1>r  is 

 rX
r

rW LL ;
2mod

; )12( −= δβ ,       (2.53) 

and its r
th

 order L-moment ratio for 2>r  is 

 rX
r

rW ;
2mod

; )12( τδτ −= .       (2.54) 

(b) The L-skewness ratio of W is bounded by 3;3;3; XWX τττ ≤≤− . 

(c) The L-kurtosis ratio of W, 4;Wτ , is skewness-invariant with respect to δ . 

(d) The spread function of W is 

1,)1()()(
2
1

0;0; <<







−−= uuQuQuS XXW β ,

 

so that W has quantile-based kurtosis measures which are skewness-invariant with respect 

to δ , given in general form by 
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,    (2.55) 

where 1...,,2,1: nja j =  and 2...,,2,1: nkbk =  are constants with 1n  and 2n  positive 

integers. 

 

Proof 

(a) Substituting (2.51) into (2.23), the r
th

 order L-moment of W can be expressed as 

 

.
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Using (2.93) given in Section 2.14.2, 
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From (2.94) in Section 2.14.2 we have that αα =∗
 for the first order L-moment and 

0=∗α  for higher order L-moments. Using these expressions for 
∗α  and ∗β  gives (2.52) 

and (2.53), while (2.54) follows directly from the formula for the L-moment ratio given in 

(2.25). 

(b) Since 10 ≤≤ δ , it follows from (2.54) that, in general for r odd, the r
th

 order L-moment 

ratio of W is bounded by rXrWrX ;;; τττ ≤≤− . The L-skewness ratio of W is therefore 

bounded by 3;3;3; XWX τττ ≤≤− . 

(c) From (2.54) it follows that, in general for r even, rXrW ;; ττ = . Specifically 4;4; XW ττ =  

and the L-kurtosis ratio of W is hence independent of δ  and skewness-invariant. 
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(d) The spread function of W is obtained by substituting the quantile function of W, given in 

(2.51), into the expression for the spread function in (2.35) and simplifying. The general 

form of the quantile-based kurtosis measures in (2.55) follows directly. 

■ 

 

Example 2.8.1 

Consider X having a standard exponential distribution with, as given for example by Hosking 

(1986), 11; =XL , 
)1(

1
; −

=
rrrXL  for 1>r  and 

)1(
2

; −
=

rrrXτ  for 2>r , and hence 
2
1

2; =XL , 

3
1

3; =Xτ  and 
6
1

4; =Xτ . Using (2.52), (2.53) and (2.54), the SLD then has 

 )12(1 −+= δβαL ,        (2.56) 

 1,
)1(

)12(
2mod

>=
−

−
rL

rrr

rδβ
,       (2.57) 

and 

 2,
)1(

)12(2
2mod

>=
−

−
r

rrr

rδτ .       (2.58) 

In particular the L-scale, L-skewness ratio and L-kurtosis ratio of the SLD are 

 β
2
1

2 =L ,         (2.59) 

 )12(
3
1

3 −= δτ          (2.60) 

and 

 
6
1

4 =τ .         (2.61) 

So, as with the SLD’s quantile-based kurtosis measures in (2.50), the L-kurtosis ratio of the 

SLD in (2.61) is skewness-invariant with respect to δ . Note furthermore that, because 

10 ≤≤ δ , the SLD has 
3
1

33
1 ≤≤− τ . 

Comparing the L-moments of the SLD in (2.56), (2.59), (2.60) and (2.61) with its 

conventional moments in (2.19) to (2.22), it is evident that it is more expedient to 

characterize the SLD with its L-moments than with its moments, since the expressions for the 

L-moments are much simpler than the corresponding expressions for the moments. Also, 

simple general expressions exist for the SLD’s rth order L-moment, (2.57), and rth order L-

moment ratio, (2.58). There are no such general expressions for the SLD’s moments or 

moment ratios. 

□ 
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2.9 METHOD OF L-MOMENTS ESTIMATION 

The fitting of a probability distribution to an observed data set is a common problem in 

statistical modeling. Hosking (1986, 1990) proposed that, given that the data set under 

consideration is assumed to be a random sample of size n from the distribution to be fitted 

and this distribution has finite variance and contains m unknown parameters, the parameters 

of the distribution be estimated through method of L-moments estimation. With method of L-

moments estimation the first m sample L-moments are equated to the corresponding 

population L-moments. That is, if the parameters mrr ...,,2,1: =θ  and the L-moments 

mrLr ...,,2,1: =  of a probability distribution are related by 

 ( ) mrLLLg mr ...,,2,1,...,,, 21 ==θ , 

then the estimators obtained with method of L-moments estimation are given by 

 ( ) mrg mr ...,,2,1,...,,,ˆ
21 == lllθ , 

where mrr ...,,2,1: =l  are the sample L-moments calculated from the random sample with 

(2.28). 

Hosking (1986) and Hosking & Wallis (1997) presented method of L-moments estimators 

for various well-known distributions. As with other estimation methods, the method of L-

moments estimators do not possess closed-form expressions for all distributions. However, if 

a quantile-based distribution is constructed using Proposition 2.8.1 and possesses at most two 

shape parameters, so that its quantile function is of the form (2.51) where one of the shape 

parameters is a weight parameter, 10 ≤≤ δ , then closed-form expressions will be available 

for the method of L-moments estimators. This is illustrated in Example 2.9.1 for the SLD. 

As pointed out by Hosking (1986, 1990), in general it is difficult to derive exact sampling 

distributions of sample L-moments and, as a result, exact distributions for the method of L-

moments estimators. Therefore asymptotic distribution theory must be utilized. Using 

asymptotic theory for linear combinations of order statistics, developed by Chernoff 

et al. (1967), Moore (1968) and Stigler (1974, 1979), Hosking (1986) proved that, if X is a 

real-valued random variable and the probability distribution of X has cumulative distribution 

function )(xF , quantile density function )( pq  and finite variance, then, as ∞→n , 

 ( ) mrLn rr ...,,2,1,2
1

=−l , 

converge in distribution to the multivariate normal distribution, ),0( ΛN , with 

msrsr ...,,2,1,:, =Λ  the elements of the covariance matrix Λ  given by 
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 (2.62) 

where )(*
pPr  is the r

th
 order shifted Legendre polynomial given in (2.24). Consequently, as 

∞→n , 

 ( ) mrn rr ...,,2,1,ˆ2
1

=−θθ , 

converge in distribution to the multivariate normal distribution, ),0( ΘN , where 

msrsr ...,,2,1,:, =Θ  are the elements of the covariance matrix T
GGΛ=Θ , given by 

 ∑∑
= =

Λ=Θ
m

t

m

u

usuttrsr GG
1 1

,,,,  

with 

 
s

r

LsrG
∂

∂
=

θ
, .         (2.63) 

That is, the asymptotic variances of and covariances between the method of L-moments 

estimators, mrr ...,,2,1:ˆ =θ , can be obtained with 
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Note that both Λ  and Θ  are symmetric matrices with rssr ,, Λ=Λ  and rssr ,, Θ=Θ . 

 

Example 2.9.1 

Because the SLD has three parameters to be estimated, αθ =1 , βθ =2 , and δθ =3 , the first 

three L-moments of the SLD are utilized in method of L-moments estimation. The method of 

L-moments estimates for the SLD and their asymptotic standard errors can be computed 

using the following simple estimation algorithm: 
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Step 1 

Use (2.30), (2.31) and (2.32) to calculate the first three sample L-moments, 1l , 2l  and 3l , 

and then (2.29) to calculate the sample L-skewness ratio, 3t . Since the SLD has 
3
1

33
1 ≤≤− τ , 

check whether 
3
1

33
1 ≤≤− t . If so, proceed with Step 2. If not, the SLD cannot be fitted to the 

data. 

 

Step 2 

The method of L-moments estimators for δ  and β  are obtained by inverting (2.60) and 

(2.59), giving 

 ( )
2

331

)31(ˆ

2
1

32
1

l

l
+=

+= tδ
         (2.64) 

and 

 22ˆ l=β .         (2.65) 

From (2.56) it follows that the location parameter is estimated with 

 
( )

,6

1ˆ2ˆˆ

31

1

ll

l

−=

−−= δβα
        (2.66) 

where the final result is obtained by substituting the expressions for β̂  in (2.65) and δ̂  in 

(2.64) into (2.66) and simplifying. 

 

Step 3 

Finally the asymptotic standard errors of the method of L-moments estimators for the SLD’s 

parameters can be calculated with 

 [ ] ( ) 







−+= ωπβα 308112557ˆs.e. 2

15
1
n

,     (2.67) 

 [ ] ( ) 





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−−= ωπββ 81ˆs.e. 2

3
4
n

      (2.68) 

and 
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




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


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where )1( δδω −= . The derivation of these expressions for the standard errors is done in 

Section 2.13.2. 

◘ 

 

Note that, even though 4l  is not used in the estimation of any of the parameters of the 

SLD in Step 2, one can calculate its value with (2.33) and then use it to calculate the value of 

the sample L-kurtosis ratio, 4t , with (2.29). Because the SLD has 
6
1

4 =τ , the value of 4t  

gives an indication whether the SLD is a plausible distribution for the data. If the value of 4t  

deviates drastically from 
6
1

4 =τ , one can expect that the SLD will not fit the data well. 

Formal methods for distribution validation are presented in Section 2.10. 

To illustrate the estimation algorithm for the SLD, consider a data set consisting of the 

peak concentrations (in percent) of toxic gas released in a series of atmospheric diffusion 

experiments carried out by Hall (1991). Hankin & Lee (2006) fitted the Davies distribution to 

this data set using both maximum likelihood estimation and a logged regression estimation 

method. 

Figure 2.16 shows a histogram for the data set. The sample L-moment and L-moment 

ratio values for the data set, consisting of 100=n  observations, are given in Table 2.5. Since 

3
1

33
1 ≤≤− t , the SLD can be fitted to the data set. Note furthermore that the value of 4t  is 

reasonably close to 
6
1

4 =τ . 

 

 

Figure 2.16: Histogram of the peak concentrations (in percent) of toxic gas together with the probability density functions of the fitted 

SLD and Davies distribution. 
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Table 2.5: Sample size, sample L-moment values and data range for the peak concentrations (in percent) of toxic gas. 

n  
1l  2l  3t  4t  Data range 

100 7.9384 1.8432 0.1293 0.1451 [1.701, 16.910] 

 

Table 2.6 presents the parameter estimates of the SLD obtained with method of L-

moments estimation. The standard error of each estimate is given in parentheses below the 

estimate. In Figure 2.16 the density curve of the fitted SLD is superimposed on the histogram, 

as is, for comparison purposes, the density curve of the Davies distribution fitted with 

maximum likelihood estimation by Hankin & Lee (2006). 

 

Table 2.6: Parameter estimates with asymptotic standard errors* for the SLD  

fitted to the peak concentrations (in percent) of toxic gas. 

α̂  β̂  δ̂  

6.5085 

(0.6111) 

3.6863 

(0.3305) 

0.6940 

(0.0784) 

* Standard errors given in parentheses. 

□ 

 

2.10 Q-Q PLOTS AND GOODNESS-OF-FIT 

Model validation for quantile-based distributions proceeds as for other distributions. Apart 

from histograms of the data with density curve(s) of the fitted distribution(s) overlaid (as for 

example in Figure 2.16), graphical displays include quantile-quantile (Q-Q) plots of the 

points ( )nipQ :
ˆ  versus nix :  for ni ...,,2,1= , where ( )nipQ :

ˆ  denotes the empirical quantile 

function of the fitted distribution and nix :  is the i
th

 value in the ordered data set 

nnnn xxx ::2:1 ... ≤≤≤ . A number of different plotting positions, nip : , have been suggested in 

the statistical literature – see Thas (2010). The general form proposed by Blom (1958) is 

 
cn

ci
nip

21: −+
−= . 

In this thesis 
3
1=c  is used, giving 

 

3

1
3

1

:
+

−

=
n

i

nip ,         (2.70) 

which provides the ideal depth of the i
th

 order statistic from a sample of size n as suggested 

by Hoaglin (1983) in that, for any continuous distribution, this choice of nip :  very closely 

approximates the median of the distribution of the i
th

 order statistic. 
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Goodness-of-fit can further be assessed by using classical tests such as the Kolmogorov-

Smirnov nD  statistic, the Anderson-Darling nA  statistic and the Cramér-von Mises nW  

statistic. For a detailed account of these three tests, see Thas (2010). These tests are all based 

on the empirical distribution function, ( )nixF :
ˆ . A slight complication for quantile-based 

distributions is that, because closed-form expressions for their cumulative distribution 

functions are not available, ( )nixF :
ˆ  must be calculated numerically by the reverse 

transformation. 

The parametric bootstrap can be used to estimate p-values for nD , nA  and nW  (see 

Appendix B of Thas (2010) for details). In this thesis 00010=N  bootstrap samples will be 

used. When sampling from a fitted quantile-based distribution, bootstrap samples may be 

obtained for which the distribution cannot be refitted due to the values of 3t  and 4t  for these 

samples lying outside the ( )43,ττ  space attained by the distribution. The number of valid 

bootstrap samples will be denoted VN . 

The abovementioned graphical displays and tests are useful for verifying whether a fitted 

distribution adequately explains the observed data set. To compare the fit of various 

distributions and find the “best” of these fits, the average scaled absolute error (ASAE) 

introduced by Castillo & Hadi (1997), 

 
( )

∑
=

−

−
=

n

i
xx

pQx

n nnn

nini

1

ˆ
1

:1:

::
ASAE , 

can be used. Smaller ASAE values are indicative of better fits. See Castillo et al. (2005) for 

its application in extreme value modeling. Note that nip :  as given by (2.70) is used in this 

thesis, whereas Castillo & Hadi (1997) and Castillo et al. (2005) used 
1: +

=
n

i
nip , that is, nip :  

with 0=c . 

 

Example 2.10.1 

Figure 2.17 depicts Q-Q plots for the SLD fitted to the peak concentrations (in percent) of 

toxic gas in Example 2.9.1 with method of L-moments estimation, and for the Davies 

distribution fitted by Hankin & Lee (2006) with maximum likelihood estimation. These plots 

indicate that the SLD fits the data slightly better in the upper tail, while the Davies 

distribution provides a slightly better fit in the lower tail.  
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Figure 2.17: Q-Q plots for the SLD and the Davies distribution fitted to the peak concentrations (in percent) of toxic gas. 

 

To calculate p-values for goodness-of-fit tests, tabulated in Table 2.7 along with the 

goodness-of-fit statistics, 00010== VNN  bootstrap samples were used. In effect, the SLD 

could be refitted to all generated bootstrap samples. All three goodness-of-fit tests suggest 

that the SLD provides an adequate fit to the data. The fitted SLD has an ASAE value of 

0.0154, which is lower than the ASAE value of 0.0166 attained for the Davies distribution 

fitted by Hankin & Lee (2006) with maximum likelihood estimation. 

 

Table 2.7: Goodness-of-fit statistics with p-values* for the SLD fitted to 

the peak concentrations (in percent) of toxic gas. 

nD  nA  nW  

0.4892 

(0.5251) 

0.2489 

(0.5868) 

0.0351 

(0.6092) 

* p-values given in parentheses. 

□ 

 

2.11 TAIL BEHAVIOR 

The tail behavior of the density curve of a distribution is usually analyzed through the 

probability density function, )(xf , of the distribution. But, as explained in Section 2.2.3, no 

closed-form expression exists for the probability density function of a quantile-based 

distribution. The density quantile function, )( pf p , must therefore be utilized. To determine 

the values which the density curve approaches at the end points of the left tail and the right 

tail respectively, one has to compute )(lim
0

pf p
p→

 and )(lim
1

pf p
p→

. The value which the slope 
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of the density curve approaches at the end point of each tail can be obtained by computing 

)(lim
0

p
p

ξ
→

 and )(lim
1

p
p

ξ
→

 , where 

 
( )3

)(

1)(
)(

pqdp

pdq
p −=ξ ,        (2.71) 

derived by King (1999), is the derivative of the probability density function expressed in 

terms of p instead of x. In effect, )( pξ  represents 
dx

xdf )(
 in the quantile statistical universe. 

 

Example 2.11.1 

For the SLD, the values which its density curve as well as the slope of its density curve 

approach at the end point of each tail are determined using the SLD’s density quantile 

function, given in (2.17), and the function 

 3

2

22

)1)(1(

)1)(1()1(

)(











−−+











−−−−

−=
pp

pppp

p

δδβ

δδ

ξ . 

The values obtained are summarized in Table 2.8. For 1=δ  the values given are for the 

exponential distribution, while the values for 0=δ  are for the reflected exponential 

distribution. For 10 << δ , the density curve and the slope of the density curve approach zero 

at both tails, which is equivalent to the tail behavior of the logistic distribution (in effect, the 

SLD with 
2
1=δ ). 

 

Table 2.8: The values approached by the density curve and the slope of the density curve of the SLD at the end-points of the tails.  

 Density curve Slope of density curve 

Shape parameter values Left tail Right tail Left tail Right tail 

0=δ  0 β
1

 0 2

1

β
 

10 << δ  0 0 0 0 

1=δ
 β

1
 0 2

1

β
−  0 

□ 

 

2.12 CONCLUSION 

In this chapter functions, methods and measures for quantile modeling were presented. It was 

shown how quantile-based distributions can be developed with a set of construction rules 

based on Q-transformations. 
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Specifically Proposition 2.8.1 outlined a quantile-based methodology for obtaining 

distributions with skewness-invariant measures of kurtosis and, as a result, closed-form 

expressions for the distributions’ method of L-moments estimators and their asymptotic 

standard errors. The methodology was illustrated with the SLD. 

In Chapter 4 the methodology outlined in Proposition 2.8.1 is used to derive a special type 

of the generalized lambda distribution, of which the SLD is a limiting case. Before doing so, 

the properties of two existing types of the generalized lambda distribution are presented in 

Chapter 3. 

 

2.13 DERIVATIONS 

In Section 2.13.1 below formulae for the moments of the SLD are derived. The covariance 

matrix for the method of L-moments estimators of the SLD is derived in Section 2.13.2. 

 

2.13.1   MOMENTS OF SLD 

Lemma 2.13.1 

The integral 

 ( ) ( ) ...,2,1,0,,]1log[]log[),(

1

0

=−=Ψ ∫ kjdpppkj
kj

   (2.72) 

is encountered in the derivation of the formulae for the moments of the SLD. Since 

 ( ) ( ) ...,2,1,0,]log[
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==
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∂ jpp
u

u

u

j

j

j

 

and 

 ( ) ( ) ...,2,1,0,)1(]1log[
0

=−=−
=∂

∂ kpp
v

v

v

k

k

k

, 

the integral in (2.72) can be solved using 
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∂

++Β=



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


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where 
)(

)()(
),(

ba

ba
ba

+Γ

ΓΓ
=Β  is the beta function with )(aΓ  the gamma function (see Section 

2.14.1). In particular, to derive the formulae for the first four moments of the SLD, 

),0()0,( ii Ψ=Ψ  for 4,3,2,1=i  and ),( kjΨ  for 3,2,1,0=j  and 3,2,1,0=k  are used. 
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Note that )()()( aaa
da
d ψΓ=Γ  where )(aψ  is the psi function (see Section 2.14.1). 

Therefore the first partial derivative of the beta function with respect to u is 

 

( )

( )

,)2()1()1,1(

)2()2()1(

)1()1()2(

)2()1()1()2(

)1,1(

2

2

)2(

)1(

)2(

)1(

)2(

)1()1(









++−+++Β=





++++Γ+Γ−





++Γ++Γ=









++Γ+Γ−+Γ++Γ=

=++Β

++Γ

+Γ

∂
∂

∂
∂

++Γ

+Γ

++Γ

+Γ+Γ

∂
∂

∂
∂

vuuvu

vuvuu

uuvu

vuuuvu

vu

vu

v

uuvu

v

vu

vu

uu

ψψ

ψ

ψ  

and likewise it can be shown that the first partial derivative of the beta function with respect 

to v is 

 







++−+++Β=++Β

∂
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Because )!1()( −=Γ aa , it follows that 1)1,1(
)2(

)1()1(
==Β

Γ

ΓΓ
. From Gradshteyn & Ryzhik 

(2007, 8.366.1) we have C−=)1(ψ , where C is Euler’s constant given in Section 2.14.1. 

Furthermore, using Gradshteyn & Ryzhik (2007, 8.365.4), C−= 1)2(ψ . Hence 

 1)1,0()0,1( −=Ψ=Ψ . 

The second partial derivative of the beta function with respect to u is 
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where )()1(
aψ  is the first derivative of the psi function (see again Section 2.14.1). Similarly 

the second partial derivative of the beta function with respect to v is 
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Also, 
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Then, since 
6

)1( 2

)1( πψ =  from Gradshteyn & Ryzhik (2007, 8.366.8) and 1)2(
6

)1( 2

−= πψ  

from Gradshteyn & Ryzhik (2007, 8.366.11), 

 2)2,0()0,2( =Ψ=Ψ  

and 

 
6

2

2)1,1( π−=Ψ . 

Continuing this way, the higher-order partial derivatives of the beta function and the 

resulting expressions for ),0()0,( ii Ψ=Ψ  and ),( kjΨ  can be obtained. In general 

 !)1(),0()0,( iii
i−=Ψ=Ψ  

so that 

 6)3,0()0,3( −=Ψ=Ψ  

and 

 24)4,0()0,4( =Ψ=Ψ . 

Also, 

 6)3(2)2,1()1,2(
3

2

−+=Ψ=Ψ ζπ , 

 )3(824)2,2(
903

4 42

ζππ −−−=Ψ  

and 
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 )3(624)3,1()1,3(
15

2 4

ζπ π −−−=Ψ=Ψ , 

where )(aζ  is Riemann’s zeta function (see again Section 2.14.1). 

■ 

 

Theorem 2.13.1 

Let X be a real-valued random variable which has a skew logistic distribution, denoted 

),,(SLD~ δβαX , where α  is the location parameter, 0>β  is the scale parameter and 

10 ≤≤ δ  is the shape parameter. The mean, variance, skewness moment ratio and kurtosis 

moment ratio of X are then given by (2.19) to (2.22). 

 

Proof 

Let ),1,0(SLD~ δ
β

α−= XZ  with quantile function given in (2.14). That is, consider the 

standard SLD with location parameter and scale parameter set to zero and one respectively. 

Then, for example, the fourth order uncorrected moment of Z is given by 
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where )1( δδω −=  and 







−+−= kkk

k δδφ )1()1( . Likewise it can be shown that 
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Since ZX βα += , the first four uncorrected moments of X are 
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The first four corrected moments of X are then 

 [ ] 0][1 =−= XEXEµ , 
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and 
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where each moment’s final expression is found after extensive simplification. The mean and 

variance of X in (2.19) and (2.20) are respectively given by 1µµ ′=  in (2.73) and 2
2 µσ =  in 

(2.74), and the skewness and kurtosis moment ratios of X in (2.21) and (2.22) are obtained by 

substituting the expressions for 3µ  in (2.75) and 4µ  in (2.76) into (2.18). Note that 

)12(1 −−= δφ  in (2.19) to (2.22). 

■ 

 

2.13.2   COVARIANCE MATRIX FOR METHOD OF L-MOMENTS ESTIMATORS OF SLD 

Lemma 2.13.2 

In the derivation of the covariance matrix for the method of L-moments estimators of the 

SLD, the double integral 
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−=Ξ −−
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dvduuuvkj

v
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v
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      (2.77) 

where ),( bazΒ  is the incomplete beta function (see Section 2.14.1), must be solved for 

4,3,2=j  and 2,1,0,1−=k . Now, 
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ϕ        (2.78) 
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where );;,( zcbaF  and ),,( bazϕ  are respectively the hypergeometric series and the Lerch 

function (see Section 2.14.1). The relation between the incomplete beta function and the 

hypergeometric series in (2.78) is given by Gradshteyn & Ryzhik (2007, 8.391), while the 

relation between the hypergeometric series and the Lerch function is given by Gradshteyn & 

Ryzhik (2007, 9.559).  

Setting jim +=  in (2.78) and simplifying gives 
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m
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j

      (2.79) 

where Gradshteyn & Ryzhik (2007, 1.513.4) is used in the final result in (2.79). Then, 

substituting (2.79) into (2.77) gives 
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From Gradshteyn & Ryzhik (2007, 4.291.4) we get 

 ∑
−

=

−=−Ξ
1

1

1
6 2

2

)1,(
j

m
m

j π , 

while from Gradshteyn & Ryzhik (2007, 4.293.8) 
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m
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ψ , 

where )(aψ  is the psi function and C is Euler’s constant (see again Section 2.14.1). In 

particular, using Gradshteyn & Ryzhik (2007, 8.365.4), 

 ∑
−

=
+

−=Ξ
1

1
)1(

11)0,(
j

m
mm

j , 

 ∑
−

=
+

−=Ξ
1

1
)2(

1
4
3)1,(

j

m
mm

j  

and 
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=
+

−=Ξ
1
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1
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11)2,(

j

m
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j . 

■ 

 

Theorem 2.13.2 

Let X be a real-valued random variable which has a skew logistic distribution, 

),,(SLD~ δβαX , with method of L-moments estimators for the location parameter, α , the 

scale parameter, 0>β , and the shape parameter, 10 ≤≤ δ , given respectively by α̂  in 

(2.66), β̂  in (2.65) and δ̂  in (2.64). The asymptotic variances of α̂ , β̂  and δ̂  are obtained 

with 

 


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












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δ
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where 

 ( ) 



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


−+=Θ ωπβ 308112557 22

15
1

1,1 ,      (2.80) 
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
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5
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3
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and 
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3,3 ωπωω ,    (2.85) 

with )1( δδω −= . Specifically the asymptotic standard errors of α̂ , β̂  and δ̂  are given by 

(2.67), (2.68) and (2.69). 
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Proof 

We must derive the covariance matrix T
GGΛ=Θ . Consider first the matrix G, whose 

elements, as indicated in (2.63), are given by the partial derivatives of the parameters with 

respect to the L-moments. Thus, for the SLD with αθ =1 , βθ =2 , and δθ =3 , 

 

,

0

020

601

0

020

601

312

2
3

2

3

2
2
2

3

321

321

321

















−

−

=



















−

−

=

















=

−

∂
∂

∂
∂

∂
∂

∂

∂

∂

∂

∂

∂

∂
∂

∂
∂

∂
∂

ββ
δ

δδδ

βββ

ααα

LL

L

LLL

LLL

LLL

G

 

where the final result is obtained using (2.59) and (2.60) and simplifying. 

Consider next the symmetric matrix 
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, 

whose elements are obtained with (2.62) using the quantile density function of the SLD given 

in (2.16) and the shifted Legendre polynomials )(*
0 xP , )(*

1 xP  and )(*
2 xP  given in (2.89), 

(2.90) and (2.91). For example, 
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with )1( δδω −=  and where the final expression is obtained after substantial simplification. 

Likewise it can be shown that 
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the expressions for the elements of Θ  in (2.80) to (2.85) are obtained with 
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■ 

 

2.14 APPENDIX 

Section 2.14.1 contains information on special mathematical constants, functions and ratios 

used in the thesis. The properties of shifted Legendre polynomials, which appear in the 

formulae of L-moments, are briefly given in Section 2.14.2. Tables with expressions for 

probability-based functions, quantile-based functions and L-moments for various probability 

distributions are presented in Section 2.14.3. 
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2.14.1   SPECIAL MATHEMATICAL FUNCTIONS AND RATIOS 

The mathematical constants, functions and ratios listed in Table 2.9 are utilized throughout 

the thesis. Where applicable, full details regarding these constants, functions and ratios are 

available from Gradshteyn & Ryzhik (2007). 

 

Table 2.9: Special mathematical constants, functions and ratios. 

Name Expression Reference 

Error function [ ]∫ −=
z
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22 exp)(erf
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(2007, 8.31)
 

Incomplete gamma function 0)Re(,]exp[),(

0

1 >−= ∫
−

adtttza

z
aγ  

Gradshteyn & Ryzhik 

(2007, 8.35) 

Regularized incomplete gamma 

function )(

),(
),(

a

za
zaG

Γ
=

γ
 

Inverse of regularized 

incomplete gamma function 
),(1

saG
−

 

 

Euler beta function 0)Re(,0)Re(,)1(),(

1

0

11

)(

)()(
>>−==Β ∫

−−
+Γ

ΓΓ
badtttba

ba

ba

ba

 

Gradshteyn & Ryzhik 

(2007, 8.38) 

Incomplete beta function 1)Re(,0)Re(,)1(),(

0

11 <>−=Β ∫
−−

zadtttba

z
ba

z

 

Gradshteyn & Ryzhik 

(2007, 8.391) 

Regularized incomplete beta 

function ratio ),(

),(
),(

ba

ba
z

zbaI
Β

Β
=

 

Gradshteyn & Ryzhik 

(2007, 8.392) 

Hypergeometric series ∑
∞

=

=
0

!)(

)()(
);;,(

k
kc

zba

k

k
kkzcbaF

 

Gradshteyn & Ryzhik 

(2007, 9.1) 

Riemann zeta function 1)Re(,)(
1

1 >=∑
∞

=

aa

k
k

a
ζ

 

Gradshteyn & Ryzhik 

(2007, 9.5) 

Euler’s constant ( ) ...5772156649.0)(lim]log[lim
1

1

1
1

1 =−=













−=

−→
=

∞→
∑ z

z

n

k
k

n
znC ζ

 

Gradshteyn & Ryzhik 

(2007, 8.367) 

Euler psi function [ ] 0)Re(,)(log)()(

1

0
1

1
)(

1
1

>−=Γ=Γ= ∫ −
−

Γ

−

aCdtaaa
t

t
da
d

da
d

a

a

ψ

 

Gradshteyn & Ryzhik 

(2007, 8.36) 

rth derivative of Euler psi 

function 
0)Re(,!)1()()(

0
)(

11)(
1 >−== ∑

∞

=
+

+
+ araa

k
ka

r

da

dr
rr

r

ψψ

 

Gradshteyn & Ryzhik 

(2007, 8.363.8) 

Lerch function ...,1,0,1)Re(1,),,(
0

)(
−≠<<−= ∑

∞

=
+

bzbaz

k
kb

z
a

k

ϕ

 

Gradshteyn & Ryzhik 

(2007, 9.55) 

Exponential integral function ∫
∞−

=
z

t

t
dtz

]exp[
PV)(Ei  where PV denotes principal value of integral

 

Gradshteyn & Ryzhik 

(2007, 8.21) 
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2.14.2   SHIFTED LEGENDRE POLYNOMIALS 

The sequence of polynomials, 

 ...,2,1,0,)(
0

, == ∑
=

rxPxP
r

k

k
krr , 

satisfying the differential equation 

 ( ) 0)1(21
2

22 =++−− zrrxx
dx
dz

dx

zd  

and the orthogonality relation 

 srdxxPxP sr ≠=∫− ,0)()(
1

1
,       (2.86) 

are called Legendre polynomials. As indicated by Gradshteyn & Ryzhik (2007, 8.910.2), the 

r
th

 order Legendre polynomial is given by 

 ( )r

dx

d

rr xxP
r

r

r
1)( 2

!2

1 −= . 

Shifted Legendre polynomials, 

 ...,2,1,0,)(
0

*
,

* == ∑
=

rxPxP
r

k

k
krr ,      (2.87) 

satisfy the orthogonality relation 

 srdxxPxP sr ≠=∫ ,0)()(

1

0

** .       (2.88) 

In effect, the interval over which the polynomials are orthogonal is shifted from ]1,1[−  for the 

Legendre polynomials in (2.86) to ]1,0[  in (2.88) for the shifted Legendre polynomials. Thus, 

as indicated by Hosking (1986), the Legendre and shifted Legendre polynomials are related 

through 

 )12()( * −= xPxP rr , 

so that the r
th

 order shifted Legendre polynomial is given by 

 ( )r

dx

d

rr xxxP
r

rr

)1()(
!

)1(* −=
−

. 

The coefficients of the shifted Legendre polynomials in (2.87) are then 

 









−==

+−

−

+− −

k

kr

k

rkr

krk

kr

kr

kr

P )1(
)!()!(

)!()1(*
, 2

. 

To obtain expressions for the first four L-moments, the shifted Legendre polynomials up 

to the third order are needed and they are 

 1)(*
0 =xP ,         (2.89) 
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 12)(*
1 −= xxP ,        (2.90) 

 166)( 2*
2 +−= xxxP ,        (2.91) 

 1123020)( 23*
3 −+−= xxxxP .      (2.92) 

Two additional results used in the proofs of Proposition 2.8.1 and Theorem 3.17.2 are 

 )1()1()( **
xPxP r

r
r −−=        (2.93) 

and 

 






>

=
=∫

.0,0

,0,1
)(

1

0

*

r

r
dxxPr        (2.94) 

Further details regarding Legendre polynomials are available from Gradshteyn & Ryzhik 

(2007, 8.91) and Hosking (1986). 

 

2.14.3   DISTRIBUTIONS 

In this section tables summarizing the properties, functions and expressions of various 

probability distributions are presented. Within each table the distributions are divided into 

three groups. The first group consists of distributions with location parameter, α , and scale 

parameter, 0>β , but no shape parameters. Apart from location and shape parameters, the 

distributions in the second group each has a single shape parameter, λ , while the 

distributions in the third group each possesses two shape parameters, λ  and δ . The 

distributions within each group are sorted alphabetically in each of the tables. 

Table 2.10 provides information regarding the parameters and support of the various 

distributions. References for each distribution are also given. The books on probability 

distributions by Johnson et al. (1994, 1995) and Balakrishnan & Nevzorov (2003) contain 

details for all the well-known distributions. For distributions not covered in these books as 

well as newer distributions, the relevant articles are given in Table 2.10. Also, where 

applicable, original references are listed in Table 2.10. 

Table 2.11 and Table 2.12 respectively give expressions for the probability-based 

functions and the quantile-based functions of the various distributions. Expressions and 

values for the distributions’ L-location and L-scale are presented in Table 2.13, while Table 

2.14 provides expressions and values for the distributions’ L-skewness and the L-kurtosis 

ratios. 
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Table 2.10: References for and parameters and support of various probability distributions. 

Distribution References Parameters Support 

Distributions with location parameter α  and scale parameter β

 

Arcsine Balakrishnan & Nevzorov (2003, Chapter 17) α  and 0>β   ],[ βαα +  

Cauchy 

Cauchy (1853) 

Johnson et al. (1994, Chapter 16) Balakrishnan & 

Nevzorov (2003, Chapter 12) 

α  and 0>β   ),( ∞−∞
 

Cosine Jones (2002b) α  and 0>β   ],[ βαα +
 

Exponential 

Johnson et al. (1994, Chapter 19) 

Balakrishnan & Basu (1995) 

Balakrishnan & Nevzorov (2003, Chapter 18) 

Ahsanullah & Hamedani (2010) 

α  and 0>β   ),[ ∞α
 

Gumbel 

Gumbel (1954, 1958) 

Johnson et al. (1995, Chapter 22) 

Coles (2001) 

Balakrishnan & Nevzorov (2003, Chapter 21) 

Castillo et al. (2005) 

α  and 0>β   ),( ∞−∞
 

Half-normal Johnson et al. (1994, Chapter 18) α  and 0>β   ),[ ∞α

 

Laplace 

Laplace (1774) 

Johnson et al. (1995, Chapter 24) 

Kotz et al. (2001) 

Balakrishnan & Nevzorov (2003, Chapter 19) 

α  and 0>β   ),( ∞−∞

 

Logistic 

Balakrishnan (1992)  

Johnson et al. (1995, Chapter 23)  

Balakrishnan & Nevzorov (2003, Chapter 22) 

α  and 0>β   ),( ∞−∞

 

Normal 

Gauss (1809, 1816) 

Johnson et al. (1994, Chapter 13) 

Patel & Read (1997) 

Balakrishnan & Nevzorov (2003, Chapter 23) 

α  and 0>β   ),( ∞−∞

 

Rayleigh 
Rayleigh (1880, 1919) 

Johnson et al. (1994, Chapter 18) 
α  and 0>β   ),[ ∞α

Secant hyperbolic 
Johnson et al. (1995, Chapter 23) 

Vaughan (2002) 
α  and 0>β   ),( ∞−∞

 
Student’s t(2) 

Student (1908) 

Jones (2002a) 
α  and 0>β   ),( ∞−∞

Uniform 
Johnson et al. (1995, Chapter 26) 

Balakrishnan & Nevzorov (2003, Chapter 11) 
α  and 0>β   ],[ βαα +
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Table 2.10: continues… 

Distribution References Parameters Support
 

Distributions with location parameter α , scale parameter β  and shape parameter λ
 

Asymmetric Laplace 
Kotz et al. (2001) 

Yu & Zhang (2005) 
α , 0>β  and 10 << λ  ),( ∞−∞

 

Burr Type II Burr (1942) 
α , 0>β  and 0>λ  ),( ∞−∞

 

Fréchet 

Fréchet (1927) 

Johnson et al. (1995, Chapter 22) 

Coles (2001) 

Balakrishnan & Nevzorov (2003, Chapter 21) 

Castillo et al. (2005) 

α , 0>β  and 0>λ  ),[ ∞α
 

Gamma 

Johnson et al. (1994, Chapter 17) 

Balakrishnan & Nevzorov (2003, Chapter 20) 

Kleiber & Kotz (2003, Chapter 5) 

α , 0>β  and 0>λ  ),[ ∞α
 

Generalized exponential Gupta & Kundu (1999, 2007) 
α , 0>β  and 0>λ  ),[ ∞α

Generalized extreme value 

Jenkinson (1955) 

Johnson et al. (1995, Chapter 22) 

Coles (2001) 

Balakrishnan & Nevzorov (2003, Chapter 21) 

Castillo et al. (2005) 

α , 0>β  and λ  

0,,

0,),(

0,,

>





 +∞−

=∞−∞

<




 ∞+

λα

λ

λα

λ

β

λ

β

Generalized gamma Hosking & Wallis (1997) 
α , 0>β  and 02

34
1 ≥= αλ  

0,),[

0,),(

0,],(

3

3

3

>∞

=∞−∞

<−∞

αα

α

αα

Generalized logistic Hosking (1986) 
α , 0>β  and λ  

0,,

0,),(

0,,

>





 +∞−

=∞−∞

<




 ∞+

λα

λ

λα

λ

β

λ

β

 

Generalized normal Hosking (1986) 
α , 0>β  and λ  

0,,

0,),(

0,,

>





 +∞−

=∞−∞

<




 ∞+

λα

λ

λα

λ

β

λ

β
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Table 2.10: continues… 

Distribution References Parameters Support
 

Generalized Pareto 

Pickands (1975) 

Coles (2001) 

Castillo et al. (2005) 

α , 0>β  and λ  
0,,

0,),[

>



 +

≤∞

λαα

λα

λ

β  

Generalized secant hyperbolic Vaughan (2002) α , 0>β  and πλ −>  ),( ∞−∞

 
Gompertz 

Gompertz (1825) 

Johnson et al. (1995, Chapter 22) 
α , 0>β  and 0>λ  ),[ ∞α  

Logistic-exponential Lan & Leemis (2008) 
α , 0>β  and 0>λ  ),[ ∞α  

Log-logistic Kleiber & Kotz (2003, Chapter 6) 
α , 0>β  and 0>λ  ),[ ∞α  

Log-normal 

Crow & Shimizu (1988) 

Johnson et al. (1994, Chapter 14) 

Kleiber & Kotz (2003, Chapter 4) 

α , 0>β  and 0>λ  ),( ∞α  

Lomax 

Lomax (1954) 

Arnold (1983) 

Johnson et al. (1994, Chapter 20) 

Kleiber & Kotz (2003, Chapter 6) 

α , 0>β  and 0>λ  ),[ ∞α  

Pareto 

Pareto (1896, 1897) 

Arnold (1983) 

Johnson et al. (1994, Chapter 20) 

Balakrishnan & Nevzorov (2003, Chapter 15) 

Kleiber & Kotz (2003, Chapter 3) 

α , 0>β  and 0>λ  ),[ ∞+ βα
 

Power Balakrishnan & Nevzorov (2003, Chapter 14) α , 0>β  and 0>λ  ],[ βαα +  

Tukey’s lambda 

Hastings et al. (1947) 

Tukey (1960, 1962) 

Tukey & McLaughlin (1963) 

α , 0>β  and λ  
0,,

0,),(

>



 +−

≤∞−∞

λαα

λ

λ

β

λ

β

Weibull 

Weibull (1939a, 1939b) 

Johnson et al. (1994, Chapter 21) 

Kleiber & Kotz (2003, Chapter 5) 

Rinne (2009) 

α , 0>β  and 0>λ  ),[ ∞α
 

Distributions with location parameter α , scale parameter β  and shape parameters λ  and δ
 

Burr Type III 
Burr (1942, 1968, 1973) 

Tadikamalla (1980) 
α , 0>β , 0>λ  and 0>δ  ),[ ∞α

 

Burr Type XII 

Burr (1942, 1968, 1973) 

Burr & Cislak (1968) 

Rodriguez (1977) 

Tadikamalla (1980) 

α , 0>β , 0>λ  and 0>δ  ),[ ∞α
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Table 2.10: continues… 

Distribution References Parameters Support 

Davies 
Gilchrist (2000) 

Hankin & Lee (2006) 
α , 0>β , 0≥λ , 0≥δ  and 0>+ δλ  ),[ ∞α

 

Kappa 

Hosking (1994) 

Mielke (1973) 

Karian & Dudewicz (2010, Chapter 17) 

α , 0>β , λ  and δ  

( )

[ )

( ) 0,0,,1

0,0,,

0,0,],log[

0,0,),(

0,0,,1

0,0,,

>>




 +−+

≤>





 +∞−

>=∞+

≤=∞−∞

><




 ∞−+

≤<




 ∞+

−

−

δλαδα

δλα

δλδβα

δλ

δλδα

δλα

λ

βλ
λ

β

λ

β

λ
λ

β

λ

β

 

Kumaraswamy 
Kumaraswamy (1980) 

Jones (2009) 
α , 0>β , 0>λ  and 0>δ  ],[ βαα +

 

Schmeiser-Deutsch Schmeiser & Deutsch (1977) α , 0>β , 0>λ  and 10 ≤≤ δ  [ ]λλ δβαβδα )1(, −+−
 

 

Table 2.11: Functions defining various probability distributions in terms of x. 

Distribution Cumulative distribution function Probability density function 

Distributions with location parameter α  and scale parameter β  

Arcsine 



= −−

β
απ xxF arcsin2)( 1

 





 −







=

−−
β

α
β

α
πβ

xx

xf

1

1
)( 1

 

Cauchy 



+= −−

β
απ xxF arctan)( 1

2
1

 
2

1

1

1
)(







+

=
−
β

α
πβ

x

xf
 

Cosine 
2

2
1sin)( 











= −

β
απ xxF

 














= −

β
α

β
ππ xxf sin)(

2
1

Exponential 











−−= −

β
αxxF exp1)(

 











−= −

β
α

β
xxf exp)( 1
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Table 2.11: continues… 

Distribution Cumulative distribution function Probability density function 

Gumbel 


















−−= −

β
αxxF expexp)(

 



















−−










−= −−

β
α

β
α

β
xxxf expexpexp)( 1

 

Half-normal 12)( −





Φ= −

β
αxxF

 
















−= −

2

2
112 exp)(

β
α

βπ
xxf  

Laplace 












≥




−−

≤




−

=

−

−

α

α

β
α

β
α

x

x

xF

x

x

,exp1

,exp

)(

2
1

2
1

 



−= −

β
α

β
xxf exp)(

2
1  

Logistic 












−+

=
−
β
αx

xF

exp1

1
)(

 2
1

exp1

exp

)(





















−+













−

=

−

−

β
α

β
α

β

x

x

xf  

Normal 





Φ= −

β
αxxF )(

 
















−= −

2

2
1

2

1 exp)(
β

α

βπ

xxf  

Rayleigh 

















−−= −

2

2
1exp1)(

β
αxxF

 
















−






= −−

2

2
1exp)(

2 β
α

β
α xxxf  

Secant hyperbolic 









= −−

β
απ xxF exparctan2)( 1

 













−+















−

=
−

−

β
α

β
α

πβ
x

x

xf

2exp1

exp

)( 2  

Student’s t(2) 





















+







+=

−

−

2

1)(
2

2
1

β
α

β
α

x

x

xF

 

2

3

2
1 2)(

−

−














+






=

β
α

β
xxf

 

Uniform β
α−= xxF )(

 β
1)( =xf  
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Table 2.11: continues… 

Distribution Cumulative distribution function Probability density function 

Distributions with location parameter α , scale parameter β  and shape parameter λ

 

Asymmetric Laplace 












≥




−−−

≤




 −−

=

−

−

αλλ

αλλ

β
α

β
α

x

x

xF

x

x

,exp)1(1

,)1(exp

)(

 












≥




−

≤




 −−

=

−−

−−

αλ

αλ

β
α

β
λλ

β
α

β
λλ

x

x

xf

x

x

,exp

,)1(exp

)(
)1(

)1(

 

Burr Type II λ

β
α

1

exp1)(

−

−






















−+= xxF

1
1

1 exp1exp)(

−−

−−






















−+














−=

λ

β
α

β
α

βλ
xxxf

Fréchet 























−=

−
− λ
β

α

1

exp)( xxF
 























−






=

−
−

−−
− λ

β
αλ

β
α
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1
1

1
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




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β
α

λ
xGxF ,)( 1

 














−






= −

−
−









Γ

β
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β
α

λ
β
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1

1

1

1

 

Generalized exponential λ

β
α

1

exp1)( 





















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1
1

1 exp1exp)(

−

−−






















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











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−=

λ

β
α

β
α
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xxxf

 

Generalized extreme value 














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




















−−

≠































−−

=

−

−
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1
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α
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












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




















−−














−

≠































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







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
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−
−

−
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




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
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


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
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

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−
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
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





−

=

−
−
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
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−
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
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
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1
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1
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Table 2.11: continues… 

Distribution Cumulative distribution function Probability density function 

Generalized logistic 

















=












−+
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




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

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−

−
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β
α

λ

β
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x
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






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



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
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
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
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Generalized normal 
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Generalized Pareto 
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
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
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
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



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
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

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−
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

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



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

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

>






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=
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


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
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
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


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
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
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
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
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−
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λ
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β
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β
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β
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Gompertz 









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
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β
α

λ
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









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
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β
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Table 2.11: continues… 

Distribution Cumulative distribution function Probability density function 

Logistic-exponential 
λ

β
α

1

1exp1

1
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

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
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1
1

1
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



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


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




−

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
+





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
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
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
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

=

−

−
−−

λ
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α

λ

β
α

β
α
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x
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Log-logistic 
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β
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1

1
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−
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
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=

x
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1

1
1

1

1
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





















+









=

−

−
−

λ
β

α

λ
β

α
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x

x
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Log-normal 











Φ= −

β
α

λ
xxF log)( 1
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
















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
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
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−
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1
2
1
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β

α
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x

x
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Lomax λ
β

α

1

11)(
−

−






 +−= xxF

1
1

1 1)(
−−

−






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λ
β

α
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β

α

1

1)(
−

−






−= xxF

 

1
1

1)(
−−

−






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λ
β

α
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Power λ
β

α

1

)( 





= −xxF

1
1

1)(
−

−






=

λ
β

α
βλ
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Tukey’s lambda No closed-form expression No closed-form expression

Weibull 











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
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−
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β
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1
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1
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Distributions with location parameter α , scale parameter β  and shape parameters λ  and δ  

Burr Type III 
λ

δ
β
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−

−



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

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



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1
1

1
1
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−

−
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−












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





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
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λ
δ

β
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β
α
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Burr Type XII 
λ

δ
β
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1
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−
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
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1
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−
−

−










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Table 2.11: continues… 

Distribution Cumulative distribution function Probability density function 

Davies No closed-form expression No closed-form expression
 

Kappa 


























==




















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
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

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
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


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
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
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

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
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
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
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




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


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













−−

=

−

−

−

−
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1
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β
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δ

β
α

λ

β
α

δ
λ

β
α

x

x

x

x
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
























==









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





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

−−














−

≠=












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
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
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

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
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
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−
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

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




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




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






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

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Table 2.12: Functions defining various probability distributions in terms of p. 

Distribution Quantile function Quantile density function Density quantile function 

Distributions with location parameter α  and scale parameter β  

Arcsine [ ]2
2
1sin)( πβα ppQ +=

 
]sin[)(

2
1 ππβ ppq =

 
]csc[)( 2 π

πβ
ppf p =

 

Cauchy [ ])12(tan)(
2
1 −+= ppQ πβα

 
[ ]2
2
1 )12(sec)( −= ppq ππβ

 
[ ]2
2
11 )12(cos)( −= ppf p π
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Table 2.12: continues… 

Distribution Quantile function Quantile density function Density quantile function 

Cosine 



+= − ppQ arcsin2)( 1βπα

 )1(
)(
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pq
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π
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 p

pq
−
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1
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β
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p
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1
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2
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
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1
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Secant 
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]csc[)( ππβ ppq =
 

]sin[)( 1 π
πβ

ppf p =

 

Student’s t(2) 
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=

β

 ( ) 231 )1(2)( pppf p −=
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β
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Distributions with location parameter α , scale parameter β  and shape parameter λ
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

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Table 2.12: continues… 

Distribution Quantile function Quantile density function Density quantile function 
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Table 2.12: continues… 

Distribution Quantile function Quantile density function Density quantile function 
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Table 2.12: continues… 

Distribution Quantile function Quantile density function Density quantile function 
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Table 2.13: L-location and L-scale for various probability distributions. 

Distribution L-location L-scale 

Distributions with location parameter α  and scale parameter β  

Arcsine βα
2
1

1 +=L
 

βπ 2
2 2 −=L

 

Cauchy Does not exist Does not exist 

Cosine βα
2
1

1 +=L
 

β
8
1

2 =L

 

Exponential βα +=1L  β
2
1

2 =L
 

Gumbel CL βα +=1
 

]2log[2 β=L
 

Half-normal 
π

βα 2
1 +=L  





 −= 222

π

β
L

 

Laplace α=1L  β
4
3

2 =L
 

Logistic α=1L  β=2L
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Table 2.13: continues… 

Distribution L-location L-scale 

Normal α=1L  
π

β
=2L

 

Rayleigh πβα
2
1

1 +=L  




 −= 12

2
1

2 πβL
 

Secant hyperbolic α=1L
 

)3(7 2
2 βζπ −=L

 

Student’s t(2) α=1L
 22

2
πβ

=L

 

Uniform βα
2
1

1 +=L  β
6
1

2 =L
 

Distributions with location parameter α , scale parameter β  and shape parameter λ
 

Asymmetric Laplace 
)1(

)21(
1 λλ

λβ
α

−

−
+=L

 

( )1
)1(

1
2
1

2 −=
−λλ

βL

 

Burr Type II ( )( )
λ

ψβα 1
1 ++= CL ( ) ( )( )

λλ
ψψβ 12

2 −=L

Fréchet 1,)1(1 <−Γ+= λλβαL
 

( ) 1,)1(122 <−Γ−= λλβ λ
L

 

Gamma 
λ

β
α +=1L

 
( )

2

11
2 ,

λ
β Β=L

Generalized exponential ( )( )λψβα
λ

+++= 1
1 CL ( ) ( )( )λψψβ

λλ 2
112

2 −−=L

Generalized extreme value ( ) 1,)1(11 −>+Γ−+= λλα
λ
β

L
 

( ) 1,)(212 −>Γ−= − λλβ λ
L

 

Generalized gamma 
λ

β
α +=1L

 
( )

2

11
2 ,

λ
β Β=L

 

Generalized logistic ( ) 11,)csc(1
1 <<−−+= λλππβα

λ
L

 
11,)csc(2 <<−= λλπβλπL

 

Generalized normal [ ]( )2

2
1

1 exp1 λα
λ
β

−+=L

 

[ ]2

2

1

2
2 exp21 λλ

λ

β
















−Φ−=L

 

Generalized Pareto 1,
11 −>+=

+
λα

λ

β
L

 
1,

)2)(1(2 −>=
++

λ
λλ

β
L

 

Generalized secant hyperbolic α=1L

 

No simple expression
 

Gompertz [ ] ( )
λλ

βα 11
1 Eiexp −−=L

 
[ ] ( ) [ ] ( )( )

λλλλ
β 1122

2 EiexpEiexp −−−=L
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Table 2.13: continues… 

Distribution L-location L-scale 

Logistic-exponential No simple expression
 

βλ
2
1

2 =L

 

Log-logistic 1,)csc(1 <+= λλπβλπαL
 

1,)csc(2
2 <= λλππβλL

 

Log-normal [ ]2

2
1

1 exp λβα +=L
 

[ ]2

2
1

2
2 exp12 λβ λ 








−





Φ=L

 

Lomax 1,
11 <+=

−
λα

λ

βλ
L

 
1,

)2)(1(2 <=
−−

λ
λλ

βλ
L

 

Pareto 1,
11 <+=

−
λα

λ

β
L

 
1,

)2)(1(2 <=
−−

λ
λλ

βλ
L

 

Power 
11 +

+=
λ

β
αL

 
)2)(1(2 ++

=
λλ

βλ
L

 

Tukey’s lambda 1,1 −>= λαL

 

1,
)2)(1(

2
2 −>=

++
λ

λλ

β
L

 

Weibull )1(1 +Γ+= λβαL
 

( ) )1(212 +Γ−= − λβ λ
L

 

Distributions with location parameter α , scale parameter β  and shape parameters λ  and δ
 

Burr Type III ( ) 1,,1 1
1 <+−Β+= δδδα

λλ

β
L ( ) ( )( ) 1,,1,12 12

2 <+−Β−+−Β= δδδδδ
λλλ

β
L

Burr Type XII ( )
λλλ

β δδδα 11
1 ,,1 <−+Β+=L ( ) ( )( )

λλλλ
β δδδδδ 121

2 ,,12,1 <−+Β−−+Β=L

Davies 1,)1,1(1 <−+Β+= δδλβαL
 

1,
2

)1,1()(
2 <=

−+

−+Β+
δ

δλ

δλδλβ
L

 

Kappa ( )




















−>>
















−+

−>=+Γ−+

−<<−<
















−+

=

+

+









+Β

−









−−+Β

1,0,1

1,0,)1(1

1,0,1

1

1

1
,1

1

)(

1
,1

1

λδα

λδλα

δα

λ

λ

δ

δ
λ

λ

β

λ

β

δδ

δ
λλ

λ

β
λ

L

 

( )



















−>>
















−>=Γ−

−<<−<
















=

+

+









+Β−








+Β

−

−









−−+Β−








−−+Β

1,0,

1,0,)(21

1,0,

1

1

2
,12

1
,1

1

)(

2
,12

1
,1

2

λδ

λδλβ

λδ

λ

λ

δ

δ
λ

δ
λ

λ

β

λ

δδ

δ
λλ

δ
λλ

λ

β

L

 

Kumaraswamy ( )
λλ

β δα 1
1 ,1+Β+=L

 
( ) ( )( )

λλλ
β δδ 21

2 ,12,1 +Β−+Β=L
 

Schmeiser-Deutsch ( )11

11 )1( ++
+

−−+= λλ
λ

β
δδαL ( )( )11

)2)(1(2 )1(2)1)(2( ++
++

+−+−+= λλ
λλ

β
δλδδλδL
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Table 2.14: L-skewness and L-kurtosis ratios for various probability distributions. 

Distribution L-skewness ratio L-kurtosis ratio 

Distributions with location parameter α  and scale parameter β  

Arcsine 03 =τ
 

2
4 606 −−= πτ

 

Cauchy Does not exist Does not exist 

Cosine 03 =τ
 16

1
4 =τ

 

Exponential 
3
1

3 =τ
 6

1
4 =τ

 

Gumbel 
]2log[

8

9
log

3










=τ
 ]2log[

243

256
log2

4










=τ
 

Half-normal 









 +−+= − 2arctan2212247 1

3 πτ
 

2551092arctan22180 1
4 −−











 += −πτ

 

Laplace 03 =τ
 72

17
4 =τ

 

Logistic 03 =τ
 6

1
4 =τ

 

Normal 03 =τ
 

92arctan30 1
4 −





= −πτ

 

Rayleigh 
( )123

96223
3

−

−+=τ
 

( )
( )126

429620

4
−

+−
=τ

 

Secant 

hyperbolic 
03 =τ

 )3(

)5(2

7

465
4 6

ζ

ζ
πτ −−=

 

Student’s t(2) 03 =τ
 8

3
4 =τ

 

Uniform 03 =τ
 

04 =τ
 

Distributions with location parameter α , scale parameter β  and shape parameter λ

 
Asymmetric 

Laplace 






 −=

+−

−
2

2

1

)2(2

3
1

3 1
λλ

λλ
τ

 






 +=

+−

−
2

22

1

)1(5

6
1

4 1
λλ

λλ
τ

 

Burr Type II 








−
















+







−








=

λ
ψ

λ
ψ

λ
ψ

λ
ψ

λ
ψ

τ
12

12
3

3
2

3








−
















−







+







−








=

λ
ψ

λ
ψ

λ
ψ

λ
ψ

λ
ψ

λ
ψ

τ
12

12
6

3
10

4
5

4
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Table 2.14: continues… 

Distribution L-skewness ratio L-kurtosis ratio 

Fréchet 
( ) ( )

1,
12

12332

3 <=
−

+−
λτ λ

λλ

 

( ) ( ) ( )
1,

12

12631045

4 <=
−

−+−
λτ λ

λλλ

 

Gamma ( ) 3,6 21
3

3
1 −Ι=

λλ
τ

 
No simple expression 

Generalized 

exponential 
2

12

6

12
3

3
2

3 λ

λ
ψ

λ
ψ

λ

λ
ψ

λ
ψ

λ
ψ

τ
−







−








+







+







−








=

2

12

12

12
6

3
10

4
5

4 λ

λ
ψ

λ
ψ

λ

λ
ψ

λ
ψ

λ
ψ

λ
ψ

τ
−







−








−







−







+







−








=

Generalized 

extreme value 

( ) ( )
1,

21

32231

3 −>= −

−−

−

−+−
λτ λ

λλ

 

( ) ( ) ( )
1,

21

45310261

4 −>= −

−−−

−

−+−
λτ λ

λλλ

 

Generalized 

gamma 
( ) 3,6 21

3
3
1 −Ι=

λλ
τ

 
No simple expression 

Generalized 

logistic 
11,3 <<−−= λλτ

 
11,2

6
5

6
1

4 <<−+= λλτ

 
Generalized 

normal 
No simple expression No simple expression 

Generalized 

Pareto 
1,

3
1

3 −>=
+
− λτ

λ
λ

 
1,

)4)(3(

)2)(1(
4 −>=

++

−−
λτ

λλ
λλ

 

Generalized 

secant 

hyperbolic 

03 =τ

 

No simple expression
 

Gompertz 








−−








−

















−−








−








+







−








−

=

λλλ

λλλλλ
τ

1
Ei

2
Ei

1
exp

1
Ei

2
Ei

1
exp3

3
Ei

2
exp2

3
 








−−








−

















−−








−








+







−








−







−









=

λλλ

λλλλλλλ
τ

1
Ei

2
Ei

1
exp

1
Ei

2
Ei

1
exp6

3
Ei

2
exp10

4
Ei

3
exp5

4

 

Logistic-

exponential 
No simple expression

 6
1

4 =τ

Log-logistic 1,3 <= λλτ
 

1,2

6
5

6
1

4 <+= λλτ
 

Log-normal No simple expression No simple expression 

Lomax 1,
3

1
3 <=

−
+ λτ
λ

λ

 
1,

)4)(3(

)2)(1(
4 <=

−−

++
λτ

λλ
λλ

 
Pareto 1,

3
1

3 <=
−
+ λτ
λ

λ

 
1,

)4)(3(

)2)(1(
4 <=

−−

++
λτ

λλ
λλ

 
Power 3

1
3 +

−=
λ
λτ

 
)4)(3(

)2)(1(
4 ++

−−
=

λλ
λλ

τ

 

Tukey’s lambda 1,03 −>= λτ 1,
)4)(3(

)2)(1(
4 −>=

++

−−
λτ

λλ

λλ
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Table 2.14: continues… 

Distribution L-skewness ratio L-kurtosis ratio 

Weibull 
( ) ( )

λ

λλ

τ −

−−

−

+−
=

21

32231

3
 

( ) ( ) ( )
λ

λλλ

τ −

−−−

−

−+−
=

21

45310261

4
 

Distributions with location parameter α , scale parameter β  and shape parameters λ  and δ

 

Burr Type III 1,
1

,1
2

,12

1
,1

2
,16

3
,16

3 <=








+−Β−








+−Β









+−Β+








+−Β−








+−Β

δτ

λ
δδ

λ
δδ

λ
δδ

λ
δδ

λ
δδ

1,
1

,1
2

,12

1
,1

2
,112

3
,130

4
,120

4 <=








+−Β−








+−Β









+−Β−








+−Β+








+−Β−








+−Β

δτ

λ
δδ

λ
δδ

λ
δδ

λ
δδ

λ
δδ

λ
δδ

Burr Type XII λ
δ

λ
δδ

λ
δ

δ
λ

δδ
λ

δδ
λ

δ

δτ 1

2
,12

1
,1

3
,16

2
,16

1
,1

3 , <=








−+Β−








−+Β









−+Β+








−+Β−








−+Β

λ
δ

λ
δδ

λ
δ

δ
λ

δδ
λ

δδ
λ

δδ
λ

δ

δτ 1

2
,12

1
,1

4
,120

3
,130

2
,112

1
,1

4 , <=








−+Β−








−+Β









−+Β−








−+Β+








−+Β−








−+Β

Davies 1,
)3)((

)1(4)1(
3 <=

−++

+++−
δτ

δλδλ
δδλδλλ

 
1,

)4)(3(

)3()41(2)3(
4 <=

−+−+

++++−
δτ

δλδλ

δδλδλλ

Kappa 
( ) ( )




















−>>

−>=

−<<−<

=









+Β−








+Β









+Β−








+Β+








+Β−

−

−+−









−−+Β−








−−+Β









−−+Β−








−−+Β+








−−+Β−

−

−−

1,0,

1,0,

1,0,

2
,12

1
,1

3
,16

2
,16

1
,1

21

32231

1

2
,12

1
,1

3
,16

2
,16

1
,1

3

λδ

λδ

λδ

τ

δ
λ

δ
λ

δ
λ

δ
λ

δ
λ

δ

δ
λλ

δ
λλ

δ
λλ

δ
λλ

δ
λλ

λ

λλ

 

( ) ( ) ( )




















−>>

−>=

−<<−<

=









+Β−








+Β









+Β−








+Β+








+Β−








+Β

−

−+−









−−+Β−








−−+Β









−−+Β−








−−+Β+








−−+Β−








−−+Β

−

−−−

1,0,

1,0,

1,0,

2
,12

1
,1

4
,120

3
,130

2
,112

1
,1

21

45310261

1

2
,12

1
,1

4
,120

3
,130

2
,112

1
,1

4

λδ

λδ

λδ

τ

δ
λ

δ
λ

δ
λ

δ
λ

δ
λ

δ
λ

δ

δ
λλ

δ
λλ

δ
λλ

δ
λλ

δ
λλ
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__________________________________________ 
 
3. THE GENERALIZED LAMBDA DISTRIBUTION (GLD) 
__________________________________________ 
 

3.1 INTRODUCTION 

In the middle of the twentieth century, Tukey, along with his research associates, introduced 

and studied a symmetric distribution called Tukey’s lambda distribution (Hastings et al., 

1947; Tukey, 1960, 1962; Tukey & McLaughlin, 1963). This distribution has a single shape 

parameter, λ , from which the name of the distribution originates. It is the simplest example 

of a quantile-based distribution, that is, a distribution specified in terms of its quantile-based 

functions. These functions of Tukey’s lambda distribution are given in Section 3.2. 

Since the 1970s, various generalizations of Tukey’s lambda distribution have been 

developed. These generalizations are collectively referred to as generalized lambda 

distributions (GLDs). Each generalization possesses multiple shape parameters, usually two, 

and can be viewed as a distinct type of the GLD. Two of these types, the Ramberg-Schmeiser 

(RS) Type (Ramberg & Schmeiser, 1972, 1974) and the Freimer-Mudholkar-Kollia-Lin 

(FMKL) Type (Freimer et al., 1988), have been studied and used extensively in theoretical 

development and in practice, and are the focus of this chapter. 

Akin to Tukey’s lambda distribution, no closed-form expression exists for the cumulative 

distribution function, )(xF , of the GLD. Furthermore, the probability density function, )(xf , 

of the GLD cannot be expressed as a function of x. It is therefore more convenient to describe 

the GLD in quantile form using the quantile function of the type under consideration along 

with the type’s quantile density and density quantile functions. The quantile-based functions 

of the RS and FMKL Types of the GLD are given in Section 3.3 and 3.4 respectively.  

The parameter space of the GLD with respect to its shape parameters can be divided into 

regions or classes based on the distributional shapes and the support attainable in each region 

or class. In Section 3.5 these regions and classes are illustrated graphically and also tabulated 

in terms of the corresponding shape parameter values and support 

Measures of location, spread and shape based on moments, L-moments and quantiles are 

presented for the GLD in Sections 3.6, 3.7 and 3.8 respectively. Section 3.9 briefly deals with 

the location and scale properties of the GLD, which are straightforward. 
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In contrast, the shape properties of the GLD are much more complex, specifically for the 

RS and FMKL Types. Hence a detailed discussion thereof is presented in Section 3.10, 

focusing on tail behavior in Section 3.10.1, skewness and kurtosis properties in Section 

3.10.2 and the shapes attainable by the GLD’s density curve in Section 3.10.3. The 

distributional shape and properties for each region or class of the RS and FMKL Types are 

further exemplified in Sections 3.11 and 3.12 respectively, highlighting the flexibility of the 

GLD in terms of distributional shape. 

Because of the complex nature of the shape properties of the RS and FMKL Types of the 

GLD, parameter estimation for these types is computationally difficult. Section 3.13 gives a 

brief discussion on the estimation methods proposed in the literature. Utilization of the GLD 

is described in Sections 3.14 and 3.15, focusing on Monte Carlo simulation in Section 3.14, 

for which the GLD was originally developed, and applications, including the fitting of the 

GLD to data sets, in Section 3.15. In particular Section 3.15 lists applications of the GLD 

appearing in the literature since 2001. The chapter concludes in Section 3.16. 

The theoretical material presented in this chapter has been compiled from various sources, 

most notably the books of Karian & Dudewicz (2000, 2010), which focused on the RS Type 

of the GLD, and the doctoral thesis of King (1999) in which both the RS and FMKL Types 

were covered. In general the theoretical development of the GLD in the literature has been 

concentrated on the RS Type. Results for the FMKL Type not given before in the literature 

are derived and described in this chapter. 

Formulae for the moments for limiting cases of the FMKL Type, which have not 

appeared before in the literature, are derived in Section 3.17.1. Karvanen & Nuutinen, 2008) 

presented the characterization of the RS Type of the GLD by L-moments, given in Section 

3.7. The corresponding characterization of the FMKL Type is also given in Section 3.7, with 

the expressions for the L-moments derived in Section 3.17.2.  

 

3.2 TUKEY’S LAMBDA DISTRIBUTION 

Even though Tukey’s lambda distribution has a single shape parameter, λ , it produces an 

astounding variety of symmetric distributional shapes. As illustrated in Figure 3.1, Tukey’s 

lambda distribution encompasses unimodal bell-shaped distributions with infinite support for 

0≤λ  and bounded support for 10 << λ , the uniform distribution for both 1=λ  and 2=λ , 

U-shaped distributions for 21 << λ  and unimodal truncated distributions for 2>λ . 
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Figure 3.1: Probability density functions of Tukey’s lambda distribution for various values of λ , all with 01 =L  and 12 =L . Since 

Tukey’s lambda distribution reduces to the uniform distribution for both 1=λ  and 2=λ , the corresponding two density 

curves in graph (c) plot on top of each other. 

 

The standard form of Tukey’s lambda distribution is specified in terms of its quantile 

function by 
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where the limiting case, 0=λ  in (3.1), is the quantile function of the standard logistic 

distribution, obtained by applying L’Hôpital’s rule (de l’Hôpital, 1696). In the literature 

Tukey’s lambda distribution is usually presented by the standard form in (3.1). Adding 

location and scale parameters yields the more general form, 
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The quantile density and density quantile functions of Tukey’s lambda distribution are then 
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3.3 RAMBERG-SCHMEISER TYPE (GLDRS) 

The Ramberg-Schmeiser (RS) Type of the GLD was developed by Ramberg & Schmeiser 

(1972, 1974) in order to provide an algorithm for generating symmetric and asymmetric real-

valued random variables in Monte Carlo simulations. Ramberg et al. (1979) extended the use 

of the RS Type of the GLD, henceforth denoted GLDRS, by developing a system using 

moments and tables to fit the GLDRS to data sets. The quantile function of the GLDRS is 
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where 1λ  is a location parameter, 02 ≠λ  is a scale parameter and 3λ  and 4λ  are shape 

parameters. The quantile density and density quantile functions of the GLDRS are respectively 
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3.4 FREIMER-MUDHOLKAR-KOLLIA-LIN TYPE (GLDFMKL) 

The Freimer-Mudholkar-Kollia-Lin (FMKL) Type of the GLD, introduced by Freimer et al. 

(1988) and denoted GLDFMKL, has quantile function 
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The quantile density and density quantile functions of the GLDFMKL are respectively 
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 1413
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ppp pf . 

It should be noted that the parameters as given by Freimer et al. (1988) were numbered 

differently. To avoid confusion, the parameters of the GLDFMKL are numbered in the same 

order as the parameters of the GLDRS so that they have the same interpretation. That is, 1λ  is 

the location parameter, 02 ≠λ  is the scale parameter and 3λ  and 4λ  are the shape parameters. 

 

3.5 PARAMETER SPACE, SUPPORT AND SPECIAL CASES 

Figure 3.2 illustrates the parameter space of the GLDRS with respect to the two shape 

parameters. The parameter space is divided into six regions. Initially, as given by Ramberg & 

Schmeiser (1974) and Ramberg et al. (1979), the validity of the GLDRS was restricted to the 

values of 3λ  and 4λ  in Regions 1, 2, 3 and 4. Karian et al. (1996) obtained the two additional 

valid regions, namely Regions 5 and 6. See Karian & Dudewicz (2000, 2010) for the 

complete derivation of the parameter space of the GLDRS. They furthermore provided a 

comprehensive discussion of the characteristics of the GLDRS within each region, including 

the support of the GLDRS summarized in Table 3.1. 

 

 

Figure 3.2: The parameter space of the GLDRS in terms of Regions 1, 2, 3, 4, 5 and 6. The dotted line at 43 λλ =  indicates symmetric 

distributions. U1 and U2 denote the uniform distribution at 143 == λλ  and 243 == λλ  respectively, while N and L 

denote approximations of the normal distribution and the logistic distribution by the GLDRS. The first four moments and 

thus the mean, the variance, the skewness moment ratio and the kurtosis moment ratio exist for values of 3λ  and 4λ  to the 

right and above the dot-dashed lines, in effect, for 
4
1

3 −>λ  and 
4
1

4 −>λ , while all L-moments exist for values of 3λ  and 

4λ  to the right and above the dashed lines, that is, for 13 −>λ  and 14 −>λ . 
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Table 3.1: Parameter space and support of the GLDRS in terms of Regions 1, 2, 3, 4, 5 and 6. 

Region Shape parameter values Support 

Region 1 1,1 43 >−< λλ  





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2

1
1,

λ
λ
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If λλλ == 43 , indicated by the dotted line in Figure 3.2, the GLDRS is symmetric and 

reduces to Tukey’s lambda distribution in (3.2) with αλ =1  and 
β
λλ =2 . When both 03 →λ  

and 04 →λ , the GLDRS approximates the logistic distribution, while for 14.043 ≈= λλ , the 

normal distribution is approximated. Remarkably the uniform distribution can be obtained 

from the GLDRS with four different pairs of values of 3λ  and 4λ . The four pairs of values are 

( ) )1,1(, 43 =λλ , ( ) )2,2(, 43 =λλ , ( ) )0,1(, 43 =λλ  and ( ) )1,0(, 43 =λλ . 

Region 3 of the GLDRS can be divided into seven sub-regions based on the diverse 

distributional shapes attainable in this region. These sub-regions, defined by King (1999) and 

labeled (a) to (h) by him, are illustrated in Figure 3.3 and listed in Table 3.2. Note that there 

is no sub-region (b) in Region 3. King (1999) assigned sub-region (b) to the values 

01359.0 3 <≤− λ  and 01495.0 4 <≤− λ  in Region 4 associated with the tables provided by 

Ramberg et al. (1979) for method of moments estimation. 

Similar to the GLDRS, the GLDFMKL possesses all three possible types of support, namely 

infinite support, half-infinite support and bounded support. The support attained by the 

GLDFMKL for different values of its shape parameters, summarized in Table 3.3, suggests the 

division of the parameter space of the GLDFMKL into four distinct regions. These four regions 

are illustrated graphically in Figure 3.4. 
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Figure 3.3: The sub-regions (a), (c), (d), (e), (f), (g) and (h) into which Region 3 of the GLDRS is divided. 

 

Table 3.2: Sub-regions in Region 3 of the GLDRS. 

Region Shape parameter values 

Region 3(a) 0,10,10 4343 >+<≤<≤ λλλλ  

Region 3(c) 21,21 43 ≤<≤< λλ  

Region 3(d) 10,1 43 ≤≤≥ λλ  

Region 3(e) 1,10 43 ≥≤≤ λλ  

Region 3(f) 21,2 43 <<> λλ  

Region 3(g) 2,21 43 ><< λλ  

Region 3(h) 4,2,2 4343 >+≥≥ λλλλ  

 

Table 3.3: Parameter space and support of the GLDFMKL in terms of Regions 1, 2, 3 and 4. 

Region Shape parameter values Support 

Region 1 0,0 43 >≤ λλ  

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λλ
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Region 2 0,0 43 ≤> λλ  
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Region 3 0,0 43 >> λλ  
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Region 4 0,0 43 ≤≤ λλ  ),( ∞−∞
 

 

Freimer et al. (1988) used a different classification scheme for the GLDFMKL. They 

divided the parameter space of the GLDFMKL into five distint classes numbered I to V. King 

(1999) labeled two additional classes, Class II’ and Class IV’, which contain the reflection of 

the GLDFMKL from Class II and Class IV. The seven classes are listed in Table 3.4 and 
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indicated graphically in Figure 3.5. Comparing Figures 3.5 and 3.3, it follows that, in Region 

3, the seven classes of the GLDFMKL and the seven sub-regions of the GLDRS are equivalent 

in terms of their coverage of the values of 3λ  and 4λ . 

 

 

Figure 3.4: The parameter space of the GLDFMKL in terms of Regions 1, 2, 3 and 4. The dotted line at 43 λλ =  indicates symmetric 

distributions, U1 and U2 denote the uniform distribution at 143 == λλ  and 243 == λλ , L denotes the logistic 

distribution with 043 == λλ , and N denotes the approximation of the normal distribution by the GLDFMKL. The first four 

moments and hence the mean, variance and skewness and kurtosis moment ratios exist for values of 3λ  and 4λ  to the right 

and above the dot-dashed lines, in effect, for 
4
1

3 −>λ  and 
4
1

4 −>λ , whereas all L-moments exist for values of 3λ  and 

4λ  to the right and above the dashed lines, that is, for 13 −>λ  and 14 −>λ . 

 

Table 3.4: Parameter space of the GLDFMKL in terms of Classes I, II, II’, III, IV, IV’ and V. 

Class Shape parameter values 

Class I 1,1 43 << λλ  

Class II 1,1 43 ≤≥ λλ  

Class II’ 1,1 43 ≥≤ λλ  

Class III 21,21 43 ≤<≤< λλ  

Class IV 21,2 43 <<> λλ  

Class IV’ 2,21 43 ><< λλ  

Class V 4,2,2 4343 >+≥≥ λλλλ  
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Figure 3.5: The parameter space of the GLDFMKL in terms of Classes I, II, II’, III, IV, IV’ and V. The green-shaded, purple-shaded, 

blue-shaded and red-shaded areas indicate Regions 1, 2, 3 and 4 as shown in Figure 3.4. 

 

The main difference between the parameter spaces of the GLDRS and the GLDFMKL is 

that, unlike the GLDRS, the GLDFMKL is a valid distribution for all values of 3λ  and 4λ , 

including when these shape parameters tend to zero or infinity. The quantile functions for 

these limiting cases, obtained by applying L’Hôpital’s rule (de l’Hôpital, 1696) and given by 

King (1999), are 
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Various special and limiting cases of the GLDFMKL are immediately evident from (3.5). 

For instance, the GLDFMKL reduces to the logistic distribution for 043 == λλ , while the 

exponential distribution is obtained when ∞→3λ  and 04 =λ . 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. THE GENERALIZED LAMBDA DISTRIBUTION (GLD) 

 95 

Similar to the GLDRS, if λλλ == 43 , then the GLDFMKL is symmetric, indicated by the 

dotted line in Figure 3.4, and simplifies to Tukey’s lambda distribution in (3.2) with αλ =1  

and 
β

λ 1
2 = . Furthermore the GLDFMKL, like the GLDRS, approximates the normal 

distribution for 14.043 ≈= λλ . 

Akin to the GLDRS, the uniform distribution is realized from the GLDFMKL for four 

different pairs of values of 3λ  and 4λ . But only two of these pairs of values, ( ) )1,1(, 43 =λλ  

and ( ) )2,2(, 43 =λλ , are in accordance with the GLDRS. The GLDFMKL also simplifies to the 

uniform distribution for 13 =λ  and ∞→4λ  and for ∞→3λ  and 14 =λ , while, as indicated 

above, the remaining two pairs of values for which the GLDRS simplifies to the uniform 

distribution are ( ) )0,1(, 43 =λλ  and ( ) )1,0(, 43 =λλ . 

This disparity between the GLDRS and the GLDFMKL with respect to their simplifications 

to the uniform distribution extends to their general parameter spaces. Indeed, the GLDRS and 

the GLDFMKL are two distinct types of the GLD and not merely reparameterizations of the 

same distribution. The only direct functional relation between the GLDRS and the GLDFMKL 

occurs in the symmetric case with 43 λλ = , when both types reduce to Tukey’s lambda 

distribution. 

 

3.6 MOMENTS 

As first shown by Ramberg & Schmeiser (1974), the r
th

 order moment of the GLDRS only 

exists if 
r
1

3 −>λ  and 
r

1
4 −>λ . So, if 

4
1

3 −>λ  and 
4
1

4 −>λ , then the mean, variance, 

skewness moment ratio and kurtosis moment ratio of the GLDRS are 

 
2

1

1 λ
λµ

M
+= ,         (3.6) 

 
2
2

2
122

λ
σ

MM −
= ,         (3.7) 

 
( )3

2

3
1213 23

3 σλ
α

MMMM +−
=  

and 

 
( )4

2

4
12

2
1314 364

4 σλ
α

MMMMMM −+−
= , 

where 

 
1

1
1

1
1

43 ++
−=

λλ
M , 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. THE GENERALIZED LAMBDA DISTRIBUTION (GLD) 

 96 

 
12

1
4312

1
2

43
)1,1(2

++
+++Β−=

λλ
λλM , 

 
13

1
434313

1
3

43
)12,1(3)1,12(3

++
−++Β+++Β−=

λλ
λλλλM  

and 

 
14

1
43434314

1
4

43
)13,1(4)12,12(6)1,13(4

++
+++Β−++Β+++Β−=

λλ
λλλλλλM , 

with ),( baΒ  the beta function (see Section 2.14.1 in Chapter 2 for details). 

It follows that the first four moments of the GLDRS do not exist for any values of 3λ  and 

4λ  in Regions 1 and 2. They do exist for all values of 3λ  and 4λ  in Region 3, but only for the 

small sections of Regions 4, 5 and 6 where 
4
1

3 −>λ  and 
4
1

4 −>λ . 

Analogous to the GLDRS, the r
th

 order moment of the GLDFMKL only exists if both 

r
1

3 −>λ  and 
r
1

4 −>λ . Expressions for the mean, the variance and the skewness and kurtosis 

moment ratios of the GLDFMKL were derived and presented by Lakhany & Mausser (2000) 

for 03 ≠λ  and 04 ≠λ , while their expressions for the special case where both shape 

parameters are zero, 043 == λλ , are simply the expressions for the logistic distribution. 

However, expressions have not been given before in the literature for the special cases of the 

GLDFMKL where just one of the shape parameters is zero, that is, for 03 =λ  and 04 ≠λ  or for 

03 ≠λ  and 04 =λ . These expressions are derived in Section 3.17.1. 

The complete set of expressions for the mean, the variance and the skewness and kurtosis 

moment ratios of the GLDFMKL for 
4
1−>jλ  and 

4
1−>kλ  , where 4,3=j  and 4,3=k , are  
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where C
 
is Euler’s constant, )(aψ  is the psi function and )()(

a
rψ  is the r

th
 derivative of the 

psi function (see again Section 2.14.1 in Chapter 2 for details). 

 

3.7 L-MOMENTS 

Recall from Section 2.5 that, if the mean of a probability distribution exists, then all the L-

moments exist. Thus, the r
th

 order L-moment of the GLDRS exists if 13 −>λ  and 14 −>λ . 

This implies that the L-moments of the GLDRS exist for all values of 3λ  and 4λ  in Regions 3, 

5 and 6 as well as for the section of Region 4 where 13 −>λ  and 14 −>λ .  

Expressions for the L-moments of the GLDRS have been derived and given in the 

literature in a variety of forms (Bergevin, 1993; Mohan, 1994; Karian & Dudewicz, 2003; 

Asquith, 2007; Karvanen & Nuutinen, 2008). The L-location and L-scale of the GLDRS are 
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while the r
th

 order L-moment is given by 
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The L-skewness ratio and L-kurtosis ratio for the GLDRS are 
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Karvanen & Nuutinen (2008) numerically calculated the boundaries of 3τ  and 4τ  for the 

GLDRS. For the symmetric GLDRS with λλλ == 43 , in effect, for Tukey’s lambda 

distribution, they analytically derived these boundaries and showed that 

 03 =τ  and 
)4)(3(

)2)(1(
4 ++

−−
=

λλ

λλτ . 
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The L-moment ratio diagrams of the GLDRS in terms of Regions 3, 4, 5 and 6 are 

illustrated in Figure 3.6. These L-moment ratio diagrams are equivalent to the L-moment ratio 

diagrams obtained and presented by Karvanen & Nuutinen (2008). It is furthermore indicated 

in Figure 3.6 that the boundaries of 3τ  and 4τ  for Regions 3 and 4, obtained as 03 →λ  or 

04 →λ , are given by the generalized Pareto and reflected generalized Pareto distributions. 

 

  

  

Figure 3.6: L-moment ratio diagrams for Regions 3, 4, 5 and 6 of the GLDRS. The line types indicated in diagram (a) also apply to the 

other diagrams. The uniform, logistic, exponential and reflected exponential distributions are indicated by U, L, E and RE. 

 

In contrast to the GLDRS, the L-moments of the GLDFMKL have not been studied in detail 

before in the literature – one study giving and using the L-moments of the GLDFMKL is by 

Nair & Vineshkumar (2010). The expressions for the L-moments of the GLDFMKL, derived in 

Section 3.17.2, are similar in form to those of the GLDRS. If 13 −>λ  and 14 −>λ , then 
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The L-skewness ratio and L-kurtosis ratio for the GLDFMKL are 
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L-moment ratio diagrams indicating the ( )43,ττ  spaces covered by the four regions of the 

GLDFMKL are shown in Figure 3.7. It is evident from comparing Figures 3.6(a) and 3.7(b) that 

the ( )43,ττ  space covered by Regions 3 of the GLDRS and the GLDFMKL are the same. 

 

  

Figure 3.7: L-moment ratio diagrams for Regions 1, 2, 3 and 4 of the GLDFMKL. The line types indicated in diagram (a) also apply to 

diagram (b). The uniform, logistic, exponential and reflected exponential distributions are indicated by U, L, E and RE. The 

green-shaded, purple-shaded and red-shaded areas in diagram (a) are the ( )43 , ττ  spaces attained by Regions 1, 2 and 4. 
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Figure 3.8 depicts the L-moment ratio diagrams for Region 3(a) and Region 4 of the 

GLDRS and for Class I of the GLDFMKL, both with 13 <λ  and 14 <λ . As will be seen in 

Sections 3.11 and 3.12, these two regions of the GLDRS and Class I of the GLDFMKL provide 

the most useful distributional shapes. Note that, whereas the combined coverage of the 

( )43,ττ  space by Regions 3(a) and 4 of the GLDRS extends all the way towards the 

boundaries given by the generalized Pareto and the reflected generalized Pareto distributions, 

the coverage by Class I of the GLDFMKL does not. The reason is that 13 <λ  and 14 <λ  in 

Class I, while the generalized Pareto and reflected generalized Pareto distributions are 

obtained from the GLDFMKL when ∞→3λ  or ∞→4λ  in Classes II and II’. 

It is clear from the L-moment ratio diagrams in Figures 3.6 to 3.8 that the GLD covers a 

substantial area of the ( )43,ττ  space, especially through Regions 3(a) and 4 of the GLDRS and 

Class I of the GLDFMKL. The area covered by the GLD is larger than the area covered by 

other popular four-parameter distributions, such as the Burr Type III and Burr Type XII 

distributions (see again Figure 2.10), highlighting the greater flexibility of the GLD with 

respect to distributional shape. 

 

  

Figure 3.8: L-moment ratio diagrams for Region 3(a) and Region 4 of the GLDRS and for Class I of the GLDFMKL. The line types 

indicated in diagram (a) also apply to diagram (b). U, L, E and RE denote the uniform, logistic, exponential and reflected 

exponential distributions. In diagram (a), the blue-shaded area is the ( )43 , ττ  space covered by Region 3(a), while the red-

shaded area is the ( )43 , ττ  space covered by Region 4. The green-shaded, purple-shaded, blue-shaded and red-shaded areas 

in diagram (b) indicate the coverage of the ( )43 , ττ  spaces by Regions 1, 2, 3 and 4 of the GLDFMKL with 13 <λ  and 

14 <λ . 
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3.8 QUANTILE-BASED MEASURES OF LOCATION, SPREAD AND SHAPE 

The non-existence of moments and L-moments for certain shape parameter values of the 

GLD is problematic in that the use of these measures in describing the location, spread and 

shape of the GLDRS and GLDFMKL for the affected regions and classes is constrained. In 

contrast, measures of location, spread and shape defined in terms of the quantiles of the GLD 

exist for all values of 3λ  and 4λ . King (1999) and also King & MacGillivray (2007) gave the 

median, spread function, γ -functional, η -functional and ratio-of-spread functions for both 

the GLDRS and the GLDFMKL. 

Let 1
2
1 <<< uv . Then the median and spread function of the GLDRS are 
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while the two skewness functionals and the ratio-of-spread functions for the GLDRS are 
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The κ -functional, the bounded functional for kurtosis proposed in Section 2.6 of Chapter 2, 

is 
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for the GLDRS. 

Given 1
2
1 <<< uv , 4,3=j  and 4,3=k , the median and spread function of the 

GLDFMKL are 
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The shape functionals of the GLDFMKL are 
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3.9 LOCATION AND SPREAD 

The interpretation of the location and scale parameters of the GLD is straightforward. 

Holding the values of all the other parameters constant, an increase in the value of 1λ  leads to 

an increase in the location of the GLD. This follows immediately from the expressions for the 

mean in (3.6) and (3.8), the L-location in (3.12) and (3.16), and the median in (3.21) and 

(3.23) of the GLDRS and GLDFMKL respectively and is illustrated in Figure 3.9(a) for the 

GLDRS. 

 

  

Figure 3.9: Probability density functions of members of the GLDRS with varying location and spread. In graph (a), where 

( ) )2.0,1.0,1(,, 432 =λλλ , an increase in the value of 1λ  leads to an increase in the location of the GLDRS, while in graph 

(b), where 01 =λ  and ( ) )2.0,1.0(, 43 =λλ , an increase in the value of 2λ  leads to a decrease in the spread of the GLDRS. 

 

There is an inverse relation between the spread of the GLD and the value of 2λ  in that the 

spread of the GLD decreases when the value of 2λ  increases (holding the values of the other 

parameters constant). This inverse relation is evident from the expressions for the variance in 

(3.7), the L-scale in (3.13) and the spread function in (3.22) of the GLDRS, as well as from the 

corresponding expressions in (3.9), (3.17) and (3.24) for the GLDFMKL, and is demonstrated 

graphically in Figure 3.9(b) for the GLDRS. 

 

3.10 DISTRIBUTIONAL SHAPE 

The GLD is highly flexible with respect to distributional shape. But this flexibility comes at a 

cost in that the relationship between the shape parameters of the GLD and the distributional 

shape is extremely complex, particularly with respect to skewness. This is especially true in 

Region 3 of both the GLDRS and GLDFMKL. 
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The shape properties of the GLD are discussed below. See MacGillivray (1982), 

Groeneveld (1986), Freimer et al. (1988), King (1999) and Karian & Dudewicz (2000, 2010) 

for in-depth analyses of the GLD’s shape properties. Since the GLDRS and GLDFMKL share 

most of the intricacies and complexities with respect to distributional shape, the shape 

properties of the GLD are illustrated via the GLDRS. Where necessary, main differences 

between shape properties of the GLDRS and the GLDFMKL are highlighted. 

 

3.10.1   TAIL BEHAVIOR 

As explained by King (1999), for certain combinations of values of the GLD’s shape 

parameters in Regions 3 and 4, a change in the value of one of these parameters will affect 

one of the tails of the GLD. In Region 4 for 03 <λ  and 04 <λ  and in Region 3 for 20 3 << λ  

and 20 4 << λ , the left tail of the GLD is affected by a change in the value of 3λ , whereas the 

right tail is affected by a change in the value of 4λ . When 23 >λ  and 24 >λ  in Region 3, a 

change in the value of 3λ  affects the right tail of the GLD while a change in the value of 4λ  

affects the left tail. See Figure 3.10 for examples in terms of the GLDRS. The tail behavior is 

not straightforward for other combinations of shape parameter values in Regions 3 and 4 and 

also not for the other regions of the GLD. 

 

3.10.2   SKEWNESS AND KURTOSIS 

As can be seen from the various measures of shape, the two shape parameters, 3λ  and 4λ , 

jointly determine the skewness and the kurtosis of the GLD. For example, the L-skewness 

and L-kurtosis ratios of the GLDRS in (3.14) and (3.15) and of the GLDFMKL in (3.19) and 

(3.20) are functions of both 3λ  and 4λ , This complicates not only the interpretation of the 

two shape parameters but also parameter estimation for the GLD discussed in Section 3.13. 

Recall from Section 3.5 that the uniform distribution is obtained from the GLDRS when 

( ) )1,1(, 43 =λλ , when ( ) )2,2(, 43 =λλ , when ( ) )0,1(, 43 =λλ  and when ( ) )1,0(, 43 =λλ . The 

skewness and kurtosis moment ratios of the uniform distribution are 03 =α  and 8.14 =α  

respectively. Thus four different pairs of values of 3λ  and 4λ  from the GLDRS produce these 

values of 3α  and 4α . This suggests that there does not exist a one-to-one correspondence 

between the shape parameters of the GLD and the skewness and kurtosis moment ratios. 
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Figure 3.10: Probability density functions of members of the GLDRS from Regions 3 and 4 illustrating tail behavior. In graphs (a) and 

(b), where ( ) )1,0(, 21 −=λλ , 03 <λ  and 04 <λ  from Region 4, and in graphs (c) and (d), where ( ) )1,0(, 21 =λλ , 

20 3 << λ  and 20 4 << λ  from Region 3, a change in the value of 3λ  affects the left tail, while a change in the value of 

4λ  affects the right tail. In graphs (e) and (f), where ( ) )1,0(, 21 =λλ , 23 >λ  and 24 >λ  from Region 3, a change in the 

value of 3λ  affects the right tail, while a change in the value of 4λ  affects the left tail. 

 

Johnson (1980) pointed out that the correspondence is one-to-one for both the Pearson 

and the Johnson families of distributions and queried whether the same is true for the GLD. 

In response Ramberg et al. (1980) gave an example to show that the correspondence is indeed 
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not one-to-one for the GLD. Their example indicated that the three members of the GLDRS 

with ( ) )0742.0,0742.0(, 43 =λλ , ( ) )026.6,026.6(, 43 =λλ  and ( ) )297.2,498.35(, 43 =λλ  , whose 

probability density functions are plotted in Figure 3.11, all have 03 =α  and 4.34 =α . 

 

 

Figure 3.11: Probability density functions of three members of the GLDRS, all with 03 =α  and 4.34 =α . Note that 0=µ  and 12 =σ  

for all three members of the GLDRS, that is, all three members have zero mean and unit variance. 

 

This undesirable characteristic of the GLD is not restricted to the skewness and kurtosis 

moment ratios. The same is true for other measures of shape such as the L-skewness and L-

kurtosis ratios. For instance, 043 ==ττ  for the four different pairs of values of 3λ  and 4λ  

from the GLDRS which yield the uniform distribution. As another example, Figure 3.12 

shows the probability density functions of three members of the GLDRS with ( ) ( )
2
1

2
1

43 ,, =λλ ,  

( ) )3,3(, 43 =λλ  and ( ) )2734.1,1160.84(, 43 =λλ , all yielding 03 =τ  and 0476.0
21
1

4 ==τ . 

 

 

Figure 3.12: Probability density functions of three members of the GLDRS, all with 03 =τ  and 
21

1
4 =τ . Note that 01 =L  and 12 =L  

for all three members. 
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To complicate matters further, when one considers different pairs of values of 3λ  and 4λ  

which have the same set of values for a certain set of shape measures, say 3τ  and 4τ , then 

these different pairs of values of 3λ  and 4λ  will not necessarily have the same set of values 

for another set of shape measures, say 3α  and 4α . For example, the three members of the 

GLDRS with ( ) ( )
2
1

2
1

43 ,, =λλ , ( ) )3,3(, 43 =λλ  and ( ) )2734.1,1160.84(, 43 =λλ  all have the same 

set of values for 3τ  and 4τ . However, if ( ) ( )
2
1

2
1

43 ,, =λλ , then ( ) )0817.2,0(, 43 =αα , if 

( ) )3,3(, 43 =λλ , then ( ) )0570.2,0(, 43 =αα , whereas if ( ) )2734.1,1160.84(, 43 =λλ , then 

( ) )1305.3,2697.0(, 43 =αα . 

Figures 3.11 and 3.12 illustrate another interesting shape property of the GLD. There 

exist values of 3λ  and 4λ  for which the GLD is asymmetric, but which give 03 =α  or 03 =τ . 

Examples include the GLDRS with ( ) )297.2,498.35(, 43 =λλ  and 03 =α  depicted in Figure 

3.11 and the GLDRS with ( ) )2734.1,1160.84(, 43 =λλ  and 03 =τ  depicted in Figure 3.12. 

 

3.10.3   SHAPE OF THE DENSITY CURVE 

When the values of 3λ  and 4λ  are interchanged, the shape of the GLD’s probability density 

function is reflected. In effect, as demonstrated in Figure 3.13 with the probability density 

function of the GLDRS, the GLD with parameters ( )4321 ,,, λλλλ  is the reflection of the GLD 

with parameters ( )3421 ,,, λλλλ  about the line 1λ=x . 

 

 

Figure 3.13: Probability density functions of two members of the GLDRS illustrating the reflection in the shape of the density curve when 

the values of 3λ  and 4λ  are interchanged. The GLDRS with parameters ( ) )4,3,2,1(,,, 4321 =λλλλ  is the reflection of 

the GLDRS with parameters ( ) )3,4,2,1(,,, 4321 =λλλλ  about the line 11 == λx . 
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Depending on the values of its shape parameters, the GLD’s probability density function 

can exhibit zero, one or two relative extreme turning points – examples in terms of the 

GLDRS are shown in Figure 3.14. The number of turning points with respect to the shape 

parameter values of the GLDRS, derived by Karian & Dudewicz (2000, 2010), is shown in 

Figure 3.15 and summarized in Table 3.5. For the GLDFMKL, the number of turning points 

exhibited by its probability density function is indicated graphically in Figure 3.16 and 

tabulated in Table 3.6. 

 

 

Figure 3.14: Probability density functions of three members of the GLDRS with zero, one and two relative extreme turning points, all 

with 01 =L  and 12 =L . The density function with two turning points is from Region 5, while the unimodal and J-shaped 

density functions with one and zero turning points respectively are from Region 4. 

 

 

Figure 3.15: The number of relative extreme turning points of the probability density function of the GLDRS in terms of the values of 3λ  

and 4λ . The yellow-shaded, orange-shaded, blue-shaded, red-shaded, green-shaded and purple-shaded areas indicate 

Regions 1, 2, 3, 4, 5 and 6 as shown in Figure 3.2. 
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Table 3.5: Number of relative extreme turning points of the probability density function of the GLDRS as depicted in Figure 3.15. 

Region Shape parameter values Number of turning points 

Region 1 21,1 43 <<−< λλ  1 

 2,1 43 ≥−< λλ
 

0 

Region 2 1,21 43 −<<< λλ  1 

 1,2 43 −<≥ λλ
 

0 

Region 3 0,0 43 >= λλ  0 

 0,0 43 => λλ  0 

 10,10 43 <<<< λλ  1 

 1,10 43 ><< λλ
 

0 

 10,1 43 <<> λλ
 

0 

 0,1 43 >= λλ  0 

 1,0 43 => λλ  0 

 21,21 43 <<<< λλ
 

1 

 2,21 43 =<< λλ
 

1 

 21,2 43 <<= λλ
 

1 

 243 == λλ
 

0 

 2,21 43 ><< λλ
 

2 

 21,2 43 <<> λλ
 

2 

 2,2 43 >> λλ
 

1 

 2,2 43 >= λλ
 

1 

 2,2 43 => λλ
 

1 

Region 4 0,0 43 <= λλ  0 

 0,0 43 =< λλ  0 

 0,0 43 << λλ  1 

Region 5* ( ) ( )434343 ,,,21,01 λλλλλλ vu <≤<<<−  1 

 ( ) ( ) ( ) ( )4343434343 ,,,,,,2,01 λλλλλλλλλλ VUvu <<><<−

 

2 

 ( ) ( )434343 ,,,2,01 λλλλλλ VU >><<−

 

0 

Region 6* ( ) ( )343443 ,,,01,21 λλλλλλ vu <<<−≤<  1 

 ( ) ( ) ( ) ( )3434343443 ,,,,,,01,2 λλλλλλλλλλ VUvu <<<<−>

 

2 

 ( ) ( )343443 ,,,01,2 λλλλλλ VU ><<−>

 

0 

* ( )
( ) ( )

( )
( ) ( )

( ) ( )
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Figure 3.16: The number of relative extreme turning points of the probability density function of the GLDFMKL in terms of the values of 

3λ  and 4λ . The green-shaded, purple-shaded, blue-shaded and red-shaded areas indicate Regions 1, 2, 3 and 4 as shown in 

Figure 3.4. 

 

Table 3.6: Number of relative extreme turning points of the probability density function of the GLDFMKL as depicted in Figure 3.16. 

Class Shape parameter values Number of turning points 

Class I 1,1 43 << λλ  1 

Class II 1,1 43 ≤≥ λλ  0 

Class II’ 1,1 43 ≥≤ λλ  0 

Class III 4,21,21 4343 <+≤<≤< λλλλ  1 

 243 == λλ
 

0 

Class IV 21,2 43 <<> λλ  2 

Class IV’ 2,21 43 ><< λλ  2 

Class V 4,2,2 4343 >+≥≥ λλλλ  1 

 

3.11 REGIONS OF THE GLDRS 

In Figures 3.17 to 3.24 the probability density functions of some examples of asymmetric 

members of the GLDRS from Regions 1, 3, 4 and 5 are plotted (see Figure 3.1 for examples of 

symmetric members of the GLDRS from Regions 3 and 4 with λλλ == 43 ). The 

distributional shape and characteristics of the GLDRS are briefly described below for each 

region. Since any GLDRS from Region 2 is simply the reflection of the GLDRS from Region 1 

about the line 1λ=x , these two regions are considered together. For the same reason Regions 

5 and 6 are also considered together. 
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3.11.1   REGIONS 1 AND 2 

Region 1 with 13 −<λ  and 14 >λ  and Region 2 with 13 >λ  and 14 −<λ  contain asymmetric 

members of the GLDRS with half-infinite support. In Region 1 the GLDRS is negatively 

skewed, while in Region 2 it is positively skewed. 

As shown in Figure 3.17(a), when 21 4 << λ  in Region 1, the density curve of the GLDRS 

has one turning point at the right tail. Figure 3.17(b) depicts J-shaped density curves from 

Region 1, occurring for 24 ≥λ . Similarly in Region 2, the density curve of the GLDRS has a 

turning point at the left tail when 21 3 << λ , while the density curve is J-shaped for 23 ≥λ . 

Regions 1 and 2 are the only regions of the GLDRS for which no moments or L-moments 

exist. As a result quantile-based measures of location, spread and shape must be used for 

these two regions. 

 

  

Figure 3.17: Probability density functions of members of the GLDRS from Region 1, all with 0=me  and ( ) 1
4
3 == SFIQR . 

 

3.11.2   REGION 3 

Region 3 of the GLDRS is defined for 03 ≥λ , 04 ≥λ  and 043 >+ λλ , with the third restriction 

ensuring that the two shape parameters cannot simultaneously be zero. The GLDRS in Region 

3 always possesses bounded support. In fact, Region 3 is the only region of the GLDRS with 

bounded support. 

Examples of symmetric members of the GLDRS from Region 3 with λλλ == 43  are given 

in Figure 3.1(b-d). Figures 3.18 to 3.22 present examples of asymmetric members of the 

GLDRS from Region 3, all with 43 λλ < . The reason for this restriction is that the shape of the 

GLDRS will simply be reflected for 43 λλ >  and hence the corresponding graphs are omitted.  
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Compared to the other five regions, Region 3 is the most flexible with respect to 

distributional shape, but, as a result, it is also by far the most complex region. For instance, as 

indicated in Figure 3.15 and Table 3.5, the density curve of the GLDRS in Region 3 can 

exhibit zero, one or two relative extreme turning points. 

In Region 3(a), if 10 3 << λ  and 10 4 << λ , the left and right tails of the density curve 

both approach zero and hence the GLDRS is then unimodal with a single turning point. See 

Figures 3.18(b-d) for examples of these unimodal density curves. King (1999) proved that the 

slope of the density curve at the end-point of the left tail is zero for 
2
1

30 << λ , non-zero but 

finite for 
2
1

3 =λ , and infinite for 132
1 << λ . The same results hold for the right tail in terms of 

the corresponding values of 4λ . So the most useful unimodal members from the GLDRS in 

Region 3(a) are obtained for 
2
1

30 << λ  and 
2
1

40 << λ . Examples of these members of the 

GLDRS are shown in Figure 3.18(b). 

 

  

  

Figure 3.18: Probability density functions of members of the GLDRS from Region 3(a), all with 01 =L  and 12 =L . 
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As illustrated by Karian & Dudewicz (2000, 2010), many of the well-known distributions 

can be approximated by the GLDRS when 
2
1

30 << λ  and 
2
1

40 << λ . For instance, as pointed 

out in Section 3.5, the normal distribution is approximated by the GLDRS with 14.043 ≈= λλ . 

Note that the normal distribution is an example of a mesokurtic distribution with 34 =α . 

Distributions with 34 <α  are called platykurtic (short-tailed), while distributions with 34 >α  

are said to be leptokurtic (heavy-tailed) – see Pearson (1905) and Student (1927) for details. 

The unimodal members of the GLDRS in Region 3(a) can be platykurtic, mesokurtic or 

leptokurtic. 

In Region 3(c) the density curve of the GLDRS is U-shaped with a single turning point if 

both shape parameters are between one and two, or if one of the shape parameters is between 

one and two while the other shape parameter equals two. Examples of these U-shaped density 

curves from Region 3(c) are demonstrated in Figure 3.19. 

 

  

Figure 3.19: Probability density functions of members of the GLDRS from Region 3(c), all with 01 =L  and 12 =L . 

 

The density curve of the GLDRS in Region 3 has no turning point when either of the two 

shape parameters is zero or one, when one of the two shape parameters is between zero and 

one with the other shape parameter greater than one, and when the shape parameters are both 

equal to two. The corresponding distributional shapes are uniform, monotone decreasing or 

monotone increasing. The uniform distribution is obtained in Region 3 for the four different 

pairs of values of 3λ  and 4λ  given Section 3.5. Monotone decreasing density curves are 

attained in Region 3(d) with 13 ≥λ  and 10 4 ≤≤ λ  and also, as shown in Figure 3.18(a), in 

Region 3(a) when 03 =λ  and 10 4 << λ . Figure 3.20 presents examples from Region 3(e) 
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with 10 3 <≤ λ  and 14 ≥λ  where the density curve of the GLDRS is monotone increasing. The 

density curve is also montone increasing in Region 3(a) when 10 3 << λ  and 04 =λ . 

 

  

  

Figure 3.20: Probability density functions of members of the GLDRS from Region 3(e), all with 01 =L  and 12 =L . 

 

If the one shape parameter is between one and two and the other shape parameter is 

greater than two, the density curve is S-shaped with two turning points. These S-shaped 

density curves occur in Region 3(f) and Region 3(g), with examples from the latter sub-

region given in Figure 3.21. The turning point at the right tail of the density curve in Region 

3(f) and the turning point at the left tail of the density curve in Region 3(g) become less 

pronounced when the absolute difference between the values of 3λ  and 4λ  increases, and, as 

a result the S-shaped pattern of the density curve is then less apparent – Figure 3.21 illustrates 

this characteristic of the GLDRS for Region 3(g). 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. THE GENERALIZED LAMBDA DISTRIBUTION (GLD) 

 117

 

Figure 3.21: Probability density functions of members of the GLDRS from Region 3(g), all with 01 =L  and 12 =L . 

 

Region 3(h) is defined for 23 ≥λ , 24 ≥λ  and 443 >+ λλ , where the third restriction 

ensures that the two shape parameters cannot simultaneously be equal to two, avoiding the 

uniform distribution with 243 == λλ . Unimodal truncated density curves are obtained from 

this sub-region, examples of which are plotted in Figure 3.22. 

Region 3 is the only region for which all the moments and the L-moments exist. But, as 

shown with the examples in Figure 3.11 and Figure 3.12, there does not exist a one-to-one 

correspondence between the shape parameters in Region 3 and the moments, and also not 

between the shape parameters in this region and the L-moments. 

 

  

Figure 3.22: Probability density functions of members of the GLDRS from Region 3(h), all with 01 =L  and 12 =L . 

 

3.11.3   REGION 4 

Along with Region 3(a), Region 4 presents the most useful members of the GLDRS. When 

both 03 <λ  and 04 <λ  in Region 4, unimodal, leptokurtic members of the GLDRS with 
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infinite support are obtained. Region 4 is the only region of the GLDRS which produces 

members with infinite support. When either 03 =λ  or 04 =λ , the density curve of the GLDRS 

in Region 4 is J-shaped with half-infinite support. The GLDRS in Region 4 is positively 

skewed for 43 λλ >  and negatively skewed for 43 λλ < . Examples of positively skewed 

members of the GLDRS are given in Figure 3.23, while examples of symmetric members with 

λλλ == 43  are shown in Figure 3.1(a). 

 

  

Figure 3.23: Probability density functions of members of the GLDRS from Region 4, all with 01 =L  and 12 =L . 

 

3.11.4   REGIONS 5 AND 6 

The GLDRS in Region 5 with 01 3 <<− λ  and 14 >λ  is positively skewed with half-infinite 

support. When 21 4 << λ , the shape of the density curve, shown in Figure 3.24(a), is similar 

to the shape of the density curve in Region 1 for 13 −<λ , shown in Figure 3.17(a), in that 

there is a turning point at the right tail. When 24 >λ , the density curve has no turning point 

(and is monotone increasing) or it has two turning points appearing close to the right tail – 

see Figure 3.24(b) for examples. 

In Region 6 the GLDRS is negatively skewed, also with half-infinite support. When 

21 3 << λ  and 01 4 <<− λ , the density curve has a single turning point at the left tail. If 

23 >λ  and 01 4 <<− λ , the density curve has zero or two turning points. 

For the majority of shape parameter values from Regions 5 and 6, moments are not 

available. However, the mean and hence all the L-moments exist for all shape parameter 

values from these two regions.  
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Figure 3.24: Probability density functions of members of the GLDRS from Region 5, all with 01 =L  and 12 =L . 

 

3.12 CLASSES OF THE GLDFMKL 

The distributional shape and properties of the seven classes of the GLDFMKL are briefly 

discussed below, with Figures 3.25 to 3.32 showing the density curves of examples of 

asymmetric members from these classes (see again Figure 3.1 for density curves of examples 

of symmetric members). Note that 43 λλ >  in all the graphs in Figures 3.25 to 3.32, because 

for 43 λλ <  the shape of the GLDFMKL is reflected about the line 1λ=x  and thus the 

corresponding graphs are omitted. Also, since they contain reflections of each other, Classes 

II and II’ are considered together below, as are classes IV and IV’. 

 

3.12.1   CLASS I 

Akin to Region 3(a) of the GLDRS, the two tails of the density curve of the GLDFMKL in Class 

I with 13 <λ  and 14 <λ  both approach zero. As a result Class I contains unimodal 

distributions with half-infinite support in Regions 1 and 2 of Class I, with bounded support in 

Region 3 of Class I, and with infinite support in Region 4 of Class I, examples of which are 

shown in Figures 3.25 to 3.27. These unimodal members of the GLDFMKL in Class I are 

platykurtic, mesokurtic (for instance, the approximation of the normal distribution by the 

GLDFMKL with 14.043 ≈= λλ ) or leptokurtic. 

Freimer et al. (1988) proved that at the end-point of the left tail, the slope of the density 

curve is zero when 
2
1

3 <λ , non-zero but finite when 
2
1

3 =λ , and infinite when 132
1 << λ . 

Equivalent results hold for the right tail of the density curve based on the corresponding 

values of 4λ . 
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All moments and L-moments exist in Region 3 of Class I. In Regions 1, 2 and 4 of Class I 

the first four moments only exist when both 
4
1

3 −>λ  and 
4
1

4 −>λ , while all L-moments 

exist when 13 −>λ  and 14 −>λ . 

 

  

Figure 3.25: Probability density functions of members of the GLDFMKL from Region 2 in Class I, all with 01 =L  and 12 =L . 

 

  

 

Figure 3.26: Probability density functions of members of the GLDFMKL from Region 3 in Class I, all with 01 =L  and 12 =L . 
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Figure 3.27: Probability density functions of members of the GLDFMKL from Region 4 in Class I, all with 01 =L  and 12 =L . 

 

3.12.2   CLASSES II AND II’ 

Based on its support, two regions, namely Region 2 with 04 ≤λ  and Region 3 with 

10 4 ≤< λ , are included in Class II. Figure 3.28 presents examples of members from Region 

2, where the support of the GLDFMKL is half-infinite. 

 

  

 

Figure 3.28: Probability density functions of members of the GLDFMKL from Region 2 in Class II, all with 01 =L  and 12 =L . 
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In Region 3 of Class II the support of the GLDFMKL is bounded, with examples shown in 

Figure 3.29. Likewise the support in Class II’ is half-infinite in Region 1 with 03 ≤λ  and 

bounded in Region 3 with 10 3 ≤< λ . 

 

  

 

Figure 3.29: Probability density functions of members of the GLDFMKL from Region 3 in Class II, all with 01 =L  and 12 =L . 

 

As indicated in Figure 3.16, Classes II and II’ are the only classes of the GLDFMKL where 

the probability density function always exhibits no extreme turning point. In fact, the 

GLDFMKL with ( ) )2,2(, 43 =λλ  in Class III, which gives the uniform distribution, is the only 

member of the GLDFMKL from outside Classes II and II’ which has no turning point in the 

density curve. Three types of density curves are possible from Classes II and II’. The uniform 

distribution is obtained in these two classes when both shape parameters are equal to one, or 

when one of the shape parameters equals one while the other shape parameter tends to 

infinity. Monotone decreasing density curves are attained in Class II, while monotone 

increasing density curves occur in Class II’. As a result, apart from the shape parameter 
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values for which the uniform distribution is obtained, the GLDFMKL is positively skewed in 

Class II and negatively skewed in Class II’.  

As with Region 3 of Class I, all moments and L-moments exist for Region 3 of Classes II 

and II’. However, in Region 1 of Class II’ and in Region 2 of Class II the first four moments 

only exist when 
4
1

3 −>λ  and 
4
1

4 −>λ , while all L-moments exist when 13 −>λ  and 

14 −>λ . 

 

3.12.3   CLASS III 

Class III of the GLDFMKL is defined for 21 3 ≤< λ  and 21 4 ≤< λ  and hence is equivalent to 

Region 3(c) of the GLDRS with respect to parameter space. Furthermore, akin to Region 3(c) 

of the GLDRS, the density curve of the GLDFMKL in Class III is U-shaped for all pairs of 

values of 3λ  and 4λ , except for ( ) )2,2(, 43 =λλ  which produces the uniform distribution. 

Figure 3.30 presents examples of U-shaped density curves from Class III. 

 

  

Figure 3.30: Probability density functions of members of the GLDFMKL from Class III, all with 01 =L  and 12 =L . 

 

3.12.4   CLASSES IV AND IV’ 

The GLDFMKL only produces probability density functions with two turning points in a single 

region, that is, Region 3, whereas such density functions are obtained in Regions 3, 5 and 6 of 

the GLDRS. In particular, these types of density functions occur in Classes IV and IV’ of the 

GLDFMKL and are S-shaped, similar to the density curves from Regions 3(f) and 3(g) of the 

GLDRS. Examples of members of the GLDFMKL from Class IV are depicted in Figure 3.31. It 

is noted again that the S-shaped pattern of the density curve becomes less visible as the 

absolute difference between the values of 3λ  and 4λ  increases. 
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Figure 3.31: Probability density functions of members of the GLDFMKL from Class IV, all with 01 =L  and 12 =L . 

 

3.12.5   CLASS V 

Class V of the GLDFMKL, with 23 ≥λ , 24 ≥λ  and 443 >+ λλ , where the third restriction is to 

prevent the uniform distribution with 243 == λλ , is similar to Region 3(h) of the GLDRS in 

that it possesses unimodal truncated density curves. Figure 3.32 demonstrates examples of 

these density curves. 

 

  

Figure 3.32: Probability density functions of members of the GLDFMKL from Class V, all with 01 =L  and 12 =L . 

 

3.13 PARAMETER ESTIMATION 

A drawback of both the GLDRS and the GLDFMKL is that parameter estimation is 

computationally difficult. Various estimation methodologies have been proposed in the 

literature. All of them require numerical optimization techniques. 

One approach is to apply an estimation method where four measures, namely a measure 

of location, a measure of spread and two measures of shape, are utilized. This approach 
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includes method of moments estimation (Ramberg et al., 1979; Cooley, 1991; Dudewicz & 

Karian, 1996; Karian et al., 1996), percentile-based methods (Mykytka & Ramberg, 1979; 

Cooley, 1991; Dudewicz & Karian, 1999; Karian & Dudewicz, 1999; Haritha et al., 2008), 

the use of shape functionals (King, 1999; King & MacGillivray, 2007) and method of L-

moments estimation (Mohan, 1994; Karian & Dudewicz, 2003; Asquith, 2007; Karvanen & 

Nuutinen 2008). 

With all the above-mentioned estimation techniques, the four chosen population measures 

are equated to the corresponding sample statistics, resulting in four equations with four 

unknowns which must be solved simultaneously. Since no closed-form expressions exist for 

the shape parameter estimators of either the GLDRS or the GLDFMKL, numerical optimization 

techniques must be used. The reason is that 3λ  and 4λ  jointly account for the skewness and 

the kurtosis of the GLD, irrespective of the shape measures used. Another complication with 

some of the above-mentioned methods is that the corresponding population measures are not 

defined for all parameter values. In particular, as indicated in Figures 3.2 and 3.4, method of 

moments estimation is only applicable for 
4
1

3 −>λ  and 
4
1

4 −>λ , while method of L-

moments estimation requires that 13 −>λ  and 14 −>λ . 

Alternative approaches for parameter estimation for the GLD include a “least-squares” 

method by Öztürk & Dale (1985), the starship method by King (1999) and King & 

MacGillivray (1999), a discretized approach by Su (2005) and numerical maximum 

likelihood estimation by Su (2007b). These methods also require numerical optimization 

techniques. For a detailed discussion on the computational difficulties in fitting the GLD to a 

data set, see Karian & Dudewicz (2007). 

 

3.14 MONTE CARLO SIMULATION 

In the 1970s, thanks to advances in computational resources, Monte Carlo simulation studies 

had already become a central method in the evaluation and comparison of proposed 

inferential statistical techniques. However, a major difficulty encountered in the simulation 

studies was the generation of real-valued random variables from selected distributions due to 

the popular inverse transformation technique not being applicable for those distributions 

(such as the normal distribution) not possessing closed-form expressions for their quantile 

functions. The introduction of the GLDRS in the literature, (Ramberg & Schmeiser, 1972, 

1974), circumvented this difficulty, since the GLDRS possesses a simple quantile function 
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given in (3.3) with a single functional form through which symmetric and asymmetric real-

valued random variables can easily be generated via the inverse transformation technique. 

Hence, not surprisingly, the GLDRS soon became the distribution of choice in the Monte 

Carlo simulations of numerous studies – see for instance Hogg et al. (1975), Hogg & Randles 

(1975), Broffitt et al. (1976), Randles et al. (1978), Moberg et al. (1978, 1980) and Randles 

et al. (1980). The GLD, and in particular the GLDRS, remains a popular distribution for 

simulation studies. The selection of the members of the GLD to be used in a simulation study 

can be done in several ways. 

 

3.14.1   DISTRIBUTIONAL SHAPE 

One approach is to select members of the GLD possessing distributional shapes specifically 

required for the simulation study. For instance, to assess the performance of a test for 

symmetry, one would include symmetric members of the GLD with 43 λλ =  as well as 

asymmetric members with 43 λλ ≠  in the Monte Carlo simulation. This was for example done 

by Randles et al. (1980). In order to compare their proposed triples test for symmetry with 

other tests for symmetry in a simulation study, they selected six symmetric members of the 

GLDRS, including the uniform distribution ( 143 == λλ ) and the GLDRS approximation of the 

normal distribution ( 14.043 ≈= λλ ), and eight asymmetric members of the GLDRS. 

McWilliams (1990) used the same set of eight asymmetric members of the GLDRS along with 

the GLDRS approximation of the normal distribution to compare his proposed distribution-

free test for symmetry with other distribution-free tests for symmetry in a Monte Carlo study. 

It has since become common practice in the literature to use this set of nine members of the 

GLDRS in Monte Carlo simulation studies related to tests for symmetry – see Belaire-Franch 

& Contreras (2002), Baklizi (2003, 2007), Cheng & Balakrishnan (2004) and Thas et al. 

(2005) for recent examples. 

 

3.14.2   MEASURES OF SHAPE 

Another way of choosing the members of the GLD used in a Monte Carlo study is to select 

pairs of values for specific measures of skewness and kurtosis for the random variables in the 

study, and then compute the parameter values of the corresponding members of the GLD to 

be used in simulating these random variables. Examples of this approach include Wilcox 

(2002) and O’Gorman (2006, 2008), who selected pairs of values for the skewness and 
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kurtosis moment ratios, 3α  and 4α , and then computed the parameter values of the members 

of the GLDRS for their Monte Carlo studies based on these values of 3α  and 4α . 

 

3.14.3   APPROXIMATION OF DISTRIBUTIONS 

The GLD’s ability to accurately approximate many of the well-known probability 

distributions can be incorporated into Monte Carlo studies. This is done by selecting specific 

probability distributions and then, instead of simulating the random variables in the study 

from the chosen distributions themselves, simulating the random variables using the GLD 

approximations of these distributions. For instance, in the simulation study conducted by 

Bautista & Gómez (2007) to examine the robustness of the Mann-Whitney U test and two 

permutation tests (based respectively on the mean and the median) to the violation of equality 

of variances, the authors simulated samples with random variables from the GLDRS 

approximations of the beta, logistic and Laplace distributions. 

 

3.14.4   ISOTONES 

Finally, the choice of GLD members in a simulation study can be based upon a graphical 

procedure proposed by Mudholkar et al. (1991). Their procedure, specifically designed for 

the GLDFMKL, entails the construction of isotones, which are contours of equal p-values for 

the test under consideration, using a grid of shape parameter values from the GLDFMKL. These 

isotones can be used to identify members of the GLDFMKL which provide interesting 

alternatives to the null hypothesis and these members are then included in the simulation 

study. For instance, Thas & Ottoy (2004) used isotones to select members of the GLDFMKL 

for a Monte Carlo study in which they compared an extended version of the k-sample 

Anderson–Darling test they developed with the Kruskal–Wallis test and the k-sample 

Kolmogorov–Smirnov test. 

 

3.15 APPLICATIONS 

Because of its high flexibility with respect to distributional shape, the GLD has been utilized 

in diverse fields of research. Apart from its use in Monte Carlo simulation studies, the most 

obvious application is the fitting of the GLD to data sets. The GLD has furthermore been 

incorporated into various models developed by researchers to address specific problems in 

their research fields. Examples of recent applications of the GLD appearing in the literature 

since 2001 are briefly listed below. Karian & Dudewicz (2000) and King (1999) can be 
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consulted for applications before 2001. It is evident from the provided applications that, in 

general, the GLDRS has been favored over the GLDFMKL. This can be attributed to the simpler 

form of the quantile function of the GLDRS as well as the availability of tables in Karian & 

Dudewicz (2000, 2010) to assist in obtaining parameter estimates (or at least starting values 

for the optimization techniques) for the GLDRS. 

 

3.15.1   ACTUARIAL SCIENCE 

Balasooriya & Low (2008) used the percentile-based estimation method of Karian & 

Dudewicz (1999) to fit the GLDRS to medical claim amounts, taken from a database of the 

Society of Actuaries. For the complete data set considered, the authors compared the fit of the 

GLDRS with the fit obtained through semiparametric transformed kernel density estimation 

and found both models fitted the data well. They also used the GLDRS and transformed kernel 

to model exceedances above a threshold of $200 000 and showed that, compared with the 

generalized Pareto distribution, a distribution typically used to model extreme observations in 

insurance claims data, these two models provided good fits to the extreme claim amounts. 

 

3.15.2   BIOCHEMISTRY 

In order to measure false discovery rates in peptide and protein identification by four tandem 

mass spectrometry database search engines, Ramos-Fernández et al. (2008) used the GLDRS 

to model assignment score distributions from these search engines. The authors fitted the 

GLDRS to the score distributions using the percentile-based estimation method of Karian & 

Dudewicz (1999). 

 

3.15.3   BUSINESS, ECONOMICS AND FINANCE 

Corrado (2001) considered the use of the GLDRS in security pricing. Whereas the popular 

Black-Scholes methodology assumes a log-normal distribution for future security prices, the 

author derived pricing expressions for European call and put options based on the GLDRS. 

Several authors have considered the modeling of income data using the GLD. In order to 

fit the GLDRS to a grouped income data set, Tarsitano (2004) proposed and used an extension 

of the “least-squares” method of Öztürk & Dale (1985). Pacáková & Sipková (2007) modeled 

income data from the Slovak Republic with the GLDRS. They considered various estimation 

methods, including method of moments estimation and the percentile-based method of Karian 

& Dudewicz (1999). Haritha et al. (2008) used their proposed percentile-based method to fit 

the GLDFMKL to an income data set taken from Arnold (1983). 
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3.15.4   COMPUTER SCIENCE 

Au-Yeung et al. (2004) used the GLDFMKL with method of moments estimation to 

approximate response times from a number of Markov and semi-Markov models in computer 

science. For each model considered, they compared the density and distribution functions of 

the approximation provided by the fitted GLDFMKL with the theoretical density and 

distribution functions computed with an exact Laplace transform-based method. Based upon 

calculation time for computing the density and distribution functions, the GLDFMKL 

outperformed the exact Laplace transform-based method. 

Gautama & van Gemund (2006) presented an analytical model of the execution time 

distribution of N-ary and binary parallel compositions of stochastic tasks. In their model they 

utilized the GLDRS with method of moments estimation to approximate execution time 

distributions. 

Recently Lange et al. (2011) used the GLDRS to model standard cell performance of 

integrated circuits. The authors showed that, using method of moments estimation, the 

GLDRS is not applicable to raw leakage power data, but it does fit both timing data and 

dynamic power consumption data well. 

 

3.15.5   EPIDEMIOLOGY 

A group of researchers from the Department of Infectious Disease Epidemiology at Imperial 

College in London has used a modified form of the GLDRS as part of their epidemiological 

models for the transmission dynamics of bovine spongiform encephalopathy (BSE) in sheep 

in Great Britain (Ferguson et al., 2002) and of the variant Creutzfeldt–Jakob disease (vCJD) 

in Great Britain (Ghani et al., 2003). In these studies, to calculate the probability that an 

individual develops clinical disease, the authors used the GLDRS to model the incubation 

period distribution. 

 

3.15.6   FORESTRY 

The within-ring wood density distribution in clones of three coniferous species, namely 

Norway spruce, Douglas fir and maritime pine, was modeled with the GLDRS by Ivković & 

Rozenberg (2004). For each of the three species, the authors then analyzed the relation 

between the parameter estimates of the fitted GLDRS (as proxy of the within-ring wood 

density distribution) and the growth rate expressed through ring width.  

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. THE GENERALIZED LAMBDA DISTRIBUTION (GLD) 

 130

3.15.7   INVENTORY MODELING 

Lau et al. (2002) presented exact expressions for the average on-hand inventory level in the 

continuous-review order-quantity reorder-point (Q, R) system with backordering. The authors 

presented expressions for handling normally distributed as well as non-normal lead time 

demands in this system, where the beta distribution and the GLDRS were considered for non-

normal lead time demands. 

In solving a multi-item inventory model, Achary & Geetha (2007) used the GLDRS to 

approximate the lead time demand distribution. The authors found the values obtained 

through the GLDRS approximations to be in close agreement with those given by a quadratic 

approximation procedure, with the added advantage of the GLDRS approximations being 

applicable to different demand distributions through modification of the parameters of the 

GLDRS. 

 

3.15.8   QUEUING THEORY 

Chou et al. (2001) proposed a better timer design for a pretimed traffic signal at an 

intersection located in Touliu, Taiwan. They described the interarrival times of approaching 

vehicles for the north and south bounds at the intersection with exponential distributions, 

while the interarrival times for the west and east bounds were described with members of the 

GLDRS using method of moments estimation. 

Robinson & Chen (2003) developed a closed-form heuristic policy for scheduling 

doctors’ appointments. In examining the performance of their heuristic policy, the authors 

fitted the GLDRS through maximum likelihood estimation to three data sets of patient service 

times. 

 

3.15.9   SIGNAL PROCESSING 

Karvanen et al. (2002) proposed adaptive score function models for maximum likelihood 

independent component analysis (ICA) methods in blind signal separation, where the source 

distributions in these models were based on the GLDRS and on the Pearson family of 

distributions. The authors estimated the parameters of the GLDRS with method of moments 

and method of L-moments estimation. They showed that, when skewness is the dominant 

property of the source distributions, the performance of their proposed ICA methods based on 

the GLDRS and on the Pearson family of distributions is significantly better than the 

performance of other widely used ICA methods. 
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3.15.10   STATISTICAL PROCESS CONTROL 

Pal (2005) considered the computation of generalized process capability indices for a non-

normal process, where he modeled the process data with the GLDRS using method of 

moments estimation. Fournier et al. (2006) and van Staden (2006) illustrated the use of the 

GLDRS in the construction of statistical process control charts for non-normal data. 

 

3.15.11   SUPPLY CHAIN PLANNING 

Poojari et al. (2008) formulated a strategic supply chain planning problem having uncertain 

demand as a two-stage stochastic integer programming model. They used the GLDFMKL to 

approximate the uncertain demand distribution, estimating its parameters with method of 

moments estimation. 

 

3.16 CONCLUSION 

Two popular types of the GLD, the Ramberg-Schmeiser Type (GLDRS) and the Freimer-

Mudholkar-Kollia-Lin Type (GLDFMKL), were discussed in this chapter. Both these types are 

highly flexible with respect to distributional shape. However, the shape properties of the 

GLDRS and the GLDFMKL are extremely complex. In particular, both shape parameters jointly 

explain the skewness and the kurtosis. As a result, closed-form expressions do not exist for 

the shape parameter estimators of either the GLDRS or the GLDFMKL, causing parameter 

estimation to be computationally difficult in that numerical optimization techniques must be 

used. 

In Chapter 4 a type of the GLD is developed which possesses skewness-invariant 

measures of kurtosis. Consequently parameter estimation will be straightforward for this 

type. 

 

3.17 DERIVATIONS 

Derivations for the GLDFMKL which have not appeared before in the literature are presented 

here. Specifically formulae for the moments of the GLDFMKL with 03 =λ  and 04 ≠λ  and 

with 03 ≠λ  and 04 =λ  are derived in Section 3.17.1, while expressions for the L-moments of 

the GLDFMKL are derived in Section 3.17.2. 
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3.17.1   MOMENTS OF GLDFMKL 

Lemma 3.17.1 

In the derivation of the formulae for the moments of the GLDFMKL with 03 =λ  and 04 ≠λ , 

the integral 

 ( )∫ −=Ψ
1

0

4

4
)1(]log[),( dpppkj

kj λ
λ  

must be solved for 4,3,2,1=j  and 3,2,1,0=k . Likewise the integral 

 ( )∫ −=Ψ
1

0

]1log[),( 3

3
dpppkj

jkλ
λ  

must be solved in order to obtain formulae for the moments of the GLDFMKL with 03 ≠λ  and 

04 =λ . The methodology presented in Lemma 2.13.1 in Chapter 2 can be used to obtain 
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where ),( baΒ  is the beta function (see Section 2.14.1), it can be shown that, for 4,3=i , 
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where C is Euler’s constant, )(aψ  is the psi function, )()(
a

rψ  is the r
th

 derivative of the psi 

function and )(aζ  is Riemann’s zeta function – see again Section 2.14.1. Note that the 

integrals in (3.25) and (3.26) only converge if 0)1( >+ikλ , that is, if 
ki
1−>λ  for 4,3=i . 

■ 

 

Theorem 3.17.1 

Let X be a real-valued random variable whose distribution is the FMKL Type of the GLD, 

denoted ( )4321FMKL ,,,GLD~ λλλλX , with 1λ  the location parameter, 02 ≠λ  the scale 

parameter and 3λ  and 4λ  the shape parameters. Assume that only one of the shape 

parameters is zero. The mean, variance, and skewness and kurtosis moment ratios of X are 

given by (3.8) to (3.11), where, if 03 =λ  and 
4
1

4 −>λ , 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. THE GENERALIZED LAMBDA DISTRIBUTION (GLD) 

 134

 

( ) ( )

( ) ( )

( )
( )

( ) ( )

( ) ( )
( )

( )

( ) ( )

































=+

+

−+−

+

=−−

+−

=+

=−

=

+














++++++++










+−

+











+−+++

+











+−+++

+

++

+

++

+

++

++++

−−−+−−+

+











+−+++

+

++

+

++

+++

++−−+

+

++

++

−−+

+

,4

,3,

,2,

,1,

)1(

)2()3(2)2()2()2(
6

34

)12(

)22()22(
6

6

)1(

)2()2(
6

12

)13(

)23(4

)12(

)22(12

)1(

)2(12

)14)(13)(12)(1(

1711724181561444

)1(

)2()2(
6

3

)12(

)22(3

)1(

)2(6

)13)(12)(1(

14410123

)1(

)2(2

)12)(1(

122

1

44

4
)2(3

444
)1(

2

4
2
4

4
)1(2

4

2

4
2
4

4
)1(2

4

2

4
3
4

4

4
3
4

4

4
3
4

4

4444
3
4

4
2
4

3
4

4
4

5
4

6
4

7
4

44

4
)1(2

4

2

4
2
4

4

4
2
4

4

444
2
4

4
2
4

3
4

4
4

5
4

44

4

444

4
2
4

3
4

4

4

r

r

r

r

M

CC

C

C
CC

C

C
C

C

C

r

λλ

λψζλψλψλψ
π

λλ

λψλψ
π

λλ

λψλψ
π

λλ

λψ

λλ

λψ

λλ

λψ

λλλλλ

λλλλλλλ

λλ

λψλψ
π

λλ

λψ

λλ

λψ

λλλλ

λλλλλ

λλ

λψ

λλλ

λλλ

λ

λ

 

whereas, if 
4
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3 −>λ  and 04 =λ , then 
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Proof 

Assume, without loss of generality, that 01 =λ  and 12 =λ  so that ( )43FMKL ,,1,0GLD~ λλX . 

If 03 =λ  and 
4
1

4 −>λ , then, for example, 
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where the restriction 
4
1

4 −>λ  is needed for convergence of the integrals. Likewise it can be 

shown that 
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The final expressions for 1M  to 4M  are obtained by substituting the expressions for 

),(
4

kjλΨ  in Lemma 3.17.1 and simplifying. Expressions for 1M  to 4M  when 
4
1

3 −>λ  and 

04 =λ  are obtained in a similar manner. 

■ 

 

3.17.2   L-MOMENTS OF GLDFMKL 

Theorem 3.17.2 

Suppose X is a real-valued random variable whose distribution is the FMKL Type of the 

GLD, denoted ( )4321FMKL ,,,GLD~ λλλλX , where 1λ  is the location parameter, 02 ≠λ  is the 

scale parameter and 3λ  and 4λ  are the shape parameters. If 13 −>λ  and 14 −>λ , the L-

location and L-scale of X are given by (3.16) and (3.17), while the r
th

 order L-moment for 

2>r  is given by (3.18). 

 

Proof 

To simplify the derivation of the L-moments of the GLDFMKL, it is convenient to rewrite its 

quantile function, given in (3.4), as  
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which can be simplified to obtain the expression given in (3.16). Note that the integrals in 

(3.28) only converge if 13 −>λ  and 14 −>λ . 

Substituting (3.27) into (2.23) from Section 2.5 in Chapter 2 and using (2.93) and (2.94) 

from Section 2.14.2 in Chapter 2, the r
th

 order L-moment for 1>r  can be written as  
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provided that 13 −>λ  and 14 −>λ  in order for the integrals to converge. Now, for example, if 

4=r , then, for 4,3=i , 
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In general it can be shown that for 4,3=i , 
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from which the expressions for the L-scale in (3.17) and the r
th

 order L-moment for 2>r  in 

(3.18) are obtained. 

■ 
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__________________________________________ 
 
4. A GLD TYPE WITH SKEWNESS-INVARIANT MEASURES 

OF KURTOSIS 
__________________________________________ 
 

4.1 INTRODUCTION 

This chapter introduces a new type of the generalized lambda distribution (GLD) with 

separate skewness and kurtosis parameters and a simple relationship between its parameters 

and L-moments. Consequently closed-form expressions are available for the method of L-

moments estimators of this proposed type, as well as for the standard errors of these 

estimators. 

The new type is specified in terms of its quantile function, given in Definition 4.2.1 in 

Section 4.2. Its quantile function is constructed by applying the methodology of Proposition 

2.8.1 from Chapter 2. With this methodology, the quantile function of a generalized quantile-

based distribution is obtained by taking the weighted sum of the quantile function of an 

asymmetric distribution and the quantile function of the reflection of this asymmetric 

distribution. 

The quantile function of any asymmetric distribution on bounded or half-infinite support 

can be used as the basic building block. In this chapter the quantile function of the 

generalized Pareto distribution (GPD) is used as the basic building block. The resulting new 

type of the GLD is therefore called the GPD Type of the GLD and denoted by GLDGPD. 

Similar to the GLDRS and GLDFMKL, the GLDGPD is highly flexible with respect to 

distributional shape, able to attain uniform, unimodal, U-shaped, monotone increasing and 

monotone decreasing (including J-shaped) as well as truncated density curves, with infinite, 

half-infinite or bounded support. Based on the distributional shapes and the support 

achievable by the GLDGPD, its parameter space is divided in four distinct classes, presented in 

Section 4.3 and explored in detail in Section 4.4. 

A comprehensive analysis of the characterization of the GLDGPD through its L-moments 

is presented in Section 4.6, specifically with respect to its coverage of the L-skewness and L-

kurtosis ratios ( 3τ  and 4τ ). The coverage of the ( )43,ττ  space by the GLDGPD is equivalent 
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to the coverage by the GLDRS and GLDFMKL. However, the relation between the shape 

parameters and the L-skewness and L-kurtosis ratios of the GLDGPD is noticeably simpler 

compared to the corresponding relations for the GLDRS and the GLDFMKL. In particular the L-

kurtosis ratio of the GLDGPD is a skewness-invariant measure of kurtosis. 

The main benefit arising from the skewness-invariance of the L-kurtosis ratio is the 

existence of closed-form expressions for the method of L-moments estimators of the 

parameters of the GLDGPD. An estimation algorithm for computing the method of L-moments 

estimates is outlined in Section 4.9. Closed-form expressions are furthermore also available 

for the elements of the covariance matrix of the method of L-moments estimators and thus for 

these estimators’ asymptotic standard errors. Although these expressions, derived in Section 

4.13.3, are extremely complex, it should be remembered that no such expressions are 

available for either the GLDRS and GLDFMKL. 

Probability distributions are typically characterized by their conventional moments. 

Formulae for the mean, variance, skewness moment ratio and kurtosis moment ratio of the 

GLDGPD are therefore presented in Section 4.5, with the derivation thereof performed in 

Section 4.13.1. However, due to the complex structure of these moments’ formulae for the 

GLDGPD, their use in description, estimation and inference is unappealing. 

Akin to the L-kurtosis ratio, the kurtosis functionals of the GLDGPD are also skewness-

invariant. Expressions for these functionals are given in Section 4.7 along with expressions 

for the median, spread function and skewness functionals of the GLDGPD. The main 

advantage of these quantile-based measures compared to the moments and L-moments is that 

they exist for all valid parameter values of the GLDGPD. The relation between the shape 

parameters of the GLDGPD and its skewness, kurtosis, and tail behavior is explored in Section 

4.8. Whereas the two shape parameters of the GLDRS and GLDFMKL jointly account for these 

GLD Types’ skewness and kurtosis, the skewness-invariance of the L-kurtosis ratio and 

kurtosis functionals of the GLDGPD allows one to describe the kurtosis of the GLDGPD with 

one of its shape parameters, while the second shape parameter controls the level of skewness. 

In Sections 4.10 and 4.11 the fitting of the GLDGPD to data sets and the approximation of 

probability distributions by the GLDGPD, using method of L-moments estimation, are 

illustrated and described. Conclusions are given in Section 4.12, before Chapter 4 ends with 

the derivations in Section 4.13. 
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4.2 GENESIS AND SPECIAL CASES 

The quantile function of the generalized Pareto distribution (GPD) is used as the basic 

building block in the derivation of the alternative type of the GLD. The GPD was introduced 

by Pickands (1975) and is a cornerstone distribution in extreme value modeling – see for 

instance Hosking & Wallis (1987), Coles (2001) and Castillo et al. (2005). The quantile 

function of the standard GPD is given by 
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where λ  is the shape parameter. The limiting case, 0=λ  in (4.1), obtained by L’Hôpital’s 

rule (de l’Hôpital, 1696), is the quantile function of the standard exponential distribution. 

Note furthermore that setting 1=λ  in (4.1) gives the quantile function of the standard 

uniform distribution with support ]1,0[ . In general the support of the standard GPD is ),0[ ∞  

if 0≤λ  and ],0[ 1−λ  if 0>λ . Thus, depending on the value of λ , the standard GPD has 

half-infinite or bounded support. 

Applying the reflection rule, presented in Section 2.3.2, gives the quantile function of the 

standard reflected GPD, 
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where the limiting case, 0=λ , again obtained by L’Hôpital’s rule, is the quantile function of 

the standard reflected exponential distribution. The probability density functions of the 

standard GPD and the standard reflected GPD are shown in Figure 4.1 for various values of 

λ . It can be seen in Figure 4.1 that the standard reflected GPD is the reflection of the 

standard GPD about the line 0=x . 

In Example 2.3.3 in Chapter 2 it was shown that the sum of the quantile functions of the 

standard exponential and standard reflected exponential distributions is the quantile function 

of the standard logistic distribution, given in (2.12). Adding the quantile functions of the 

standard GPD and standard reflected GPD in (4.1) and (4.2) gives 
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the quantile function of the standard form of Tukey’s lambda distribution, given in (3.1). 

 

  

Figure 4.1: Probability density functions of the standard GPD and the standard reflected GPD for various values of λ . The line types 

indicated in graph (a) also apply to graph (b). 

 

As explained in Section 2.3.3 and shown in (2.11), the sum of the quantile function of an 

asymmetric distribution on bounded or half-infinite support and the quantile function of the 

reflection of this distribution is the quantile function of a symmetric distribution. It was 

furthermore explained in Section 2.3.4 that skewness can be introduced using the 

transformation in (2.13), where the weighted sum of the quantile function of an asymmetric 

distribution on bounded or half-infinite support and the quantile function of the reflection of 

this distribution is taken, with 10 ≤≤ δ  the weight parameter. In Definition 4.2.1 below a 

type of the GLD, the GLDGPD, is defined whose quantile function is given by the weighted 

sum of the quantile functions of the standard GPD and standard reflected GPD.  

 

Definition 4.2.1 

A real-valued random variable X is said to have the GPD Type of the GLD, denoted 

),,,(GLD~ GPD λδβαX , if its quantile function is given by 
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where α  is a location parameter, 0>β  is a scale parameter and 10 ≤≤ δ  and λ  are shape 

parameters. 
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In (4.4) the limiting case, 0=λ , is the quantile function of the skew logistic distribution 

(SLD), considered in Chapter 2. Akin to the SLD, the GLDGPD is symmetric for 
2
1=δ  and 

asymmetric for 
2
1≠δ . The shape properties of the GLDGPD, including its skewness 

properties, will be discussed in more detail in Section 4.8. 

The GLDGPD contains various other well-known distributions as special cases, listed in 

Table 4.1. It follows from the quantile function of the GLDGPD in (4.4) that the GPD and the 

reflected GPD are respectively obtained for 1=δ  and for 0=δ . From the intermediate rule, 

presented in Section 2.3.4 of Chapter 2, we have that the quantile function of the GLDGPD is 

bounded by the quantile functions of these two distributions. 

 

Table 4.1: Shape parameter values for distributions contained by the GLDGPD. 

Distribution Shape parameter values 

Exponential 0,1 == λδ  

Reflected exponential 0,0 == λδ
 

Generalized Pareto ∞<<∞−= λδ ,1  

Reflected generalized Pareto ∞<<∞−= λδ ,0
 

Logistic 0,
2
1 == λδ  

Skew logistic 0,10 =≤≤ λδ  

Tukey’s lambda ∞<<∞−= λδ ,
2
1

 

Uniform 1,10 =≤≤ λδ  and 2,
2
1 == λδ  

 

As with the GLDRS and the GLDFMKL, the uniform distribution is obtained from the 

GLDGPD for more than one set of values of the shape parameters. Firstly, when 1=λ , the 

uniform distribution is found for any 10 ≤≤ δ . Secondly, when 2=λ , the uniform 

distribution is attained only for 
2
1=δ . 

Similar to the GLDRS and the GLDFMKL, no closed-form expressions exists for the 

cumulative distribution function and the probability density function of the GLDGPD, except 

of course for the special cases of the GLDGPD listed in Table 4.1 (excluding Tukey’s lambda 

distribution and the SLD). The quantile density function of the GLDGPD is 









−+−= −− 11 )1()1()( λλ δδβ pppq ,      (4.5) 

and its density quantile function is 
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λλ δδβ pp

pf p .     (4.6) 

 

4.3 PARAMETER SPACE AND SUPPORT 

In Section 3.5 it was shown how the parameter spaces of the GLDRS and GLDFMKL are 

divided into regions or classes. Likewise the parameter space of the GLDGPD is divided into 

four classes based on the distributional shapes and the support attainable in each class. As 

indicated in Table 4.2, this division is controlled by the values of the shape parameter λ . In 

Section 4.4 the characteristics of the GLDGPD are described for each class. 

 

Table 4.2: Parameter space and support of the GLDGPD in terms of Classes I, II, III and IV. 

Class Shape parameter values Support 

Class I 0,0 ≤= λδ  ],( α−∞
 

 0,10 ≤<< λδ  ),( ∞−∞
 

 0,1 ≤= λδ  ),[ ∞α
 

Class II 10,10 <<≤≤ λδ  



 +−

−

λ

δβ

λ

βδ
αα ,

)1(
 

Class III
 

21,10 ≤≤≤≤ λδ  



 +−
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λ

δβ

λ

βδ
αα ,

)1(

 

Class IV
 

2,10 >≤≤ λδ  



 +−

−

λ

δβ

λ

βδ
αα ,

)1(

 

 

4.4 CLASSES OF THE GLDGPD 

The probability density functions of some examples of members of the GLDGPD are 

illustrated in Figures 4.2 to 4.5 for the four classes of the GLDGPD. In each given plot a 

symmetric member of the GLDGPD with 
2
1=δ  is shown along with asymmetric members of 

the GLDGPD for two selected values of 
2
1>δ . For 

2
1<δ , the asymmetric GLDGPD is 

reflected about the line α=x  (see for instance again Figure 2.7(d) in Chapter 2 for the 

density curves of the standard SLD with 0=λ , where the reflection is about the line 

0== αx ). Hence the plots for 
2
1<δ  are omitted. To enable comparisons for different shape 

parameter values, the L-location and L-scale are set to zero and unity ( 01 =L  and 12 =L ) for 

all plots in Figures 4.2 to 4.5. The expressions for the L-moments, including the L-location 

and L-scale, will be given in Section 4.6. 
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4.4.1   CLASS I 

Figure 4.2 illustrates the distributional shapes attained by the GLDGPD in Class I with 0≤λ . 

These shapes correspond to the shapes attained in Region 4 of the GLDRS and in Region 4 of 

Class I of the GLDFMKL with 03 ≤λ  and 04 ≤λ . The SLD with 0=λ  is a special case in 

Class 1 of the GLDGPD. 

When 10 << δ , Class I contains unimodal, leptokurtic members of the GLDGPD with 

infinite support. For 0=δ  and 1=δ , the density curve of the GLDGPD is J-shaped with half-

infinite support. Class I is the only class of the GLDGPD producing members with infinite and 

half-infinite support. 

 

  

 

Figure 4.2: Probability density functions of members of the GLDGPD from Class I, all with 01 =L  and 12 =L . The line types indicated 

in graph (a) also apply to graphs (b) and (c). 

 

4.4.2   CLASS II 

Platykurtic, mesokurtic and leptokurtic members of the GLDGPD with bounded support are 

found in Class II with 10 << λ . Along with Class I, Class II provides the most useful 

distributional shapes for the GLDGPD, examples of which are shown in Figure 4.3. The 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. A GLD TYPE WITH SKEWNESS-INVARIANT MEASURES OF KURTOSIS 

 

 
145

density curve in Class II is unimodal for 10 << δ , monotone increasing for 0=δ , while it is 

monotone decreasing for 1=δ . As 1↑λ , the GLDGPD tends to the uniform distribution. 

When 
2
10 << λ  and 10 << δ , the GLDGPD in Class II yields density curve shapes 

equivalent to those in Region 3(a) of the GLDRS and in Region 3 of Class I of the GLDFMKL 

with 
2
1

30 << λ  and 
2
1

40 << λ . For 1
2
1 << λ  and 10 << δ , the shapes produced in Class II 

of the GLDGPD resemble the shapes produced in Region 3(a) of the GLDRS and in Region 3 of 

Class I of GLDFMKL with 132
1 << λ  and 142

1 << λ . 

 

  

 

Figure 4.3: Probability density functions of members of the GLDGPD from Class II, all with 01 =L  and 12 =L . The line types 

indicated in graph (a) also apply to graphs (b) and (c). 

 

4.4.3   CLASS III 

Examples of members of the GLDGPD from Class III with bounded support are depicted in 

Figure 4.4. In terms of λ , Class III of the GLDGPD covers the values 21 ≤≤ λ . The uniform 

distribution is obtained for 1=λ , irrespective of the value of δ . When 21 << λ , the density 

curve of the GLDGPD is U-shaped for 10 << δ  and J-shaped for 0=δ  and 1=δ . If 2=λ , 
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the density curve is J-shaped for all 
2
1≠δ  and uniform for 

2
1=δ . The U-shaped density 

curves from Class III of the GLDGPD are similar to the U-shaped density curves from Region 

3(c) of the GLDRS and from Class III of the GLDFMKL. 

 

  

 

Figure 4.4: Probability density functions of members of the GLDGPD from Class III, all with 01 =L  and 12 =L . The line types 

indicated in graph (a) also apply to graphs (b) and (c). For 1=λ  in graph (a), the GLDGPD reduces to the uniform 

distribution, irrespective of the value of δ , and hence the three density curves for the different values of δ  plot on top of 

each other. 

 

4.4.4   CLASS IV 

In Class IV with 2>λ , the members of the GLDGPD are truncated with bounded support and 

correspond to the truncated members of the GLDRS from Region 3(h) and of the GLDFMKL 

from Class V. The density curve of the GLDGPD in Class IV is unimodal for 10 << δ  and J-

shaped for 0=δ  and 1=δ . Examples are presented in Figure 4.5. 
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Figure 4.5: Probability density functions of members of the GLDGPD from Class IV, all with 01 =L  and 12 =L . The line types 

indicated in graph (a) also apply to graphs (b) and (c). 

 

4.5 MOMENTS 

The r
th

 order moment of the GLDGPD only exists if 
r
1−>λ . In particular, if 

4
1−>λ , then the 

mean, variance, skewness moment ratio and kurtosis moment ratio of the GLDGPD are 

 1βφαµ −= ,         (4.7) 
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and 
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where ),( baΒ  and )(aζ  are the beta and Riemann’s zeta functions (see Section 2.14.1 in 

Chapter 2 for details), )1( δδω −=  and 
1

)1()1(

+

−+−
=

λ

δδφ
kk

kkk

 for 4,3,2,1=k . The formulae for 

0=λ  in (4.7) to (4.10), that is, for the SLD, were derived in Section 2.13.1 in Chapter 2. The 

formulae for 0≠λ  are derived in Section 4.13.1 of this chapter. 

Since the r
th

 order moment of the GLDGPD exists if 
r
1−>λ , it follows that the mean, the 

variance and the skewness and kurtosis moment ratios of the GLDGPD exist for all values of 

λ  in Classes II, III and IV. But in Class I these first four moments only exist when 
4
1−>λ . 

Similar to the formulae for the conventional moments of the GLDRS and GLDFMKL, given 

in Section 3.6, the formulae in (4.7) to (4.10) for the GLDGPD are complex. Also, both 3α  and 

4α  depend on the two shape parameters. It is therefore not ideal to characterize the GLDGPD 

with conventional moments. As will be seen in Sections 4.6 and 4.7, formulae for L-moments 

and for quantile-based measures of location, spread and shape of the GLDGPD are 

substantially simpler. 
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4.6 L-MOMENTS 

The expressions for the L-moments of the GLDGPD are determined using Proposition 2.8.1 in 

Chapter 2. Suppose X has a standard GPD. If 1−>λ , then, as shown by Hosking (1986), the 

L-location, L-scale, L-skewness ratio and L-kurtosis ratio of the standard GPD are 
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while, in general, the r
th

 order L-moment of the standard GPD is given by 
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and its r
th

 order L-moment ratio is 
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Using (2.52), (2.53) and (2.54) in Proposition 2.8.1(a), the GLDGPD then has 
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The L-location of the GLDGPD in (4.11) is of course the mean, µ , given in (4.7). The L-scale, 

L-skewness ratio and L-kurtosis ratio of the GLDGPD are 
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The expressions for the first four L-moments of the GLDGPD in (4.11), (4.14), (4.15) and 

(4.16) are considerably simpler than the expressions for the first four conventional moments 

of the GLDGPD in (4.7) to (4.10). Furthermore, there are simple general expressions for the r
th

 

order L-moment and for the r
th

 order L-moment ratio of the GLDGPD, given in (4.12) and 

(4.13). No simple general expression exists for the r
th

 order moment of the GLDGPD. Hence it 

is more convenient to characterize the GLDGPD with its L-moments than with its conventional 

moments. 

Comparing the expressions of 3τ  and 4τ  in (4.15) and (4.16) with those of the GLDRS in 

(3.14) and (3.15) and the GLDFMKL in (3.19) and (3.20), a major advantage of the GLDGPD 

over the GLDRS and GLDFMKL emerges. With the GLDRS and the GLDFMKL, both shape 

parameters, 3λ  and 4λ , simultaneously control the L-skewness ratio and the L-kurtosis ratio. 

With the GLDGPD, only λ  influences the L-kurtosis ratio, while the L-skewness ratio depends 

on both δ  and λ . In effect, as is the case with the SLD (that is, the GLDGPD with 0=λ ), the 

L-kurtosis ratio of the GLDGPD is skewness-invariant. As will become evident in Section 4.9, 

this significantly simplifies parameter estimation for the GLDGPD using L-moments. 

As with the GPD, the r
th

 order L-moment and the r
th

 order L-moment ratio of the GLDGPD 

exist if 1−>λ . Thus, all the L-moments exist for Classes II, III and IV of the GLDGPD, while 

in Class I all the L-moments exist when 1−>λ . The ( )43,ττ  space covered by the four 

classes of the GLDGPD is shown in the L-moment ratio diagrams in Figure 4.6. In Figure 

4.6(a) the combined coverage of the ( )43,ττ  space by Classes I and II of the GLDGPD (which 

are the two classes with the most useful distributional shapes) is equivalent to the combined 

coverage of the ( )43,ττ  space by Regions 3(a) and 4 of the GLDRS in Figure 3.8(a) and the 

coverage of the ( )43,ττ  space by Class I of the GLDFMKL in Figure 3.8(b). 

In Section 4.13.2 it is proved that the minimum value of 4τ  for the GLDGPD is given by 

 0102.0
6512

6512min
4 −==

+

−τ ,       (4.17) 

obtained for 

4495.116
~

=−=λ .        (4.18) 

As indicated by Karvanen & Nuutinen (2008), this is also the minimum value of 4τ  for the 

symmetric GLDRS, that is, for Tukey’s lambda distribution. But, because the L-kurtosis ratio 

of the GLDGPD is skewness-invariant, the minimum value of 4τ  in (4.17) is obtained for the 
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symmetric and the asymmetric GLDGPD, in effect, for any value of δ . In Figure 4.7 the L-

kurtosis ratio of the GLDGPD is plotted as a function of λ . Karvanen & Nuutinen (2008) gave 

a similar plot for the symmetric GLDRS. Because of the skewness-invariance of 4τ  for the 

GLDGPD, the plot in Figure 4.7 is applicable to both the symmetric and asymmetric GLDGPD. 

 

  

  

Figure 4.6: L-moment ratio diagrams for Classes I, II, III and IV of the GLDGPD. The line types indicated in diagram (a) also apply to 

the other diagrams. The uniform, logistic, exponential and reflected exponential distributions are indicated by U, L, E and 

RE. The red-shaded, orange-shaded and blue-shaded areas are the ( )43 ,ττ  spaces attained by Classes I, II and IV. The 

small yellow-shaded area in diagram (b) and the small green-shaded area in diagram (d) are the ( )43 ,ττ  spaces attained by 

Class III. 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. A GLD TYPE WITH SKEWNESS-INVARIANT MEASURES OF KURTOSIS 

 

 
152

We note from Figure 4.7 that there does not exist a one-to-one relation between the value 

of λ  and the value of 4τ  for the GLDGPD. Therefore, as indicated in Table 4.3, the parameter 

space of the GLDGPD can be divided into two broad regions, labeled Region A and Region B, 

based upon the values of λ  and 4τ  assigned to each of these regions. In Region A with 

λλ
~

1 <<− , the value of 4τ  decreases from one to min
4τ  as the value of λ  increases. The L-

moment ratio diagram for Region A of the GLDGPD is depicted in Figure 4.8(a). In Region B 

with λλ
~

≥ , an increase in the value of λ  results in an increase in the value of 4τ  from min
4τ  

to one. Figure 4.8(b) presents the L-moment ratio diagram for Region B. 

 

 

Figure 4.7: Plot of 4τ  for the GLDGPD as a function of λ . The dotted line at 1−=λ  is the lower limit for λ  in order for the L-

moments to exist. U1 and U2 denote the uniform distribution with ( ) )0,1(, 4 =τλ  and ( ) )0,2(, 4 =τλ  respectively, while 

SLD indicates ( ) ( )
6
1

4 ,0, =τλ . The minimum value for 4τ , 0102.0min
4 −=τ , occurs at 4495.1

~
=λ . 

 

Table 4.3: L-kurtosis ratio values for the GLDGPD in terms of Regions A and B and Classes I, II, III and IV. 

Region Class Values of λ  Values of 4τ  

Region A Class I 01 ≤<− λ  146
1 <≤ τ

 

 Class II 10 << λ  
6
1

40 << τ
 

 Class III λλ
~

1 <≤  04
min
4 ≤< ττ

 

Region B Class III
 

2
~

≤≤ λλ  04
min
4 ≤≤ ττ

 

 Class IV
 

2>λ  10 4 << τ
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Figure 4.8: L-moment ratio diagrams for Regions A and B of the GLDGPD. The line types indicated in diagram (a) also apply to the 

other diagrams. The uniform, logistic, exponential and reflected exponential distributions are indicated by U, L, E and RE. 

 

The complete ( )43,ττ  space covered by the GLDGPD is shown in Figure 4.8(c) and is 

equivalent to the coverage of the ( )43,ττ  space by the GLDRS (see Figure 3.6) and the GLDRS 

(see Figure 3.7). In the purple-shaded area in Figure 4.8(c), the same set of values for 3τ  and 

4τ  is obtained by two members of the GLDGPD possessing different pairs of values for δ  and 

λ , where the first member of the GLDGPD is from Region A and the second member is from 

Region B. In effect, as illustrated by Figure 4.9, for a given set of values for 3τ  and 4τ  from 

the purple-shaded area in Figure 4.8(c), two members of the GLDGPD with different 

distributional shapes are attainable. Specifically, if 146
1 <≤ τ  and 10 << δ , the first member 

of the GLDGPD is from Class I in Region A and hence is unimodal with infinite support, while 
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the second member of the GLDGPD, from Class IV in Region B, is also unimodal, but 

truncated with bounded support – see Figure 4.9(a). When 
6
1

40 << τ  and 10 << δ , both 

members of the GLDGPD are unimodal with bounded support, where the first member of the 

GLDGPD is from Class II in Region A, while the second member is again from Class IV in 

Region B and thus truncated – see Figure 4.9(b). If 04
min
4 ≤<ττ  and 10 << δ , both 

members of the GLDGPD are from Class III (the first from Region A and the second from 

Region B) and consequently the density curves of both members are U-shaped with bounded 

support – see Figure 4.9(c). 

 

  

 

Figure 4.9: Probability density functions of members of the GLDGPD from Regions A and B possessing the same set of values for 3τ  

and 4τ . In graphs (a) and (b) the solid lines indicate members of the GLDGPD from Classes I and II in Region A 

respectively, while the dashed lines indicate members of the GLDGPD from Class IV in Region B. In graph (c) the solid and 

dashed lines depict members of the GLDGPD from Class III in Region A and in Region B respectively. Note that 01 =L  and 

12 =L  for all the members of the GLDGPD. 
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4.7 QUANTILE-BASED MEASURES OF LOCATION, SPREAD AND SHAPE 

Unlike the moments and L-moments of the GLDGPD, the existence of the quantile-based 

measures of location, spread and shape is not restricted by the value of λ . The formulae for 

these quantile-based measures are obtained by substituting the quantile function of the 

GLDGPD, given in (4.4), into the expressions for the median in (2.34), the spread function in 

(2.35), the γ -functional and the η -functional in (2.37) and (2.38), and the ratio-of-spread 

functions and the κ -functional in (2.43) and (2.44), and simplifying. The formulae for the 

GLDGPD are then 
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and 
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where 1
2
1 <<< uv . Note that, as with the moments in (4.7) to (4.10), the formulae for 0=λ  

are for the SLD, given before in Section 2.6 in Chapter 2. All the shape functionals of the 

GLDGPD are location- and scale-invariant and, more importantly, the two kurtosis functionals 

are skewness-invariant. The kurtosis of the GLDGPD is described in more detail in Section 

4.8.2. 

 

4.8 DISTRIBUTIONAL SHAPE 

As indicated in Section 4.4, the important distributional shapes attained by the GLDRS and 

GLDFMKL in their Regions 3 and 4, are also attained by the GLDGPD. The main difference 

between the GLDGPD and the GLDRS and GLDFMKL is in terms of the way in which each 

type’s shape characteristics, that is, skewness, kurtosis and tail behavior, are related to and 

explained by their shape parameters. With the GLDRS and the GLDFMKL, their two shape 

parameters, 3λ  and 4λ , jointly account for the skewness and the kurtosis (see Section 

3.10.2), while for certain combinations of values of 3λ  and 4λ  in Regions 3 and 4, each 

shape parameter controls one of the two tails of the density curve (see Section 3.10.1). As 

will be explained in Sections 4.8.1 and 4.8.2 below, for a given value of the shape parameter 

λ , the skewness of the GLDGPD is controlled by the second shape parameter, δ , while, when 

measured by the L-kurtosis ratio or the kurtosis functionals, the kurtosis of the GLDGPD only 

depends on λ . The tail behavior of the density curve of the GLDGPD, discussed in Section 

4.8.3, is explained by both δ  and λ . 

 

4.8.1   SKEWNESS 

As pointed out before in Section 4.2, the GLDGPD is symmetric for 
2
1=δ  and asymmetric for 

2

1≠δ . In particular, for 1<λ , in effect, for Classes I and II, the GLDGPD is negatively 

skewed when 
2
1<δ  and positively skewed when 

2
1>δ . Conversely, in Classes III and IV 

with 1>λ  the GLDGPD is positively skewed when 
2
1<δ  and negatively skewed when 
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2
1>δ . Recall that the GLDGPD reduces to the uniform distribution for 1=λ , irrespective of 

the value of δ . The GLDGPD at 1=λ  is therefore always symmetric. 

 

4.8.2   KURTOSIS 

It was seen in Sections 4.6 and 4.7 that the L-kurtosis ratio and the kurtosis functionals of the 

GLDGPD are all invariant to the value of the weight parameter, δ , and are thus skewness-

invariant kurtosis measures. The skewness-invariance of these kurtosis measures follows 

directly from Proposition 2.8.1, since the quantile function of the GLDGPD, presented in (4.4) 

in Definition 4.2.1, is of the form (2.51). 

Figure 4.7 in Section 4.6 illustrated the relation between the values of λ  and 4τ . Similar 

plots can be drawn for the two kurtosis functionals of the GLDGPD for selected values of u 

and v. This is done in Figure 4.10 for the ratio-of-spread functions and the κ -functional for 

)6.0,9.0(),( =vu  and for )75.0,9.0(),( =vu . As with the L-kurtosis ratio of the GLDGPD, 

there do not exist one-to-one relations between the value of λ  and the values of ),( vuR  or 

),( vuκ . 

 

  

Figure 4.10: Plots of the kurtosis functionals for the GLDGPD as functions of λ . The line types indicated in graph (a) also apply to graph 

(b). U1 and U2 denote the uniform distribution with 1=λ  and 2=λ  respectively, while SLD indicates 0=λ . The 

minimum kurtosis for the kurtosis functionals occur at 1.4696=∗λ  for 9.0=u  and 75.0=v , and at 4766 1.=∗λ  for 

9.0=u  and 6.0=v . 

 

However, in Classes I and II, where 1<λ , a strictly inverse relation exists between the 

value of λ  and the kurtosis of the GLDGPD, with the kurtosis increasing in these two classes 

as the value of λ  decreases. This is illustrated by Figure 4.11(a) in which the spread-spread 

plot for the GLDGPD is concave, indicating the greater kurtosis for 5.0−=λ  compared to 
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5.0=λ . In Class IV with 2>λ , the kurtosis of the GLDGPD becomes larger as the value of 

λ  increases. For instance, in Figure 4.11(b) the spread-spread plot for the GLDGPD is convex 

with greater kurtosis for 5=λ  than for 3=λ . Thus in Classes I and II and also in Class IV, 

the GLDGPD is completely ordered by S≤ , the kurtosis ordering presented in Section 2.6. 

 

  

Figure 4.11: Spread-spread plots for members of the GLDGPD. In plot (a) the GLDGPD with 5.0−=Fλ  from Class I, which is leptokurtic, 

has greater kurtosis than the GLDGPD with 5.0=Gλ  from Class II, which is platykurtic. In plot (b) the GLDGPD with 

5=Gλ  has greater kurtosis than the GLDGPD with 3=Fλ , where both these members of the GLDGPD are from Class IV. 

For all members of the GLDGPD the value of β  is set to one in their respective spread functions. 

 

In contrast to the other three classes of the GLDGPD, the relation between the value of λ  

and the kurtosis of the GLDGPD is not so simple in Class III where 21 ≤≤ λ . As shown in 

Figures 4.7 and 4.10, the minimum kurtosis of the GLDGPD occurs in this class. But the value 

of λ  at which the minimum kurtosis is observed is not the same for the different kurtosis 

measures. As proven in Section 4.13.2, the minimum value for the L-kurtosis ratio is obtained 

for 4495.1
~

=λ . With the kurtosis functionals, the minimum kurtosis attainable depends on 

the values of u and v. Let ∗λ  denote the value of λ  at which the kurtosis functionals reach 

their minima. Then, for example, as shown in Figure 4.10, if 9.0=u  and 75.0=v , the 

minimum kurtosis for the kurtosis functionals occurs at 1.4696=∗λ , whereas for 9.0=u  and 

6.0=v  the minimum kurtosis occurs at 4766 1.=∗λ . Figure 4.12 shows the various values of 

∗λ  for 1
2
1 <<< uv . Predominantly the values of ∗λ  are in the interval 5 1.4.1 << ∗λ . In 

particular, when both 5.0↓u  and 5.0↓v , then 5.1↑∗λ , while 1.1↓∗λ  if both 1↑u  and 

1↑v . If 1↑u  and 5.0↓v  so that 5.0)( ↑− vu , then 4427.1↓∗λ . 
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Figure 4.12: The values of ∗λ  in Class III of the GLDGPD at which the minimum kurtosis of the kurtosis functionals is obtained for 

1
2
1 <<< uv . 

 

4.8.3   TAIL BEHAVIOR 

As was explained in Section 2.11 of Chapter 2, the tail behavior of the density curve of a 

quantile-based distribution is studied through its density quantile function, )( pf p , as well as 

the function )( pξ , given in (2.71), which represents the derivative of the density curve. The 

density quantile function of the GLDGPD is given in (4.6), while 
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Table 4.4 presents the tail behavior of the GLDGPD. Note that the values given for 1=δ  and 

0=δ  are respectively for the GPD and the reflected GPD, while the values for 0=λ  are for 

the SLD, considered before in Example 2.11.1 in Chapter 2. 

The interpretation of )( pf  and the values obtained when computing )(lim
0

pf p
p→

 and 

)(lim
1

pf p
p→

 are straightforward for the GLDGPD, with three broad scenarios occurring based on 

the value of λ . Firstly, if 1<λ , thus for Classes I and II of the GLDGPD, the left tail of the 

density curve approaches zero for 1<δ  and 
β
1  for 1=δ , whereas the right tail of the density 

curve approaches 
β
1  for 0=δ  and zero for 0>δ . Consequently unimodal density curves are 

obtained for the GLDGPD when 1<λ  and 10 << δ , while monotone increasing and 

monotone decreasing density curves are obtained for 0=δ  and for 1=δ  respectively (see 

again Sections 4.4.1 and 4.4.2). Secondly, when 1=λ , the density curve of the GLDGPD is 

uniform at 
β
1  for all values of δ  and hence both tails are equal to 

β
1 . Finally, in Classes III 
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and IV of the GLDGPD with 1>λ , the left tail of the density curve tends to infinity for 0=δ  

and approaches 
βδ
1  for 0>δ , while the right tail tends to infinity for 1=δ  and approaches 

)1(
1

δβ −
 for 1<δ . As a result, when 10 << δ , the density curves of the GLDGPD are U-shaped 

in Class III and truncated in Class IV, and when 0=δ  or 1=δ , the density curves of the 

GLDGPD in Classes III and IV are J-shaped (see again Sections 4.4.3 and 4.4.4). 

 

Table 4.4: The values approached by the density curve and the slope of the density curve of the GLDGPD at the end-points of the tails.  

  Density curve Slope of density curve 

Class Shape parameter values Left tail Right tail Left tail Right tail 

Class I 0,0 ≤= λδ  0 β
1

 0 2

1

β

λ−−  

 0,10 ≤<< λδ  0 0 0 0 

 0,1 ≤= λδ  β
1

 0 2

1

β
λ−  0 

Class II 5.00,0 <<= λδ  0 β
1

 0 2

1

β

λ−−  

 5.00,10 <<<< λδ  0 0 0 0 

 5.00,1 <<= λδ  β
1

 0 2

1

β
λ−  0 

 5.0,0 == λδ  0 β
1

 22

1

β
 22

1

β
 

 5.0,10 =<< λδ  0 0 22 )1(2

1

δβ −
 222

1

δβ
 

 5.0,1 == λδ  β
1

 0 22

1

β
−  22

1

β
−  

 15.0,0 <<= λδ  0 β
1

 
∞

 
2

1

β

λ−−
 

 15.0,10 <<<< λδ  0 0 ∞
 

−∞
 

 15.0,1 <<= λδ  β
1

 0 2

1

β
λ−  −∞

 

Class III 1,10 =≤≤ λδ  β
1

 
β
1

 
0 0 

 21,0 ≤<= λδ  ∞
 

β
1

 
−∞

 
2

1

β

λ−−
 

 21,10 <<<< λδ  βδ
1

 
)1(

1
δβ −

 
−∞

 
∞

 

 2,10 =<< λδ  βδ
1

 
)1(

1
δβ −

 
32

12

δβ
δ −

 
32 )1(

12

δβ
δ

−

−

 

 21,1 ≤<= λδ  β
1

 
∞

 
2

1

β
λ−

 
∞

 

Class IV 2,0 >= λδ  ∞
 

β
1

 
−∞

 
2

1

β

λ−−
 

 2,10 ><< λδ  βδ
1

 
)1(

1
δβ −

 
22

1

δβ
λ−

 
22 )1(

1

δβ
λ

−

−−
 

 2,1 >= λδ  β
1

 
∞

 
2

1

β
λ−

 
∞

 

 

Compared to )( pf p , the interpretation of the function )( pξ  for the GLDGPD is more 

complex, since the values obtained when computing )(lim
0

p
p

ξ
→

 and )(lim
1

p
p

ξ
→

 for the GLDGPD 
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are much more diverse than the values obtained when computing )(lim
0

pf
p→

 and )(lim
1

pf
p→

. 

General results are only obtained for the special cases 1=δ  and 0=δ , in effect for the GPD 

and the reflected GPD. When 1=δ , the slope of the left tail of the density curve always 

approaches 
2

1

β

λ − . If 0=δ , the slope of the density curve’s right tail always approaches 
2

1

β

λ −− . 

Finally, it is noted from Table 4.4 that, for 10 << δ , the tail behavior of the GLDGPD is 

consistent across the left and right tails. This is as a result of the way in which the GLDGPD is 

constructed. 

 

4.9 METHOD OF L-MOMENTS ESTIMATION 

In order to fit the GLDGPD to an observed data set, the four parameters of the GLDGPD, α , 

β , δ  and λ , must be estimated. This can be done using an estimation method where four 

measures, namely a measure of location, a measure of spread and two measures of shape, are 

utilized. Now, because the skewness and kurtosis moment ratios of the GLDGPD, given in 

(4.9) and (4.10), are dependent on both its shape parameters, δ  and λ , closed-form 

expressions are not available for method of moments estimators for δ  and λ , making this 

estimation method computationally difficult and impractical. 

In contrast to the kurtosis moment ratio of the GLDGPD in (4.10), the L-kurtosis ratio of 

the GLDGPD in (4.16) as well as its two kurtosis functionals in (4.19) and (4.20) only depend 

on one of the shape parameters, λ . This suggest that, with estimation methods using either L-

moments or quantile-based measures, λ  can first be estimated using an expression written as 

a function of the corresponding kurtosis measure (in effect, the L-kurtosis ratio or one of the 

two kurtosis functionals), whereafter δ , β  and α  can be estimated sequentially. 

Unfortunately it is not mathematically possible to obtain a closed-form expression for λ  as a 

function of either the ratio-of-spread functions or the κ -functional. But, as will be seen in the 

estimation algorithm presented below, λ  can be expressed as a function of the L-kurtosis 

ratio and consequently closed-form expressions are available for method of L-moments 

estimators. Furthermore, although extremely complex, closed-form expressions are also 

available for these estimators’ asymptotic standard errors. Method of L-moments estimation 

is therefore the preferred estimation method for the GLDGPD. The estimation algorithm for 

computing the method of L-moments estimates as well as their asymptotic standard errors is 

described below: 
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Step 1 

Use (2.30) to (2.33) to calculate the first four sample L-moments, 1l , 2l , 3l  and 4l , and 

then (2.29) to calculate the sample L-skewness and L-kurtosis ratios, 3t  and 4t . Verify 

whether the values of 3t  and 4t  lie within the ( )43,ττ  space of the GLDGPD in Figure 4.8(c). 

If so, proceed with Step 2. If not, the GLDGPD cannot be fitted to the data. 

 

Step 2 

Since the L-kurtosis ratio only depends on λ , this shape parameter is estimated first. 

Inverting (4.16) leads to two possible estimators for λ , 

 
)1(2
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4

4
2
44ˆ
t

ttt

A −

++−+
=λ  

and 
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19873
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4
2
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t
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B −

++++
=λ , 

where λλ
~ˆ1 <<− A  is from Region A and λλ

~ˆ ≥B  is from Region B. Next the other shape 

parameter, δ , is estimated with 
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      (4.21)  

and 
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with these expressions derived from (4.15). Finally the scale and location parameters, β  and 

α , are estimated sequentially using 

 ( )( ) BAhhhh ,,2ˆ1ˆˆ
2 =++= λλβ l       (4.22) 

and 

 
( )

BAh
h

hh

h ,,ˆ
1ˆ

1ˆ2ˆ

1 =−=
+

−

λ

δβ
α l ,      (4.23) 

derived from (4.14) and (4.11) respectively. 

If 0ˆ =Aλ  so that the GLDGPD reduces to the SLD, the estimators for the other three 

parameters in (4.21), (4.22) and (4.23) simplifies to the estimators given in (2.64), (2.65) and 
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(2.66). Also, when 1ˆ =Aλ , the uniform distribution is obtained and, because the uniform 

distribution is symmetric, we can set 
2
1ˆ =Aδ . 

Let 198 4
2
4 ++=Τ tt . Then, in terms of 1l , 2l , 3l  and 4l , the method of L-moments 

estimators from Region A are 
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while the method of L-moments estimators from Region B are 
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and 
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Step 3 

Expressions for the asymptotic standard errors of the method of L-moments estimators only 

exist if the variance of the GLDGPD is finite, thus only if 
2
1−>λ . So in Region A the standard 

errors’ expressions exist for λλ
~ˆ

2
1 <<− A , while in Region B they exist for all λλ

~ˆ >B . If 

2
1ˆ −≤Aλ  in Region A, the standard errors can be determined with the parametric bootstrap. 
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Because the expressions for the standard errors are the same for the estimators of both 

regions, the subscripts of the estimators are omitted in these expressions given below. 

Nonetheless, these expressions, derived in Section 4.13.3, are unfortunately extremely 

complex. The standard errors are 
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where ),( baΒ  is the beta function (see Section 2.14.1 in Chapter 2 for details), )1( δδω −= , 
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17 +−+−+= λλλλλϑ . 

◘ 

 

It follows from the above algorithm that two possible GLDGPD fits may be obtained for a 

data set, one fit from Region A and the second fit from Region B. These two fits are obtained 

if the values of 3t  and 4t  calculated for the data set lie within the purple-shaded area in the L-

moment ratio diagram of the GLDGPD in Figure 4.8(c). For )1,0(4 ∈t , the first fit will be from 

Class I of Region A if 
6
1

4 ≥t  and from Class II of Region A if 
6
1

4 <t , whereas the second fit 

will be from Class IV of Region B. If ]0,[ min
44 τ∈t , then the two fits will both be from Class 

III, one from Region A and the other from Region B. A single fit is obtained if the values of 

3t  and 4t  fall in the blue-shaded area in the L-moment ratio diagram of the GLDGPD in Figure 

4.8(c). This fit will be from Class III of Region B if ]0,[ min
44 τ∈t  and from Class IV of 

Region B if )1,0(4 ∈t . 
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If one is interested in modeling exceedances in a data set above a threshold, the GPD (that 

is, the GLDGPD with 1=δ ) is used. Method of L-moments estimation for the GPD has been 

presented in the literature (Hosking, 1986; Hosking & Wallis, 1987, 1997) and will hence not 

be discussed here. But it should be noted that to fit the GPD to exceedances, the threshold 

must be selected and the GPD’s parameter estimates will depend on the choice of threshold. 

Once members of the GLDGPD have been fitted to a data set, the goodness of these fits can 

be assessed using the tests and graphical displays discussed in Section 2.10 of Chapter 2. In 

situations where two GLDGPD fits are obtained, the fit with the lowest average scaled absolute 

error (ASAE) value can typically be regarded as the best fit. However, it is important to 

verify whether the chosen fit adequately explains the complete data set. That is, one should 

check whether the support of the fitted GLDGPD covers the range of values observed in the 

data set. Unfortunately, as will be seen in the examples presented in Section 4.10, the 

bounded support of the truncated members of the GLDGPD from Class IV in Region B often 

does not cover all the data values observed. But this problem can occur for any distribution 

with bounded support, including the GLDGPD from Class II in Region A. 

 

4.10 FITTING OF THE GLDGPD TO DATA 

Illustrative examples are presented in this section in which the fit of the GLDGPD to various 

data sets with diverse characteristics is examined. The sample sizes, sample L-moment and L-

moment ratio values and the data ranges for these data sets are given in Table 4.5. Table 4.6 

presents the parameter estimates with asymptotic standard errors of the GLDGPD fits along 

with these fitted distributions’ support. The test statistic values and p-values of the 

Kolmogorov-Smirnov, Anderson-Darling and Cramér-von Mises goodness-of-fit tests as well 

as the ASAE values for the GLDGPD fits are compared in Table 4.7. Note that VN  in Table 

4.7 denotes the number of valid bootstrap samples (out of 00010=N  simulated bootstrap 

samples) used in determining the p-values of the goodness-of-fit tests. 

 

Table 4.5: Sample sizes, sample L-moment values and data ranges for the data sets in Section 4.10. 

Data set n  
1l  2l  3t  

4t  Data range 

Toxic gas concentrations 100 7.9384 1.8432 0.1293 0.1451 [1.701, 16.910] 

Venice sea-levels 51 119.6078 10.9341 0.1220 0.2132 [78, 194] 

McAlpha ages at death 54 67.4444 11.3969 –0.2902 0.1435 [9, 95] 

CHD patients’ ages 100 44.3800 6.7774 –0.0022 0.0305 [20, 69] 
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Table 4.6: Parameter estimates with asymptotic standard errors* and support for the GLDGPD fitted to the data sets in Section 4.10. 

Data set Class of GLDGPD α̂  β̂  δ̂  λ̂  Support 

Toxic gas concentrations 

 

II 

 

6.3240 

(0.6026) 

4.0557 

(0.7013) 

0.7120 

(0.0694) 

0.0654 

(0.1076) 

[–11.5405, 50.4980] 

 

 
IV 

 

11.2597 

(0.9429) 

68.8412 

(9.4305) 

0.3641 

(0.0322) 

4.6318 

(0.5479) 

[1.8092, 16.6719] 

 

Venice sea-levels 

 

I 

 

113.1792 

(4.2316) 

18.0359 

(4.3744) 

0.6565 

(0.1170) 

–0.1218 

(0.1536) 

),( ∞−∞
 

 

 
IV 

 

138.7045 

(10.4960) 

585.0591 

(110.9265) 

0.3885 

(0.0483) 

5.8320 

(0.9268) 

[77.3592, 177.6786] 

 

McAlpha ages at death 

 

II 

 

90.0580 

(5.6500) 

25.2549 

(6.9240) 

0.0208 

(0.0766) 

0.0703 

(0.1746) 

[–261.5536, 97.5289] 

 

 
IV 

 

21.3614 

(8.9046) 

422.0286 

(95.9283) 

0.8061 

(0.0359) 

4.6057 

(0.9218) 

[3.5902, 95.2212] 

 

CHD patients’ ages 

 

II 

 

44.7678 

(7.4973) 

28.9643 

(6.9921) 

0.4891 

(0.1859) 

0.6269 

(0.2047) 

[21.1631, 67.3660] 

 

 
IV 

 

44.1401 

(3.2489) 

117.1769 

(22.7403) 

0.5038 

(0.0629) 

2.6880 

(0.4732) 

[22.5084, 66.1009] 

 

* Standard errors given in parentheses. 

 

Table 4.7: Goodness-of-fit statistics with p-values* as well as average scaled absolute error (ASAE) values for the GLDGPD fitted to 

the data sets in Section 4.10. 

Data set Class of GLDGPD nD  nA  nW  VN  ASAE 

Toxic gas concentrations 

 

II 

 

0.4987 

(0.2744) 

0.2527 

(0.3495) 

0.0387 

(0.2968) 

9 996 

 

0.0148 

 

 
IV 

 

0.4362 

(0.5971) 

0.2999 

(0.5050) 

0.0223 

(0.8088) 

10 000 

 

0.0108 

 

Venice sea-levels 

 

I 

 

0.5081 

(0.2249) 

0.2166 

(0.5214) 

0.0376 

(0.3680) 

9 987 

 

0.0144 

 

 
IV 

 

0.5415 

(0.4729) 

0.5452 

(0.2204) 

0.0617 

(0.3520) 

10 000 

 

0.0224 

 

McAlpha ages at death 

 

II 

 

0.4946 

(0.2586) 

1.0902 

(0.0030) 

0.0585 

(0.1052) 

5 599 

 

0.0223 

 

 
IV 

 

0.3119 

(0.9250) 

0.1156 

(0.9906) 

0.0161 

(0.9689) 

9 971 

 

0.0113 

 

CHD patients’ ages 

 

II 

 

0.4055 

(0.5520) 

0.3253 

(0.3231) 

0.0241 

(0.6504) 

8 475 

 

0.0116 

 

 
IV 

 

0.4140 

(0.4882) 

0.3537 

(0.3590) 

0.0267 

(0.5323) 

9 495 

 

0.0127 

 

 * p-values given in parentheses. 

 

Where applicable, other distributions fitted to the data sets in the literature will also be 

presented. It is important to note that it is not the purpose of the examples to show that the 

GLDGPD provides better fits than these distributions. The examples in Section 4.10 are 

presented to illustrate the flexibility of the GLDGPD. 
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4.10.1   TOXIC GAS PEAK CONCENTRATIONS 

Consider again the data set consisting of toxic gas peak concentrations (Hall, 1991) to which 

the SLD, in effect, the GLDGPD with 0=λ , was fitted in Section 2.9 in Chapter 2. This data 

set’s sample L-skewness and L-kurtosis ratio values, ( ) )1451.0,1293.0(, 43 =tt , lie in Class II 

of Region A and in Class IV of Region B of the GLDGPD. So fits from these two classes of the 

GLDGPD are obtained. Figure 4.13 shows a histogram of the data set along with the density 

curves of the two GLDGPD fits, while Q-Q plots for these two fits are given in Figure 4.14 – 

see Figures 2.16 and 2.17 for the density curves and Q-Q plots of the fitted SLD as well as 

the fitted Davies distribution (Hankin & Lee, 2006). 

 

 

Figure 4.13: Histogram of the peak concentrations (in percent) of toxic gas together with the probability density functions of the fitted 

GLDGPD. 

 

  

Figure 4.14: Q-Q plots for the GLDGPD fitted to the peak concentrations (in percent) of toxic gas. 

 

Comparing the Q-Q plot for the fitted GLDGPD from Class II in Figure 4.14(a) with the 

SLD’s Q-Q plot in Figure 2.17(a), it is noted that the fit of the GLDGPD from Class II is 
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similar but slightly better than the SLD’s fit, especially at the lower tail. Also, the ASAE 

value of 0.0148 for the GLDGPD from Class II is marginally lower than the SLD’s ASAE 

value of 0.0154. But the parameter estimate for λ  in Class II of the GLDGPD, 0654.0ˆ =Aλ , is 

close to zero with a relatively large standard error (0.1076), indicating that this additional 

shape parameter of the GLDGPD in Class II is not significantly different from zero. That is, the 

GLDGPD from Class II simplifies to the SLD with 0=λ . 

Turning to the fitted GLDGPD from Class IV, this distribution’s density curve very closely 

corresponds to the histogram of the data in Figure 4.13, suggesting an excellent fit, which is 

confirmed by its Q-Q plot in Figure 4.14(b). Furthermore, the fitted GLDGPD from Class IV 

has a very low ASAE value of 0.0108, which is smaller than the ASAE values of the GLDGPD 

from Class II and the SLD. So it seems that the GLDGPD from Class IV provides the best fit 

for the data set. But this distribution’s bounded support of [1.8092, 16.6719] does not cover 

the complete data set in that both the minimum and maximum values in the data, 1.701 and 

16.91, lie outside the support. This is due to the truncated form of the GLDGPD in Class IV. 

 

4.10.2   VENICE MAXIMUM SEA-LEVELS 

Smith (1986) and Coles (2001) both considered the sea-levels in Venice within the context of 

extreme value modeling. The data set contains the 10 largest sea-levels (in centimeters), 

measured annually in Venice from 1931 to 1981, apart from 1935, for which only the six 

largest sea-levels are available. Here the annual maximum sea-level is considered, giving 

51=n  measurements, graphically presented in the histograms in Figure 4.15. The 

generalized extreme value (GEV) distribution is implied by extreme value theory for data like 

this. Here we consider the GLDGPD to illustrate its flexibility. The data possesses heavy tails, 

so the GLDGPD yields fits from Class I in Region A and Class IV in Region B. Coles (2001) 

fitted the GEV distribution to the data set using maximum likelihood estimation. The fitted 

density curves of the GLDGPD and the GEV distribution are superimposed on the histograms 

in Figure 4.15, while Q-Q plots for these fitted distributions are given in Figure 4.16. 

The GLDGPD from Class I with infinite support provides a very good fit, which, when 

comparing their ASAE values in Table 4.7 and Q-Q plots in Figures 4.16(a) and 4.16(b), is  

much better than the fit of the GLDGPD from Class IV. Although not rejected by any of the 

goodness-of-fit tests (Table 4.7), the GLDGPD from Class IV does not provide a good fit in 

that the center part of its density curve rises too high compared to the data’s histogram – see 

again Figure 4.15(a). Furthermore, because of its truncated form, the support of the fitted 
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GLDGPD from Class IV does not cover the data range, resulting in poor fits at the tails, 

especially in the upper tail for maximum sea-levels above 140 centimeters. 

 

  

Figure 4.15: Histograms of the annual maximum sea-levels (in centimeters) in Venice together with the probability density functions of 

the fitted GLDGPD and generalized extreme value (GEV) distribution. The line types indicated in graph (a) also apply to 

graph (b). 

 

  

 

Figure 4.16: Q-Q plots for the GLDGPD and the generalized extreme value (GEV) distribution fitted to the annual maximum sea-levels 

(in centimeters) in Venice. 
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The GEV distribution fitted by Coles (2001) has an ASAE value of 0.0189, which is 

larger than the ASAE value for the fitted GLDGPD from Class I. But this is not surprising, 

since the GLDGPD has two shape parameters, whereas the GEV distribution has a single shape 

parameter. Also, as indicated before, the GEV distribution is the correct distribution to be 

used for modeling maximum values.  

 

4.10.3   MCALPHA CLAN AGES AT DEATH 

In their book on applied nonparametric statistics, Sprent & Smeeton (2007) presented the age 

at death (in completed years) of male members of four Scottish clans, obtained from the 

burial ground at Badenscallie in Scotland. Of these, the McAlpha clan has the largest sample 

size and will hence be used in this example. The nature of the data renders it useful for 

survival analysis. For instance, recently Cooray & Ananda (2010) used this data set to 

illustrate the applicability of the Gompertz-sinh family of distributions in survival analysis. 

A histogram of the age at death for the males from the McAlpha clan is shown in Figure 

4.17. The slightly higher frequency for deaths under age five, compared to the frequencies for 

adjacent age intervals, is notable. In this example the age at death excluding under-age-five 

mortality is used. In effect, the data set is truncated with respect to the lower tail by excluding 

the five males with age at death of less than five years. 

 

 

Figure 4.17: Histogram of the age at death (in completed years) of male members of the McAlpha clan together with the probability 

density functions of the fitted GLDGPD and reflected exponential distribution. The dotted bar in the histogram represents 

five males with age at death of less than five years. These five observations are neither considered in the fitting of the 

distributions, nor in the model validation of these fits. 

 

Fitting the GLDGPD to this truncated data set of 54=n  observations yields fits from Class 

II of Region A and Class IV of Region B. The density curves of these fits are shown in Figure 
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4.17, while their Q-Q plots are given in Figure 4.18. The GLDGPD from Class IV provides an 

excellent fit as indicated by the high p-values for its goodness-of-fit tests and its low ASAE 

value in Table 4.7, as well as its Q-Q plot in Figure 4.18(b). The excellent fit is partly due to 

the inherent truncated form of the GLDGPD in Class IV, which captures the truncation applied 

to the data. Note that, in contrast to the previous two examples (Sections 4.10.1 and 4.10.2), 

the support of the fitted GLDGPD from Class IV, [3.5902, 95.2212], covers the data range of 

the truncated data set, [9, 95]. 

 

  

 

Figure 4.18: Q-Q plots for the GLDGPD and the reflected exponential distribution fitted to the age at death (in completed years) of male 

members of the McAlpha clan, excluding under-age-five mortality. 

 

The fit of the GLDGPD from Class II is substantially worse, especially with respect to 

males with age of death less than 50 years – see the Q-Q plot in Figure 4.18(a). It is 

interesting to note that neither of the shape parameters of the GLDGPD from Class II differs 

significantly from zero, suggesting a simplification to the reflected exponential distribution 

with 0== λδ . The density curve of this fitted distribution, with method of L-moments 

estimates  2383.902ˆ
21 =+= llα  and 7939.222ˆ

2 == lβ  for the location parameter (upper 
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endpoint of the distribution) and the scale parameter, is shown in Figure 4.17, while the 

corresponding Q-Q plot is shown in Figure 4.18(c). Not surprisingly the fit of the reflected 

exponential distribution is similar to but worse than the fit of the GLDGPD from Class II. 

 

4.10.4   CORONARY HEART DISEASE (CHD) PATIENTS’ AGES 

The coronary heart disease (CHD) data set in Hosmer & Lemeshow (2000) contains the age 

(in completed years) of 100=n  subjects, assumed to have a logistic distribution in a logistic 

regression framework. A histogram of the data is given in Figure 4.19 and suggests that the 

data is approximately symmetric, but that it has tails shorter than the logistic distribution. 

These visual deductions are confirmed by the sample L-moment ratio values, given in Table 

4.5, in that 0022.03 −=t  is very close to zero, while 0305.04 =t  is less than 
6
1

4 =τ , the L-

kurtosis ratio for the logistic distribution – also see the logistic distribution’s Q-Q plot in 

Figure 4.20(c). 

 

 

Figure 4.19: Histogram of the age (in completed years) of patients in a coronary heart disease (CHD) study together with the probability 

density functions of the fitted GLDGPD, logistic distribution and generalized secant hyperbolic (GSH) distribution. 

 

Given the data set’s values for 3t  and 4t , platykurtic members of the GLDGPD from Class 

II of Region A and from Class IV of Region B are fitted to the data. Because of the symmetry 

of the data, the estimates for δ  of both fits of the GLDGPD are close to 
2
1  ( 4981.0ˆ =Aδ  and 

5038.0ˆ =Bδ ). The fitted GLDGPD from Class II has a slightly lower ASAE value than the 

fitted GLDGPD from Class IV (0.0116 compared to 0.0127) and their Q-Q plots in Figures 

4.20(a) and 4.20(b) indicate very good fits, apart from the minimum and maximum values in 

the data set which are not covered by the bounded support of the two fits. 
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Another symmetric distribution, the generalized secant hyperbolic (GSH) distribution, 

was fitted to the data by Vaughan (2002). The GSH distribution exhibits short or heavy tails, 

depending on the value of its kurtosis parameter (Vaughan, 2002; Klein & Fisher, 2008; van 

Staden & Loots, 2009b). Because the GSH distribution possesses infinite support, it provides 

a better fit to the data compared to the GLDGPD as can be seen from its Q-Q plot in Figure 

4.20(d). Note also that the GSH distribution’s fit has an ASAE value of 0.0104 which is 

marginally smaller than the ASAE values of the two GLDGPD fits. 

 

  

  

Figure 4.20: Q-Q plots for the GLDGPD, the logistic distribution and the generalized secant hyperbolic (GSH) distribution fitted to the 

age (in completed years) of patients in a coronary heart disease (CHD) study. 

  

4.11 GLDGPD APPROXIMATION OF DISTRIBUTIONS 

The flexibility of the GLDGPD is further highlighted in this section by showing its ability to 

approximate a variety of different probability distributions through the matching of 

theoretical L-moments. Any distribution whose values of 3τ  and 4τ  fall within the ( )43,ττ  

space of the GLDGPD in Figure 4.8(c) can be approximated by the GLDGPD. But, since a 

detailed analysis is beyond the scope of this thesis, the focus in this section will be on well-
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known distributions such as the normal, Student’s t, gamma and log-normal distributions. 

Distributions popular in various statistical disciplines, for example survival analysis and 

extreme value theory, as well as distributions with specific properties, for instance the cosine 

distribution which is platykurtic, will also be considered. 

A distribution can be approximated by the GLDGPD with the following steps: 

 

Step 1 

For the distribution under consideration, select values for its location parameter, scale 

parameter and, if present, shape parameter(s). Calculate the distribution’s L-moments and L-

moment ratios, in effect, 1L , 2L , 3τ  and 4τ . This approach is followed if one wants to 

approximate a specific distribution, say for example a standard normal distribution with zero 

mean and unit variance. 

Alternatively, choose values for the distribution’s L-moments and L-moment ratios and 

calculate the corresponding parameter values. This is for example done when one wants to 

compare the GLDGPD approximations for different distributions with equivalent measures of 

location, spread and shape, say for the gamma and log-normal distributions with 01 =L , 

12 =L  and 2.03 =τ . 

 

Step 2 

Check whether the distribution’s values of 3τ  and 4τ  lie within the ( )43,ττ  space of the 

GLDGPD in Figure 4.8(c). If so, proceed with Step 3. If not, the distribution cannot be 

approximated by the GLDGPD for the selected parameter values. 

 

Step 3 

Use the estimation algorithm given in Section 4.9 to estimate the parameters of the GLDGPD 

by determining hα̂ , hβ̂ , hδ̂  and hλ̂  for BAh ,= . 

◘ 

 

Given the distributional shapes obtained by the GLDGPD in its four classes, it provides the 

best approximations for unimodal distributions, and these GLDGPD approximations are 

achieved from Classes I and II in Region A. The truncated distributions from Region B 

seldom produce adequate approximations. Thus, in Step 2 above, it is usually only necessary 
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to consider the ( )43,ττ  space of Classes I and II in Region A of the GLDGPD in Figure 4.6(a). 

This is true for all the distributions considered here and hence the subscripts for the parameter 

estimates of the GLDGPD approximations are dropped. 

Table 4.8 presents the values for the parameters and L-moments of the distributions 

considered as well as the parameter estimates of their GLDGPD approximations. See Tables 

2.10 to 2.14 in Section 2.14.3 for details regarding the properties and functions of the selected 

distributions. Note though that in this section, to avoid confusion with the parameters of the 

GLDGPD, the location, scale and shape parameters of the distributions are denoted by a, b and 

c respectively. 

Also, to simplify comparisons between the various distributions, 01 =L  and 12 =L  and, 

where applicable, 2.03 =τ . In Figures 4.21 to 4.24 the probability density function, )(xf , of 

each distribution is presented along with the probability density function, )(ˆ xf , of the 

corresponding GLDGPD approximation. 

Various methods exist for validating the quality of an approximation. In this thesis, as a 

first check, the closeness between the probability density functions is determined by 

approximating 

 )()(ˆsup xfxfS −=  

with 

( ) )(ˆmaxˆ
::

1
nini

ni
xfxfS −=

≤≤
, 

where ( )nixf :
ˆ  is the empirical probability density function of the GLDGPD approximation. For 

a second check, the ASAE between ( )nipQ : , the quantile function of the approximated 

distribution, and ( )nipQ :
ˆ , the empirical quantile function of the GLDGPD approximation, is 

calculated. That is, 

 
( ) ( )

( ) ( )∑
=

−

−
=

n

i
pQpQ

pQpQ

n
nnn

nini

1

ˆ
1

:1:

::

ASAE  

with nip :  given by (2.70), is calculated. For both Ŝ  and ASAE, 9999=n  is used. 
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Table 4.8: Parameter and L-moment values of various distributions, parameter estimates of these distributions’ GLDGPD approximations, and values for validating the quality of the GLDGPD approximations. 

Distribution a  b  c  3τ  4τ  α̂
 

β̂
 

δ̂
 

λ̂
 

Ŝ
 

ASAE 

Symmetric distributions 

Cosine –4 8 - 0 0.0625 0 3.3956 0.5 0.4093 0.0045 0.0004 

Normal 0 1.7725 - 0 0.1226 0 2.4449 0.5 0.1416 0.0005 0.0002 

Secant hyperbolic 0 1.1729 - 0 0.1940 0 1.7829 0.5 –0.0742  0.0050 0.0007 

Student’s t(2) 0 0.9003 - 0 0.3750 0 0.9069 0.5 –0.4244 0.0181 0.0002 

Extreme value distributions 

Fréchet –0.8624 1.3798 –0.0463 0.2 0.1629 –1.2242 2.0328 0.8044 0.0109 0.0129 0.0012 

Gumbel –0.8327 1.4427 - 0.1699 0.1504 –1.1157 2.1486 0.7723 0.0487 0.0091 0.0011 

Rayleigh –3.4142 2.7241 - 0.1140 0.1054 –1.0173 2.6641 0.7305 0.2071 0.0145 0.0019 

Weibull –2.6582 2.9367 0.6808 0.2 0.1190 –1.6085 2.4882 0.8732 0.1548 0.0491 0.0017 

Gamma and log-normal distributions 

Gamma –3.0661 1.1222 0.3660 0.2 0.1358 –1.4346 2.2960 0.8423 0.0956 0.0198 0.0014 

Log-normal –4.3504 3.9944 0.4132 0.2 0.1541 –1.2854 2.1131 0.8155 0.0372 0.0145 0.0013 

Generalized exponential and logistic distributions 

Generalized exponential –3.7471 1.5312 0.1672 0.2 0.1500 –1.3162 2.1523 0.8210 0.0499 0.0147 0.0012 

Generalized logistic –0.3226 0.9355 –0.2000 0.2 0.2000 –1.0208 1.7396 0.7672 –0.0895 0.0225 0.0016 
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4.11.1   SYMMETRIC DISTRIBUTIONS 

Figure 4.21 presents the density curves of four symmetric distributions, namely the cosine, 

normal, secant hyperbolic and Student’s t(2) distribution, along with the density curves of 

their GLDGPD approximations. The cosine distribution, a special symmetric case of the 

complementary beta distribution proposed by Jones (2002b), is a platykurtic distribution. 

Hence its GLDGPD approximation is from Class II. So too is the GLDGPD approximation of 

the normal distribution, a mesokurtic distribution. Both the secant hyperbolic distribution 

(Vaughan, 2002) and Student’s t(2) distribution (Jones, 2002a) are leptokurtic distributions 

and therefore they are approximated by the GLDGPD from Class I. 

 

  

  

Figure 4.21: Probability density functions of various symmetric distributions, indicated by the solid lines, along with the probability 

density functions of their GLDGPD approximations, indicated by the dashed lines. 

  

The GLDGPD approximations of all the symmetric distributions considered are excellent, 

as is evident from their low values for Ŝ  and ASAE in Table 4.8. This is especially true for 

the normal distribution, with no visible difference between the density curves depicted in 

Figure 4.21(b). The only slight concern, which in fact also occurs for the corresponding 
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approximations of the normal distribution by the GLDRS and the GLDFMKL, is that the support 

of the GLDGPD approximation is finite – when 01 =L  and 12 =L , the support of the normal 

distribution’s GLDGPD approximation is ]6323.8,6323.8[− . 

 

4.11.2   EXTREME VALUE DISTRIBUTIONS 

The generalized extreme value (GEV) distribution combines into a single family the extreme 

value distributions of Types 1, 2 and 3. It contains as a special limiting case the Gumbel 

distribution for 0=c , while the Fréchet and the reflected Weibull distributions are obtained 

for 0<c  and 0>c  respectively. All L-moments of the GEV distribution exist for 1−>c . For 

0589.01 −≤<− c , the GLDGPD approximation is from Class I, while the GLDGPD 

approximation is from Class II for 10589.0 <<− c . When 1=c , the GEV distribution 

reduces to the reflected exponential distribution (in effect, the GLDGPD with 0== λδ ). 

When 1>c , no GLDGPD approximation is possible from either Class I or II. 

Turning to specific members from the GEV distribution, if 2.03 =τ , then 0463.0−=c  

and the Fréchet distribution is obtained. Its density curve is depicted in Figure 4.22(a), while 

the density curve of the Gumbel distribution, for which 17.03 ≈τ , is given in Figure 4.22(b). 

When 2.03 −=τ , the shape parameter value is 6808.0=c  and, because 0>c , the GEV 

distribution reduces to the reflected Weibull distribution. Figure 4.22(d) shows the density 

curve of the corresponding Weibull distribution with 2.03 =τ . The Rayleigh distribution is a 

special case of the Weibull distribution, obtained when the value of the Weibull distribution’s 

shape parameter is 5.0=c . The Rayleigh distribution’s density curve is shown in Figure 

4.22(c). 

To simplify interpretation, all four members taken from the GEV distribution are 

positively skewed. The parameter estimates of the GLDGPD approximations for these four 

members from the GEV distribution are given in Table 4.8. These approximations’ density 

curves are plotted in Figure 4.22 along with the density curves of the distributions being 

approximated. It is noted that, in general, the GLDGPD approximation of the right tail of each 

distribution is very good. Given the difference in the tail behavior of the Weibull and 

GLDGPD distributions, the GLDGPD approximation in the left tail of the Weibull distribution is 

not good. This is specifically the case when the Weibull distribution is positively skewed 

with 03 >τ . 
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Figure 4.22: Probability density functions of various extreme value distributions, indicated by the solid lines, along with the probability 

density functions of their GLDGPD approximations, indicated by the dashed lines. 

 

4.11.3   GAMMA AND LOG-NORMAL DISTRIBUTIONS 

For the gamma and log-normal distributions, no simple expressions exist for either 3τ  or 4τ . 

For given parameter values, the values for 3τ  and 4τ  can be calculated using the rational-

function approximations given by Hosking & Wallis (1997), or through numerical 

integration, which is done here. 

The gamma distribution is approximated by the GLDGPD from Class II when 10 << c , 

corresponding to 
3
1

30 << τ . The case 2.03 =τ  is shown in Figure 4.23(a) and given in Table 

4.8. The gamma distribution approaches the normal distribution as 0↓c , while the 

exponential distribution (GLDGPD with 1=δ  and 0=λ ) is obtained for 1=c . For 1>c  no 

GLDGPD approximation is possible from Class II. 

The log-normal distribution also approaches the normal distribution as 0↓c . For 

4903.00 << c  the GLDGPD approximation is from Class II, as is for instance the GLDGPD 

approximation presented in Table 4.8 and illustrated in Figure 4.23(b) for the case 2.03 =τ . 
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The GLDGPD approximation is from Class I for 1429.14903.0 ≤≤ c , while no GLDGPD 

approximation is possible from either Class I or Class II if 1429.1>c . 

 

  

Figure 4.23: Probability density functions of the gamma and log-normal distributions, indicated by the solid lines, along with the 

probability density functions of their GLDGPD approximations, indicated by the dashed lines. 

 

4.11.4   GENERALIZED EXPONENTIAL AND LOGISTIC DISTRIBUTIONS 

The generalized exponential distribution with shape parameter 0>c , analyzed by Gupta & 

Kundu (1999, 2007), is approximated by the GLDGPD from Class II for 10 << c . When 

0→c , the generalized exponential distribution approaches the Gumbel distribution, while it 

reduces to the exponential distribution for 1=c . When 1>c , no GLDGPD approximation is 

available from either Class I or Class II of the GLDGPD. In Figure 4.24(a) the GLDGPD 

approximation for 2.03 =τ  and 15.04 =τ  is illustrated, attained for 1672.0=c . 

 

  

Figure 4.24: Probability density functions of the generalized exponential and logistic distributions, indicated by the solid lines, along 

with the probability density functions of their GLDGPD approximations, indicated by the dashed lines. 
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The generalized logistic distribution, introduced by Hosking (1986), is a reparameterized 

version of the log-logistic distribution. It approaches the logistic distribution as 0→c . The 

L-moments of the generalized logistic distribution only exist for 1|| <c . The distribution is 

leptokurtic for all values of c and is hence approximated by the GLDGPD from Class I. Figure 

4.24(b) shows the case 2.043 == ττ  obtained for 2.0−=c . 

 

4.12 CONCLUSION 

Using the quantile function of the GPD with shape parameter λ  as the basic building block, 

the methodology presented in Proposition 2.8.1 in Chapter 2 was applied in this chapter to 

develop a four-parameter quantile-based distribution through the inclusion of a second shape 

parameter, 10 ≤≤ δ , which controls the level of skewness. The proposed quantile-based 

distribution, specified in terms of its quantile function in Definition 4.2.1, is a skewed 

generalization of Tukey’s lambda distribution and hence a type of the GLD, referred to as the 

GPD Type and denoted GLDGPD. The GLDGPD can also be viewed as a generalization of the 

SLD, studied in Chapter 2 and attained from the GLDGPD for 0=λ , with the parameter λ  

controlling the level of kurtosis. 

The distributional properties and shape characteristics of the GLDGPD were explored in 

detail, emphasizing similarities and differences between the GLDGPD and the two types of the 

GLD presented in Chapter 3, the GLDRS and GLDFMKL. Compared to these two types, the 

GLDGPD possesses tractability advantages with respect to skewness and kurtosis. In 

particular, the L-kurtosis ratio as well as the quantile-based kurtosis measures of the GLDGPD 

are skewness-invariant. As a result, parameter estimation for the GLDGPD is straightforward. 

Closed-form expressions exist for the method of L-moments estimators of the parameters of 

the GLDGPD, as well as for these estimators’ asymptotic standard errors. This is not the case 

for any estimation method of either the GLDRS or the GLDFMKL. 

 

4.13 DERIVATIONS 

This section contains derivations for the GLDGPD, specifically for 0≠λ . The equivalent 

derivations for 0=λ , that is, for the SLD, were done in Section 2.13 in Chapter 2. Formulae 

for the mean, the variance and the skewness and kurtosis moment ratios of the GLDGPD are 

derived in Section 4.13.1. In Section 4.13.2 the minimum value of the L-kurtosis ratio for the 
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GLDGPD is obtained. The derivation of the covariance matrix for the method of L-moments 

estimators of the GLDGPD is done in Section 4.13.2. 

 

4.13.1   MOMENTS OF GLDGPD 

Theorem 4.13.1 

Let X be a real-valued random variable with distribution given by the GPD Type of the GLD, 

denoted ),,,(GLD~ GPD λδβαX , where α  is a location parameter, 0>β  is a scale 

parameter and 10 ≤≤ δ  and λ  are shape parameters. The mean, variance, skewness moment 

ratio and kurtosis moment ratio of X are given by (4.7) to (4.10). 

 

Proof 

The mean, variance, skewness moment ratio and kurtosis moment ratio for the GLDGPD with 

0=λ , in effect, the SLD, were derived in Section 2.13.1 of Chapter 2. So here only the 

derivation of the moments for 0≠λ  is done. 

The quantile function of the GLDGPD with 0≠λ , given in (4.4), can be rewritten as 
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Then the quantile function of Z is 
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Using the binomial series, ∑
=

−


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k

rr
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0

)( , Gradshteyn & Ryzhik (2007, 1.111), and 

the beta function, ),( baΒ , (see Section 2.14.1 in Chapter 2 for details), 
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But ),( baΒ  converges if and only if 0>a  and 0>b , so ][
r

ZE  exists if and only if 

01)( >+− krλ  and 01 >+kλ  for rk ...,,1,0= . In effect, ][
r

ZE  and hence the r
th

 order 

uncorrected moment as well as the r
th

 order corrected moment of the GLDGPD exist if and 

only if 
r

1−>λ . 

In particular, using 
1
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aa  for 1−>a , the first four uncorrected 

moments of Z are  
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. 

Since ZX βα
~~ += , with α~  and β

~
 given in (4.36) and (4.37) respectively, the first four 

uncorrected moments of X are 
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The first four corrected moments of X are then 

 [ ] 0][1 =−= XEXEµ , 
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and 
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where each moment’s final expression is found after substantial simplification. The mean and 

variance of X for 0≠λ  in (4.7) and (4.8) are given by 1µµ ′=  in (4.38) and 2
2 µσ =  in 

(4.39) respectively, and the skewness and kurtosis moment ratios of X for 0≠λ  in (4.9) and 

(4.10) are obtained by substituting the expressions for 3µ  in (4.40) and 4µ  in (4.41) into 

(2.18). 

■ 

 

4.13.2   MINIMUM VALUE OF L-KURTOSIS RATIO FOR GLDGPD 

Theorem 4.13.2 

Suppose X is a real-valued random variable whose distribution is the GPD Type of the GLD, 

denoted ),,,(GLD~ GPD λδβαX , where α  is a location parameter, 0>β  is a scale 
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parameter and 10 ≤≤ δ  and λ  are shape parameters. The minimum value of the L-kurtosis 

ratio for the GLDGPD is given by 
min
4τ  in (4.17) for λ

~
 in (4.18).  

 

Proof 

The derivative of the expression for the L-kurtosis ratio for the GLDGPD, given in (4.16), with 

respect to λ  is 
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λλλ
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d

d
.        (4.42) 

Setting (4.42) equal to zero and simplifying gives 

 0522 =−+ λλ . 

Solving then for λ  gives 

 61±−=λ , 

but, since 4τ  only exists for 1−>λ , it follows that the minimum value of 4τ  is obtained for 

λ
~

 given in (4.18). This minimum value, 
min
4τ , is calculated by substituting (4.18) into (4.16). 

■ 

 

4.13.3   COVARIANCE MATRIX FOR METHOD OF L-MOMENTS ESTIMATORS OF GLDGPD 

Lemma 4.13.1 

The derivation of the covariance matrix for the method of L-moments estimators of the 

GLDGPD requires the solving of the double integral 
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    (4.43) 

for 5,4,3,2=j , 3,2,1,0,1−=k  and 1,0=ι , where ),( bazΒ  is the incomplete beta function 

(see Section 2.14.1). Following Gradshteyn & Ryzhik (2007, 8.391), 

 );1;1,(),( vjjFj
j

v
v

j

+−=Β λλ ,      (4.44) 

where );;,( zcbaF  is the hypergeometric series (see Section 2.14.1 in Chapter 2). Since 

 );1;,1()1();1;1,( vjjFvvjjF ++−=+− λλ λ
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from Gradshteyn & Ryzhik (2007, 9.131.1), the incomplete beta function in (4.44) can be 

rewritten as 
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.     (4.45) 

Because the first argument of the hypergeometric series in (4.45) is one, this function can be 

written as the sum of the ratios of gamma functions. That is, 
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where )(aΓ  is the gamma function (see Section 2.14.1 in Chapter 2). Thus, 
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Setting jim +=  in (4.46) and simplifying gives 
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where Gradshteyn & Ryzhik (2007, 9.121.1) is used in the final result in (4.47). Therefore, 
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where 
)(

)()(
),(

ba

ba
ba

+Γ

ΓΓ
=Β  is the beta function (see again Section 2.14.1). In effect, the 

incomplete beta function can be expressed in terms of beta functions. 

Substituting (4.48) into (4.43) gives 
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Specifically 
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■ 

 

Theorem 4.13.3 

Let X be a real-valued random variable which has the GPD Type of the GLD, denoted 

),,,(GLD~ GPD λδβαX , with method of L-moments estimators for the location parameter, 

α , scale parameter, 0>β , and shape parameters, 10 ≤≤ δ  and λ , given by Aα̂  in (4.24), 

Aβ̂  in (4.25), Aδ̂  in (4.26) and Aλ̂  in (4.27) for Region A of the GLDGPD, and by Bα̂  in 

(4.28), Bβ̂  in (4.29), Bδ̂  in (4.30) and Bλ̂  in (4.31) for Region B of the GLDGPD. Given that 

the variance of the GLDGPD is finite, in effect, given 
2
1−>λ , the asymptotic standard errors 

of hα̂ , hβ̂ , hδ̂  and hλ̂  for BAh ,=  are given by (4.32), (4.33), (4.34) and (4.35). 
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Proof 

The asymptotic variances of hα̂ , hβ̂ , hδ̂  and hλ̂  for BAh ,=  are obtained with  
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that is, by determining the elements of the covariance matrix T
GGΛ=Θ . The elements of the 

symmetric matrix 
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are derived with (2.62), using the quantile density function of the GLDGPD in (4.5) and the 

shifted Legendre polynomials )(*
0 xP , )(*

1 xP , )(*
2 xP  and )(

*
3 xP  given in (2.89) to (2.92). For 

example, 
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with 198 4
2
4 ++=Τ tt  and where the final result of each non-constant partial derivative is 

obtained using (4.14), (4.15) and (4.16) and simplifying. We note that the partial derivatives, 

and therefore the matrix G, are the same for Regions A and B, even though the expressions 

for the method of L-moments estimators in the two regions differ – compare (4.24) to (4.27) 

for Region A with (4.28) to (4.31) for Region B. As a result, the asymptotic variances of the 

estimators are the same for both regions. 

Finally expressions for the elements of the covariance matrix Θ  can be determined by 

solving T
GGΛ=Θ . Unfortunately these expressions are extremely complex and are hence 

not presented here in full. See (4.32), (4.33), (4.34) and (4.35) for the expressions of the 

asymptotic standard errors of the method of L-moments estimators in both regions. 

It is important to verify the parameter values of the GLDGPD for which the covariance 

matrix Θ  is valid. Firstly, the variance of the GLDGPD must be finite, thus 
2
1−>λ . Note 

though that convergence of the integrals in (4.49) in Lemma 4.13.1 requires that 

01 >++ kιλ  for 1,0=ι  and 1−≥k , in effect, that 0>λ . However, the expressions 

obtained for the elements of Λ  are analytic functions for all 
2
1−>λ . Thus, by analytic 

continuation, the expressions for the elements of Λ  are valid solutions of (2.62) for 
2
1−>λ . 
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See Gradshteyn & Ryzhik (2007, 9.154) for details regarding analytic continuation by means 

of the hypergeometric series, and Hosking et al. (1985) who utilized analytic continuation 

with respect to the derivation of Λ  and Θ  for the generalized extreme value distribution. 

Recall that the GLDGPD simplifies to the SLD for 0=λ . The covariance matrix Θ  for this 

limiting case was derived in Section 2.13.2 in Chapter 2. 

In the matrix G, the partial derivatives of α  and δ  with respect to 3L  and 4L  only exist 

for 1≠λ . Consequently all the elements of Θ , apart from 2,2Θ , 2,44,2 Θ=Θ  and 4,4Θ , only 

exist for 1≠λ . In particular, the standard errors of the method of L-moments estimators of α  

and δ  in (4.34) and (4.36) require that 1≠λ . But, when 1=λ , the uniform distribution is 

obtained from the GLDGPD. Hosking (1986) can be consulted regarding results for the 

uniform distribution. 

Finally, the partial derivatives of α , β , δ  and λ  with respect to 2L  and 4L  in the 

matrix G only exist if 0522 ≠−+ λλ . As shown in Section 4.13.2, 0522 =−+ λλ  for 

λλ
~

=  in (4.18). So, for the GLDGPD with λλ
~

= , expressions for the elements of the 

covariance matrix Θ  do not exist. 

■ 
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__________________________________________ 

 

5. CONCLUSION 

__________________________________________ 
 

This thesis presented techniques, functions and measures to develop and fit distributions in 

the quantile statistical universe. While the bulk of the thesis is centered on a new type of the 

generalized lambda distribution (GLD), the application of the method used to derive it, 

extends much broader than the GLD. 

 

5.1 CONSTRUCTION OF QUANTILE-BASED FAMILIES OF DISTRIBUTIONS 

Chapter 2 of the thesis showed that new distributions can be created through the 

transformation of quantile functions. Specifically a methodology was proposed for the 

construction of quantile-based families of distributions. The benefit of this methodology, 

proved in Proposition 2.8.1, is that it generates distributions with skewness-invariant 

measures of kurtosis. Therefore the skewness and kurtosis can be identified and analyzed 

separately. Furthermore, parameter estimation is straightforward in that closed-form 

expressions are available for the parameter estimators. 

 

5.2 CONSTRUCTION OF THE GPD TYPE OF THE GLD 

The quantile function of any asymmetric distribution on bounded or half-infinite support can 

be employed as the basic building block in the application of the methodology of Proposition 

2.8.1. In Chapter 4, the quantile function of the generalized Pareto distribution (GPD) was 

used as the basic building block. The resulting quantile-based distribution is a new type of the 

GLD, labeled the GPD Type. 

Akin to the Ramberg-Schmeiser (RS) and Freimer-Mudholkar-Kollia-Lin (FMKL) Types 

of the GLD, described in detail in Chapter 3, the GPD Type of the GLD is a four-parameter 

generalization of Tukey’s lambda distribution, possessing, apart from location and scale 

parameters, two shape parameters. The main difference between the GPD Type and the RS 

and FMKL Types is in terms of the way in which each type’s skewness and kurtosis are 

described by their shape parameters. Whereas the two shape parameters of the other types 

jointly explain the skewness and kurtosis, irrespective of the shape measures considered, the  
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kurtosis of the GPD Type, when measured by its L-kurtosis ratio or its quantile-based 

kurtosis measures (including its kurtosis functionals), is fully described by just one of the two 

shape parameters. That is, the L-kurtosis ratio as well as the quantile-based kurtosis measures 

of the GPD Type are skewness-invariant. 

Chapter 4 showed that it is convenient to characterize the GPD Type through its L-

moments. Furthermore, as a result of the L-kurtosis ratio’s skewness-invariance, the method 

of L-moments estimators for the parameters of the GPD Type have closed-form expressions. 

The asymptotic standard errors of these estimators also have closed-form expressions. 

Neither the RS nor the FMKL Type of the GLD possesses closed-form expressions for the 

estimators of any of their estimation methods. 

 

5.3 THEORETICAL DEVELOPMENT AND PRACTICAL UTILIZATION 

The simple relationship between the parameters and the L-moments of the GPD Type and the 

ease with which its parameters can be estimated using method of L-moments estimation, 

ensure that this new type of the GLD is a valuable addition to Tukey’s lambda family of 

distributions with respect to theoretical development in quantile modeling as well as practical 

utilization.  

For instance, quantile-based reliability analysis has become a popular alternative to the 

classical approach of using distribution functions in reliability theory. See for example the 

recent book by Nair et al. (2013a) as well as the articles by Sunoj & Sankaran (2012), Sunoj 

et al. (2013) and Nair et al. (2013b, 2013c). The GPD Type of the GLD is one of the 

quantile-based distributions included and considered in Nair et al. (2013a, 2013b, 2013c).  

Note that the GPD Type is named the van Staden-Loots distribution by these authors, 

citing van Staden & Loots (2009a), and that they denote its parameters by 1λ , 2λ , 3λ  and 4λ  

instead of α , β , δ  and λ . However, given that, compared to the shape parameters of the 

RS and FMKL Types, the shape parameters of the GPD Type relate in a completely different 

way to the GLD’s shape, it is preferable to denote its parameters as done in this thesis. 

Turning to practical utilization, Chapter 4 showed how, using method of L-moments 

estimation, the GPD Type of the GLD can be fitted to data sets and be used to approximate 

probability distributions. Another important application of the GLD is the generation of 

random variables in Monte Carlo simulation studies (Section 3.14). Recall from Section 

3.14.3 that the GLD’s ability to approximate probability distributions provides one way of 

selecting the members of the GLD to be used in the simulation study. Therefore, in 
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evaluating the ability of LULU smoothers for signals to remove different noise types, Fabris-

Rotelli et al. (2010) used the GPD Type of the GLD to simulate noise from eight selected 

distributions. 

 

5.4 FUTURE RESEARCH 

The focus of this thesis was on Tukey’s lambda family of distributions and the development 

of the GPD Type of the GLD. Obviously the methodology presented in Proposition 2.8.1 

allows for the construction of other generalized families of quantile-based distributions. The 

only restrictions are that the support of the asymmetric distribution, whose quantile function 

is used as the building block, must be bounded or half-infinite, and that the quantile function 

of this chosen asymmetric distribution should have a simple closed-form expression. It is 

furthermore beneficial for parameter estimation if the expressions for this asymmetric 

distribution’s L-moments are also of a simple form. 

Given that the method of L-moments estimators for the GPD Type have closed-form 

expressions, method of L-moments estimation is the preferred estimation method. Recall 

though that, as with the RS and FMKL Types, the L-moments of the GPD Type do not exist 

for all parameter values. The development of other estimation methods for the GPD Type, 

which do not place restrictions on the parameter values, would be worth consideration. This 

includes the use of shape functionals and the starship method. 

Since the GPD was used as the building block for the construction of the GPD Type of 

the GLD, it would be of interest to investigate the application of this type of the GLD in 

extreme event analysis. This analysis would include the modeling of exceedances above a 

threshold and hence the modeling of high quantiles. 

Turning to model validation, in this thesis goodness-of-fit tests based on the empirical 

distribution function were used. Because expressions for the cumulative distribution 

functions of quantile-based distributions are not available in closed form, one has to compute 

the empirical distribution function numerically. This computational problem can be 

circumvented by utilizing tests based on the empirical quantile function, briefly presented in 

Chapter 5 of Thas (2010). Alternatively, smooth tests for goodness-of-fit, discussed in detail 

by Rayner et al. (2009), can be used. 

As commented in Chapter 3, parameter estimation for the RS and FMKL Types of the 

GLD is computationally demanding, requiring the use of numerical optimization techniques. 

Therefore, to fit either the RS or FMKL Types to data, one must have the programming skills 
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to program the necessary software code oneself, or alternatively have access to statistical 

software packages containing the code needed, such as the gld (King, 2013) and GLDEX 

(Su, 2007a, 2012) packages in R. In contrast, because of the existence of closed-from 

expressions for the estimators and their asymptotic standard errors, the estimation algorithm 

for estimating the parameters of the GPD Type is extremely simple to apply and can be done 

with any standard software package, including spreadsheets. Nonetheless, the inclusion of the 

GPD Type into the gld package in R is an important priority. 
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