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ABSTRACT

This thesis develops a methodology for the construction of generalized families of probability
distributions in the quantile statistical universe, that is, distributions specified in terms of their
quantile functions. The main benefit of the proposed methodology is that it generates
quantile-based distributions with skewness-invariant measures of kurtosis. The skewness and
kurtosis can therefore be identified and analyzed separately.

The key contribution of this thesis is the development of a new type of the generalized
lambda distribution (GLD), using the quantile function of the generalized Pareto distribution
as the basic building block (in the literature each different type of the GLD is incorrectly
referred to as a parameterization of the GLD — in this thesis the term type is used). The
parameters of this new type can, contrary to existing types, easily be estimated with method
of L-moments estimation, since closed-form expressions are available for the estimators as
well as for their asymptotic standard errors. The parameter space and the shape properties of
the new type are discussed in detail, including its characterization through L-moments. A
simple estimation algorithm is presented and utilization of the new type in terms of data

fitting and approximation of probability distributions is illustrated.

KEYWORDS

Generalized lambda distribution; L-moment; Quantile function; Skewness-invariant measure

of kurtosis
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1. INTRODUCTION

1.1 AIMS AND OBJECTIVES

The main aim of this thesis is the development of a methodology for the construction of
quantile-based families of distributions possessing skewness-invariant kurtosis measures.
With this methodology, specified and proved in Proposition 2.8.1 in Chapter 2, the quantile
function of a generalized quantile-based distribution is obtained by taking the weighted sum
of the quantile function of an asymmetric distribution on bounded or half-infinite support and
the quantile function of the reflection of this asymmetric distribution.

The methodology is utilized to build a new type of the generalized lambda distribution,
defined in Definition 4.2.1 in Chapter 4. The parameters of this new type can, contrary to
existing types, easily be estimated with method of L-moments estimation, since closed-form

expressions are available for the estimators as well as for their asymptotic standard errors.

1.2 FAMILIES OF DISTRIBUTIONS

As part of the development of continuous univariate distributions, the construction of
generalized families of probability distributions has featured prominently in the literature.
These distributional families include, amongst others, the Pearson family (Pearson, 1895), the
Burr family (Burr, 1942, 1968, 1973; Burr & Cislak, 1968) and the family of S distributions
(Voit, 1992), where each of these families is defined through a differential equation.
Examples of transformation-based families of distributions are the Johnson families, which
include transformations to the normal distribution (Johnson, 1949), Laplace distribution
(Johnson, 1954) and logistic distribution (Tadikamalla & Johnson, 1982), the kappa family of
distributions (Mielke, 1973; Hosking, 1994), which include transformations from the
exponential, Gumbel and logistic distributions, and Tukey’s lambda family of distributions
(Hastings et al., 1947; Tukey, 1960, 1962; Ramberg & Schmeiser, 1972, 1974; Freimer et al.,

1988) obtained through transformation of the uniform distribution.
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A central motivation for using these various families of distributions is their ability to
explain and control extensive levels of skewness and kurtosis and, by doing so, providing
approximations to a wide variety of observed distributions and data sets. The flexibility in
distributional shape allowed by these families is accomplished through the inclusion of at
least two shape parameters. Usually two shape parameters are sufficient, since the gain in
flexibility afforded by additional shape parameters seldom warrants the increase in
complexity of computation and mathematical manipulation. Hence, including also location
and scale parameters for describing location and spread, each family typically possesses four

parameters.

1.3 TUKEY'S LAMBDA FAMILY OF DISTRIBUTIONS

Among the distributional families listed above, Tukey’s lambda family of distributions is
unique in two ways. Firstly, this family is defined exclusively through its quantile function,
also known as the inverse cumulative distribution function, and is therefore a quantile-based
distribution. No closed-form expressions exist for either its probability density function or
cumulative distribution function. Consequently exploration and utilization of this family are
in some ways more challenging. However, there are also distinctive opportunities available
by modeling the family through its quantile function.

Secondly, all the members from any selected type from the lambda family possess a
single functional form given by that type’s quantile function. In contrast, different members
of the other listed families in Section 1.2 have different functional forms. A single functional
form is beneficial in that one does not need to move from one function to another when
exploring different distributional shapes.

Collectively the various generalizations of the lambda family are referred to as the
generalized lambda distribution (GLD), where each generalization is a distinct type.
Unfortunately in the literature each different type of the GLD is incorrectly referred to as a
“parameterization” of the GLD. When a distribution has different parameterizations, the
parameters of the one parameterization can be transformed to the parameters of the other
parameterization and vice versa. For example, the uniform distribution can be parameterized
by its minimum and maximum parameters, a and b, or by its location and scale parameters,

a=a and B =b—a. With the GLD there exist no simple transformations between different

“parameterizations”. Therefore in this thesis the term “type” is used instead of the term

“parameterization’.
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The two types of the GLD by Ramberg & Schmeiser (1972, 1974) and by Freimer et al.
(1988), labeled the Ramberg-Schmeiser (RS) and the Freimer-Mudholkar-Kollia-Lin
(FMKL) Types respectively, have become the types of choice in theoretical development as
well as practical application. A drawback of both these types is that parameter estimation is
computationally difficult. Various estimation methodologies have been proposed in the
literature, but none of these methodologies yield closed-form expressions for the parameters’
estimators. This is firstly due to the absence of closed-form expressions for the GLD’s
probability density and cumulative distribution functions, and secondly because of the
complex relation between the shape parameters and the shape characteristics of the GLD
(which is not unique to this family). In particular, with the RS and FMKL Types of the GLD,
the two shape parameters jointly explain the skewness and kurtosis. Numerical optimization
techniques are therefore required for all of the proposed estimation methods.

A key contribution of this thesis is the construction of an alternative type of the GLD for
which closed-form expressions for method of L-moments estimators are available. The
problem of parameter estimation is therefore approached from a different angle by, instead of
developing another new estimation method, developing a type for which method of L-
moments estimation yields closed-form expressions for the estimators. This new type of the
GLD utilizes a linkage existing between Tukey’s lambda distribution and the generalized
Pareto distribution (GPD). The history of the development of this type of the GLD, labeled
the GPD Type in the rest of the thesis, is briefly outlined below.

1.4 INITIAL DEVELOPMENT OF THE NEW TYPE OF THE GLD

In 2008, M.T. (Theodor) Loots completed his Honors Essay under my supervision, focusing
on the theory and application of L-moments (Loots, 2008). To illustrate the interpretation of
L-skewness, Loots utilized the skew logistic distribution (SLD) of Gilchrist (2000), while he
used Tukey’s lambda distribution (Hastings et al., 1947; Tukey, 1960, 1962) to demonstrate
the interpretation of L-kurtosis. The SLD has a single shape parameter controlling the L-
skewness ratio and has a constant value for its L-kurtosis ratio. Tukey’s lambda distribution is
symmetric and its shape parameter controls the L-kurtosis ratio.

Upon noting furthermore that the expressions for the L-kurtosis ratios of Tukey’s lambda
distribution and the GPD are exactly the same, we realized that a new type of the GLD could
be constructed from the GPD. In the resulting GPD Type of the GLD, the shape properties of
both the SLD and Tukey’s lambda distribution are incorporated. Specifically the L-kurtosis
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ratio of the GPD Type is explained by just one of its shape parameters. As a result, the GPD
Type has closed-form expressions for method of L-moments estimation. Basic results for the
GPD Type of the GLD were given in van Staden & Loots (2009a).

Subsequently, exploring the distributional properties of the GPD Type in more depth, it
was found that the quantile-based measures of kurtosis of this type also exhibit skewness-
invariance. This led to the development of a general methodology for the construction of
families of quantile-based distributions with skewness-invariant kurtosis measures. The GPD

Type of the GLD is an example of such a quantile-based distribution.

1.5 OUTLINE OF THESIS

Chapter 2 explores the techniques, functions and measures used in the modeling and
description of quantile-based distributions. The focus is on the building of new distributional
models through the transformation of quantile functions. The measuring and description of
the location, spread and shape of distributions through L-moments, developed by Hosking
(1990), as well as quantile-based measures are explained. The concept of skewness-invariant
measures of kurtosis is discussed and in the main result of the thesis, Proposition 2.8.1, a
methodology is presented for the creation of quantile-based distributions with skewness-
invariant kurtosis measures.

Chapter 3 focuses on the GLD, a well established quantile-based distribution. Specifically
the functions, measures and properties of the RS and FMKL Types of the GLD are examined.
Where necessary, results not appearing in the literature before, such as the characterization of
the FMKL Type by L-moments, are presented.

Chapter 4 uses the model construction methodology proposed in Proposition 2.8.1 of
Chapter 2 to add to the existing types of the GLD a new type which has considerably simpler
expressions for its L-moments. A detailed analysis of this new type of the GLD, specified in
terms of its quantile function in Definiton 4.2.1, is presented. In particular, due to the
simplicity of their expressions, the new type of the GLD is characterized through its L-
moments. The shape characteristics of this type of the GLD is examined, focusing on the
skewness-invariance of its L-kurtosis ratio as well as its quantile-based kurtosis measures.
The use of method of L-moments estimation is advocated, with an estimation algorithm for
computing method of L-moments estimates presented.

Chapter 5 summarises the main findings of the thesis and provides recommendations for

further development in the area of quantile modeling.

© University of Pretoria



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 1. INTRODUCTION

1.6 CONTRIBUTIONS OF THESIS

As indicated in Section 1.1, the main contributions of this thesis are the development of a
methodology for the construction of quantile-based families of distributions possessing
skewness-invariant kurtosis measures, and the utilization of this methodology to create a new
type of the GLD with closed-form expressions for its parameter estimators and their standard
errors. Apart from these main contributions, the other new contributions from each chapter

are listed below.

Chapter 2

@ A new quantile-based measure of kurtosis, named the x -functional, is introduced in
Section 2.6. The x -functional is related to the ratio-of-spread functions, proposed by
MacGillivray & Balanda (1988), but has the added advantage of being a bounded kurtosis
functional, hence simplifying interpretation.

@ In Section 2.7 a decomposition for the spread function governing the existence of
skewness-invariant kurtosis measures is formulated.

@ It is shown in Section 2.7 that the logistic-exponential distribution, introduced by Lan &
Leemis (2008), has skewness-invariant kurtosis measures.

@ Formulae for the moments of the SLD of Gilchrist (2000) are listed in Section 2.4, with
the derivations of these formulae presented in Section 2.13.1.

@ In Section 2.6 expressions for the SLD’s quantile-based measures of location, spread and
shape are presented. As indicated in Section 2.7, the quantile-based kurtosis measures of
the SLD are skewness-invariant.

@ Expressions for the SLD’s L-moments are presented in Section 2.8. In Section 2.9 an
estimation algorithm for method of L-moments estimation for the SLD is given. In this
algorithm, closed-form expressions for the method of L-moments estimators are specified,
as are closed-form expressions for their asymptotic standard errors, derived in Section

2.13.2.

Chapter 3
@ The complete set of formulae for the moments of the FMKL Type of the GLD is given in
Section 3.6. Formulae for the moments of the limiting cases of the FMKL Type are

derived in Section 3.17.1.
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@ In Section 3.7 the FMKL Type is characterized through its L-moments, whose
expressions are derived in Section 3.17.2.

Chapter 4

@ Formulae for the moments of the GPD Type of the GLD are given in Section 4.5. These
formulae are derived in Section 4.13.1.

@ In Section 4.6 the GPD Type of the GLD is characterized through its L-moments.

@ Expressions for the quantile-based measures of location, spread and shape for the GPD
Type of the GLD are listed in Section 4.7. It is shown that the quantile-based kurtosis
measures are skewness-invariant.

@ In Sections 4.4 and 4.8 a comprehensive analysis of the distributional properties and
shape characteristics of the GPD Type of the GLD is done.

@ An estimation algorithm for method of L-moments estimation for the GPD Type of the

GLD is given in Section 4.9. Closed-form expressions for the method of L-moments
estimators as well as their asymptotic standard errors are presented. The expressions for

the asymptotic standard errors are derived in Section 4.13.3.
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2.1 INTRODUCTION

In statistical modeling the various functions utilized for specifying the probability
distributions of random variables can be divided into two distinct categories. The first
category contains functions based on the classical concepts of densities and probabilities and
is hence labeled the classical statistical universe. Functions based on quantiles belong to the
second category and provide an alternative yet complementary view to the functions in the
classical statistical universe. The second category is called the quantile statistical universe
and is the focus of this thesis.

The functions in the classical statistical universe played a central role in the development
of the foundations of mathematical statistics in the late 1800s and early 1900s, in which the
ideas of Pearson (1894, 1895) featured prominently (thence the use of the term classical to
describe their universe). These functions’ properties and their use in statistical modeling are
well-documented. Standard textbooks on mathematical statistics such as Bain & Engelhardt
(1992), the books on probability distributions by Johnson et al. (1994, 1995) and
Balakrishnan & Nevzorov (2003) and also the monograph of Stuart & Ord (1994) on
distribution theory can be consulted for details.

Quantiles were formally introduced by Galton (1881), but their use in statistical modeling
only became more prominent in the 1960s and 1970s with Parzen and Tukey the pioneers. In
particular, Parzen (1979) presented a seminal discussion on the use of quantile-based
functions, measures and methods in statistical modeling, incorporating and extending ideas
from Tukey (1962, 1965, 1977). More recently Gilchrist (2000) presented a detailed book-
length account on statistical modeling in the quantile statistical universe, which will
henceforth simply be referred to as quantile modeling. Lampasi (2008) discussed the
quantile-based approach to measurement activities and applications. He was the first to refer

to the two categories as universes.
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In this chapter procedures applicable to and utilized in the quantile statistical universe are
presented. In Section 2.2 the probability-based and quantile-based functions from the
respective statistical universes are given. As highlighted by Lampasi (2008), and shown in
Figure 2.1, it is possible to move from one statistical universe to the other. Each statististical
universe has unique strengths and weaknesses. Specifically functions from the quantile
statistical universe can be used to build new distributional models with a set of construction
rules discussed in Section 2.3.

While functions in terms of probabilities or quantiles are used to specify probability
distributions, the description of the characteristics of probability distributions, such as
location, spread, skewness and kurtosis, are done with measures, which include the well-
known moments considered in Section 2.4. Alternative measures called L-moments, which
are based on order statistics, and measures based on quantiles are discussed in Sections 2.5
and 2.6 respectively. It is shown that, in the quantile statistical universe, these measures are
often easier to deal with than moments. A new bounded measure of kurtosis, labeled the x -
functional, is proposed in Section 2.6. The concept of skewness-invariant measures of
kurtosis is explained in Section 2.7.

The main result in the thesis is presented in Proposition 2.8.1 in Section 2.8. This
proposition outlines a methodology for the construction of generalized families of quantile-
based distributions with skewness-invariant measures of kurtosis. Three- and four-parameter
distributions constructed with this methodology possess closed-form expressions for
estimation methods based upon L-moments from Section 2.5 and, in the case of three-
parameter distributions, closed-form expressions for estimation methods predicated on
quantile-based measures in Section 2.6.

In this thesis method of L-moments estimation is utilized. Therefore a discussion on this
estimation method is given in Section 2.9. Model validation is considered in Section 2.10. In
Section 2.11 it is explained how the tail behavior of quantile-based distributions is analyzed.
Concluding remarks are given in Section 2.12.

Throughout Chapter 2 a special quantile-based distribution, the skew logistic distribution
of Gilchrist (2000), is used to illustrate the various concepts discussed. Many of the results
for the skew logistic distribution given and derived in this chapter are new, including the
expressions for its moments in Example 2.4.1, its quantile-based measures for location,
spread and shape in Example 2.6.1, and its L-moments in Example 2.8.1, as well as the
expressions for the skew logistic distribution’s method of L-moments estimators and their

asymptotic standard errors presented in the estimation algorithm in Example 2.9.1. In
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particular the expressions for the moments of the skew logistic distribution are derived in
Section 2.13.1, while the covariance matrix for the method of L-moments estimators is
derived in Section 2.13.2.

Appendix 2.14 contains information regarding mathematical functions and ratios
occurring in some of the expressions and derivations in the thesis. This information is
summarized in a table in Section 2.14.1. Because shifted Legendre polynomials appear
prominently in the formuale of L-moments, a brief discussion on these polynomials is
presented in Section 2.14.2.

In Section 2.14.3 of Appendix 2.14 an extensive set of tables summarizing the properties,
functions and expressions of various probability distributions is given. Full discussions of
these distributions are beyond the scope of this thesis. The set of tables is included as a
reference resource and combines information collected and derived while doing literature

research for the thesis.

2.2 CLASSICAL AND QUANTILE STATISTICAL UNIVERSES

As indicated in the introduction in Section 2.1, each of the functions for specifying the
probability distribution of a random variable X belongs to one of two complementary

statistical universes, the classical statistical universe and the quantile statistical universe.

2.2.1 CLASSICAL STATISTICAL UNIVERSE

The classical statistical universe contains probability-based functions defined in terms of x.

As demonstrated in Figure 2.1, these functions include the cumulative distribution function,
F(x)=P(X<x), —oco<x<oo,

and, if X has an absolutely continuous distribution, the probability density function,

f(x)=%, —o< x< o0,

2.2.2 QUANTILE STATISTICAL UNIVERSE
In the quantile statistical universe the distribution of X is specified with quantile-based

functions expressed in terms of p, where 0 < p <1. The most prominent of these functions is
the quantile function, Q(p), defined for a random variable X with cumulative distribution

function F(x) by

Q(p) =inf{x: F(x)> p}, 0<p<l.
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The fundamental relation between the cumulative distribution function and the quantile

function is that, for —coc< x <o and 0< p<1,

Fx)z2pe=Q0(p)<x. 2.1

Classical
statistical universe

@ Derivative

Figure 2.1: The relations between the functions in the classical statistical universe and the quantile statistical universe.

Quantile
statistical universe

Inverse

Integral

Derivative

Reciprocal

When X has an absolutely continuous distribution, then
Q(p)=inf{x: F(x)=p}, 0<p<l,

and F (Q( p))= p so that Q(p) = F~'(p). Thus, if X is a real-valued random variable, then
the quantile function is the inverse of the cumulative distribution function and Q(p) is

therefore often referred to as the inverse cumulative distribution function. As illustrated in
Figure 2.1, the classical and quantile statistical universes are connected through this inverse
relationship between the cumulative distribution function and the quantile function.

Two other important quantile-based functions are obtained through differentiation of
O(p) and of F(Q(p))=p. The quantile density function is the derivative of the quantile

function (see Figure 2.1),

, O<p<l.

d
) =2

Taking derivatives on both sides of F(Q(p))=p gives

W) = 1(0(p)g(p) = £,(P)a(p) =1. (2.2)
where
f,(p)=f(p), 0<p<l,

called the density quantile function, is the density function for the distribution of X expressed

in terms of p instead of x. In effect, f(x) is the density function in the classical statistical

10
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universe, while f,(p) is the corresponding density function in the quantile statistical

universe. It follows from (2.2) that

=1
fp(p) - q(p) s
so the density quantile function and the quantile density function are reciprocals of each other
(see again Figure 2.1).

Since F(x) is a non-decreasing function with

lim F(x)=0

X—>—oo
and

lim F(x)=1,

X—>00

Q(p) is a non-decreasing function over the interval 0 < p <1. Consequently both g(p) and

f,(p) are non-negative over the interval 0< p<1.

2.2.3 PROBABILITY-BASED AND QUANTILE-BASED FUNCTIONS OF DISTRIBUTIONS

All the probability-based and quantile-based functions in the two statistical universes exist for
any absolutely continuous distribution. Table 2.11 and Table 2.12 in Section 2.14.3 of
Appendix 2.14 present expressions for various distributions’ functions from the classical
statistical universe and the quantile statistical universe respectively. Details regarding the
parameters and support as well as references for all the distributions covered in Tables 2.11
and 2.12 are listed in Table 2.10 in Section 2.14.3.

Table 2.1 summarizes the expressions for the probability-based and quantile-based
functions of the uniform, exponential and logistic distributions, which are examples used to
represent distributions with bounded, half-infinite and infinite support. The expressions are
presented in location-scale form (to be explained in Section 2.2.5). The simplicity of their
quantile-based functions allows these three distributions to play prominent roles in theoretical
development in the quantile statistical universe. Hence, where applicable, these distributions
are used in the rest of the chapter to illustrate various concepts. Figure 2.2 depicts the
probability-based functions of these three distributions graphically, while their quantile-based
functions are shown in Figure 2.3. In order to facilitate easy comparison in Figures 2.2 and
2.3, the location and spread of the three distributions have been made equivalent in the

various graphs by setting L, =0 and L, =1 for all three distributions (L, and L, are

respectively the L-location and L-scale to be discussed in Section 2.5).

11
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Table 2.1: Functions defining the uniform, exponential and logistic distributions.
Function Uniform Exponential Logistic
1
. Lo . . - —a Fx)=————F——"—=
Cumulative distribution function Flo=-3 F(x)=1-exp|—|- a
B 1+exp| —| 45
)
Probability density function fx)= % fx)= %exp[— ( X;I ﬂ f= 5 3
[1 + exp{— ( "ﬁ“jD
Quantile function O(p)=a+pBp O(p)=a- plog(l-p] O(p)=a+ ﬁlOg[ﬁ}
Quantile density function qp)=p4 q(p) = L q(p)= —£_
sty -7 p0=p)
Density quantile function fpr(p)= % fpr(p)= I_Tp fp(p)= %
(a) Cumulative distribution functions (b) Probabilty density functions
ot == 0.5 \
\
Uniform \
—————— Exponential \\
08 . _._._. Logistic 04 “
\
\

0.6 0.3 Y
P - \
2 2 Mo
= = . )\' T N

0.4 0.2 RN

4 N \‘
, N N \
0.2 0.1 ./' DR
0.0 s 00t "~ hew
-4 -2 0 2 4 -4 -2 0 2 4
X X

Figure 2.2: Cumulative distribution and probability density functions of the uniform, exponential and logistic distributions, all with

L;=0 and L, =1. The line types indicated in graph (a) also apply to graph (b).

The uniform, exponential and logistic distributions are examples of distributions which

possess expressions for both their probability-based and quantile-based functions. This is

however not the case with all distributions. In effect, although all the functions in the two

statistical universes exist for any absolute continuous distribution, not all distributions

possess closed-form expressions for all their functions.

Distributions such as the normal, half-normal, log-normal and gamma distributions are

specified through their probability density functions. The expressions for these distributions’

cumulative distribution functions contain error, gamma and other special mathematical

functions, which are defined in terms of integrals (see Table 2.9 in Section 2.14.1), and hence

these expressions cannot be written in closed form. As a result, the expressions for all their

quantile-based functions can also not be given in closed form. Although the cumulative

distribution and quantile-based functions of these distributions can be evaluated numerically

12
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using almost any statistical software package, it is easier to work with these distributions in

the classical statistical universe (through their probability density functions) than in the

quantile statistical universe.

(a) Quantile functions (b) Quantile density functions

” / 20 [
4 Uniform 'y \ ,' i
. 7 . .
—————— Exponential 1, 1 o
o, . . [
------- Logistic \ o

15 . ]

s < :
S S v R
\ / 7
\ , ’ K4
‘. ’ ’
5 S /".— —
! 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
p P
(c) Density quantile functions
05K
N
N
~
N
~
~
0.4 RS
N
N
~
~
~
N

0.3 N
g e

0.2 o S RN

e ~ N
. S * N
. S N
0.1 o’ SO
~/ ~ '\
. 4 N ~ \'\
0.0t o
0.0 0.2 0.4 0.6 0.8 1.0
r

Figure 2.3: Quantile, quantile density and density quantile functions of the uniform, exponential and logistic distributions, all with

L;=0 and L, =1. The line types indicated in graph (a) also apply to graphs (b) and (c).

Tukey’s lambda distribution and its generalizations (to be discussed in detail in Chapters
2 and 3) and the Davies distribution are examples of distributions which are specified in
terms of their quantile-based functions, particularly in terms of their quantile functions. No
closed-form expressions exist for these distributions’ functions in terms of x. It is thus not
ideal to work with these quantile-based distributions in the classical statistical universe. It is
however common practice to display a distribution graphically by plotting its density curve,

that is, by plotting f(x) against x. For quantile-based distributions, the plot of the density

curve can be obtained by selecting equally spaced values of p, say p =0.001, 0.002, ...,0.999,

13
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evaluating Q(p) and f,(p) for these chosen values of p, and plotting the points

(Q( P f( p)) to obtain a plot of the corresponding points (x, f(x)).

2.2.4 Q-TRANSFORMATIONS

When transformations are applied to random variables, the resulting behavior of their
quantile functions plays a key role in quantile modeling. Parzen (1979) considered this
important property of quantile modeling, focusing on transformations based on non-
decreasing functions. Theorem 2.2.1 below deals with transformations based on non-
decreasing as well as non-increasing functions. Note that the proof of Theorem 2.2.1(a) was

presented by Parzen (1979). The proof of Theorem 2.2.1(b) is structured in a similar manner.

Theorem 2.2.1

Assume that X and Y are real-valued random variables related through the transformation
Y =T(X) and with F,(x) and F,(y) the cumulative distribution functions and Qy (p) and
Oy (p) the quantile functions of their respective distributions.

(a) Then, if Y =T (X) is a non-decreasing function of X,

0y (P)=T(Qx(p)). (2.3)
(b) In contrast, if ¥ =T (X)) is a non-increasing function of X, then

0y (P)=T(Qx(1-p)). 2.4)
Proof

(a) When Y =T(X) is a non-decreasing function of X,

R (y)=F [T ().
Therefore,
F,(»2pe F ()2 p

ST ()= 04 (p)
e y2T(0x (p)).

But from (2.1) we have F,(y) 2 p & y 20y (p), hence (2.3) follows.
(b) When Y =T(X) is a non-increasing function of X,

F () =1-F (™).
Then

14
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F(»)2pe Flr7(n)21-p
T (y)=20,1-p)
& y2T(Qy(1-p)).

Using again (2.1), thatis, Fy(y)2 p < y 20, (p), (2.4) follows.

The transformations in (2.3) and (2.4) were termed Q-transformations by Gilchrist (2000).

Examples of (2.3) include the logarithmic transformation, Qy (p) = log[QX ( p)] if ¥ =log[X]

for X >0, and the power transformation, QY(p)=(QX(p))/1 if Y=X"* for X>0 and
A>0. The reflecting transformation, Q,(p)=—Qy(1—p) if Y =-X, and reciprocal

1 . _ 1 .
M=) if Y= < for X #0, are examples of (2.4). As will be

transformation, Q) (p)=
shown in Section 2.3, Q-transformations form part of a simple quantile approach based on a
set of construction rules for building new distributional models.

Another important consequence of Q-transformations is the relation between the quantile
functions of the location-scale form and the standard form of a distribution. This relation is

discussed in Section 2.2.5.

2.2.5 LOCATION-SCALE AND STANDARD FORMS OF DISTRIBUTIONS
The probability-based functions for all the distributions in Table 2.11 are presented in

location-scale form,

F(x)=Fl59)

and

f(x) :%fo(%)’

where @ and f >0 are respectively location and scale (spread) parameters, and F; (x;),“) and

fo (x;“) denote the cumulative distribution and probability density functions of the standard

form of the distribution, in effect, the standard distribution. The corresponding
representations of the quantile-based functions for the distributions in Table 2.12 are of the

form

Q(p)=a+B0,(p), (2.5)
q(p)= IB%(P)
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and
fp(p) :%fp;O(p) »
with Qy(p), qo(p) and f, ,(p) denoting the quantile, quantile density and density quantile

functions of the standard distribution.

The linear transformation in (2.5) is a special Q-transformation controlling the relation
between the location-scale form and the standard form in the quantile statistical universe. In
quantile modeling it is convenient to ignore the location and the spread of distributions during
the distributional model building process by applying the construction rules to the quantile
functions of standard distributions. At the end of the distributional model building process,
the location and scale parameters (@ and f) can simply be included with the linear
transformation in (2.5). This linear transformation adjusts the location and spread of the
distribution while preserving its distributional shape. Therefore, if a distribution possesses
any shape parameters (denoted by A and O for the relevant distributions in the tables in

Section 2.14.3 of Appendix 2.14), both Q(p) and Q,(p) will contain these parameters.

In the next section the application of Q-transformations in the distributional model

building process is explained.

2.3 CONSTRUCTION RULES FOR DISTRIBUTIONAL MODEL BUILDING

An important advantage of quantile modeling, compared to statistical modeling with
probability-based functions, is that new distributional models can be constructed through the
addition, multiplication and transformation of quantile-based functions. This distributional
model building process is guided by a set of construction rules which were outlined by
Gilchrist (2000). The basic underlying condition to all these rules is that the resulting quantile

function must be non-decreasing over the interval 0< p <1. The rules required for the

construction of specific generalized families of distributions, such as the new type of the

generalized lambda distribution proposed in Chapter 4, are highlighted below.

2.3.1 UNIFORM TRANSFORMATION RULE

The standard uniform distribution is a foundation distribution in quantile modeling in that any
continuous distribution can be generated from this distribution through the application of Q-
transformations to its quantile function. That is, if U is a real-valued random variable having

a standard uniform distribution with quantile function

16
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Ouv.o(p)=p, (2.6)

then, for X =T (U) a non-decreasing function of U, the standard distribution of X has

quantile function
Qx.0(P)=T(Qu.o(P)=T(p).

while the standard distribution of X has quantile function
Ox.0(P) =T Qy,o(1= p))=T(1- p)

if X =T(U) is a non-increasing function of U.

Example 2.3.1

Suppose U has a standard uniform distribution with quantile function given in (2.6). Assume

that X =T (U) =—log[U] so that X is a non-increasing function of U. Then

Ox.0(P) =T(Qy.o(1- p))
= —log|0,.,(1- p)] @.7)
=—log[l-p],
which is the quantile function of the standard exponential distribution. The quantile functions

of the standard uniform and standard exponential distributions are shown in Figure 2.4.

Standard uniform

—————— Standard exponential

Figure 2.4: Quantile functions of the standard uniform distribution and of the standard exponential distribution, obtained with the

uniform transformation rule.

This example illustrates how multiple Q-transformations can be combined to build a
distributional model. In this case both the logarithmic transformation and the reflecting
transformation are used in the uniform transformation rule to obtain the quantile function of
the standard exponential distribution.

O
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2.3.2 REFLECTION RULE
The reflecting transformation is typically applied to the quantile function of an asymmetric
distribution (the reflection of a symmetric distribution is simply the distribution itself).

Assume that X is a real-valued random variable with Qy.(p) the quantile function of the

standard distribution of X. Suppose Y =T(X)=—-X so that the standard distribution of Y is

the reflection of the standard distribution of X about the line x=0. Then, since Y is a non-

increasing function of X, the quantile function of the standard distribution of Y is

Oy.0(P) =T(0x.o(1= p))==0y.o(1- p).

Example 2.3.2
Consider X having a standard exponential distribution with support [0, ) and quantile
function given in (2.7). Then Y =—X has a standard reflected exponential distribution with
support (—oo, 0] and corresponding quantile function
Oy.o(P) ==Qx.o(1=p) (2.8)
=log[p].
Figure 2.5 illustrates the quantile functions of the standard exponential and the standard

reflected exponential distributions.

Standard exponential

------ Standard reflected exponential

0o (p)

0.0 0.2 0.4 0.6 0.8 1.0
p
Figure 2.5: Quantile functions of the standard exponential distribution and of the standard reflected exponential distribution, obtained

with the reflection rule.

2.3.3 ADDITION RULE
Since the sum of two non-decreasing functions is also non-decreasing, the sum of any two

quantile functions is also a quantile function. So, if X and Y are two real-valued random

18
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variables with Qy.,(p) and Qy.((p) the quantile functions of their standard distributions,

then the quantile function of the standard distribution of another random variable, say W, can

be obtained through the addition rule with
Ow.0(P)=0x.o(P)+ Oy, 0(p).

Furthermore, because the derivative of the sum of two functions is equal to the sum of the
derivatives of the functions, adding any two quantile density functions produces another
quantile density function. Thus, if gy.,(p) and gy.,(p) are the quantile density functions for
the standard distributions of X and Y, then

Gw:0(P) =qx.0(P) +qy.o(P)
is the quantile density function of the standard distribution of W.
The addition rule can of course be generalized to more than two quantile functions and

quantile density functions. If X,:i=1,2,...,n are real-valued random variables with n a
positive integer, and Qy .,(p) and gy .,(p) are the quantile and quantile density functions

for the standard distribution of the i variable, then

Ow.0(P) =D 0x,.0(P) (2.9)
i=1
and
Gw.0(P) =D dx.0(P) (2.10)
i=1

are the quantile and quantile density functions of the standard distribution of the random
variable W.

Returning to the bivariate case, n=2, when adding the quantile function of an
asymmetric distribution on bounded or half-infinite support to the quantile function of the
reflection of this distribution, the distribution of the resulting quantile function will be
symmetric. In effect, the distribution with quantile function

Ow.o(P) =0x.o(p)+0y.o(p)
=0yx,0(P) =Qx,o(1-p) (2.11)
=—Qy.o(1-p)

is symmetric.
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Example 2.3.3

Suppose X has a standard exponential distribution, with quantile function given in (2.7).
Then, as shown in Example 2.3.2, ¥ =—X has a standard reflected exponential distribution

with quantile function given in (2.8). Adding the quantile functions of the standard

exponential and standard reflected exponential distributions gives
Ow.0(P)=0x.0(P)+ 0y o(P)
=—log[l - p]+log[p] (2.12)

= log[ﬁ} )

The quantile density functions of X and Y are respectively gy,o(p) =11 and gy, o(p)=-=,

and the sum of these two functions is

Gw.0(P) =qx.0(P)+qy.o(P)
1

1 1
l-p " p
—_ 1

p(-p) "

Ow.o(p) and gy.,(p) are respectively the quantile function and the quantile density function

of the standard logistic distribution, which is a symmetric distribution. The quantile and

quantile density functions of the standard exponential, standard reflected exponential and

standard logistic distributions are depicted in Figure 2.6.

(a) Quantile functions (b) Quantile density functions

Standard exponential
Standard reflected exponential
------- Standard logistic

Qo (p)
[—)

0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
p

Figure 2.6: Quantile and quantile density functions of the standard exponential distribution and standard reflected exponential

distribution, and of the standard logistic distribution obtained with the addition rule. The line types indicated in graph (a)
also apply to graph (b).
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2.3.4 INTERMEDIATE RULE
The addition rule for quantile functions in (2.9) and for quantile density functions in (2.10)
can be further generalized by considering linear combinations of quantile functions and of

quantile density functions. That is, if ¢;:i=1,2,...,n are non-negative constants with n a
positive integer and X, :i=1,2,...,n are real-valued random variables with QX,-;O( p) and
qx,.0(p) the quantile and quantile density functions for the standard distribution of the i"
variable, then
Ow:0(P) =2 ¢Qx,.0(P)
i=1
and
Gw.o(P) = zciCIX,-;o(P)
i=1
are the quantile and quantile density functions of the standard distribution of the random

variable W.

A special situation arises in the bivariate case, n=2, if ¢, =0 and ¢, =1-J where
0<0<1 sothat ¢, +c, =1. That is, suppose X and Y are two real-valued random variables
with Qy.,(p) and Qy.,(p) the quantile functions of their standard distributions. Consider

another random variable, W, whose quantile function is defined as the weighted sum of

QX;O(p) and QY;O(P) )

Ow.o(P)=0Qx.,o(p)+(1=8)Qy,o(p). (2.13)
If, for a given value of p, Qy.((p)2Qyo(p), then Qy.((p)2Qy,o(p) 20y o(p) for that
value of p. In effect, the weighted sum of two quantile functions is bounded by these two
quantile functions. This result is known as the intermediate rule for quantile functions.

It was shown in Section 2.3.3 that a distribution with quantile function obtained with
(2.11) is symmetric. The reason is that the percentage of weight allocated to the quantile
functions of the distributions of X and Y is 50% each, in effect, equal. The transformation in
(2.13) can be used to introduce skewness by taking the weighted sum of the quantile function
of an asymmetric distribution on bounded or half-infinite support and the quantile function of
the reflection of this distribution. That is, the distribution with quantile function

Ow.o(p) = 5QX;0(P) +(- 5)QY;0(P)
= 5Qx;0(19) -(1- 5)Qx;0(1 -P),
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is an asymmetric distribution where J can be viewed as a weight parameter which controls

the level of skewness through the allocation of weight to Qy.((p) and to
Oy.o(p)=—0x.o(1-p). In effect, 0 is a shape parameter. Note that W has a symmetric

distribution for & = % )

Example 2.3.4
Consider again X having a standard exponential distribution with quantile function given in
(2.7) and Y =—X having a standard reflected exponential distribution with quantile function

given in (2.8). Then

QW;O(p) = 5QX;0(p)+(l_ 5)QY0(p)

(2.14)
=—Jlog[l— pl+(1-35)log[p]

is the quantile function of a skewed form of the standard logistic distribution with 0< 0 <1 a
shape parameter. Using the linear transformation in (2.5) to include location and scale

parameters (& and f), the quantile function of the resulting three-parameter asymmetric

distribution, aptly named the skew logistic distribution by Gilchrist (2000), is
Q(p)=a+ ,3((1—5)104‘;[17]—5104%[1—1?]]- (2.15)

The skew logistic distribution, which will be abbreviated SLD, is symmetric for ¢ =%,

negatively skewed for o0 <% and positively skewed for & >%. The reflected exponential,

symmetric logistic and exponential distributions are all special cases of the SLD for 6 =0,

_1 _ . N . . . . .
o= > and 0 =1 respectively. The SLD’s quantile density and density quantile functions are

— 0 -9)(1-
q(p)=/5’[%+&J=ﬂ(—’”;il_§; ’”J (2.16)
and
f(p)=—L0 (2.17)
ﬂ[5p+(l—5)(l—p)j

As with Tukey’s lambda distribution (and its generalizations) and the Davies distribution, the
probability-based functions of the SLD cannot be expressed in closed-form (except of course
for its special cases mentioned above). The SLD is thus a quantile-based distribution. The

quantile, quantile density, density quantile and probability density functions of the standard

SLD are shown in Figure 2.7 for § =0,+,1,2,1.
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(a) Quantile functions (b) Quantile density functions

J = 0 (exponential)

Qo (p)

0.0 0.2 0.4 0.6 0.8
P P
(c) Density quantile functions (d) Probability density functions

p x

Figure 2.7: Quantile, quantile density, density quantile and probability density functions of the standard SLD for various values of & .

The line types indicated in graph (a) also apply to the other graphs.

The intermediate rule for quantile functions is evident from Figure 2.7(a), with the SLD’s
quantile function bounded by the quantile functions of the exponential and reflected
exponential distributions. Furthermore, as can be seen in Figure 2.7(d), the SLD is J-shaped
with half-infinite support for 6 =0 and o6 =1, and unimodal with infinite support for
0< d < 1. Note that, since no closed-form expression exists for the SLD’s probability density

function, Figure 2.7(d) was obtained by plotting the points (QO( P)s S0 p)) to obtain a plot

of the corresponding points (x, fo(x)).

O

Note that the quantile-based SLD presented in Example 2.3.4 is not the only type of skew
logistic distribution in existence. Wahed & Ali (2001) and Nadarajah (2009) studied a skew
logistic distribution based upon the skewing methodology introduced by Azzalini (1985,
1986), with probability density function in standard form given by
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8o(x) =2 £, (x)Fy(Ax)
where f,(x) and Fy(x) are the probability density and cumulative distribution functions of
the standard logistic distribution and A is a shape parameter. This density-based skew
logistic distribution is in no way related to the quantile-based SLD considered in this thesis.

It was shown in Section 2.3 how probability distributions can be created through the
application of model building construction rules to quantile functions. In Sections 2.4 to 2.8
measures of location, spread and shape for probability distributions are considered.
Specifically it is proved in Section 2.8 that a distribution whose quantile function is given by
the weighted sum of the quantile function of an asymmetric distribution on bounded or half-
infinite support and the quantile function of the reflection of this asymmetric distribution

possesses certain measures of kurtosis which are skewness-invariant.

2.4 MOMENTS

In the classical statistical universe it is common practice to use moments and moment ratios

to describe the location, spread and shape characteristics of a probability distribution.
Following conventional notation, if X is a real-valued random variable, then £ =E[X"] is
the ™ order uncorrected (crude) moment and u, = E[(X —u)"] is the ™ order corrected
(central) moment, where 4 = ,ul' , the first order uncorrected moment, is the mean of X and a
measure of location. The second order corrected moment, o> = M, , 1s the variance of X and a
measure of spread. The skewness and kurtosis moment ratios, defined as
a3:% and a4=%, (2.18)

are used to describe the shape of the distribution. Expressions and values for the mean,

variance, skewness moment ratio and kurtosis moment ratio of the uniform, exponential and

logistic distributions are presented in Table 2.2.

Table 2.2: Moments for the uniform, exponential and logistic distributions.
Measure Uniform Exponential Logistic
Mean u=a+Lip u=a+p U=a
Variance o2 :%ﬁz o2 = ) :;zT?ﬁz
Skewness moment ratio ;=0 oy =2 ;=0
Kurtosis moment ratio oy = % a, =9 a, = %
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The moments and moment ratios can also be used in the quantile statistical universe, since

1

1= [(Qx(p))dp

0

and

1

1= [(Qx ()= 1) dp,

0

where
1
#=[0y(p)dp.
0

However, often the formulae obtained for the moments and moment ratios of quantile-based
distributions are not straightforward, complicating the use of these measures. Therefore

alternative measures of location, spread and shape are discussed in Sections 2.5 and 2.6.

Example 2.4.1
The mean, variance, skewness moment ratio and kurtosis moment ratio of the SLD are

u=a+pBRs-1), (2.19)

ol = ﬁ{(Zé‘—l)z +”—32a)] (2.20)

a, = /”—2(2(25— 1)(1 - a)(4—3§’(3)]D (2.21)
a, = %(9 + a{zﬁ(za— 1?7’ —4) + 90— 4)(16—’{—2]}} : (2.22)

with @=J8(1-75) and where {(a) is Riemann’s zeta function — see Section 2.14.1 for

)

and

details. These formulae, which have not been given in the literature before, are derived in
Section 2.13.1. As will be seen in subsequent sections, the formulae for other measures of
location, spread and shape of the SLD are considerably simpler.

O
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2.5 L-MOMENTS

The theory of L-moments was compiled by Hosking (1990). He extended and unified
theoretical results and techniques described by Sillitto (1951, 1964, 1969), Downton (1966),
Chan (1967), Konheim (1971), Mallows (1973) and Greenwood et al. (1979). L-moments are

expectations of linear combinations of order statistics. Let X, < X, <..< X, . denote the

order statistics for a random sample of size n from the distribution of X. The " order L-

moment of X is then defined by
r—1
- r—1
L =r 1;)(—1)"( . )E(X,_k:r), r=1,23...

Note that in the literature the ™ order L-moment is usually denoted by A, . However, the
parameters of the generalized lambda distribution in Chapter 3 are also denoted by A4, .
Therefore in this thesis the 7" order L-moment will be denoted by L, instead of A,, to avoid

confusion with the parameters of the generalized lambda distribution.
Hosking (1990) showed that the r™ order L-moment of X can be written in terms of its

quantile function as
1
L = [Q(p)P. (p)dp, (2.23)
0

where

P =Y () 1)) (2.24)
k=0

is the ™ order shifted Legendre polynomial. See Section 2.14.2 of Appendix 2.14 for a brief
explanation on Legendre polynomials.

The first order L-moment, referred to as L-location, is simply the mean, L, = . The
second order L-moment, L,, is called the L-scale. L, is a measure of spread and is related to
Gini’s mean difference statistic (Gini 1913-1914). L-moment ratios are defined as

T, =10, r=3,4,5... (2.25)

_
r LZ’

The L-skewness ratio, 7;, and L-kurtosis ratio, 7,, are of particular interest in that they are
measures of shape. Symmetric distributions have 7, =0.

Compared to conventional moments, L-moments possess a number of superior

characteristics. For instance, L-moment ratios are bounded, simplifying their interpretation
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compared to conventional moments. Specifically, as proven by Hosking (1990) and Jones

(2004), the boundaries of the L-skewness and L-kurtosis ratios are
—1<z,<land (522 1)<z, <1 (2.26)

Furthermore, Hosking (1990) proved that, if the mean of a probability distribution exists, then
all the L-moments exist and the distribution is uniquely characterized by its L-moments.
Expressions and values for the L-moments of the uniform, exponential and logistic
distributions are given in Table 2.3. The expressions and values for the L-moments of these
three distributions as well as for various other well-known distributions were provided by
Hosking (1986, 1990, 1992) and Hosking & Wallis (1997). Other sources for expressions of
the L-moments of specific distributions include Jones (2002a, 2002b, 2009) for Student’s
1#(2), the cosine and Kumaraswamy’s distribution respectively, and Gupta & Kundu (2001) for
the generalized exponential distribution. Table 2.13 in Section 2.14.3 of Appendix 2.14
presents expressions for the L-location and L-scale of the distributions considered in Tables
2.10 to 2.12 in this appendix, while expressions for the L-skewness and L-kurtosis ratios of

these distributions are presented in Table 2.14 in Section 2.14.3.

Table 2.3: L-moments for the uniform, exponential and logistic distributions.
L-moment Uniform Exponential Logistic
L-location L=a+ip L=a+p =a
L-scale L, =€ﬁ L, =7ﬁ L=
L-skewness ratio 73 =0 73 =% 7y =
L-kurtosis ratio 7, =0 Ty = % T, = %

Returning to Table 2.3, the uniform and logistic distributions are symmetric, so they have

73 =0. It is furthermore interesting to note that the exponential distribution and the logistic

distribution both have 7, = ¢ .

As explained by Hosking & Wallis (1997), the L-moment ratio diagram is a convenient
graphical representation for the L-skewness and L-kurtosis ratios in that it indicates the

(13, 14) space attained by different distributions. No distribution’s (13, 14) space can extend

beyond the boundary given by (2.26). Figures 2.8 to 2.14 depict the L-moment ratio diagrams
of the distributions considered in Table 2.14 in Section 2.14.3. As can be seen in these
figures, especially Figure 2.8(b), a distribution which possesses only location and scale

parameters and no shape parameters appears as a single point in the L-moment ratio diagram.
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A distribution with a single shape parameter, say A, is plotted with a line, where each

point on the line indicates the values of 7, and 7, obtained for the corresponding value of
A . Figure 2.8 illustrates the values of 7, and 7, obtained by the distributions with shape

parameter A from Table 2.14. Figure 2.9 presents the L-moment ratio diagram for the various
generalized distributions considered by Hosking (1986) and Hosking & Wallis (1997). Note

that the log-normal, generalized normal, gamma and generalized gamma distributions do not
have simple expressions for their L-skewness and L-kurtosis ratios. The values of 7, and 7,

for these distributions can be calculated using rational-function approximations given by

Hosking & Wallis (1997).

(@)-1<3<1&-025<r<1 (b) =0.6 < 73 < 0.6 & —0.25 < 74 < 0.4

Boundary for all distributions
----- Log—normal

08\ == --- Log-logistic A
— — Generalized exponential I
Gamma '/
Weibull A7
0.6 —— Fréchet /]
—a——re - Gompertz /I’/:'-
—— — Pareto / Lomax ,/,///
—— - — Power 7
= 0.4
0.2
0.0
-0.2
-1.0 -0.5 0.0 0.5 1.0 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

73 73
Figure 2.8: L-moment ratio diagrams for the two- and three-parameter distributions in Table 2.14 in Appendix 2.14. The line types
indicated in diagram (a) also apply to diagram (b). The uniform, normal, logistic and exponential distributions are denoted
in diagrams (a) and (b) by U, N, L and E respectively, while A, C, SH, DE, #(2), G, HN and R, in diagram (b) denote the
arcsine, cosine, secant hyperbolic, Laplace (double exponential), Student’s #(2), Gumbel, half-normal and Rayleigh

distributions. The reflected distributions of the exponential and the Gumbel are indicated in diagram (b) with RE and RG.

Distributional families with multiple shape parameters cover areas of 7; and 7, values

corresponding to the values of these shape parameters. Figures 2.10 to 2.14 show the L-
moment ratio diagrams for the Burr Types III and XII distributions, the Davies distribution,
the kappa distribution, Kumaraswamy’s distribution and the Schmeiser-Deutsch distribution,
all possessing two shape parameters, say A and o . Different colours are used to distinguish

between the various areas of 7; and 7, values attained for the values of 4 and ¢ as detailed

in Table 2.14. Special and limiting distributions obtained by the Burr Types III and XII,

Davies, kappa, Kumaraswamy’s and Schmeiser-Deutsch distributions are also indicated.
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0.8

0.6

0.4

74

0.2

0.0

-0.2

Boundary for all distributions

Generalized normal
- = - Generalized logistic
------- Generalized gamma
—————— Generalized extreme value
—— — Generalized Pareto

-1.0

-0.5 0.0 0.5

3

1.0

L-moment ratio diagram for generalized distributions in Table 2.14 in Appendix 2.14, considered by Hosking (1986) and

Hosking & Wallis (1997). The uniform, normal, logistic, exponential and Gumbel distributions, which are special or

limiting cases of these generalized distributions, are denoted by U, N, L, E and G respectively.

(a) Burr Type 111

0.8

0.6

0.4

73

0.2

0.0

-0.2

Boundary for all distributions /

Log-logistic
———— Fréchet
—— - — Power

=+ = - Burr Type II

-1.0

Figure 2.10:

-0.5 0.0
73

0.5

(b) Burr Type XII
Boundary for all distributions
./. ------- Log-logistic
/ 08} \ ————— Weibull
/ —— — Lomax
/ ==+« - - Reflected Burr Type II
0.6
= 0.4
0.2 L_ .«
@
RG ~S—___—7
0.0
-0.2
1.0 -1.0 -0.5 0.0 0.5 1.0
3

L-moment ratio diagrams for the Burr Type III and Burr Type XII distributions. The uniform, logistic, exponential,

reflected exponential, Gumbel and reflected Gumbel distributions are indicated in diagrams (a) and (b) by U, L, E, RE, G

and RG respectively. In diagram (a), the purple- and the red-shaded areas are the (13, 1'4) spaces obtained by the Burr

Type III distribution for A >1. But the purple-shaded area in diagram (a) is also obtained by the Burr Type III distribution

when A <1. In effect, in the purple-shaded area there is not a one-to-one relation between the shape parameters of the Burr

Type III distribution and the L-skewness and L-kurtosis ratios. In diagram (b), the purple- and blue-shaded areas are the

(T3, 14) spaces obtained by the Burr Type XII distribution when both A <1 and §<1. The purple-shaded area is also

obtained by the Burr Type XII distribution for A >1 and d<1. So in the purple-shaded area there is not a one-to-one

relation between the shape parameters of the Burr Type XII distribution and the L-skewness and L-kurtosis ratios. When

A<1 and &>1, the Burr Type XII distribution attains the green-shaded area in diagram (b).
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In general a distribution which covers a larger area of the (13, 14) space is more flexible

with respect to distributional shape. For instance, as indicated in Figure 2.10, the Burr Type
III distribution covers a larger area compared to the Burr Type XII distribution, indicating its
higher flexibility in terms of shape. This is interesting since the Burr Type XII distribution is
the most popular of the Burr family of distributions — Tadikamalla (1980) made a similar

observation in terms of the (063, a4) space attained by the Burr Type III and Type XII

distributions.

Figure 2.10 also indicates that there does not always exist a one-to-one correspondence
between the shape parameters of a distribution and the distribution’s L-skewness and L-
kurtosis ratios. This can be problematic when L-moments are used for parameter estimation.

The coverage of the (13, 14) space by the Davies distribution shown in Figure 2.11 is

equivalent to the coverage of the (13, 14) space by the Burr Type III distribution shown in

Figure 2.10(a). But the expressions of the L-moments of the Davies distribution are
considerably simpler than the expressions of the L-moments of the Burr Type III distribution
— see Tables 2.13 and 2.14. This suggests that the Davies distribution could be used as a

proxy for the Burr Type III distribution in studies involving L-moments.

Boundary for all distributions

------- Log—logistic

0.8 —— — Pareto
—— - — Power

0.6

0.4

Ny
0.2
0.0 \[.J —
-0.2
-1.0 -0.5 0.0 0.5 1.0

73
Figure 2.11: [L-moment ratio diagram for the Davies distribution. The uniform, logistic, exponential and reflected exponential
distributions are indicated by U, L, E and RE. In the light-shaded area there is a one-to-one relation between the shape
parameters of the Davies distribution and the L-skewness and L-kurtosis ratios. In the dark-shaded area, two different pairs
of values for 4 and J produce the same pair of values for the L-skewness and L-kurtosis ratios. In effect, there is not a

one-to-one relation between the shape parameters and the L-skewness and L-kurtosis ratios in the dark-shaded area.
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Both the kappa distribution and Kumaraswamy’s distribution cover extensive areas of the

(13,14) space as shown in Figures 2.12 and 2.13. Importantly these two distributions’
coverage of the (13, 14) space extends all the way to the lower boundary for 7, given by
(2.26), that is,

7, :i(Szgz —1).
However, apart from the Schmeiser-Deutsch distribution in Figure 2.14, none of the other
families of distributions considered in Figures 2.10 to 2.13 cover the area of the (z;,7,)
space given by

—l<7,<1and 1522 -1)<7, <1, 2.27)
where the lower boundary of the excluded region of 7, in (2.27), in effect,

7, :%(52'32 —1),
is given by the generalized logistic distribution. It will be shown in Chapters 2 and 3 that the
generalized lambda distribution does cover this important area of the (13, 14) space which is

representative of heavy-tailed distributions with moderate to large levels of skewness.

‘\‘ —— Boundary for all distributions
N\ e Generalized logistic
0.8 X — — Generalized exponential
\ y, —— Generalized extreme value
\\ 9 —— — Generalized Pareto
\ \
\ /
0.6 \ N / /
\\ Y /
\\ R 4 /)
0.4 \ 4
v " N 7 /
. p
NN Vv
0.2 N~ L Y
. S L s
\\\\__’/f'é E
0.0 N \_,U./
-0.2
-1.0 -0.5 0.0 0.5 1.0
73

Figure 2.12: [L-moment ratio diagram for the kappa distribution. The uniform, exponential, logistic and Gumbel distributions are

indicated by U, E, L and G. The purple- and blue-shaded areas are the (T3, 14) spaces obtained for —1 < d <0, the green-
and red-shaded areas are the (13, 1'4) spaces obtained for 0<d <1, and the yellow- and orange-shaded areas are the

(13, 1'4) spaces attained for 0> 1. In the purple-, red- and orange-shaded areas, —1< A <0, while 4>0 in the blue-,

green- and yellow-shaded areas.
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Boundary for all distributions
— — Reflected generalized exponential
08\ = ————— Weibull
—— — Generalized Pareto /|
—— - — Power /
Il
0.6 /
/ o
\ /
/
//
o 04 \\ /
\
0.2 NRE RrG E
\ ‘R\\ ,/(/ 4
0.0 \ ¥/ ’
-0.2
-1.0 -0.5 0.0 1.0
73

L-moment ratio diagram for Kumaraswamy’s distribution. The uniform and exponential distributions are indicated by U

and E, while RE and RG denote the reflected exponential and reflected Gumbel distributions. The purple-shaded area is the

(13, 1'4) space obtained for 0<A<1 and 0<d<1. When both A >1 and 6> 1, the blue-shaded area is attained. The

red- and green-shaded areas are the (13, r4) spaces covered by Kumaraswamy’s distribution for 0< A <1 and d>1 and

for 0<d<1 and A>1 respectively.

0.8

0.6

0.4

74

0.2

0.0

Boundary for all distributions

—— — Generalized Pareto
—— - — Power

1.0

L-moment ratio diagram for the Schmeiser-Deutsch distribution. The uniform distribution is indicated by U. The purple-

and blue-shaded areas are the (13, 7,) spaces attained for A <1, while the purple- and red-shaded areas are the (, 1'4)

spaces attained when A >1. So it follows that there does not exist a one-to-one relation between the shape parameters of

the Schmeiser-Deutsch distribution and the L-skewness and L-kurtosis ratios in the purple-shaded area.

nn

denote an ordered data set of sample size n. Then, based upon the theory of U-statistics

(Hoeffding, 1948), the ™ order sample L-moment is represented by

© University of Pretoria
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l, = @_1 DI Zr‘llii(—l)k(r; 1jx,.rk:n , r=12,..,n, (2.28)
=0

1<ij<ip<.<i, <n
. th L
while the r order sample L-moment ratio is given by

=7, r=34,..n. (2.29)

In particular the first four sample L-moments are

6=1>"x., =%, (2.30)
i=1

-1
fz=%@ > (i = 2500)- (2.31)

i>j
-1
£3 :-%(g) :E::E::E:(xtn__zxﬁnz+-xkn)’ (2'32)
i>j>k
and
-1
=4(1) T Sl =3+ 35, =), (2.33)
i>j>k>l
The interpretation of the sample L-moments is analogous to the population L-moments in

that ¢/, =X, ¢,, t; and t, are respectively the sample L-location (sample mean), sample L-

scale, sample L-skewness ratio and sample L-kurtosis ratio. The sample L-moments can thus
be used as alternatives to conventional sample moments for describing the location, spread
and shape of a data set and, as will be shown in Section 2.9, they may be used to fit a
distribution to the data set with method of L-moments estimation. In fact, because the sample
L-moments are linear functions of the data values, they are less adversely affected by
sampling variability than the conventional sample moments, Hosking (1990), and more
robust to extreme values in the data. It is thus not surprising that L-moments are popular in
extreme event analysis. For example, Hosking & Wallis (1997) gave a thorough account of

the use of L-moments in regional frequency analysis in environmental applications.

2.6 QUANTILE-BASED MEASURES OF LOCATION, SPREAD AND SHAPE

As suggested by the name, quantile-based measures of location, spread and shape for a
distribution are defined as functions of the quantiles of the distribution and are therefore
ideally suited for use in the quantile statistical universe. They are of course also utilized in the
classical statistical universe. If the distribution under consideration possesses a simple

expression for its quantile function, the associated expressions of the quantile-based measures
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will also be simple. Unlike conventional moments and L-moments, quantile-based measures
exist for all parameter values of a distribution.

The 50th percentile, that is, the median,
me =Q(L), (2.34)
is an obvious choice as measure of location. The spread function, introduced by MacGillivray
& Balanda (1988), is given by
S(u)=0w)—Q0(1—-u), %<u<1. (2.35)

From the linear transformation in (2.5) it follows immediately that

S(u) = (OH-,BQO(M)] - (a+,BQ0(1 - u)]
(2.36)

=,5[Qo(u)—Qo(1—u)J,

so the spread function is location-invariant. Furthermore, since u#>1-—u and hence
QO(u)>Q(—u), we have S(u) > 0. Thus the spread function satisfies the basic requirements
for measures of spread. Special cases of the spread function include the interquartile range
(IQR) and interdecile range (IDR), obtained respectively for u == and u= ;.

Several measures of shape have been proposed in the literature. These measures include
location- and scale-invariant shape functionals. Analogous to the spread function, shape

functionals are not just evaluated at specific quantiles, but are analyzed as functions

themselves. In fact, just as the IQR and IDR are special cases of the spread function for u :%

and u :%, quantile-based measures of shape are often special cases of shape functionals,
attained for selected quantiles.

As part of a study in which she compiled a skewness structure of ordering for identifying
the roles of various skewness measures and for classification of the skewness properties of
distributions, MacGillivray (1986) considered two skewness functionals. The first of these,
the ¥ -functional, is given by

1
Q(u)+Q(1—u)—2Q(fj
= 2) _ Qw)+Q(-u)-2me |
yu) = Qw)-Q(1-u)y S(u) , z<u<l. (2.37)

Originally suggested by David & Johnson (1956), the ¥ -functional can be viewed as a
functional generalization of the well-known quartile-based measure of skewness attributed to
Bowley (1902). Bowley’s measure of skewness, referred to by some authors (Johnson et al.,

1994; Gilchirst, 2000) as Galton’s measure of skewness, is obtained by evaluating the ¥ -
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functional at u=3. The ¥ -functional preserves the skewness ordering <) (MacGillivray,

4
4
1986) in that

F<PG S y(u)Sysu).
y

In effect, distribution G has greater skewness to the right than distribution F if

Yo (u) > yp(u) . MacGillivray (1992) proposed

sup | (w)|

%<u<l—£
as a measure of overall skewness for the central 100(1-2€£)% of a distribution.

The second skewness functional, named the 77 -functional by King (1999), is

_ 9)+00-u)-0()-01-v) _ Quw)+Q(1-u)-Q(v)-Q(1-v) 1
n(u,v)= 00100 = S0 . g<v<u<l. (2.38)

The 77-functional is linked to the skewness ordering <5 (MacGillivray, 1986) in that it

star

proves

F<3G=n:(u,v)<n;u,v).

star
The skewness of a distribution can also be measured by comparing the relative weight
allocated to the two tails of the distribution. For instance, the left-right tail-weight ratio,
QG
TWR(u) = .
Q(u)—Q[E)

was utilized by Karian & Dudewicz (1999) in their proposed percentile-based estimation

)_Q(l_”) _ me=Q(1-u)

T Q(u)-me

, %<u<1,

method for the generalized lambda distribution — see Section 3.13. The tail-weight ratio can

be evaluated for any %< u <1 and hence it is a shape functional, but it is typically only

evaluated for a specific value of u. For instance, Karian & Dudewicz (1999) promoted the use

of u=-- in their proposed estimation method. Both the numerator and the denominator of

10
the tail-weight ratio are positive, so TWR(u) > 0. Since the tail-weight ratio measures the
relative tail weights of the left tail (in the numerator) to the right tail (in the denominator),
TWR(u) <1 indicates that the distribution is positively skewed, TWR(u) =1 for a symmetric
distribution, and a negatively skewed distribution has TWR(u) > 1.

Following van Zwet (1964a), a measure of skewness should preferably be zero for a

variable with a symmetric distribution, and, if two random variables are related through

35
© University of Pretoria



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Que# YUNIBESITHI YA PRETORIA

CHAPTER 2. QUANTILE MODELING

Y =—X, then the measures of skewness for the distributions of X and Y should only differ in
terms of sign. These criteria hold for the skewness moment ratio and L-skewness ratio and

also for both the ¥ -functional and 77 -functional. However, for the tail-weight ratio we have

TWRy (u) = [TWRy )] ™,
that is, an inverse relation around the symmetric value of TWR(u) =1. The interpretation of
the tail-weight ratio is therefore more complex than for the y -functional or the 77-functional.
Interpretation of skewness measures is further simplified if the measure under consideration
is bounded, as is for example the L-skewness ratio — see again (2.26). Akin to the skewness
moment ratio, the 77-functional is not bounded, but, as proven by King (1999), the y-
functional is bounded, —1< y(u)<1.

Turning to kurtosis, one of the initial quantile-based measures proposed in the literature is

the measure of Kelley (1921),

e ) o)
Q) ™ e

Karian & Dudewicz (1999) utilized a similar measure in their percentile-based estimation

method for the generalized lambda distribution,

Q@_QGJ _ S@ _ IOR

Q)=Q(~u) ~ S(u) ~ S’

TWF (u) = 3cu<l, (2.40)

labeled by them the tail-weight factor. As with the tail-weight ratio, Karian & Dudewicz

(1999) promoted the use of u :%. The tail-weight factor is then simply the ratio of the

interquartile range to the interdecile range and we have

ofifeli) _ ) e,
ofoqelw) (5 ™
The octile-based measure of kurtosis (Moors, 1988; Moors et al., 1996),
_ofilelipeliels) _sG0) _sG6)

T = Q[SJ—Q[%} = SGJ =7 IR 2.41)
and the quintile-based measure of kurtosis (Jones et al., 2011),

APl {216 v
o)) (5)

can both be viewed as natural extensions of Bowley’s quartile-based measure of skewness.

3

rwr(y)-
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A shape functional for kurtosis, the ratio-of-spread functions, was proposed by

MacGillivray & Balanda (1988),

Ru,v)=55, f<v<u<l, (2.43)

The ratio-of-spread functions, referred to as the spread-spread function by some researchers
in the literature (Seier & Bonett, 2003; Kotz & Seier, 2008), is linked to the plot of S (S F )_1
for distributions F and G, called the spread-spread plot by Balanda & MacGillivray (1990). In
the spread-spread plot the spread function of distribution G, S;(u), is plotted on the vertical
axis against the spread function of distribution F, S (u), on the horizontal axis. Linking the

spread-spread plot to kurtosis orderings, Balanda & MacGillivray (1990) extended van

Zwet’s ordering <g (van Zwet, 1964a, 1964b) to skewed distributions, defining
F<Go SG((SF(u))_l) convex for $ <u <1.

That is, if the spread-spread plot is convex for %< u<1, then distribution G has greater

kurtosis than distribution F. Conversely distribution F has greater kurtosis than distribution G
if the spread-spread plot is concave. For example, in Figure 2.15 the spread-spread plot for
the logistic distribution against the uniform distribution is convex indicating the logistic

distribution’s greater kurtosis compared to the uniform distribution.

Sg W)

0.0 0.2 0.4 0.6 0.8 1.0
S ()

Figure 2.15: Spread-spread plot for the logistic distribution with spread function S (#) against the uniform distribution with spread

function S () . For both distributions the value of S is set to one in their respective spread functions, given in Table 2.4.

Because S(u)>0 for any %< u <1, the values obtained for Kelley’s measure, the tail-

weight factor, the octile-based measure of kurtosis and the ratio-of-spread functions are

always positive. Furthermore, since S(u)> S(v) for %<v<u<1, it follows that both
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Kelley’s measure and the tail-weight factor are bounded above in that their values cannot

exceed one. Thus 0 < K <1 and O <TWF(u) <1 and therefore, like the L-kurtosis ratio, these

two measures are bounded measures of kurtosis — see again (2.26) for the bounds of the L-
kurtosis ratio.

However, a drawback of Kelley’s measure and the tail-weight factor is that they operate
in an opposite direction to the other measures of kurtosis. For Kelley’s measure and the tail-
weight factor, smaller values (in effect, values closer to zero) are indicative of heavier tails,
while larger values (that is, values closer to one) indicate shorter tails. The more intuitive
interpretation delivered by the other measures of kurtosis is that an increase in the value of
any of these measures signifies an increase in kurtosis.

In fact, comparing their expressions, we see that the tail-weight factor is a special case of

the inverse of the ratio-of-spread functions,
-1
TWF (u) = [R(u, 2)| .
This inverse relation between the ratio-of-spread functions and the tail-weight factor suggests
a newly proposed functional for kurtosis which is bounded. Because S(u)>S(v) for

%< v<u<l1, we have R(u,v)>1, and hence the inverse of the ratio-of-spread functions is

bounded, in effect, 0 < [R(u, v)]_l < 1. The new functional for kurtosis, to be called the x -

functional, is then defined as one minus the inverse of the ratio-of-spread functions and

given, after simplification, by

K, v) =1=[R(u, ] = 2= L<v<u<l, (2.44)

The x -functional is thus a bounded functional for kurtosis, O0< x(u,v)<1. More
importantly, the x -functional preserves the ordering <; given above and, in doing so,
adheres to the directional interpretation of kurtosis delivered by the majority of measures (an
increase in value implies an increase in kurtosis).

The median, the spread function, the ¥ -functional and 77-functional, and the ratio-of-
spread functions and x -functional will be the respective quantile-based measures of location,
spread, skewness and kurtosis utilized in the rest of this thesis. Table 2.4 presents the

expressions (and values) for these measures for the uniform, exponential and logistic

distributions.
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Table 2.4: Quantile-based measures of location, spread and shape for the uniform, exponential and logistic distributions.
Measure Uniform Exponential Logistic
Median me = a+%ﬁ me = a+ flog[2] me=a
Spread function Su)y=Qu-1p S(u) = ﬂlog[ T } S(u) = 2,310g|: - }
_ log[4u(l-u)]
7 -functional yu) =0 Yy == yw)=0
10g|: lzu :|
u(1-u)
) . 10g|: v(l-v) :l
7 -functional n(u,v)=0 n(u,v)=- n(u,v)=0
log[ = :i
log lzu :l IOg lzu i|
Ratio-of-spread functions R(u,v)= %i‘j R(u,v) =——= R(u,v)=——=
10g|: = log[ o }
[ u(l-v) i u(1-v)
. 2(u—v) log V- :l log v(l-u) j|
x -functional K(u,v)= K(u,v)=—— K(u, v) =—

2u-1

Because they are symmetric distributions, both the uniform and logistic distributions have

y(u) =n(u,v)=0. Regarding kurtosis, it is interesting to note that the ratio-of-spread

functions of the exponential and logistic distributions are exactly the same, as are the & -

functional of these distributions. Recall that these two distributions are special cases of the

SLD, introduced in Example 2.3.4. The SLD’s quantile-based measures of location, spread

and shape are considered in Example 2.6.1.

Example 2.6.1

Substituting the SLD’s quantile function in (2.15) into the expressions for the median in

(2.34), the spread function in (2.35), the ¥ -functional and 77-functional in (2.37) and (2.38),

and the ratio-of-spread functions and x -functional in (2.43) and (2.44) and simplifying gives

me =a+ (20 —1)log[2],

S(u) = Blogli].
(20 —1)log[4u(1—u)]

y(u)=— ,
log[ﬁ]
28 - 1)log|“4=")
)= )Oa“ﬂ>,
logl% ]
logl;]
R(u,v)=—
logf; ]

© University of Pretoria
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and

1o u(l-v)
K(u,v) = @ (2.47)

log[ﬁ] ’

where %< v<u < 1. The shape functionals of the SLD are location- and scale-invariant in that

they are all independent of the location and scale parameters (& and f). Furthermore, the

two kurtosis functionals of the SLD in (2.46) and (2.47) are independent of the shape
parameter, J . In Section 2.7 this result is explained.

O

2.7 SKEWNESS-INVARIANT KURTOSIS MEASURES

Careful examination of the various kurtosis measures discussed in Section 2.6 reveals that

they are all of the general form

SaSw) Xaj(Q<uj>—Q<1—uj)j
j=1 _ J=l

D b S(u) Zbk(Q(uk)—Q(l—uk)j
k=1 k=1

, (2.48)

where a;:j=12,..,n and b, :k=12,..,n, are constants with n, and n, positive

integers. In effect, all the kurtosis measures in (2.39) to (2.44) are defined as ratios of linear
combinations of spread functions. The general form in (2.48) was considered by Jones et al.
(2011) in a seminal discussion on skewness-invariant kurtosis measures.

Before focusing on skewness-invariance, it should be noted that all kurtosis measures of
the general form (2.48) are location- and scale-invariant. It was already indicated through
(2.36) that the spread function is location-invariant. Scale-invariance is imposed via ratios in

that (2.48) can be rewritten as
> a;Su;) Zajﬂ(QO(uJ-)—QO(l—uj)J
j=1 _ =l
2 biS(uy) Zbkﬂ(Qo(uk)—Qoa—uk)J
k=1 k=1

Zlaj(Q(,(uj)—Qo(l—uj)j

_J=l

fbk(Qowk)—Qo(l—uk)j

k=1
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Now, suppose the distribution under consideration possesses a shape parameter, denoted

in general by ¢ (depending on the distribution under consideration ¢ will be either A or
0), and it is possible to express the spread function for this distribution by
S(u)=Bg)Gu). (2.49)
That is, assume the spread function can be expressed as the product of [ (the scale
parameter) and two other components, where the first component, g(g), is a function of ¢
but independent of u, and the second component, the function G(u), is independent of ¢ .
Then the distribution will have quantile-based kurtosis measures of the general form
Z'l,ajswj) > a,A2(6)G ;)
j= _ =

Zbks(uk) Zbkﬁg(g)G(uk)
k=1 k=1

o
Z“J'G(”j)

o)
Zka(uk)
k=1

which are skewness-invariant with respect to ¢ .

Example 2.7.1
Comparing the spread function of the SLD in (2.45) with (2.49), it follows that g(¢) =1,

«| for the SLD. The SLD thus has

where ¢ =0 is the shape parameter, and G(u) = log[l_

skewness-invariant quantile-based kurtosis measures, since

ny ny [
2.a;,Gu;) Y a;log| 1_2.]
= _

ny ny [ :
Zka(uk) Zbk log| 1_Zk ]
k=1 k=1

(2.50)

Examples of these skewness-invariant measures include the ratio-of-spread functions and the
k -functional, given in (2.46) and (2.47).

O

Example 2.7.2
Recently Lan & Leemis (2008) introduced the logistic-exponential distribution, a flexible

survival distribution with half-infinite support, [0, o), and quantile function given by
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0(p) = %1og[1 + (1—]}

where b >0 and ¢ >0 are respectively scale and shape parameters. For ¢ >1 the logistic-
exponential distribution is unimodal and has upside-down bathtub-shaped failure rates. The
distribution is J-shaped for ¢ <1 and reduces to the exponential distribution with a constant
failure rate when ¢ =1. Bathtub-shaped failure rates are obtained for ¢ <1.

In this thesis a slight reparameterization of the logistic-exponential distribution is

considered. This parameterization is obtained by letting =, and A=- and by including a

location parameter, &, not restricted in sign (in effect, @ may assume negative values), so

that the distribution has support [¢, ) . The corresponding quantile function is

Q(p)=a+,b’log{l+(%);i]

See Tables 2.10 to 2.12 in Section 2.14.3 for the distribution’s other properties and functions.

The spread function of the logistic-exponential distribution for % <u<lis

S(u) =Q(u) - Q(1—u)

_ (m ﬁlog{H(ﬁ)iD - (“* g 10g{1+(1-7u)4D
1+ ()

e

= ,Blog[ (ﬁ)l] since
= ﬂﬂlog[ﬁ].

It follows that g(¢) = g(A)=A, with ¢ = A the shape parameter, and G(u) = log[ﬁ]. Thus
ny ny [ .
2.a,Gluy) Y a;log| 1_2.]
J=1 _J=1

ny ny [
Zka(uk) Zbk log| 1_; ]
k=1 k=1

Lz = zforz#0
1+z

and the quantile-based kurtosis measures of the logistic-exponential distribution are hence

skewness-invariant. Furthermore, as indicated in Table 2.14 and illustrated in Figure 2.8, the

— 1

L-kurtosis ratio of the logistic-exponential distribution is 7, = and hence also skewness-

invariant with respect to the shape parameter.

O

42
© University of Pretoria



UNIVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 2. QUANTILE MODELING

2.8 PROPOSITION: QUANTILE-BASED DISTRIBUTIONS WITH SKEWNESS-
INVARIANT KURTOSIS MEASURES

In this section the main proposition in the thesis is presented. This proposition provides a
methodology for the construction of quantile-based families of distributions possessing

skewness-invariant measures of kurtosis.

Proposition 2.8.1
Assume that X is a real-valued random variable with an asymmetric distribution on bounded

or half-infinite support and with 7" order L-moment and ™ order L-moment ratio denoted by

Ly., and 7y .. Let Qx.((p) denote the quantile function of the standard distribution of X.

Suppose Y =—X so that the standard distribution of Y is the reflection of the standard

distribution of X about the line x=0 with quantile function Qy.,(p)=-0y.o(1-p).

Consider a random variable W with quantile function
Qw(p)=05+,5(5Qx;o(p)—(1—5)QX;0(1—p)j, (2.51)

where « is a location parameter, >0 is a scale parameter and 0<J<1 is a weight
parameter.
(a) The first order L-moment of Wis
Ly, =a+pR26-1)Ly., (2.52)
its /™ order L-moment for r>1 is
Ly., =BQ5-1)""Ly.,, (2.53)
and its /" order L-moment ratio for r>2 is

Ty., = (25 -1z, (2.54)

.-
(b) The L-skewness ratio of W is bounded by —7y.3 <7y ; <7y 5.
(c) The L-kurtosis ratio of W, 7y,.,, is skewness-invariant with respect to 0.

(d) The spread function of W is
Sy (u) = ,B(Qx;o(u)_Qx;o(l_u)] , %< u<l,

so that W has quantile-based kurtosis measures which are skewness-invariant with respect

to 0, given in general form by
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Zaij%) Zaj(Qx;o(”j)_Qx;o(l_”j)]

J=1 _J=l

- - , (2.55)
zkaW(uk) zbk(QX;O(uk)_QX;O(l_uk)]
k=1 k=1

where a: j=L2,.,n and b, :k=172,...,n, are constants with n, and n, positive

integers.

Proof
(a) Substituting (2.51) into (2.23), the " order L-moment of W can be expressed as

1
Ly,, = [ Ow(P)PL(p)dp
0

1 1 1
=af PL(p)dp +/)’(6j Ox.o(PIP (P)dp—(1=8)[ Oy (1 - p)P,*_1<p>dpJ
0 0 0

=a +p.

Using (2.93) given in Section 2.14.2,

1 1
B = /{éj Ox.o(PIP(p)dp —(1=8)=1)" [ Oy o (1= p)P, (1 - p)dp]
0 0
1 1
= ﬂ(ﬁj Ox.o(PYPLi(p)dp — (1= )1 | QX;()(p)B*_l(p)dpj
0 0

1

= B(25 1™ [ Qy,o(P)Pi(p)dp
0

— ﬂ(za_ l)rmodZLX;r )

From (2.94) in Section 2.14.2 we have that & =« for the first order L-moment and
a" =0 for higher order L-moments. Using these expressions for " and £~ gives (2.52)

and (2.53), while (2.54) follows directly from the formula for the L-moment ratio given in
(2.25).
(b) Since 0< <1, it follows from (2.54) that, in general for r odd, the ™ order L-moment

ratio of W is bounded by —7y., <7y. <7y, . The L-skewness ratio of W is therefore
bounded by —7y.; <7y 3 <7x.3.
(c) From (2.54) it follows that, in general for r even, 7y,., =7y.,. Specifically 7., =7y,

and the L-kurtosis ratio of W is hence independent of  and skewness-invariant.
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(d) The spread function of W is obtained by substituting the quantile function of W, given in
(2.51), into the expression for the spread function in (2.35) and simplifying. The general

form of the quantile-based kurtosis measures in (2.55) follows directly.

Example 2.8.1

Consider X having a standard exponential distribution with, as given for example by Hosking

(1986), Ly, =1, Ly, =57 for r>1 and 7y, =

2 -1
> P for r>?2, and hence Ly,=7,

r(r

Tx.3 :% and 7y ., =~ . Using (2.52), (2.53) and (2.54), the SLD then has

1
6

L=a+p256-1), (2.56)
L, =200 s, (2.57)
and
_ 2(25_1)rm0d2
Tr—T, r>2. (258)

In particular the L-scale, L-skewness ratio and L-kurtosis ratio of the SLD are

L=18, (2.59)

7,=125-1) (2.60)
and

7, =1 2.61)

So, as with the SLD’s quantile-based kurtosis measures in (2.50), the L-kurtosis ratio of the
SLD in (2.61) is skewness-invariant with respect to J. Note furthermore that, because

0<6<1,the SLD has —<7;<1.

Comparing the L-moments of the SLD in (2.56), (2.59), (2.60) and (2.61) with its
conventional moments in (2.19) to (2.22), it is evident that it is more expedient to
characterize the SLD with its L-moments than with its moments, since the expressions for the
L-moments are much simpler than the corresponding expressions for the moments. Also,
simple general expressions exist for the SLD’s rth order L-moment, (2.57), and rth order L-
moment ratio, (2.58). There are no such general expressions for the SLD’s moments or
moment ratios.

O
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2.9 METHOD OF L-MOMENTS ESTIMATION

The fitting of a probability distribution to an observed data set is a common problem in
statistical modeling. Hosking (1986, 1990) proposed that, given that the data set under
consideration is assumed to be a random sample of size n from the distribution to be fitted
and this distribution has finite variance and contains m unknown parameters, the parameters
of the distribution be estimated through method of L-moments estimation. With method of L-
moments estimation the first m sample L-moments are equated to the corresponding

population L-moments. That is, if the parameters 6,:r=12,..,m and the L-moments

L :r=172,..,m of aprobability distribution are related by

0.=¢(L.L,...L,), r=12..,m,
then the estimators obtained with method of L-moments estimation are given by
6,=g(t1, 0y, 0,), T=12,.,m,
where ¢, :r=1,2,...,m are the sample L-moments calculated from the random sample with
(2.28).

Hosking (1986) and Hosking & Wallis (1997) presented method of L-moments estimators
for various well-known distributions. As with other estimation methods, the method of L-
moments estimators do not possess closed-form expressions for all distributions. However, if
a quantile-based distribution is constructed using Proposition 2.8.1 and possesses at most two
shape parameters, so that its quantile function is of the form (2.51) where one of the shape
parameters is a weight parameter, 0< 9 <1, then closed-form expressions will be available
for the method of L-moments estimators. This is illustrated in Example 2.9.1 for the SLD.

As pointed out by Hosking (1986, 1990), in general it is difficult to derive exact sampling
distributions of sample L-moments and, as a result, exact distributions for the method of L-
moments estimators. Therefore asymptotic distribution theory must be utilized. Using
asymptotic theory for linear combinations of order statistics, developed by Chernoff
et al. (1967), Moore (1968) and Stigler (1974, 1979), Hosking (1986) proved that, if X is a
real-valued random variable and the probability distribution of X has cumulative distribution

function F(x), quantile density function g(p) and finite variance, then, as n — oo,

1
nz(ﬁr —Lr), r=12,...m,
converge in distribution to the multivariate normal distribution, N(0,A), with

A, s :ir,s=1,2,...,m the elements of the covariance matrix A given by
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A, ,=limncov(/,, ()

r,
n—o0

= [ [ (FO)P (F(0)+ P (F ()L (F<y))jF<x>(1 F(y))dxdy (2.62)

x<y

1v
=] I( L @PL () + Pl ()P 1<v>ju<1 V)qQu)q(v)dudy ,
00

where Pr*( p) is the r™ order shifted Legendre polynomial given in (2.24). Consequently, as
n— oo,

n6.-6), r=12..m,
converge in distribution to the multivariate normal distribution, N(0,®), where

@, :r,s=1,2,..,m are the elements of the covariance matrix ® = GAG” , given by

r,s

with

G, =%, (2.63)
That is, the asymptotic variances of and covariances between the method of L-moments

estimators, é, :r=1,2,...,m, can be obtained with

6, 0,1 0, O
o) ®2, 1 ®2, 2 ®2, m

nvar, - |= . . .
em ®m 1 ®m,2 ®m m

Note that both A and ® are symmetric matrices with A, [ =A, , and ©, =0

Example 2.9.1
Because the SLD has three parameters to be estimated, 6, =, 6, =/, and ;= J, the first
three L-moments of the SLD are utilized in method of L-moments estimation. The method of

L-moments estimates for the SLD and their asymptotic standard errors can be computed

using the following simple estimation algorithm:
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Step 1
Use (2.30), (2.31) and (2.32) to calculate the first three sample L-moments, ¢,, ¢, and /5,

and then (2.29) to calculate the sample L-skewness ratio, #;. Since the SLD has — =<7, <

1 1
3 37

check whether —% <t S%. If so, proceed with Step 2. If not, the SLD cannot be fitted to the

data.

Step 2
The method of L-moments estimators for ¢ and S are obtained by inverting (2.60) and
(2.59), giving

§=1(1+31)

(2.64)
/
ifest)
and

Ig =2/,. (2.65)
From (2.56) it follows that the location parameter is estimated with

a=10,-pRs-1) .66

where the final result is obtained by substituting the expressions for ,[3’ in (2.65) and J in

(2.64) into (2.66) and simplifying.

Step 3
Finally the asymptotic standard errors of the method of L-moments estimators for the SLD’s

parameters can be calculated with

s.ea]= ﬁ\/ﬁ (57 +(12522 -1 308)a)j , (2.67)

se.|f]= ,8\/%(1—(7:2 - S)a)j (2.68)

and

s.e.[d]= \/#(8 - 4{397 +160 0—207* (0 + 2)D : (2.69)
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where @= d(1—0). The derivation of these expressions for the standard errors is done in

Section 2.13.2.

Note that, even though ¢, is not used in the estimation of any of the parameters of the
SLD in Step 2, one can calculate its value with (2.33) and then use it to calculate the value of

the sample L-kurtosis ratio, #,, with (2.29). Because the SLD has 7, =, the value of 7,
gives an indication whether the SLD is a plausible distribution for the data. If the value of z,
deviates drastically from 7, :%, one can expect that the SLD will not fit the data well.

Formal methods for distribution validation are presented in Section 2.10.

To illustrate the estimation algorithm for the SLD, consider a data set consisting of the
peak concentrations (in percent) of toxic gas released in a series of atmospheric diffusion
experiments carried out by Hall (1991). Hankin & Lee (2006) fitted the Davies distribution to
this data set using both maximum likelihood estimation and a logged regression estimation
method.

Figure 2.16 shows a histogram for the data set. The sample L-moment and L-moment

ratio values for the data set, consisting of n =100 observations, are given in Table 2.5. Since

%S t; < %, the SLD can be fitted to the data set. Note furthermore that the value of ¢, is

reasonably close to 7, = ¢ .

0.25

SLD

—————— Davies distribution
0.20

4
N\
4
0.10 / \
\y

/ N
0.05 . \

// m
4
0.00 7

1 3 5 7 9 11 13 15 17
Peak concentrations

Figure 2.16: Histogram of the peak concentrations (in percent) of toxic gas together with the probability density functions of the fitted

SLD and Davies distribution.
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Table 2.5: Sample size, sample L-moment values and data range for the peak concentrations (in percent) of toxic gas.
n 04 0y I3 ty Data range
100 7.9384 1.8432 0.1293 0.1451 [1.701, 16.910]

Table 2.6 presents the parameter estimates of the SLD obtained with method of L-
moments estimation. The standard error of each estimate is given in parentheses below the
estimate. In Figure 2.16 the density curve of the fitted SLD is superimposed on the histogram,
as is, for comparison purposes, the density curve of the Davies distribution fitted with

maximum likelihood estimation by Hankin & Lee (2006).

Table 2.6: Parameter estimates with asymptotic standard errors* for the SLD

fitted to the peak concentrations (in percent) of toxic gas.

& B 5
6.5085 3.6863 0.6940
0.6111) (0.3305) (0.0784)

* Standard errors given in parentheses.

2.10 Q-QPLOTS AND GOODNESS-OF-FIT

Model validation for quantile-based distributions proceeds as for other distributions. Apart
from histograms of the data with density curve(s) of the fitted distribution(s) overlaid (as for
example in Figure 2.16), graphical displays include quantile-quantile (Q-Q) plots of the
points QA(pi:n) versus x;., for i=1,2,...,n, where QA(pi:n) denotes the empirical quantile

h

function of the fitted distribution and x,., is the i" value in the ordered data set

Xy S Xy, £...2x,,,. A number of different plotting positions, p,.,,, have been suggested in
the statistical literature — see Thas (2010). The general form proposed by Blom (1958) is

— _i=c
Pin = n+l-2c¢ *

In this thesis ¢ =+ is used, giving

1
3

Din = 31 , (2.70)

which provides the ideal depth of the i™ order statistic from a sample of size n as suggested

by Hoaglin (1983) in that, for any continuous distribution, this choice of p,, very closely

approximates the median of the distribution of the /™ order statistic.
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Goodness-of-fit can further be assessed by using classical tests such as the Kolmogorov-
Smirnov D, statistic, the Anderson-Darling A, statistic and the Cramér-von Mises W,
statistic. For a detailed account of these three tests, see Thas (2010). These tests are all based
on the empirical distribution function, F (xl-:n). A slight complication for quantile-based
distributions is that, because closed-form expressions for their cumulative distribution
functions are not available, F (xi:n) must be calculated numerically by the reverse
transformation.

The parametric bootstrap can be used to estimate p-values for D,, A, and W, (see
Appendix B of Thas (2010) for details). In this thesis N =10000 bootstrap samples will be
used. When sampling from a fitted quantile-based distribution, bootstrap samples may be
obtained for which the distribution cannot be refitted due to the values of #; and #, for these

samples lying outside the (2'3, 2'4) space attained by the distribution. The number of valid

bootstrap samples will be denoted N, .

The abovementioned graphical displays and tests are useful for verifying whether a fitted
distribution adequately explains the observed data set. To compare the fit of various
distributions and find the “best” of these fits, the average scaled absolute error (ASAE)
introduced by Castillo & Hadi (1997),

ASAE = 13l 2]

i=1

n

can be used. Smaller ASAE values are indicative of better fits. See Castillo et al. (2005) for

its application in extreme value modeling. Note that p,, as given by (2.70) is used in this

thesis, whereas Castillo & Hadi (1997) and Castillo er al. (2005) used p,, =-—, that is, p;,,

n+l "’

with ¢ =0.

Example 2.10.1

Figure 2.17 depicts Q-Q plots for the SLD fitted to the peak concentrations (in percent) of
toxic gas in Example 2.9.1 with method of L-moments estimation, and for the Davies
distribution fitted by Hankin & Lee (2006) with maximum likelihood estimation. These plots
indicate that the SLD fits the data slightly better in the upper tail, while the Davies

distribution provides a slightly better fit in the lower tail.
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(a) 0—0 plot for SLD (b) O—0 plot for Davies distribution
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Figure 2.17:  0-Q plots for the SLD and the Davies distribution fitted to the peak concentrations (in percent) of toxic gas.

To calculate p-values for goodness-of-fit tests, tabulated in Table 2.7 along with the
goodness-of-fit statistics, N =N,, =10000 bootstrap samples were used. In effect, the SLD
could be refitted to all generated bootstrap samples. All three goodness-of-fit tests suggest
that the SLD provides an adequate fit to the data. The fitted SLD has an ASAE value of
0.0154, which is lower than the ASAE value of 0.0166 attained for the Davies distribution
fitted by Hankin & Lee (2006) with maximum likelihood estimation.

Table 2.7: Goodness-of-fit statistics with p-values* for the SLD fitted to

the peak concentrations (in percent) of toxic gas.

D A W

n n n

0.4892 0.2489 0.0351
(0.5251) (0.5868) (0.6092)

* p-values given in parentheses.

2.11 TAIL BEHAVIOR

The tail behavior of the density curve of a distribution is usually analyzed through the
probability density function, f(x), of the distribution. But, as explained in Section 2.2.3, no
closed-form expression exists for the probability density function of a quantile-based
distribution. The density quantile function, fp( p), must therefore be utilized. To determine

the values which the density curve approaches at the end points of the left tail and the right

tail respectively, one has to compute lirr%) f,(p) and lim1 f,(p). The value which the slope
p— p—
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of the density curve approaches at the end point of each tail can be obtained by computing

lim &(p) and lim &(p) , where
p—0 p—l1
dg(p) 1
- , 2.71
3 ) (e71)
derived by King (1999), is the derivative of the probability density function expressed in

df (x)

terms of p instead of x. In effect, £(p) represents == in the quantile statistical universe.

Example 2.11.1
For the SLD, the values which its density curve as well as the slope of its density curve
approach at the end point of each tail are determined using the SLD’s density quantile

function, given in (2.17), and the function

p<1_p)[5,,2_<1_5>(1_,,>2]

f(p )=-— 3
ﬁ2[6p+<1—5>(1—p>]
The values obtained are summarized in Table 2.8. For ¢ =1 the values given are for the
exponential distribution, while the values for d=0 are for the reflected exponential
distribution. For 0< d <1, the density curve and the slope of the density curve approach zero

at both tails, which is equivalent to the tail behavior of the logistic distribution (in effect, the

SLD with 5=1).

Table 2.8: The values approached by the density curve and the slope of the density curve of the SLD at the end-points of the tails.
Density curve Slope of density curve
Shape parameter values Left tail Right tail Left tail Right tail
— L L
6=0 0 ¥ 0 5
0<o<l 0 0 0 0
— L _L
6=1 8 0 Iz 0

2.12 CONCLUSION

In this chapter functions, methods and measures for quantile modeling were presented. It was
shown how quantile-based distributions can be developed with a set of construction rules

based on Q-transformations.
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Specifically Proposition 2.8.1 outlined a quantile-based methodology for obtaining
distributions with skewness-invariant measures of kurtosis and, as a result, closed-form
expressions for the distributions’ method of L-moments estimators and their asymptotic
standard errors. The methodology was illustrated with the SLD.

In Chapter 4 the methodology outlined in Proposition 2.8.1 is used to derive a special type
of the generalized lambda distribution, of which the SLD is a limiting case. Before doing so,
the properties of two existing types of the generalized lambda distribution are presented in

Chapter 3.

2.1 3 DERIVATIONS

In Section 2.13.1 below formulae for the moments of the SLD are derived. The covariance

matrix for the method of L-moments estimators of the SLD is derived in Section 2.13.2.

2.13.1 MOMENTS OF SLD
Lemma 2.13.1

The integral
1
W(j,k) = [ (logp])’ (logll - p))dp, jk=0,12,... (2.72)
0

1s encountered in the derivation of the formulae for the moments of the SLD. Since

(loglp))’ =22 (p")]

. j=0,1,2,..

T ou’

and

(log[l—p])":%((l—p)”) o k=012,

v=

the integral in (2.72) can be solved using

1
(Ip“(l—p)vczp}
0
aj+k

=2 (Bu+1Lv+1)|

W(j.k)==

Jt+k
du’/ vk

u=v=0

u=v=0"

where B(a,b) =% is the beta function with I'(a) the gamma function (see Section

2.14.1). In particular, to derive the formulae for the first four moments of the SLD,

W(i,0)=¥(0,i) for i=1,2,3,4 and ¥Y(j,k) for j=0,1,2,3 and k =0,1,2,3 are used.
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Note that %F(a):r‘(a)l//(a) where W(a) is the psi function (see Section 2.14.1).
Therefore the first partial derivative of the beta function with respect to u is
9 T(u+DI(v+1)

il — 0
5 B+ Ly+1) == T(utv+2)

—_ L0+ F B B
aiT——"s (F(u +v+2) = Tu+1)-T(u+1D)5-Tu+v+ 2)]

(T(u+v+2))?

= &(r(u +v+2)D(u+ Dy (u+1)
-I'u+DI'(u+v+2)p(u+v+ 2)}

:B(u+1,v+1)(l//(u+1)—l//(u+v+2)),

and likewise it can be shown that the first partial derivative of the beta function with respect

to v is

%B(u+l,v+l) = B(u+1,v+1)(1//(v+1)—1//(u+v+2)J.

Because I'(a)=(a-1)!, it follows that B(1,1) = r(ggl) =1. From Gradshteyn & Ryzhik

(2007, 8.366.1) we have w(1)=—-C, where C is Euler’s constant given in Section 2.14.1.
Furthermore, using Gradshteyn & Ryzhik (2007, 8.365.4), w(2) =1—-C . Hence
¥(1,0) =¥(0,1)=-1.

The second partial derivative of the beta function with respect to u is

;{—ZZB(u +1Lv+1) :a%(B(“ +1,v+ l)(lﬂ(u +D)-y(u+v+ Z)D
:(l//(u +1)—w(u +v+2)]%13(u+1,v+1)

+Bu+1,v+ 1)%(1//@[ +D)-pu+v+ 2)]

2
=B(u+1v+ 1){(1//@ +D)-y(u+v+ 2)}

+ (l//(l)(u +D-yPu+v+ 2))} ,

where " (a) is the first derivative of the psi function (see again Section 2.14.1). Similarly

the second partial derivative of the beta function with respect to v is
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2
%B(u+l,v+1)—B(u+1,v+1)[(w(v+1)—l//(u+v+2)J

+ (l/l(”(v +D)—-yPw+v+ 2)}} .

Also,

a%v Bu+lv+1) :%(B(” +Lv+ 1)(‘/’@ +D-ypu+v+ Z)D

= (W(u +D)-pu+v+ 2)]§—VB(M +1L,v+1)
—Bu+1Lv+ Dy (u+v+2)

=Bu+1,v+ l)((w(u +D)-y(u+v+ 2)](1/(\/ +D)-y(u+v+ Z)J
-+ v+2)J.

Then, since " (1)=Z- from Gradshteyn & Ryzhik (2007, 8.366.8) and y"(2)=Z —1
from Gradshteyn & Ryzhik (2007, 8.366.11),
Y(2,0)=%(0,2)=2
and
Y(,)=2-%.
Continuing this way, the higher-order partial derivatives of the beta function and the
resulting expressions for W(i,0) = W(0,i) and W(j,k) can be obtained. In general
P(i,0) = W(0,i) = (-1)i!
so that
Y(3,0)=¥(0,3)=-6
and
Y(4,0)=¥(0,4) =24.
Also,

W(2,1)=¥(1,2) =% +2{(3) -6,

W(2,2) =244 _ 1 _gr(3)

and
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W(3,1)=¥(1,3)=24-7" - I -6{(3),

where {(a) is Riemann’s zeta function (see again Section 2.14.1).

Theorem 2.13.1
Let X be a real-valued random variable which has a skew logistic distribution, denoted
X ~SLD(a, B, 0), where a is the location parameter, £ >0 is the scale parameter and

0<6<1 is the shape parameter. The mean, variance, skewness moment ratio and kurtosis

moment ratio of X are then given by (2.19) to (2.22).

Proof

Let Z =% ~SLD(0,1, &) with quantile function given in (2.14). That is, consider the

standard SLD with location parameter and scale parameter set to zero and one respectively.

Then, for example, the fourth order uncorrected moment of Z is given by

E1z*1= [(0y.o(p)) dp

Oy — O ——

4
((1 —0)log[p]—olog[l- p]} dp

1 1

=(1-6)* [ (logl p1)*dp — 41— 8)’ 8 [ (tog[ p1) log[1 - pldp
0 0
1

+6(1-6)8 [ (logl p1)*(log[1 - p1)*dp
0
1

1
—4(1-6)8"[logl pl(iogll - p1) dp +&* [ (logll - p1)dp
0 0

=(1-0)"¥(4,0)—4(1- )’ S¥B, 1)+ 6(1-5)*6*¥(2,2) —4(1- 55 ¥(L,3)
+0MW(0,4)

where w=0(1-9) and ¢, = [(1 — O +(=D* 5"} . Likewise it can be shown that

E[Z]=-¢,
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and

E[Z%]= —3(2;;)3 + m(% +2£(3) —6D :

Since X =a+ [Z, the first four uncorrected moments of X are
4 =E[X]

=a+ BE[Z] (2.73)
=a- B4,

t=E[X?]
=’ +20BE[Z]+ B*E[Z*]

=a’ - 2ap4 +2,62(¢2 - w(z—%z]j

Wy = E[X°]
= o +30° BE[Z]+3aB°E[Z*1+ BPE[Z*]

= o - 302, + 60{,82((,/52 - w(z—”—;ﬁ - 3/;’3(2@ + w@(% + 2{(3)—6]],

and
#, = E[X"]
=o' +40° BE[Z]+60° BPE[Z7 )+ 4aB’°E[Z° 1+ B E[Z*]

=o't — 40’ g + 120{2,82[;/52 - a)(z—”{D = 120:,6’3[2(,/)3 + w{”—; + 2{(3)—6}}

The first four corrected moments of X are then
i =E[X - E[X]]=0,
1, = E|(x - E[X )]
= 1, — ([ (2.74)

:,32(¢f+”—32(o),
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u, = E|(x — E[X1) |
= 1t =3 + 2w’ (2.75)

=ﬂ3(2¢1(w[4—3§(3>}1j}

u, = E|(x - E1x 1)
= pl, — 4 + 64 () = 3(us])* (2.76)

sl

where each moment’s final expression is found after extensive simplification. The mean and

and

variance of X in (2.19) and (2.20) are respectively given by =g in (2.73) and o’ = M, 1n
(2.74), and the skewness and kurtosis moment ratios of X in (2.21) and (2.22) are obtained by
substituting the expressions for (4 in (2.75) and g, in (2.76) into (2.18). Note that
@ =—25-1) in (2.19) to (2.22).

2.13.2 COVARIANCE MATRIX FOR METHOD OF L-MOMENTS ESTIMATORS OF SLD
Lemma 2.13.2

In the derivation of the covariance matrix for the method of L-moments estimators of the

SLD, the double integral
1 v
J-vkj-uj_l(l—u)_ldudv
? 0 (2.77)
[v'B, (), 0)av,
0
where B_(a,b) is the incomplete beta function (see Section 2.14.1), must be solved for
j=2,3,4 and k=-1,0,1,2. Now,

B,(j,0) =% F(j,1; j+1;v)

=vip(v,1, j) (2.78)

hed . .
_ vl+]
- Z i+j
i=0
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where F(a,b;c;z) and ¢(z,a,b) are respectively the hypergeometric series and the Lerch
function (see Section 2.14.1). The relation between the incomplete beta function and the
hypergeometric series in (2.78) is given by Gradshteyn & Ryzhik (2007, 8.391), while the
relation between the hypergeometric series and the Lerch function is given by Gradshteyn &
Ryzhik (2007, 9.559).

Setting m =i+ j in (2.78) and simplifying gives

oo

B,(j,0)=> =
m=j
o i—1
= Z_l—— j_l% (2.79)
j-1
—In[l1-v]- > L=,
m=1

where Gradshteyn & Ryzhik (2007, 1.513.4) is used in the final result in (2.79). Then,
substituting (2.79) into (2.77) gives

1 i1
E(j,k) :Ivk(—ln[l—v]— ]Z:V’—mjdv
0

m=1

1 j-1
- _.[ v Infl-v]dv— z m(mJlrk+1) .
0

m=1

From Gradshteyn & Ryzhik (2007, 4.291.4) we get

-1
— . 2
:’(]’_1):%_ L2’

m
1

while from Gradshteyn & Ryzhik (2007, 4.293.8)

~.

3
I

j-1
E(j,k) =ﬁ(w(k+2)+€j— ZM(TIM) k>-1,
m=1

where W(a) is the psi function and C is Euler’s constant (see again Section 2.14.1). In

particular, using Gradshteyn & Ryzhik (2007, 8.365.4),

!
=(j,0)=1- zm )
m=1

(x]

(J,:D=

EN[39)

j—1
_ z 1
m(m+2)
m=1

and
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-1
=(7 — 11 _ 1
E(J,2) = Zm(m+3) .

m=1

Theorem 2.13.2
Let X be a real-valued random variable which has a skew logistic distribution,

X ~SLD(a, B, 0), with method of L-moments estimators for the location parameter, « , the

scale parameter, >0, and the shape parameter, 0<J <1, given respectively by & in

(2.66), ,B in (2.65) and S in (2.64). The asymptotic variances of &, ,[3’ and § are obtained
with
a 0, 0, 0;
nvar| f|=|0,, 0,, 0,,],
) 05, 03, 053

where
0, =L 2[57 +(12522 ~1308) a)j (2.80)
0,,=0,,=-4*25-1), 2.81)
© ,=0,, =-1 (7 +(2572 - 253) a)j , (2.82)
Q,, =%ﬁ2(l—(ﬁ2 —S)a)} : (2.83)
0,,=0;,=3p025- 1)(1+ 2(752 - 8) a)j (2.84)
and
@, ,= 1—15[8 - 4{397 +160w-207" (w+ 2))] , (2.85)

with w=Jd(1-0). Specifically the asymptotic standard errors of &, ,5’ and & are given by
(2.67), (2.68) and (2.69).
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Proof

We must derive the covariance matrix ® = GAG'. Consider first the matrix G, whose

elements, as indicated in (2.63), are given by the partial derivatives of the parameters with

respect to the L-moments. Thus, for the SLD with 6, =, 6, =, and 6= 0,

[da 22 da
oL, L, 9L,
G=|9 9 9B
| oL, dL, O,
095 95 95
| oL, oL, oL,
1 0 -6
=0 2 0
_3 3
i 25 2L
10 -6
=0 2 0 |,
_25-1 3
0 B B

where the final result is obtained using (2.59) and (2.60) and simplifying.

Consider next the symmetric matrix

A1,1 Al,z A1,3
A= A2,1 Az,z A2,3 >
A3,1 As,z A3,3

whose elements are obtained with (2.62) using the quantile density function of the SLD given
in (2.16) and the shifted Legendre polynomials P, (x), P, (x) and P, (x) given in (2.89),
(2.90) and (2.91). For example,
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(Pﬂu)P;(v)+P§<u)P§<v>Ju(1—v)q(u)q<V>d”dV
{

(6u —6u+ 1}[@ —6v+ 1}!(1 v)ﬁ(l S+ lffujﬁ(lf jdudv
= 2/32“[(1 — 5)(— 6v:+12v -7+ v1j+ 5[6\/2 —6v +1D
0
xf(a - 5)(6u2 —6u+ 1) + o“(mﬁ —6u” + uJ(l —~ u)lequv
0
= 2ﬁ2j[((1 = 5)(— 6v:+12v -7+ v_1j+ 5(6# —6v +1D
0

x[(l - 5)(2v3 ~37 4 vj + 5(6BV(4, 0)-6B,(3,0)+B, (2, O)B}JV
1
= 2ﬂ2((1 - 5)2j(— 120° +42v* =56v° +350% = 10v + 1) dv
1
+of (12\/ ~30v* +26v° —9v? + vjdv

0
+ a)( 6Z(4,2)+725(4,1)—42%(4,0) + 6=(4,-1)
+362(3,2)—72E(3,1) +42=(3,0) - 6Z(3,—-1)

—-62(2,2)+12E(2,1)-7=(2,0) + =(2,— 1)j
+ 52(365(4, 2)—-36Z(4,1) +6=(4,0)—36=(3,2) +36=(3,1) —6=(3,0)

+62(2,2)-62(2,1)+ (2, O)D

2(2+w(57:2 —53)] :

with @=d(1—0) and where the final expression is obtained after substantial simplification.

Likewise it can be shown that

A 1=§ﬁ2[3+a)(n2—12)j,
A, , =§,32(1—a)(7z2—8)},
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A=Ay, :%,32(25— D,

Aps=As, :%,82(1+ ol7? —11)}

and
Ay s=As,=1p4°26-1).

Finally, since

®=GAG"
1 0 =6[A, A, A1 0 0
=0 2 0 A, Ay, Ay 002 2

0 =250 2 1A Ay Ay;|-6 0 i

the expressions for the elements of ® in (2.80) to (2.85) are obtained with
®1,1 = A1,1 _12(/\1,3 _3/\3,3),

®1,2 = ®2,1 = 2(/\1,2 _6/\3,3)’

0,;=0;,= %[3("\1,3 _6/\3,3)_(25_ 1)(A1,2 _6A2,3)j )

®2,2 = 4A2,2 )

0,;=0;, :%(3/\2,3 - (25_1)/\2,2)

and

0, , =#((25— 12A, 5 —6(25— DA, 5 +9A, 5).
|
2.14 APPENDIX

Section 2.14.1 contains information on special mathematical constants, functions and ratios
used in the thesis. The properties of shifted Legendre polynomials, which appear in the
formulae of L-moments, are briefly given in Section 2.14.2. Tables with expressions for
probability-based functions, quantile-based functions and L-moments for various probability

distributions are presented in Section 2.14.3.
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2.14.1 SPECIAL MATHEMATICAL FUNCTIONS AND RATIOS
The mathematical constants, functions and ratios listed in Table 2.9 are utilized throughout

the thesis. Where applicable, full details regarding these constants, functions and ratios are

available from Gradshteyn & Ryzhik (2007).

Table 2.9: Special mathematical constants, functions and ratios.
Name Expression Reference
. Gradshteyn & Ryzhik
Error function erf (z) = exp[ ]dt (2007, 8.25)
Inverse error function erf 7 (s)
Standard normal density __1 1.2 _o o
function 92 Jar CXPIm7 2 ]’ <z<
Standard normal distribution _ T _1 e _
i ®(z) = _j o(r)dr =4 (1 +erf[ 2], —e<z<e
. _ T a _ Gradshteyn & Ryzhik
Euler gamma function I'(a) = J(;t exp[—tldr, Re(a)>0 (2007, 8.31)
. _ T _ Gradshteyn & Ryzhik
Incomplete gamma function ¥(a, z) J.t exp[—t]dt, Re(a)>0 (2007, 8.35)
Regularized incomplete gamma _ a2
function Gla,2) Ia)
Inverse of regularized G-
incomplete gamma function (a,5)
1
. _D@T®) _ [,a-17q_ b1 Gradshteyn & Ryzhik
Euler beta function B(a,b) T(ath) _([t (I=)""dr, Re(a)>0,Re(b)>0 (2007, 8.38)
Z
. _ [ra-1_ b1 Gradshteyn & Ryzhik
Incomplete beta function B.(a.b) El).t (I-0)""dt, Re(a)>0,Re(z)<]1 (2007, 8.391)
Regularized incomplete beta I.(a,b)= B_(a,b) Gradshteyn & Ryzhik
function ratio B(a,b) (2007, 8.392)
- (a),(b), 7" Gradshteyn & Ryzhik
Hypergeometric series F(a,b;c;2)= Z () k! (2007, 9.1)
. . _ L Gradshteyn & Ryzhik
Riemann zeta function S(a)= Z Re(a) >1 (2007, 9.5)
n .
, _ 1 _ 1 Gradshteyn & Ryzhik
Euler’s constant Jﬂ[; L log[n]] hm(C (2) ) 0.5772156649... (2007, 8.367)
. . _ _ ,1 _ Gradshteyn & Ryzhik
Euler psi function v(a)= F(a) da F(a) di=C, Re(a)>0 (2007, 8.36)
" derivative of Euler psi (r) _ _ 4y < 1 Gradshteyn & Ryzhik
function yr@ =g v@ = g)mw“ » Re(a)>0 (2007, 8.363.8)
. ¢ _ _ Gradshteyn & Ryzhik
Lerch function o(z,a,b)= A_(h o I<Re(z)<1,b#0,-1,.. (2007, 9.55)
Exponential integral function Ei(z) =PV J %mdt where PV denotes principal value of integral gr(‘;ig;hée%/rll)& Ryzhik
65

© University of Pretoria




P
si UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA

Que# YUNIBESITHI YA PRETORIA

CHAPTER 2. QUANTILE MODELING

2.14.2 SHIFTED LEGENDRE POLYNOMIALS

The sequence of polynomials,
P(x)=>P ", r=012,..,
k=0

satisfying the differential equation
(1= x2)L5 20k 4 r(r 4 1)z =0
and the orthogonality relation
1
L P.(X)P,(x)dx=0, ré#s, (2.86)

are called Legendre polynomials. As indicated by Gradshteyn & Ryzhik (2007, 8.910.2), the

™ order Legendre polynomial is given by

Shifted Legendre polynomials,
P (x)=Y P x", r=012,.., (2.87)
k=0
satisfy the orthogonality relation

1
[PI()P (x)dx=0, r#s. (2.88)
0

In effect, the interval over which the polynomials are orthogonal is shifted from [—1,1] for the
Legendre polynomials in (2.86) to [0,1] in (2.88) for the shifted Legendre polynomials. Thus,
as indicated by Hosking (1986), the Legendre and shifted Legendre polynomials are related
through

P(x)=P (2x-1),

so that the " order shifted Legendre polynomial is given by

Pl =4 (x(1-x)"

The coefficients of the shifted Legendre polynomials in (2.87) are then

= (D)TRoH! o k[ ) r+k
Frw= (k)2 (r—k)! =D (k)( k )

To obtain expressions for the first four L-moments, the shifted Legendre polynomials up

to the third order are needed and they are

B (x)=1, (2.89)
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B (x)=2x-1, (2.90)
P, (x)=6x>—6x+1, (2.91)
Py (x)=20x" —30x* +12x 1. (2.92)

Two additional results used in the proofs of Proposition 2.8.1 and Theorem 3.17.2 are

P (x)=(-1)"P (1-x) (2.93)
and

Lo, 1, r=0,

[ B (x)dx ={ (2.94)

0 0, r>0.

Further details regarding Legendre polynomials are available from Gradshteyn & Ryzhik
(2007, 8.91) and Hosking (1986).

2.14.3 DISTRIBUTIONS

In this section tables summarizing the properties, functions and expressions of various
probability distributions are presented. Within each table the distributions are divided into
three groups. The first group consists of distributions with location parameter, ¢, and scale

parameter, £ >0, but no shape parameters. Apart from location and shape parameters, the

distributions in the second group each has a single shape parameter, A, while the
distributions in the third group each possesses two shape parameters, A and . The
distributions within each group are sorted alphabetically in each of the tables.

Table 2.10 provides information regarding the parameters and support of the various
distributions. References for each distribution are also given. The books on probability
distributions by Johnson et al. (1994, 1995) and Balakrishnan & Nevzorov (2003) contain
details for all the well-known distributions. For distributions not covered in these books as
well as newer distributions, the relevant articles are given in Table 2.10. Also, where
applicable, original references are listed in Table 2.10.

Table 2.11 and Table 2.12 respectively give expressions for the probability-based
functions and the quantile-based functions of the various distributions. Expressions and
values for the distributions’ L-location and L-scale are presented in Table 2.13, while Table
2.14 provides expressions and values for the distributions’ L-skewness and the L-kurtosis

ratios.

67
© University of Pretoria



Table 2.10: References for and parameters and support of various probability distributions.

#

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

@ZP YUNIBESITHI YA PRETORIA

CHAPTER 2. QUANTILE MODELING

Distribution

References

Parameters

Support

Distributions with location parameter & and scale parameter [

Arcsine

Balakrishnan & Nevzorov (2003, Chapter 17)

a and f>0

[a, a+ ]

Cauchy

Cauchy (1853)

Johnson et al. (1994, Chapter 16) Balakrishnan & a and f>0

Nevzorov (2003, Chapter 12)

(=00, 20)

Cosine

Jones (2002b)

a and f>0

[a, a+ ]

Exponential

Johnson et al. (1994, Chapter 19)
Balakrishnan & Basu (1995)

Balakrishnan & Nevzorov (2003, Chapter 18)
Ahsanullah & Hamedani (2010)

a and f>0

[, o)

Gumbel

Gumbel (1954, 1958)

Johnson et al. (1995, Chapter 22)

Coles (2001)

Balakrishnan & Nevzorov (2003, Chapter 21)
Castillo et al. (2005)

a and >0

(=00, 20)

Half-normal

Johnson et al. (1994, Chapter 18)

a and >0

Laplace

Laplace (1774)

Johnson et al. (1995, Chapter 24)

Kotz et al. (2001)

Balakrishnan & Nevzorov (2003, Chapter 19)

a and >0

Logistic

Balakrishnan (1992)
Johnson et al. (1995, Chapter 23)
Balakrishnan & Nevzorov (2003, Chapter 22)

a and f>0

Normal

Gauss (1809, 1816)

Johnson et al. (1994, Chapter 13)

Patel & Read (1997)

Balakrishnan & Nevzorov (2003, Chapter 23)

a and f>0

Rayleigh

Rayleigh (1880, 1919)
Johnson et al. (1994, Chapter 18)

a and f>0

Secant hyperbolic

Johnson et al. (1995, Chapter 23)
Vaughan (2002)

a and >0

Student’s #(2)

Student (1908)
Jones (2002a)

a and >0

Uniform

Johnson et al. (1995, Chapter 26)
Balakrishnan & Nevzorov (2003, Chapter 11)

a and f>0

[a, a+ ]
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Table 2.10: continues...

Distribution References Parameters Support
Distributions with location parameter & , scale parameter S and shape parameter A
. Kotz et al. (2001) o o
Asymmetric Laplace Yu & Zhang (2005) a, f>0and 0<A<1 (=0, )
Burr Type 11 Burr (1942) a, f>0and 1>0 (=00, 00)
Fréchet (1927)
Johnson et al. (1995, Chapter 22)
Fréchet Coles (2001) a, f>0and 1>0 [, )
Balakrishnan & Nevzorov (2003, Chapter 21)
Castillo et al. (2005)
Johnson et al. (1994, Chapter 17)
Gamma Balakrishnan & Nevzorov (2003, Chapter 20) a, >0 and 1>0 [, )
Kleiber & Kotz (2003, Chapter 5)
Generalized exponential Gupta & Kundu (1999, 2007) a, f>0and 1>0 [, =)
; a+L-, A<0
Jenkinson (1955) 27 )
Johnson et al. (1995, Chapter 22)
Generalized extreme value Coles (2001) a, >0 and A (=00, ), A=0
Balakrishnan & Nevzorov (2003, Chapter 21)
Castillo ef al. (2005) (_ . (HL;} 150
(=0, ], a3<0
Generalized gamma Hosking & Wallis (1997) a, f>0and A= %a% >0 (—o0,00), a3=0
[, o0), o3>0
[a + L; oo), A<0
Generalized logistic Hosking (1986) a, >0 and A (=00, ), A=0
[— oo, a+%} A>0
[a + L; oo), A<0
Generalized normal Hosking (1986) a, >0 and A (=00, ), A=0
[— oo, a+%} A>0
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Table 2.10: continues...

Distribution References Parameters Support

Pickands (1975) @, ). 450
Generalized Pareto Coles (2001) a, >0 and A 5

Castillo et al. (2005) [a, o +7} A>0
Generalized secant hyperbolic Vaughan (2002) a, f>0and A>-7 (=00, 00)

Gompertz (1825) -
Gompertz Johnson et al. (1995, Chapter 22) @. f>0and >0 @, )
Logistic-exponential Lan & Leemis (2008) a, f>0and 1>0 [, )
Log-logistic Kleiber & Kotz (2003, Chapter 6) a, >0 and 1>0 [e, o)

Crow & Shimizu (1988)
Log-normal Johnson et al. (1994, Chapter 14) o, f>0and 1>0 (o, )

Kleiber & Kotz (2003, Chapter 4)

Lomax (1954)

Arnold (1983)
Lomax Johnson et al. (1994, Chapter 20) @, f>0and 1>0 @ )

Kleiber & Kotz (2003, Chapter 6)

Pareto (1896, 1897)

Arnold (1983)
Pareto Johnson et al. (1994, Chapter 20) a, f>0and 1>0 [+ B, )

Balakrishnan & Nevzorov (2003, Chapter 15)

Kleiber & Kotz (2003, Chapter 3)
Power Balakrishnan & Nevzorov (2003, Chapter 14) o, f>0and 1>0 e, a+ ]

(=00, ), A<0

Tukey’s lambda

Hastings et al. (1947)
Tukey (1960, 1962)
Tukey & McLaughlin (1963)

a, >0 and A

[af—i a+i}, A>0

1

A

Weibull

Weibull (1939a, 1939b)

Johnson et al. (1994, Chapter 21)
Kleiber & Kotz (2003, Chapter 5)
Rinne (2009)

o, f>0and 1>0

[a, o)

Distributions with location parameter & , scale parameter S and shape parameters 4 and &

Burr Type 111

Burr (1942, 1968, 1973)
Tadikamalla (1980)

a, >0, A>0 and §>0

[, 20)

Burr Type XII

Burr (1942, 1968, 1973)
Burr & Cislak (1968)
Rodriguez (1977)
Tadikamalla (1980)

a, >0, A>0 and §>0

[, 20)
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Table 2.10: continues...
Distribution References Parameters Support
. Gilchrist (2000) > S -
Davies Hankin & Lee (2006) a, >0, >0, §>0 and A+5>0 [, )
|:a+%,°°j, A<0,6<0
|:a+%(l—5_l)°°j, A1<0,0>0
Hosking (1994) (=00, ), A1=0,0<0
Kappa Mielke (1973) a, >0, 1 and &
Karian & Dudewicz (2010, Chapter 17) [+ Blogl 5], ). 4=0,6>0
(—w,a+%} A>0,0<0
[(,H%(l—d"{) a+%}, A>0,6>0
Kumaraswamy (1980)
Kumaraswamy Jones (2009) a, >0, >0 and 6>0 [a, a+ ]
Schmeiser-Deutsch Schmeiser & Deutsch (1977) a, >0, A>0 and 0<5<1 [a— Bt a+ p(l- 5))']

Table 2.11:

Functions defining various probability distributions in terms of x.

Distribution

Cumulative distribution function

Probability density function

Distributions with location parameter & and scale parameter [

1
_ 1
Arcsine F(x)=2z"" arcsin[ ";}“:| J) b7 e )] s
L7 J1-5
1
-_L
Cauchy F(x) :%+7r_1 arctan["/;“} fx)= B 2
1+ "[;—"’j
2
Cosine F(x)= sin[%fr( e ﬂ f= #ﬂsin{ﬂ( = H
Exponential F(x)=1- exp[— ’7),“ ﬂ f(x)= %exp[— ( X*ﬂa H
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Distribution

Cumulative distribution function

Probability density function

Gumbel

)

fo = %exp[— ( 5 ﬂ e"p[‘ e"p[_ ( 7 m

Half-normal

F(x)= 2<I>( x;lj_l

F(x) :@%exp{%[?af}

-zLexp|:— "zf" :|, x<a
Laplace F(x)= fx)= #exp[— lx;ﬁaﬂ
1—%exp[— "}"H, xza
_ 1 eXp[— ( A )}
Logistic Fx= [ (’Hxﬂ fx)= /l; 3
1+exp| — 3 —
1+exp —(";’)D
2
Normal F(x)= <I>[ "lg“) Flx) = ‘/iﬁ exp{ ; (X/;'aj }
2 [ 2
Rayleigh F(x)= l—exp[—%("/‘i“) } (%) =("/;2“)exp _%[x/;aj }
exp{— ( "/‘5,“ H
Secant hyperbolic F(x) =2z arctan [exp["’g—“ﬂ flx) = ”2/} _
1+exp| — 2[ "/’;“ ﬂ

Student’s #(2)

I
R

F(x) =11+

2
X
(5] +2

Uniform

F(x) =%
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Distribution

Cumulative distribution function

Probability density function

Distributions with location parameter & , scale parameter S and shape parameter A

Asymmetric Laplace

/'texp[— 1-2) x<a

x;a|
Bl

1—(1—/1)exp[—/1

F(x)=

X—
, xXx2a
al

%exp[—(l—ﬂ)

fl)=

A=) _
5 exp[ A

x—a|
B 5

X—C <
, Xsa
Z H

xza

-1

1
s faf ] gl (e 4]
Fréchet F(x)=exp —("‘“) 4 f(x):L["‘“) exp _[x—aj A
B pA B B
1
Gamma F(x)= G(% ";’) 2

Generalized exponential

Generalized extreme value

[¢]
>
)
|
[¢]
>
=]
|
VY
|7
R
N—
| I
| I
Y
Il
(=)

S =

A#0

Generalized gamma

F(x)=1{® X/;“j, a; =0
G(% "/’3“), a; >0

Fx)= \/ﬁp exP{_%(%_aJZ},
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Table 2.11: continues...
Distribution Cumulative distribution function Probability density function
1
o) )2
1 (=17)
T A#0 B N2 A#0
At ()
Generalized logistic F(x)= fx)=
1 ’ =0 —a
1+ exp{— ( 1=a ﬂ exp[— ( B )}
s }3 > A=0
[1 + eXP|:— ( v )D
2
¢[_Llog[l—1(%’lﬂj 220 [ [X ”J] exp{——(l log{l /1( - am } 20
Generalized normal F(x)= fx)=
x—a -
q;( B ) A=0 exp{—%(xﬂ“) } A=0
1 1
—[1—/1(*“))4, A#0 [1 /1 L J
Generalized Pareto F(x)= fx)=
l—exp[—("/’i"ﬂ, A=0 %exp[—(?"ﬂ, A=0
‘ sin(4) , —m<A<0
cos(/l) + cosh( )
%arccot[cot(l) + csc(/l)exp[— ( X/}“ )D, -T<A<0
1 on|-(57)]
Generalized secant hyperbolic F(x)=A——mM—, A=0 f(x)= /1; A=0
L 7] o]
%arccoth(coth(/l) +csch(A) exp{— ( X/;“ )D, A>0 ,IBA sinh(4) )
cosh(A) + cosh( "/}”’)
Gompertz F(x)=1- exp{%(l - exp[%“]ﬂ fx)= exp[ 7 ]exp{ (1 exp[ 7 ]ﬂ
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Distribution

Cumulative distribution function

Probability density function

Logistic-exponential

exp[x/;a}[expha}_ljgl

f0=4

Log-logistic

2
oot otz il
1
— -1
Lomax F(x)=1—(1+ X;l) 4 F =4 (1+ Xgaj 4
1
— —1
Pareto F(x)=l—(?a) a f(X)=ﬁ(x;a) )
Power i

(i)

Tukey’s lambda

No closed-form expression

No closed-form expression

Weibull

1
F(x)=1-exp —[X/;“j‘

1
~ =
f(x):ﬁ(x;a)ﬂ exp _(x—ajl

=

Distributions with location parameter & , scale parameter S and shape parameters 4 and &

Burr Type III

Burr Type XII

F(x)=1- 1+(;—0’)3
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Table 2.11:  continues...
Distribution Cumulative distribution function Probability density function
Davies No closed-form expression No closed-form expression
1 1
e 1, AV
_ol1oaf =2 |? Ao pfxz=a)|* [ 1=sl1-af 22 )|*
1 5[1 z(ﬂn . A20.85%0 ﬂ(1 (ﬂ jj 1 5[1 (ﬂ jj . 1#0.620
x 1 1
aa | |4 1 x—a |4 r—a | |%
exp —(1—Z(TD , A#0,0=0 7(1— (ﬂ D exp —(l—ﬂ(ﬂ D A#0,0=0
Kappa F(x)= F(x)=
% 5!
1-Jexp| —| & , A=0,0#0 Lexp| - 2 || 1-Sexp| —| &< s A=0,0#0
B B B
_ _| 2= — — L _| 2= — Iy 4 = =
exp|: exp{ (ﬂ jﬂ 1=0,6=0 ﬂexp{ (ﬂ j:|exp|: exp{ (ﬂ j:|:|, 1=0,6=0
1 1
17 1, AV
Kumaraswam 11 x=a|d N1 [(x—a|d x—a |0
y o) sl (o)
x
a2
5— —( ﬁ"’)) , x<a %71
Schmeiser-Deutsch F(x)= — 1 |_[xa
\ £0=4-(5%
x—a |A
o +( 3 J , xza
Table 2.12:  Functions defining various probability distributions in terms of p.

Distribution

Quantile function

Quantile density function

Density quantile function

Distributions with

location parameter ¢ and scale parameter [

Arcsine

0(p) = a+ Bsinft prf

q(p) =% afsin[pr]

£o(p) = Zesclpa]

Cauchy

o(p) = a+ﬂtan[%7r(2p—l)]

q(p) = Bsecfw2p-Df

fo(p)= o[t zap -]
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Distribution Quantile function Quantile density function Density quantile function
Cosine Q(p)=a+27r'1ﬁarcsin[\/ﬂ qW)Z#\/i—ﬂ) fp(p)=%7r\/p(1—p)
Exponential | Q(p) =~ Slogll - p] a(p) =% Fo() =5

- B —_1
Gumbel 0(p) = a - Blog[-logl p1] AP) ==l fp(P) == ploglp]

Half-normal

O(p)=a+2Berf ™ [p]

q(p)= %ﬂﬂexp[erf’l [p]z}

Fp () =Z Frexp| —ert ! (P ]

P 1
a+ Blogl2pl, p<i L p<t 5 P<3
Laplace O(p)= , q(p) = frp)= .
a-plogl2(1-p)l, pz7 . p23 =, pxt
ot — P — _rd=-p)
Logistic Q(p)= a+ﬁlog[ i } q(p) = i) fo(p)= 7
_ -1 _112 __ 1 Py 12
Normal o(p) = a+\/§ﬁerfl 2p-1] q(p)= «/Zﬂﬂexp[erf [2p-1] } ()= o exp[ erf ' [2p—1] }
. _ s —p [
Rayleigh 0(p) = a+ By-2logll - p] ap)= (1-p)y—2logl—p] Io(p) :lTp ~2log[t- p]
Secant _ 1 _ =L g
hyperbolic op=at 'Bbg[tan[fpﬂ]] q(p) =P csclpr) Ipp) 7B sin[p7]

, - _ 21 - B _ 1 P2
Student’s #(2) o(p)=a+p N 1P =1 1) =5 (2pa-p)
Uniform op)=a+pp a(p)=p fp(P):%

Distributions with location parameter & , scale parameter f and shape parameter A

a+%log[ﬂi}, p<Aa, b p<a, ADp - p<g,
Asymmetric _ B (1-A)p ' - B

Q(p)= q(p) = fr(p)=

Laplace 8 -p > Ad-p) >

a_jlog[ﬁ}s p2 /lv Al-p)° p=4, B’ p=4,

A _ ﬁ'},
Burr Type II Q(p)=a+ﬂlog[l_ppl] Q(P)—m fp(p):ﬁp(l—p’l)
A

Fréchet 0(p) = a+ - loglp) a(p)=—-L— )4

p(-log[p1)

()= pl-loglp]
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Table 2.12:  continues...
Distribution Quantile function Quantile density function Density quantile function
1
_ 11 ~ L - — o ) expl (L,
Gamma O(p)=a+pG (/1,[)) q(p):'gr(_;%)((; 1(_}%’[))) ﬂexp[G 1(_%’[))] fp(P) ﬁr[;j( (g P)T exp[ (,1 p)]
Generalized _ 2 _ pap*! _1-p*
exponential Q(p) = a—ﬂlog[l— P ] a(p)= 1-p* fp(P)= Bap*!
A
Generalized a+§(l ~(~loglp)) ) A#0

extreme value

o(p)=
a-Blogl-log[pl],  1=0

a(p) =L (10g1p1)*”

Fo(p) = pl=toglp)) =

a—,BG‘l(%,l—p), a;<0

prizle (%,1_,,))1‘3 explo " (hi-p)l <0

+(G*1(%,1—p))%_'exp—G*‘(%,l—p), <0
" ot

g;rrrl;rlz;lized o(p) = a+x/§ﬂerf_1 R2p-11, @ =0 a(p)= \/Eﬁexp[erf_l [2[]_1]2} a; =0 fp(p)= \/ﬁﬂ exp[—erf*l [2p—1]2:|’ ;=0

a+ﬂG"(%,p), a;>0 L 1

_ — _ _ -1 _
prtlo o) ek ] oo TR T R
o)
yl

a+§[1—[1p—”) J A#0
Generalized _ _ BU-p)*! _ ™
logistic o(p) = a(p)==—15— fp(p)= B

a+ﬁlog[lf;) } A=0

]
. a+L | 1—exp 2Aerf = 2p—-11{|, A#0

f:gﬁjl‘“zed op={ * a(p)= ﬂﬂexp[—erf‘l [2p- 1][ﬁﬂ—erf" [2p —uﬂ h P =7 exp[en“1 [217—1][J51—erf*1 [Zp—llﬂ

a+2Bert ™ 2p-1], 1=0

. 20 )

a+L\l-(0-p)*), A#0 _
Generalized | g(py=1" "7 a(p)= - p)* 1=

a— Blog[l-pl, A=0

a+ﬂlog[M}, -r<A<0 1 s in(A(1- p)) —<A<0

sin(2(1-p)) BisinDescApyesc(A1—p),  —x<A<0 g1 ese(Dsin(Ap)sinlA - p)), <A<

Generalized 5 (-p)
secant o(p)= a+ﬂlog[#}, A=0 9(P) =y oi5y A=0 fp(p)= %, 4=0
hyperbolic

as ﬁlog[M} 150 Bhsinh(Desch(Ap)esch(A(l - p), 2>0 -esch(A)sinh(p)sinh(A(1- p)), 2> 0

sinh(A(1-p)) |’
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Table 2.12:  continues...
Distribution Quantile function Quantile density function Density quantile function
2
Gompertz 0(p) = a+ Blogll - Alog[1- p]] q(p)=<l_p)(l_fm fp(p)=ﬁ(1—1’)(l—/“0g[l—p])
= ™ 1
o 4 q(p) = P 4
Logistic- _ P (1-p)* A . _U-p) _p
exponential Q(p)—a+ﬂlog{l+[1p j } [1+(1_”p) J /p(P) Bip*! [1+(1—p j ]
A a1 A
Log-logistic o(p)=a+ ﬁ(#) q(p) =ffj’w fr(p)= (IMLL
Log-normal 0(p)=a+ ﬁexp[«/ﬁerf 1 2p- 1]] a(p)= \/Eﬁ/lexp[erf‘l 2p- 1][&1 +erf ' [2p— 1])} 1= \/Tlm exp[— erf ™ [2p— 1](«/5,1 +erf™! 2p— 1])}
T
Lomax o(py =a+pla-p*-1) a(p) = BA1 = p) Fpp) =57 (= py*"!
Pareto opy=a+pa-p~* a(p) = pAd-p)*" Fp(p)y =4z (1=py*™"!
Power o(p)=a+pp’ a(p)=pap™" frp=57p' ™
a+§(p’1 —a-p*) a=0
- 1
Tukey’s lambda Q(p)= q(p) = ,B(]/H +(1- p)ﬂ’l) f,,([?) - ﬂ(pﬂfl*»(lip)lrl)

1-p

a+/3’log[ Z } A=0

Weibull

0(p)=a+ Bl-logl— p1)*

a(p) =L (- 10gl1 - p)*!

Fo(p) =57 (1= p)(-logll - p)) '™

Distributions with

location parameter ¢ , scale parameter £ and shape parameters A and &

! 5 BAS ™o (1_ /1)5”
Burr Type 11T o(p)=a+ p’( 11p4) q(p)= T £(p) :W
_ 5 8 (a-py2 1) - 1-6
Burr Type XI1 | 0(p) =+ A(1-p) ™ ~1) g(p) =222 frp ==y 1= py A1)
. _ »* _ /' (aa-p)+sp) __ a-p™
Davies o(p) a+ﬂ(1—p)5 q(p)= ersE fp(pP) B 0y 507)
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Table 2.12:  continues...
Distribution Quantile function Quantile density function Density quantile function
a+§[1—(%jl], A#0,0#0
5 ., ﬁp"*[ﬂ)ﬂ 520 1 s [1‘—’) L 620
Kappa o(p)= a+7(1_(_1°g[p]) ) 4#0,6=0 q(p)= ° ’ (P = g ° ’
a-mog[%}, 120,620 S(ctoglp)*, 5=0 S pl-loglp)'F. 5=0
a-Blog[-log[pl,  1=0,6=0
Kumaraswamy | O(p)=a+ ,3(1—(1— p)/l)é‘ q(p)=BAS1 - p)“(1—(1 - ,))’1)5_1 fr(p) =251~ P (1 (- p)l)l_ﬁ
Schmeiser- _{“—ﬂ(é‘—lﬂﬂ, pso _{ﬂﬂ(é'—p)“, pso 3 ﬁ(ﬁ_p)l_l’ p<d
Deutsch Q(p)= . q(p) = . fp(p)= )
a+B(p-6*, p=6 PUp-8)"", p=d ﬁ(p—ﬁ)”, pzé
Table 2.13:  L-location and L-scale for various probability distributions.
Distribution L-location L-scale
Distributions with location parameter & and scale parameter [
Arcsine L= 0!+—é,3 L, =218
Cauchy Does not exist Does not exist
Cosine L =0!+—é,3 L2=%,3
Exponential L=a+p L,= % B
Gumbel L =a+pC L, = Blog[2]
Half-normal L=a+ ﬂ\/% L,= %(2 - \/5)
Laplace L=«a L, = % B
Logistic L=« L=p
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Table 2.13: continues. ..

Distribution L-location L-scale

- b
Normal L=« L, = N
Rayleigh Li=a+pBtx L, =%[3\/;(\/5_ 1)
Secant hyperbolic L=« L, =727 BL(3)

B

Student’s #(2) L=« L, =E
Uniform L=a+ip L=1

Distributions with location param

eter & , scale parameter £ and shape parameter A

Asymmetric Laplace

BU-22)

L=o+ )

Burr Type 11 L= 0!+ﬂ(C+ y/(%)) L= y/(% - y/(%))
Fréchet L =a+BT(-4), i<l L, =40 -1)ra-4, i<1
Gamma L= a+§ L,= ﬂB(L%)

Generalized exponential

L= a+,B(C+|//(%)+/1)

Generalized extreme value

L=a+Z(1-T(A+D), A>-1

L =pl-2)r(), 1>-1

Generalized gamma

Lq:a+§

L= ,BB(%,%)

Generalized logistic

L = a+plk-zesc(m), ~1< <1

, =PAmcsc(Ar), —-1<A<1

Generalized normal

L :a+-§(1—expg/12])

L, =§[1—2<1>(—%Bexp[%ﬂ2]

Generalized Pareto

A>-1

— B
Li=a+,

_ s _
L= (A+1)(A+2)° A>-1

Generalized secant hyperbolic

L=a

No simple expression

Gompertz

1 =a-pexpfFil-1)

L = Aol il-3)-exelt]eil- 1)
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Distribution

L-location

L-scale

Logistic-exponential

No simple expression

L,=1pA

Log-logistic

L =a+pAncsc(Arn), A<1

L, =pPresc(Am), A<l

Log-normal Ly =a+ fexp [%/12] L,= ,B(ZCI)( ) jexp[—lz]
Lomax L= z){ﬂtﬁ—/ﬁ1 A<1 L,= %, A<1

Pareto L= OH—]ﬁ/l, A<1 L % A<l

Power Li=a+ ﬁl L= %

Tukey’s lambda

L=a, A>-1

2B
L= A+D)(A+2)’ A>-1

Weibull

L =a+pT(A+1)

L,= /3(1—2*‘)r(,1+1)

Distributions with location param

eter & , scale parameter £ and shape parameters A and &

Burr Type 11T L=a+2B(-5.6+L) s<1 L, =2 (B(1-5,6+2)-B(-5,6+1). 5<1
Burr Type XII L=a+LB(s+14-6), s<1 L, =L Bl6+14-5)-2B(6+1.2-6), 5<
Davies L =a+pB(+A,1-5), 5<1 L, =LEBILLD - 5y
B[ A+, -2 B[ 441, -2—L |28 441, -2-2
a+§ 1—% . 0<0,-1<i<—% [ ' f_jg)w( ' ‘S] . 6<0,-1<A<—%
Kappa L ={a+L(-ra+), 5=0,4>-1 L=1pl-2*)rw). 5=0,A>-1
/1 1, A+, 2B| A+,

[ (;H , 5>0,1>-1 ng 6>0,4>-1

Kumaraswamy L= a+§ (5+1 Lzzg(B(§+1,-%)—2B(5+l,-%))

Schmeiser-Deutsch

L= (ﬂ+l)(ﬂ+2)

((25+ HA-M+20-6)+ 1)5‘*1)
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Distribution

L-skewness ratio

L-kurtosis ratio

Distributions with

location parameter ¢ and scale parameter [

Arcsine 7,=0 7y =6-607>
Cauchy Does not exist Does not exist
Cosine 7,=0 Ty —%
Exponential T3 = % Ty = %
9 256
Gumbel P lOg[g} T, = 2102{%}
3~ Togl2] 4 log[2]
Half-normal Ty =7+42 - 12(6 + 2);;*‘ mtan[ﬁ } 7, = 180(5 + 2),,*1 armn[ﬁ } ~109-55/2
Laplace 7,=0 Ty = 17
72
Logistic 7,=0 T4 =%
Normal 7,=0 Ty = 307 arctan [ﬁ} -9
. _ 324269 B 206 -9(y2+4)

Rayleigh B=—""" Y = —

3(\/5 -1) 6lv2-1)
Secant _ _g_465 2 L0
hyperbolic %=0 B=6-57 {3
Student’s #(2) 7,=0 Ty = %
Uniform 7,=0 7, =0

Distributions with

location parameter & , scale parameter f and shape parameter A

Asymmetric _1f_22e-4 _1 SA(1-4)°

Laplace = 3[1 1A+ 22 =g\t 52
Al SO AR

Burr Type 1T Ty =—— 7, =

ZRZH

{8EH
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Table 2.14: continues...

Distribution L-skewness ratio L-kurtosis ratio

P 2(34 32t s5la? 10(3* jrel2? 1
Fréchet 7 =%, A<1 7 =%, A<l

=6I,1+.2)-3 . .
Gamma 73 1707 No simple expression
3 2 1 4 3 2 1) 4
Generalized o ZW[IJ‘”’(EJW[I e 5"’[1)‘10"’(7]+6"’[ZJ“”[ZJ‘E
: 3 4=
exponential [3} (1]7 A (3)7 (1]7&
MG Yoo
Generalized —1+3(2")—2(3’1) B 1—6(2")4—10(3")—5(4") A1
extreme value 3= 1-24 ’ W=7 A>T
Generalized 12 . .
73 =61, |=,%)-3
gamma 3 %( 7 1) No simple expression
Generalized T,=-4, —1<i<l1 ry=t+327, —1<i<1
logistic 6 6
Generalized . . . .
No simple expression No simple expression
normal
Generalized 1= _ (A-b(A-2)
Pareto =g Aol 4 T (A3 (A+d) A>-1
Generalized
secant 7,=0 No simple expression
hyperbolic
2. 3 3 .. 4 2. 3 1. 2 (1
—Zexp[I]El[—z}rkxp[ SeXp[I]El[—I]—lOexp[z]E1[—Z]Jrﬁexp{z}El(—I]—El(—I]
Gompertz T3 = 1 3 Ty = - 5 1
exp| — |Ei| — exp| — |Ei| — |-Ei| —
Bl R

Logistic- No simple expression T, =1
exponential P P 4%

Log-logistic

=4, A<l

_1,522
14_6+6/‘L, A<1

Log-normal No simple expression No simple expression
Lomax T3 = i—*;, A<l Y= grggti; L A<l
Pareto =4t 241 7, = fﬁf%tiﬁ 1<l
P | o=t W3
Tukey’s lambda | 7, =0, A>-1 T, = Ej;gi/;i)) L A>-1
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Table 2.14: continues...
Distribution L-skewness ratio L-kurtosis ratio
_afr-2 ") _e[r-2 — i -2
Weibull - 130274 h2(3) - 1-6(27* Jr10(3# )-5(4-)
1-27* 1274
Distributions with location parameter & , scale parameter  and shape parameters A and &
6B[l—5, 5+3]-6B[1-5, 5+£j+B(l—6, 5+i] 203(1-5, 5+ij-30}3[1-5, 5+3]+123(1-5, 6+£]—B(1—6, 5+i)
2 2 2 2 2
Burr Type I T3 = 3 : , o<1 Ty = 3 : , o<1
2B(l—6, 6+I]—B(l—5, 6+1) 2B(l—5, 6+1]—B(1—5, 6+1)
B(JH,%—6]—6B[§+1,%—5J+6B[5+1,%—5] B(JH,%—6]—12B[§+1,%—5J+30B(§+1,%—6)—20]3(5“,%—6]
Burr Type XII T3 = : 5 , 6<% T, = - 5 . 6<
B[(SH,*—(SJ—ZB(éH,f—&J B[JH,*—JJ—ZB[&A,*—JJ
2 2 2 2
. _ AA-D+4A5+5(5+1) _ AA=3)+2(1+415)+8(5+3)
Davies B = Gro)B31A=0) o<1 4T T Bi0)@i-0) o<1
43(/1“, 4%}63(4“, —ﬂ,—%]—GB(ﬂﬂ, 7/173J B[/Hl, 7/1%}1213(/1“, 4%}303(“1, 717;;]72013[/1“, 41%}
, 5<O,—1</1<—% . > , 5<O,—1</1<—%
B(ﬂ.-#l, —l—l]—ZB[ﬂAl, _1_2] B(/I-H, —/1—7]—2B(ﬂ+l, —/1—7]
) 5 ) )
—143027% 23 1-6(27% r10(37% J-sla—*
Kappa Ty = WT):() 5=0,A>-1 7, = % 5=0,A>-1
—B(/Hl, %]+6B[1+1, %J—6B[l+l, %) B[/Hl, é]—nB[lH, §]+30B(1+1, %]—ZOB[/HI, %]
; > s 0>0,1>-1 R 0>0,4A>-1
B(M—l,fj—ZB(ﬂH,fj B(M—l, iJ—ZB[ﬂﬁ-l, zj
5 5 5 5
B[6+l,l]—6B[6+1,2]+6B[6+1,3] B(&H,iJ—IZB[&H,2]+30B(5+1,£j—20B[6+1,£]
A A A A A A A
Kumaraswamy 3= . 2 T4 = N >
B[5+1,7]—2B(é‘+1,7] B[5+1,7]—2B(é‘+1,7]
A A A A
Schmeiser- iz (1252+6§(,1—1)+/1(,1—1))(1—§)“' —(1252—65(,1+3)+(,1+2)(/1+3))§“ S (12053+6052(l—2)+125(ﬂ—1)(1—2)+ﬂ(/1—1)(1—2))(1—5)“'—(12063—6052(/i+4)+125(l+3)(ﬂ+4)—(l+2)(l+3)(ﬂ+4))5“'
Deutsch 3 3|8+ 0)1-0)M +(201-6)+2)54) 4 (A+3)(A+0) 26+ 1)(1-6)"1 +(2(1-8)+2)6™)
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3. THE GENERALIZED LAMBDA DISTRIBUTION (GLD)

3.1 INTRODUCTION

In the middle of the twentieth century, Tukey, along with his research associates, introduced
and studied a symmetric distribution called Tukey’s lambda distribution (Hastings et al.,
1947; Tukey, 1960, 1962; Tukey & McLaughlin, 1963). This distribution has a single shape
parameter, A, from which the name of the distribution originates. It is the simplest example
of a quantile-based distribution, that is, a distribution specified in terms of its quantile-based
functions. These functions of Tukey’s lambda distribution are given in Section 3.2.

Since the 1970s, various generalizations of Tukey’s lambda distribution have been
developed. These generalizations are collectively referred to as generalized lambda
distributions (GLDs). Each generalization possesses multiple shape parameters, usually two,
and can be viewed as a distinct type of the GLD. Two of these types, the Ramberg-Schmeiser
(RS) Type (Ramberg & Schmeiser, 1972, 1974) and the Freimer-Mudholkar-Kollia-Lin
(FMKL) Type (Freimer et al., 1988), have been studied and used extensively in theoretical
development and in practice, and are the focus of this chapter.

Akin to Tukey’s lambda distribution, no closed-form expression exists for the cumulative

distribution function, F(x), of the GLD. Furthermore, the probability density function, f(x),

of the GLD cannot be expressed as a function of x. It is therefore more convenient to describe
the GLD in quantile form using the quantile function of the type under consideration along
with the type’s quantile density and density quantile functions. The quantile-based functions
of the RS and FMKL Types of the GLD are given in Section 3.3 and 3.4 respectively.

The parameter space of the GLD with respect to its shape parameters can be divided into
regions or classes based on the distributional shapes and the support attainable in each region
or class. In Section 3.5 these regions and classes are illustrated graphically and also tabulated
in terms of the corresponding shape parameter values and support

Measures of location, spread and shape based on moments, L-moments and quantiles are
presented for the GLD in Sections 3.6, 3.7 and 3.8 respectively. Section 3.9 briefly deals with

the location and scale properties of the GLD, which are straightforward.
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In contrast, the shape properties of the GLD are much more complex, specifically for the
RS and FMKL Types. Hence a detailed discussion thereof is presented in Section 3.10,
focusing on tail behavior in Section 3.10.1, skewness and kurtosis properties in Section
3.10.2 and the shapes attainable by the GLD’s density curve in Section 3.10.3. The
distributional shape and properties for each region or class of the RS and FMKL Types are
further exemplified in Sections 3.11 and 3.12 respectively, highlighting the flexibility of the
GLD in terms of distributional shape.

Because of the complex nature of the shape properties of the RS and FMKL Types of the
GLD, parameter estimation for these types is computationally difficult. Section 3.13 gives a
brief discussion on the estimation methods proposed in the literature. Utilization of the GLD
is described in Sections 3.14 and 3.15, focusing on Monte Carlo simulation in Section 3.14,
for which the GLD was originally developed, and applications, including the fitting of the
GLD to data sets, in Section 3.15. In particular Section 3.15 lists applications of the GLD
appearing in the literature since 2001. The chapter concludes in Section 3.16.

The theoretical material presented in this chapter has been compiled from various sources,
most notably the books of Karian & Dudewicz (2000, 2010), which focused on the RS Type
of the GLD, and the doctoral thesis of King (1999) in which both the RS and FMKL Types
were covered. In general the theoretical development of the GLD in the literature has been
concentrated on the RS Type. Results for the FMKL Type not given before in the literature
are derived and described in this chapter.

Formulae for the moments for limiting cases of the FMKL Type, which have not
appeared before in the literature, are derived in Section 3.17.1. Karvanen & Nuutinen, 2008)
presented the characterization of the RS Type of the GLD by L-moments, given in Section
3.7. The corresponding characterization of the FMKL Type is also given in Section 3.7, with

the expressions for the L-moments derived in Section 3.17.2.

3.2 TUKEY'S LAMBDA DISTRIBUTION

Even though Tukey’s lambda distribution has a single shape parameter, A, it produces an
astounding variety of symmetric distributional shapes. As illustrated in Figure 3.1, Tukey’s
lambda distribution encompasses unimodal bell-shaped distributions with infinite support for
A <0 and bounded support for 0< A <1, the uniform distribution for both A =1 and 41=2,

U-shaped distributions for 1< A <2 and unimodal truncated distributions for 4 > 2.
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Figure 3.1: Probability density functions of Tukey’s lambda distribution for various values of A, all with L, =0 and L, =1. Since

Tukey’s lambda distribution reduces to the uniform distribution for both A =1 and A =2, the corresponding two density

curves in graph (c) plot on top of each other.

The standard form of Tukey’s lambda distribution is specified in terms of its quantile

function by

L pt=(1-p)*| ,2%0,
Qy(p) = (3.1)
log[ﬁ} ,A=0.

where the limiting case, A =0 in (3.1), is the quantile function of the standard logistic
distribution, obtained by applying L’Hopital’s rule (de 1’Hopital, 1696). In the literature
Tukey’s lambda distribution is usually presented by the standard form in (3.1). Adding

location and scale parameters yields the more general form,

a+Z| pt-(1-p*|, A#0,
Q(p)= (3.2)
a+ﬁlog[ﬁ}, A=0.
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The quantile density and density quantile functions of Tukey’s lambda distribution are then
q(p)= ﬁ(p“ +(1- p)“]

and

fp(P):W.

3.3 RAMBERG-SCHMEISER TYPE (GLDgs)

The Ramberg-Schmeiser (RS) Type of the GLD was developed by Ramberg & Schmeiser
(1972, 1974) in order to provide an algorithm for generating symmetric and asymmetric real-
valued random variables in Monte Carlo simulations. Ramberg et al. (1979) extended the use
of the RS Type of the GLD, henceforth denoted GLDgs, by developing a system using

moments and tables to fit the GLDgs to data sets. The quantile function of the GLDgs is
Q(p)=/11+i(pﬂ“ —(1—p>ﬂ4), (33)

where 4, is a location parameter, 4, #0 is a scale parameter and A; and A, are shape

parameters. The quantile density and density quantile functions of the GLDgg are respectively
q(p)= t(ﬂspﬂﬂ_l +A,(1- p)’l“‘lj

and

A
PB4 2, (1-p) B!

fHp) =5

3.4 FREIMER-MUDHOLKAR-KOLLIA-LIN TYPE (GLDgyvix1)

The Freimer-Mudholkar-Kollia-Lin (FMKL) Type of the GLD, introduced by Freimer e? al.
(1988) and denoted GLDgyk1, has quantile function

Q(p)=4 +i(%—(l_pﬂ—)ﬁ_l} (3.4)
The quantile density and density quantile functions of the GLDgyk. are respectively
q(p)= i(p‘ﬂ‘l +(1- p)ﬂflj
and
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_ A
f P =
It should be noted that the parameters as given by Freimer et al. (1988) were numbered
differently. To avoid confusion, the parameters of the GLDgyk; are numbered in the same

order as the parameters of the GLDgs so that they have the same interpretation. That is, /11 18

the location parameter, A, #0 is the scale parameter and A, and A, are the shape parameters.

3.5 PARAMETER SPACE, SUPPORT AND SPECIAL CASES

Figure 3.2 illustrates the parameter space of the GLDgrs with respect to the two shape
parameters. The parameter space is divided into six regions. Initially, as given by Ramberg &
Schmeiser (1974) and Ramberg et al. (1979), the validity of the GLDgs was restricted to the
values of A; and /14 in Regions 1, 2, 3 and 4. Karian et al. (1996) obtained the two additional
valid regions, namely Regions 5 and 6. See Karian & Dudewicz (2000, 2010) for the
complete derivation of the parameter space of the GLDgs. They furthermore provided a

comprehensive discussion of the characteristics of the GLDgg within each region, including

the support of the GLDgrs summarized in Table 3.1.

b
! 1
3 Ly
g 1
Region 1 : 'g" , Region 3
- &
2 ! S
1 .
| ! g
1 e U1
I . o
1 Y
L
<0 S ———
| g C—
(e Region 6
-1 R e e
-2 .
Region 4 Region 2
-3
-3 -2 -1 0 1 2 3
43

Figure 3.2: The parameter space of the GLDgs in terms of Regions 1, 2, 3, 4, 5 and 6. The dotted line at L = 14 indicates symmetric

distributions. Ul and U2 denote the uniform distribution at 4; =4, =1 and 4; =4, =2 respectively, while N and L
denote approximations of the normal distribution and the logistic distribution by the GLDgs. The first four moments and
thus the mean, the variance, the skewness moment ratio and the kurtosis moment ratio exist for values of 4, and 4, to the

right and above the dot-dashed lines, in effect, for 4, > —% and 4, > —% , while all L-moments exist for values of 4, and

A, to the right and above the dashed lines, that is, for 4, >—1 and 4, >-1.
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Table 3.1: Parameter space and support of the GLDgs in terms of Regions 1, 2, 3,4, 5 and 6.
Region Shape parameter values Support
Region 1 Ay <-1,4,>1 [ 0, Ay _L}
Region 2 Ay >1, 4, <-1 [ﬂl ;L oo)
Region 3 A,=0,4,>0 [/11 A +;ﬂzi|
A,>0,4,=0 [/11 %ﬂl}
A,>0,4,>0 [ }
Region 4 A,=0,4,<0 (4, )
A,<0,2,=0 (o0, 4]
A, <0,2,<0 (o0, 00)
Region 5* <A, <0, 4, > Luldy 4,)< v, 4,) (_m,gl +%}
Region 6% A 1—1< 2, <0, ulhy. 2y) < v(dy. 4s) [,11 -4 oo)
1-4 2,-1
R

If 4;=4,=A, indicated by the dotted line in Figure 3.2, the GLDgs is symmetric and

reduces to Tukey’s lambda distribution in (3.2) with 4 =« and 4, =% . When both 4, -0

and A, =0, the GLDgs approximates the logistic distribution, while for 4, =4, =0.14, the
normal distribution is approximated. Remarkably the uniform distribution can be obtained

from the GLDgs with four different pairs of values of 4, and A,. The four pairs of values are

(4, 4)=D, (4, 4,)=(22), (4, 4,)=(10) and (4, 4,)=(0,1).

Region 3 of the GLDgs can be divided into seven sub-regions based on the diverse
distributional shapes attainable in this region. These sub-regions, defined by King (1999) and
labeled (a) to (h) by him, are illustrated in Figure 3.3 and listed in Table 3.2. Note that there
is no sub-region (b) in Region 3. King (1999) assigned sub-region (b) to the values
—-0.1359< 4, <0 and —0.1495< 4, <0 in Region 4 associated with the tables provided by

Ramberg et al. (1979) for method of moments estimation.

Similar to the GLDgs, the GLDgvk1, possesses all three possible types of support, namely
infinite support, half-infinite support and bounded support. The support attained by the
GLDguvky for different values of its shape parameters, summarized in Table 3.3, suggests the
division of the parameter space of the GLDgyk;, into four distinct regions. These four regions

are illustrated graphically in Figure 3.4.
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The sub-regions (a), (c), (d), (e), (), (2) and (h) into which Region 3 of the GLDks is divided.

Table 3.2: Sub-regions in Region 3 of the GLDgs.

Region Shape parameter values

Region 3(a) 0 A;<L,0< A, <L, A3+4,>0

Region 3(c) 1<A;3<2,1<4,<2

Region 3(d)

Region 3(e)

Region 3(f) Ay>2,1< A, <2
Region 3(g) 1<A3<2,24>2
Region 3(h) A3 22,4422, 3+, >4

Table 3.3: Parameter space and support of the GLDgvk.. in terms of Regions 1, 2, 3 and 4.
Region Shape parameter values Support
Region 1 30,4, >0 (_w, A +ﬁ}
Region 2 A3>0,4, <0 [ll_#’wj
Region 3 A3>0,4, >0 [ll_ﬁ”‘tﬁrﬁ}
Region 4 230,24, <0 (—o0, 00)

(1988) used a different classification scheme for the GLDgykr. They

divided the parameter space of the GLDgykr into five distint classes numbered I to V. King

(1999) labeled two additional classes, Class II’ and Class IV’, which contain the reflection of

the GLDgukr from Class II and Class IV. The seven classes are listed in Table 3.4 and
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indicated graphically in Figure 3.5. Comparing Figures 3.5 and 3.3, it follows that, in Region

3, the seven classes of the GLDgvikr. and the seven sub-regions of the GLDgs are equivalent

in terms of their coverage of the values of 4, and 4,.

1
1
1
3 1
1
: Region 3 .~
2 Regionl ! .
egion ' S
1
1
. s
1 : S
1
1
<0 !
B
1
-1 L
-2 Region 2
Region 4
-3
-3 -2 -1 0 1 2 3

43
Figure 3.4: The parameter space of the GLDpuk. in terms of Regions 1, 2, 3 and 4. The dotted line at A, =4, indicates symmetric
distributions, Ul and U2 denote the uniform distribution at A, =4,=1 and A,=4,=2, L denotes the logistic
distribution with /13 = /14 =0, and N denotes the approximation of the normal distribution by the GLDgyxr. The first four
moments and hence the mean, variance and skewness and kurtosis moment ratios exist for values of A; and A, to the right
1

and above the dot-dashed lines, in effect, for A, > -4 and A, > —% , whereas all L-moments exist for values of A, and

A, to the right and above the dashed lines, that is, for 4, >—1 and 4, >-1.

Table 3.4: Parameter space of the GLDpvk. in terms of Classes I, II, II’, III, IV, IV’ and V.
Class Shape parameter values
Class I <1, A, <1
Class 1T 321,44 <1
Class I’ <L, 21
Class 11T 1<A;3<2,1<4,<2
Class IV A3>2,1< Ay <2
Class IV’ 1<A3<2,44>2
Class V 322,22, 3+ 4, >4
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1
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-3
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Figure 3.5: The parameter space of the GLDgvky in terms of Classes I, II, II’, III, IV, IV’ and V. The green-shaded, purple-shaded,

blue-shaded and red-shaded areas indicate Regions 1, 2, 3 and 4 as shown in Figure 3.4.

The main difference between the parameter spaces of the GLDgg and the GLDgyviky, is
that, unlike the GLDgs, the GLDgvkr 1s a valid distribution for all values of /73 and A,
including when these shape parameters tend to zero or infinity. The quantile functions for
these limiting cases, obtained by applying L’Hopital’s rule (de 1’Hopital, 1696) and given by
King (1999), are

A+L log[ } A=2,=0,
A+ [log[p] ) 4=0,0<[4 <o
/i’l+ 10g 2320,/14—)00,
0(p) = A+ (57 ~togli= p1). 0<|2 <o, 2 =0, 49)
ﬂl+i[%) 0<| Ay < o0, 4, — oo,
A =7 logll - pl, A — 00,4, =0,
/11 ﬂa[%)a 23—>°°,0<|ﬂ4|<°°.

Various special and limiting cases of the GLDgyk1 are immediately evident from (3.5).

For instance, the GLDpykr reduces to the logistic distribution for 23 =A, =0, while the

exponential distribution is obtained when A; —c and 4, =0.
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@

Similar to the GLDgs, if 4;=4,=A4, then the GLDpyk. is symmetric, indicated by the
dotted line in Figure 3.4, and simplifies to Tukey’s lambda distribution in (3.2) with 4, =«

and A, =%. Furthermore the GLDgyki, like the GLDgs, approximates the normal

distribution for A4; =4, =0.14.
Akin to the GLDgs, the uniform distribution is realized from the GLDgvyk;. for four
different pairs of values of A, and A,. But only two of these pairs of values, (4, 4,)=(1,1)

and (/73, /14)= (2,2), are in accordance with the GLDgs. The GLDgyky also simplifies to the

uniform distribution for /73 =1 and /14 — oo and for /'13 — oo and /14 =1, while, as indicated
above, the remaining two pairs of values for which the GLDgs simplifies to the uniform
distribution are (/73, /14) =(1,0) and (/73, /14) =(0,1).

This disparity between the GLDgrs and the GLDgygr with respect to their simplifications
to the uniform distribution extends to their general parameter spaces. Indeed, the GLDggs and
the GLDpykr are two distinct types of the GLD and not merely reparameterizations of the

same distribution. The only direct functional relation between the GLDgs and the GLDgyxr

occurs in the symmetric case with A, =4,, when both types reduce to Tukey’s lambda

distribution.

3.6 MOMENTS
As first shown by Ramberg & Schmeiser (1974), the " order moment of the GLDgs only
exists if A >—% and A, >—%. So, if A, >—% and A, >—%, then the mean, variance,

skewness moment ratio and kurtosis moment ratio of the GLDgg are

M
u=A+ /1_21 , (3.6)
2 M,-M}
o = # . (3.7)
. = My=3M M ,+2M}
: (o4,
and
a. = M, —4M M {+6M M, -3M}
¢ (o2, )! ’
where

M 1 1

| I P R B
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M _2/13+1_2B(/1’3+1 Z +1)+21 11’
My=55-3BQ4+1, 4+ D +3B(4 +1,24, + 1) — 575
and
M, = 4/1 7 4BGA+ 1,4, + D) +6B(24; +1,24, +1) - 4B(4 +1, 34, +1)+4/1 —,

with B(a,b) the beta function (see Section 2.14.1 in Chapter 2 for details).

It follows that the first four moments of the GLDgs do not exist for any values of A; and
A4 in Regions 1 and 2. They do exist for all values of A; and A, in Region 3, but only for the

small sections of Regions 4, 5 and 6 where 4; >—+1 and 4, >—1.

Analogous to the GLDgs, the " order moment of the GLDgykr only exists if both
Ay >—1 and 4, >—1. Expressions for the mean, the variance and the skewness and kurtosis
moment ratios of the GLDgyk were derived and presented by Lakhany & Mausser (2000)
for 4;#0 and A, #0, while their expressions for the special case where both shape
parameters are zero, A, =4, =0, are simply the expressions for the logistic distribution.
However, expressions have not been given before in the literature for the special cases of the
GLDgyvikr where just one of the shape parameters is zero, that is, for 4; =0 and A, #0 or for
A, #0 and A, =0. These expressions are derived in Section 3.17.1.

The complete set of expressions for the mean, the variance and the skewness and kurtosis

moment ratios of the GLDgyx1. for /1j > —% and A4, > —% ,where j=3,4 and k =3,4, are

1 (-DF (=1’
/L+Z(M1— ——j, A0, 4 #0,4, % 4,

; A
U= (3.8)
A +%’ otherwise,
0_2 — Mz—le2 , (39)
4
My—=3M M ,+2M}
o, = 32Tl 3.10
3 (o4, )° 10
and
2 4
a, = M4—4M1M(30;jl)‘;11M2—3M1 , (311)
with
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Ch 4 D 2 20,4 #0,4,# 4
Aj(A+D) T A (KD T » Tk 7y ’

D4 -
ﬂj+1 9 ﬂrjio,ﬂk—o,
0, A=A
2B(A;+1, 4 +1)
T —L— 1, #0,4 #0,
25 (24;+1) i QA+ J
2283 +42-2,-1)  2(C+y(A;+2)
z( FRSTCYS 1) (z P )’ A;#0,4 =0,
j( it X j+) j( j+) J
2
z -7 —
" A=A =0,
(~1)* 3(-DFBQA+L A4+ 3(=1)7B(A;+1, 24, +1)
A5 (32;+1) Bk A
=1’
+ A.#0,4 #0,4. #4,,
23 (32 +1) j g
3D 12441048428 -B+a4,41)  6(-D* (C+yr4;+2)
A (A +1)(22,+1)(32;+1) A (Aj+1)
3(-1)* ”—2+(C+y/(ﬁ.-+2))2—1//“)(ﬂ-+2)
3(-DF (CHp24,+2)) 6 i i 1204 =0
222,41 4;(4;+D) T TR T
0, A=A
! _ 4BGA;+L A4+ 6B(24; 41,24 +1)
A5(42,+1) Ay XA
4B(A;+1,34 +1)
- - 3 - + 4 L ’ 2/ ¢ O’ﬂk 7': 0,
Ry s A (42, +1) J

4(14427 41562518824 247 B -112-74,-1)  12(C+p (4, +2))
(A +D(24;+1)(3A;+1)(44;+1) A5 (A;+1)

2
z +2))2 -y D (4,
12(c+y(22;+2))  4lcHp(32,+2)) 12[6+(CWMJ+2)) v (ﬂ,+2)J

A5 (2;+1) 25 (32;+1) A(A;+1)

6”—2+(C+ 24,+2))* -y V(22
6 Y(2A;+2))" -y 7 (24;+2)

+ 2
2(24;+1)
APk W (4,42 [(C+p A, +2) W (CHw (4, +2)) P +20 B+ (4, +2
oV A2 (CHp (4 ) CHY (4;42) +20(3)+y' 7 (4;42)
+ PRy . A;#0,4 =0,
1z A, =24=0
15 J k ’
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where C is Euler’s constant, ¥(a) is the psi function and w” (a) is the ™ derivative of the

psi function (see again Section 2.14.1 in Chapter 2 for details).

3.7 L-MOMENTS
Recall from Section 2.5 that, if the mean of a probability distribution exists, then all the L-
moments exist. Thus, the 7 order L-moment of the GLDgs exists if /13 >—1 and /14 >-—1.

This implies that the L-moments of the GLDgs exist for all values of 23 and /14 in Regions 3,

5 and 6 as well as for the section of Region 4 where A4; >—1 and 4, >-1.

Expressions for the L-moments of the GLDgrs have been derived and given in the
literature in a variety of forms (Bergevin, 1993; Mohan, 1994; Karian & Dudewicz, 2003;
Asquith, 2007; Karvanen & Nuutinen, 2008). The L-location and L-scale of the GLDgg are

L =%+i(£ﬂmfﬂj (3.12)
and
_ 2 A
L _i((ﬂg+l)(ﬂg+2)+(/14+1)€/14+2)]’ (3.13)

while the ™ order L-moment is given by

r=2 r=2
H(Zg—k) H(ﬂq—k)
L=p| St ()|, r=3,45..
[T+ [[+0)
k=1 k=1

The L-skewness ratio and L-kurtosis ratio for the GLDgg are

A (4-D) Ay (Ay-D)
1 2 3) (A +D(A,+2)(A+3
— DA+ ;(jﬁ ) ( 4+jli4+ (A4 +3) (3.14)
(M+D)(+2) (A +D)(A4+2)

73

and

(A -1)(A3-2) + Ay (A —1)(44-2)
_ (BHD(L+2) (L +3) (L +4) (A +1D)(A+2)(Ag+3)( A4 +4)
= g 7 . (3.15)
(A +D)(A3+2) (A4 +D)(A,+2)

2

Karvanen & Nuutinen (2008) numerically calculated the boundaries of 7; and 7, for the

GLDgs. For the symmetric GLDgs with A4, =4, =4, in effect, for Tukey’s lambda

distribution, they analytically derived these boundaries and showed that

_ _ (A-H(1-2)
7;=0 and 7, = Ui -
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The L-moment ratio diagrams of the GLDgs in terms of Regions 3, 4, 5 and 6 are
illustrated in Figure 3.6. These L-moment ratio diagrams are equivalent to the L-moment ratio
diagrams obtained and presented by Karvanen & Nuutinen (2008). It is furthermore indicated

in Figure 3.6 that the boundaries of 7, and 7, for Regions 3 and 4, obtained as 4; >0 or

A, — 0, are given by the generalized Pareto and reflected generalized Pareto distributions.

(a) Region 3 (b) Region 4

Boundary for all distributions

—— — Generalized Pareto \
0.8 —— - — Reflected generalized Pareto 0.8 \

0.6 0.6

0.4 / . 0.4 ‘
\ - \ /
0.2 \ / 0.2 \ /

74
74

/
AN
A

0.0 \ — / 0.0
-0.2 -0.2
-1.0 -0.5 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
73 73
(c) Region § (d) Region 6
0.8 0.8
0.6 0.6
o 04 o 04
0.2 0.2
0.0 0.0
-0.2 -0.2
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
73 73

Figure 3.6: L-moment ratio diagrams for Regions 3, 4, 5 and 6 of the GLDgs. The line types indicated in diagram (a) also apply to the

other diagrams. The uniform, logistic, exponential and reflected exponential distributions are indicated by U, L, E and RE.

In contrast to the GLDgs, the L-moments of the GLDgykr, have not been studied in detail
before in the literature — one study giving and using the L-moments of the GLDpyxy is by

Nair & Vineshkumar (2010). The expressions for the L-moments of the GLDgyky, derived in

Section 3.17.2, are similar in form to those of the GLDgs. If /13 >—1 and /14 > —1, then
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_ 7 _ 1| 1 1
L, _2'1 A (l3+1 l4+lj’ (3.16)
_ 1 1 1
L=7 ((ﬂgﬂmu) + <ﬂ4+1>(ﬂ4+2>] G.17)
and
r=2 r=2
[TA-0 [T
eri B (=), r=3,4,5,.... (3.18)
[T+6 [TA+0
k=1 k=1
The L-skewness ratio and L-kurtosis ratio for the GLDgyik1, are
Ai—1 A1
1_3 _ (/13+1)(13+2)1(/1,3+3) (l4+1)1(/14+2)(/14+3) (3.19)
(D)4 +2) (A4 +1)(A4+2)
and
(L-1(4;-2) . (A4 =D(44-2)
1_4 _ (/13+1)(/23+2)(13+3)§23+4) (/14+1)§l4+2)(ﬂ4+3)(14+4) . (3.20)

(23+1)(/13+2)+(A4 +1)(A4+2)
L-moment ratio diagrams indicating the (1'3, 1'4) spaces covered by the four regions of the

GLDguvk1, are shown in Figure 3.7. It is evident from comparing Figures 3.6(a) and 3.7(b) that

the (73, 74) space covered by Regions 3 of the GLDggs and the GLDpyky. are the same.

(a) Regions 1,2 & 4

'\‘
ol \

Boundary for all distributions
—— — Generalized Pareto
—— - — Reflected generalized Pareto

/

o 04 \ /
0.2 \ /
[ ) [ ]
RE L E
0.0
-0.2
-1.0 -05 0.0 0.5
73
Figure 3.7:

1.0

74

(b) Region 3
0.8
0.6
0.4 \ / '
/)
0.2 \\ /
N~
-0.2
-1.0 -0.5 0.0 0.5 1.0
73

L-moment ratio diagrams for Regions 1, 2, 3 and 4 of the GLDgvke. The line types indicated in diagram (a) also apply to

diagram (b). The uniform, logistic, exponential and reflected exponential distributions are indicated by U, L, E and RE. The

green-shaded, purple-shaded and red-shaded areas in diagram (a) are the (5, 7,) spaces attained by Regions 1, 2 and 4.
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Figure 3.8 depicts the L-moment ratio diagrams for Region 3(a) and Region 4 of the
GLDgs and for Class I of the GLDgyk1, both with 4, <1 and A4, <1. As will be seen in
Sections 3.11 and 3.12, these two regions of the GLDgg and Class I of the GLDgykr, provide
the most useful distributional shapes. Note that, whereas the combined coverage of the
(T3,T4) space by Regions 3(a) and 4 of the GLDgs extends all the way towards the
boundaries given by the generalized Pareto and the reflected generalized Pareto distributions,

the coverage by Class I of the GLDpykr does not. The reason is that /73 <1 and /14 <1 in

Class I, while the generalized Pareto and reflected generalized Pareto distributions are

obtained from the GLDgykL when A; — o or /14 —> oo in Classes II and IT’.

It is clear from the L-moment ratio diagrams in Figures 3.6 to 3.8 that the GLD covers a

substantial area of the (1'3, 1'4) space, especially through Regions 3(a) and 4 of the GLDgs and

Class I of the GLDgykr. The area covered by the GLD is larger than the area covered by
other popular four-parameter distributions, such as the Burr Type III and Burr Type XII
distributions (see again Figure 2.10), highlighting the greater flexibility of the GLD with

respect to distributional shape.

(a) Region 3(a) & Region 4 of GLDgg (b) Class I of GLDgmKkL

Boundary for all distributions X
\ ——— — Generalized Pareto
0.8 \ —— - — Reflected generalized Pareto 0.8 \
0.6 \ / 0.6 /
o 04 \ // - 04 \ //
0.2 \ 0.2 \
(] (]
RE\ L E RE\ L E
. 0.0
00 U U
-0.2 -0.2
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
73 73
Figure 3.8: L-moment ratio diagrams for Region 3(a) and Region 4 of the GLDgs and for Class I of the GLDgvki. The line types

indicated in diagram (a) also apply to diagram (b). U, L, E and RE denote the uniform, logistic, exponential and reflected

exponential distributions. In diagram (a), the blue-shaded area is the (r;, 7,) space covered by Region 3(a), while the red-

shaded area is the (1'3 R 14) space covered by Region 4. The green-shaded, purple-shaded, blue-shaded and red-shaded areas

in diagram (b) indicate the coverage of the (13, 74) spaces by Regions 1, 2, 3 and 4 of the GLDpyk with /?3 <1 and

Ay <1.
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3.8 QUANTILE-BASED MEASURES OF LOCATION, SPREAD AND SHAPE

The non-existence of moments and L-moments for certain shape parameter values of the
GLD is problematic in that the use of these measures in describing the location, spread and
shape of the GLDgs and GLDgyk1 for the affected regions and classes is constrained. In

contrast, measures of location, spread and shape defined in terms of the quantiles of the GLD
exist for all values of 4; and A,. King (1999) and also King & MacGillivray (2007) gave the
median, spread function, ¥ -functional, 77-functional and ratio-of-spread functions for both
the GLDgg and the GLDgyk1.

Let % <v<u<1. Then the median and spread function of the GLDgg are
2
me=zq+i((%)ﬂ@ (1) 4) 3.21)
and
S(u)= t(u% —(—w)™ +u™ —(1—u)™ J , (3.22)

while the two skewness functionals and the ratio-of-spread functions for the GLDgg are

A3 A
u‘3+(1—u)‘3—u‘4—(1—u)‘4—2[(;) —Gj ]

u)= >
yw) u —(1-u)B +u™ —(1-u)™
uB +(1-u)B B —(1-v)B M —(1=)™ M +(1-v)™
u,v)=
7. v) VB —(1-v)B 4™ —(1-p)M
and
B_ (=B +u™ —(1-u)
R(M,V)Z u (1=u)™+u (1-u)

VB _(1-n)B M _(1-p)™
The x -functional, the bounded functional for kurtosis proposed in Section 2.6 of Chapter 2,
is

uB —(1=1)B —v B +(1=v)B +uM —(1—)™ —v M 4 (1-v)™
u® —(1—u)® +u™ —(1-u)™

xK(u,v)=
for the GLDgs.
Given % <v<u<l, j=3,4 and k=3,4, the median and spread function of the

GLDFMKL are
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me =11 +2L2((‘;j)k ((g)”f —1j+(—l)jlog[%]j, A;#0,4 =0 (3.23)
. =4,
and
i(”lj‘(ﬂlj‘”)lj 4 ‘(ﬂlk‘”)ﬂk j A;#0,4, #0,
S(uy=1+ (Mﬂog[ ]j A,#0,4, =0, (3.24)
Zloght], A =4 =0.

The shape functionals of the GLDpgyky are

o (u’+(1 W —2L)" )

u 4 —(1-u) A uhk —(l—u)’ik
2 I
i i
0 [u‘k +(1—uy™ —2(2) kJ
k
+ - -
y(u) = B B R WY
A; I

(ilw{[uﬂj +(1—u)/11 - (%) j+( )7 log[4u(1— u)]

u '—(1 —wy

+ log[1 u]

© University of Pretoria

A #0,4 #0,4; # 4,
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(jll?k(uﬂj +(1- u)ﬂ’ —vﬂj -(1- v)ﬂ" ]

R(u,v)=

xK(u,v)=

v (- Lo

2 A

(;“"( A -y v (- v)lkJ
k

v (1= Lot

2; X

+ A;#20,4 20,4, # 4,

9

S (ul" + (=) —vh = (1= )Y J

J

R
(1) Togl 2 s04 0,
T gl ] ’

0, A=A
W -y =t

A; p)
ETETE—" (1"_% , A.#20,4 #0

2 &
gl

4 I 2.20,2, =0
T gl
% A. =4 =0
log[ﬁ] ’ e

WM 1=y M (1-v)Y 4 e Aok

A; A
— e : , A #0,4 #0,
u - wH —(1—uw)* J
A; Ak
u’ —(1-u)™ —v f+(1—v) u(1-v)
; +10g|.(1 u)v
’ , 4;,#0,4 =0,
—(1-u)
7+10g[l u]
u(l-v)
log[(l—u)v ﬂ —ﬂ, ~0
g 1-u
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3.9 LOCATION AND SPREAD

The interpretation of the location and scale parameters of the GLD is straightforward.
Holding the values of all the other parameters constant, an increase in the value of 4, leads to

an increase in the location of the GLD. This follows immediately from the expressions for the
mean in (3.6) and (3.8), the L-location in (3.12) and (3.16), and the median in (3.21) and
(3.23) of the GLDgs and GLDgyvky respectively and is illustrated in Figure 3.9(a) for the
GLDgs.

(a) Location (b) Spread
3.0 3.0
25
2.0
&)

g1s
1.0
0.5
- 0.0

15 -2 0

X X

Figure 3.9: Probability density functions of members of the GLDgs with varying location and spread. In graph (a), where

(/12, Ay Ay ) =(1,0.1,0.2) , an increase in the value of A, leads to an increase in the location of the GLDgs, while in graph

(b), where 4, =0 and (13, A ) =(0.1,0.2) , an increase in the value of A, leads to a decrease in the spread of the GLDgs.

There is an inverse relation between the spread of the GLD and the value of 4, in that the

spread of the GLD decreases when the value of 4, increases (holding the values of the other

parameters constant). This inverse relation is evident from the expressions for the variance in
(3.7), the L-scale in (3.13) and the spread function in (3.22) of the GLDgg, as well as from the
corresponding expressions in (3.9), (3.17) and (3.24) for the GLDgyk1, and is demonstrated
graphically in Figure 3.9(b) for the GLDgs.

3.10 DISTRIBUTIONAL SHAPE

The GLD is highly flexible with respect to distributional shape. But this flexibility comes at a
cost in that the relationship between the shape parameters of the GLD and the distributional
shape is extremely complex, particularly with respect to skewness. This is especially true in

Region 3 of both the GLDgs and GLDgyky..
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The shape properties of the GLD are discussed below. See MacGillivray (1982),
Groeneveld (1986), Freimer et al. (1988), King (1999) and Karian & Dudewicz (2000, 2010)
for in-depth analyses of the GLD’s shape properties. Since the GLDgrs and GLDpgyk;. share
most of the intricacies and complexities with respect to distributional shape, the shape
properties of the GLD are illustrated via the GLDgrs. Where necessary, main differences

between shape properties of the GLDgs and the GLDgyky are highlighted.

3.10.1 TAIL BEHAVIOR
As explained by King (1999), for certain combinations of values of the GLD’s shape

parameters in Regions 3 and 4, a change in the value of one of these parameters will affect

one of the tails of the GLD. In Region 4 for 4; <0 and 4, <0 and in Region 3 for 0< 4, <2
and 0< /14 <2, the left tail of the GLD is affected by a change in the value of A;, whereas the
right tail is affected by a change in the value of A4,. When 4;>2 and 4, >2 in Region 3, a

change in the value of A; affects the right tail of the GLD while a change in the value of 4,

affects the left tail. See Figure 3.10 for examples in terms of the GLDgs. The tail behavior is
not straightforward for other combinations of shape parameter values in Regions 3 and 4 and

also not for the other regions of the GLD.

3.10.2 SKEWNESS AND KURTOSIS

As can be seen from the various measures of shape, the two shape parameters, 4, and A,

jointly determine the skewness and the kurtosis of the GLD. For example, the L-skewness

and L-kurtosis ratios of the GLDgg in (3.14) and (3.15) and of the GLDgyky in (3.19) and
(3.20) are functions of both 4, and A,, This complicates not only the interpretation of the

two shape parameters but also parameter estimation for the GLD discussed in Section 3.13.

Recall from Section 3.5 that the uniform distribution is obtained from the GLDgrs when

(4, 4)=@1), when (4,4,)=(2,2), when (4, 4,)=(1,0) and when (4, 4,)=(0,1). The
skewness and kurtosis moment ratios of the uniform distribution are &, =0 and o, =1.8
respectively. Thus four different pairs of values of 4, and A, from the GLDgs produce these

values of ¢; and ¢,. This suggests that there does not exist a one-to-one correspondence

between the shape parameters of the GLD and the skewness and kurtosis moment ratios.
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(@) 3 <0 & Ay =—0.2

B) 3 =-01& <0

2.5

f)

A3 = —0.05

f)

2.5

2.0

24 = —0.15
Ag=-020

-1.0

-0.5 0.0 0.5 1.0

X

@AB=01&0< <2

2.5
24 =0.15
2.0
15
2 2
= =
1.0
0.5
0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X
@B>2& =4
1.0 1.0
=25 .
------ A3 =30 S
0.8 3 SR 0.8
0.6 0.6
z z
= =
0.4 0.4
0.2 0.2
0.0 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X
Figure 3.10: Probability density functions of members of the GLDgs from Regions 3 and 4 illustrating tail behavior. In graphs (a) and

(b), where (/I,, /12): 0,-1), A4;,<0 and A, <0 from Region 4, and in graphs (c) and (d), where (/11, /12): 0,1,
0<A;<2 and 0< 4, <2 from Region 3, a change in the value of A, affects the left tail, while a change in the value of
A, affects the right tail. In graphs (e) and (f), where (/11, /12): 0,1), A4;>2 and A, >2 from Region 3, a change in the

value of A, affects the right tail, while a change in the value of 4, affects the left tail.

Johnson (1980) pointed out that the correspondence is one-to-one for both the Pearson

and the Johnson families of distributions and queried whether the same is true for the GLD.

In response Ramberg et al. (1980) gave an example to show that the correspondence is indeed
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not one-to-one for the GLD. Their example indicated that the three members of the GLDgs
with (4, 4,)=(0.0742,0.0742), (4, 4,)=(6.026,6.026) and (4, 4,)=(35498,2.297) , whose

probability density functions are plotted in Figure 3.11, all have ¢4 =0 and o, =3.4.

14 A3 = A4 = 0.0742
______ /13 = /14 =6.026
1 A3 = 35.498 !
& Ay =2.297 i

Figure 3.11: Probability density functions of three members of the GLDgs, all with @, =0 and @, =3.4. Note that £ =0 and ¢ =1

for all three members of the GLDgs, that is, all three members have zero mean and unit variance.

This undesirable characteristic of the GLD is not restricted to the skewness and kurtosis

moment ratios. The same is true for other measures of shape such as the L-skewness and L-
kurtosis ratios. For instance, 7; =7, =0 for the four different pairs of values of 4, and A,
from the GLDgs which yield the uniform distribution. As another example, Figure 3.12

shows the probability density functions of three members of the GLDgs with (/13, /14) = (%, %),

(4, 4)=(3.3) and (4, 4,)=(84.1160,1.2734), all yielding 7; =0 and 7, = =0.0476.

0.30

A3=44=05 \

025 ------ 13 = 14 =3 1"

....... A3 = 84.1160 !

& Ay = 12734 ;!

0.20 Co

i

g 1

gois :
0.10
0.05
0.00

Figure 3.12: Probability density functions of three members of the GLDgs, all with 7, =0 and 7, =4, . Note that L, =0 and L, =1

for all three members.
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To complicate matters further, when one considers different pairs of values of 4, and 4,
which have the same set of values for a certain set of shape measures, say 7; and 7, then
these different pairs of values of 4; and 4, will not necessarily have the same set of values
for another set of shape measures, say @; and ¢,. For example, the three members of the
GLDgs with (43, 4,)= (1, 1), (4, 4,)=(3,3) and (4, 4,)=(84.1160,1.2734) all have the same
set of values for 7, and 7,. However, if (/13,/14)=(%,%), then (a3, a,)=(0,2.0817), if
(A4, 4,)=(3,3), then (&, a,)=(0,2.0570), whereas if (4,4,)=(84.1160,1.2734), then
(&, @) =(0.2697,3.1305).

Figures 3.11 and 3.12 illustrate another interesting shape property of the GLD. There

exist values of A4, and A, for which the GLD is asymmetric, but which give a5 =0 or 7, =0.
Examples include the GLDgs with (4, 4,)=(35498,2.297) and a; =0 depicted in Figure

3.11 and the GLDgs with (4, 4,)=(84.1160,1.2734) and 7, =0 depicted in Figure 3.12.

3.10.3 SHAPE OF THE DENSITY CURVE
When the values of A; and /4, are interchanged, the shape of the GLD’s probability density
function is reflected. In effect, as demonstrated in Figure 3.13 with the probability density

function of the GLDgs, the GLD with parameters (/11, Ay s, /14) is the reflection of the GLD

with parameters (4, 4,, 4,, 4;) about the line x = 4, .

2.0 A3=3& =4
—————— A3=4& 44 =3
----------------- Reflection about
thelinex=1 -
15 ‘
z
1o
0.5
0.0
0.0 0.5 1.0 15 2.0

X
Figure 3.13: Probability density functions of two members of the GLDgs illustrating the reflection in the shape of the density curve when

the values of A, and A, are interchanged. The GLDggs with parameters (ﬂ,l, Ay Ay, Ay ) =(1,2,3,4) is the reflection of

the GLDgs with parameters (/'tl, Ay Ayy Ay ) =(1,2,4,3) abouttheline x=4,=1.
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Depending on the values of its shape parameters, the GLD’s probability density function
can exhibit zero, one or two relative extreme turning points — examples in terms of the
GLDgs are shown in Figure 3.14. The number of turning points with respect to the shape
parameter values of the GLDgg, derived by Karian & Dudewicz (2000, 2010), is shown in
Figure 3.15 and summarized in Table 3.5. For the GLDgyk, the number of turning points
exhibited by its probability density function is indicated graphically in Figure 3.16 and
tabulated in Table 3.6.

0.8
3 =-025&.44=10
______ A3=-025& 4y =05 !

sl o AB3=-025& =0 !

S

Figure 3.14: Probability density functions of three members of the GLDgs with zero, one and two relative extreme turning points, all
with L, =0 and L, =1. The density function with two turning points is from Region 5, while the unimodal and J-shaped

density functions with one and zero turning points respectively are from Region 4.

/
3 0 Y / 2 1
/ 0
2 /2 /
1 1 / 1 2
1
1 0
T 0
/2//,/’—/
1 0
-1
-2 1
1 0
-3
-3 -2 -1 0 1 2 3
A3

Figure 3.15: The number of relative extreme turning points of the probability density function of the GLDgs in terms of the values of A,

and A,. The yellow-shaded, orange-shaded, blue-shaded, red-shaded, green-shaded and purple-shaded areas indicate
Regions 1, 2, 3, 4, 5 and 6 as shown in Figure 3.2.
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Table 3.5: Number of relative extreme turning points of the probability density function of the GLDgs as depicted in Figure 3.15.
Region Shape parameter values Number of turning points
Region 1 A, <-L1<4, <2 1

Ay <-1,4,22 0
Region 2 1<y, <2, 4, <-1 1
A, 22,4, <-1 0
Region 3 A,=0,4,>0 0
A,>0,4,=0 0
0<4,<1,0<4, <1 1
0<A; <1, 4, >1 0
A, >1,0< 4, <1 0
A,=1,24,>0 0
A,>0,4, =1 0
1<A,<2,1<4, <2 1
1<A,<2,4,=2 1
A,=2,1<4,<2 1
Ay=4,=2 0
1<A;<2,4,>2 2
A, >2,1< 4, <2 2
A>2,4,>2 1
Ay=2,4,>2 1
Ay >2,4,=2 1
Region 4 A,=0,1,<0 0
A,<0,4,=0 0
A,<0,4, <0 1
Region 5% 1< 2, <0,1< A, <2,uldy, 4,)<v(Ay, 4,) 1
1< A, <0, 2, >2,ully, A,)<v(Ay, ,) U5, 4, )<V (A4, 4,) 2
“1<2,<0,4, >2,U(2,, 4,)>V (4, 4,) 0
Region 6% 1<A, €2, 1< 4, <0,u(d,, 2,)<v(2,,2,) 1
Ay >2,-1< A, <0,ull,, 4,)<v(A,, ) U, 2,)<V(4,, 4,) 2
Ay>2,-1<4, <0,U(A,, 24,)>V(4,, 4,) 0
=24 (7 _q)A4-1 VA2 g VA _
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3 2 1
0 0
2
1 2
1
1 1 0
T 0
-1
-2 1 1 0
-3
-3 -2 -1 0 1 2 3
A3

Figure 3.16: The number of relative extreme turning points of the probability density function of the GLDgvk1. in terms of the values of

A, and A4, . The green-shaded, purple-shaded, blue-shaded and red-shaded areas indicate Regions 1, 2, 3 and 4 as shown in

Figure 3.4.
Table 3.6: Number of relative extreme turning points of the probability density function of the GLDgvk. as depicted in Figure 3.16.

Class Shape parameter values Number of turning points

Class I Ay <1, 4 <1 1

Class 1T A 21,4, <1 0

Class II’ AL A, 21 0

Class III 1<A3<2,1< 2, <2, 3+ 4, <4 1
Ay=24,=2 0

Class IV Ay >2,1< Ay <2 2

Class IV’ I<A3<2,44,>2 2

Class V Ay 22,4, 22, 13+ 4, >4 1

3.11 REGIONS OF THE GLDgs

In Figures 3.17 to 3.24 the probability density functions of some examples of asymmetric
members of the GLDgs from Regions 1, 3, 4 and 5 are plotted (see Figure 3.1 for examples of
symmetric members of the GLDgs from Regions 3 and 4 with A4;=4,=4). The
distributional shape and characteristics of the GLDgg are briefly described below for each
region. Since any GLDgs from Region 2 is simply the reflection of the GLDgs from Region 1
about the line x =/, these two regions are considered together. For the same reason Regions

5 and 6 are also considered together.
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3.11.1 REGIONS 1 AND 2

Region 1 with 4; <—1 and A4, >1 and Region 2 with 4; >1 and 4, <—1 contain asymmetric
members of the GLDgg with half-infinite support. In Region 1 the GLDgs is negatively
skewed, while in Region 2 it is positively skewed.

As shown in Figure 3.17(a), when 1< A, <2 in Region 1, the density curve of the GLDgs
has one turning point at the right tail. Figure 3.17(b) depicts J-shaped density curves from
Region 1, occurring for A, 2. Similarly in Region 2, the density curve of the GLDgs has a
turning point at the left tail when 1< 4; <2, while the density curve is J-shaped for 4, >2.

Regions 1 and 2 are the only regions of the GLDgs for which no moments or L-moments
exist. As a result quantile-based measures of location, spread and shape must be used for

these two regions.

(@) A3<-1&1<4<2 b)) B3<-1&A4>2
7 7
A3 =-125& 44 =175 i A3 =-125& 44 =2.75
6f oo A3 =-1.50 & 44 = 1.50 N L e A3 =-1.50 & A4 = 2.50
------- A3 =-1.75& 44 = 1.25 ' cmmm A3 =-175& A4 =225
5 ! 5 !

-04 -0.2 0.0 0.2 0.4 -04 -0.2 0.0 0.2 0.4

Figure 3.17: Probability density functions of members of the GLDgs from Region 1, all with me =0 and IQR=SF' (%)=1 .

3.11.2 REGION 3
Region 3 of the GLDgs is defined for 4,20, 4, 20 and 4+ 4, >0, with the third restriction
ensuring that the two shape parameters cannot simultaneously be zero. The GLDgg in Region
3 always possesses bounded support. In fact, Region 3 is the only region of the GLDggs with
bounded support.

Examples of symmetric members of the GLDgs from Region 3 with 4, =4, =4 are given
in Figure 3.1(b-d). Figures 3.18 to 3.22 present examples of asymmetric members of the

GLDgs from Region 3, all with A; <A, . The reason for this restriction is that the shape of the

GLDgs will simply be reflected for 4; > 4, and hence the corresponding graphs are omitted.
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Compared to the other five regions, Region 3 is the most flexible with respect to
distributional shape, but, as a result, it is also by far the most complex region. For instance, as
indicated in Figure 3.15 and Table 3.5, the density curve of the GLDgs in Region 3 can

exhibit zero, one or two relative extreme turning points.
In Region 3(a), if 0<A; <1 and 0< 4, <1, the left and right tails of the density curve

both approach zero and hence the GLDgs is then unimodal with a single turning point. See

Figures 3.18(b-d) for examples of these unimodal density curves. King (1999) proved that the

slope of the density curve at the end-point of the left tail is zero for 0< 4; < %, non-zero but
finite for A, =%, and infinite for %< Ay < 1. The same results hold for the right tail in terms of

the corresponding values of /14. So the most useful unimodal members from the GLDgg in
Region 3(a) are obtained for 0< 4, <% and 0< /, <%. Examples of these members of the

GLDgs are shown in Figure 3.18(b).

@AhB=0&0< <1 BO<A<05&0< .4 <0.5
0.5 0.35
A3 =0& 1y =025 A3 =0.05& 1y =0.25
oal 77770 A3 =0& Ay =050 030 . A3 =0.05& 4y = 0.45
A B=0& =075 A3 =025 & Ay = 0.45
0.25
0.3
- 0.20
2 2
= =
0.2 0.15
0.10
0.1
0.05
0.0 0.00
-5 0 5
X X
©0<AH3<05&05<4<1 M05<AB3<1&05<4<1
0.30 0.30
A3 = 0.05 & g = 0.55 A3 =0.55& 44 = 0.75
025) —----- A3 =025 & 44 =0.75 025 ------ A3 =0.55& 1y =095
------- A3 =045 & dg = 0.95 s oo A3 =075 & Ay = 0.95
0.20
=
gois
0.10
0.05
0.00

X X

Figure 3.18: Probability density functions of members of the GLDgs from Region 3(a), all with L, =0 and L, =1.
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As illustrated by Karian & Dudewicz (2000, 2010), many of the well-known distributions

can be approximated by the GLDgs when 0< A, <% and 0< 4, <%. For instance, as pointed

out in Section 3.5, the normal distribution is approximated by the GLDgg with 23 =4, =0.14.
Note that the normal distribution is an example of a mesokurtic distribution with a, =3.
Distributions with &, < 3 are called platykurtic (short-tailed), while distributions with ¢, >3
are said to be leptokurtic (heavy-tailed) — see Pearson (1905) and Student (1927) for details.
The unimodal members of the GLDgs in Region 3(a) can be platykurtic, mesokurtic or
leptokurtic.

In Region 3(c) the density curve of the GLDgs is U-shaped with a single turning point if
both shape parameters are between one and two, or if one of the shape parameters is between
one and two while the other shape parameter equals two. Examples of these U-shaped density

curves from Region 3(c) are demonstrated in Figure 3.19.

@l<B<2&1< <2 b)l<A3<2&A=2
0.35 0.30
A3 =125 & g = 1.50 A3=125& 4y =2
030 _____. B =125& 44 =175 0251 ------ A3=150& 4y =2
------- A3 =150 & dg = 1.75 . o A3 =175 & Ay =2

0.25
0.20

0.20

z
2ois

fx)

0.15

0.10
0.10

0.05 0.05

0.00 0.00

Figure 3.19: Probability density functions of members of the GLDgs from Region 3(c), all with L, =0 and L, =1.

The density curve of the GLDgs in Region 3 has no turning point when either of the two
shape parameters is zero or one, when one of the two shape parameters is between zero and
one with the other shape parameter greater than one, and when the shape parameters are both
equal to two. The corresponding distributional shapes are uniform, monotone decreasing or

monotone increasing. The uniform distribution is obtained in Region 3 for the four different

pairs of values of 4, and A, given Section 3.5. Monotone decreasing density curves are
attained in Region 3(d) with 4;>1 and 0< 4, <1 and also, as shown in Figure 3.18(a), in

Region 3(a) when 4;=0 and 0< A, <1. Figure 3.20 presents examples from Region 3(e)
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with 0< 4, <1 and /?,4 21 where the density curve of the GLDgg is monotone increasing. The

density curve is also montone increasing in Region 3(a) when 0< A, <1 and 4, =0.

@AB3=0&A44>1

DO<<1&A=1

0.5 (I 0.30
B=0& 4y =125 " B3=025& =1
------ A3 =0& 4 =150 _'r 025 —-----43=050&4y=1
04 . _ . _. B3=0& 4 =175 [ B=075& 4y =1
1
4 0.20
0.3
2 z
E Z 0.15
0.2
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0.1 0.05
0.0 0.00
-4 -2 0 2 4 -6 0
X X
©0<BZ<1&Yy>1 dAs=1&4>1
1.0 0.35
B3=025& A4 =3 B=1& Ay =3
—————— A3=050& 44 =5 0.30 -3 =1& Yy =
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X X
Figure 3.20: Probability density functions of members of the GLDgs from Region 3(e), all with L, =0 and L, =1.

If the one shape parameter is between one and two and the other shape parameter is

greater than two, the density curve is S-shaped with two turning points. These S-shaped

density curves occur in Region 3(f) and Region 3(g), with examples from the latter sub-

region given in Figure 3.21. The turning point at the right tail of the density curve in Region

3(f) and the turning point at the left tail of the density curve in Region 3(g) become less

pronounced when the absolute difference between the values of /?3 and /14 increases, and, as

a result the S-shaped pattern of the density curve is then less apparent — Figure 3.21 illustrates

this characteristic of the GLDgg for Region 3(g).
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Figure 3.21: Probability density functions of members of the GLDgs from Region 3(g), all with L, =0 and L, =1.

Region 3(h) is defined for 4,22, A4, 22 and A;+4, >4, where the third restriction

ensures that the two shape parameters cannot simultaneously be equal to two, avoiding the

uniform distribution with 4, =4, =2. Unimodal truncated density curves are obtained from

this sub-region, examples of which are plotted in Figure 3.22.

Region 3 is the only region for which all the moments and the L-moments exist. But, as
shown with the examples in Figure 3.11 and Figure 3.12, there does not exist a one-to-one
correspondence between the shape parameters in Region 3 and the moments, and also not

between the shape parameters in this region and the L-moments.

@B=2&A4>2 D) A3>2& 4 >2
0.35
0.7
A3=2& Ay =3 A3=3& 4y =5
0307 _____. B=28& Ay = ool T B=3& =1
------- B=2& 4y=7 : cmeme = A3 =5& Ay =T
0.25 :
0.20
z
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0.15
0.10
0.05
0.00

Figure 3.22: Probability density functions of members of the GLDgs from Region 3(h), all with L, =0 and L, =1.

3.11.3 REGION 4
Along with Region 3(a), Region 4 presents the most useful members of the GLDgrs. When

both 4, <0 and A4, <0 in Region 4, unimodal, leptokurtic members of the GLDgs with
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infinite support are obtained. Region 4 is the only region of the GLDgs which produces
members with infinite support. When either 4, =0 or A4, =0, the density curve of the GLDgs
in Region 4 is J-shaped with half-infinite support. The GLDggs in Region 4 is positively
skewed for A; >4, and negatively skewed for A; <A,. Examples of positively skewed

members of the GLDgg are given in Figure 3.23, while examples of symmetric members with

Ay = A, = A are shown in Figure 3.1(a).

@h=0& 1 <0 BB <0& <0
1.4
4 B3=0& 4y =025 A3 = =0.25 & Ay = —0.50
------ 1320 & Ay = —0.50 3= —025& 44 =075
------- A3=0& g =—0.75 L2] L 3=-050& 4y =075

Figure 3.23: Probability density functions of members of the GLDgs from Region 4, all with L, =0 and L, =1.

3.11.4 REGIONS 5 AND 6

The GLDgs in Region 5 with —1<4;<0 and 4, >1 is positively skewed with half-infinite
support. When 1< 4, <2, the shape of the density curve, shown in Figure 3.24(a), is similar
to the shape of the density curve in Region 1 for A, <—I, shown in Figure 3.17(a), in that

there is a turning point at the right tail. When A, >2, the density curve has no turning point

(and is monotone increasing) or it has two turning points appearing close to the right tail —
see Figure 3.24(b) for examples.
In Region 6 the GLDgs is negatively skewed, also with half-infinite support. When

1<A,<2 and —1<4, <0, the density curve has a single turning point at the left tail. If

A;>2 and —1< 4, <0, the density curve has zero or two turning points.

For the majority of shape parameter values from Regions 5 and 6, moments are not
available. However, the mean and hence all the L-moments exist for all shape parameter

values from these two regions.
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Figure 3.24: Probability density functions of members of the GLDgs from Region 5, all with L, =0 and L, =1.

3.12 CLASSES OF THE GLDpumke

The distributional shape and properties of the seven classes of the GLDgyky are briefly
discussed below, with Figures 3.25 to 3.32 showing the density curves of examples of

asymmetric members from these classes (see again Figure 3.1 for density curves of examples

of symmetric members). Note that A, >4, in all the graphs in Figures 3.25 to 3.32, because

for /?.3</14 the shape of the GLDgyky is reflected about the line xzﬂl and thus the

corresponding graphs are omitted. Also, since they contain reflections of each other, Classes

IT and IT” are considered together below, as are classes IV and IV’.

3.12.1 CrasslI
Akin to Region 3(a) of the GLDgs, the two tails of the density curve of the GLDgyky in Class

I with A4;<1 and A, <1 both approach zero. As a result Class I contains unimodal
distributions with half-infinite support in Regions 1 and 2 of Class I, with bounded support in
Region 3 of Class I, and with infinite support in Region 4 of Class I, examples of which are
shown in Figures 3.25 to 3.27. These unimodal members of the GLDgyk; in Class I are

platykurtic, mesokurtic (for instance, the approximation of the normal distribution by the
GLDpykL with A, =4, =0.14) or leptokurtic.

Freimer et al. (1988) proved that at the end-point of the left tail, the slope of the density
curve is zero when 4; <, non-zero but finite when 4 =7, and infinite when J</4;<1.
Equivalent results hold for the right tail of the density curve based on the corresponding

values of 4,.
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All moments and L-moments exist in Region 3 of Class I. In Regions 1, 2 and 4 of Class I

the first four moments only exist when both A4; >~ and A, >—7, while all L-moments

exist when 4, >—1 and 4, >-1.

@0< A3 <1&A4=0 (b)0<AB3<1&A<0
0.35 -
A3=025& 44 =0 — 3 =025& Ay =075
0301 oo - B=050& =0 | =----- 23 =0.50 & 44 = —0.50
------- B =0758& 4y =0 LO| o 3=075& 44 =025
0.25 RES
) 0.8
0.20 _
2 2
< <06
0.15
0.4
0.10
0.05 0.2
0.00 0.0
-4
X x

Figure 3.25: Probability density functions of members of the GLDpyk. from Region 2 in Class I, all with L, =0 and L, =1.
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A3 =0.75& 44 = 0.55
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=
x

Figure 3.26: Probability density functions of members of the GLDpyk. from Region 3 in Class I, all with L, =0 and L, =1.
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Figure 3.27:

3.12.2 CLASSESIIAND IT

Probability density functions of members of the GLDguk. from Region 4 in Class I, all with L, =0 and L, =1.

Based on its support, two regions, namely Region 2 with 4, <0 and Region 3 with

0< 4, £1, are included in Class II. Figure 3.28 presents examples of members from Region

2, where the support of the GLDgyky is half-infinite.
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Figure 3.28: Probability density functions of members of the GLDpuvk. from Region 2 in Class II, all with L, =0 and L, =1.
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In Region 3 of Class II the support of the GLDgvik1 is bounded, with examples shown in

Figure 3.29. Likewise the support in Class II’ is half-infinite in Region 1 with 4; <0 and

bounded in Region 3 with 0< A4; <1.

5 @h>1& =1 D) h>1&0<dy<1
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2 = 0.4
o2 )
~ S~
03
o 02
0.1
0.0 0.0
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0.4
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0.3 3 4
=
Zo2
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Figure 3.29: Probability density functions of members of the GLDgvk. from Region 3 in Class I, all with L, =0 and L, =1.

As indicated in Figure 3.16, Classes Il and II’ are the only classes of the GLDgvk. where
the probability density function always exhibits no extreme turning point. In fact, the

GLDgyik. with (4, 4,)=(2,2) in Class III, which gives the uniform distribution, is the only

member of the GLDgykr from outside Classes II and II’ which has no turning point in the
density curve. Three types of density curves are possible from Classes II and II’. The uniform
distribution is obtained in these two classes when both shape parameters are equal to one, or
when one of the shape parameters equals one while the other shape parameter tends to
infinity. Monotone decreasing density curves are attained in Class II, while monotone

increasing density curves occur in Class II’. As a result, apart from the shape parameter
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values for which the uniform distribution is obtained, the GLDgykr is positively skewed in
Class II and negatively skewed in Class IT’.
As with Region 3 of Class I, all moments and L-moments exist for Region 3 of Classes II

and II’. However, in Region 1 of Class II' and in Region 2 of Class II the first four moments

1

only exist when A; >—4 and A, >—7, while all L-moments exist when A;>-1 and

A, >-1.

3.12.3 CrassIII

Class I of the GLDgyiky. is defined for 1< A; <2 and 1< 4, <2 and hence is equivalent to

Region 3(c) of the GLDgs with respect to parameter space. Furthermore, akin to Region 3(c)
of the GLDgs, the density curve of the GLDgyky in Class III is U-shaped for all pairs of

values of 4, and A, except for (/?3,/14):(2, 2) which produces the uniform distribution.

Figure 3.30 presents examples of U-shaped density curves from Class III.

@I1<B<2&1<Ay<2 b)) B=2&1<4y<2
0.35 0.30
3 =150 & 44 = 1.25 B3=2& Ay =125
0300 _____. B=175& 44 =125 025 ------ B =2& 44 =150
------- B3 =175& 44 = 1.50 cmmoA3=2& A4 =175

f&)

-4 -2 0 2 4 -4 -2 0 2 4

X X

Figure 3.30: Probability density functions of members of the GLDpyk. from Class III, all with L, =0 and L, =1.

3.12.4 CLASSESIVAND IV’

The GLDgyk1 only produces probability density functions with two turning points in a single
region, that is, Region 3, whereas such density functions are obtained in Regions 3, 5 and 6 of
the GLDgs. In particular, these types of density functions occur in Classes IV and IV’ of the
GLDgumk1, and are S-shaped, similar to the density curves from Regions 3(f) and 3(g) of the
GLDgs. Examples of members of the GLDgyk. from Class IV are depicted in Figure 3.31. It

is noted again that the S-shaped pattern of the density curve becomes less visible as the

absolute difference between the values of 4, and A, increases.

123
© University of Pretoria



e

UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
Que# YUNIBESITHI YA PRETORIA

CHAPTER 3. THE GENERALIZED LAMBDA DISTRIBUTION (GLD)

0.30
—— 3=3& 44 =125
025 —----- /13 =5& /14 =1.50
....... B3 =7& 44 =175
0.20
=
< 0.15
0.10
0.05
0.00
—4 -2 2 4

X

Figure 3.31: Probability density functions of members of the GLDpyk. from Class IV, all with L, =0 and L, =1.

3.12.5 CLAssV
Class V of the GLDpyk1, with 4,22, 4, 22 and 4, + A, >4, where the third restriction is to
prevent the uniform distribution with 4; =4, =2, is similar to Region 3(h) of the GLDgs in

that it possesses unimodal truncated density curves. Figure 3.32 demonstrates examples of

these density curves.

@AB>2&A4=2 b)) A3 >2&4A4>2
0.30 0.6
B3=3&y=2 B=5&y=3 4
025) —----- B =5& 1 =2 05 ------ B=T&4y=3
------- B=T&ly=2 e ;
. !
: |
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-4 -2 2 4
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Figure 3.32: Probability density functions of members of the GLDgyk. from Class V, all with L, =0 and L, =1.

3.1 3 PARAMETER ESTIMATION

A drawback of both the GLDgs and the GLDgykp is that parameter estimation is
computationally difficult. Various estimation methodologies have been proposed in the
literature. All of them require numerical optimization techniques.

One approach is to apply an estimation method where four measures, namely a measure

of location, a measure of spread and two measures of shape, are utilized. This approach
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includes method of moments estimation (Ramberg et al., 1979; Cooley, 1991; Dudewicz &
Karian, 1996; Karian et al., 1996), percentile-based methods (Mykytka & Ramberg, 1979;
Cooley, 1991; Dudewicz & Karian, 1999; Karian & Dudewicz, 1999; Haritha et al., 2008),
the use of shape functionals (King, 1999; King & MacGillivray, 2007) and method of L-
moments estimation (Mohan, 1994; Karian & Dudewicz, 2003; Asquith, 2007; Karvanen &
Nuutinen 2008).

With all the above-mentioned estimation techniques, the four chosen population measures
are equated to the corresponding sample statistics, resulting in four equations with four
unknowns which must be solved simultaneously. Since no closed-form expressions exist for

the shape parameter estimators of either the GLDggs or the GLDgyk1, numerical optimization
techniques must be used. The reason is that 4, and A, jointly account for the skewness and

the kurtosis of the GLD, irrespective of the shape measures used. Another complication with
some of the above-mentioned methods is that the corresponding population measures are not

defined for all parameter values. In particular, as indicated in Figures 3.2 and 3.4, method of

moments estimation is only applicable for 4; >—% and 4, >—%, while method of L-

moments estimation requires that 4; >—1 and A4, > —1.

Alternative approaches for parameter estimation for the GLD include a “least-squares”
method by Oztiirk & Dale (1985), the starship method by King (1999) and King &
MacGillivray (1999), a discretized approach by Su (2005) and numerical maximum
likelihood estimation by Su (2007b). These methods also require numerical optimization
techniques. For a detailed discussion on the computational difficulties in fitting the GLD to a

data set, see Karian & Dudewicz (2007).

3.14 MONTE CARLO SIMULATION

In the 1970s, thanks to advances in computational resources, Monte Carlo simulation studies
had already become a central method in the evaluation and comparison of proposed
inferential statistical techniques. However, a major difficulty encountered in the simulation
studies was the generation of real-valued random variables from selected distributions due to
the popular inverse transformation technique not being applicable for those distributions
(such as the normal distribution) not possessing closed-form expressions for their quantile
functions. The introduction of the GLDgg in the literature, (Ramberg & Schmeiser, 1972,

1974), circumvented this difficulty, since the GLDgs possesses a simple quantile function
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given in (3.3) with a single functional form through which symmetric and asymmetric real-
valued random variables can easily be generated via the inverse transformation technique.
Hence, not surprisingly, the GLDgrs soon became the distribution of choice in the Monte
Carlo simulations of numerous studies — see for instance Hogg et al. (1975), Hogg & Randles
(1975), Broffitt et al. (1976), Randles et al. (1978), Moberg et al. (1978, 1980) and Randles
et al. (1980). The GLD, and in particular the GLDgs, remains a popular distribution for
simulation studies. The selection of the members of the GLD to be used in a simulation study

can be done in several ways.

3.14.1 DISTRIBUTIONAL SHAPE
One approach is to select members of the GLD possessing distributional shapes specifically
required for the simulation study. For instance, to assess the performance of a test for

symmetry, one would include symmetric members of the GLD with A4;=4, as well as

asymmetric members with 4, # 4, in the Monte Carlo simulation. This was for example done

by Randles et al. (1980). In order to compare their proposed triples test for symmetry with
other tests for symmetry in a simulation study, they selected six symmetric members of the

GLDgs, including the uniform distribution (4; =4, =1) and the GLDgs approximation of the
normal distribution (A;=4,=0.14), and eight asymmetric members of the GLDgs.

McWilliams (1990) used the same set of eight asymmetric members of the GLDgs along with
the GLDgs approximation of the normal distribution to compare his proposed distribution-
free test for symmetry with other distribution-free tests for symmetry in a Monte Carlo study.
It has since become common practice in the literature to use this set of nine members of the
GLDgs in Monte Carlo simulation studies related to tests for symmetry — see Belaire-Franch
& Contreras (2002), Baklizi (2003, 2007), Cheng & Balakrishnan (2004) and Thas et al.

(2005) for recent examples.

3.14.2 MEASURES OF SHAPE

Another way of choosing the members of the GLD used in a Monte Carlo study is to select
pairs of values for specific measures of skewness and kurtosis for the random variables in the
study, and then compute the parameter values of the corresponding members of the GLD to
be used in simulating these random variables. Examples of this approach include Wilcox

(2002) and O’Gorman (2006, 2008), who selected pairs of values for the skewness and
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kurtosis moment ratios, &; and @, and then computed the parameter values of the members

of the GLDgs for their Monte Carlo studies based on these values of &; and ;.

3.14.3 APPROXIMATION OF DISTRIBUTIONS

The GLD’s ability to accurately approximate many of the well-known probability
distributions can be incorporated into Monte Carlo studies. This is done by selecting specific
probability distributions and then, instead of simulating the random variables in the study
from the chosen distributions themselves, simulating the random variables using the GLD
approximations of these distributions. For instance, in the simulation study conducted by
Bautista & Gémez (2007) to examine the robustness of the Mann-Whitney U test and two
permutation tests (based respectively on the mean and the median) to the violation of equality
of variances, the authors simulated samples with random variables from the GLDgs

approximations of the beta, logistic and Laplace distributions.

3.14.4 ISOTONES

Finally, the choice of GLD members in a simulation study can be based upon a graphical
procedure proposed by Mudholkar et al. (1991). Their procedure, specifically designed for
the GLDgyk1, entails the construction of isotones, which are contours of equal p-values for
the test under consideration, using a grid of shape parameter values from the GLDgyk;.. These
isotones can be used to identify members of the GLDgyk; which provide interesting
alternatives to the null hypothesis and these members are then included in the simulation
study. For instance, Thas & Ottoy (2004) used isotones to select members of the GLDpyk.
for a Monte Carlo study in which they compared an extended version of the k-sample
Anderson—Darling test they developed with the Kruskal-Wallis test and the k-sample

Kolmogorov—Smirnov test.

3.15 APPLICATIONS

Because of its high flexibility with respect to distributional shape, the GLD has been utilized
in diverse fields of research. Apart from its use in Monte Carlo simulation studies, the most
obvious application is the fitting of the GLD to data sets. The GLD has furthermore been
incorporated into various models developed by researchers to address specific problems in
their research fields. Examples of recent applications of the GLD appearing in the literature

since 2001 are briefly listed below. Karian & Dudewicz (2000) and King (1999) can be
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consulted for applications before 2001. It is evident from the provided applications that, in
general, the GLDgg has been favored over the GLDgyky.. This can be attributed to the simpler
form of the quantile function of the GLDgg as well as the availability of tables in Karian &
Dudewicz (2000, 2010) to assist in obtaining parameter estimates (or at least starting values

for the optimization techniques) for the GLDgs.

3.15.1 ACTUARIAL SCIENCE

Balasooriya & Low (2008) used the percentile-based estimation method of Karian &
Dudewicz (1999) to fit the GLDgs to medical claim amounts, taken from a database of the
Society of Actuaries. For the complete data set considered, the authors compared the fit of the
GLDgs with the fit obtained through semiparametric transformed kernel density estimation
and found both models fitted the data well. They also used the GLDgs and transformed kernel
to model exceedances above a threshold of $200 000 and showed that, compared with the
generalized Pareto distribution, a distribution typically used to model extreme observations in

insurance claims data, these two models provided good fits to the extreme claim amounts.

3.15.2 BIOCHEMISTRY

In order to measure false discovery rates in peptide and protein identification by four tandem
mass spectrometry database search engines, Ramos-Fernandez et al. (2008) used the GLDgs
to model assignment score distributions from these search engines. The authors fitted the

GLDxgs to the score distributions using the percentile-based estimation method of Karian &

Dudewicz (1999).

3.15.3 BUSINESS, ECONOMICS AND FINANCE
Corrado (2001) considered the use of the GLDgg in security pricing. Whereas the popular
Black-Scholes methodology assumes a log-normal distribution for future security prices, the
author derived pricing expressions for European call and put options based on the GLDgs.
Several authors have considered the modeling of income data using the GLD. In order to
fit the GLDgs to a grouped income data set, Tarsitano (2004) proposed and used an extension
of the “least-squares” method of Oztiirk & Dale (1985). Pacdkovd & Sipkova (2007) modeled
income data from the Slovak Republic with the GLDgs. They considered various estimation
methods, including method of moments estimation and the percentile-based method of Karian
& Dudewicz (1999). Haritha et al. (2008) used their proposed percentile-based method to fit
the GLDgmkr to an income data set taken from Arnold (1983).
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3.15.4 COMPUTER SCIENCE

Au-Yeung et al. (2004) used the GLDgykr with method of moments estimation to
approximate response times from a number of Markov and semi-Markov models in computer
science. For each model considered, they compared the density and distribution functions of
the approximation provided by the fitted GLDgvki with the theoretical density and
distribution functions computed with an exact Laplace transform-based method. Based upon
calculation time for computing the density and distribution functions, the GLDgykL
outperformed the exact Laplace transform-based method.

Gautama & van Gemund (2006) presented an analytical model of the execution time
distribution of N-ary and binary parallel compositions of stochastic tasks. In their model they
utilized the GLDgrg with method of moments estimation to approximate execution time
distributions.

Recently Lange et al. (2011) used the GLDgs to model standard cell performance of
integrated circuits. The authors showed that, using method of moments estimation, the
GLDxgs is not applicable to raw leakage power data, but it does fit both timing data and

dynamic power consumption data well.

3.15.5 EPIDEMIOLOGY

A group of researchers from the Department of Infectious Disease Epidemiology at Imperial
College in London has used a modified form of the GLDgs as part of their epidemiological
models for the transmission dynamics of bovine spongiform encephalopathy (BSE) in sheep
in Great Britain (Ferguson et al., 2002) and of the variant Creutzfeldt-Jakob disease (vCJD)
in Great Britain (Ghani et al., 2003). In these studies, to calculate the probability that an
individual develops clinical disease, the authors used the GLDgs to model the incubation

period distribution.

3.15.6 FORESTRY

The within-ring wood density distribution in clones of three coniferous species, namely
Norway spruce, Douglas fir and maritime pine, was modeled with the GLDgg by Ivkovi¢ &
Rozenberg (2004). For each of the three species, the authors then analyzed the relation
between the parameter estimates of the fitted GLDgs (as proxy of the within-ring wood

density distribution) and the growth rate expressed through ring width.

129
© University of Pretoria



&

&

ﬂ UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 3. THE GENERALIZED LAMBDA DISTRIBUTION (GLD)

@

3.15.7 INVENTORY MODELING

Lau et al. (2002) presented exact expressions for the average on-hand inventory level in the
continuous-review order-quantity reorder-point (Q, R) system with backordering. The authors
presented expressions for handling normally distributed as well as non-normal lead time
demands in this system, where the beta distribution and the GLDgs were considered for non-
normal lead time demands.

In solving a multi-item inventory model, Achary & Geetha (2007) used the GLDgs to
approximate the lead time demand distribution. The authors found the values obtained
through the GLDggs approximations to be in close agreement with those given by a quadratic
approximation procedure, with the added advantage of the GLDgs approximations being
applicable to different demand distributions through modification of the parameters of the

GLDgs.

3.15.8 QUEUING THEORY
Chou et al. (2001) proposed a better timer design for a pretimed traffic signal at an
intersection located in Touliu, Taiwan. They described the interarrival times of approaching
vehicles for the north and south bounds at the intersection with exponential distributions,
while the interarrival times for the west and east bounds were described with members of the
GLDgs using method of moments estimation.

Robinson & Chen (2003) developed a closed-form heuristic policy for scheduling
doctors’ appointments. In examining the performance of their heuristic policy, the authors
fitted the GLDgs through maximum likelihood estimation to three data sets of patient service

times.

3.15.9 SIGNAL PROCESSING

Karvanen et al. (2002) proposed adaptive score function models for maximum likelihood
independent component analysis (ICA) methods in blind signal separation, where the source
distributions in these models were based on the GLDgs and on the Pearson family of
distributions. The authors estimated the parameters of the GLDgrs with method of moments
and method of L-moments estimation. They showed that, when skewness is the dominant
property of the source distributions, the performance of their proposed ICA methods based on
the GLDgrs and on the Pearson family of distributions is significantly better than the

performance of other widely used ICA methods.
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3.15.10 STATISTICAL PROCESS CONTROL

Pal (2005) considered the computation of generalized process capability indices for a non-
normal process, where he modeled the process data with the GLDgrs using method of
moments estimation. Fournier et al. (2006) and van Staden (2006) illustrated the use of the

GLDgs in the construction of statistical process control charts for non-normal data.

3.15.11 SUPPLY CHAIN PLANNING

Poojari et al. (2008) formulated a strategic supply chain planning problem having uncertain
demand as a two-stage stochastic integer programming model. They used the GLDgykL to
approximate the uncertain demand distribution, estimating its parameters with method of

moments estimation.

3.16 CONCLUSION

Two popular types of the GLD, the Ramberg-Schmeiser Type (GLDgs) and the Freimer-
Mudholkar-Kollia-Lin Type (GLDgmk1), were discussed in this chapter. Both these types are
highly flexible with respect to distributional shape. However, the shape properties of the
GLDgs and the GLDgyiky, are extremely complex. In particular, both shape parameters jointly
explain the skewness and the kurtosis. As a result, closed-form expressions do not exist for
the shape parameter estimators of either the GLDgs or the GLDgyk1, causing parameter
estimation to be computationally difficult in that numerical optimization techniques must be
used.

In Chapter 4 a type of the GLD is developed which possesses skewness-invariant

measures of kurtosis. Consequently parameter estimation will be straightforward for this

type.

3.17 DERIVATIONS
Derivations for the GLDgvik;, which have not appeared before in the literature are presented

here. Specifically formulae for the moments of the GLDgykr, with 4;=0 and A, #0 and

with A4;#0 and 4, =0 are derived in Section 3.17.1, while expressions for the L-moments of

the GLDgyki, are derived in Section 3.17.2.
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3.17.1 MOMENTS OF GLDpvi1.

Lemma 3.17.1

In the derivation of the formulae for the moments of the GLDgykr with /?3 =0 and /14 #0,

the integral
1
W, (k) = [ (loglp1)’ (1= p)Hdp
0
must be solved for j=1,2,3,4 and k =0,1,2,3. Likewise the integral
1 .
W, (k)= [ p* (logl1 = p1) dp
0

must be solved in order to obtain formulae for the moments of the GLDgyk1. with 4; #0 and

A, =0. The methodology presented in Lemma 2.13.1 in Chapter 2 can be used to obtain

expressions for ‘P/u (j,k) and ‘Pﬂs (J,k) . In particular, since

(1
¥, (J.6) =;—[ [ pta-py™* dy}
0 (3.25)

u=0

= aau—j] (B(u + 1’k/14 + 1)) |u:0

and

1
W, (Jik) =§—( [P (1—p)deJ
0 =0 (3.26)
=2 (B(kA +Lv+D)| .
where B(a,b) is the beta function (see Section 2.14.1), it can be shown that, for i =3,4,

¥, (.00 = (=1’ j!,

while, because B(a+1,1) =B(l,a+1) =— for a > -1,

W, (1,k)=-B(l, k4 + 1)(c+ Wkl + 2)}

=_ M}H (C +y (kA + 2)] ,
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2
W, (2,k)=B(L kA + 1)[”—62 + (c +y (kA + 2)) — Ok, + 2)}

2
= o [% + (C +y (kA + 2)) — D (kA + 2)}
and

¥, (3,k)=-B(Lk4 + 1)(3(”—62—1//(1>(k/1,~ + Z)J(C +y (kA + 2)}
3
+ (c +y (kA + 2)] +2£ 3+ P (kA + 2)}
= ‘ﬁ({”—;—wm(k& + 2)}(C+w(k& + 2)}

3
+ {c +y(kA + 2)J +203) + P (kA + 2)} ,

where C is Euler’s constant, ¥(a) is the psi function, " (a) is the /™ derivative of the psi
function and {(a) is Riemann’s zeta function — see again Section 2.14.1. Note that the
integrals in (3.25) and (3.26) only converge if (k4 +1)>0, that is, if 4, > —% for i=3,4.

Theorem 3.17.1

Let X be a real-valued random variable whose distribution is the FMKL Type of the GLD,
denoted X ~GLDyy (4,4, 4 4,), with 4 the location parameter, A, #0 the scale
parameter and A, and A, the shape parameters. Assume that only one of the shape

parameters is zero. The mean, variance, and skewness and kurtosis moment ratios of X are

given by (3.8) to (3.11), where, if 4,=0 and 4, > -7,
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A _
SR r=1,
2(2/12+/1§—/14—1) 2(C+y(A4+2)) =2
Ay (A +D(2 2, +1) Ay A+ r=2,
_3(12/13+10/13—4ﬂi—ﬂﬁ+4/14+1) 6(C+y (A, +2))

A3 (A +1)(2 2, +1)(3 A4 +1) A3 (Ay+1)
z? 2 1
3 - (Crp (A +2)) =D (4, +2)
3(C+y (244 +2)) 6
- - r=3
A2 (22,+1) Ay (A4 +1) ’ ’
M = 4(144/13+156/12—18/12—24/13+7/13—11/13—7,14—1)+12(c+y/(,14+2))
r A (A +1)(2 2, +1)(3 Ay +1)(4 4, +1) A (Ay+1)
=’ 2 1
12| =+ (C+y (A +2)) -V (A, +2)
_ 12(C+y(244+2)) " 4(C+y(3a+2) 6
2324+ A3 (BA,+1) A2 (Ay+1)
6 ”—2+(C+ 22,+2))2 -y (24, +2
. Y(Q2A4+2))" =y (244 +2)
+ 2
224+
2
4[3[”6—y/(”(14+2)J(C+y/(ﬂ4+2))+(c+y/(/14+2))3+2§(3)+y/(2>(/14+2)]
+ Ty (g 1) r=4,
whereas, if A, >—% and A, =0, then
A —
A+l r=1,
2(2/1§+/1§—/13—1) + 2(C+y(A3+2)) )
Ay (A +1)(2 A5 +1) A(L+D) -
3(12/1§+101§—4/1§—2§ +4/13+1) _ 6(C+p(45+2))
A (A +1)(2 0 +1)(34; +1) A3 (A;+1)
z? 2_, (0
3 T+ (CHp(43+2))° —pP (4, +2)
" 3(C+y(245+2)) + 6 F=3
2220, +1) A3 (A3 +1) ’ o
3 3
M = 4(144/1}+1562§—182§—24/1§+72§—1u§—713—1)+12(c+y/(/13+2))
' B (A +1)(22+D)(325 +1)(4 Ay +1) A (A3 +1)
12 ”—2+(c+yx(/1 +2)) -V (1;+2)
_12(CHy(245+2) | 4lCryBh+) L 6 ? ?
B2+ BBA+1) A (A+1)
6 ”—2+(C+ 22,+2)) =D (22,42
6 Y(2A4+2)) -y (243+2)
+ 2
A Q24+
2

4[3[”6—y/“>(/13+2)J(c+y/(13+2))+(c+y/(/13+2))3+2§(3)+y/(2>(/13+2)j

+ pRET r=4.
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Proof
Assume, without loss of generality, that 4 =0 and 4, =1 so that X ~GLDgy, (0,1, 4, 4,).

If ;=0and 4, > —%, then, for example,

1

RTINS
M, =] (IOg[p]—“’;—ll) dp
0

1
=L (1 —4(1=p)y* +6(1- p)*" =41 p)* +(1- p)** ]dp
“0

+
N

+
)
Sl = O =~ O ) —

4-12(1- py™ +12(1- p)*™ —4(1 - p)ﬂlog[p]]dp

6—12(1- p)™ +6(1- p)wj(log[p]y]dp

+
>

1
4-4(1- p)ﬂ4j(log[p])3jdp + [ (togl p1)'dp
0

_ 4 6 4 1
_,1_13(1_ Qg+l + 2,41 32,41 + 4/14+1j
+-L 4‘1’14 (1,0) - 12‘1’14 (I,H+ 12‘1’/14 (1,2)— 4‘1’/14 (1, 3)]

6, (2,00~ 12'¥, (2,)+6¥, (2, 2))

4L 4%, (3,0)-4%,, (3, 1)] +¥),(4,0),

where the restriction A4, > —% is needed for convergence of the integrals. Likewise it can be

shown that

>

[1—ﬁj+\%(1, 0),

M, :L(l_ﬁ+ﬁj+i(zwi4 (1,0)-2%, (1, 1)j+%4 (2,0)

and

_ 1 3 3 1 1
M= _4(1 BTy R 3ﬂ4+1j +,1_3(31P/14 (1,0)— 6%, (1.H)+3%, d, 2)j

+ i(ﬂ’@ (2,0)-3¥), (2, 1)] +¥,,(3,0).
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The final expressions for M, to M, are obtained by substituting the expressions for
W, (J,k) in Lemma 3.17.1 and simplifying. Expressions for M, to M, when A >—% and

A, =0 are obtained in a similar manner.

3.17.2 L-MOMENTS OF GLDgyk1
Theorem 3.17.2

Suppose X is a real-valued random variable whose distribution is the FMKL Type of the
GLD, denoted X ~GLDpyyi(4» Ays A, 4,), where A, is the location parameter, A, #0 is the

scale parameter and A; and A, are the shape parameters. If 4, >—1 and 4, >-1, the L-

location and L-scale of X are given by (3.16) and (3.17), while the " order L-moment for

r>2 is given by (3.18).

Proof

To simplify the derivation of the L-moments of the GLDgvky, it is convenient to rewrite its

quantile function, given in (3.4), as
TS T N R G
O(p)=4 ﬂa(ﬂg @J*@(z@ A j (3.27)
Then, since PO* (p) =1 as indicated in (2.89) in Section 2.14.2, the L-location is
1
L =[0(p)dp
0
1 1
— A 2
—A—i(t—ﬂ—{l]ﬁ[l—g{p dp—- { (1-p) 4dp] (3.28)

which can be simplified to obtain the expression given in (3.16). Note that the integrals in

(3.28) only converge if 4;>-1 and 4, >-1.

Substituting (3.27) into (2.23) from Section 2.5 in Chapter 2 and using (2.93) and (2.94)

from Section 2.14.2 in Chapter 2, the 7 order L-moment for r>1 can be written as
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1
L, =[Q(p)P_ (p)dp

0
* 1 *
P,_(p)dp -7 f (1-p)™ Pr_l(p)dpJ

0
1

bl A

1
gis
1 * lr—ll Y *
=+ = [pPPL(p)dp - == p) 4P,_1<1—p>dpJ
O 0
1
I

1
P (p)dp+5- j p* P,:(p)dpJ

:i Z_:{( 1yt l(r l)(r+k j.[ zg+kdpJ
&rl (_l)r—k—l r—1 r+k—1j‘ l4+kd
‘ ‘ p P
k=0 0
r=1 ,
= i];)((—l)r_k_l(r ; 1J(r +l,§ ) 1)( /13(/131+k+1) + /14((/1;2“1)}} ’

provided that 4, >—1 and A, >—1 in order for the integrals to converge. Now, for example, if

+

r=4, then, for i=3,4,

3
z 3 k+3Y) (- -1 4 12 30 L 2

Nk NG+ D) ) ) T T AR T A A+ A (A+3) T A (i
k=0

_ (A4i-D(4-2)
T (A D424 +3)(A+4)

In general it can be shown that for i =3, 4,

1 _
A AD(412)° r=2,
|
r+k-1) (p—*! _ =2
Z(( )( )(/1,.(/1,.+k+1>D_ [T4-k)
= R )
[Tx+0
k=1

from which the expressions for the L-scale in (3.17) and the ™ order L-moment for r>2 in
(3.18) are obtained.
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4. A GLD TYPE WITH SKEWNESS-INVARIANT MEASURES
OF KURTOSIS

4.1 INTRODUCTION

This chapter introduces a new type of the generalized lambda distribution (GLD) with
separate skewness and kurtosis parameters and a simple relationship between its parameters
and L-moments. Consequently closed-form expressions are available for the method of L-
moments estimators of this proposed type, as well as for the standard errors of these
estimators.

The new type is specified in terms of its quantile function, given in Definition 4.2.1 in
Section 4.2. Its quantile function is constructed by applying the methodology of Proposition
2.8.1 from Chapter 2. With this methodology, the quantile function of a generalized quantile-
based distribution is obtained by taking the weighted sum of the quantile function of an
asymmetric distribution and the quantile function of the reflection of this asymmetric
distribution.

The quantile function of any asymmetric distribution on bounded or half-infinite support
can be used as the basic building block. In this chapter the quantile function of the
generalized Pareto distribution (GPD) is used as the basic building block. The resulting new
type of the GLD is therefore called the GPD Type of the GLD and denoted by GLDgpp.

Similar to the GLDgrs and GLDgmkr, the GLDgpp is highly flexible with respect to
distributional shape, able to attain uniform, unimodal, U-shaped, monotone increasing and
monotone decreasing (including J-shaped) as well as truncated density curves, with infinite,
half-infinite or bounded support. Based on the distributional shapes and the support
achievable by the GLDgpp, its parameter space is divided in four distinct classes, presented in
Section 4.3 and explored in detail in Section 4.4.

A comprehensive analysis of the characterization of the GLDgpp through its L-moments
is presented in Section 4.6, specifically with respect to its coverage of the L-skewness and L-

kurtosis ratios (75 and 7, ). The coverage of the (2'3, 2'4) space by the GLDgpp is equivalent

138

© University of Pretoria



e

UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
Que# YUNIBESITHI YA PRETORIA

CHAPTER 4. A GLD TYPE WITH SKEWNESS-INVARIANT MEASURES OF KURTOSIS

to the coverage by the GLDgrs and GLDgviki. However, the relation between the shape
parameters and the L-skewness and L-kurtosis ratios of the GLDgpp is noticeably simpler
compared to the corresponding relations for the GLDggs and the GLDgyky.. In particular the L-
kurtosis ratio of the GLDgpp is a skewness-invariant measure of kurtosis.

The main benefit arising from the skewness-invariance of the L-kurtosis ratio is the
existence of closed-form expressions for the method of L-moments estimators of the
parameters of the GLDgpp. An estimation algorithm for computing the method of L-moments
estimates is outlined in Section 4.9. Closed-form expressions are furthermore also available
for the elements of the covariance matrix of the method of L-moments estimators and thus for
these estimators’ asymptotic standard errors. Although these expressions, derived in Section
4.13.3, are extremely complex, it should be remembered that no such expressions are
available for either the GLDgrs and GLDgyki..

Probability distributions are typically characterized by their conventional moments.
Formulae for the mean, variance, skewness moment ratio and kurtosis moment ratio of the
GLDgpp are therefore presented in Section 4.5, with the derivation thereof performed in
Section 4.13.1. However, due to the complex structure of these moments’ formulae for the
GLDgpp, their use in description, estimation and inference is unappealing.

Akin to the L-kurtosis ratio, the kurtosis functionals of the GLDgpp are also skewness-
invariant. Expressions for these functionals are given in Section 4.7 along with expressions
for the median, spread function and skewness functionals of the GLDgpp. The main
advantage of these quantile-based measures compared to the moments and L-moments is that
they exist for all valid parameter values of the GLDgpp. The relation between the shape
parameters of the GLDgpp and its skewness, kurtosis, and tail behavior is explored in Section
4.8. Whereas the two shape parameters of the GLDgrs and GLDgyk1 jointly account for these
GLD Types’ skewness and kurtosis, the skewness-invariance of the L-kurtosis ratio and
kurtosis functionals of the GLDgpp allows one to describe the kurtosis of the GLDgpp with
one of its shape parameters, while the second shape parameter controls the level of skewness.

In Sections 4.10 and 4.11 the fitting of the GLDgpp to data sets and the approximation of
probability distributions by the GLDgpp, using method of L-moments estimation, are
illustrated and described. Conclusions are given in Section 4.12, before Chapter 4 ends with

the derivations in Section 4.13.
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4.2 GENESIS AND SPECIAL CASES

The quantile function of the generalized Pareto distribution (GPD) is used as the basic
building block in the derivation of the alternative type of the GLD. The GPD was introduced
by Pickands (1975) and is a cornerstone distribution in extreme value modeling — see for
instance Hosking & Wallis (1987), Coles (2001) and Castillo et al. (2005). The quantile
function of the standard GPD is given by

—%[(1—;9)1—1} L A#0,

Qv(p)= 4.1

—In[1- p] ,A=0,
where A is the shape parameter. The limiting case, 4 =0 in (4.1), obtained by L’Hopital’s
rule (de I’Hopital, 1696), is the quantile function of the standard exponential distribution.
Note furthermore that setting A =1 in (4.1) gives the quantile function of the standard

uniform distribution with support [0, 1]. In general the support of the standard GPD is [0, o)

if 1 <0 and [O, /1_1] if A >0. Thus, depending on the value of A, the standard GPD has

half-infinite or bounded support.
Applying the reflection rule, presented in Section 2.3.2, gives the quantile function of the

standard reflected GPD,

l(p/l—l) JA#0,
0y(p)=1" (4.2)
In[p] ,A=0,

where the limiting case, 4 = 0, again obtained by L’Hopital’s rule, is the quantile function of
the standard reflected exponential distribution. The probability density functions of the
standard GPD and the standard reflected GPD are shown in Figure 4.1 for various values of
A. Tt can be seen in Figure 4.1 that the standard reflected GPD is the reflection of the
standard GPD about the line x=0.

In Example 2.3.3 in Chapter 2 it was shown that the sum of the quantile functions of the
standard exponential and standard reflected exponential distributions is the quantile function
of the standard logistic distribution, given in (2.12). Adding the quantile functions of the
standard GPD and standard reflected GPD in (4.1) and (4.2) gives

%@ﬁ—a—pﬂ} A#0,

Qv(p) = (4.3)

log[%} , 1=0,
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the quantile function of the standard form of Tukey’s lambda distribution, given in (3.1).

(a) Standard GPD (b) Standard reflected GPD

Figure 4.1: Probability density functions of the standard GPD and the standard reflected GPD for various values of A . The line types

indicated in graph (a) also apply to graph (b).

As explained in Section 2.3.3 and shown in (2.11), the sum of the quantile function of an
asymmetric distribution on bounded or half-infinite support and the quantile function of the
reflection of this distribution is the quantile function of a symmetric distribution. It was
furthermore explained in Section 2.3.4 that skewness can be introduced using the
transformation in (2.13), where the weighted sum of the quantile function of an asymmetric
distribution on bounded or half-infinite support and the quantile function of the reflection of
this distribution is taken, with 0 < 6 <1 the weight parameter. In Definition 4.2.1 below a
type of the GLD, the GLDgpp, is defined whose quantile function is given by the weighted
sum of the quantile functions of the standard GPD and standard reflected GPD.

Definition 4.2.1

A real-valued random variable X is said to have the GPD Type of the GLD, denoted
X ~GLDgpp (@, B, 0, A), if its quantile function is given by

a+ﬁ((1—5)(#)—5(“‘+ﬁ‘1n, A0,
Q(p)= (4.4)
04+/3((1—5)10g[p]—510g[1—p]], A=0,

where « is a location parameter, >0 is a scale parameter and 0< <1 and A are shape

parameters.
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In (4.4) the limiting case, A =0, is the quantile function of the skew logistic distribution

(SLD), considered in Chapter 2. Akin to the SLD, the GLDgpp is symmetric for & :% and

asymmetric for & ;t%. The shape properties of the GLDgpp, including its skewness

properties, will be discussed in more detail in Section 4.8.

The GLDgpp contains various other well-known distributions as special cases, listed in
Table 4.1. It follows from the quantile function of the GLDgpp in (4.4) that the GPD and the
reflected GPD are respectively obtained for d =1 and for 6 = 0. From the intermediate rule,
presented in Section 2.3.4 of Chapter 2, we have that the quantile function of the GLDgpp is

bounded by the quantile functions of these two distributions.

Table 4.1: Shape parameter values for distributions contained by the GLDgpp.
Distribution Shape parameter values
Exponential 0=1,1=0
Reflected exponential 8=0,1=0
Generalized Pareto O=1,—o< A<
Reflected generalized Pareto J=0,—c0< A<
Logistic o= %, A=0
Skew logistic 0<0<1,4=0
Tukey’s lambda §=%,—oo</1<oo
Uniform 0<6<1,A=1 and 5:%,1:2

As with the GLDgrs and the GLDpgyki, the uniform distribution is obtained from the
GLDgpp for more than one set of values of the shape parameters. Firstly, when A =1, the

uniform distribution is found for any 0<d<1. Secondly, when A =2, the uniform

distribution is attained only for & = 1.

Similar to the GLDgrs and the GLDgykr, no closed-form expressions exists for the
cumulative distribution function and the probability density function of the GLDgpp, except
of course for the special cases of the GLDgpp listed in Table 4.1 (excluding Tukey’s lambda
distribution and the SLD). The quantile density function of the GLDgpp is

a(p) =ﬁ((l—5>pﬂ‘1+5<1—p>*‘lj, (4.5)

and its density quantile function is
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fo(p)= ! :
ﬁ[(l ~&)p* T+~ p)“j

(4.6)

4.3 PARAMETER SPACE AND SUPPORT

In Section 3.5 it was shown how the parameter spaces of the GLDgs and GLDgyk are
divided into regions or classes. Likewise the parameter space of the GLDgpp is divided into
four classes based on the distributional shapes and the support attainable in each class. As
indicated in Table 4.2, this division is controlled by the values of the shape parameter 4. In

Section 4.4 the characteristics of the GLDgpp are described for each class.

Table 4.2: Parameter space and support of the GLDgpp in terms of Classes I, II, III and IV.
Class Shape parameter values Support
Class I 0=0,4<0 (—o0, ]
0<6<1, A0 (—o0, 00)
0=1,1<0 D)
Class II 0<5<1,0<A<1 [a_%,miﬂ
Class II 0<5<11<A<2 [a_%,mﬁ_ﬂ
Class IV 0<5<1,A>2 [a_%,mﬁ_ﬂ

4.4 CLASSES OF THE GLD¢pp

The probability density functions of some examples of members of the GLDgpp are

illustrated in Figures 4.2 to 4.5 for the four classes of the GLDgpp. In each given plot a

symmetric member of the GLDgpp with ¢ =% is shown along with asymmetric members of

the GLDgpp for two selected values of o >%. For ¢ <%, the asymmetric GLDgpp is

reflected about the line x=a (see for instance again Figure 2.7(d) in Chapter 2 for the

density curves of the standard SLD with A =0, where the reflection is about the line

x=a=0). Hence the plots for § <1 are omitted. To enable comparisons for different shape

parameter values, the L-location and L-scale are set to zero and unity (L, =0 and L, =1) for

all plots in Figures 4.2 to 4.5. The expressions for the L-moments, including the L-location

and L-scale, will be given in Section 4.6.
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4.4.1 CLASSI
Figure 4.2 illustrates the distributional shapes attained by the GLDgpp in Class [ with 4 <0.
These shapes correspond to the shapes attained in Region 4 of the GLDgs and in Region 4 of

Class I of the GLDgvx1. with 23 <0 and A4,<0. The SLD with 4 =0 is a special case in
Class 1 of the GLDgpp.

When 0<d<1, Class I contains unimodal, leptokurtic members of the GLDgpp with
infinite support. For 6 =0 and Jd =1, the density curve of the GLDgpp is J-shaped with half-
infinite support. Class I is the only class of the GLDgpp producing members with infinite and

half-infinite support.

(a)4=-05 (b) A =-0.25

0.6 1 0.6

Figure 4.2: Probability density functions of members of the GLDgpp from Class I, all with L, =0 and L, =1. The line types indicated

in graph (a) also apply to graphs (b) and (c).

4.4.2 CLASSII
Platykurtic, mesokurtic and leptokurtic members of the GLDgpp with bounded support are
found in Class II with 0<A<1. Along with Class I, Class II provides the most useful

distributional shapes for the GLDgpp, examples of which are shown in Figure 4.3. The
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density curve in Class II is unimodal for 0 < ¢ <1, monotone increasing for ¢ =0, while it is
monotone decreasing for 6 =1. As A T1, the GLDgpp tends to the uniform distribution.

When 0< A< % and 0<d<1, the GLDgpp in Class II yields density curve shapes
equivalent to those in Region 3(a) of the GLDgrs and in Region 3 of Class I of the GLDgmkL
with 0<4; <1 and 0< 4, <. For $<A<1 and 0<J<1, the shapes produced in Class II
of the GLDgpp resemble the shapes produced in Region 3(a) of the GLDgs and in Region 3 of
Class I of GLDgyke with 1 < 4; <1 and $< 4, <1.

(a) 1=0.25 (b)1=0.5
0.5 0.30

fx)

f(x)

X

Figure 4.3: Probability density functions of members of the GLDgpp from Class II, all with L, =0 and L, =1. The line types

indicated in graph (a) also apply to graphs (b) and (c).

4.4.3 CrassIII

Examples of members of the GLDgpp from Class III with bounded support are depicted in
Figure 4.4. In terms of A, Class III of the GLDgpp covers the values 1< A <2 . The uniform
distribution is obtained for A =1, irrespective of the value of 6. When 1< A <2, the density

curve of the GLDgpp is U-shaped for 0< ¢ <1 and J-shaped for 6 =0 and 6=1.If 1 =2,
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the density curve is J-shaped for all 6 # < and uniform for 6 =1 . The U-shaped density

curves from Class III of the GLDgpp are similar to the U-shaped density curves from Region

3(c) of the GLDgs and from Class III of the GLDgyvk1 .

ad=1 (b)1=1.5
0.30 0.6
=050
025 ------ 5 =075 05
------- 5 =1.00
0.20 0.4
3015 203
0.10 0.2
0.05 0.1
0.00 0.0
-4 -2 0 2 4 -4 -2 0 2 4
X X
(c)A1=2
0.6 T
1
i
0.5 !
1
i
0.4 |
h
—_ N 7/
2 oy
S~ 0.3 / ’
7/
7’
K
0.2 “
0.1 TSI -7
0.0
-4 -2 0 2 4
X

Figure 4.4: Probability density functions of members of the GLDgpp from Class III, all with L, =0 and L, =1. The line types
indicated in graph (a) also apply to graphs (b) and (c). For A=1 in graph (a), the GLDgpp reduces to the uniform
distribution, irrespective of the value of J , and hence the three density curves for the different values of & plot on top of

each other.

4.4.4 CLASSIV

In Class IV with A > 2, the members of the GLDgpp are truncated with bounded support and
correspond to the truncated members of the GLDgs from Region 3(h) and of the GLDgvkL
from Class V. The density curve of the GLDgpp in Class IV is unimodal for 0< ¢ <1 and J-
shaped for 6 =0 and 6 =1. Examples are presented in Figure 4.5.
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0.6

05 —-=-=----

0.4

0.3

fx)

0.2

0.1

0.0
-6

0.6

0.5

0.4

f(x)

0.3

0.2

0.1

0.0

Figure 4.5: Probability density functions of members of the GLDgpp from Class IV, all with L, =0 and L, =1. The line types

indicated in graph (a) also apply to graphs (b) and (c).

4.5 MOMENTS
The ™ order moment of the GLDgpp only exists if 4> —% . In particular, if A>—1, then the

mean, variance, skewness moment ratio and kurtosis moment ratio of the GLDgpp are

H=a-pg, 4.7

’j—j(@ —;/ﬁf—Za)B(/1+l,/1+l)J L A%0,
o’ = (4.8)

ﬁz(@%”—jwj L A=0,
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%(@ +2¢7 - 3¢1[¢2 - n{ZB(ﬂH, A+1)

= ~(A+DBQA+1, A+ 1)}]] A#0,  (4.9)
ﬁ—j(zg(w(4—3§(3)j - 1D L A=0,

s [¢4 ~ 3¢ + 6¢12(¢2 —2wB(A+1, A+ 1)}

(o)*

and

— 4¢1(¢3 —3wg(A+DBRA+1, A+ I)J
_“{4@(2/1+1)B(3/1+1,/1+1) (4.10)

—6a)B(2/1+1,2/1+1)D ,A#0,

T

where B(a,b) and {(a) are the beta and Riemann’s zeta functions (see Section 2.14.1 in

Chapter 2 for details), @=J(1-J) and ¢, = W for k=1,2,3,4. The formulae for

A =0 in (4.7) to (4.10), that is, for the SLD, were derived in Section 2.13.1 in Chapter 2. The
formulae for 4 # 0 are derived in Section 4.13.1 of this chapter.

Since the " order moment of the GLDgpp exists if A > —%, it follows that the mean, the
variance and the skewness and kurtosis moment ratios of the GLDgpp exist for all values of
A in Classes II, IIT and IV. But in Class I these first four moments only exist when 4> —% .

Similar to the formulae for the conventional moments of the GLDgrs and GLDgyk1, given
in Section 3.6, the formulae in (4.7) to (4.10) for the GLDgpp are complex. Also, both &; and
o, depend on the two shape parameters. It is therefore not ideal to characterize the GLDgpp

with conventional moments. As will be seen in Sections 4.6 and 4.7, formulae for L-moments
and for quantile-based measures of location, spread and shape of the GLDgpp are

substantially simpler.
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4.6 L-MOMENTS

The expressions for the L-moments of the GLDgpp are determined using Proposition 2.8.1 in
Chapter 2. Suppose X has a standard GPD. If 4 > -1, then, as shown by Hosking (1986), the

L-location, L-scale, L-skewness ratio and L-kurtosis ratio of the standard GPD are

_ 1
Ly =77
_ 1
LX;Z T (A+D(A+2) °
_1-2
Tx:3= A+3

and

r _ (A-D(A-2)
X34 7 (A+3)(A+4) °

while, in general, the ™ order L-moment of the standard GPD is given by

r=2
[T-6

_ r(1+A)I(r-1-4) — (1N k=l

Ly, = CA-)T(r+1+4) =D 5——, r>1,
[Ta+k0
k=1
and its 7" order L-moment ratio is

r=2
[Ta-o

TX. _ TG+A)(r-1-1) — (_l)r kfl ,

= r>2.
i1 T TA=-A)T(r+144)
(A+k)
g

Using (2.52), (2.53) and (2.54) in Proposition 2.8.1(a), the GLDgpp then has

L=a+2250 (4.11)
r=2
[Tk
L =BQR5-1)™P =) E— r>1, (4.12)
[Ta+6)
k=1
and
r=2
[Ta-6
T, =25 -1 (=) E— | r>2. (4.13)
[Ta+k)
k=3

The L-location of the GLDgpp in (4.11) is of course the mean, 4, given in (4.7). The L-scale,

L-skewness ratio and L-kurtosis ratio of the GLDgpp are

__ s

L =wnas (4.14)
20-1)(1-1

R (4.15)

and
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T = (4.16)

The expressions for the first four L-moments of the GLDgpp in (4.11), (4.14), (4.15) and
(4.16) are considerably simpler than the expressions for the first four conventional moments
of the GLDgpp in (4.7) to (4.10). Furthermore, there are simple general expressions for the A
order L-moment and for the " order L-moment ratio of the GLDgpp, given in (4.12) and
(4.13). No simple general expression exists for the M order moment of the GLDgpp. Hence it
1s more convenient to characterize the GLDgpp with its L-moments than with its conventional
moments.

Comparing the expressions of 7; and 7, in (4.15) and (4.16) with those of the GLDgs in
(3.14) and (3.15) and the GLDguxy in (3.19) and (3.20), a major advantage of the GLDgpp
over the GLDgs and GLDpykr emerges. With the GLDgs and the GLDgviki, both shape
parameters, /13 and A,, simultaneously control the L-skewness ratio and the L-kurtosis ratio.
With the GLDgpp, only A influences the L-kurtosis ratio, while the L-skewness ratio depends
on both 6 and A . In effect, as is the case with the SLD (that is, the GLDgpp with 4 =0), the
L-kurtosis ratio of the GLDgpp is skewness-invariant. As will become evident in Section 4.9,
this significantly simplifies parameter estimation for the GLDgpp using L-moments.

As with the GPD, the " order L-moment and the " order L-moment ratio of the GLDgpp

exist if 4 > —1. Thus, all the L-moments exist for Classes II, III and IV of the GLDgpp, while

in Class I all the L-moments exist when A >—1. The (2'3, 2'4) space covered by the four

classes of the GLDgpp is shown in the L-moment ratio diagrams in Figure 4.6. In Figure

4.6(a) the combined coverage of the (‘L'3, ‘L'4) space by Classes I and II of the GLDgpp (Which
are the two classes with the most useful distributional shapes) is equivalent to the combined
coverage of the (‘L'3, ‘L'4) space by Regions 3(a) and 4 of the GLDgs in Figure 3.8(a) and the
coverage of the (‘L'3, ‘L'4) space by Class I of the GLDgyk in Figure 3.8(b).

In Section 4.13.2 it is proved that the minimum value of 7z, for the GLDgpp is given by

min _ 12-5J6 _
Ty e 0.0102, 4.17)

obtained for

1 =/6-1=1.4495. (4.18)
As indicated by Karvanen & Nuutinen (2008), this is also the minimum value of 7, for the

symmetric GLDgs, that is, for Tukey’s lambda distribution. But, because the L-kurtosis ratio

of the GLDgpp is skewness-invariant, the minimum value of 7, in (4.17) is obtained for the
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symmetric and the asymmetric GLDgpp, in effect, for any value of ¢ . In Figure 4.7 the L-

kurtosis ratio of the GLDgpp is plotted as a function of 4. Karvanen & Nuutinen (2008) gave

a similar plot for the symmetric GLDgs. Because of the skewness-invariance of 7, for the

GLDgpp, the plot in Figure 4.7 is applicable to both the symmetric and asymmetric GLDgpp.

(a) Classes I and 11

(b) Class II with 74 < 0.025 and Class 111

—— — Generalized Pareto
0.8

\_ e o o o o oSkew logistic

\
\
a \

0.6

\

Boundary for all distributions

-— Reflected generalized Pareto

/ T 0.00

/
/
/

0.01

0.2 .
“\...i..”/ -0.01
0.0 \v/
U
-0.02
-0.2
-1.0 -0.5 0.0 0.5 1.0 0.2 -0.1 0.0 0.1 0.2
73 73
(c) Class IV (d) Class IV with 74 < 0.025 and Class 111
0.02
0.8
0.6 0.01

0.4

74
/

0.00 \\ v 7

0.2 4
\ / -0.01
0.0 H—/
-0.02
-0.2
-1.0 -0.5 0.0 0.5 1.0 -0.2 -0.1 0.0 0.1 0.2
73 73
Figure 4.6: L-moment ratio diagrams for Classes I, II, III and IV of the GLDgpp. The line types indicated in diagram (a) also apply to

the other diagrams. The uniform, logistic, exponential and reflected exponential distributions are indicated by U, L, E and

RE. The red-shaded, orange-shaded and blue-shaded areas are the (13, 74) spaces attained by Classes I, II and IV. The

small yellow-shaded area in diagram (b) and the small green-shaded area in diagram (d) are the (7:3, 1'4) spaces attained by

Class III.
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We note from Figure 4.7 that there does not exist a one-to-one relation between the value

of A and the value of 7, for the GLDgpp. Therefore, as indicated in Table 4.3, the parameter

space of the GLDgpp can be divided into two broad regions, labeled Region A and Region B,

based upon the values of A and 7, assigned to each of these regions. In Region A with

—1< A< 1, the value of 7, decreases from one to 7 i as the value of A increases. The L-

moment ratio diagram for Region A of the GLDgpp is depicted in Figure 4.8(a). In Region B

with 4> A, an increase in the value of A results in an increase in the value of 7, from

min

Ty

to one. Figure 4.8(b) presents the L-moment ratio diagram for Region B.

Figure 4.7:

1.0

0.8
0.6
N
0.4
0.2
SLD
0.0
U1 5 02
-2 0 2 4 6 8 10

Plot of 74 for the GLDgpp as a function of A . The dotted line at A =-1 is the lower limit for A in order for the L-
moments to exist. Ul and U2 denote the uniform distribution with (/7., 14)2 (1,0) and (/7., 14)2 (2,0) respectively, while

SLD indicates (/1, 7, ) = (0, %) The minimum value for 7, z'j“i“ =-0.0102 , occurs at 1 =1.4495 .

Table 4.3: L-kurtosis ratio values for the GLDgpp in terms of Regions A and B and Classes I, II, IIT and IV.
Region Class Values of A4 Values of 7,
Region A Class I -1<1<0 % <ty <l
Class II 0<A<l 0<7y<t
Class III 1<A< i <7, <0
Region B Class III l<a<2 o <7, <0
Class IV A>2 O<7y <1
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(a) Region 4 (b) Region B

Boundary for all distributions
X ——— — Generalized Pareto
0.8 \

I g
\ / /

0.4

/ \ |
0.2 \ 0.2
RE\/ \\ /,/

—— - — Reflected generalized Pareto 0.8

0.4

734
—
74
/
\

0.0 y 0.0 ~_ Y ~
-0.2 -0.2
—1.0 —05 0.0 0.5 1.0 ~1.0 —05 0.0 0.5 1.0
73 73

(c) Regions A and B

o] y
1\ y
04 \\\ / /

~ /)
| &

74

-0.2

-1.0 -0.5 0.0 0.5 1.0
73
Figure 4.8: L-moment ratio diagrams for Regions A and B of the GLDgpp. The line types indicated in diagram (a) also apply to the

other diagrams. The uniform, logistic, exponential and reflected exponential distributions are indicated by U, L, E and RE.

The complete (2'3, 2'4) space covered by the GLDgpp is shown in Figure 4.8(c) and is
equivalent to the coverage of the (13, 14) space by the GLDgs (see Figure 3.6) and the GLDgs
(see Figure 3.7). In the purple-shaded area in Figure 4.8(c), the same set of values for 7; and
7, is obtained by two members of the GLDgpp possessing different pairs of values for J and

A, where the first member of the GLDgpp is from Region A and the second member is from

Region B. In effect, as illustrated by Figure 4.9, for a given set of values for 7; and 7, from
the purple-shaded area in Figure 4.8(c), two members of the GLDgpp with different

distributional shapes are attainable. Specifically, if %S 7, <1 and 0< d <1, the first member

of the GLDgpp is from Class I in Region A and hence is unimodal with infinite support, while

153

© University of Pretoria



P
si UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA

Que# YUNIBESITHI YA PRETORIA

CHAPTER 4. A GLD TYPE WITH SKEWNESS-INVARIANT MEASURES OF KURTOSIS

the second member of the GLDgpp, from Class IV in Region B, is also unimodal, but
truncated with bounded support — see Figure 4.9(a). When 0<7, <% and 0<od<1, both
members of the GLDgpp are unimodal with bounded support, where the first member of the
GLDgpp is from Class II in Region A, while the second member is again from Class IV in
Region B and thus truncated — see Figure 4.9(b). If 7" <7,<0 and 0<J<1, both

members of the GLDgpp are from Class III (the first from Region A and the second from
Region B) and consequently the density curves of both members are U-shaped with bounded

support — see Figure 4.9(c).

(a) 3=024& 74 =0.2 (b) 3=0.12 & 74 = 0.1
0.7 0.35
——— 1=-0.0895 & & = 0.8206 ——1=02290 & 5 = 0.7513
061 - 1=55895& 6 = 0.2754 0301 . A=3.8821 & 6 = 0.3567
"
0.25
020
2 z
< =
0.15
0.10
0.05
0.00
-5 0 5
X X
(¢) 73 = —0.006 & 74 = —0.005
0.35
A=1.1198 & ¢ = 0.6031
0300 . 1=1.8304 & & = 0.5175
0.25
020
e
S~
0.15
0.10
0.05
0.00
-4 -2 2 4
X
Figure 4.9: Probability density functions of members of the GLDgpp from Regions A and B possessing the same set of values for 73

and 7,. In graphs (a) and (b) the solid lines indicate members of the GLDgpp from Classes I and II in Region A
respectively, while the dashed lines indicate members of the GLDgpp from Class IV in Region B. In graph (c) the solid and

dashed lines depict members of the GLDgpp from Class III in Region A and in Region B respectively. Note that L, =0 and

L, =1 for all the members of the GLDgpp.
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4.7 QUANTILE-BASED MEASURES OF LOCATION, SPREAD AND SHAPE

Unlike the moments and L-moments of the GLDgpp, the existence of the quantile-based
measures of location, spread and shape is not restricted by the value of A. The formulae for
these quantile-based measures are obtained by substituting the quantile function of the
GLDgpp, given in (4.4), into the expressions for the median in (2.34), the spread function in
(2.35), the y-functional and the 77-functional in (2.37) and (2.38), and the ratio-of-spread
functions and the x -functional in (2.43) and (2.44), and simplifying. The formulae for the
GLDgpp are then

a—ﬁ%$2U9@4} A#0,

me =
a+ [2o-1)log2], A=0,
g@ﬂ—a—uﬁ} A#£0,
S(u) =
Blogl], A=0,
(25—1{u1+afwnﬂ—2QYJ
- , A#0,
y) = w' = (-w’
B (25—1)10g[4u(1—u)]’ 1=0.
logl;]
(25—1{u1+(r—uﬁ—wﬂ—{1—vﬁJ
- , A#0,
n(u,v) = vi-(-v?
28 — 1) log|“i=)
_( )Ogv(l—v) , ﬂ,:o’
ng:]
ut —(1-u)*
=~ 7 10,
vi—(1-v)* ”
R(u,v)= 4.19
(u,v) log[ﬁ] ( )
- 1=0,
bgkﬁ]
and
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1— M 120
ut—(1-uw)t’ ’
K(u, v) = [ o (4.20)
log v(l—u) /1 — 0
logf;~ ]

where %< v<u<1.Note that, as with the moments in (4.7) to (4.10), the formulae for 4 =0

are for the SLD, given before in Section 2.6 in Chapter 2. All the shape functionals of the
GLDgpp are location- and scale-invariant and, more importantly, the two kurtosis functionals
are skewness-invariant. The kurtosis of the GLDgpp is described in more detail in Section

4.8.2.

4.8 DISTRIBUTIONAL SHAPE

As indicated in Section 4.4, the important distributional shapes attained by the GLDgs and
GLDgvky in their Regions 3 and 4, are also attained by the GLDgpp. The main difference
between the GLDgpp and the GLDgs and GLDgyvk, is in terms of the way in which each
type’s shape characteristics, that is, skewness, kurtosis and tail behavior, are related to and

explained by their shape parameters. With the GLDgs and the GLDgyvik1, their two shape

parameters, A; and A,, jointly account for the skewness and the kurtosis (see Section

3.10.2), while for certain combinations of values of ﬂq and A, in Regions 3 and 4, each

shape parameter controls one of the two tails of the density curve (see Section 3.10.1). As
will be explained in Sections 4.8.1 and 4.8.2 below, for a given value of the shape parameter
A, the skewness of the GLDgpp is controlled by the second shape parameter, ¢ , while, when
measured by the L-kurtosis ratio or the kurtosis functionals, the kurtosis of the GLDgpp only
depends on A . The tail behavior of the density curve of the GLDgpp, discussed in Section

4.8.3, is explained by both 6 and 4.

4.8.1 SKEWNESS

As pointed out before in Section 4.2, the GLDgpp is symmetric for & = % and asymmetric for
) ;t%. In particular, for 4<1, in effect, for Classes I and II, the GLDgpp is negatively
skewed when & <4 and positively skewed when & > . Conversely, in Classes III and IV

with 4>1 the GLDgpp is positively skewed when & <1 and negatively skewed when
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o> % Recall that the GLDgpp reduces to the uniform distribution for A =1, irrespective of

the value of J . The GLDgpp at A =1 is therefore always symmetric.

4.8.2 KURTOSIS

It was seen in Sections 4.6 and 4.7 that the L-kurtosis ratio and the kurtosis functionals of the
GLDgpp are all invariant to the value of the weight parameter, J, and are thus skewness-
invariant kurtosis measures. The skewness-invariance of these kurtosis measures follows
directly from Proposition 2.8.1, since the quantile function of the GLDgpp, presented in (4.4)
in Definition 4.2.1, is of the form (2.51).

Figure 4.7 in Section 4.6 illustrated the relation between the values of A and 7, . Similar
plots can be drawn for the two kurtosis functionals of the GLDgpp for selected values of u
and v. This is done in Figure 4.10 for the ratio-of-spread functions and the x -functional for
(u,v)=(0.9,0.6) and for (u,v)=(0.9,0.75). As with the L-kurtosis ratio of the GLDgpp,

there do not exist one-to-one relations between the value of A4 and the values of R(u,v) or

x(u,v).
(a) Ratio—of—spread functions (b) x—functional
207 7
‘l '
\ v=0.75 & u = 0.90 K
V—-——=- v=0.60 & u=0.90 ’
1 I
15 \ 1
1 1
1 1
1 7
\ 7
= ' ‘ =
10 ) / g
] \ <

0.2

=2 0 2 4 6 8 10
A

Figure 4.10: Plots of the kurtosis functionals for the GLDgpp as functions of A . The line types indicated in graph (a) also apply to graph

(b). Ul and U2 denote the uniform distribution with A=1 and A=2 respectively, while SLD indicates 1=0. The

minimum kurtosis for the kurtosis functionals occur at 1* =1.4696 for ©u=0.9 and v=0.75, and at A" =1.4766 for
u=0.9 and v=0.6.

However, in Classes I and II, where A <1, a strictly inverse relation exists between the
value of A and the kurtosis of the GLDgpp, with the kurtosis increasing in these two classes
as the value of A4 decreases. This is illustrated by Figure 4.11(a) in which the spread-spread

plot for the GLDgpp is concave, indicating the greater kurtosis for 4 =—-0.5 compared to
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A=0.5. In Class IV with 4> 2, the kurtosis of the GLDgpp becomes larger as the value of
A increases. For instance, in Figure 4.11(b) the spread-spread plot for the GLDgpp is convex

with greater kurtosis for 4 =5 than for 4 =3. Thus in Classes I and II and also in Class 1V,

the GLDgpp is completely ordered by <g, the kurtosis ordering presented in Section 2.6.

@A =-05& A =05 b)AF=3&Ag=5

2.0 0.20

15 0.15
g 1.0 g 0.10
& &

0.5 0.05

0.0 0.00

0 10 20 30 40 50 60 70 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
SF(u) S (u)

Figure 4.11: Spread-spread plots for members of the GLDgpp. In plot (a) the GLDgpp with /?'F =—0.5 from Class I, which is leptokurtic,

has greater kurtosis than the GLDgpp with A; =0.5 from Class II, which is platykurtic. In plot (b) the GLDgpp with
Ag =5 has greater kurtosis than the GLDgpp with /'LF =3, where both these members of the GLDgpp are from Class IV.

For all members of the GLDgpp the value of ﬁ is set to one in their respective spread functions.

In contrast to the other three classes of the GLDgpp, the relation between the value of A
and the kurtosis of the GLDgpp is not so simple in Class III where 1< A <2. As shown in
Figures 4.7 and 4.10, the minimum kurtosis of the GLDgpp occurs in this class. But the value
of A at which the minimum kurtosis is observed is not the same for the different kurtosis

measures. As proven in Section 4.13.2, the minimum value for the L-kurtosis ratio is obtained
for 1 =1.4495 . With the kurtosis functionals, the minimum kurtosis attainable depends on

the values of u and v. Let A* denote the value of A at which the kurtosis functionals reach

their minima. Then, for example, as shown in Figure 4.10, if ©=0.9 and v=0.75, the
minimum kurtosis for the kurtosis functionals occurs at 4* =1.4696 , whereas for u =0.9 and
v =0.6 the minimum Kurtosis occurs at A" =1.4766 . Figure 4.12 shows the various values of

A" for 2<v<u<1. Predominantly the values of A" are in the interval 1.4< 4 <1.5. In

particular, when both u4 0.5 and v4 0.5, then 2 T1.5, while A* L 1.1 if both » T1 and
vT1.If uT1and v{0.5 so that (u—v)TO.S,then A 11.4427 .
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0.9

Figure 4.12: The values of A" in Class III of the GLDgpp at which the minimum kurtosis of the kurtosis functionals is obtained for

ce

~

=)

=

%<v<u<1.

4.8.3 TAIL BEHAVIOR

As was explained in Section 2.11 of Chapter 2, the tail behavior of the density curve of a
quantile-based distribution is studied through its density quantile function, f,(p), as well as
the function &(p), given in (2.71), which represents the derivative of the density curve. The

density quantile function of the GLDgpp is given in (4.6), while

(A—l)[(l—ﬁ)p“ —5(1—p)4‘2]

&(p)=-

B [(1_5)[,4—1 +5(1—p>ﬂ"J

Table 4.4 presents the tail behavior of the GLDgpp. Note that the values given for 0 =1 and
0 =0 are respectively for the GPD and the reflected GPD, while the values for 4 =0 are for
the SLD, considered before in Example 2.11.1 in Chapter 2.

The interpretation of f(p) and the values obtained when computing lim f,(p) and
p—0
lim f,(p) are straightforward for the GLDgpp, with three broad scenarios occurring based on
p—1

the value of A. Firstly, if A<1, thus for Classes I and II of the GLDgpp, the left tail of the

density curve approaches zero for 0 <1 and % for & =1, whereas the right tail of the density

curve approaches % for 0 =0 and zero for 0 >0. Consequently unimodal density curves are

obtained for the GLDgpp when A<1 and 0<d<1, while monotone increasing and
monotone decreasing density curves are obtained for 6 =0 and for d =1 respectively (see

again Sections 4.4.1 and 4.4.2). Secondly, when A =1, the density curve of the GLDgpp is

uniform at L for all values of J and hence both tails are equal to

B

L

5 Finally, in Classes III
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and IV of the GLDgpp with A >1, the left tail of the density curve tends to infinity for =0

and approaches % for 0 >0, while the right tail tends to infinity for 0 =1 and approaches

—L_— for §<1. As aresult, when 0< d <1, the density curves of the GLDgpp are U-shaped

B(1-6)

in Class III and truncated in Class IV, and when d =0 or 0 =1, the density curves of the
GLDgpp in Classes III and IV are J-shaped (see again Sections 4.4.3 and 4.4.4).

Table 4.4: The values approached by the density curve and the slope of the density curve of the GLDgpp at the end-points of the tails.
Density curve Slope of density curve

Class Shape parameter values Left tail Right tail Left tail Right tail

Class I 0=0,4<0 0 % 0 _%
0<0<1,A<0 0 0 0 0
§=1,1<0 i 0 o 0

Class II 5=0,0<A<05 0 i 0 -4
0<d<1,0<1<05 0 0 0 0
5=1,0<A<05 i 0 a 0
§=0,2=05 0 + B A
0<5<1,A=05 0 0 FoF 7
5=1,4=05 + 0 37 37
5=0,05<1<1 0 - o -5
0<0<1,05<4<1 0 0 oo —
5=1,05<2<1 v 0 A o

Class III 0<6<1,A=1 Vi i 0 0
5=0,1<1<2 w i o —%
0<o<ll<A<2 ﬁ ﬁ —oo o
0<8<1,A=2 75 Y 2 s
S=1,1<A<2 + w a w

Class IV 0=0,A>2 00 % —oo —%
0<o<,A>2 ﬁ m /;12:313 —ﬁ
S§=1,1>2 + w a o

Compared to f,(p), the interpretation of the function &(p) for the GLDgpp is more

complex, since the values obtained when computing lim &(p) and lim &(p) for the GLDgpp
p—0 p—1

© University of Pretoria
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are much more diverse than the values obtained when computing lim f(p) and lim f(p).
p—0 p—1

General results are only obtained for the special cases d=1 and 0 =0, in effect for the GPD
and the reflected GPD. When 0 =1, the slope of the left tail of the density curve always
A-1

approaches % If =0, the slope of the density curve’s right tail always approaches — Vak

Finally, it is noted from Table 4.4 that, for 0< 0 <1, the tail behavior of the GLDgpp is
consistent across the left and right tails. This is as a result of the way in which the GLDgpp is

constructed.

4.9 METHOD OF L-MOMENTS ESTIMATION

In order to fit the GLDgpp to an observed data set, the four parameters of the GLDgpp, @,
B, 6 and A, must be estimated. This can be done using an estimation method where four
measures, namely a measure of location, a measure of spread and two measures of shape, are
utilized. Now, because the skewness and kurtosis moment ratios of the GLDgpp, given in
(4.9) and (4.10), are dependent on both its shape parameters, 0 and A, closed-form
expressions are not available for method of moments estimators for ¢ and A, making this
estimation method computationally difficult and impractical.

In contrast to the kurtosis moment ratio of the GLDgpp in (4.10), the L-kurtosis ratio of
the GLDgpp in (4.16) as well as its two kurtosis functionals in (4.19) and (4.20) only depend
on one of the shape parameters, A . This suggest that, with estimation methods using either L-
moments or quantile-based measures, A can first be estimated using an expression written as
a function of the corresponding kurtosis measure (in effect, the L-kurtosis ratio or one of the

two kurtosis functionals), whereafter 6, £ and @ can be estimated sequentially.

Unfortunately it is not mathematically possible to obtain a closed-form expression for A4 as a
function of either the ratio-of-spread functions or the k -functional. But, as will be seen in the
estimation algorithm presented below, A can be expressed as a function of the L-kurtosis
ratio and consequently closed-form expressions are available for method of L-moments
estimators. Furthermore, although extremely complex, closed-form expressions are also
available for these estimators’ asymptotic standard errors. Method of L-moments estimation
is therefore the preferred estimation method for the GLDgpp. The estimation algorithm for
computing the method of L-moments estimates as well as their asymptotic standard errors is

described below:
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Step 1

Use (2.30) to (2.33) to calculate the first four sample L-moments, ¢,, ¢,, {5 and /,, and
then (2.29) to calculate the sample L-skewness and L-kurtosis ratios, f; and z,. Verify

whether the values of 7; and ¢, lie within the (1'3, z'4) space of the GLDgpp in Figure 4.8(c).

If so, proceed with Step 2. If not, the GLDgpp cannot be fitted to the data.

Step 2
Since the L-kurtosis ratio only depends on A, this shape parameter is estimated first.
Inverting (4.16) leads to two possible estimators for A,

1= 3471, 13 +981, +1
e A

2(1-1,)

and

1 - 3471, 4+ 13 4981, +1
B 2(1-4) >

where —1< /iA <A is from Region A and /iB > 1 is from Region B. Next the other shape

parameter, J , is estimated with

G =
5, = A (4.21)

A =1,

N |—
-

and
S _1[(1_58 (j'B +3)
9 =2 (1 Ag-1 )’
with these expressions derived from (4.15). Finally the scale and location parameters, S and

a , are estimated sequentially using

B.=0,(4,+1)(4,+2), n=aB (4.22)
and

oo— _ ﬁh (25/1 _1) —

&,=0,-2200 h=AB, (4.23)

derived from (4.14) and (4.11) respectively.
If /iA =0 so that the GLDgpp reduces to the SLD, the estimators for the other three

parameters in (4.21), (4.22) and (4.23) simplifies to the estimators given in (2.64), (2.65) and
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(2.66). Also, when /iA =1, the uniform distribution is obtained and, because the uniform

distribution is symmetric, we can set §, = %

Let T= '\/tj +98t, +1. Then, in terms of /,, ¢,, /5 and /¢,, the method of L-moments
estimators from Region A are

z{zei—se% (14T)+2,0, (51—2T)J

Gy=0+ 10(6,—04)04 ’ (4.24)
R Z{Mi%%(9—3T)+€2Z4(37—2T)J

Ba= Coip , (4.25)
SA:%+2—B(§—2(I+T)—%j (4.26)

and

A = 7} (427)

while the method of L-moments estimators from Region B are

/3(2&—3@% (1-T)+¢,¢, (51+2T)j

Qg =1+ 1000, 0,0, ’ (4.28)

. z2[4ei+e‘§(9+3T)+z2k‘4(37+2T)j

P = (cata) ’ “2)

S, =%+%(j—z (1—T)—f—§j (4.30)
and

A 3+7ﬁ—4+T

Ap="D 4.31)

2[1—%‘)
2

Step 3

Expressions for the asymptotic standard errors of the method of L-moments estimators only

exist if the variance of the GLDgpp is finite, thus only if A > —% . So in Region A the standard
errors’ expressions exist for —%< }:A <A, while in Region B they exist for all /iB > If

A 4 < —% in Region A, the standard errors can be determined with the parametric bootstrap.
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Because the expressions for the standard errors are the same for the estimators of both
regions, the subscripts of the estimators are omitted in these expressions given below.
Nonetheless, these expressions, derived in Section 4.13.3, are unfortunately extremely

complex. The standard errors are

1= n | 1
s.e.[a’]—ﬁ n(A-1)2(A+2)8,

(4.32)
X \/192 — s [(i % —a)ﬂmsjB(/l,/i) ¥ 19{197 —4(0194198B ,
selp]- ﬁJ TP (l% i [mw, ﬂ»)ﬂ%z%l]] , 433
s.e.[g]: [(/1+1)(/1+22)(/1+3)
n(A-12
(4.34)
x\/ﬂu —%[i(ﬂw—120)1914JB(/1,/1)—%(31915+601916D
and
seld]= \/ T [ﬂn —%(% AB(A,A)+ 04%)} , (4.35)

where B(a,b) is the beta function (see Section 2.14.1 in Chapter 2 for details), @=d(1-9),

8 =2A+D2A+3)2A+52A+ DR +24-5]

O =420 +328 +518° —1040 —432° + 7350 + 995" + 6 4184 +22 6114
+279111+13 966,

3y = (A+3) A% +1742 + 992" +2551° + 6674 +3 59578 +874517 —17 879.4°

—149 8082° —312 756 4* =103 6844 + 432 056 4% + 215 4581
—367080),

8=+ (2 -24-11]

= A +81 +121° -84 — 4054 — 4928 + 54817 + 9641 — 840,
— 2

196 T AA+D(A+2) ?

B =42 + 522 + 24317 +16747 = 23431 —32442° + 276972 + 74 517 4°

+873917 +244 92125 +15321364° +1771 0244 +923 0484 —15416411%
+686 2681 +550 620,

O =40 + 322 +354 —2162° =159 +10534" +3504° —14512% +1481 + 420,
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By =82 +1240 + 822 + 31334 +7894.° +14 5194 +222364" +350264°
+538944% +54 3161 +22 696,

By =441 +84° + 75707 +361424" +736914° —189884° —199 4654° — 747 0824

—16064174° —1893 6444 —5800721* +1264 048> +11181604>
—396 6561 —567 840,

O, =827 +1722% +17422° +106334% + 398564 +79 7012° +31792.
—125933488 +1728241 +14491791° +2 083 778 2° + 200 988 4*
—15884401° —5523322% + 624 2084 — 283920,

8, =181+ 1)(A+3)22 +34+2),

By =240 42007 +1492° + 25307 —5752° 38570 —8 7014 — 62294 + 115731
+144124-15120,

B, =294 +2061° — 1194 —38224" —7 1894 +55064* +132791 10290,

O =421 + 2820 — 49 —6994° —128047 —16014° —114094° —22 185" +54561°
+234852% — 665417560,

B =847 +444% - 2821 —16992'° +4 4182 +32076 4 —10941" —1641981°
+24 6184 +557 596 1% —7 2564 — 64359927 +100 5484 + 185 220
and

B, =4L +42 —172 +4317 —142+16.

It follows from the above algorithm that two possible GLDgpp fits may be obtained for a

data set, one fit from Region A and the second fit from Region B. These two fits are obtained

if the values of #; and 7, calculated for the data set lie within the purple-shaded area in the L-
moment ratio diagram of the GLDgpp in Figure 4.8(c). For ¢, € (0, 1), the first fit will be from

Class I of Region A if 1, 2% and from Class II of Region A if 7, <, whereas the second fit

will be from Class IV of Region B. If ¢, € [Tjnin, 0], then the two fits will both be from Class
III, one from Region A and the other from Region B. A single fit is obtained if the values of

t; and ¢, fall in the blue-shaded area in the L-moment ratio diagram of the GLDgpp in Figure

4.8(c). This fit will be from Class III of Region B if f, € [z;"",0] and from Class IV of
Region Bif 1, € (0,1).
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If one is interested in modeling exceedances in a data set above a threshold, the GPD (that
is, the GLDgpp with 6 =1) is used. Method of L-moments estimation for the GPD has been
presented in the literature (Hosking, 1986; Hosking & Wallis, 1987, 1997) and will hence not
be discussed here. But it should be noted that to fit the GPD to exceedances, the threshold
must be selected and the GPD’s parameter estimates will depend on the choice of threshold.

Once members of the GLDgpp have been fitted to a data set, the goodness of these fits can
be assessed using the tests and graphical displays discussed in Section 2.10 of Chapter 2. In
situations where two GLDgpp fits are obtained, the fit with the lowest average scaled absolute
error (ASAE) value can typically be regarded as the best fit. However, it is important to
verify whether the chosen fit adequately explains the complete data set. That is, one should
check whether the support of the fitted GLDgpp covers the range of values observed in the
data set. Unfortunately, as will be seen in the examples presented in Section 4.10, the
bounded support of the truncated members of the GLDgpp from Class IV in Region B often
does not cover all the data values observed. But this problem can occur for any distribution

with bounded support, including the GLDgpp from Class Il in Region A.

4.10 FITTING OF THE GLDc¢rp TO DATA

[lustrative examples are presented in this section in which the fit of the GLDgpp to various
data sets with diverse characteristics is examined. The sample sizes, sample L-moment and L-
moment ratio values and the data ranges for these data sets are given in Table 4.5. Table 4.6
presents the parameter estimates with asymptotic standard errors of the GLDgpp fits along
with these fitted distributions’ support. The test statistic values and p-values of the

Kolmogorov-Smirnov, Anderson-Darling and Cramér-von Mises goodness-of-fit tests as well

as the ASAE values for the GLDgpp fits are compared in Table 4.7. Note that N, in Table

4.7 denotes the number of valid bootstrap samples (out of N =10000 simulated bootstrap

samples) used in determining the p-values of the goodness-of-fit tests.

Table 4.5: Sample sizes, sample L-moment values and data ranges for the data sets in Section 4.10.
Data set n 0 0, 13 1 Data range
Toxic gas concentrations 100 7.9384 1.8432 0.1293 0.1451 [1.701, 16.910]
Venice sea-levels 51 119.6078 10.9341 0.1220 0.2132 [78, 194]
McAlpha ages at death 54 67.4444 11.3969 -0.2902 0.1435 [9,95]
CHD patients’ ages 100 44.3800 6.7774 -0.0022 0.0305 [20, 69]
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Table 4.6: Parameter estimates with asymptotic standard errors* and support for the GLDgpp fitted to the data sets in Section 4.10.
Data set Class of GLDgpp a ,5’ 5 2 Support
Toxic gas concentrations 11 6.3240 4.0557 0.7120 0.0654 [-11.5405, 50.4980]
(0.6026) (0.7013) (0.0694) (0.1076)
v 11.2597 68.8412 0.3641 4.6318 [1.8092, 16.6719]
(0.9429) (9.4305) (0.0322) (0.5479)
Venice sea-levels 1 113.1792 18.0359 0.6565 -0.1218 (—o0, 00)
(4.2316) (4.3744) (0.1170) (0.1536)
v 138.7045 585.0591 0.3885 5.8320 [77.3592, 177.6786]
(10.4960) (110.9265) (0.0483) (0.9268)
McAlpha ages at death 1T 90.0580 25.2549 0.0208 0.0703 [-261.5536, 97.5289]
(5.6500) (6.9240) (0.0766) (0.1746)
v 21.3614 422.0286 0.8061 4.6057 [3.5902, 95.2212]
(8.9046) (95.9283) (0.0359) (0.9218)
CHD patients’ ages I 44.7678 28.9643 0.4891 0.6269 [21.1631, 67.3660]
(7.4973) (6.9921) (0.1859) (0.2047)
v 44.1401 117.1769 0.5038 2.6880 [22.5084, 66.1009]
(3.2489) (22.7403) (0.0629) (0.4732)

* Standard errors given in parentheses.

Table 4.7: Goodness-of-fit statistics with p-values* as well as average scaled absolute error (ASAE) values for the GLDgpp fitted to
the data sets in Section 4.10.

Data set Class of GLDgpp D, A, w, Ny ASAE

Toxic gas concentrations I 0.4987 0.2527 0.0387 9996 0.0148
(0.2744) (0.3495) (0.2968)

v 0.4362 0.2999 0.0223 10 000 0.0108
(0.5971) (0.5050) (0.8088)

Venice sea-levels 1 0.5081 0.2166 0.0376 9987 0.0144
(0.2249) (0.5214) (0.3680)

v 0.5415 0.5452 0.0617 10 000 0.0224
(0.4729) (0.2204) (0.3520)

McAlpha ages at death I 0.4946 1.0902 0.0585 5599 0.0223
(0.2586) (0.0030) (0.1052)

v 0.3119 0.1156 0.0161 9971 0.0113
(0.9250) (0.9906) (0.9689)

CHD patients’ ages I 0.4055 0.3253 0.0241 8475 0.0116
(0.5520) (0.3231) (0.6504)

v 0.4140 0.3537 0.0267 9495 0.0127
(0.4882) (0.3590) (0.5323)

* p-values given in parentheses.

Where applicable, other distributions fitted to the data sets in the literature will also be

presented. It is important to note that it is not the purpose of the examples to show that the

GLDgpp provides better fits than these distributions. The examples in Section 4.10 are

presented to illustrate the flexibility of the GLDgpp.
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4.10.1 Toxic GAS PEAK CONCENTRATIONS
Consider again the data set consisting of toxic gas peak concentrations (Hall, 1991) to which
the SLD, in effect, the GLDgpp with A =0, was fitted in Section 2.9 in Chapter 2. This data

set’s sample L-skewness and L-kurtosis ratio values, (t3, t4)= (0.1293,0.1451), lie in Class II

of Region A and in Class IV of Region B of the GLDgpp. So fits from these two classes of the
GLDgpp are obtained. Figure 4.13 shows a histogram of the data set along with the density
curves of the two GLDgpp fits, while Q-0 plots for these two fits are given in Figure 4.14 —
see Figures 2.16 and 2.17 for the density curves and Q-Q plots of the fitted SLD as well as
the fitted Davies distribution (Hankin & Lee, 2006).

0.25
GLDGpp from Class II in Region A
—————— GLDGpp from Class 1V in Region B
0.20
I
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Figure 4.13: Histogram of the peak concentrations (in percent) of toxic gas together with the probability density functions of the fitted

GLDGPD o

(a) 0-Q plot for GLDGpp from Class IT in Region 4 _ (b) Q—Q plot for GLDgpp from Class IV in Region B
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Figure 4.14: (Q-Q plots for the GLDgpp fitted to the peak concentrations (in percent) of toxic gas.

Comparing the Q-Q plot for the fitted GLDgpp from Class II in Figure 4.14(a) with the
SLD’s Q-Q plot in Figure 2.17(a), it is noted that the fit of the GLDgpp from Class II is
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similar but slightly better than the SLD’s fit, especially at the lower tail. Also, the ASAE
value of 0.0148 for the GLDgpp from Class II is marginally lower than the SLD’s ASAE

A

value of 0.0154. But the parameter estimate for A in Class II of the GLDgpp, 4, =0.0654, is

close to zero with a relatively large standard error (0.1076), indicating that this additional
shape parameter of the GLDgpp in Class II is not significantly different from zero. That is, the
GLDgpp from Class II simplifies to the SLD with 4 =0.

Turning to the fitted GLDgpp from Class 1V, this distribution’s density curve very closely
corresponds to the histogram of the data in Figure 4.13, suggesting an excellent fit, which is
confirmed by its Q-0 plot in Figure 4.14(b). Furthermore, the fitted GLDgpp from Class IV
has a very low ASAE value of 0.0108, which is smaller than the ASAE values of the GLDgpp
from Class II and the SLD. So it seems that the GLDgpp from Class IV provides the best fit
for the data set. But this distribution’s bounded support of [1.8092, 16.6719] does not cover
the complete data set in that both the minimum and maximum values in the data, 1.701 and

16.91, lie outside the support. This is due to the truncated form of the GLDgpp in Class IV.

4.10.2 VENICE MAXIMUM SEA-LEVELS

Smith (1986) and Coles (2001) both considered the sea-levels in Venice within the context of
extreme value modeling. The data set contains the 10 largest sea-levels (in centimeters),
measured annually in Venice from 1931 to 1981, apart from 1935, for which only the six
largest sea-levels are available. Here the annual maximum sea-level is considered, giving
n =51 measurements, graphically presented in the histograms in Figure 4.15. The
generalized extreme value (GEV) distribution is implied by extreme value theory for data like
this. Here we consider the GLDgpp to illustrate its flexibility. The data possesses heavy tails,
so the GLDgpp yields fits from Class I in Region A and Class IV in Region B. Coles (2001)
fitted the GEV distribution to the data set using maximum likelihood estimation. The fitted
density curves of the GLDgpp and the GEV distribution are superimposed on the histograms
in Figure 4.15, while Q-Q plots for these fitted distributions are given in Figure 4.16.

The GLDgpp from Class I with infinite support provides a very good fit, which, when
comparing their ASAE values in Table 4.7 and Q-Q plots in Figures 4.16(a) and 4.16(b), is
much better than the fit of the GLDgpp from Class IV. Although not rejected by any of the
goodness-of-fit tests (Table 4.7), the GLDgpp from Class IV does not provide a good fit in
that the center part of its density curve rises too high compared to the data’s histogram — see

again Figure 4.15(a). Furthermore, because of its truncated form, the support of the fitted
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GLDgpp from Class IV does not cover the data range, resulting in poor fits at the tails,

especially in the upper tail for maximum sea-levels above 140 centimeters.

(a) GLDgpp from both Regions 4 and B (b) GLDgpp from Region A4 only
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Figure 4.15: Histograms of the annual maximum sea-levels (in centimeters) in Venice together with the probability density functions of
the fitted GLDgpp and generalized extreme value (GEV) distribution. The line types indicated in graph (a) also apply to
graph (b).
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The GEV distribution fitted by Coles (2001) has an ASAE value of 0.0189, which is
larger than the ASAE value for the fitted GLDgpp from Class 1. But this is not surprising,
since the GLDgpp has two shape parameters, whereas the GEV distribution has a single shape
parameter. Also, as indicated before, the GEV distribution is the correct distribution to be

used for modeling maximum values.

4.10.3 MCALPHA CLAN AGES AT DEATH

In their book on applied nonparametric statistics, Sprent & Smeeton (2007) presented the age
at death (in completed years) of male members of four Scottish clans, obtained from the
burial ground at Badenscallie in Scotland. Of these, the McAlpha clan has the largest sample
size and will hence be used in this example. The nature of the data renders it useful for
survival analysis. For instance, recently Cooray & Ananda (2010) used this data set to
illustrate the applicability of the Gompertz-sinh family of distributions in survival analysis.

A histogram of the age at death for the males from the McAlpha clan is shown in Figure
4.17. The slightly higher frequency for deaths under age five, compared to the frequencies for
adjacent age intervals, is notable. In this example the age at death excluding under-age-five
mortality is used. In effect, the data set is truncated with respect to the lower tail by excluding

the five males with age at death of less than five years.

0.05 GLDGpp from Class II in Region 4
—————— GLDGpp from Class IV in Region B
------- Reflected exponential distribution A

0.04

0.03

0.02

0.01y ...

0.00

0 10 20 30 40 50 60 70 80 90 100
Age at death

Figure 4.17: Histogram of the age at death (in completed years) of male members of the McAlpha clan together with the probability
density functions of the fitted GLDgpp and reflected exponential distribution. The dotted bar in the histogram represents
five males with age at death of less than five years. These five observations are neither considered in the fitting of the

distributions, nor in the model validation of these fits.

Fitting the GLDgpp to this truncated data set of n =54 observations yields fits from Class

IT of Region A and Class IV of Region B. The density curves of these fits are shown in Figure
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4.17, while their Q-Q plots are given in Figure 4.18. The GLDgpp from Class IV provides an
excellent fit as indicated by the high p-values for its goodness-of-fit tests and its low ASAE
value in Table 4.7, as well as its Q-Q plot in Figure 4.18(b). The excellent fit is partly due to
the inherent truncated form of the GLDgpp in Class IV, which captures the truncation applied
to the data. Note that, in contrast to the previous two examples (Sections 4.10.1 and 4.10.2),
the support of the fitted GLDgpp from Class 1V, [3.5902, 95.2212], covers the data range of
the truncated data set, [9, 95].

. ‘f‘?) Q-0 plot for GLDgpp from Class I in Region 4 (b) Q—Q plot for GLDgpp from Class IV in Region B
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Figure 4.18: Q-0 plots for the GLDgpp and the reflected exponential distribution fitted to the age at death (in completed years) of male

members of the McAlpha clan, excluding under-age-five mortality.

The fit of the GLDgpp from Class II is substantially worse, especially with respect to
males with age of death less than 50 years — see the Q-Q plot in Figure 4.18(a). It is
interesting to note that neither of the shape parameters of the GLDgpp from Class II differs
significantly from zero, suggesting a simplification to the reflected exponential distribution

with 6 =4 =0. The density curve of this fitted distribution, with method of L-moments

estimates & =/, +2/,=90.2383 and ,[;’ =20, =22.7939 for the location parameter (upper
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endpoint of the distribution) and the scale parameter, is shown in Figure 4.17, while the
corresponding Q-Q plot is shown in Figure 4.18(c). Not surprisingly the fit of the reflected

exponential distribution is similar to but worse than the fit of the GLDgpp from Class 1I.

4.10.4 CORONARY HEART DISEASE (CHD) PATIENTS’ AGES

The coronary heart disease (CHD) data set in Hosmer & Lemeshow (2000) contains the age
(in completed years) of n =100 subjects, assumed to have a logistic distribution in a logistic
regression framework. A histogram of the data is given in Figure 4.19 and suggests that the
data is approximately symmetric, but that it has tails shorter than the logistic distribution.

These visual deductions are confirmed by the sample L-moment ratio values, given in Table

4.5, in that #; =—0.0022 is very close to zero, while ¢, =0.0305 is less than 7, :%, the L-

kurtosis ratio for the logistic distribution — also see the logistic distribution’s Q-Q plot in

Figure 4.20(c).

0.06

GLDGpp from Class II in Region A
005 =------ GLDGpp from Class IV in Region B
------- Logistic distribution

----------------- GSH distribution

0.04
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45
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Figure 4.19: Histogram of the age (in completed years) of patients in a coronary heart disease (CHD) study together with the probability

density functions of the fitted GLDgpp, logistic distribution and generalized secant hyperbolic (GSH) distribution.

Given the data set’s values for #; and ¢, platykurtic members of the GLDgpp from Class
IT of Region A and from Class IV of Region B are fitted to the data. Because of the symmetry

of the data, the estimates for ¢ of both fits of the GLDgpp are close to % (5‘ =0.4981 and

A

05 =0.5038). The fitted GLDgpp from Class II has a slightly lower ASAE value than the
fitted GLDgpp from Class IV (0.0116 compared to 0.0127) and their Q-Q plots in Figures

4.20(a) and 4.20(b) indicate very good fits, apart from the minimum and maximum values in

the data set which are not covered by the bounded support of the two fits.
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Another symmetric distribution, the generalized secant hyperbolic (GSH) distribution,
was fitted to the data by Vaughan (2002). The GSH distribution exhibits short or heavy tails,
depending on the value of its kurtosis parameter (Vaughan, 2002; Klein & Fisher, 2008; van
Staden & Loots, 2009b). Because the GSH distribution possesses infinite support, it provides
a better fit to the data compared to the GLDgpp as can be seen from its Q-Q plot in Figure
4.20(d). Note also that the GSH distribution’s fit has an ASAE value of 0.0104 which is
marginally smaller than the ASAE values of the two GLDgpp fits.

(a) Q-0 plot for GLDgpp from Class II in Region 4 (b) Q—Q plot for GLDgpp from Class IV in Region B
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Figure 4.20: Q-Q plots for the GLDgpp, the logistic distribution and the generalized secant hyperbolic (GSH) distribution fitted to the

age (in completed years) of patients in a coronary heart disease (CHD) study.

4.11 GLDcpp APPROXIMATION OF DISTRIBUTIONS

The flexibility of the GLDgpp is further highlighted in this section by showing its ability to
approximate a variety of different probability distributions through the matching of

theoretical L-moments. Any distribution whose values of 7, and 7, fall within the (z;,7,)

space of the GLDgpp in Figure 4.8(c) can be approximated by the GLDgpp. But, since a

detailed analysis is beyond the scope of this thesis, the focus in this section will be on well-
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known distributions such as the normal, Student’s 7, gamma and log-normal distributions.
Distributions popular in various statistical disciplines, for example survival analysis and
extreme value theory, as well as distributions with specific properties, for instance the cosine
distribution which is platykurtic, will also be considered.

A distribution can be approximated by the GLDgpp with the following steps:

Step 1
For the distribution under consideration, select values for its location parameter, scale
parameter and, if present, shape parameter(s). Calculate the distribution’s L-moments and L-
moment ratios, in effect, L,, L,, 7; and 7,. This approach is followed if one wants to
approximate a specific distribution, say for example a standard normal distribution with zero
mean and unit variance.

Alternatively, choose values for the distribution’s L-moments and L-moment ratios and
calculate the corresponding parameter values. This is for example done when one wants to
compare the GLDgpp approximations for different distributions with equivalent measures of

location, spread and shape, say for the gamma and log-normal distributions with L, =0,

L,=1and 7, =0.2.

Step 2
Check whether the distribution’s values of 7; and 7, lie within the (z5,7,) space of the

GLDgpp in Figure 4.8(c). If so, proceed with Step 3. If not, the distribution cannot be

approximated by the GLDgpp for the selected parameter values.

Step 3

Use the estimation algorithm given in Section 4.9 to estimate the parameters of the GLDgpp
by determining &, ,Bh, 5',1 and /ih for h=A,B.

Given the distributional shapes obtained by the GLDgpp in its four classes, it provides the
best approximations for unimodal distributions, and these GLDgpp approximations are
achieved from Classes I and II in Region A. The truncated distributions from Region B

seldom produce adequate approximations. Thus, in Step 2 above, it is usually only necessary
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to consider the (13, 14) space of Classes I and II in Region A of the GLDgpp in Figure 4.6(a).

This is true for all the distributions considered here and hence the subscripts for the parameter
estimates of the GLDgpp approximations are dropped.

Table 4.8 presents the values for the parameters and L-moments of the distributions
considered as well as the parameter estimates of their GLDgpp approximations. See Tables
2.10 to 2.14 in Section 2.14.3 for details regarding the properties and functions of the selected
distributions. Note though that in this section, to avoid confusion with the parameters of the
GLDgpp, the location, scale and shape parameters of the distributions are denoted by a, b and
c respectively.

Also, to simplify comparisons between the various distributions, L, =0 and L, =1 and,

where applicable, 7, =0.2. In Figures 4.21 to 4.24 the probability density function, f(x), of

each distribution is presented along with the probability density function, f (x), of the

corresponding GLDgpp approximation.
Various methods exist for validating the quality of an approximation. In this thesis, as a
first check, the closeness between the probability density functions is determined by

approximating
§ = sup|f (x) = £ ()
with

S = max
1<i<n

9

f(x[:n )_ f(xi:n)

where f (x[:n) is the empirical probability density function of the GLDgpp approximation. For
a second check, the ASAE between Q(pi:n), the quantile function of the approximated

distribution, and QA(pi:n), the empirical quantile function of the GLDgpp approximation, is
calculated. That is,

2 10(pin )-0(pin)
ASAE = 13120 00).
S n ; 0(pnn)-2(p1)

with p,, given by (2.70), is calculated. For both § and ASAE, n =9 999 is used.

176

© University of Pretoria



#

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

@ZP YUNIBESITHI YA PRETORIA

CHAPTER 4. A GLD TYPE WITH SKEWNESS-INVARIANT MEASURES OF KURTOSIS

Table 4.8: Parameter and L-moment values of various distributions, parameter estimates of these distributions” GLDgpp approximations, and values for validating the quality of the GLDgpp approximations.
Distribution a b c 73 7, a B Ey i S ASAE
Symmetric distributions
Cosine —4 8 - 0 0.0625 0 3.3956 0.5 0.4093 0.0045 0.0004
Normal 0 1.7725 - 0 0.1226 0 2.4449 0.5 0.1416 0.0005 0.0002
Secant hyperbolic 0 1.1729 - 0 0.1940 0 1.7829 0.5 -0.0742 0.0050 0.0007
Student’s #(2) 0 0.9003 - 0 0.3750 0 0.9069 0.5 -0.4244 0.0181 0.0002
Extreme value distributions
Fréchet -0.8624 1.3798 —0.0463 0.2 0.1629 -1.2242 2.0328 0.8044 0.0109 0.0129 0.0012
Gumbel —0.8327 1.4427 - 0.1699 0.1504 -1.1157 2.1486 0.7723 0.0487 0.0091 0.0011
Rayleigh -3.4142 2.7241 - 0.1140 0.1054 -1.0173 2.6641 0.7305 0.2071 0.0145 0.0019
Weibull —2.6582 2.9367 0.6808 0.2 0.1190 -1.6085 2.4882 0.8732 0.1548 0.0491 0.0017
Gamma and log-normal distributions
Gamma -3.0661 1.1222 0.3660 0.2 0.1358 —-1.4346 2.2960 0.8423 0.0956 0.0198 0.0014
Log-normal —4.3504 3.9944 0.4132 0.2 0.1541 —-1.2854 2.1131 0.8155 0.0372 0.0145 0.0013
Generalized exponential and logistic distributions
Generalized exponential -3.7471 1.5312 0.1672 0.2 0.1500 -1.3162 2.1523 0.8210 0.0499 0.0147 0.0012
Generalized logistic —-0.3226 0.9355 —-0.2000 0.2 0.2000 -1.0208 1.7396 0.7672 —-0.0895 0.0225 0.0016
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4.11.1 SYMMETRIC DISTRIBUTIONS

Figure 4.21 presents the density curves of four symmetric distributions, namely the cosine,
normal, secant hyperbolic and Student’s #(2) distribution, along with the density curves of
their GLDgpp approximations. The cosine distribution, a special symmetric case of the
complementary beta distribution proposed by Jones (2002b), is a platykurtic distribution.
Hence its GLDgpp approximation is from Class II. So too is the GLDgpp approximation of
the normal distribution, a mesokurtic distribution. Both the secant hyperbolic distribution
(Vaughan, 2002) and Student’s #(2) distribution (Jones, 2002a) are leptokurtic distributions
and therefore they are approximated by the GLDgpp from Class I.

(a) Cosine distribution (b) Normal distribution
0.20 0.25
0.20
0.15
0.15
g g
Zoao 2
0.10
0.05
0.05
0.00 / 0.00
-4 -2 0 2 4 -6 -4 -2 0 2 4 6
X X
(c) Secant hyperbolic distribution (d) Student's #(2) distribution
0.30
D 0.4 I
0.25 y
0.20 0.3
2015 2
=02
0.10
0.1
0.05
0.00 0.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
R X

Figure 4.21: Probability density functions of various symmetric distributions, indicated by the solid lines, along with the probability

density functions of their GLDgpp approximations, indicated by the dashed lines.

The GLDgpp approximations of all the symmetric distributions considered are excellent,

as is evident from their low values for § and ASAE in Table 4.8. This is especially true for
the normal distribution, with no visible difference between the density curves depicted in

Figure 4.21(b). The only slight concern, which in fact also occurs for the corresponding
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approximations of the normal distribution by the GLDgs and the GLDgyk1, is that the support

of the GLDgpp approximation is finite — when L, =0 and L, =1, the support of the normal

distribution’s GLDgpp approximation is [—8.6323, 8.6323].

4.11.2 EXTREME VALUE DISTRIBUTIONS

The generalized extreme value (GEV) distribution combines into a single family the extreme
value distributions of Types 1, 2 and 3. It contains as a special limiting case the Gumbel
distribution for ¢ =0, while the Fréchet and the reflected Weibull distributions are obtained
for ¢ <0 and ¢ >0 respectively. All L-moments of the GEV distribution exist for ¢ > —1. For
—-1<¢<-0.0589, the GLDgpp approximation is from Class I, while the GLDgpp
approximation is from Class II for —0.0589 <c<1. When c=1, the GEV distribution
reduces to the reflected exponential distribution (in effect, the GLDgpp with 6 =4=0).
When ¢ > 1, no GLDgpp approximation is possible from either Class I or II.

Turning to specific members from the GEV distribution, if 73 =0.2, then ¢ =-0.0463

and the Fréchet distribution is obtained. Its density curve is depicted in Figure 4.22(a), while

the density curve of the Gumbel distribution, for which 7; =0.17, is given in Figure 4.22(b).
When 7,=-0.2, the shape parameter value is ¢=0.6808 and, because c¢>0, the GEV

distribution reduces to the reflected Weibull distribution. Figure 4.22(d) shows the density

curve of the corresponding Weibull distribution with 7; =0.2. The Rayleigh distribution is a

special case of the Weibull distribution, obtained when the value of the Weibull distribution’s
shape parameter is ¢ =0.5. The Rayleigh distribution’s density curve is shown in Figure
4.22(c).

To simplify interpretation, all four members taken from the GEV distribution are
positively skewed. The parameter estimates of the GLDgpp approximations for these four
members from the GEV distribution are given in Table 4.8. These approximations’ density
curves are plotted in Figure 4.22 along with the density curves of the distributions being
approximated. It is noted that, in general, the GLDgpp approximation of the right tail of each
distribution is very good. Given the difference in the tail behavior of the Weibull and
GLDgpp distributions, the GLDgpp approximation in the left tail of the Weibull distribution is
not good. This is specifically the case when the Weibull distribution is positively skewed

with 7, >0.
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(a) Fréchet distribution (b) Gumbel distribution

0.20
0.20

=

< 0.15
0.10

.05
00 0.05

000t -~ 0.00

Figure 4.22: Probability density functions of various extreme value distributions, indicated by the solid lines, along with the probability

density functions of their GLDgpp approximations, indicated by the dashed lines.

4.11.3 GAMMA AND LOG-NORMAL DISTRIBUTIONS

For the gamma and log-normal distributions, no simple expressions exist for either 75 or z,.
For given parameter values, the values for 7, and 7, can be calculated using the rational-

function approximations given by Hosking & Wallis (1997), or through numerical
integration, which is done here.

The gamma distribution is approximated by the GLDgpp from Class II when O0<c<1,

corresponding to 0<7; < 1. The case 7;=0.2 is shown in Figure 4.23(a) and given in Table

4.8. The gamma distribution approaches the normal distribution as ¢4 0, while the
exponential distribution (GLDgpp with 6 =1 and 4 =0) is obtained for ¢=1. For ¢ >1 no
GLDgpp approximation is possible from Class II.

The log-normal distribution also approaches the normal distribution as ¢l 0. For

0<¢<0.4903 the GLDgpp approximation is from Class II, as is for instance the GLDgpp

approximation presented in Table 4.8 and illustrated in Figure 4.23(b) for the case 7;=0.2.
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The GLDgpp approximation is from Class I for 0.4903 <c¢<1.1429, while no GLDgpp

approximation is possible from either Class I or Class II if ¢ >1.1429.

(a) Gamma distribution (b) Log—normal distribution
0.30 0.30

Figure 4.23: Probability density functions of the gamma and log-normal distributions, indicated by the solid lines, along with the

probability density functions of their GLDgpp approximations, indicated by the dashed lines.

4.11.4 GENERALIZED EXPONENTIAL AND LOGISTIC DISTRIBUTIONS

The generalized exponential distribution with shape parameter ¢ >0, analyzed by Gupta &
Kundu (1999, 2007), is approximated by the GLDgpp from Class II for 0<c<1. When
¢ — 0, the generalized exponential distribution approaches the Gumbel distribution, while it
reduces to the exponential distribution for ¢ =1. When ¢ >1, no GLDgpp approximation is

available from either Class I or Class II of the GLDgpp. In Figure 4.24(a) the GLDgpp

approximation for 7; =0.2 and 7, =0.15 is illustrated, attained for ¢ =0.1672 .

(a) Generalized exponential distribution (b) Generalized logistic distribution

0.25
0.20
=
< 0.15

0.10

Figure 4.24: Probability density functions of the generalized exponential and logistic distributions, indicated by the solid lines, along

with the probability density functions of their GLDgpp approximations, indicated by the dashed lines.
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@

The generalized logistic distribution, introduced by Hosking (1986), is a reparameterized
version of the log-logistic distribution. It approaches the logistic distribution as ¢ — 0. The

L-moments of the generalized logistic distribution only exist for |cl< 1. The distribution is

leptokurtic for all values of ¢ and is hence approximated by the GLDgpp from Class 1. Figure

4.24(b) shows the case 73 =7, =0.2 obtained for ¢ =-0.2.

4.12 CONCLUSION

Using the quantile function of the GPD with shape parameter A as the basic building block,
the methodology presented in Proposition 2.8.1 in Chapter 2 was applied in this chapter to
develop a four-parameter quantile-based distribution through the inclusion of a second shape
parameter, 0 < ¢ <1, which controls the level of skewness. The proposed quantile-based
distribution, specified in terms of its quantile function in Definition 4.2.1, is a skewed
generalization of Tukey’s lambda distribution and hence a type of the GLD, referred to as the
GPD Type and denoted GLDgpp. The GLDgpp can also be viewed as a generalization of the
SLD, studied in Chapter 2 and attained from the GLDgpp for A =0, with the parameter A4
controlling the level of kurtosis.

The distributional properties and shape characteristics of the GLDgpp were explored in
detail, emphasizing similarities and differences between the GLDgpp and the two types of the
GLD presented in Chapter 3, the GLDgs and GLDgykr. Compared to these two types, the
GLDgpp possesses tractability advantages with respect to skewness and kurtosis. In
particular, the L-kurtosis ratio as well as the quantile-based kurtosis measures of the GLDgpp
are skewness-invariant. As a result, parameter estimation for the GLDgpp is straightforward.
Closed-form expressions exist for the method of L-moments estimators of the parameters of
the GLDgpp, as well as for these estimators’ asymptotic standard errors. This is not the case

for any estimation method of either the GLDgg or the GLDgyk; .

4.1 3 DERIVATIONS

This section contains derivations for the GLDgpp, specifically for 4 #0. The equivalent
derivations for 4 =0, that is, for the SLD, were done in Section 2.13 in Chapter 2. Formulae
for the mean, the variance and the skewness and kurtosis moment ratios of the GLDgpp are

derived in Section 4.13.1. In Section 4.13.2 the minimum value of the L-kurtosis ratio for the
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GLDgpp is obtained. The derivation of the covariance matrix for the method of L-moments

estimators of the GLDgpp is done in Section 4.13.2.

4.13.1 MOMENTS OF GLDcpp

Theorem 4.13.1

Let X be a real-valued random variable with distribution given by the GPD Type of the GLD,
denoted X ~GLDgpp(a, B, 9, 4), where « is a location parameter, >0 is a scale
parameter and 0<d <1 and A are shape parameters. The mean, variance, skewness moment

ratio and kurtosis moment ratio of X are given by (4.7) to (4.10).

Proof

The mean, variance, skewness moment ratio and kurtosis moment ratio for the GLDgpp with
A =0, in effect, the SLD, were derived in Section 2.13.1 of Chapter 2. So here only the
derivation of the moments for 4 # 0 is done.

The quantile function of the GLDgpp with A # 0, given in (4.4), can be rewritten as

Ox(p)=a+ ﬁ((l - 5)( 1’;—1) _ 5((1—1;)4—1))

=a+2025-1)+51-8)p*-L501-p)*

=&+B(<l—6)pﬂ—6a—p>ﬂj.

Let Z =%=2 with

B
a=a+225-1) (4.36)
and
F=L. (4.37)

Then the quantile function of Z is

0,(p)=1-8)p*-501-p)*.

The ™ order uncorrected moment of Z is given by

E[Z"1=(Q,(p)) dp

St——~ ot—m~

((1—5)%—5(1—19)*] dp .
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k
k=0

Using the binomial series, (a +b)" = Z(’)a rekpk Gradshteyn & Ryzhik (2007, 1.111), and

the beta function, B(a,b), (see Section 2.14.1 in Chapter 2 for details),

k

L r—k
Elz")= Z(;)(a—ﬁ)p*j (— 5(l—p)‘j dp

0 k=0

r 1
=3 (-t (;)(1_5);’4( 5kjpl(r—k)(1_p)ﬂkdp
k=0 0
= i(—1)k(;)(1 — &) S BAr—k)+1, Ak +1).
k=0

But B(a,b) converges if and only if a>0 and 5>0, so E[Z"] exists if and only if

A(r—=k)+1>0 and Ak+1>0 for k=0,1,....,r. In effect, E[Z"] and hence the A order
uncorrected moment as well as the " order corrected moment of the GLDgpp exist if and
only if 4> —% )

In particular, using B(a+1,1) =B(1,a+1):ﬁ for a > -1, the first four uncorrected

moments of Z are
E[Z]=1-8)B(A+1,1)=B(1, 1+1)
=@, A>-1,
E[Z?]1=(1-6)’B2A+1,1)=2(1-8)IBA+1, A+ 1)+ 5°B(1,24+1)
=¢ —20B(A+1,A+D), A>-1,
E[Z’1=(1-06)BB3A+1,1)=31-08)’6B2A+1,1+1)
+3(1=8)0’B(A1+1,2A+1)=°B(1,34 +1)
=4, +30(26 -)BQRA+1, A+1), A>-1
and
E[Z*1=(1-8)*BAA+1,1)—4(1-6)’SBBA+1, 1 +1)
+6(1-8)?6*B(2A+1,24+1)
—4(1-8)BA+1,31+1)+5'B(1, 41+ 1)

=4 —4n{(1 —5)2+52]B(3/1+ LA+ +6&’BQRA+1,24+1), A>-1,

NN T
where w=0(1-0) and ¢k:%’

Since X =a+ ,BZ , with & and ,B given in (4.36) and (4.37) respectively, the first four

uncorrected moments of X are
184
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= E[X]
=&+ BE[Z] (4.38)
=a- B¢, A>-1,

ts = E[X?]
=&’ +2aBE[Z]+ B*E[Z*]

- (a+§(25— 1)]2 + 2(0{+§(25 - l)j%ﬁl
+§_j(¢2—2wB(l+l,l+l)j, A>-3.
1= E[X]
= & + 3@ BE[Z] + 3aB2E[ 2]+ BPE[Z°]
= (mg(za— 1)]3 + 3(a+§(25— 1)j2 24
+3(a+ (26 - 1)} (gﬁz 2a)B(/1+1/1+1)j

+/j—j(¢3+3a)(25—1)B(2/1+1,/1+1)j, A>-1,

and

Hy = E[X*]
= +4a*BE[Z]+ 1+4a5°E(Z* 1+ B*E[Z*]

(0{+"3(25 1)] +4( +525- 1)] Ly
+6(a+§(25—1)j 7(@—2(0B(/1+1,/1+1)j
+4(a+ﬂ(25 1)) (¢3+3w(25 1)B(2/1+1/1+1)j
+§—:[¢4 —4a{(1 - 5) +52jB(3/1+ LA+1)

+60'B(2A+1, 2/1+1)J, A>-1

The first four corrected moments of X are then

i =E[X - E[X]]=0,
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1, = E|(x - E[X 1]
= 15— (1) (4.39)

_#
—7(@ —qz—sz(/1+1,/1+1)J, A>-1,

us = E|(x - E1x )]
= 1 =3 +2(p)

:i_j[@ +24 —3@[@ —a{ZB(lH, A+1) (4.40)

—(A+1)BQ2A+1, /1+1)D] , A> —%,

and
1, = E|(x - E[x 1
=y —dpiul + 645 (g =3 )!

= i—:[@; -3¢ + 6¢f£¢2 —2wB(A+1, A+ 1)J
_4@(¢3_30)¢1(/1+1)B(2/1+1, /I+I)J (4.41)
- “{4¢2(2/1+1)B(3/1 +1, A+1)

—6wB(2A+1, 2;1+1)D, A>—1,

where each moment’s final expression is found after substantial simplification. The mean and
variance of X for 4 #0 in (4.7) and (4.8) are given by u = x4/ in (4.38) and o’ =M, 1n
(4.39) respectively, and the skewness and kurtosis moment ratios of X for 4 #0 in (4.9) and
(4.10) are obtained by substituting the expressions for t4; in (4.40) and g, in (4.41) into
(2.18).

4.13.2 MINIMUM VALUE OF L-KURTOSIS RATIO FOR GLDcpp
Theorem 4.13.2

Suppose X is a real-valued random variable whose distribution is the GPD Type of the GLD,

denoted X ~GLDgpp (@, B,0,4), where « is a location parameter, §>0 is a scale
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parameter and 0<d <1 and A are shape parameters. The minimum value of the L-kurtosis

ratio for the GLDgpp is given by z'jnin in (4.17) for A in (4.18).

Proof

The derivative of the expression for the L-kurtosis ratio for the GLDgpp, given in (4.16), with

respect to A is

dry 30 20 4.42
A (a+4)?  (A+3)? (4.42)

Setting (4.42) equal to zero and simplifying gives
A +21-5=0.

Solving then for A4 gives

A=—1+46,

but, since 7, only exists for 4 > —1, it follows that the minimum value of 7, is obtained for

A given in (4.18). This minimum value, 7, is calculated by substituting (4.18) into (4.16).

4.13.3 COVARIANCE MATRIX FOR METHOD OF L-MOMENTS ESTIMATORS OF GLD¢pp
Lemma 4.13.1
The derivation of the covariance matrix for the method of L-moments estimators of the

GLDgpp requires the solving of the double integral

v A=) [ (1 - u)* dudy
0

[x]

l(j’k) =
(4.43)
Vlﬂ,+k (1 _ V)(l—l)ﬂ, Bv(j, ﬂ)dv ,

S l— — O —

for j=2,3,4,5, k=-1,0,1,2,3 and 1=0,1, where B_(a,b) is the incomplete beta function
(see Section 2.14.1). Following Gradshteyn & Ryzhik (2007, 8.391),

B,(j, )= F(j,1=2; j+1;v), (4.44)
where F(a, b; c; z) is the hypergeometric series (see Section 2.14.1 in Chapter 2). Since

F(j,1=2; j+1v) == F1, A+ j; j+1;v)
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from Gradshteyn & Ryzhik (2007, 9.131.1), the incomplete beta function in (4.44) can be

rewritten as
. _ vj(l—v)’l .o .
Bv(],/l)—fF(l,/1+],]+1,v). (4.45)
Because the first argument of the hypergeometric series in (4.45) is one, this function can be

written as the sum of the ratios of gamma functions. That is,

L N DA+ HTGHY
FOLA+ Ji j+5v) =2
im

where I'(a) is the gamma function (see Section 2.14.1 in Chapter 2). Thus,

. A T() o C(A+i+ 't
B,(j. &)= (1-v)* ph S e (4.46)
i=0

Setting m =i+ j in (4.46) and simplifying gives

Bv(j, /l) = (1 — V);t F(j). T(A+m)v™

T(A+)) T'(m+1)
m=j
4 1) [ o raemy” & Demy”
— _ J tm)v +m)v
=(1-v) T(A+)) Z T(m+1) Z T(m+1)
m=0 m=0
A TG | X Tmp” T(A+m)v™
=(d-v) r(/l+j)(z T(m+1) (FM)JFZ TOm+1) D (4.47)
m=0

j—1
— A TAT) -1- 1 C(A+m)v™
=1-v) W[F L AL V)—(” D 2 TomiD B
m=1

— A TAT) T(A+m)v
=1-v)" T § ((1 O (1 + Z mr(/l)r(m)D
where Gradshteyn & Ryzhik (2007, 9.121.1) is used in the final result in (4.47). Therefore,

j-1
B,(j,4) =B(J, ﬂ)[l—(l —v)ﬂ{l + ZWD (4.48)
m=1

where B(a,b) = Flfzzg;) is the beta function (see again Section 2.14.1). In effect, the

incomplete beta function can be expressed in terms of beta functions.

Substituting (4.48) into (4.43) gives
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1 J-1
E (j,k)= J‘ Ak (1- v)(lz)/{B(j, /1)(1 —(1- v)ﬂ(l + Z:l—mB(Vm’ MdeV
0 m=

1 1
— B(j, l)(J’ vl/1+k (1 _ V)(l_l);tdv _ J. Vl;H—k (1 _ V)(Z—l)/ldv
0 0

-1 1
_ Z(m]g(,ln’ 5 J.vl/1+k+m(1 _ V)(Z—l)/l dV]] (4.49)
m=1 0

= B(}J, l)(B(ll+k+1, A-DA+D)-Bd+k+1,2-0DA+1)

_ f B(iA+k+m+1, (2—1)/1+1)j
mB(m, 1) :
m=1
Specifically
j-1
E0(j.k) =B(/, ﬂ)(B(k +1L,A+1) =Bk +1,24+1)- 2%]]

and, because B(a+1,1)=B(l,a+1)=—,

j—1
—_ . . B(A+k+m+1, A+1
Z,(j,k)=B(J, ,1)(2+}H1—B(/1+k+1,/1+1)—z_:1_ ;B+(m’+l) +>j

_ B(j, )-B(A+j+k+1, 1)
- A+k+1

Theorem 4.13.3
Let X be a real-valued random variable which has the GPD Type of the GLD, denoted

X ~GLDgpp (@, B, 6, A), with method of L-moments estimators for the location parameter,
« , scale parameter, >0, and shape parameters, 0< <1 and A, given by &, in (4.24),
,BA in (4.25), éA'A in (4.26) and /iA in (4.27) for Region A of the GLDgpp, and by & in
(4.28), B, in (4.29), 8, in (4.30) and A, in (4.31) for Region B of the GLDgpp. Given that

the variance of the GLDgpp is finite, in effect, given A > —%, the asymptotic standard errors

of &, ,Bh , 5}! and /ih for h=A, B are given by (4.32), (4.33), (4.34) and (4.35).
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Proof

The asymptotic variances of ¢, /Afh, Sh and /ih for h=A, B are obtained with

0, ©

&h 1,2
nvar 'b:h = ®2’1 ®2’2
5h ®3,1 ®3,2

h ®4,1 ®4,2

©)

®1, 3

1,4
0,; 0,4
0;; 0O, ’
0,5 Oy

that is, by determining the elements of the covariance matrix ® = GAG' . The elements of the

symmetric matrix

Al,l

Al, 2 Al, 3

A= A2,1 AZ, 2 AZ, 3
AS,I AS, 2 AS, 3

A4,1 A4, 2 A4, 3

=
~

>z 7z >

4,

A~

are derived with (2.62), using the quantile density function of the GLDgpp in (4.5) and the

shifted Legendre polynomials PO*(x) , Pl*(x) , P;(x) and P;(x) given in (2.89) to (2.92). For

example,
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P (u)P (v)+P (u)P, (v)ju(l v)q(u)q(v)dudv
QCu-1)2v-Du(l-v)

X ,6((1 ~OHut T+ 81— u)“Jﬁ((l —on* T+ 8- v)l‘leudv
1
=24 j {((1 - 5)(— 2 43t v/HJ +8Qv-1(1- v)ﬂJ
0

xf{(l - 5)(21/‘“ —u}“j + 5(2142 — u}(l — u)l_ldujjdv
0

1
=2 j {[(1 - 5)[— pA VAL v“j +6(2v—1)(1- v)lJ
0

[(1 5)[ LA Ly j+5(2B (3,4)-B,(2, A)D]

—2,5 2 2A(A-D(A+D)—(A-2)(A+2)
2(A+D)2 (1+2)2 (2A+1)(24+3)

+w(ﬁ3(1+4,1+1)—(fﬁj—(;g)mz+3 A+ +--B(A+2, /1+1)j

a)(— 42,(3,1)+6E,(3,0)—28,(3,~ 1)
+28,(2,1)-3E,(2,0)+ 31(2,—1)j

+6° (430(3, 1)-2E,(3,0)-2=5,(2,1) + Z,(2, ())D

B (u(ﬂ—l>u+1>—<ﬂ—z>u+2> _ 2(2(”3—5‘2”“3) +(A-3)B(4 /1)))

(l+1)(21+1)(2/1+3) (A+1D)(A+2)? A A(A+1)

where @=0(1-0) and with the final result found after substantial simplification. Similarly it

can be shown that

__F (. 2(2-22-1)
Al,l 2+ ((1+1)2 _%( AA+D2 + B(//L, /1))) s
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ﬁZ
Az 3= (A+D(A+2)(2A+1)(2A+3)(2A+5)

x 425162 —132* +184. 8 +12342 —664+72
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847 -84 18 +78 47 +2 6012°+1 5364 —4 887.1% +10 68443 +12 36042 =5 016 A+4 320
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@ 2(8,1" ~132 48 +654 27 +8014°~5 7847 +4 2184 +11422 47 ~12 915 4% ~1 1884+3 780)
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2 (25—1)(/1—1)(4/16—32/15+11/14+368/?.3+135/12—186/1+180)
A=A, 5=-f p 2 3 .
’ ’ (A+D)2(A4+2)2 (A+3)3 (A+4)(2A+1)(2A+3)(2A+5)

The matrix G is given by

Jda Jda Jda da
oL, oL, oL, oL,
B 9B 9B I
G=|% o, d oL
96 98 98 94 |’
oL, oL, oL, oL,
94 94 94 94
oL, oL, oJL, oL,

where
da _
oL, — L,
L{IO3LZ+L2LE(541—53T)—3L§L4(47—2T)—3l%(1+T)]
> ,h=A,
Qe _ 10L, Ly (L, =Ly )* T
oL, —
L [103L§1 +L, 1% (541453T) 313, (47+2T)-3L3 (l—T)J
_ R ,h=B8B,
10,1y (L, =Ly )* T
(25—1)(1—2)(1+4)[,12—21—1 1]
10[1%21—5]
203 +L,L, (51-2T)-3L3 (1+T) h=A,
o _ 1024 (L, ~Ly)
oL 213 +1,1,(5142T)-315 (1-T) h=B
10, (L,-Ly) ’ ’
_ (A+2)(A+3)
| >
13[103&1 +LQL3(541—53T)—3L§L4(47—2T)—3L32(1+T)]
b h = A b
e 1023 (2, -1, ' T
oLy
13[103LZ+L2L§(541+53T)—3L§L4(47+2T)—3L§(1—T)]
9 h = B b
1023 (2, -1, ) T
(26-1)(A+3)(A+4)? [,12 —22-1 1}
10(/1—1)[12 +21—5]
9B _
o, =0,
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2I4+2L, 15 (151-2T)+31313 (279-26T)—3 L3 L, (46+9T)— L% (3-9T)

B _ L(L Ly ]'T
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5L, [5L4+L2(57T)j
T MTA
A _ L~y
aL, —
5Ly [SL4 +L2(5+T)J
N S E) h = B )
Ly (Ly—Ly)* T
_ _ (A=D(A=2)(A+D(A+2)(A+3)(A+4)
10ﬁ[12 +2/175J
oA _
E 0
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5[5L4 +L, (5—T)J
—-——— < h=A
2 ’ ’
a_ (L-L,)°T
oL,
5[5L4 +L2(5+T)j
- - 9 h = B b
(L-L )T

_ (AHDUA+2)(A+3)* (A+4)°
10/5[,12 +2/7.—5J

9

with T= '\/tj +98t, +1 and where the final result of each non-constant partial derivative is

obtained using (4.14), (4.15) and (4.16) and simplifying. We note that the partial derivatives,
and therefore the matrix G, are the same for Regions A and B, even though the expressions
for the method of L-moments estimators in the two regions differ — compare (4.24) to (4.27)
for Region A with (4.28) to (4.31) for Region B. As a result, the asymptotic variances of the
estimators are the same for both regions.

Finally expressions for the elements of the covariance matrix ® can be determined by
solving ® = GAG” . Unfortunately these expressions are extremely complex and are hence
not presented here in full. See (4.32), (4.33), (4.34) and (4.35) for the expressions of the
asymptotic standard errors of the method of L-moments estimators in both regions.

It is important to verify the parameter values of the GLDgpp for which the covariance
matrix © is valid. Firstly, the variance of the GLDgpp must be finite, thus A4 > —%. Note
though that convergence of the integrals in (4.49) in Lemma 4.13.1 requires that

IA+k+1>0 for 1=0,1 and k>-1, in effect, that A>0. However, the expressions

obtained for the elements of A are analytic functions for all 4> —%. Thus, by analytic

continuation, the expressions for the elements of A are valid solutions of (2.62) for A > —% .
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See Gradshteyn & Ryzhik (2007, 9.154) for details regarding analytic continuation by means
of the hypergeometric series, and Hosking er al. (1985) who utilized analytic continuation
with respect to the derivation of A and @ for the generalized extreme value distribution.

Recall that the GLDgpp simplifies to the SLD for A =0. The covariance matrix ® for this
limiting case was derived in Section 2.13.2 in Chapter 2.

In the matrix G, the partial derivatives of & and & with respect to L, and L, only exist
for A #1. Consequently all the elements of @, apart from @, ,, ®, , =0, , and O, ,, only

exist for 4 # 1. In particular, the standard errors of the method of L-moments estimators of &
and 6 in (4.34) and (4.36) require that 4 #1. But, when A =1, the uniform distribution is
obtained from the GLDgpp. Hosking (1986) can be consulted regarding results for the
uniform distribution.

Finally, the partial derivatives of «, B, & and A with respect to L, and L, in the
matrix G only exist if 2*+24-5#0. As shown in Section 4.13.2, A*+21-5=0 for

A=71 in (4.18). So, for the GLDgpp with A = y , expressions for the elements of the
covariance matrix ® do not exist.
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5. CONCLUSION

This thesis presented techniques, functions and measures to develop and fit distributions in
the quantile statistical universe. While the bulk of the thesis is centered on a new type of the
generalized lambda distribution (GLD), the application of the method used to derive it,
extends much broader than the GLD.

5.1 CONSTRUCTION OF QUANTILE-BASED FAMILIES OF DISTRIBUTIONS

Chapter 2 of the thesis showed that new distributions can be created through the
transformation of quantile functions. Specifically a methodology was proposed for the
construction of quantile-based families of distributions. The benefit of this methodology,
proved in Proposition 2.8.1, is that it generates distributions with skewness-invariant
measures of kurtosis. Therefore the skewness and kurtosis can be identified and analyzed
separately. Furthermore, parameter estimation is straightforward in that closed-form

expressions are available for the parameter estimators.

5.2 CONSTRUCTION OF THE GPD TYPE OF THE GLD

The quantile function of any asymmetric distribution on bounded or half-infinite support can
be employed as the basic building block in the application of the methodology of Proposition
2.8.1. In Chapter 4, the quantile function of the generalized Pareto distribution (GPD) was
used as the basic building block. The resulting quantile-based distribution is a new type of the
GLD, labeled the GPD Type.

Akin to the Ramberg-Schmeiser (RS) and Freimer-Mudholkar-Kollia-Lin (FMKL) Types
of the GLD, described in detail in Chapter 3, the GPD Type of the GLD is a four-parameter
generalization of Tukey’s lambda distribution, possessing, apart from location and scale
parameters, two shape parameters. The main difference between the GPD Type and the RS
and FMKL Types is in terms of the way in which each type’s skewness and kurtosis are
described by their shape parameters. Whereas the two shape parameters of the other types

jointly explain the skewness and kurtosis, irrespective of the shape measures considered, the
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kurtosis of the GPD Type, when measured by its L-kurtosis ratio or its quantile-based
kurtosis measures (including its kurtosis functionals), is fully described by just one of the two
shape parameters. That is, the L-kurtosis ratio as well as the quantile-based kurtosis measures
of the GPD Type are skewness-invariant.

Chapter 4 showed that it is convenient to characterize the GPD Type through its L-
moments. Furthermore, as a result of the L-kurtosis ratio’s skewness-invariance, the method
of L-moments estimators for the parameters of the GPD Type have closed-form expressions.
The asymptotic standard errors of these estimators also have closed-form expressions.
Neither the RS nor the FMKL Type of the GLD possesses closed-form expressions for the

estimators of any of their estimation methods.

5.3 THEORETICAL DEVELOPMENT AND PRACTICAL UTILIZATION

The simple relationship between the parameters and the L-moments of the GPD Type and the
ease with which its parameters can be estimated using method of L-moments estimation,
ensure that this new type of the GLD is a valuable addition to Tukey’s lambda family of
distributions with respect to theoretical development in quantile modeling as well as practical
utilization.

For instance, quantile-based reliability analysis has become a popular alternative to the
classical approach of using distribution functions in reliability theory. See for example the
recent book by Nair et al. (2013a) as well as the articles by Sunoj & Sankaran (2012), Sunoj
et al. (2013) and Nair et al. (2013b, 2013c). The GPD Type of the GLD is one of the
quantile-based distributions included and considered in Nair et al. (2013a, 2013b, 2013c).

Note that the GPD Type is named the van Staden-Loots distribution by these authors,

citing van Staden & Loots (2009a), and that they denote its parameters by 4, 4,, 4 and 4,
instead of ¢, B, 6 and A. However, given that, compared to the shape parameters of the

RS and FMKL Types, the shape parameters of the GPD Type relate in a completely different
way to the GLD’s shape, it is preferable to denote its parameters as done in this thesis.
Turning to practical utilization, Chapter 4 showed how, using method of L-moments
estimation, the GPD Type of the GLD can be fitted to data sets and be used to approximate
probability distributions. Another important application of the GLD is the generation of
random variables in Monte Carlo simulation studies (Section 3.14). Recall from Section
3.14.3 that the GLD’s ability to approximate probability distributions provides one way of

selecting the members of the GLD to be used in the simulation study. Therefore, in
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evaluating the ability of LULU smoothers for signals to remove different noise types, Fabris-
Rotelli et al. (2010) used the GPD Type of the GLD to simulate noise from eight selected

distributions.

5.4 FUTURE RESEARCH

The focus of this thesis was on Tukey’s lambda family of distributions and the development
of the GPD Type of the GLD. Obviously the methodology presented in Proposition 2.8.1
allows for the construction of other generalized families of quantile-based distributions. The
only restrictions are that the support of the asymmetric distribution, whose quantile function
is used as the building block, must be bounded or half-infinite, and that the quantile function
of this chosen asymmetric distribution should have a simple closed-form expression. It is
furthermore beneficial for parameter estimation if the expressions for this asymmetric
distribution’s L-moments are also of a simple form.

Given that the method of L-moments estimators for the GPD Type have closed-form
expressions, method of L-moments estimation is the preferred estimation method. Recall
though that, as with the RS and FMKL Types, the L-moments of the GPD Type do not exist
for all parameter values. The development of other estimation methods for the GPD Type,
which do not place restrictions on the parameter values, would be worth consideration. This
includes the use of shape functionals and the starship method.

Since the GPD was used as the building block for the construction of the GPD Type of
the GLD, it would be of interest to investigate the application of this type of the GLD in
extreme event analysis. This analysis would include the modeling of exceedances above a
threshold and hence the modeling of high quantiles.

Turning to model validation, in this thesis goodness-of-fit tests based on the empirical
distribution function were used. Because expressions for the cumulative distribution
functions of quantile-based distributions are not available in closed form, one has to compute
the empirical distribution function numerically. This computational problem can be
circumvented by utilizing tests based on the empirical quantile function, briefly presented in
Chapter 5 of Thas (2010). Alternatively, smooth tests for goodness-of-fit, discussed in detail
by Rayner et al. (2009), can be used.

As commented in Chapter 3, parameter estimation for the RS and FMKL Types of the
GLD is computationally demanding, requiring the use of numerical optimization techniques.

Therefore, to fit either the RS or FMKL Types to data, one must have the programming skills
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to program the necessary software code oneself, or alternatively have access to statistical
software packages containing the code needed, such as the gld (King, 2013) and GLDEX
(Su, 2007a, 2012) packages in R. In contrast, because of the existence of closed-from
expressions for the estimators and their asymptotic standard errors, the estimation algorithm
for estimating the parameters of the GPD Type is extremely simple to apply and can be done
with any standard software package, including spreadsheets. Nonetheless, the inclusion of the

GPD Type into the gld package in R is an important priority.
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