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Summary 
 

An Osteometric Evaluation of Age and Sex Differences in the Long Bones of South African 
Children from the Western Cape 
KE Stull 1 
 
Supervisors: Ericka N. L’Abbé1, Stephen D. Ousley2 

1 Department of Anatomy: Section of Physical Anthropology, University of Pretoria,  Pretoria, 
South Africa 
2 Department of Applied Forensic Sciences, Mercyhurst University, Erie, PA USA 

Degree: PhD (Anatomy) 
 

The main goal of a forensic anthropological analysis of unidentified human remains is to 

establish an accurate biological profile. The largest obstacle in the creation or validation of 

techniques specific for subadults is the lack of large, modern samples. Techniques created for 

subadults were mainly derived from antiquated North American or European samples and thus 

inapplicable to a modern South African population as the techniques lack diversity and ignore 

the secular trends in modern children. This research provides accurate and reliable methods to 

estimate age and sex of South African subadults aged birth to 12 years from long bone lengths 

and breadths, as no appropriate techniques exist. 

Standard postcraniometric variables (n = 18) were collected from six long bones on 1380 

(males = 804, females = 506) Lodox Statscan-generated radiographic images housed at the 

Forensic Pathology Service, Salt River and the Red Cross War Memorial Children’s Hospital in 

Cape Town, South Africa. Measurement definitions were derived from and/or follow studies in 

fetal and subadult osteology and longitudinal growth studies. Radiographic images were 

generated between 2007 and 2012, thus the majority of children (70%) were born after 2000 and 

thus reflect the modern population.  

Because basis splines and multivariate adaptive regression splines (MARS) are 

nonparametric the 95% prediction intervals associated with each age at death model were 

calculated with cross-validation. Numerous classification methods were employed namely linear, 

quadratic, and flexible discriminant analysis, logistic regression, naïve Bayes, and random 

forests to identify the method that consistently yielded the lowest error rates. Because some of 

the multivariate subsets demonstrated small sample sizes, the classification accuracies were 
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bootstrapped to validate results. Both univariate and multivariate models were employed in the 

age and sex estimation analyses. 

Standard errors for the age estimation models were smaller in most of the multivariate 

models with the exception of the univariate humerus, femur, and tibia diaphyseal lengths. 

Univariate models provide narrower age estimates at the younger ages but the multivariate 

models provide narrower age estimates at the older ages. Diaphyseal lengths did not demonstrate 

any significant sex differences at any age, but diaphyseal breadths demonstrated significant sex 

differences throughout the majority of the ages. Classification methods utilizing multivariate 

subsets achieved the highest accuracies, which offer practical applicability in forensic 

anthropology (81% to 90%). Whereas logistic regression yielded the highest classification 

accuracies for univariate models, FDA yielded the highest classification accuracies for 

multivariate models. This study is the first to successfully estimate subadult age and sex using an 

extensive number of measurements, univariate and multivariate models, and robust statistical 

analyses. The success of the current study is directly related to the large, modern sample size, 

which ultimately captured a wider range of human variation than previously collected for 

subadult diaphyseal dimensions. 

 
Key Words: subadult, Multivariate Adaptive Regression Splines (MARS), basis splines, flexible 
discriminant analysis, logistic regression, growth, sex estimation, age estimation, diaphysis, 
anthropology 
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 1 

CHAPTER 1: INTRODUCTION 
“Techniques are not ends in themselves, they are only as good as the answers they provide. The answers are only as 
good as the questions, and the questions are only as good as the insights generated from observations made using 
the technique” Seeman et al. (1996) 

 

 

The main goal of a forensic anthropological analysis of unidentified human remains is to 

establish an accurate biological profile consisting of estimations of sex, age, ancestry and stature 

as well as a bone trauma analysis. Anthropologists turn towards skeletal collections as the 

primary source of data when designing and conducting research. However, and in contrast to 

techniques specific to adults, the largest obstacle in the creation or validation of techniques 

specific for subadults is the lack of large, modern samples (Weaver, 1988; Franklin, 2010). Only 

a few documented skeletal collections of subadults exist and available skeletal material is either 

antiquated or too limited to accurately reflect the range of human variation. The sample directly 

affects the validity of techniques. A historic sample may result in a technique that is applicable to 

bioarchaeology but inappropriate in forensic anthropology. For example, if the data originates 

from the 18th and 19th centuries, the created techniques do not reflect the modern population and 

ignores secular trends noted in children around the world (Meredith, 1976; Malina, 2004; 

Hawley et al., 2009; Anholts, 2013).  

Subadult age and sex estimation techniques are mostly derived from European or North 

American populations, rendering them ineffective when applied to South Africans as well as 

other populations in the world. While children achieve the same general milestones for growth 

and development, variation in growth is inherent as populations differ in genetic composition and 

environmental influences (Steyn and İşcan, 1997; Bogin, 1999; Wilson et al., 2011). The largest 

documented skeletal collection in South Africa, the Raymond A. Dart Collection, contains only 

72 individuals younger than twelve years of age. Many of the skeletons do not have all of their 

associated elements and/or are not considered modern with the dates of birth ranging from 1827 

to 1980 (Dayal et al., 2009). 

Age estimation is often the primary and only contribution to a biological profile for 

subadults because many anthropologists believe quantifiable sexually dimorphic differences are 

absent. Three of the most commonly used methods to estimate subadult age are dental 

development/eruption; long bone lengths; and the progression of epiphyseal fusion. Because 
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dental development is under stronger genetic control and is less affected by adverse 

environmental conditions, dental development is preferred over osseous development to estimate 

age (Lewis and Garn, 1960; Cardoso, 2007 a; b). In the absence of dentition, age assessment is 

most frequently derived from the comparison of long bone lengths to classic longitudinal growth 

studies. The adoption of longitudinal growth studies is likely a compensation for the paucity of 

subadult skeletons available for research (Stull et al., 2013). Growth studies use the length of the 

diaphysis to evaluate the growth of a specific child at a certain age and not to evaluate the age of 

the child with a certain bone length. An anthropologist cannot derive a 95% prediction interval 

for skeletal elements utilizing the results of published growth studies. However, supplying an 

error rate with estimations is in partial fulfillment of Daubert criteria.  

Sex estimation is an essential component to the biological profile and an accurate 

estimation greatly increases the chance of identification. However, anthropologists regularly 

state that diagnostic sex differences are not fully established until the completion of adolescence 

(Scheuer and Black, 2000; Rissech et al., 2008, 2013; López-Costas et al., 2012; Moore, 2013). 

Yet, the focus of most sex estimation studies are on skeletal elements that are recognized to only 

be sexually dimorphic after puberty such as the pelvis and mandible (Reynolds, 1945, 1947; 

Boucher, 1955, 1957; Edward E. Hunt and Gleiser, 1955; Bailit and Hunt, 1964; Gindhart, 1973; 

Sundick, 1977; Black, 1978; Weaver, 1980; Schutkowski, 1987, 1993; De Vito and Saunders, 

1990; Holcomb and Konigsberg, 1995; Molleson et al., 1998; Loth and Henneberg, 2001). 

However, no medical or anthropological literature indicates that the skeletal elements routinely 

evaluated (i.e. mandible and pelvis) will express sexual dimorphism prior to puberty. In contrast, 

endocrinological, biomechanical and medical literature suggest differences exist in the diaphyses 

prior to puberty (Malina and Johnston, 1967; Frost and Schönau, 2000; Cabo et al., 2012). Until 

recently, diaphyseal dimensions of children have been relatively ignored as a potential indicator 

of sexual dimorphism. 

Growth studies investigated sex differences but focused only on long bone lengths and 

not diaphyseal breadths (Maresh, 1970; Gindhart, 1973; Smith and Buschang, 2004). Recent 

articles that investigated diaphyseal breadths did not discover any significant differences, but  the 

authors adjusted for small sample sizes by collapsing age intervals (i.e. birth to five years and six 

to ten years). Collapsing ages likely masks any sex-specific trends, especially when size 

differences are associated with age differences. Two recent studies with relatively large sample 
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sizes demonstrated the potential of diaphyses in sex estimation with either high rates of correct 

classification or statistically significant sex differences in skeletal dimensions (Clark et al., 2007; 

Stull and Godde, 2013).  

The lack of accurate and reliable methods available to estimate age and sex in the 

subadult biological profile is an impediment in forensic anthropology. Thus, the goal of this 

research is to provide accurate and reliable methods for estimating age and sex of South African 

subadults from long bone lengths and breadths. Standard postcraniometric measurements were 

collected from the six long bones (humerus, ulna, radius, femur, tibia, and fibula) on 1380 

radiographic images (Lodox Systems Pty (Ltd), Sandton, South Africa), housed in one morgue 

(Salt River) and one hospital database (Red Cross War Memorial Children’s Hospital). 

Radiographic data from hospitals and morgues provides the necessary means to amass a large 

modern sample in order to appropriately examine age and sex differences within the subadult 

skeleton. Integration of radiographic images of children, multiple linear measurements and 

robust statistical analyses is a novel approach to a longstanding problem within the field of 

forensic anthropology. Furthermore, the derived age and sex estimation techniques offer country-

specific methods for South Africa. 
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CHAPTER 2: LITERATURE REVIEW 
“Dynamic control of growth is endowed by age- and gender-dependent interactions among key genetic, 
environmental, dietary, socioeconomic, developmental, behavioral, nutritional, metabolic, biochemical, and 
hormonal factors” Veldhuis et al. (2005:114).  
 

 
 

AGE 
 

With the cessation of growth, estimation of age in adult skeletons is based on 

degenerative patterns appreciated in particular bony interfaces such as the pubic symphysis or 

auricular surface. In contrast to adult age estimation, subadult age estimation is based on 

morphologic and metric evaluation of indicators as children grow and develop toward adult size. 

Because of the predictable changes that occur during growth and development, age estimation 

methods in subadults generally produce much smaller age ranges than those of adults and 

consequently are considered more accurate. While the absolute error is smaller in subadult age 

estimation compared to adult age estimation (because the age range is smaller), the relative error 

may be comparable (Nawrocki, 2010). Relative error is associated with the range of variation 

relative to the estimated age. For example, a three year age range for a subadult with a point age 

estimate of 8 years is narrower than a 20 year age range for an adult with a point age estimate of 

50 years; however, three years in relation to the developmental period of subadults may be 

comparatively as large as 20 years for the degenerative period of adults. 

Age estimation is considered to be the most critical and powerful tool in establishing a 

presumptive identification of an unknown child because few techniques are associated with the 

estimation of subadult sex and ancestry and even fewer produce consistent results (Scheuer and 

Black, 2000; Smith, 2007; Saunders, 2008; Franklin, 2010). Chronological age is the amount of 

time that has passed since an individual was born whereas biological age refers to the 

physiological state of an individual’s biological progression to maturity. Anthropologists 

estimate chronological age from biological age because a positive correlation exists. However, 

error in the estimate is introduced because the biological age is highly dependent on the 

adaptation of each individual to biomechanical stresses and environmental and genetic 

influences, all of which further introduce a source of intra-population variation (see Inherent 

Sources of Variation, page 23). As a person ages, the accumulation of the effects of extrinsic 
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factors increase and the precision of age estimates decrease (Jones et al., 1991; Scheuer, 2002; 

Nawrocki, 2010; Garvin et al., 2012).  

 When presented with unknown skeletal remains, numerous indicators exist to estimate 

chronological age, namely dental formation and eruption, appearance and fusion of ossification 

centers, and long bone lengths. Dental development is less susceptible to environmental stressors 

than skeletal growth and thus more closely reflects chronological age than dental eruption, long 

bone lengths or epiphyseal fusion (Lewis and Garn, 1960; Moorrees et al., 1963; Demirjian et al., 

1973; Sundick, 1977; Cardoso, 2007 a; b). However, in situations where an individual may be of 

low socio-economic status (SES), dental formation is even shown to be delayed when compared 

to chronological age (Lewis and Garn, 1960; Demirjian et al., 1985; Cardoso, 2005). When 

dental structures are not available for examination, metric analysis of the long bones is often 

used to estimate age (Sundick, 1978; Hoffman, 1979; Hoppa, 1992; Pfau and Sciulli, 1994; 

Ubelaker, 1999; Cardoso, 2007 b; Conceição and Cardoso, 2011). However, to date, few studies 

appropriately address subadult age estimation.  

From a survey of practicing forensic anthropologists based in the United States, the 

longitudinal growth study of Maresh (1970) was the most frequently reported study used to 

estimate age at death from skeletal remains when dentition was not available. The continued 

application of Maresh is due to the remarkable results of the Child Research Council (University 

of Colorado), a longitudinal growth study that commenced in 1935 and continued through the 

1960’s (Maresh and Deming, 1939; Maresh, 1943, 1955; Hoffman, 1979). The sample contained 

254 affluent children of European ancestry born in the early 20th century (Maresh and Deming, 

1939; Maresh, 1970; Gindhart, 1973; Hoffman, 1979). Diaphyseal length measurements of the 

six long bones were collected at 2 months, 4 months and 6 months and then biannually from 1 

year through 18 years of age with the aim to establish normal long bone lengths for specific ages 

(Maresh, 1955, 1970). Data were collected through radiographic images with the 

acknowledgment of approximately 2% – 3% magnification (Maresh, 1970). Maresh provided 

mean diaphyseal lengths, with and without the inclusion of the epiphysis (dependent on age), and 

in some publications the 10th, 50th and 90th percentiles per age. Other methods acknowledged in 

the survey were adopted from evaluations of growth in historic or prehistoric populations (i.e. 

Stewart, 1954; Johnston, 1962; Sundick, 1972; Merchant and Ubelaker, 1977). Though neither 

longitudinal growth studies nor evaluations of historic/prehistoric growth were designed to 
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predict age-at-death, anthropologists regularly apply them in forensic settings. 

Longitudinal growth studies follow the same group of children for a specific duration (i.e. 

for several years) and take the same set of measurements from each child at regularly scheduled 

observations (usually 6 months or 1 year). In a cross-sectional study – analogous to data obtained 

from prehistoric populations – the data consists of each child being measured once and 

consequently all children are different in each cohort. Longitudinal and cross-sectional data have 

distinct designs and produce different results. Because cross-sectional data include data from 

each individual only one time, the data provide population means, variabilities, and ultimately 

patterns, for each measurement in the sample (Eveleth and Tanner, 1990; Hoppa, 1992; Lampl 

and Johnston, 1996; Hauspie and Roelants, 2012). 

In longitudinal studies, data heaping is a common problem because measurements are 

collected at the same time for each individual each year. For example, the average age for 5 year 

olds in the Maresh sample is 5.25 years because data were recorded near their birthday and six 

months later, while the average age in a cross-sectional study is 5.5 years.  Because cross-

sectional studies offer a random sample of the population, more variation is evident for each age 

and less auto-correlation is evident of measurements, an outcome of repeated measurements on 

the same individuals, which inherently violates the assumption of independent errors (Bock and 

du Toit, 2004). The variability in diaphyseal measurements is far greater among children 

randomly sampled from a population rather than a sample of the same children over time 

(Ousley, 2013). Overall, a cross-sectional study design is better suited for age estimation and a 

longitudinal study is better designed for evaluating growth rates (Eveleth and Tanner, 1990; 

Ousley, 2013). Thus, when results from longitudinal studies are inappropriately applied to 

subadult skeletal material, a bias termed misapplication exists. Furthermore, utilizing results 

from growth studies usually implies the samples are antiquated and specific to one population 

group, thus additional biases – termed temporality and demographic composition – are 

introduced in the age estimation (Stull et al., 2013 a).  
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BIASES IN AGE ESTIMATION 
 

Misapplication is the term for errors associated with the different aims of research and 

their subsequent designs, either evaluating growth or estimating age. Longitudinal growth studies 

generally evaluate the central tendency or normal variation in diaphyseal lengths for known 

chronological ages so as to understand a pattern in growth. However, forensic anthropologists 

need to know normal variation in chronological age using known diaphyseal lengths so as to 

estimate age from skeletal remains. Essentially, most studies present variation in long bones 

within an age cohort but do not present the potential range of variation in the age assessment 

(Hoppa, 1992). Although an emphasis within this literature review is placed on the 

inapplicability of longitudinal growth studies, several forensic and biological anthropology 

studies approach age estimation in the same manner (Hoffman, 1979; Pfau and Sciulli, 1994; 

AlQahtani et al., 2010).  

The requirement to present error rates or to quantify/qualify prediction estimates is in line 

with best practices in forensic anthropology (Christensen, 2004; Dirkmaat et al., 2008). As 

would be expected from a research design evaluating normal growth, the Maresh results were 

published with mean diaphyseal lengths per age with associated percentiles. While an 80% 

prediction interval can be estimated from the 10th and 90th percentiles, if they are supplied, 

forensic anthropologists need to report a 95% prediction interval. The explicit prediction interval 

is important following the repercussions of the Daubert decision which emphasizes the use of 

error rates (Daubert vs. Merrell Dow Pharmaceuticals, 1993). Longitudinal data are unsuitable 

for application in forensic anthropology because the point estimation based on interpolation from 

age-specific means or percentiles of long bone lengths is unknown and probably large (Himes et 

al., 1977; Scheuer et al., 1980; Stull et al., 2013 a). 

The Rostock Manifesto is a theoretical approach named at a workshop entitled 

‘‘Mathematical Modeling for Paleodemography: Coming to Consensus’’ held at the Max Planck 

Institute in June 1999. The approach was developed in an attempt to discuss and provide 

guidelines for appropriate biostatistical models for age at death. Although the goals of the 

meeting specified to adult age estimation, the theoretical approaches are also applicable to 

subadults (Hoppa and Vaupel, 2002). From this meeting, anthropologists recognized that when 

they conduct forensic or paleodemographic anthropological analyses the interest is in the 
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probability that the remains belong to an individual of age a with a known diaphyseal length l, 

Pr(a|l) (Hoppa and Vaupel, 2002). The Pr(l|a) is the research design that is followed during most 

longitudinal growth studies or when there is a known reference population. The probability 

statements are not equal, thus anthropologists should not utilize the percentiles provided in 

growth studies to estimate age at death, as the research designs do not have interchangeable goals 

and outcomes.   

Numerous large longitudinal growth studies commenced in the 1930's. The disparity 

between the population when the study commenced and the modern-day population forms the 

temporality bias. The accumulated data from the longitudinal studies are antiquated and may not 

be appropriate to compare to modern samples. The developmental trends identified in the growth 

studies that commenced in the 1900’s reflect those of a population that experienced different 

health standards, nutrition, and environmental factors compared to a 21st century population. Use 

of references based upon historical samples overlooks secular changes, more specifically the 

well-documented secular increase in stature that has been observed between modern populations 

and earlier generations (Meredith, 1976; Steckel, 1994, 2008; Nadler, 1998; Meadows Jantz and 

Jantz, 1999; Malina, 2004; Heuzé and Cardoso, 2008; Hawley et al., 2009; Anholts, 2013).  

The demographic composition bias is due to the tendency of researchers conducting 

growth studies to focus on one discrete population group. Estimation of age in one population 

that is derived from a different group ignores knowledge of differential environments (i.e. SES) 

or genetic differences among groups which causes differences in developmental and 

maturational trends and subsequently generates significant error in age estimations (see 

Population Differences, page 24) (Lampl and Johnston, 1996; Ontell et al., 1996; Bogin, 1999; 

Schmeling et al., 2000, 2006; Crowder and Austin, 2005). Systematic error is a similar concept 

to demographic bias that is defined as individuals from a shared environment will exhibit 

relatively similar patterns when compared to the reference population (Lampl and Johnston, 

1996). For example, studies involving living populations routinely demonstrate that stature is 

highly correlated with nutrition, specifically short stature is common in populations with 

nutritional deficiencies (Eveleth and Tanner, 1990; Larsen, 1995; Bogin, 1999). Because stature 

and diaphyseal lengths are strongly correlated, the accuracy of the final age estimate is 

dependent on the unknown belonging to the same population with similar environmental 

conditions. Catch-up growth, or an increase in percentile position caused by a height velocity 
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that is beyond normal limits for age and/or maturity, can make up for subadult deficiencies when 

the cause of the growth suppression is removed (Prader et al., 1989; Boersma and Wit, 1997). 

However, a population that suffers from adverse environments throughout the entire growth 

process may not experience this phenomenon. 

Most growth studies evaluate males and females separately, which is a further limitation 

associated with the demographic composition bias because of the lack of sex estimation 

techniques available prior to adolescence (Johnston, 1962; Ruff, 2003). Therefore, when 

anthropologists attempt to adapt the results of growth studies, they are inherently introducing 

error into the estimates. The additional error is because of either the combination of diaphyseal 

lengths per age and sex or the estimation of age following an estimation of sex. Because 

anthropologists cannot currently estimate SES, sex, or ancestry in subadult skeletal remains, the 

accuracy of the final age estimate decreases if the technique was not derived from the same 

sample to which it is applied (Stull et al., 2013 a).  

The accuracy and reliability of age estimation techniques are central critiques of 

paleodemography and should also be of concern in forensic anthropology (Hoppa and Vaupel, 

2002). Descriptive statistics should be used to assess whether the child was developing normally 

if a method was based on a specific reference population with the purpose to assess the Pr(l|a) 

(Tanner, 1986). The biases associated with the adoption of longitudinal growth studies to 

estimate age at death in forensic anthropology warrants investigation of appropriate statistical 

techniques and the inclusion of samples reflective of the entire population rather than a specific 

subset.  

 

SUBADULT AGE ESTIMATION TECHNIQUES 
 

As noted above, studies frequently cited in forensic anthropological analyses are in 

actuality not designed to estimate age at death of unidentified skeletal remains. Maresh (1970) is 

the most commonly cited study conducted in North America though the results are based on the 

Child Research Council longitudinal growth study conducted in Denver, Colorado during the 

years of 1935 and 1967. The results were presented as normal variations (percentiles) of fat, 

muscle, and bone lengths in healthy children of one year age intervals from birth to 18 years in 

numerous publications and throughout multiple decades (Maresh and Deming, 1939; Maresh, 
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1943, 1955, 1961, 1966). Maresh (1955) acknowledged the group of children that comprised the 

Child Research Council sample should not be considered representative of all children in the 

United States. 

An additional study that has historically been mentioned in the literature is Merchant and 

Ubelaker (1977), which is based on the long bone lengths of the protohistoric Arikara. As age at 

death was unknown for the Arikara, dental formation stages were chosen for all of the available 

individual teeth and the ages of each individual were averaged for a final age estimation 

(Merchant and Ubelaker, 1977). Similar to other limitations and sources of error as mentioned in 

the previous sections, compounded error in the estimates is introduced from the reliance on 

dental formation to estimate age and then the use of the age estimation to evaluate diaphyseal 

lengths. The results were used to provide a range of diaphyseal lengths per year age interval. 

Similar to Maresh (1970), the purpose was not to estimate age in a modern population but rather 

to evaluate diaphyseal growth in a protohistoric population.  

Recently, Rissech et al. (2008), Rissech et al. (2013) and López-Costas et al. (2012) 

investigated age differences in the humerus, femur, and tibia, respectively. Age distributions of 

the sample included individuals from birth to young adults (17 – 25 years). The three 

manuscripts provided univariate and bivariate regression formulae to estimate age from 

diaphyseal lengths independent of sex (Rissech et al., 2008, 2013; López-Costas et al., 2012). 

The methodology follows the assumption that the evaluated skeletal remains will show similar 

growth patterns to other Western European populations. However, their samples are historic, 

dating from the late eighteenth to late twentieth century, and most likely do not reflect a modern 

population. Rissech et al., (2008) demonstrated that the diaphyseal length of the femur explained 

93% of the variability in age. Analyses were conducted on a pooled male and female sample 

because no significant differences in diaphyseal lengths were noted between the sexes. Rissech et 

al. (2013) evaluated age differences in the diaphyseal length and proximal and distal breadths of 

the humerus. Similar to the femur, both sexes were pooled as no statistical differences were 

found in the measurements. Univariate models for all three variables were either first or second-

degree polynomials with R-squared values of 83% - 86% (Rissech et al., 2013). The authors 

suggested that the humerus was the preferred element to estimate age-at-death due to the later 

fusion of the distal epiphysis compared to the other epiphyses. López-Costas et al. (2012) 
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evaluated the diaphyseal length, distal breadth and proximal breadth of the tibia. Univariate first-

degree polynomial models for the tibia explained between 87% and 89% of the variability in age.   

Numerous problems exist with the models. First, the presented techniques may be 

suitable for anthropologists evaluating historical specimens, but not for practicing forensic 

anthropologists who work with modern samples. Second, the research designs followed a proper 

intention to estimate age but several errors were introduced. A tendency exists for researchers to 

provide regression formulae with the associated standard error (SE) and correlations. Although a 

statistician could use the results (SE and correlation coefficient) to compute a prediction interval 

for an individual prediction, most anthropologists are not able to and thus the method does not 

fulfill Daubert criteria.  Further, the presentation of a SE implies that the variation in diaphyseal 

dimensions is consistent through the ages. However, as previously stated, variation is known to 

increase as age increases. An additional limitation of these studies is the small number of 

individuals per age interval, which resulted in collapsing the data into five year age intervals. 

The authors consider this collapse as an acceptable form of dealing with small sample sizes but 

the collapse is biologically unsuitable for growth data as this process ignores the differential 

growth rates and attainments of each biological phase, which varies depending on environment, 

population, etc. (Cowgill et al., 2012).  

 

 

APPLICATION OF LONGITUDINAL DATA TO ESTIMATE AGE 
 

In an attempt to evaluate the accuracy of the above-mentioned studies on a modern 

population, Stull et al. (2013 a) obtained diaphyseal length measurements from the humerus, 

radius, femur, and tibia from a modern South African population to estimate age based on results 

from Maresh (1970) and Merchant and Ubelaker (1977). Each measurement was compared to the 

two references in order to obtain an age range and a point estimate. The age range was used to 

determine percent correct, which gauged the accuracy of each ‘method’, and the point estimate 

was utilized to evaluate bias, which conveyed whether the estimated age consistently over- or 

underestimated chronological age. 

Stull et al. (2013 a) demonstrated that chronological age fell within the estimated age 

interval only 21.5% of the time following the Maresh standard and 33% of the time following the 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 12 

Merchant and Ubelaker standard (Tables 2.1 and 2.2). The four long bones in the sample showed 

consistent trends in bias for both standards; age was overestimated for the first three years and 

then age was consistently underestimated until 12 years. Student’s t-tests, with Bonferroni 

correction, showed statistically significant differences (p < 0.001) between the South African and 

Maresh North American sample for ages 1, 2, 7 and 11 years for the ulna, radius, humerus, and 

femur. Without Bonferroni correction, all long bones except for the radius demonstrated 

statistically significant differences by age 7 (p < 0.05).  

Comparison of mean long bone lengths provided an evaluation of subadult growth 

between the samples. The South African sample had larger mean long bone lengths than the 

Maresh North American sample at birth. From 4 to 7 years, South Africans begin to show 

smaller dimensions than their North American counterparts and at 12 years of age the South 

Africans are smaller than the North Americans. The pattern was particularly apparent in the 

lower limbs where differences were as large as 30mm (Stull et al., 2013 a). Ubelaker (1999) 

noted, when comparing Indian Knoll – a prehistoric Native American group – to the Arikara, that 

their growth trajectories were similar until approximately 7 or 8 years of age. At this time, the 

Indian Knoll population began to lag in growth while the Arikara continued at the same rate. 

Similar results were found between the Maresh North American sample and modern South 

African sample. Differential growth rates will result in differential adult statures – either because 

of genetics or environmental situations. On average, adult South Africans are shorter than North 

Americans and thus are also expected to have shorter limbs (Steyn and Smith, 2007). Based on 

the results of the comparisons between modern South Africans and North Americans and 

between two protohistoric Native American groups, disparities in adult size may commence 

around 7 years of age. Besides the fact that the two studies (Maresh and Ubelaker) are not 

applicable methods to estimate age, population differences are apparent between the two 

samples.  
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Considering that age estimation is proclaimed to be the most powerful tool for forensic 

anthropologists when conducting skeletal evaluations on subadults, a review of the literature 

suggests that age estimation techniques are as unreliable as sex or ancestry estimation. Forensic 

anthropologists, irrespective of the temporal inconsistencies or inappropriateness of the data, 

routinely cite longitudinal growth studies when conducting age estimations. Recent publications 

have approached age estimation appropriately, however, the available cross-sectional data 

remain antiquated and unsuitable for comparison to modern children.  

 

 

 

 

 

 

 

 

 

 

 

 

SEX 
 

Sex estimation of subadult skeletal remains is consistently recognized as inaccurate. 

However, the bulk of published methods focus on shape and morphological differences of 

sexually dimorphic elements in adults, such as the ilium and mandible, though minimal literature 

is available to suggest that differences exist in subadult skeletal structures. In contrast, a plethora 

of medical, clinical, and biomechanical literature documents skeletal differences between males 

and females throughout growth that should hypothetically create different skeletal structures for 

males and females and includes hormonal differences, anthropometric and physiological 

differences and sex-specific biomechanical adaptations. 

 

Table 2.1 – Percent correct for the 
modern South African data using Maresh 
(1970). 

 N Percent 
Correct 

Humerus 101 37% 
Radius 104 17% 

Femur 100 18% 

Tibia 85 14% 

Total  21.50% 

Table 2.2 – Percent Correct using the 
modern South African data using 
Ubelaker (1999). 

 N Percent 
Correct 

Humerus 93 54% 
Radius 86 31% 

Femur 76 32% 

Tibia 89 21% 

Total  33% 
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HORMONAL INFLUENCES  
  

Hormones affect the developing skeleton in a systemic nature that directly affects human 

body size, proportions and composition (Cabo et al., 2012). Following sex differentiation in the 

fetus, discrete sex characteristics are evident, quantifiable and continue through childhood. Sex 

and hormonal differences begin in the human embryo six to eight weeks after conception when 

the Sry gene of the Y chromosome commences testicular differentiation (Tanner, 1989; 

Knickmeyer and Baron-Cohen, 2006). Testosterone secretion is high in the male fetus between 

weeks 10 and 20 because of further development in the Leydig cells (Riggs et al., 2002; 

Saunders, 2008). In contrast, and despite low levels of estrogen being present in the fetal system, 

the ovaries in a female fetus are inactive (Smail et al., 1981; Grumbach et al., 2003). At week 

twelve, the process of sex differentiation is largely complete. However, the critically sensitive 

period, when environmental influences can modify tissue development, may last up to twenty-

four weeks in utero (Knickmeyer and Baron-Cohen, 2006). The time period of eight through 24 

weeks in utero is considered the most important in terms of sexual differentiation (Knickmeyer 

and Baron-Cohen, 2006).  

Within the first day after birth, male testosterone levels rapidly decrease only to increase 

again within a week (Quigley, 2002; Riggs et al., 2002; Fechner, 2003; Knickmeyer and Baron-

Cohen, 2006). Testosterone levels remain high for the first year of life with a peak between the 

first and third month of life with median levels equivalent to the levels associated with 

adolescence (Quigley, 2002; Riggs et al., 2002; Fechner, 2003; Aksglaede et al., 2006; 

Knickmeyer and Baron-Cohen, 2006; Saunders, 2008). Between four to six months, the 

testosterone levels decline and around nine months of age, testosterone levels are equivalent to 

typical prepubertal levels (Quigley, 2002). This phase is referred to as the neonatal surge (Riggs 

et al., 2002; Knickmeyer and Baron-Cohen, 2006). Although the function of the neonatal surge is 

not fully understood in humans, this surge is most likely related to the preparation for future 

development, growth and reproduction. For example, interference with the neonatal surge can 

later disrupt testicular function in puberty and result in reduced muscle mass, shorter final 

stature, and smaller bone size (Mann et al., 1989; Arfai et al., 2002; Quigley, 2002; Veldhuis et 

al., 2005). Because sex steroids catalyze changes during puberty, one could presume that an 

equivalent level of hormones as seen in the neonatal hormonal surge may be responsible for 
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increases in fat and musculoskeletal development during infancy and adolescence (Bogin, 1999; 

Arfai et al., 2002). 

Female infants also demonstrate an immediate postnatal activation of the hypothalamic-

pituitary-gonadal axis (i.e. endocrine system), but the dynamics are more complex and hormonal 

levels heterogeneous (Forest et al., 1973; Quigley, 2002; Fechner, 2003). While Luteinizing 

hormone (LH) is the dominant hormone in males, follicle-stimulating hormone (FSH) is the 

predominant hormone in females. During the first four months of life, a rapid increase in ovarian 

follicular maturation, which is controlled by FSH, occurs and results in an increased level of 

estradiol production between two and four months and continues through 24 months (Quigley, 

2002). The predominant FSH in the first two years of life projects future development for 

females. Prepubertal males and females have low levels of sex steroids but the earlier rise of 

FSH than LH is again documented during the onset of puberty (Quigley, 2002; Aksglaede et al., 

2006). 

Sex steroids have specific functions at the organ, tissue, and cellular levels within the skeletal 

system. Both testosterone and estrogen affect osteoblasts and bone formation. Yet, a disparity in 

the distribution and accumulation of androgen and estrogen receptors causes differential tissue 

sensitivity (Tanner, 1989); therefore, the effects of the sex steroids on osteoblasts differ in males 

and females (Riggs et al., 2002). While estrogen impacts endosteal and trabecular bone growth 

as well as bone turnover, testosterone opposes it with periosteal apposition (Riggs et al., 2002; 

Veldhuis et al., 2005; Högler et al., 2008; Cabo et al., 2012). Additional responsibilities of 

estrogen include regulating bone resorption, promoting epiphyseal fusion, and increasing tensile 

bone strength. Larger bone sizes have been documented in prepubertal males compared to 

prepubertal females and attributed to a more rapid periosteal apposition relative to interstitial 

growth in boys than girls prior to puberty (Clark et al., 2007). Besides periosteal apposition – the 

main cause for physiological sex differences – testosterone indirectly affects the skeleton by 

inhibiting fat accumulation and inducing muscle development (Cabo et al., 2012). 

Concentrations of estrogen and testosterone gradually increase from mid-childhood until puberty 

when the larger magnitude of effect is observable (Garnett et al., 2004). 
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ANTHROPOMETRIC AND PHYSIOLOGICAL SEX DIFFERENCES  
 

Quantitative anthropometric and physiological differences between males and females 

originate in the prenatal period and continue throughout growth and development. Numerous 

studies documented lower average birth weights, lengths, and head circumferences in female 

neonates compared to male neonates (Garn and Keating, 1980; Largo et al., 1980; Tanner, 1989; 

Thomas et al., 2000; Malina et al., 2004; Veldhuis et al., 2005; Clark et al., 2007). Furthermore, 

sex differences consistently increase as age increases (Thomas et al., 2000). Divergence of male 

and female weight occurs at approximately 24 weeks in utero and statistically significant 

differences are apparent at birth (Veldhuis et al., 2005); however, negligible differences are 

noted in the weight of males and females throughout childhood (Tanner, 1989; Clark et al., 

2007). Specific to South Africa, a large sample of black, white, coloured, and Indian children 

demonstrated significant differences between the sexes in mean heights and weights from birth 

through 2 years of age (Cameron et al., 1998). This trend continues through growth with males 

being consistently heavier and taller than females until approximately 9 years of age, with the 

onset of puberty in females (Högler et al., 2008). In total, sex differences noted in adult linear 

body dimensions are stated to emerge during adolescence (Hauspie and Roelants, 2012). 

Besides anthropometric differences, sex-related disparities in body composition appear as 

early as the 15th week in utero and continue throughout puberty. One of the many roles of 

testosterone is to inhibit fat accumulation, thus males demonstrate greater muscle mass and more 

fat-free mass than females (Garnett et al., 2004; Veldhuis et al., 2005). The exact age that sex 

differences in the relative composition of fat-free mass are noted is unknown. However, 

researchers have reported differences as early as 3 years of age and statistically significant 

differences prior to the onset of puberty (Poissonnet et al., 1984; Prader et al., 1989; Arfai et al., 

2002; Garnett et al., 2004; Malina et al., 2004; Clark et al., 2007). The sex differences in body 

composition, a result of differences in sex steroids, is probably responsible for the sex 

differences in muscle mass, which is apparent both in relative and absolute terms, in adolescence 

(Malina, 1974, 2004). The differences between muscle and bone mass are much greater between 

the sexes than the average weight differences (Tanner et al., 1981; Cabo et al., 2012).  

Sex differences in maturity are also apparent within the fetal period and continue 

throughout development. For example, female fetuses are skeletally more advanced than male 
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fetuses, ranging from one and a half to three weeks in the third trimester to six weeks at birth 

(Tanner, 1989; Veldhuis et al., 2005). The trend continues until puberty, when females are 

approximately 2 years more advanced than males (Tanner, 1989; Hauspie and Roelants, 2012). 

Sex differences have also been apparent in growth velocity after the 36th week in utero (Thomas 

et al., 2000; Veldhuis et al., 2005). Growth trajectories, along with shape, size, and other sex 

differences, exist for prepubertal males and females (Tanner, 1989; Humphrey, 1998).  

 

 

SEX-SPECIFIC BIOMECHANICAL DIFFERENCES DURING GROWTH 
 

The mechanostat is the combination of all mechanical and non-mechanical (i.e. 

hormones) factors that allow for a healthy load-bearing bone to satisfy intended functions and 

demonstrate bone’s adaptive capabilities (Frost, 1988). The mechanostat theory postulates that 

during growth an increase in muscle forces is positively correlated to dimensions, size, and 

strength of bone. Reduced muscle development (i.e. an unloaded bone) is negatively correlated 

to bone dimensions, size, and strength; essentially, requirements associated with the non-skeletal 

tissues controls the growth of the skeletal tissues (Moss, 1973; Frost, 1988; Schoenau et al., 

2002; Schoenau and Fricke, 2008). The intrinsic relationship between muscle and bone is 

reflected in a linear relationship between the cross sectional areas of muscle and bone (Schoenau 

et al., 2002). This is in accordance with biomechanical models that state when a bone has force 

exerted upon it, the bone will respond with an increase in cross-sectional area. Thus in an 

indirect osteogenic effect, larger muscles exert higher forces on bones which results in larger 

bones (Vicente Rodríguez, 2006). Since the compressive forces are associated with muscle 

volume, the increase in transverse diameter is also apparent in non-weight bearing bones such as 

the upper limb. The over-proportionate increase in cortical thickness, due to the effects of 

testosterone, also contributes to overall thicker bones in males (Arden and Spector, 1997; Riggs 

et al., 2002).   

Muscle contractions, rather than body weight, govern the postnatal structural adaptation 

to loading in the skeleton such that an increase in muscle strength allows for greater force 

exerted on muscle origin sites which ultimately stimulates growth (Weaver, 1980 b; 

Schutkowski, 1993; Schönau, 1998; Daly et al., 2004; Vicente Rodríguez, 2006; Högler et al., 
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2008). For example, growth spurts in humeral cortices corresponds to a contemporaneous peak 

in muscle mass (Tanner et al., 1981). Therefore, the greater muscle mass of males directly affects 

skeletal growth due to increased compressive forces exerted on the diaphyses (Schönau, 1998; 

Högler et al., 2008; Cabo et al., 2012), specifically an increase in cortical width from differential 

distributions of sex steroids (Riggs et al., 2002). The theory is based on the knowledge that 

skeletal muscles develop prior to bone mass. Therefore, as muscles increase in size and strength 

– which occurs continuously throughout childhood – the skeletal structures adapt to the increased 

load with added mass, size, and strength (Schönau, 1998; Daly et al., 2004). However, the 

greater muscle mass of males was shown to account for only 12% to 16% of the variance in bone 

size, which indicates that factors besides muscle size also contribute to the bones response to 

loading (Daly et al., 2004). Previous research demonstrates quantitative sex differences in 

muscle and cortical thicknesses of humerii and tibiae of subadult males and females such that 

males have larger dimensions throughout the ages of 6 to 16 years (Johnston and Malina, 1966; 

Malina and Johnston, 1967; Rogol et al., 2000; Arfai et al., 2002; Wells, 2007). Similar findings 

were noted in the second metacarpal (Smithgall et al., 1966). Thus, the change in bone geometry 

throughout growth is consistent with a sex-specific biomechanical adaptation. 

 

 

SUBADULT SEX ESTIMATION TECHNIQUES WITHIN ANTHROPOLOGY  
 

A multitude of subadult sex estimation studies present with low classification accuracies 

and therefore, researchers have suggested that sexual dimorphism may not present with the same 

magnitude as noted in adults. However, the most popular approach for subadult sex estimation 

techniques has been to evaluate differences in the pelvis and the mandible, presumably because 

the elements are sexually dimorphic in adults. Less emphasis has been placed on osteometric 

analyses. Rather than assuming the absence of sexual dimorphism, the research design and 

sampling of previous studies needs to be examined.  
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MORPHOLOGICAL APPROACH  
 

In 1876, Fehling was the first to address sex differences in the shape of the fetal and 

neonate pelvis and many anthropological researchers have followed this line of enquiry 

(Reynolds, 1947; Boucher, 1955, 1957; Weaver, 1980 a; Schutkowski, 1993; Holcomb and 

Konigsberg, 1995; Molleson et al., 1998; Loth and Henneberg, 2001; Sutter, 2003; Franklin and 

Cardini, 2007; Franklin et al., 2007; Vlak et al., 2008; Wilson et al., 2011). Although sex 

differences are recognized in fetal and neonate skeletal structures with resultant moderate 

classification accuracies, an inconsistency in the observed classification accuracies is noted when 

the techniques are tested on separate samples. Using the greater sciatic notch and lengths of the 

ilium and femur, Fazekas and Kósa (1978) achieved 80% correct classification but using the 

same material Schutkowski (1987) achieved only 70% correct classification.   

Schutkowski (1993) more recently identified sex differences in the pelvis on a sample 

that ranged from birth to 11 years. The pelvic features, inclusive of the angle and depth of the 

greater sciatic notch, arch criterion, and curvature of the iliac crest, demonstrated sexually 

dimorphic differences with classification accuracies between 70 and 95% (Schutkowski, 1993). 

Numerous authors explored the Schutkowski (1993) methodology on various population groups. 

Although Sutter (2003) obtained moderately high accuracies (79 – 81%) on a prehistoric Chilean 

population, Vlak et al. (2008) yielded low correct classifications on a Portuguese sample and was 

unable to confidently identify sex differences, especially in age groups younger than 11 years. 

Comparable accuracy levels were identified only in the oldest age interval from 11 to 15 years.  

An attempt to quantify morphological features has also been made in an effort to increase 

objectivity and control for increases in size as age increases (Holcomb and Konigsberg, 1995; 

Wilson et al., 2011). Although sexual dimorphism in the fetal pelvis was noted, specifically in 

the shape of the sciatic notch, levels of dimorphism were not comparable to those in adults. 

Furthermore, the practicality in forensic application was limited to a large overlap between males 

and females (Holcomb and Konigsberg, 1995). When studies included older individuals, 

acceptable classification accuracies were obtained only for age intervals from 11 to 14.99 years 

(Wilson et al., 2011). Sexually dimorphic differences for individuals between birth and 5 years 

were also identified in mandibular morphology, namely the protrusion of the chin, shape of the 

dental arcade, and gonial eversion (Schutkowski, 1993). Loth and Henneberg (2001) presented a 
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new methodology based on observations of the mandibular body shape and symphyseal base on 

a sample of 62 individuals, aged from birth to 19 years. Classification accuracies in the original 

article were considered acceptable (81%); however, similar to the studies focused on pelvic 

morphology, tests conducted on separate samples resulted in low accuracies that ranged from 58 

to 64% (Scheuer, 2002; Galdames et al., 2008). Using geometric morphometrics, Franklin et al. 

(2007) were unable to repeat the distinct male and female shape differences that Loth and 

Henneberg (2001) identified on the mandible.  

One common thread in all the above-mentioned research studies is that the original 

researchers seem to achieve higher accuracies than subsequent researchers, an effect which may 

be largely attributed to population differences in growth. The second similarity throughout all of 

the literature is that investigated areas are regions on the skeleton known to change during the 

pubertal hormonal surge. Females prepare for reproductive capabilities during this pubertal surge 

and, as one might expect, this is the primary reason for the pelvis to be the most sexually 

dimorphic element in the adult skeleton. Cardoso and Saunders (2008: 28) note that: 

 
“because the innominate shows such a late developmental pattern and late 
attainment of adult size, sexually dimorphic features may not be readily 
recognizable before puberty. Sexual dimorphism in the greater sciatic notch-
auricular surface area, and particularly the composite arch, is probably an 
expression of that developmental trajectory.”  

 

The skeletal elements that exhibit sexual dimorphism in adult skeletons do not generally attain 

adult levels until adolescence. Furthermore, no medical literature is available to assume 

morphological differences in the pre-pubertal skeleton would exist. In contrast, a multitude of 

literature, from numerous fields, demonstrates sexually dimorphic differences in prepubertal 

individuals that may be evident through metric analysis of the long bones. 

 

 

OSTEOMETRIC APPROACH 
 

Sex differences in subadult skeletal remains, evaluated through osteometric analyses, 

have not been commonly cited in the anthropological literature in comparison to morphological 

analyses. While some researchers have previously evaluated bone breadths, the dimensions were 
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not evaluated in terms of sex estimation but rather in an attempt to understand sexually 

dimorphic differences in growth rate and duration or purely for understanding normal variation 

in growth (Maresh, 1961, 1966; Malina and Johnston, 1967). Malina and Johnston (1967) did 

note that males prior to the onset of adolescence displayed greater breadths in the tibia and 

humerii than females of the equivalent age. Similarly, Humphrey (1998) identified sex 

differences in long bone diameters between birth and adolescence while sex differences in long 

bone lengths were not observed until adolescence. Over 60% of the sexual dimorphism noted in 

the long bone diameters could be attributed to differential growth rates, thus “about half of the 

variation in sexual dimorphism is related to the age of attainment of 90% adult size” (Humphrey, 

1998: 64-66). Essentially, earlier growing parts of the skeleton tend to display less sexual 

dimorphism than later growing elements (Schultz, 1962).  

Choi and Trotter's (1970) employed a metric approach with the intention to estimate sex 

from the weight and length of black and white North American long bones of 114 fetuses aged 

16 to 44 weeks. Statistically significant sex differences were revealed in ratios of lengths and 

weights of the diaphyses. The provided discriminant functions for the humerus, radius, femur 

and tibia correctly classified the sex of 72% of the fetal remains within their study (Choi and 

Trotter, 1970). Following the hypothesis of greater muscle mass in males and in conjunction with 

the neonatal hormonal surge, Stull and Godde (2013) utilized length and breadth measurements 

of the humerus and femur of infants (n=85) from birth to one year with discriminant function 

analysis. Discriminant function analyses elucidated sexually dimorphic differences between the 

sexes with correct classification ranging from 89 – 97% using the femur midshaft and humerus 

distal breadth. The study provided a successful model for future analyses of subadult long bones. 

 Rissech et al. (2013), Rissech et al. (2008) and López-Costas et al. (2012) evaluated sex 

differences in long bone lengths and breadths from the same samples which the authors created 

age estimation formulae. Females were larger than males from birth to four years, from five 

years onwards males were larger than females for the diaphyseal lengths of the humerus, femur, 

and tibia as well as the proximal and distal breadths of the humerus and proximal breadth of the 

tibia. The distal breadth of the tibia was the only measurement where males were larger for the 

entire period of birth to 25 years (López-Costas et al., 2012); however the differences were not 

significant. 
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Longitudinal growth studies also explored and identified sex differences in diaphyseal 

lengths. A subset of individuals of the Fels longitudinal study sample yielded remarkable sex 

differences for the radius; radius lengths were significantly greater in males from 1 month to 10 

years but between the ages of 10.5 years and 13 years boys and girls were comparable (Gindhart, 

1973). Due to the earlier adolescent growth spurt of females, this sexually dimorphic pattern is 

expected. The outcomes of the Fels Longitudinal Study corroborate findings from the Child 

Research Council sample which noted that males presented with larger radius and ulna 

diaphyseal lengths from infancy to 11 years and then again from 13 to 18 years (Maresh, 1970; 

Smith and Buschang, 2004). Males consistently presented with larger diaphyseal lengths than 

females until adolescence, after which the trend reversed because females experienced a younger 

age for the onset of adolescence. Male diaphyseal lengths were once again larger following the 

end of adolescence and the completion of the male growth spurt (Maresh, 1970). The femur, 

tibia, and humerus did not demonstrate any statistically significant differences in prepubertal 

periods, but as would be expected, males were always larger following puberty (Maresh, 1970). 

The tibia is the only element that exhibits a discrepancy between the two sets of longitudinal 

growth studies. While no differences in sexual dimorphism were noted in the Child Research 

Council sample, male tibia were always larger than female tibia in the Fels sample (Gindhart, 

1973). Although not significant, Smith and Buschang (2004) demonstrated that the tibia of the 

females from the Child Research Council sample began to diverge from the tibia of males around 

7 years of age. A reanalysis on a subset of the Child Research Council data revealed significant 

sex differences in long bone lengths at 16 years but no differences at 10 years (Smith and 

Buschang, 2005). 

From the presented literature, a reasonable assumption is that size and shape differences 

can be quantified in long bones prior to puberty. Medical, clinical, and anthropological literature 

demonstrate differences exist in body dimensions both in utero and through growth as well as 

differences in physiology which yield distinct skeletal structures due to differential distribution 

of estrogen and androgen receptors. Furthermore, anthropological literature has identified that 

sexually dimorphic differences are apparent in the long bones of subadults. Although most of the 

presented studies have not been validated with separate samples, the original results of 

osteometric analyses are more consistent than those for morphological analyses. And more so, 

they are yielding significant differences in the younger ages, while morphological analyses 
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demonstrate significant differences in the older ages. Sex estimation from diaphyseal dimensions 

is supported by anthropological, physiological and biomechanical literature, which has 

previously identified differences in the skeletal structures of prepubertal males and females. 

Thus, the notion that diaphyseal dimensions should express sexual dimorphism has as strong 

theoretical basis; a principle that adheres to acceptable measurement theory models (Houle et al., 

2011).  

 

 

INHERENT SOURCES OF VARIATION 
  

Populations vary in shape, size, maturation rate, and growth trajectories because of 

genetic differences as well as influences from the environment such as nutrition and lifestyle 

(Steyn and İşcan, 1997; Ulijaszek, 2001; Lewis et al., 2002; Sun et al., 2002; Veldhuis et al., 

2005). Numerous studies demonstrate the necessity for population specificity through a decrease 

in accuracy when the original technique is applied to other population groups (Calcagno, 1981; 

Steyn and İşcan, 1997; Lewis et al., 2002; Spradley et al., 2008; Wilson et al., 2008). Intrinsic 

and extrinsic factors are fundamentally interrelated and separating the effects of each factor is 

complex and practically impossible in humans. However, genetic influences can be evaluated by 

assessing children from different populations but with similar environmental influences or 

environmental influences can be investigated by assessing children from within a population but 

with varying environmental influences (Eveleth, 1978; Stinson, 1985).  

Further complications are because of differing magnitudes of either genetic or 

environment influences throughout growth. In childhood, environmental factors and socio-

economic status (SES) are shown to have a significantly greater effect on growth and 

development than genetics (Garn et al., 1976; Garn and Bailey, 1978; Molteno et al., 1991). For 

example, adopted child-parent pairs have high correlations when compared to biological-child 

parent pairs in terms of stature, weight, and fat-fold thickness up to adolescence. If body 

dimensions were purely under genetic control then no correlation, or at least a weak correlation, 

would be expected between these variables and the non-biological parents (Garn et al., 1976). 

Therefore, growth from birth to age 7 is often described as a consequence of developmental 

plasticity in which environmental influences can directly affect growth potential with irreversible 
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modifications (Bogin and Loucky, 1997). Modern human population variation in stature is 

believed to be a result of nutrition during infancy and early childhood, hence the plastic ability of 

the skeletal structures to adapt to the environment (Eveleth and Tanner, 1990). Because the 

insulin dependent growth of infancy is replaced with a growth-hormone-regulated growth in 

childhood (and older), nutritional deficiencies in childhood and puberty slow maturation but do 

not affect final stature (Karlberg, 1989; Kuzawa and Bragg, 2012),  

 

 

POPULATION DIFFERENCES 
 

General size differences, specifically stature, are frequently and easily assessed in 

different populations and some disparities can be directly attributed to ancestry though stature is 

also commonly recognized as a sensitive indicator of the quality of life (Eveleth and Tanner, 

1990; Steckel, 1994, 2008; Bogin et al., 2002; Ha et al., 2003). On average, modern adult South 

Africans are shorter than North Americans (Steyn and Smith, 2007). Stature differences between 

the two populations are apparent at twelve years of age when American children are already 

taller than South African children (Preston and Chertkow, 1986). Walker and Walker (1977) 

demonstrated that 20th century black South African children are significantly shorter in height 

and lighter in weight than the reference standards of London, Harvard-Iowa, and contemporary 

white children in Johannesburg. Although a strong genetic predisposition exists for stature, the 

degree to which stature is controlled by genetics is unknown as poor adverse conditions can 

prevent attainment of predisposed adult height (Hoppa, 1992). An example of the effects of 

population differences on age estimation can be taken from Hoffman (1979), who noted 

differences in diaphyseal lengths ranging from 40 mm to 60 mm between Eskimos (Stewart, 

1976) and white children from the Child Research Council. Use of the Stewart (1976) growth 

charts could potentially overestimate age as much as 2 to 3 years if applied to a mid 20th century 

white North American sample (Hoffman, 1979). Eskimos are recognized as exhibiting short 

stature likely because of genetic variation and/or adaptation to the environment (Heller et al., 

1967). Thus, the application of a growth chart derived from an Eskimo population and applied to 

a population with a different mean stature is to result in errors in the age estimation.  
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Body proportions differ between populations with disparities recognizable during 

childhood (Hamill et al., 1973; Eveleth, 1978; Eveleth and Tanner, 1990; Bogin, 1999). Cowgill 

et al. (2012) noted a strong hereditary component to intralimb indices during growth and 

previous studies demonstrated that individuals of the same stature from different ethnic groups, 

with extrinsic factors controlled, displayed proportional differences (Eveleth, 1978). Hamill et al. 

(1973) found that American white children have longer trunks while American black children 

have longer legs. Furthermore, many black groups (males and females) from African countries 

exhibit relatively longer legs compared to white groups from European countries (Eveleth, 

1978). Bogin et al. (2002) evaluated leg lengths of Africans, Asians, Australians, and Europeans 

and noted that Africans have the longest legs and Asians the shortest legs. Differential 

proportions ultimately affect age estimates based on a single diaphyseal length. 

Black populations, irrespective of continent, are considered to be genetically predisposed 

to mature earlier and grow more rapidly than white populations; yet, poor environmental 

conditions can delay growth and development (Garn and Bailey, 1978; Singer and Kimura, 1981; 

Cameron et al., 1993; Bogin, 1999). Differences at birth are present in North American black and 

white infants but by 1 or 2 years of age trends reverse and American black children present with 

similar or greater heights and weights than American white children (Eveleth, 1978). In the 

United States, 8 year old non-Hispanic black girls demonstrate significant differences in 

maturation when compared to non-Hispanic white and Mexican American girls; the same trend 

was true for non-Hispanic black boys (Sun et al., 2002). In terms of epiphyseal fusion, Crowder 

and Austin (2005) identified significant differences in the age of complete fusion of the distal 

tibia and fibula such that black and Mexican-American males complete fusion by 13 years while 

white American males did not complete fusion until 15 years. The above-mentioned examples 

show techniques derived from one population are not always applicable to other populations.  

 

 

ENVIRONMENTAL INFLUENCES 
 

The environment comprises a wide variety of factors including the natural environment 

(high altitude and average temperatures), anthropogenics (pollutants, metals, radiation), and, the 

focus for the remaining section, social and/or political processes (advantaged or disadvantaged 
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position in society). The position in society directly affects the caloric intake, nutrition and 

access to adequate healthcare, amongst other variables (Schell et al., 2012). Adverse 

environmental conditions generate disparities between groups and the distinct combination of 

environmental influences produces a group of children that are relatively similar to one another 

and unique to other children. Disparities among groups based on environmental differences can 

cause systematic error in age at death estimates as growth trajectories and proportions are 

affected (Eveleth and Tanner, 1990; Lampl and Johnston, 1996). Furthermore, nutritional 

deficiencies delay the onset of pubertal growth and result in a protracted growth velocity that is 

slower and distributed across a longer duration (Kuzawa and Bragg, 2012). A consistently 

documented trend is higher SES children are heavier and taller than lower SES children (Hoppa, 

1992). Specifically in South Africa, lower SES coloured children exhibit, on average, 5% shorter 

statures and 20% to 25% lighter weights than coloured children of higher SES in Cape Town 

(Henneberg and Louw, 1998). 

Most radiographic data for subadults stems from systematic, non-repeatable, cross-

sectional, or mixed-longitudinal radiological growth studies comprised of white and middle-class 

children (Maresh, 1970; Scheuer, 2002). Because the standards are derived from healthy 

populations, the estimated ages based on these samples may be significantly underestimating the 

true chronological age of an individual living in an adverse environment. Lampl and Johnston 

(1996) evaluated differences between skeletal age and chronological age when the sample was 

not middle-class and white. Skeletal and dental age was scored on a sample of Mexican children, 

aged birth to seven that lived under environmental stress inclusive of high infectious disease 

rates and moderate malnutrition. In terms of skeletal age, only 13% of the children were 

estimated to be the same chronological age and 22% of the sample demonstrated delayed skeletal 

age with differences up to 4 years between chronological age and the estimated skeletal age. 

Although dental age is consistently identified as being under more genetic control than skeletal 

age, results of the estimated dental age and true chronological age reveal an error of 3 years for 

94% of the sample.  
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METHODOLOGICAL ERRORS 
 

The most common error in methodology is related to sampling. Specifically for 

subadults, skeletal collections generally do not contain enough individuals per age, which results 

in an overall small sample size that is unevenly distributed across the ages (Stull et al., 2013 b). 

Furthermore, large datasets quickly become too small to properly test hypotheses when subset 

into sex and age. For example, Franklin et al. (2007) investigated sex differences in the mandible 

of 96 individuals from 1 to 17 years of age. Although the sample size may appear acceptable, if 

evenly distributed, approximately 5 individuals are in each yearly subset, independent of sex. 

Because of the small sample sizes, the majority of research regarding subadult age or sex 

estimation tends to collapse a number of ages as a means to create larger subsets. Without an 

appropriately large number of individuals per each investigated age, distinct differences cannot 

be thoroughly and accurately identified. Considering the rapid growth during the first few, years 

of life, each year should be investigated separately, or in small age-at-death ranges that reflect 

subdivisions in growth (Cowgill et al., 2012; Stull and Godde, 2013). Large, more evenly 

distributed datasets that exhibit substantial numbers of individuals of both sexes and all 

population groups for each age interval are needed for a priori hypothesis testing (Nawrocki, 

2010).  

The use of skeletal collections rather than living children to devise age at death 

estimations introduces error associated with the osteological paradox. Subadults in a skeletal 

collection are individuals that failed to survive, potentially displaying differential growth rates. 

The variability in the growth of skeletal collections may or may not reflect growth processes 

shared by their contemporaries who endured (Johnston, 1962; Wood et al., 1992; Saunders and 

Hoppa, 1993; Ruff, 2003). Thus, skeletal samples are biased samples of all people alive at a 

given age in a population (Saunders and Hoppa, 1993). However, some authors argue that the 

majority of subadult skeletons in collections are more likely the result of acute conditions that 

would not have affected bone growth (Lovejoy et al., 1990). 

Errors associated with methodology and sampling bias are considered greater than those 

associated with biological mortality bias or the osteological paradox. With regard to age 

estimations specifically, the inability to accurately sex unidentified skeletal remains 

automatically introduces error into the estimate due to a larger range of variation across all ages 
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(Saunders and Hoppa, 1993). The lack of comparative data sources greatly contributes to the 

unreliability and inaccuracies associated with subadult age and sex  estimation (Scheuer, 2002), 

such that it is recognized that known-age skeletal samples, which can be used to develop models 

or validate models, need to be identified (Hoppa and Vaupel, 2002). 

 

 

DATA SOURCES 
 

The largest obstacle for the forensic anthropological community is the shortage of known 

modern subadult skeletal material (Scheuer and Black, 2000). Substantial collections of modern 

subadult skeletons with known demographics are virtually unknown (Feldesman, 1992; Shapiro 

and Richtsmeier, 1997; Scheuer and Black, 2000; Rogers, 2009; Franklin, 2010). Most museums 

are not actively collecting skeletal material, and even in collections that are actively growing, 

donations by parents of their deceased children are rare (Stull and Godde, 2013). Subadult 

skeletal material available in skeletal collections is either of archaeological origin or is extremely 

limited in terms of demographic variability (mostly for individuals per chronological year), and 

results in a situation where statistical analyses cannot be applied (Rogers, 2009).  

Generating radiographic images are a standard practice for hospitals and morgues across 

the world, and vast amounts of data have been collected within these institutions. In the absence 

of modern subadult skeletal collections, forensic anthropologists can turn towards radiographic 

data sources in an effort to bridge this gap. Conventional radiography inherently produces 

images with distortion which are unsuitable to use for metric analyses, as the exact magnification 

of each measurement plane may not be known (Hoffman, 1979; Schroeder et al., 1997). 

Distortion, or the misrepresentation in size or shape of an object when a radiographic image is 

generated, is dependent on the source to image distance (SID), object to image distance (OID) as 

well as the location of the object in relationship to the center of the beam (Figure 2.1) 

(Bontrager, 2001). The degree of distortion increases proportionally to the distance between the 

object and the image (OID) (Schroeder et al., 1997). Thus, a measurement obtained from the 

anterior pelvis, if the individual is in the supine position, will have more error compared to a 

measurement obtained from the posterior pelvis. Furthermore, images generated with a cone 

beam (traditional radiography) contain distortion diverging from the center (Stull et al., 2013 b). 
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The greater the divergence of the X-ray beam, due to a shorter SID, results in greater distortion; 

in contrast, less divergence of the X-ray beam, due to a greater SID, results in less distortion 

(Stull et al., 2013 b). If the error (distortion) associated with the radiograph is unknown, due to a 

lack of knowledge concerning the SID and OID, then a measurement obtained from a radiograph 

may not reflect the true pelvic measurements (Schroeder et al., 1997). Maresh (1955, 1970) 

displayed a calculated distortion error ranging from 1% to 3% when the distance to the 

collimator was 7 ½ feet with the limb in direct contact with the cassette. However, Green et al. 

(1946) suggests distortion can be approximately 4% to 6% when the SID is 6 feet. Percentage of 

distortion error is positively correlated to the length of the long bone such that the longer the 

bone the larger the error (Feldesman, 1992). On the other hand, some authors feel the effect of 

distortion may be so small that it does not drastically affect the final 95% prediction interval 

(Hoffman, 1979; Smith, 2007).  

The Lodox Statscan (Lodox Systems Pty (Ltd), Sandton, South Africa) is a fast 

acquisition, low-dose, full body radiographic device that was originally designed for the South 

African diamond mining industry. In 1999, the Lodox Statscan was the first used in health 

sciences (Beningfield et al., 2003). Although the slot-scanning technology is renowned for the 

lower radiation, the technology offers images void of distortion because the X-ray source is 

projected through a collimated fan-beam onto a detector, which moves in synchrony over the 

patient (Douglas et al., 2010). Therefore, Lodox Statscan-generated radiographs can be used to 

evaluate the subadult skeleton with metric analyses.  
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Figure 2.1 – Illustration depicting the differences in SID and OID in conventional (cone beam) 
radiography (adapted from Stull et al., 2013 b). 
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CHAPTER 3: MATERIALS 
 

The cross-sectional sample was collected retrospectively from two institutions in the 

Western Cape Province of South Africa and included a total of 1380 children between birth and 

12 years old. To circumvent any possible sampling issues associated with cross-sectional data 

such as a different number of individuals per each age interval, an equivalent number of 

individuals for each age were included. The sampling allowed for a large, evenly distributed 

sample with substantial numbers of individuals, even when separated by sex, for all years from 

birth to twelve. The date of birth and either date of examination or date of death was utilized to 

determine the chronological age at time of imaging. Age categories were based on calendar 

years; for example, individuals in the age category of 2 year-olds had chronological ages 

between 2.00 years and 2.99 years. Images comprising the sample were produced between 2007 

and 2012. Random sampling of a population representative of the entire population ultimately 

affects sample validity in the statistical analyses and subsequent interpretations.  

Demographic and biological data were collected from the medical files from each 

institution. As each institution has its own operating procedures dependent on its mission and 

scope, different variables were available at each location. For example, Salt River Forensic 

Pathology Laboratory provided biological data such as ancestry but the Red Cross War 

Memorial Children’s Hospital provided variables one could use to estimate ancestry (see 

Ancestry, page 35). Variables that were consistently collected at both institutions included sex, 

age, height, weight, and either cause and manner of death (Salt River) or reason for diagnostic 

imaging (Red Cross Hospital). 

The upper age limit of the current study was 12 years because of the potential for 

epiphyseal fusion; the diaphyseal length cannot be obtained if one of the epiphyses has fused. 

Although no population-specific technique exists for epiphyseal fusion in South Africa, 

previously researched populations generally do not display fusion in the lower or upper limbs 

prior to the age of 13 years (McKern and Stewart, 1957; Scheuer and Black, 2000; Crowder and 

Austin, 2005; Cardoso, 2008 a; b; Schaefer, 2008). An age range of birth to twelve includes 

individuals who do not exhibit epiphyseal fusion of the long bones, thus the use of diaphyseal 

dimensions is an appropriate method to estimate age. 

Long bone length and breadth measurements were acquired for each individual from 
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Lodox Statscan (Lodox Systems Pty (Ltd), Sandton, South Africa) radiographic images using a 

custom imaging and viewing software, DVS or Diagnostic Viewing Station (www.lodox.com). 

The scanner was installed at Red Cross War Memorial Children’s Hospital in 2004 and the Salt 

River Forensic Pathology Laboratory in 2007.  

 

 

INSTITUTIONS 
 

The combination of the two data sources was ideal for the research as it ensured that all 

ages would have sufficient numbers of individuals for statistical analyses. Salt River Forensic 

Pathology Laboratory (Salt River) and Red Cross War Memorial Children’s Hospital (Red 

Cross) provided access to their radiographic images as well as demographic data. The Salt River 

sample was comprised of deceased children who were generally less than 6 years of age; the Salt 

River portion totaled 16% (n = 165) of the entire sample size (Table 3.1). Generally in South 

Africa, forensic pathology services tend to have a larger number of individuals in the younger 

age categories due to high infant and child mortality rates (WHO, 2003; Sartorius et al., 2011; 

United Nations, 2013). In the Western Cape in 2009, neonatal deaths accounted for 35% of the 

total deaths under five years, which commonly included cause of deaths attributed to prematurity 

(14%), birth asphyxia and severe infections (6%) and congenital abnormalities (5%) 

(Groenewald et al., 2011). The least three frequent causes of death under five years of age in the 

Western Cape were injuries (7%), congenital (4%) and malnutrition (3%) (Groenewald et al., 

2011). Although 48% of the Salt River sample had a natural manner of death, a similarly high 

percentage (38%) of individuals had an accidental manner of death. Of the Salt River sample, 

only 7% were noted as homicides and 0.07% as undetermined.  

 The Red Cross War Memorial Children’s Hospital is a public hospital that serves 

children from birth to twelve years from all nine provinces in South Africa and is considered one 

of the only dedicated child health institutions in the country. The Red Cross sample constitutes 

84% (n = 1145) of the total sample with evenly distributed ages throughout the majority of years; 

the smallest number of individuals is between birth and 2 years of age (Table 3.1). Most children 

in the sample required diagnostic imaging prior to treatment of accidental injuries. Cases of 

burns or sexual abuse most likely would not be imaged, or present in the Red Cross sample, 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 33 

because diagnostic imaging would not be required for treatment (personal communication, Dr. 

Thomas Blake). Corroborative data stems from a review of the use of the Lodox Statscan in the 

Trauma unit at Red Cross, which demonstrates that motor-vehicle accidents (MVA’s) were the 

most common mode of injury, accounting for upwards of 74% of the cases imaged in the first 

two years of use (Douglas et al., 2010). Although all children in the Red Cross sample were 

living when the images were generated, a possibility exists that the child died of incurred injuries 

during the course of treatment. 

Although all manners of death were collected, some individuals were removed in order to 

reduce the sampling errors associated with mortality bias (Saunders and Hoppa, 1993). 

Circumstances for removal included individuals with a manner of death listed as undetermined 

and less than 6 months of age, a cause of death listed as sudden infant death syndrome (SIDS), 

and all children who were less than 30 days of age (including stillborns). Mortality reports for 

2009 indicate that a fairly high percentage of neonatal deaths are attributed to prematurity 

(Groenewald et al., 2011); however, premature children are not always noted in the medical files. 

Specific to individuals with a manner of death as undetermined, the processes affecting the 

growth are unknown and thus, the children cannot be adequately compared to their 

contemporaries. Essentially, the children removed from the sample represented a small subset of 

the population of failure to thrive children, which would most likely have exhibited a different 

growth rate compared to their contemporaries and if included may skew the lower ages of the 

total sample. Most of the individuals who remained in the sample had a manner of death as either 

accident or homicide and would most likely exhibit growth rates similar to the children 

comprising the Red Cross sample. The sample size decreased from 1380 individuals to 1330 

individuals and following the removal of outliers (n=20), the sample size was further reduced to 

1310 individuals.  

 

 

SEX 
 

In an attempt to combat sampling errors and unbalanced sample sizes in cross-sectional 

data, the minimum number of males and females was equivalent for all ages (n > 30) except in 

the less than 1 year and 12 year age groups. The final sample includes 506 females and 804 
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males (Table 3.2). The Red Cross sample highly influenced the total sample because of the larger 

number of individuals in comparison to the Salt River sample. A review of cases following 2 

years of the Statscan’s use in the Trauma Unit at Red Cross demonstrated that 64% of the 

patients who qualified for Statscan imaging were male (Douglas et al., 2010). Thus, the sample 

in the current study is representative of sampling from the hospital. More males than females 

also comprised the Salt River sample. This parallels deaths by sex and age noted in the Western 

Cape Mortality Report (Groenewald et al., 2011), thus the current sample also reflects normal 

sampling distribution from the Forensic Pathology Service. 

 

 

 

 

 

Table 3.1 – The age distribution of the RXH sample provides the larger contribution to 
the overall sample, as well as more individuals older than 2 years of age. In contrast, 
SR sample has fewer individuals overall but more comprise the younger ages (less 
than 4 years of age). 

Age 
(years) 

Red Cross  Salt River 
Females Males Pooled  Females Males Pooled 

0 6 9 15  23 22 45 
1 22 30 52  10 13 23 
2 27 68 95  8 17 25 
3 40 64 104  12 10 22 
4 39 53 92  11 5 16 
5 33 66 99  4 5 9 
6 39 68 107  1 2 3 
7 42 68 110  1 4 5 
8 46 60 106  NA 3 3 
9 41 57 98  NA 4 4 
10 34 64 98  1 2 3 
11 43 62 105  NA 3 3 
12 21 43 64  2 2 4 

Total 433 712 1145  73 92 165 
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ANCESTRY 
 

South African law forcefully divided the country on social race from 1948, when the 

National Party marginally won the general election and subsequently introduced apartheid 

throughout South Africa, until 1991 (Cameron, 2003; Viljoen and Sekhampu, 2013). Apartheid 

forced segregation that resulted in major disparities between population groups and devastatingly 

affected people with regard to education, housing, and psychology. Perhaps the greatest legacy 

of Apartheid was the Population Registration Act of 1950, which forcefully defined South 

Africans into four groups: white, native/bantu/black, coloured and asian. Many South Africans, 

and bureaucratic systems, use these terms now as self-identifiers, not in the sense of a legal 

Table 3.2 – Sample size and age distribution 
separated by sex.  

Age (years) 
Sex 

Females Males Pooled 
<1 29 31 60 
1 32 43 75 
2 35 85 120 
3 52 74 126 
4 50 58 108 
5 37 71 108 
6 40 70 110 
7 43 72 115 
8 46 63 109  
9 41 61 102  
10 35 66 101  
11 43 65 108 
12 23 45 68 

Total 506 804 1310 
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definition but in terms of redress for past wrongs (Christopher, 2002; Patterson et al., 2010). In 

the South African census of 1996, 99.1% of the population self-classified themselves according 

to four socially-identified population groups namely white, black, coloured, Indian/Asian 

(Statistics South Africa, 1999).  

In 2011, black South Africans were the largest population group constituting 79% of the 

population, whereas white and coloured South Africans each represented 8.9% of the population. 

Asians and groups classified as ‘other’ total only 3% of the population (Statistics South Africa, 

2012). Disparate population percentages are seen between the Western Cape Province and South 

Africa as a whole. In the City of Cape Town in 2011, coloureds were the largest population with 

a frequency of 48.8%, blacks followed at 32.9% and whites were 15.7% (Statistics South Africa, 

2012). Indian or Asian South Africans represent the smallest frequency (<3%) for population 

groups both in 2007 and 2011 in Cape Town (Western Cape Provincial Treasury, 2011; Statistics 

South Africa, 2012).  

A total of 703 (54%) individuals from the entire sample either had a recorded ancestry or 

had enough demographic variables available to estimate ancestry (Table 3.3). Black South 

Africans were the most prevalent group, totaling 60% of the sample. Coloureds were the next 

largest group, accounting for 39% of the sample and whites were the least prevalent group with 

only seven individuals. Due to sampling in the Western Cape Province, the number of coloured 

individuals in the dataset is expected to be larger than black South Africans. However, the lower 

number of coloureds estimated in the dataset might be a skewed result because of the variables, 

specifically language, used to estimate ancestry (see below). 

When subdivided into population and sex the numbers are in accordance with the above-

mentioned population and sex descriptions. Black males have the largest numbers (36%) 

followed by coloured males (26%), black females (24%), and coloured females (13%) (Table 

3.3). Although white males and white females represent less than 0.01% of the entire sample, 

they were not removed from the final sample or statistical analyses. The 0.01% reflects the 

number of individuals with either known or estimated ancestry, not the definite number of whites 

included in the sample. More individuals are likely to self-identify as white, but unfortunately 

social race is difficult to estimate based on the cultural identifiers described below, and thus 

white South Africans resulted in the smallest sample sizes among the three population groups. 
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Table 3.3 – Age distribution separated by population and sex. There are 
considerably more black males than the three additional population-sex groups. 
Coloured females demonstrate the smallest sample size within the study, besides 
white males and white females, which were not included because of their small 
numbers. 

Age 
(years) 

Black  Coloured 
Female Male Pooled  Female Male Pooled 

<1 12 13 25  14 11 25 
1 17 19 36  5 10 15 
2 16 34 50  6 17 23 
3 20 29 49  7 17 24 
4 24 26 50  8 10 18 
5 9 22 31  4 13 17 
6 12 22 34  11 15 26 
7 11 21 32  10 16 26 
8 18 15 33  4 19 23 
9 8 18 26  4 14 18 
10 9 17 26  6 16 22 
11 9 9 18  4 12 16 
12 5 9 14  6 13 19 

Total 170 254 424  89 183 272 
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COLOURED SOUTH AFRICANS 
 

The social term coloured was created in 1808 to describe population diversity among the 

slaves and African-born free persons of the Cape colonies (Patterson et al., 2010). Historical 

situations established the coloured1 group as a genetically distinct population with major intra- 

and inter-continental genetic contributions from Europe, Africa and Indonesia (Inwood and 

Masakure, 2009; Tishkoff et al., 2009; Patterson et al., 2010; Quintana-Murci et al., 2010; 

Petersen et al., 2013). An admixed population group is defined as being formed from two or 

more parental populations that are genetically distinct from one another (Patterson et al., 2010). 

Specifically, one study using autosomal DNA noted that the coloured population exhibited 

48.4% non-African (European) contribution, 17.1% Asian contribution, and 28.5% Khoe-San 

contribution, and the smallest contribution (15.5%) from African non-Khoe-San (Petersen et al., 

2013). Studies evaluating mtDNA have shown that coloured females display a much stronger 

Khoe-San than European contribution while coloured males display a larger Eurasian than Khoe-

San contribution in the Y-chromosome (Quintana-Murci et al., 2010). High rates of admixture 

are most likely facilitated from lenient opinions regarding racial ideologies and more strict views 

concerning social fault lines based on religion prior to the 19th century (Inwood and Masakure, 

2009). 

The Khoikhoi and Bushmen (San) people are sometimes pooled and referred to as Khoe-

San (other spellings include Khoisan and Khoesan) because both groups are indigenous to South 

Africa and have linguistic similarities (Khoisan linguistic family) (Patterson et al., 2010; 

Schlebusch, 2010; Petersen et al., 2013). The hunter-gatherer society of the San is recognized as 

the oldest group to inhabit southern Africa. However, the pastoralist society of the Khoikhoi 

arrived prior to the Bantu expansion (ca. 5000 to 4000 BP) and are thus also considered 

indigenous to sub-Saharan Africa (de Filippo et al., 2012). Mitochondrial DNA (mtDNA), Y 

chromosome, and autosomal chromosome diversity studies demonstrate that within Africa, the 

Khoikhoi and San populations cluster together while being the furthest from other African 

populations (Jakobsson et al., 2008; Li et al., 2008; Tishkoff et al., 2009). The genetic 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1"Currently, the term coloured is the most widely recognized population-specific identifier within the South African 
community and thus is used herein (Christopher, 2002; Adhikari, 2005; Patterson et al., 2010)."
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contribution of the Khoikhoi appears greater than the San contribution in the coloured population 

(Morris, 1997).  

Because population history has a great influence on the coloured genotype, the 

geographic location – and thus different population history – affects the percentage of group 

contributions in coloured South Africans. Subsequently, results vary greatly even within 

different neighborhoods of Cape Town. While the larger sample of coloureds demonstrates 

upwards of 28% and 24% Indian and Indonesian contributions, respectively, District Six 

coloureds – a neighborhood once considered the center of the coloured population in Cape Town 

due to the Dutch-East Indian Company slave trade – demonstrated 63% and 50% Indian and 

Indonesian contributions, respectively. The large genetic variation in atDNA (autosomal markers 

inclusive of SNPs) of coloureds is evidence of differential proportions of parental populations for 

each individual (Patterson et al., 2010; Petersen et al., 2013).  

 

 

BLACK SOUTH AFRICANS 
 

Archaeological, linguistic, and genetic data indicate significant migration events in Africa 

over the past several thousand years shaped the pattern of variation of black South Africans 

(Tishkoff and Williams, 2002; Tishkoff et al., 2009). One of the most significant was the 

migration of the agricultural Bantu-speakers, hypothesized to originate in Cameroon and to 

travel into Southern Africa ca. 5,000 to 3,000 BP (Tishkoff and Williams, 2002; Ribot, 2003; 

Berniell-Lee et al., 2009; de Filippo et al., 2012; Petersen et al., 2013). The population 

movement led to the spread of Bantu culture, language, and genes across Southern Africa 

(Diamond and Bellwood, 2003). Populations of varying genetic composition were the result of 

the Bantu-speakers expansion occurring along multiple routes and at different times. 

Modern black South Africans are generally subdivided on factors associated with 

ethnicity, such as kinship, religion, language, and shared territory (Treiman, 2007). Specifically 

in a recent study of South African adolescents (aged 14), black children assigned more 

importance to language as a domain of self-identification than sex or age (Norris et al., 2008). 

The Bantu-speaking languages belong to Niger-Kordofanian, the largest linguistic phylum in 

Africa (Ribot, 2004). Nine of the 11 official South African languages are considered Bantu-
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speaking languages and are associated with tribal groups. The two largest black ethnic groups 

within South Africa are Zulu and Xhosa (Treiman, 2007). Gene flow is presumed to have 

occurred between historical Bantu-speakers and indigenous groups (i.e. Khoe-San) because of 

the presence of click sounds in the isiXhosa language (a Bantu language group) as well as the 

genetic contributions of Khoe-San (mtDNA and Y chromosome DNA) identified in Bantu-

speaking groups (Petersen et al., 2013).  

 

 

ESTIMATION OF ANCESTRY 
 

Although the Salt River Forensic Pathology Laboratory provided ancestry information in 

the medical files, the Red Cross War Memorial Children’s Hospital did not. However, three 

variables could be collected from the medical files at the Red Cross War Memorial Children’s 

Hospital that could be utilized to estimate ancestry, namely home language, residential address, 

and religion. These three variables can accurately subdivide each population group (Christopher, 

2002; Treiman, 2007).  

Although the legislation regarding the Group Areas Act (1950) was repealed in 1994, 

residential areas, both farming and urban, are currently segregated following the designs of the 

previous government. Consequently, residence information offers a mechanism to estimate 

ancestry due to the high probability of group membership based on location (Christopher, 2002; 

Viljoen and Sekhampu, 2013). Language is a strong cultural marker that has been demonstrated 

to significantly correlate with several genetic markers (Mateos, 2007). While coloureds are 

mainly an Afrikaans-speaking group of Christian denomination, two smaller groups of coloureds 

self-identify as Muslim (7%) and/or English-speakers (14%) (Treiman, 2007). As for black 

South Africans, the two largest lingual groups are Zulu, which includes 30% of the black 

population, and Xhosa, which includes 22% of the black population.  

All three variables used to estimate ancestry were optionally self-reported on the personal 

information sheet completed upon admittance. At least two of the three variables were used to 

estimate ancestry of the Red Cross sample. Unfortunately, when English was reported as a home 

language, classification into one of the three population groups was impossible as most 

individuals in South Africa speak English, thus it is less of a cultural identifier. For example, a 
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minimum of 14% of coloureds consider English a home language. Therefore, the proportion of 

coloureds and whites is greatly lowered in the known or estimated ancestry dataset. Ancestry 

estimation of the Red Cross sample provides a thorough description of the sample utilized for 

age and sex estimations as well as presents potential sampling errors or biases. The estimated 

ancestry was not used for statistical analyses. 

 

 

SOCIOECONOMIC STATUS (SES) 
 

Because the statistical analyses did not include factors such as SES, the data was not 

separated on SES. However, overall SES of the sample is important to acknowledge, and is 

similar to identifying possible sampling errors or possible biases associated with ancestry. The 

Lodox Statscan is located in the Trauma Unit at the Red Cross War Memorial Children’s 

Hospital, mainly serving lower SES groups within Cape Town. Children transferred from the 

other nine provinces for competent pediatric care most likely require different modes of imaging, 

such as magnetic resonance imaging (MRI) or computed tomography (CT), and rarely require 

diagnostic imaging from the trauma ward. As noted earlier, the most common mode of injury 

requiring Lodox Statscan imaging were motor-vehicle accidents, accounting for approximately 

74% of the all the cases in the trauma unit (Douglas et al., 2010).  

As for Salt River, a morgue population of children is generally agreed to represent a 

lower SES (Swart et al., 2012). Significantly different child mortality (death under five years of 

age) rates exist between higher and lower SES children (WHO, 2003). For example, in the same 

country a child from a privileged household has a 22% probability of death prior to 5 years of 

age, a child from a poor household has a 33% probability of death prior to 5 years of age (WHO, 

2003). Furthermore, poor children in Africa are twice as likely to die than poor children in the 

Americas despite utilizing the identical definition and circumstances of poverty. Sex differences 

are also seen in child mortality rates, and normally males have a higher child mortality rate than 

females (WHO, 2003). 

Socio-economic status is based on a multitude of factors with some being education, 

access to healthcare, and income. Specifically within South Africa, SES differences within 

populations are relatively small compared to between-population SES differences (Treiman et 
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al., 1996). Based on the 1996 South African census, whites earned upwards of 4 times the 

income of coloureds and more than five times the income of blacks (Statistics South Africa, 

1999). Furthermore, it was estimated that nearly 40% of black South Africans are unemployed 

and live in poverty (Barbarin and Richter, 2001; Treiman, 2007; Viljoen and Sekhampu, 2013). 

Non-white South Africans that were employed constituted 81% of the manual labor force in 

1996 (Treiman et al., 1996) while most (~90%) of white South Africans were working in non-

manual labor jobs. The least advantaged white South Africans were considered substantially 

better off than either coloured or black South Africans (Treiman, 2007). Though Muslim and 

English-speaking coloureds are considered equivalent to white South Africans, the majority of 

the coloured population is considered to have comparable education levels to that of black South 

Africans, which is much lower than most white South Africans (Treiman, 2007). Even though 

South Africa has had a dramatic economic, social, and political transition since 1994, apartheid 

introduced dynamics that continue to perpetuate inequality in the 21st century (Sekhampu, 2013).  

Although improvements have been made in basic services in some areas (i.e. housing, 

water, electricity), squalor still exists in most townships and many black and coloured South 

Africans have substandard access to education and healthcare (Sekhampu, 2013; Viljoen and 

Sekhampu, 2013). A township refers to an area of land, normally located on the periphery of 

cities, that was reserved for blacks and coloureds (separately) from the late 19th century through 

to the end of apartheid (Sekhampu, 2013). Currently, most townships persist with poverty and 

associated problems thereof. Although government housing has been supplied in some 

townships, corrugated metal shacks are not uncommon. And even in governmental houses, 

running water may be available but indoor flush toilets are rare (25%) (Barbarin and Khomo, 

1997). A study in 2003 documented that 67% of households in townships live below the poverty 

lines (Slabbert, 2003). Furthermore, approximately 46% of households in one township that are 

considered poor have an income less than 50% of the poverty line (Sekhampu, 2004). The 

inferior quality of the urban housing standards, or townships, persists in blatant contrast to 

middle and upper class suburban South Africa (Viljoen and Sekhampu, 2013).  

Within the entire sample for the current study, 63% (n = 875) of the individuals had 

known residential addresses. Within this subset, 20% of the sample resides in the township of 

Khayelitsha, 14% resides in the township of Mitchells Plain, and approximately 17% resides in 

the townships of Guguletu, Nyanga, and Gatesville. The stated five townships represent the five 
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largest residencies for the sample. The majority of the remaining sample resides in additional 

townships such as Athlone, Atlantis, Milnerton, Eerste River, Grassy Park, Hanover Park, 

Maitland, Kuils River, Langa, Strand, Somerset West, and Vredenberg. Only 9% (n =125) of the 

entire sample had specific housing information, such as living in an informal (shack) or formal 

(house) resident. Of the subset with documented housing, the sample was approximately equally 

divided with 51% living in formal residences and 48% living in informal residences. The 

assumption, based on the demographic data, is that the majority of the sample in the current 

study is considered of low SES. While it is not ideal to create age and sex estimation techniques 

from an inherently biased sample, this sample does represent the South African population. Thus, 

creation of country specific methods based on these samples will represent normal variation in 

age for the majority of South Africans.  
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CHAPTER 4: METHODOLOGY 
 
 

 

LODOX STATSCAN  
 

The Lodox Statscan has an X-ray tube mounted to one end of a C-arm and an image 

receptor mounted to the other end, thus the SID is a fixed distance of 130 cm (Figure 4.1) (Stull 

et al., 2013 a). The OID, which is the distance from the table to the image receptor on the C-arm, 

is approximately 6 cm at its lowest position. The fan beam, or linear slit scanner, is collimated to 

1 mm or less and projects energy onto a detector which is located on the opposite side of the C-

arm as it moves across the patient at one of the three speed options (35 mm/s, 70 mm/s, 140 

mm/s)(Maree et al., 2007; Douglas et al., 2010; Whiley et al., 2012). The fan-beam design offers 

minimal scattered radiation that results in a higher resolution image and less radiation dose to the 

patient (Douglas et al., 2010). The linearly moving narrow fan beam design of the Lodox 

Statscan is different to the cone beam design of conventional X-ray machines, evident by the 

claim to produce minimal distortion generated in the y-axis (scan direction or long axis) (Figure 

4.2).  

In order to validate the claim of minimal distortion produced in the y-axis, Stull et al. 

(2013) imaged numerous bones, multiple times and in multiple circumstances. In an effort to 

simulate OID – as this is a large determinant of distortion – dense foam was used under each dry 

skeletal element. To correspond to actual patient positions, the dry skeletal elements were also 

placed at an angle. The dry bone measurements and the measurements obtained from the 

radiographic measurements were compared in terms of percent difference in an attempt to 

account for size differences in length and breadth measurements. Because minor errors are 

expected to occur within and between observers, percent agreement was utilized at the +/- 1 mm 

and +/- 2 mm levels. Additionally, Bland-Altman plots were used to depict agreement levels 

between the measurements as the statistic illustrates the spread of differences in measurements 

rather than just the relationship between the measurements such as a correlation coefficient 

(Bland and Altman, 1986). 
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Percent agreement in the +/- 1 mm range was fairly high at 85% and the percent 

agreement in the +/- 2 mm range was 97%. The percent differences ranged between 2% and 11% 

for y-axis and x-axis measurements, respectively. However, the average percent difference was 

only 0.5% larger for y-axis measurements and 4% larger for x-axis measurements (Stull et al., 

2013 a). These results are comparable to error rates noted in prospective growth studies where 

the settings are controlled as well as intra- and inter-observer error rates on dry bone (Green et 

al., 1946; Maresh, 1955; Gindhart, 1973; Hoffman, 1979). Lodox Statscan images offer a 

potential radiographic source to image subadult skeletal structures that generates minimal 

distortion. 

 

 

 

 

 

Figure 4.1 – Lodox Statscan radiographic machine. 
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direction (y-axis) produces negligible distortion.
Therefore, measurements taken along the scan direc-
tion of the image may be expected to represent the
original dimensions of the object. The SID for the
Lodox Statscan machine is 130 cm; the SID is greater
than current standards and may aid in reducing dis-
tortion of the generated image along the x-axis. The
top of the table, in the lowest position, is !6 cm from
the detector (imaging) plane and allows for a minimal
OID. The Lodox Statscan is capable of producing
images that are up to 1800 3 680 mm2 in size. The
fundamental pixel size is 60 m and the contrast resolu-
tion is 14-bit greyscale, i.e., more than 16000 grey
levels. The spatial resolution is as high as 5 linepairs/
mm but is dependent on the image settings.

Because of the design, the Lodox Statscan pro-
duces only x-axis distortion, and the images along
the scan-axis (y-axis) may be accurately measured.
The implications of images without distortion are
enormous for anthropologists. To date, no published
literature has examined distortion in skeletal ele-
ments of full body images using a Lodox Statscan.
If validated, this will substantiate the application of
osteometric techniques based on Lodox Statscan
images to dry bone without a correction factor for
distortion. The purpose of this study was to measure
distortion in Lodox Statscan-generated images of
dry bone when subject to central or peripheral table
placement, straight or angled table placement, and
variable OID.

Fig. 2. Illustration of differences in distortion due to cone beam (a) and fan-beam
(b) geometry.

Fig. 3. An image of a Lodox Statscan X-ray machine.

Distortion in Lodox Statscan Images 3

 
 
Figure 4.2 – Depiction of distortion in a) full-field conventional radiography with a cone beam 
geometry and b) Lodox Statscan fan beam geometry (taken from Stull et al., 2013 a).  
 

 

 

MEASUREMENTS 
 

Long bone length and breadth measurements were acquired for each individual in the 

sample from Lodox Statscan (Lodox Systems Pty (Ltd), Sandton, South Africa) radiographic 

images using a custom imaging and viewing software, DVS (www.lodox.com). Screen 

calibration was conducted upon installation of the software to ensure accuracy of measurements. 

Eighteen measurements were attempted on each Statscan-generated image of each individual, but 

because of variability in the placement of each patient, individuals could have a different number 

of measurements.  

Measurement definitions were derived from and/or follow those from studies in fetal and 

subadult osteology (Fazekas and Kósa, 1978) and longitudinal growth studies (Maresh, 1970). 

Although most of the definition sources stem from dry bones, the definitions associated with the 

longitudinal growth studies were designed specifically for radiographic images (Maresh, 1955). 

If the measurements were not previously associated with fetal or subadult remains and/or defined 

in the literature, measurements specific to adult skeletons were modified from those presented in 

Standards (Buikstra and Ubelaker, 1994; Moore-Jansen et al., 1994). Measurements were only 

obtained when the bone was in proper anatomical position. Table 4.1 provides the measurement 
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and associated abbreviation that will be used herein. Figure 4.3 provides examples of a few 

measurements obtained in radiographic images when the individual is in anatomical position and 

Appendix I contains the measurement definitions and images of each measurement. In order to 

adjust for the increase in size with the increase in age, the breadth measures of each element 

were divided by the length measurement of the same element in order to create a ratio. The 

process created 12 new variables that were included in the statistical analyses stated below. Their 

definitions and abbreviations are noted in Table 4.2.  

Because not every individual was placed perfectly for imaging, different combinations of 

measurements are associated with each individual. Femoral breadths and tibia breadths in the 

younger individuals (< 1 year) were difficult to obtain because of natural leg positions. Humeral, 

radial, and ulna lengths in the older individuals were difficult to obtain because of active 

epiphyseal fusion. Measurements were obtained from the side of the body that would yield the 

least distortion, which was generally measurements in the scan direction, or y-axis (Stull et al., 

2013 a). If both left and right-sided elements were in proper placement than measurements were 

collected from the left- sided elements. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.1 – The measurements and associated abbreviations. 

Humerus diaphyseal length HDL  Radius midshaft breadth RMSB 

Humerus proximal breadth HPB  Femur diaphyseal breadth FDL 

Humerus distal breadth HDB  Femur distal breadth FDB 

Humerus midshaft breadth HMSB  Femur midshaft breadth FMSB 

Ulna diaphyseal length UDL  Tibia diaphyseal length TDL 

Ulna midshaft breadth UMSB  Tibia proximal breadth TPB 

Radius diaphyseal length RDL  Tibia distal breadth TDB 

Radius proximal breadth RPB  Tibia midshaft breadth TMSB 

Radius distal breadth RDB  Fibula diaphyseal length FBDL 
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Table 4.2 – Ratios, and their associated abbreviations, 
included in the classification models derived for sex 
estimation. 

 Ratio Abbreviation 

Humerus 
HPB/HDL HDPB 
HDB/HDL HDDB 

HMSB/HDL HDMS 
Ulna UMSB/UDL UDMS 

Radius 
RPB/RDL RDPB 
RDB/RDL RDDB 

RMSB/RDL RDMS 

Femur FDB/FDL FDDB 
FMSB/FDL FDMS 

Tibia 
TPB/TDL TDPB 
TDB/TDL TDDB 

TMSB/TDL TDMS 
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Figure 4.3. Example of measurements obtained on Lodox Statscan-generated images when the individual is in anatomical position. 
Measurement explanations from left to right: 1st image – HDL, HPB, HMSB, HDB; 2nd image – UDL, RDL, RPB, RDB; 3rd image – 
the distal extensions of TDL and FBDL; 4th image – FDB and the distal extensions of FDL. 
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INTER- AND INTRA-OBSERVER ERROR 
 

Precision and reliability are directly attributed to consistency of repeated measurements 

on the same object and are used to assess data quality (Bland and Altman, 1986; Bailey and 

Bynes, 1990; Ulijaszek and Kerr, 1999). If considerable amount of variation exists in repeated 

measurements of the same subject, or poor repeatability, the statistical analyses associated with 

the measurement may be invalid or compromised, especially those which rely on regression, 

correlation and covariance (Bailey and Bynes, 1990; Goto and Mascie-Taylor, 2007). Therefore, 

the fewer and smaller measurement errors increase the probability of detecting other significant 

relationships (WHO Multicentre Growth Reference Study Group, 2006; Harris and Smith, 2009). 

Many variables can affect measurement error; however, in the current study, measurement error 

was mainly due to the side of the body the measurement was obtained, observer experience, and 

clarity of measurement definitions.  

Fifteen individuals were randomly selected from the entire sample to estimate the intra- 

and inter-observer error, which demonstrates differences between repeated measurements by one 

observer and differences between single measurements taken by two observers, respectively. The 

definitions stated above were provided to the second observer, thus a potential of 18 

measurements could be obtained from each individual, resulting in a possible comparison of 270 

measurements. Because of variability in the placement of each individual, the number was 

reduced to 152 measurements for the intra-observer error and 149 measurements for the inter-

observer error. Because both observers had the option of using left or right side elements, some 

of the variability in the measurement error may be due to asymmetry rather than measurement 

error. The intra- and inter-observer errors were assessed with technical error of measurement, 

relative technical error of measurement, and Bland-Altman plots. 

 The comparison of measurements must focus on the agreement between two variables 

and not the strength of the relationship between two variables, as one would assume a high 

correlation of the two variables that measured the same quantity (Bland and Altman, 1986). 

Additionally, the relationship between variables is extraneous to the degree of agreement as data 

that have poor agreement can produce high correlations (Bland and Altman, 1986; Rothwell, 

2000). For example, one person may always disagree by 4 mm; the correlation is still high but 

the agreement is poor. One of the most commonly employed measures of imprecision is the 
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technical error of measurement (TEM), which is a measure of error variability and represents the 

square root of the sum of squared differences divided by twice the sample size, or simply the 

standard deviation between repeated measures (Dahlberg, 1940; Mueller and Martorell, 1988; 

Knapp, 1992; WHO Multicentre Growth Reference Study Group, 2006; Goto and Mascie-

Taylor, 2007; Geeta et al., 2009). The equation for TEM is: 

where D is the difference between the measurements and N is the number of individuals 

measured (Ulijaszek and Kerr, 1999). A cluster analysis based on the inter-relationships among 

the absolute values of 11 estimators of measurement precision identified TEM to be most similar 

to mean absolute difference, percent agreement, and the average deviation (Utermohle et 

al.,1983). Utermohle et al. (1983) suggested the groups in the cluster with TEM were estimator 

of precision least affected by measurement size as all four statistics demonstrated the smallest 

correlations to mean measurement length. The ability to be unaffected by size is an extremely 

important characteristic for the current research considering the large differences between 

diaphyseal midshaft measurements and diaphyseal length measurements. 

TEM is positively related to the measurement and carries the units of the measured object 

(WHO Multicentre Growth Reference Study Group, 2006). Because  

large mean values have a large TEM and small mean values have a smaller TEM “comparative 

imprecision of different measurements cannot be assessed” (Ulijaszek and Kerr, 1999; page 

167). To overcome this, TEM can be converted to relative TEM (%TEM), which is the error 

expressed as a percentage of the mean of the measurement analyzed (Perini et al., 2005). The 

converted percentage has no units and allows for direct comparisons of all measurement sizes 

(Ulijaszek and Kerr, 1999). Unfortunately, acceptable levels of TEM and %TEM are difficult to 

determine as it may be group, population, or even age dependent in anthropometric studies; 

therefore, the values for TEM vary across measurement type and intra- and inter-observer error  

TEM =
(!!!)
!!  

 
 
 
 
 

% TEM = 
!"#
!"#$  * 100 
 
 
 
 

The basis splines of order 1 for a non-decreasing knot sequence has the functions:  

 
 

 

!!,! ! = ! 1!!!!!!!"!!! !≤ ! < !!!!
0!!!!!!!!!!!!!!!!"ℎ!"#$%!.  

 
 
Obtainment of higher-order basis splines is by recurrence (de Boor, 1986; Racine, 2012); 
the first term is the intercept (!!,!) 

 
 

!!,!!! ! = !!!,!!! ! !!,! ! + 1 − !!!!!,!!! ! !!!!,! ! , 
 
 

TEM =
(!!!)
!!  

!

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



!

52 52 

(Ulijaszek and Kerr, 1999). Overall, the lower the %TEM obtained, the better the precision of 

measurements (Geeta et al., 2009). Some authors note an acceptable level of intra-observer 

%TEM for skilled observers to be between 1 – 5% and 1.5 – 7.5% for beginner observers. Inter-

observer %TEM is higher and ranges from 1 – 7.5% for skilled observers and 2 – 10% for 

beginner observers (Perini et al., 2005). 

A Bland-Altman plot can be employed to visualize the amount of agreement between or 

within observers (Bland and Altman, 1986). The plot reveals the overall trends in the agreement 

of two datasets and identifies any systematic bias’ and outliers by plotting the means of the 

repeated measures along the x-axis and the differences between the corresponding measurement 

pairs on y-axis (Rothwell, 2000; Geeta et al., 2009; Harris and Smith, 2009). The limit of 

agreement, both positive and negative, is the reference interval that is based on the mean and 

standard deviation. Thus the upper and lower limits of agreements are different for each sample 

(Bland and Altman, 1986; Geeta et al., 2009). Additionally, the limits provide insight into the 

amount of random variation that is present. If the observers tend to agree, the plot should show a 

random scatter of differences around a mean of zero; if observers tend to disagree, the scatter 

will extend beyond the limits of agreement. 

 

 

DATA PREPARATION 
 

All analyses were performed in R (R Core Team, 2013), an open source software 

program. Besides acting as an environment to perform statistical analyses, R is a programming 

language that is similar to S, a preferred language within statistics (R Core Team, 2013). Because 

the statistical analyses conducted in R are through packages, R is extremely flexible and is not 

limited to predetermined analyses. The packages employed for each statistical analysis will be 

cited accordingly. 
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OUTLIER DETECTION 
 

Prior to any statistical analyses, the data were explored for outliers. Checking the data for 

outliers is an essential step in research as all outliers require identification prior to model creation 

or analysis (Ben-Gal, 2005). Outliers can be defined as a “unique combination of characteristics 

identifiable as distinctly different from other observations” (Hair et al., 2007; 73). Essentially, a 

univariate outlier is an extreme value that is exceptionally high or low in relation to the other 

values in the same sample. Univariate techniques are greatly influenced by outliers such that the 

mean and variance may mask true outliers (Jackson and Chen, 2004). In a high dimensional 

dataset, the multidimensional position of each observation needs to be objectively measured and 

compared to the overall configuration of the entire dataset. Thus, observations that were not 

recognized as an outlier in the univariate approaches may be recognized as an outlier in the 

bivariate or multivariate approach. Generally, a multivariate approach is considered superior to 

univariate and bivariate techniques (Jolliffe, 2002; Hair et al., 2010). Outliers have a practical 

effect such that they strongly influence analyses and a substantive effect such that they may 

reflect the outer edges of a normal population. Although not every outlier is automatically 

problematic, outliers require evaluation in order to investigate their influence and impact on the 

dataset (Hair et al., 2007). Furthermore, outliers are not always representative of unique 

observations but can be the result of human error.   

Outlier detection was conducted with univariate, bivariate, and multivariate techniques. 

Visual assessment was conducted through scatterplot matrices, boxplots and basic scatterplots. 

Boxplots are summary statistics that use the interquartile range as a measure of the spread of the 

data (Wickham and Stryjewski, 2011). If an observation falls outside of one and a half times the 

length of the interquartile range, the point is considered an outlier. Scatterplots and scatterplot 

matrices display potential outliers as isolated observations. Scatterplot matrices are valuable in 

large datasets as it permits multiple scatterplots to be viewed at one time.  

Multivariate analyses included the use of R functions mvoutlier, outlierTest and 

princomp, all functions located in the mvoutlier (Filzmoser and Gschwandtner, 2013), car (Fox 

and Weisberg, 2011), and stats (R Core Team, 2013) packages, respectively. mvoutlier 

(Filzmoser and Gschwandtner, 2013) interprets multivariate outliers from Euclidean space and 

produces an adjusted quantile plot, indicating observations with above average values for most of 
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the univariate variables as possible outliers. The outlierTest function was applied to linear 

models created for each element (age regressed on measurement). The p-value reported the 

largest absolute studentized residual – the measure resulting from the division of a residual by an 

estimate of its standard deviation – in the sample, using the t distribution (Fox and Weisberg, 

2011). Principal component analysis (PCA) was also used to identify atypical observations and 

possible outliers utilizing the princomp function (Chen et al., 2009; R Core Team, 2013). PCA is 

a data reduction technique that linearly transforms the data into a new set of the same number of 

variables that are uncorrelated to one another all while retaining the total variance in the 

correlation matrix or the variance-covariance matrix (VCVM). By plotting the principal 

component (PC) scores derived from a correlation matrix or VCVM with a biplot, one can 

identify observations that have relatively atypical variable combinations. Furthermore, the 

multivariate distances to the sample centroid can be compared to evaluate the observations with 

the largest distances. 

The DVS imaging software retained all measurements obtained on the Lodox Statscan-

generated images; therefore, all observations that were noted during the outlier detection 

methods were checked for typographical errors. The majority of observations noted as possible 

outliers were typographical errors that were corrected, allowing for a large retention rate. A total 

of 20 individuals were removed from the sample. The removed individuals were consistently 

marked as outliers through univariate and multivariate techniques with no associated 

pathological reason for being exceptionally large or small for age. Tabachnick and Fidell (2007) 

noted that the removal of outliers presents few consequences in large samples. Following the 

removal of the outliers, the data was again processed with the multivariate techniques to ensure 

all true outliers were removed. 

 

 

EXPLORING RELATIONSHIPS BETWEEN SEX, AGE AND 
POSTCRANIOMETRIC VARIABLES 

 

The data required graphical examination in order to evaluate the type of relationship the 

diaphyseal dimensions had with age and sex. Scatterplots of age regressed on a measurement and 

separated by sex were plotted with loess (local regression) smoothing lines to visualize 
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relationships. Loess uses locally weighted polynomial regression to fit a smooth curve through 

data without making assumptions about the form of the relationship. Based on the graphs, the 

relationship between age and postcraniometric variables was obviously nonlinear, reflective of a 

biological growth curve. The relationship of the data provides insight to the most appropriate 

analyses, specifically flexible models for age at death estimation that can compensate for the 

nonlinearity.  

Correlations, inclusive of both sexes, population groups, and all ages were conducted on 

all measurements. Correlations provide a summary coefficient of the extent of the linear 

relationship that exists between variables (Kachigan, 1991). The results of the correlation matrix 

demonstrate the direction and strength of the relationship between variables and consequently 

illustrates the potential for predictive information (Kachigan, 1991). Because correlations only 

represent the linear relationship between two variables, nonlinear relationships will not be 

reflected in the Pearson correlation coefficient and some relationships within the dataset may be 

stronger than reflected in the coefficients (Hair et al., 2010).  

A Holm’s adjustment was incorporated into the p-values for the correlations because an 

increase in the number of statistical tests directly increases the likelihood of a Type I error, or 

rejection of the null hypothesis when in fact it is true. Holm (1979) offers one of the most 

powerful sequential tests that is universally valid, distribution free and is designed to increase the 

power of the tests while managing the inflation of alpha (Holm, 1979; Levin, 1996; Abdi, 2010). 

The test first obtains all of the p-values and then employs a Bonferroni correction to the 

observation with the smallest probability; if the test is significant the Holm’s procedure 

continues until the first observation is not significant (Abdi, 2010). A Holm’s correction was also 

incorporated into the two-tailed Student’s t-test that was conducted on the mean male and female 

values of each measurement for each individual measurement-age dataset (i.e. the proximal 

breadth of the humerus for all individuals between birth and 12 years) to test for sex differences 

at each age. Assumptions with the t-test include normality; if the sample violates the assumption 

of normality then an equivalent, non-parametric Mann-Whitney test should be utilized. 

Analysis of variance (ANOVA) is a univariate hypothesis test used to analyze differences 

of group means for more than two groups. Multivariate analysis of variance (MANOVA) is a 

multivariate extension of an ANOVA that compares multiple means at one time by combining 

the dependent variables into a linear composite, or new variable, with each single variable 
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contributing to the overall relationship based on the strength of the individual correlation 

(Weinfurt, 1995; Tabachnick and Fidell, 2007). Significant MANOVA results indicate that the 

groups (i.e. sex and age) differ in respect to the new composite variable. MANOVAs do not 

work well if the predictor variables suffer from multicollinearity, which is demonstrated by 

correlation coefficients greater than 0.9 (Tabachnick and Fidell, 2007). Consequently, ANOVAs 

were also conducted. Both ANOVA and MANOVA were conducted to identify the effects of 

age, sex, and the interaction of age and sex on the measurements.  

Numerous assumptions are associated with both tests. Specifically for the ANOVA, the 

assumptions include linearity, normality, and equal variances of the predictor variable. The same 

assumptions are true for the MANOVA except the analog to equal variances is homogeneity of 

the variance-covariance matrices (VCVMs) of the multiple predictor variables (Weinfurt, 1995; 

Tabachnick and Fidell, 2007). Because Quantile-Quantile plots (QQ plots) are used to evaluate 

shapes of distributions, the test was used as a visual tool to assess normality and demonstrated 

the variables were somewhat normally distributed. Scatterplot matrices (Fox and Weisberg, 

2011) were used to visualize the relationships among the predictor variables. A Levene’s test, a 

test for homogeneity of variances in k groups based on the ANOVA statistic applied to absolute 

deviations of observations from the corresponding group mean, was conducted on each 

univariate measure prior to the ANOVA (Fox and Weisberg, 2011). The assumption was made 

that the variance-covariance matrices were equal for males and females. 

While the ANOVAs were conducted on the univariate predictor variables, the sample 

was subdivided into bone subsets and four additional subsets based on element type and 

measurement type for the MANOVAs in an effort to retain sample sizes. The bone and 

measurement type and element type subsets include: humerus (n=497), radius (n=281), ulna 

(n=400), femur (n=778), tibia (n=521), upper limbs measurements (n=96), lower limb 

measurements (n=458), proximal element measurements (n=316), and distal element 

measurements (n=100)). All of the subsets were used throughout the results for the multivariate 

analyses. This process was followed so superfluous variables would be removed that would most 

likely not contribute to final models while making an effort to retain adequate sample sizes.  
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DATA TRANSFORMATION: PRINCIPAL COMPONENT 
ANALYSIS 

 

Principal component analysis (PCA) was conducted on each subset in order to extract the 

total variance from the dataset and cope with multicollinearity, all while reducing 

dimensionality. PCA uses orthogonal transformations to convert the raw data into uncorrelated, 

linear combinations of variables that maximizes the variance from the residual correlations 

(Everitt and Dunn, 2001; Jolliffe, 2002; Tabachnick and Fidell, 2007; Hastie et al., 2009; Wright 

and London, 2009; Rousseeuw and Hubert, 2011). The new variables, or principal components 

(PC), are derived in decreasing order of proportional variance. For example, the first principal 

component includes the combination of variables that expresses the largest variance in the 

dataset while the last principal component includes a combination of variables that expresses the 

smallest variance in the dataset. If the correlations among all variables are positive, then the first 

principal component (PC1) is interpreted as a measure of size, illustrated by all either positive or 

negative coefficients – the sign is arbitrary as the variance is unchanged (Jungers et al., 1995; 

Klingenberg, 1996; Jolliffe, 2002). In contrast, PC2 – PCx present with positive and negative 

coefficients, which are recognized to explain variation resulting from differences in shape while 

controlling for size (Jungers et al., 1995; Jolliffe, 2002). Thus, the removal of PC1 from analyses 

is recognized as an approach that successfully adjusts for size, which is evident among 

individuals of different ages in the sample. PCA was performed using the variance-covariance 

matrix with the princomp function in the stats package (R Core Team, 2013). The principal 

component (PC) scores were used in both age and sex estimation analyses described below. 

The aims of the current study were to provide sex and age estimation models for South 

African subadults, thus two different types of analyses needed to be applied – classification and 

regression. Overall, the analyses were conducted independently (i.e. age estimation analyses 

were independent of sex estimation analyses); however, some variables from the age estimation 

were used in the classification models for sex estimation (i.e. y-axis residuals). The complexity 

of the analyses progressively increased for the classification and regression models from 

univariate models, multivariate bone models and subsets to the all-measurement model. Again 

the purpose of the subsets was to preserve large sample sizes. The variables chosen for each 

multivariate model were based on the significant relationships with sex or age in the 
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MANOVA/ANOVA and Student’s t-tests results as well as the results from the univariate and 

bone and subset models.   

 

 

AGE ESTIMATION 
 

Based on the exploratory analyses, linear regression models were not flexible enough to 

fit the nonlinear relationships evident between diaphyseal dimensions and age. Consequently, 

basis splines and multivariate adaptive regression splines (MARS) were chosen as the preferred 

methods for the age at death estimation models. The use of the basis spline and MARS models 

present a novel approach within the field of anthropology to estimate age at death. The models 

created in this dissertation use age as the response variable and the measurement(s) as the 

predictor variable(s). Regressing age on measurement allows for the prediction of age rather than 

diaphyseal length and subsequently, 95% prediction intervals can be derived, which are part of 

the requirements for best practices in the field. Males and females were pooled for all age at 

death models, possibly resulting in increased variation per age though this process eliminates 

compounding errors in the estimates.   

Numerous variations of basis splines models were analyzed for each univariate model 

and similarly, numerous variations of MARS models were also analyzed. The best two fits – 

based on standard errors, R-squared, Akaike information criterion (AIC) and ANOVA – were 

compared to one another to determine the most appropriate method for each specific 

measurement (see Model Selection, page 65). The multivariate bone and element type and 

measurement type subsets as well as the all-measurement subset were only subjected to MARS 

as the model is recognized to work well with variable interactions. Additionally, the PC scores 

for each of the subsets were also incorporated into MARS models. Following each model 

derivation, appropriate prediction intervals were created through resampling because both basis 

splines and MARS are nonparametric models (see Resampling: Prediction Intervals, page 67).  
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BASIS SPLINES 
 
 Additive models involve piecing together different curves to map out the relationship 

between the predictor and response variable. Different sub-regions of x may exhibit different 

relationships between the two variables. A polynomial function is applied to each sub-region that 

exhibits a different slope and is connected ‘piecewise’ to the other polynomial functions to 

ultimately create a smooth fit, or spline (Figure 4.4). The basis spline is considered a 

generalization of the Bézier curve, a spline that consists of no interior knots – the location where 

two piecewise polynomials join – and is an extension of the linear model into an additive model 

(Wright and London, 2009; Racine, 2012). However, the basis spline is more adaptable than the 

Bézier curve because the basis spline fit is constructed piecewise from a different polynomial 

function in each contiguous interval of X, which presents as one parametric curve (Hastie and 

Tibshirani, 1990; Eilers and Marx, 1996; Wood, 2006; Racine, 2012). In contrast to linear 

models where the X variable(s) are multiplied by a scalar (B), the scalar is replaced by a function 

in additive models (Wright and London, 2009). By attaching two regression lines with different 

slopes at one point, a linear regression fits nonlinear data. Piecewise-polynomials are considered 

superior to polynomial transformations – which have been recently presented in age estimation 

techniques – because polynomial transformations tend to be erratic at the boundaries when the 

coefficients are adjusted (Hastie et al., 2009).  

The type of function, or order (m), specified is associated with the type and complexity of 

the spline and corresponds to different types of regression (Wright and London, 2009). For 

example, a 0-degree polynomial is analogous to the constant (β0), a second-degree polynomial is 

a quadratic regression, and a 3rd-degree polynomial is considered a cubic regression (Wright and 

London, 2009). The order (m) and number of knots (N) defines a basis spline. Fundamentally, 

two knots are always at the endpoints making the total number of knots N + 2 and the transition 

between each polynomial is continuous. The remaining knots are located in a specified location 

(non-uniform) or equidistant (uniform) for the best fit. This process is fundamentally different 

from smoothing splines which use the observations themselves to smooth the fit (Racine, 2012). 

The quantiles knot sequence has knots located at the quantiles of the empirical distribution of the 

predictor variable; the number of observations per interval are equal but the segments may not be 

an equal length (Racine, 2012). If not specified in the bs function of the splines package (R Core 
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Team, 2013), the knot, in a one-knot model, is placed at the median of the predictor variable and 

in a two-knot model, at the first and second tertiaries. The number of knots is directly related to  

the fit of the data such that underfitting is the result of too few knots while overfitting is the 

result of too many knots (Figure 4.5) (Eilers and Marx, 1996).  

 
 
 
 
 
 
 
 

 
Figure 4.4 – The left figure demonstrates different slopes for three sub-regions of x. The right  
figure demonstrates a quadratic spline with three knots that ‘connects’ the three regression lines 
observed in the left figure.  
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Figure 4.5 – An example of an overfit basis spline model with 60 knots. 
 

 

Any spline function can be expressed as a linear combination of basis splines. In the basis 

spline algorithm, t denotes the knot sequence, m denotes the order, and x is the variable.  

 
Obtainment of higher-order basis splines is by recurrence (de Boor, 1986; Racine, 2012); 
the first term is the intercept (!!,!) 
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and the internets formula: any spline function of degree m on a given set of knowts can be 
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where               is the ith basis spline function of order m 

and ti is a non-decreasing set of real numbers known as the knot sequence 

and x is the parameter variable. The feature of basis functions is the knot sequence and is defined 

as m + 1 knots or m intervals. The number of basis functions in each model is dependent on one 

subtracted from the degree (m = 1, 2, or 3) and then subtracted by the total number of knots (e.g. 

m – 1 – N). Once the basis functions have been identified, the models are considered linear and 

fitting of the model can proceed as in linear regression (Hastie et al., 2009). The basis splines 

models were conducted using the bs function in the splines package (R Core Team, 2013).  

 

 

MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) 
 
Multivariate adaptive regression splines (MARS) is a flexible, nonlinear, nonparametric 

regression modeling technique that fits general nonlinear multivariate functions through subsets 

of the variables that makes no assumptions about the relationships of the variables (Friedman, 

1991; De Veaux and Ungar, 1994; Butte et al., 2010). The model is viewed as a generalization of 

recursive partitioning regression or additive models (Friedman, 1991). Specifically, MARS 

amalgamates linear regression, truncated basis functions, and binary recursive partitioning to 

approximate the underlying function and model relationships (Muñoz and Felicísimo, 2004). 

MARS requires large datasets to build a suitable model while it is still competitive in low 

dimension situations (i.e. fewer predictor variables); however, the analysis is considered ideal in 

situations where there are between two and 20 predictor variables (moderate to high dimension) 

and between 50 and 1000 observations (moderate sample sizes) (Friedman, 1991; Sekulic and 

Kowalski, 1992; De Veaux and Ungar, 1994). Additionally, because MARS is an adaptive 

technique the final model is considered more accurate compared to a technique that has a fixed 

set of basis functions (Barron, 1994).  

MARS is considered to be sensitive to outliers and high leverage points in predictor space 

(Friedman, 1991; De Veaux and Ungar, 1994). While an outlier is an observation that does not 

conform to the overall variation demonstrated by a large positive or negative residual, a high 

leverage point presents with an unusual combination of predictor variables presenting as an 
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outlier in predictor space (Kabacoff, 2011). Overall, MARS strength and flexibility can be 

attributed to its heavy use of the response values to construct the basis functions. The bias of 

model estimates is usually greatly reduced, simultaneously increasing the variance as additional 

parameters are adjusted to better fit the data (Friedman, 1991).  

Achieving the appropriate f(X), or basis function, is the ultimate goal of MARS. This 

basis function is estimated by subdividing X into regions and obtaining estimates of f(X) for each 

region (Friedman, 1991; Sekulic and Kowalski, 1992). MARS uses expansions in piecewise 

linear basis functions of the form of x > t, then (x – t ) and if x < t, then (t – x ), whichever 

permits the term to result in a positive value (Sekulic and Kowalski, 1992; Hastie et al., 2009). 

Each piecewise linear function is separated by 

 

!!,!! ! = !
! − !!
!!!!! − !!

!!!!!"!!!!!! ≠ ! !!
!!!0!!!!!!!!!!!!!!!!!!!!!!otherwise.

 

 
 

 
Basis function formula: 
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sympercents: 

 

100 !"#!!! − 100 !"#!!! = !% 

 

the knot, t, which forms a reflected pair. Data are separated into two parts for each predictor 

variable. The knot represents a change in slope or the transition from one polynomial to the next 

(Friedman, 1991; Muñoz and Felicísimo, 2004; Butte et al., 2010). This process, termed a hinge 

function or term, is conducted for each predictor variable (x) and every possible value of t. Thus, 

all points will be positive for all points to the left or right of the knot, respectively. For example, 

if the hinge function chosen for the model is (h_mxl – 222), the hinge function will only be used 

if the humerus diaphyseal length is larger than 222 mm; if the measurement is smaller than 222 

mm, the hinge function will be disregarded in the equation.  

There are 2Np basis functions if all predictor variables are distinct and each basis 

function takes the form of a constant (i.e. the intercept), a hinge function, or a combination of 

hinge functions. In contrast to recursive partitioning, basis functions overlap. Where recursive 

partitioning follows a two-at-a-time backward deletion strategy, MARS employs a one-at-a-time 

deletion – along with subset selection – through a forward and backward iterative selection to 

adaptively construct a set of basis functions (Friedman, 1991, 1993). With the inclusion of an 
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additional variable, the hinge function can occur dependent of the previous knot, only on one 

side of the previous knot, or independent of the previous knot. The coefficients for each function 

are then estimated by minimizing the residual sum of squares (Hastie et al., 2009). The knot and 

variable pair which provides the best fit, based on least squares, is retained in the model 

(Friedman, 1991; Sekulic and Kowalski, 1992; De Veaux and Ungar, 1994). The forward pass 

deliberately over-fits the training data and continues until one of the following is met: 1) reached 

the maximum number of terms for the model; 2) the R-squared changes less than 0.001; 3) the R-

squared is greater than or equal to 0.999; 4) generalized R-squared value (explained below) is 

less than -10; or 5) no new term increases the R-squared value (Friedman, 1993; Muñoz and 

Felicísimo, 2004; Milborrow, 2013).  

The backward pruning pass – employed to remove excess basis functions that no longer 

contribute to the accuracy of the fit – utilizes the generalized criterion value (GCV) with a goal 

to produce the most generalizable approximation (Friedman, 1991, 1993). The GCV, an 

approximation of the prediction error ascertained by a leave-one-out cross-validation, is based on 

the residual sum-of-squares (RSS) (Milborrow, 2013). Following the pruning pass, the MARS 

model determines the fitted values, residuals and coefficients by regressing y on the basis matrix 

following an ordinary least squares regression. The MARS models were performed using the 

earth package in R (Milborrow, 2013).  

A fundamental concept of MARS is that in different areas of multivariate space, variables 

will have differing degrees of importance to the response surface (Sekulic and Kowalski, 1992). 

The term ‘adaptive’ in the technique name refers to the capability of the algorithm to choose the 

dominant variables for each sub-region in multivariate space rather than just interactions with the 

predictor variable (Sekulic and Kowalski, 1992; De Veaux and Ungar, 1994; Muñoz and 

Felicísimo, 2004). However, MARS is considered to be vulnerable to multicollinearity 

(Friedman, 1991; De Veaux and Ungar, 1994; Muñoz and Felicísimo, 2004; Milborrow, 2013). 

During the forward pruning pass, MARS may arbitrarily (if variables have the same RSS or 

GCV criterion) choose one variable over another because it is difficult to isolate the 

contributions and interactions of two highly correlated variables (Friedman, 1991). Since 

application of PCA creates new uncorrelated variables, the multicollinearity problems associated 

with MARS are alleviated; generally when data are nonlinear and there are strong inter-variable 

correlations, MARS with PCA tends to outperform MARS without PCA (De Veaux and Ungar, 
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1994). MARS conducts automatic variable selection based on the effect of the variable on the 

response variable, which is averaged for the entire population. MARS models base variable 

selection on three criteria: the number of model subsets that include the variable; variables that 

cause for a decreased residual sum of squares; and the GCV criterion, if the GCV increases, the 

variable has less importance (Milborrow, 2013). 

In terms of model selection and goodness of fit, numerous outputs are necessary to 

consider. earth builds ten-fold cross-validated models on the data. Cross-validation partitions the 

data into 10 equal subsets, repeatedly builds a model on all but one subset (90%), and the left-out 

subset is used to measure model performance (10%) (Efron and Tibshirani, 1993; Hastie et al., 

2009; Milborrow, 2013). An averaged out-of-fold R-squared (cross-validated R-squared [cv.rsq]) 

is obtained from the left-out subset and is an estimate of the model performance on independent 

data (Milborrow, 2013). The GRSq, or generalized R-squared, is based on the raw GCV and is a 

model assessment or generalization of model performance. Adding terms (or hinge functions) 

generally always increases the R-squared, but the GRSq may actually lower in regard to the 

predictive powers and ultimately the generalization to independent data (Milborrow, 2013). Once 

the MARS model is created it is transformed into a linear model and compared to the best spline 

model (see below). 

 

 

MODEL SELECTION: STANDARD ERROR, R-SQUARED, AIC, ANOVA 
  

Age in years was the response variable and bone measurements were the predictor 

variables for each of the models created, which ranged from simple linear regression with no 

transformation and without the inclusion of splines to more complex models such as quadratic 

functions with 3 knots or a MARS model with a cube root transformation of age. First the 

models created from the same method were compared, such as all the spline models or all of the 

MARS models, by standard error (SE), F-value and RSS in an ANOVA, R-squared and AIC 

(Wright and London, 2009). Criteria to choose the best MARS model included the SE, cv.rsq 

and GCV as well as model complexity. Residuals of each model were evaluated to look for any 

outliers and ensure homoscedasticity. After the chosen MARS model was transformed into a 

linear regression, the model was compared to the chosen spline model through SE and R-squared 
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and AIC when possible. Because the models were created with different transformations to age, 

not all models could be directly compared with AIC, thus the SE and R-squared were the 

primary values for comparison.  

The priority in model selection is seeking the model that yields the best balance between 

model fit and complexity. Model selection based on the Akaike Information Criterion (AIC) 

represents the information-theoretic selection approach based on a publication by Kullback and 

Leibler (K-L) (1951) (Burnham and Anderson, 2004). The K-L chooses a model that loses the 

least information relative to the additional models being compared. AIC combines estimation 

and model selection with an unbiased estimator of K-L information and ranks the models from 

best to worst, based on the lowest and highest AIC, respectively (Burnham and Anderson, 2004; 

Hastie et al., 2009; Wright and London, 2009; Burnham et al., 2011). Whether one model is 

significantly better than another model – when comparing with ANOVA – is based on the F 

statistic, which is a test statistic that evaluates the variance of group means divided by the mean 

of within group variances based on the RSS. AIC is considered superior to sole dependency on 

the RSS and F-values in an ANOVA since the RSS will always decrease with the addition of 

new variables, no matter how overfit the model is. Essentially, AIC considers the complexity of 

the model and the goodness of fit of the model. 

In regression, the standard error is the ordinary least squares estimate of the standard 

deviation of the underlying errors and is considered an accuracy check of the model (Efron and 

Tibshirani, 1993). R-squared is the proportion of the total variability explained by the model. 

Whereas the SE can be compared across datasets, the R-squared cannot because it does not 

follow a distribution; however the R-squared can be compared when used on the same dataset 

(Hawkins, 2004). Generally, the more variability explained by the R-squared, the better the 

model since R-squared is the square of the correlation between the model's predicted values and 

the actual values. The square of the correlation ranges from 0 to 1 and the correlation can range 

from -1 to 1. The greater the magnitude of the correlation between the predicted values and the 

actual values, the greater the R-squared, regardless of whether the correlation is positive or 

negative.  Kvålseth (1985) devised eight criteria for a good R-squared statistic: 1) a measure of 

goodness of fit and reasonable interpretation, 2) a dimensionless number, independent of the 

variables in the model, 3) a number that ranges from 0 to 1, with 1 representing a perfect fit, 4) 

general enough to be applicable to any type of model, 5) applicable to all model fitting 
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techniques, 6) its values for different models fitted to the same dataset are comparable, 7) 

harmonious with other statistics derived from measures of fit (i.e. standard error of prediction), 

and 8) positive and negative residuals have equivalent weights.  

 

 

RESAMPLING: PREDICTION INTERVALS 
  
As previously stated in Chapter 2, useable age at death estimates require corresponding 

prediction intervals. The prediction interval considers the variability in the conditional 

distribution and the error in the conditional mean and takes into account the models capability to 

predict a future observation; a confidence interval only takes into account the conditional mean 

of the data and acts as a measure of the accuracy for the parameters of the model (Efron and 

Tibshirani, 1993). Essentially, the interval estimated for a future prediction, based on the 

variability in the observed data, is the prediction interval. Because the basis splines are 

semiparametric and MARS models are nonparametric, applying a parametric prediction interval 

is invalid as parametric intervals are constructed following assumptions based on a normal 

distribution, an assumption to which semi- or nonparametric models do not adhere (Lei and 

Wasserman, 2012). Thus, the prediction intervals associated with basis splines and MARS model 

need to be calculated indirectly through resampling methods, particularly cross-validation.  

Cross-validation provides a realistic estimation of prediction error because a test sample 

is incorporated that is different from the training sample. To circumvent the problem of 

collecting another dataset, cross-validation utilizes a portion of the data to fit the model and a 

portion of the data to test the model, ultimately estimating the average error (Efron and 

Tibshirani, 1993). Specifically, k-fold cross-validation separates the data into K equal sized parts, 

for the kth parth the model will be fit to the other K – 1 parts and the prediction error of the fitted 

model will be calculated when predicting the kth part (Efron and Tibshirani, 1993; Kohavi, 1995; 

Hastie et al., 2009). This is conducted for as many subsets chosen, which in the current study is 

10, and then the K estimates of prediction error are combined. Utilizing K = 10 allows for a 

lower variance, but a possible higher bias; however, this is alleviated if the training sample has 

approximately 100 observations (Efron and Tibshirani, 1993). In the current study, each training 

set will be a different size because the dataset specific to each variable is different; the largest 
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univariate samples (i.e. HDL, FDL) will have training sets with more than 100 observations 

though all of the multivariate subsets may not. Although cross-validation may overestimate the 

true prediction interval, a tenfold sample is generally recommended as the best compromise for 

bias and variance (Kohavi, 1995; Hastie et al., 2009). Specific to cross-validation in the MARS 

models, a cross-validated model is constructed and then predictions are made on the out-of-fold 

data. The out-of-fold data refers to the 10% holdout sample for each model. This process was 

repeated 100 times and the 95% predictions intervals will be based on the spread of the 

predictions.  

 The primary difference between a nonparametric cross-validated prediction interval and a 

classic parametric prediction interval is how the variance of the prediction error is estimated.   Variance of Prediction Error: 
 

! ! + !! 
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v is the noise variance, which is the RSS of the 
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A cross-validation was conducted on each basis spline and MARS model to obtain the variance 

of the predicted values (V(x)); essentially, how much the predicted values – for each observation 

– vary over 100 iterations of the cross-validated models.  

Variance of Prediction Error: 
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However this does not include the noise variance, or v, which can be estimated from the RSS of 

the original basis spline or MARS model divided by the number of observations. The equation 

for RSS is 

Variance of Prediction Error: 
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The cross-validated variance of the prediction error is then used in the prediction interval 

equation 

bootstrap – prediction interval first, than noise 
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Ultimately, the prediction interval is similar to a standard parametric prediction interval with the 

difference being how V(x) was estimated. In the current study, both 100 and 1000 iterations were 

conducted; the values did not differ greatly so 100 iterations was chosen.  

An age at death table was created for each univariate model. The tables provide a cross-

validated 95% prediction interval associated with the cross-validated fitted value for the range of 

each diaphyseal measurement. For example, if the range of TDL was from 115 mm to 368 mm, 

the chart would include the range of the measurement – in 1 mm increments – from 115 to 368 

mm and each diaphyseal length would have an associated fitted value and 95% upper and lower 

prediction intervals. An age at death chart was also created for the all-measurement model. 

However, the data presented in the age at death chart of the all-measurement model are the 

variable combinations for the individuals in the current study, as the possible number of variable 

combinations is too large to account for in age at death tables. Thus, the all-measurement age at 

death table is merely used as an example of the potential success of multivariate models 

employed for age at death estimation of subadult skeletal remains.  

 

 

 

SEX ESTIMATION  
 

Sex estimation required a multitude of classification models to expose the analysis best 

suited for the data. The classification models consisted of linear, quadratic, and flexible 

discriminant analysis, logistic regression, naïve Bayes, and random forests. The models utilized 

the original variables, ratios, PC scores derived from the variance-covariance matrix (VCVM), as 

well as the y-axis residuals from each of the chosen age estimation basis splines or MARS 

models. The goal of the inclusion of the PC scores, ratios and residuals was to retain the 

variation but remove the increase in size as age increases (Jungers et al., 1995). 
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MEASURING SEXUAL DIMORPHISM 
 
Sympercent (sp) differences were calculated to quantify sexually dimorphic differences 

per measurement and age in the dataset. Sympercent differences removes size by removing the 

unit of measure and rather provides a log of a ratio while still retaining the relationship between 

males and females (Cole, 2000). The sympercent approach is in contrast to the typical way that 

dimorphism is reported, which is by percent differences.  Both sympercent and percent 

differences account for the drastic differences in size of diaphyseal lengths and breadths. For 

example, the midshaft measurements may have a range of only 10 mm whereas a diaphyseal 

length measurement may have a range of 300 mm. Similarly, a 5 mm difference on the midshaft 

is drastically different from a 5 mm difference on a diaphyseal length and thus the magnitude of 

each is different. However, percent differences present with signs as well as magnitudes 

dependent on what variable is chosen as the numerator and denominator (Cole, 2000; Wells, 

2012). For example, a group of females may be 7.7% shorter than a group of males, but the 

males are 8.4% taller than the same group of females. Therefore, percent differences between 

variables are asymmetrical and not additive (Cole, 2000).  

Logarithms convert a ratio to a difference, which corresponds to fractional differences on 

the original scale of a log-transformed scale, thus solving the problems of additivity and 

asymmetry. Multiply the logarithmic ratio by 100 and the natural log differences are equivalent 

to symmetric percent differences (Cole, 2000). 
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Because there is no denominator, the sp difference allows for males and females to be 

symmetrically larger or smaller than one another, which results in a value that is easier to 

interpret. The sp difference is unique among fractional percentages because it is additive. 

Furthermore, there is only one way to calculate sp differences, while there are many ways to 

calculate fractional differences (Cole, 2000). 
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CLASSIFICATION MODELS 
 
A multitude of different classification methods were employed in an attempt to identify 

the methods that consistently yielded the highest probability of a correct conclusion. Generally 

the goal of classification methods is to predict the response variable in future analyses. The 

process followed the same pattern for all elements, ranging from the most simple univariate 

situation to a multivariate bone model. Following all univariate and multivariate bone analyses, 

the classification models were applied to a subset of variables (all-measurement model) that 

demonstrated statistical significance in the MANOVA, ANOVA, and Student’s t-tests results as 

well as the subsets (i.e. upper limb, proximal elements, etc.). All analyses mentioned within this 

section apply to the original measurements and most analyses also include the ratios, residuals, 

and PC scores.  

Discriminant analysis (DA) is a method for identifying relationships between qualitative 

dependent variables and quantitative independent variables with a goal to predict group 

membership from a set of predictors (Kachigan, 1991; Tabachnick and Fidell, 2007). Essentially, 

DA classifies the quantitative independent variables (i.e. postcraniometrics) into a qualitative 

label (i.e. sex). Group membership of the unknown is subsequently based on the discriminant 

function score and its relative proximity – based on Mahalanobis distance – to the centroids of 

each reference group, or males and females (Hastie et al., 1993). Mahalanobis distance is a 

measure of similarity of an unknown to a known reference group based on the covariance among 

variables and the group's measurement means. The reference group to which the unknown is 

most similar is the group into which it is classified.  

Different types of DA are available for certain data structures; the most popular of these 

are linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). Fundamental 

differences between LDA and QDA are apparent on the hyperplane that separates the classes. 

LDA uses a linear boundary between the classes while the QDA uses a quadratic boundary 

(Michie et al., 1994; Hastie et al., 2009). Multivariate normality is required for both LDA and 

QDA and was analyzed through QQ plots (Hastie et al., 1993; Tabachnick and Fidell, 2007). 

While LDA requires common VCVMs of the different groups in the sample (p > 0.05), the QDA 

is employed if the VCVMs significantly differ (p < 0.05) (Hastie et al., 2009).  
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A major consideration when employing a DA is the sample size in comparison to the 

number of variables utilized in the model as the estimation of means, variances, and covariances 

all depend on sample size (Ousley and Jantz, 2012). A suggestion that will be acknowledged 

during the statistical analyses is that the minimum sample size among groups must be at least 

three times the number of measurements (3m) (Huberty, 1994); a standard that provides 

estimates less subjective to sampling variation and that achieve more successful classifications 

(Ousley and Jantz, 2012). DA also has the capability to apply stepwise selection of variables, an 

approach that removes superfluous variables that should not help classification. The result is a 

smaller number of predictor variables that discriminates between the groups as well as all of the 

predictor variables.  

Both LDA and QDA provide classification accuracies for each function, indicative of the 

validity of the result. Within this research, all DA models assumed equal prior probabilities. 

Therefore, the probability of being classified as a male or female is 50% whereas a proportional 

prior probability is based on the sample distributions. For the purpose of this study, classification 

accuracies that were 50% greater than chance, or 75%, were considered practical for use in 

forensic anthropological analyses. The qda and lda functions are in the MASS package 

(Venables and Ripley, 2002) and the stepclass function, used for stepwise variable selection, is in 

the klaR package (Roever et al., 2013).  

In addition to LDA and QDA, flexible discriminant analysis (FDA) substitutes a flexible, 

nonparametric fit in the place of the linear regression in LDA and achieves a more flexible 

classifier that is motivated by generalized optimal scoring (Hastie et al., 2009; Milborrow, 2013). 

Essentially, rather than a linear hyperplane as used in LDA, FDA employs a flexible (nonlinear) 

hyperplane to separate the classes (Hastie et al., 1993, 2009; Milborrow, 2013). FDA is similar to 

MARS models (see MARS, page 62) in that it uses adaptive additive spline regressions and then 

performs a linear regression in the enlarged space (Hastie et al., 2009). Essentially, the MARS 

algorithm – which has capability to capture variable interactions in a hierarchical manner – was 

applied with an adaption to a multiple response variable such that the residual sum of squares 

and GCV criterion is summed over the number of response variables (Hastie et al., 1993). 

Generally, the flexible modeling better separates classes, especially those greater than two, and is 

considered superior to LDA and QDA, demonstrated by consistently higher overall correct 

classifications (Friedman, 1991; Milborrow, 2013). FDA was conducted using the fda function in 
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the mda package, which was based on the original S code written by Hastie and Tibshirani 

(Leisch et al., 2011).  

Logistic regression is used for binary predictions and is useful when describing 

relationships between independent variables and a binary dependent variable without requiring a 

normal distribution, linear relationships among variables, or equal variances among groups 

(Kachigan, 1991; Motulsky, 1995; Tabachnick and Fidell, 2007; Hastie et al., 2009). Logistic 

regression is related to and answers the same questions as DA, however logistic regression is 

sometimes preferred as it is considered more flexible and has fewer assumptions. Logistic 

regression is considered especially useful when the predictor variables display a nonlinear 

relationship (Tabachnick and Fidell, 2007). Similar to most multivariate analyses, logistic 

regression is extremely sensitive to multicollinearity and the effects are identified as large 

standard errors in the fitted model (Tabachnick and Fidell, 2007). Furthermore, multicollinearity 

may erroneously skew the results such that the predictor variables that demonstrate significance 

when initially evaluated (i.e. t-tests, ANOVA) may demonstrate no significance in a logistic 

regression. 

Rather than a least squares estimate of the parameters, logistic regression adopts a 

maximum likelihood approach to estimate coefficients through an iterative process (Hastie et al., 

2009). Essentially, the goal is to find the best weights for predictors that maximizes the correct 

prediction (Hair et al., 2010); the parameters are adjusted until the likelihood of the data does not 

change significantly (Tabachnick and Fidell, 2007). The likelihood function measures the 

probability of observing the particular set of predictor variables that occur in the sample. The 

maximum likelihood estimate involves finding the coefficients that results in the log of the 

likelihood function as large as possible. A measure of model fit using chi-squared is conducted 

by taking -2 times the log of the likelihood value. Logistic regression directly produces 

probabilities of group membership, unlike DA.  
To understand the fit, the difference between the observed and fitted values needs to be 

examined. Whereas this would be achieved by the R-squared and the RSS in an ordinary least 

squares approach, the model generalization for maximum likelihood models is a chi-squared of 

the residual deviance or a coefficient of determination. The former can be achieved by 

conducting an ANOVA on the logistic regression model, specifying for the chi-squared test. 
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Small variation in the residuals of the fitted model along with no systematic tendency is an 

indicator of the models goodness-of-fit (Hosmer et al., 1997).  

McFadden (1974) proposed one of the most common methods cited to calculate a 

coefficient of determination, or pseudo R-squared, for logistic regression. The formula proposed 

is analogous to the RSS in ordinary least squares regression, which corresponds to a proportional 

reduction in error. The McFadden R-squared can be computed as the difference between the 

initial and model -2 log likelihood statistics, divided by the initial -2 log-likelihood statistic 

(McFadden, 1974). Following an empirical test of multiple R-squared analgoues, Menard (2000) 

noted that the McFadden R-squared satisfied all of Kvålseth (1985) criteria for a good R-

squared. While evaluating the fit, the sample size should always be taken into consideration; for 

example, a larger sample size effects the significance of the model, such that the more likely 

statistical significance will be noted even when it is of no practical importance (Tabachnick and 

Fidell, 2007). Ideally, the size of each outcome group should be at least 10 times the number of 

estimated model coefficients; this condition was met in all logistic regression analyses (Hair et 

al., 2010). The glm package was used for logistic regression models (R Core Team, 2013).  

Naïve Bayes is a classifier function that assigns an outcome according to an example 

following Bayes Theorem, which is based on conditional independence. Unlike the previous 

methodologies, naïve Bayes reflects a causal relationship (Markov and Russell, 2007). 

Conditional independence states that all attributes are independent given the class variable, such 

that X is conditionally independent of Y, only if the probability distribution of X is independent 

of Y given Z. Essentially, the resulting posterior probability is proportional to the product of the 

prior and conditional probabilities; the specified class is based on which has the highest posterior 

probability (Friedman et al., 1997; Bennett, 2000; Malovini et al., 2012). Naïve Bayes has been 

shown to be asymptotically optimal, or that the model can reach the highest accuracy if provided 

with a large training set that is consistent and reflective of the true population prior probabilities. 

Even though naïve Bayes inherently violates the basic assumption of independence, the method 

is considered a robust and simple classifier that is routinely recognized to predict equally well as 

other classification methods (Friedman et al., 1997; Zhang, 2004, 2005; Zhang and Su, 2004; 

Hastie et al., 2009).  

The last type of classification model that was employed was random forests, which 

consists of a number of un-pruned trees (~500) that are independent while all retaining the same 
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distribution (Breiman, 1999, 2001; Cutler et al., 2007). Un-pruned trees refer to each tree built at 

its maximal size, which ultimately reduces bias. Each tree is constructed with a bootstrap sample 

from the training set, termed bagging, an acronym for ‘bootstrap aggregating’ (Breiman, 1996 a). 

Bagging is considered a superior process as it enhances the accuracy as well as provides 

continuous estimates of error, strength, and correlation. A randomized set of predictor variables 

is utilized concurrently to bagging to find the best split for each node into the children nodes. 

Consequently, approximately one-third of the variables (i.e., the square root of the number of 

variables) are excluded from the bootstrap sample and not used in the construction of the kth tree 

(Cutler and Zhao, 2001; Cutler et al., 2007). This process is based on out-of-bag estimates 

(OOB), or estimates of generalization error noted above. Once the specified number of trees is 

created, the forest chooses the class that has the most votes. Because OOB estimates are not used 

in the fitting of the trees, they represent a cross-validated accuracy estimate that eliminates the 

need for an independent test sample (Breiman, 1996 b, 2001; Cutler et al., 2007). Outcomes for 

random forests include a reduction in variation, improvement of the performance of procedures, 

and unbiased OOB estimates; the process is generally believed to outperform naïve Bayesian 

models (Breiman, 1996 a, 1999, 2001; Cutler et al., 2007). All random forest analyses were 

conducted with the randomForest function within the randomForest package (Liaw and Wiener, 

2002).  

 

 

ASSESSING CLASSIFICATION ACCURACY 

 

A bootstrap was conducted on each of the multivariate subsets for each classification 

method. Specifically, the model for each subset was subject to 1000 iterations. The classification 

error of the bootstrapped results was averaged and thus provided a more realistic classification 

error. The resampling was conducted on both the raw measurements and the PC scores using the 

VCVM. The first PC was removed for all bootstrap analyses to account for the size differences 

that are inherent with an increase in age. Stepwise selection was conducted prior to resampling 

for the LDA model, however the process is integral to both the logistic regression and FDA 

models. Thus, not every model will consider the same variables as significantly contributing to 

sex estimation. 
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The bootstrap is a resampling method for the model and statistics within a model and is 

the most suitable resampling method for smaller sample sizes, which is especially apparent in 

some of the multivariate subsets. The process consists of generating B bootstrap samples, usually 

100 or 1000, estimating the model of each B sample, and then applying the fitted model to the 

original samples (Efron, 1979; Efron and Tibshirani, 1993; Michie et al., 1994; Hastie et al., 

2009). An important note is that the B bootstrapped datasets are the same sample size as the raw 

data and are sampled with replacement from the training data. Thus, the bootstrapped samples 

are not identical to the original sample and some observations may be omitted entirely. 

Approximately 63% of the B sample will be unique observations from the original sample, the 

remaining 37% of the B sample will be duplicates of the original sample (Michie et al., 1994; 

Kohavi, 1995). Bootstrapped estimates do tend to produce optimistic classification accuracies 

based on the amount the average residual squared error underestimates the true prediction error 
(Efron and Tibshirani, 1993; Hastie et al., 2009); however, bootstrapped samples are considered 

comparable to cross-validation results.  

 

 

MODEL ASSESSMENT 
 

The ideal way to achieve the goals of appropriate model selection as well as model 

assessment is to test the generated models on an independent sample, after using the original data 

to train and test the models (Hastie et al., 2009). Essentially, the holdout sample provides a more 

realistic generalization performance of the chosen models, as the sample was not used as the 

training sample for model creation. The holdout sample for the current study was an additional 

sample of Lodox Statscan-generated images of 30 South African children aged between birth and 

12 years collected from the Red Cross War Memorial Children’s Hospital. Essentially, the 

holdout sample was to estimate the overall generalization performance of the appropriate age and 

sex estimation models. No individuals from this sample were included in the original dataset. 

The sample stems from the same population base and exhibits the same demographics and 

distributions.  
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CHAPTER 5: RESULTS 
  

Descriptive statistics, including the sample size, mean and standard deviation of each 

measurement by age and sex, are located in Tables 5.1 – 5.6. A different sample size was 

obtained for each measurement because of traumatic injuries and/or inaccurate placement, 

amongst other factors (Table 5.7). Femoral and tibia breadths were difficult to obtain in the 

younger individuals (< 1 year) because of natural leg positions, while the humeral, radial, and 

ulna lengths were difficult to obtain in the older individuals because of active epiphyseal fusion. 

The small sample sizes of the midshaft breadths of the radius and ulna (n=441 and n=406, 

respectively) resulted from children not being placed in anatomical position.  

In an effort to retain sample sizes and elucidate possible patterns among the diaphyseal 

dimensions and age and sex, the sample was partitioned into four element type and measurement 

type subsets, in addition to the bone subsets (i.e. humerus, radius, ulna, femur, tibia, and fibula). 

The element and measurement type subsets include the upper limbs measurements (n=96), lower 

limb measurements (n=458), proximal element measurements (n=316), and distal element 

measurements (n=100). An all-measurement subset was also utilized in the multivariate models 

for both age and sex estimation. However, the variables in the all-measurement model were 

different for both age and sex estimation analyses, thus the variables included for each analysis 

will be described in the associated sections. 

 

 

MEASUREMENT RELIABILITY 
 

Technical error of measurement (TEM) and relative TEM (%TEM) were conducted for 

each measurement to evaluate intra- and inter-observer error. From the original dataset, 15 

individuals were measured and re-measured by a second observer and the author, respectively. If 

both left and right sides were acceptable, the left was used; however, both the observer and the 

author had the option of choosing either left or right-sided elements because a measurement 

could only be obtained from an element in the proper position. For each of the 15 individuals, as 

with the original dataset, each measurement obtained a different sample size. The intra-observer 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



!

78 78 

error for all measurements is lower than the inter-observer error for all measurements. The mean 

intra-observer TEM and %TEM are small at 0.45 mm (0.07 mm to 0.91 mm) and 0.22% (0.02% 

to 0.83%), respectively (Table 5.8). The mean inter-observer TEM and %TEM were similarly 

low at 0.76 mm and 0.40% (Table 5.8), but as would be expected the ranges were slightly wider 

for both the TEM (0.02 mm to 1.7 mm) and %TEM (0.02% to 2.3%). The measurements with 

the highest inter-observer %TEM were midshaft breadths of the ulna and radius whereas the 

measurements with the highest intra-observer %TEM were the ulna midshaft breadth and radius 

proximal breadth.  

Based on the Bland-Altman plot, neither the intra- or inter-observer error show 

systematic bias. Most measurement differences are within 2 mm on the intra-observer error 

Bland-Altman plot (Figure 5.1). Generally, the inter-observer has the majority of measurements 

within upper and lower agreements of 2 mm, though the spread of differences is larger than the 

intra-observer error spread of differences (Figure 5.2).  
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Table 5.1 – Summary statistics separated by age and sex for the measurements associated with the humerus. 

Females 

Age 
(years) 

HDL HPB HDB HMSB 

n Mean St. 
Dev. n Mean St. 

Dev. n Mean St. 
Dev. n Mean St. 

Dev. 
<1 32 89.73 16.24 23 18.69 3.46 17 23.16 3.30 22 8.59 2.17 
1 26 120.53 10.92 13 25.62 2.37 14 30.31 2.34 20 12.09 1.92 
2 38 138.33 10.47 24 25.89 2.45 24 32.71 2.24 32 12.45 1.01 
3 39 152.04 12.22 27 27.67 1.76 27 35.51 2.55 36 13.28 1.08 
4 38 164.39 11.51 33 28.85 2.38 23 36.36 3.07 36 13.57 1.20 
5 24 178.43 11.50 19 30.56 1.81 15 37.42 3.64 23 14.10 1.42 
6 34 192.60 10.54 21 33.02 1.94 22 40.87 2.48 30 14.70 1.49 
7 36 202.62 10.99 31 32.43 2.69 27 40.40 3.73 32 14.66 1.59 
8 36 217.11 16.46 28 34.05 2.89 21 42.29 3.34 33 15.09 1.39 
9 31 227.91 14.37 20 35.44 2.25 18 44.15 3.97 28 15.49 1.77 

10 27 238.64 16.98 20 36.00 2.49 19 48.14 5.79 28 16.37 2.03 
11 23 239.14 18.99 30 37.53 2.50 17 47.95 5.38 26 16.69 1.42 
12 8 255.18 14.96 15 40.42 3.68 9 52.20 2.12 15 18.08 2.25 

             
Males 

Age 
(years) 

HDL HPB HDB HMSB 

n Mean St. 
Dev. n Mean St. 

Dev. n Mean St. 
Dev. n Mean St. 

Dev. 
<1 31 85.72 14.39 25 18.38 3.66 25 24.33 3.55 24 8.61 1.86 
1 44 121.85 9.65 24 26.02 2.67 32 31.66 2.35 36 12.43 1.54 
2 77 137.12 8.74 47 26.98 2.18 51 33.84 2.37 68 12.82 1.20 
3 53 150.80 11.22 43 28.87 2.18 31 35.62 3.17 42 13.59 1.39 
4 50 163.83 12.91 42 30.39 2.37 34 37.34 2.97 48 13.97 1.60 
5 52 181.29 11.97 33 32.79 2.27 36 39.87 2.76 48 14.76 1.56 
6 60 194.05 13.30 48 33.72 2.39 37 40.89 2.65 51 15.07 1.44 
7 55 201.79 12.57 46 34.41 2.82 34 42.25 3.33 54 15.60 1.51 
8 58 216.21 14.29 50 36.67 3.05 41 44.02 3.44 53 16.46 1.56 
9 55 225.57 13.27 38 37.65 2.67 35 46.15 2.96 45 16.59 1.58 

10 57 233.15 15.91 44 38.99 2.68 40 48.03 4.41 51 17.09 1.55 
11 50 242.26 17.90 41 39.14 2.67 44 48.96 5.30 50 17.30 1.75 
12 37 250.37 18.28 29 40.48 4.18 20 49.45 3.35 34 17.61 2.13 
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Table 5.2 – Summary statistics separated by age and sex for the four measurements associated with the radius. 
Females 

Age 
(years) 

RDL RPB RDB RMSB 

n Mean St. 
Dev. n Mean St. 

Dev. n Mean St. 
Dev. n Mean St. 

Dev. 
<1 29 72.10 11.69 21 8.22 1.52 21 12.48 1.53 16 5.41 1.17 
1 25 94.03 7.89 10 10.88 0.83 12 17.16 1.62 9 8.54 0.77 
2 38 106.74 8.64 15 11.09 0.67 17 17.77 1.46 9 8.09 0.45 
3 43 118.25 10.23 20 11.79 0.93 18 18.42 1.43 17 8.59 0.99 
4 41 124.75 8.60 21 12.56 0.90 14 19.29 1.57 15 9.38 0.83 
5 32 137.15 8.74 10 13.23 0.98 17 20.47 1.30 8 10.04 1.18 
6 34 147.38 9.70 8 14.39 1.30 17 21.91 1.28 8 10.75 0.55 
7 38 152.48 8.59 18 14.28 0.74 21 22.12 1.53 18 10.88 0.95 
8 42 163.88 13.53 20 15.18 1.27 23 22.59 1.57 20 11.02 1.09 
9 33 172.62 11.37 12 15.23 1.17 17 24.23 1.80 8 10.82 1.12 

10 35 181.49 15.29 13 16.41 0.86 18 24.88 2.68 12 12.65 1.86 
11 33 184.98 16.38 18 17.21 1.27 20 25.56 1.90 17 12.14 1.40 
12 16 203.79 16.44 10 19.33 2.28 7 27.42 2.00 9 13.52 2.00 

             
Males 

Age 
(years) 

RDL RPB RDB RMSB 

n Mean St. 
Dev. n Mean St. 

Dev. n Mean St. 
Dev. n Mean St. 

Dev. 
<1 32 69.15 11.52 17 8.37 1.28 17 12.96 1.83 14 5.87 1.07 
1 43 96.46 7.03 22 10.90 1.05 28 17.10 1.63 19 7.86 1.06 
2 78 107.49 6.40 33 11.40 0.74 34 18.47 1.46 28 8.42 0.69 
3 63 117.30 8.18 29 12.10 0.84 32 19.14 1.47 28 8.82 0.93 
4 55 126.89 8.93 22 13.33 1.13 24 20.64 1.55 18 9.44 0.88 
5 63 137.78 9.27 21 13.94 1.08 18 21.32 1.39 19 9.81 0.83 
6 69 148.73 10.89 31 14.65 0.93 30 22.17 1.37 24 10.24 0.88 
7 67 154.51 10.90 29 14.84 1.23 33 23.30 1.96 25 11.21 1.11 
8 59 164.22 11.98 35 16.22 1.47 31 24.61 2.28 27 11.86 1.32 
9 56 172.34 9.05 25 16.57 1.50 30 25.38 2.13 20 12.16 1.57 

10 63 178.85 14.34 26 17.41 1.21 25 25.94 1.77 22 12.94 1.11 
11 55 187.02 15.36 22 17.35 1.21 27 26.42 2.13 18 12.46 1.23 
12 41 194.56 13.78 15 18.90 1.72 19 27.37 2.19 13 12.91 1.21 
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Table 5.3 – Summary statistics separated by age and sex for the 
two measurements associated with the ulna. 

 Females 
Age 

(years) 
UDL UMSB 

n Mean St. Dev. n Mean St. Dev. 
<1 27 81.77 13.42 16 5.69 1.29 
1 25 107.32 8.88 9 8.15 1.02 
2 37 120.49 9.27 9 7.69 0.60 
3 41 133.04 11.25 16 8.01 0.82 
4 40 139.51 8.84 15 8.73 0.83 
5 29 151.80 9.75 7 9.24 1.12 
6 32 163.84 10.50 7 9.79 0.66 
7 34 167.65 8.03 17 9.75 0.63 
8 32 181.65 14.41 16 10.12 0.98 
9 25 189.15 12.54 7 10.41 1.33 

10 16 197.21 17.65 6 11.35 1.23 
11 14 193.51 14.07 10 10.74 0.91 
12 6 208.38 9.85 3 13.01 3.02 

       
 Males 

Age 
(years) 

UDL UMSB 
n Mean St. Dev. n Mean St. Dev. 

<1 31 77.56 12.71 14 5.63 1.10 
1 42 107.59 6.91 19 7.87 1.22 
2 77 119.60 6.77 27 8.02 0.79 
3 62 130.17 9.16 28 8.54 0.73 
4 50 140.46 9.53 18 9.12 0.93 
5 59 152.19 9.90 20 9.68 1.18 
6 66 163.40 10.99 24 10.09 1.28 
7 61 169.17 10.72 25 10.63 1.03 
8 58 179.26 13.04 28 11.21 1.22 
9 49 188.17 9.46 20 11.44 1.73 

10 55 193.58 13.75 21 11.86 1.09 
11 43 201.05 15.30 17 11.81 1.45 
12 22 205.86 13.74 7 11.38 0.80 
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Table 5.4 – Summary statistics separated by age and sex for the three measurements associated 
with the femur.  

 Females 

Age 
(years) 

FDL FDB FMSB 
n Mean St. Dev. n Mean St. Dev. n Mean St. Dev. 

<1 27 115.33 23.16 3 11.99 1.27 0 NA NA 
1 28 158.17 14.65 14 13.32 1.06 10 43.28 5.05 
2 35 190.39 15.17 30 14.64 1.40 26 47.30 3.47 
3 40 214.13 18.08 36 15.86 1.71 31 51.01 3.75 
4 39 229.32 16.19 35 16.43 1.80 35 53.63 4.73 
5 31 253.04 15.94 29 17.45 1.17 27 55.08 2.57 
6 36 273.89 15.67 35 18.43 1.63 34 58.33 2.91 
7 39 286.87 15.13 36 18.47 1.44 33 58.75 3.26 
8 41 310.80 24.22 41 19.89 1.83 40 62.60 4.27 
9 35 325.09 22.16 35 20.49 1.87 31 65.00 4.57 

10 33 344.41 23.85 31 21.41 1.94 29 67.55 5.10 
11 33 351.37 27.28 33 22.21 2.43 29 69.73 5.10 
12 14 374.10 16.99 16 23.29 2.84 15 69.95 5.79 

         
 Males 

Age 
(years) 

FDL FDB FMSB 
n Mean St. Dev. n Mean St. Dev. n Mean St. Dev. 

<1 18 109.80 24.00 2 12.04 0.21 1 41.85 NA 
1 33 160.83 15.06 14 13.96 1.35 9 46.67 4.32 
2 69 185.49 11.84 41 15.05 1.60 25 50.42 3.79 
3 62 208.09 15.44 52 15.83 1.36 46 53.23 3.23 
4 54 229.23 18.80 43 16.82 1.64 43 56.21 3.69 
5 56 252.36 16.37 49 17.38 1.36 44 58.51 4.00 
6 61 274.36 17.46 53 18.72 1.40 48 61.60 4.19 
7 60 289.81 19.29 56 19.43 2.10 47 63.06 4.22 
8 61 305.95 19.90 60 20.79 2.12 49 65.80 4.16 
9 56 323.61 17.56 54 21.61 1.86 44 68.02 4.13 

10 59 338.02 23.87 55 21.88 1.79 42 70.48 5.06 
11 59 352.79 24.30 55 23.16 2.51 44 72.53 5.51 
12 41 364.53 26.08 37 23.54 2.73 32 73.49 6.59 
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Table 5.5 – Summary statistics separated by age and sex for the four measurements associated with the tibia. 

Females 

Age 
(years) 

TDL TPB TDB TMSB 

n Mean St. 
Dev. n Mean St. 

Dev. n Mean St. 
Dev. n Mean St. 

Dev. 
<1 20 97.38 19.34 0 NA NA 1 24.52 NA 0 NA NA 
1 26 130.46 12.96 10 35.86 3.96 9 25.53 3.26 9 12.85 1.58 
2 37 154.67 13.46 22 39.98 2.52 21 26.78 1.50 19 13.46 1.37 
3 35 176.55 16.39 26 43.32 3.13 23 29.37 2.56 20 14.51 1.47 
4 40 187.59 14.84 30 46.25 3.20 25 30.52 2.50 21 15.27 1.24 
5 30 207.15 13.97 21 46.82 2.20 21 31.26 1.50 20 15.67 1.28 
6 36 225.19 17.13 30 50.39 2.41 27 34.51 2.11 25 18.02 1.73 
7 37 236.53 13.83 31 50.45 3.41 28 34.98 2.77 26 17.23 1.71 
8 42 258.80 25.58 38 53.58 3.90 32 37.23 3.39 30 18.74 2.16 
9 37 269.88 21.96 26 55.66 4.48 22 39.01 3.90 25 18.66 1.79 

10 31 284.57 22.10 25 58.59 4.51 18 40.93 3.49 16 20.73 2.06 
11 37 293.52 26.66 32 60.87 4.07 22 42.01 2.98 24 20.78 1.66 
12 14 318.57 20.96 15 61.82 4.59 8 43.68 4.04 9 20.93 1.52 

             
Males 

Age 
(years) 

TDL TPB TDB TMSB 

n Mean St. 
Dev. n Mean St. 

Dev. n Mean St. 
Dev. n Mean St. 

Dev. 
<1 14 91.05 19.08 1 35.43 NA 1 24.17 NA 1 11.63 NA 
1 27 134.40 12.33 10 37.90 3.97 8 25.95 3.01 7 13.01 1.07 
2 62 153.04 10.53 32 41.81 3.39 28 27.91 2.03 29 14.42 1.46 
3 55 172.39 14.40 36 44.57 2.62 38 29.42 1.47 33 14.84 1.03 
4 52 187.28 13.64 38 48.37 2.63 33 31.26 2.30 29 15.50 1.10 
5 52 204.30 15.04 41 50.01 3.25 35 32.72 2.23 34 16.44 1.56 
6 59 223.52 16.09 45 51.89 3.58 41 34.82 2.49 34 17.47 1.66 
7 59 236.95 18.85 47 53.98 3.58 43 36.38 2.83 37 18.26 1.71 
8 58 252.22 20.71 46 56.90 3.66 46 38.77 3.18 34 19.32 1.81 
9 49 266.45 14.74 39 58.77 4.55 26 40.03 2.53 21 20.66 1.47 

10 54 281.50 19.79 41 60.50 4.46 31 41.99 3.24 25 20.95 2.10 
11 53 291.58 24.18 39 61.74 4.38 31 42.60 3.37 23 21.33 1.81 
12 35 303.60 26.37 29 63.71 6.50 21 44.51 4.75 15 22.78 3.01 
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Table 5.6 – Summary statistics separated by age and sex for the fibula 
diaphyseal length.  

Age 
(years) 

Females - FBDL Males - FBDL 
n Mean St. Dev. n Mean St. Dev. 

<1 27 81.77 13.42 16 5.69 1.29 
1 25 107.32 8.88 9 8.15 1.02 
2 37 120.49 9.27 9 7.69 0.60 
3 41 133.04 11.25 16 8.01 0.82 
4 40 139.51 8.84 15 8.73 0.83 
5 29 151.80 9.75 7 9.24 1.12 
6 32 163.84 10.50 7 9.79 0.66 
7 34 167.65 8.03 17 9.75 0.63 
8 32 181.65 14.41 16 10.12 0.98 
9 25 189.15 12.54 7 10.41 1.33 

10 16 197.21 17.65 6 11.35 1.23 
11 14 193.51 14.07 10 10.74 0.91 
12 6 208.38 9.85 3 13.01 3.02 

Table 5.7 – Sample sizes for 
each measurement. 
Measurement n 

HDL 1071 
HPB 814 
HDB 713 

HMSB 965 
RDL 1183 
RPB 523 
RDB 570 

RMSB 441 
UDL 1033 

UMSB 406 
FDL 1120 
FDB 814 

FMSB 945 
TDL 1051 
TPB 750 
TDB 639 

TMSB 566 
FBDL 1031 
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Table 5.8 – TEM and %TEM for inter-observer error and intra-
observer error. 

 
Inter-observer  

Error 
 Intra-observer  

Error 
TEM %TEM  TEM %TEM 

HDL 1.68 0.08  0.66 0.04 
HPB 0.80 0.24  0.63 0.22 
HDB 0.68 0.58  0.24 0.16 

HMSB 0.30 0.22  0.29 0.20 
UMXL 1.18 0.10  0.91 0.07 
UMSB 0.66 1.92  0.30 0.84 
RDL 1.15 0.06  0.35 0.02 
RPB 0.23 0.49  0.26 0.75 
RDB 0.02 0.04  0.25 0.44 

RMSB 0.79 2.27  0.19 0.52 
FDL 1.58 0.06  0.91 0.03 
FDB 0.62 0.13  0.65 0.19 

FMSB 0.15 0.09  0.16 0.12 
TDL 0.87 0.06  0.70 0.04 
TPB 0.40 0.16  0.29 0.09 
TDB 0.81 0.49  0.19 0.21 

TMSB 0.26 0.56  0.07 0.16 
FBDL 0.48 0.02  0.71 0.03 

Min 0.02 0.02  0.07 0.02 
Max 1.70 2.27  0.91 0.84 

Mean 0.76 0.40  0.45 0.22 
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Figure 5.1 – Bland-Altman plot illustrating the inter-observer agreement between the same 
measurements obtained during two separate observations of 15 individuals. The dashed lines 
indicate the upper and lower agreement levels and are based on the standard deviation. 
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Figure 5.2 – Bland-Altman plot illustrating the intra-observer agreement between the same 
measurements obtained during two separate observations of 15 individuals. The dashed lines 
indicate the upper and lower agreement levels and are based on the standard deviation.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



!

88 88 

STUDENT’S T-TEST, CORRELATIONS, ANOVAS AND 
MANOVAS 

 

 Numerous exploratory analyses were conducted to provide insight into the relationships 

between the diaphyseal dimensions and age and sex. Specifically, the analyses included 

Student’s t-tests, correlations, ANOVAs and MANOVAs. Student’s t-tests were conducted to 

evaluate statistically significant differences between the sexes for each measurement and each 

age interval. The Holm’s adjustment was included to account for multiple tests and the 

likelihood of increased type 1 errors, or the conclusion that a difference exists though it does not. 

Mean differences between male and females per measurement for each age and whether the 

difference was significant are noted in Tables 5.9 – 5.13. Raw measurements of the humerus and 

femur demonstrated the greatest number of statistically significant differences between the sexes 

when compared to the other four skeletal elements. The greatest number of original 

measurement-age datasets, or the combination of a specific measurement and age, with 

significant differences between the sexes were HPB, FDB, and TPB. Ratios demonstrated more 

significant differences between sexes than the original measurements, specifically the ratios that 

included the most sexually dimorphic original variables (i.e. FDDB, TDPB and HDPB). The 

disparities in the male and female ratios were apparent at one year of age and persisted through 

12 years, however the differences were smaller at the extreme ages. Not all ratios demonstrated 

statistical significance; no age in either UMXMS or RMXMS subsets demonstrated significant 

differences between the sexes. Diaphyseal length measurements did not demonstrate statistically 

significant sex differences for any bone-age datasets and midshaft breadths displayed the fewest 

statistically significant sex differences among the breadth measurements for all bones and ages.  

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



!

89 89 

 

 

 

Table 5.9 – Differences (mm) of the midshaft 
measurements. Female measurements were subtracted from 
male measurements, thus a negative number indicates the 
mean female dimension is larger than the mean male 
dimension. 

Age  
(years) HMSB RMSB UMSB FMSB TMSB 

<1 0.02 0.46 -0.06 0.05 NA 
1 0.34 -0.68 -0.28 0.64 0.16 
2 0.37 0.33 0.33 0.41 0.96 
3 0.31 0.23 0.53 -0.03 0.33 
4 0.4 0.06 0.39 0.39 0.23 
5 0.66 -0.23 0.44 -0.07 0.77 
6 0.37 -0.51 0.3 0.29 -0.55 
7 0.94 0.33 0.88* 0.96 1.03 
8 1.37* 0.84 1.09* 0.9 0.58 
9 1.1 1.33 1.03 1.12* 2 

10 0.72 0.29 0.51 0.47 0.22 
11 0.61 0.32 1.08 0.95 0.55 
12 -0.47 -0.61 -1.63 0.25 1.85 

Table 5.10 – Differences (mm) of distal breadth 
measurements. Female measurements were 
subtracted from male measurements, thus a 
negative number indicates the mean female 
dimension is larger than the mean male dimension. 

Age  
(years) HDB RDB FDB TDB 

<1 -4.01 -2.95 NA -6.33 
1 1.32 2.43 3.39 3.94 
2 -1.21 0.75 3.12* -1.63 
3 -1.24 -0.95 2.22 -4.16 
4 -0.56 2.14* 2.58 -0.31 
5 2.86 0.63 3.43* -2.85 
6 1.45 1.35 3.27* -1.67 
7 -0.83 2.03 4.31* 0.42 
8 -0.9 0.34* 3.2* -6.58 
9 -2.34 -0.28 3.02 -3.43 

10 -5.49 -2.64 2.93 -3.07 
11 3.12 2.04 2.8 -1.94 
12 -4.81 -9.23 3.54 -14.97 
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Table 5.11 – Differences (mm) between maximum length 
measurements. Female measurements were subtracted from 
male measurements, thus a negative number indicates the mean 
female dimension is larger than the mean male dimension. 

Age 
(years) HDL RDL UDL FDL TDL FBDL 

<1 -4.01 -2.95 -4.21 -5.53 -6.33 -1.11 
1 1.32 2.43 0.27 2.66 3.94 4.4 
2 -1.21 0.75 -0.89 -4.9 -1.63 -2.84 
3 -1.24 -0.95 -2.87 -6.03 -4.16 -4.77 
4 -0.56 2.14 0.96 -0.1 -0.31 -0.09 
5 2.86 0.63 0.39 -0.68 -2.85 -2.02 
6 1.45 1.35 -0.44 0.47 -1.67 -1.69 
7 -0.83 2.03 1.52 2.94 0.42 2.44 
8 -0.9 0.34 -2.39 -4.85 -6.58 -3.8 
9 -2.34 -0.28 -0.98 -1.48 -3.43 -1.79 

10 -5.49 -2.64 -3.63 -6.39 -3.07 -6.3 
11 3.12 2.04 7.54 1.42 -1.94 1.13 
12 -4.81 -9.23 -2.52 -9.57 -14.97 -11.93 

Table 5.12 – Differences (mm) of proximal 
breadth measurements.  Female 
measurements were subtracted from male 
measurements, thus a negative number 
indicates the mean female dimension is larger 
than the mean male dimension. 

Age  
(years) HPB RPB TPB 

<1 -0.31 0.15 NA 
1 0.4 0.02 2.04 
2 1.09 0.31 1.83* 
3 1.2* 0.31 1.25 
4 1.54 0.77 2.12* 
5 2.23* 0.71 3.19 
6 0.7 0.26 1.5 
7 1.98* 0.56 3.53* 
8 2.62* 1.04 3.32* 
9 2.21* 1.34* 3.11* 

10 2.99* 1* 1.91 
11 1.61 0.14 0.87 
12 0.06 -0.43 1.89 
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Table 5.13 – Differences (mm) of the ratio measures. Female measurements were subtracted from male measurements, 
thus a negative number indicates the mean female dimension is larger than the mean male dimension. Ratios that did 
not demonstrate significant differences were excluded from the table. 

Age 
(years) HDPB HDDB HDMS RDPB RDDB FDDB FDMS TDPB TDDB TDMS 

<1 0.01 0.02 0 0.01 0.01 NA 0 NA 0 NA 
1 0 0.01 0 0 0 0.01 0 0 0 0 
2 0.01 0.01* 0 0 0 0.02* 0 0.01* 0.01* 0 
3 0 0.01 0 0 0.01 0.01* 0.01 0.01 0 0 
4 0.01* 0.01 0.01 0.01 0.01* 0.01* 0 0.01* 0.01 0 
5 0.01 0.01 0 0 0.01 0.01* 0 0.01* 0.01* 0 
6 0 0 0 0 0 0.01* 0 0.01* 0.01 0 
7 0.01* 0.01 0.01 0.01 0.01 0.02* 0.01 0.01* 0 0.01 
8 0.01* 0.02 0.01* 0.01* 0.01* 0.01* 0.01* 0.02* 0 0.01 
9 0.02* 0.01 0 0.01 0.01 0.01* 0.01* 0.01* 0 0.01* 

10 0.02* 0.01 0 0.01* 0 0.01* 0 0.01* 0.01 0 
11 0 0.01 0 0 0 0* 0.01* 0 0.01 0 
12 0.01 0 0 0.01 0.01 0.02* 0 0.02 0.01 0 
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Correlations, inclusive of sexes, population groups and ages, were conducted on the 

original measurements (Table 5.14). The results included a Holm’s adjustment to significance 

figures to account for multiple comparisons among variables. The correlation coefficients were 

greater than 0.71 in all of the relationships between measurement and age, indicative of a strong, 

positive relationship. The correlation coefficients between all diaphyseal lengths and age were 

greater than 0.92, while RPB, RDB, FMSB, TDB, and TPB demonstrated correlation coefficients 

greater than 0.85. The remaining correlation coefficients were less than 0.85. All inter-variable 

correlation coefficients were greater than 0.73. The high correlations indicate multicollinearity, a 

factor recognized to compromise statistical analyses when bivariate relationships are greater than 

0.70, and especially when greater than 0.90 (Neter et al., 1985; Tabachnick and Fidell, 2007). 

Figure 5.3 provides a graphical display of the inter-variable correlations and correlations 

between age and measurements with shape and color. The narrower eclipses indicate stronger 

relationships; a straight line – as on the diagonal – represents a perfect correlation (r =1.0). The 

color scale is located at the bottom of the triangle with red indicating a negative correlation and 

blue indicating a positive relationship. The ellipse was removed if the p-value was not significant 

(p > 0.05). 

Scatterplots of measurements regressed on age was indicative of a nonlinear relationship, 

similar to a biological growth curve. This was expected considering the diaphyseal dimensions, 

particularly lengths, exhibit different growth velocities during the growth process. In contrast, 

linear relationships were apparent between the postcraniometric variables. An example of the 

patterns can be observed in Figure 5.4. 

ANOVAs were conducted to assess the relationship between each measurement and age, 

sex, and the interaction of age and sex, whereas a MANOVA was used to test mean differences 

among the multivariate subsets. Multicollinearity is recognized to diminish the power of 

MANOVA, which is also why ANOVAs were employed in the analysis. Quantile-quantile (QQ) 

plots showed that the variables generally follow multivariate normality; however, a few outliers 

departed from normality in the tail. The Levene’s test, which was applied to all univariate 

measures to test for equal variance, demonstrated non-significant p-values (> 0.05) for all 

variables, and thus an indication of equal variances. Because all of the measurement and element 

type subsets potentially violate normality in the MANOVA, a Pillai’s trace test was utilized as it 
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is recognized as the most robust generalization of the univariate F statistic when MANOVA 

assumptions are not met (Olson, 1976). 

Interpretation of the ANOVA results indicated statistical significance (p < 0.05) for the 

diaphyseal length measurements of the six long bones for all three factors – age, sex, and the 

interaction of age and sex. Results specific to the breadth measurements indicated statistical 

significance (p < 0.05) for age and sex but not the interaction of age and sex (Appendix II). 

MANOVA results indicated significant relationships with both sex and age (p < 0.05) for all 

bones and multivariate subsets (Table 5.15). However, only two subsets demonstrated significant 

relationships with the interaction of age and sex and included the femur and distal element subset 

(p = 0.01 and 0.05, respectively). 
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Figure 5.3 – Visualization for the inter-variable correlations and the correlations between the 
measurements and age. The ellipses were removed if the p-value was not significant (p > 0.05).  
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Table 5.14 – Correlation matrix with a Holm’s adjustment. All measurements are statistically significant (p < 0.05).  

 Age HDL HPB HDB HMSB RDL RPB RDB RMSB UDL UMSB FDL FDB FMSB TDL TPB TDB TMSB FBDL 

Age 1 0.924 0.798 0.834 0.709 0.921 0.861 0.903 0.837 0.917 0.76 0.944 0.844 0.849 0.925 0.858 0.888 0.817 0.93 

HDL 0.924 1 0.879 0.878 0.76 0.983 0.907 0.907 0.836 0.983 0.836 0.988 0.882 0.905 0.989 0.902 0.913 0.853 0.99 

HPB 0.798 0.879 1 0.834 0.854 0.898 0.932 0.884 0.816 0.88 0.871 0.883 0.925 0.849 0.894 0.909 0.915 0.84 0.891 

HDB 0.834 0.878 0.834 1 0.753 0.886 0.844 0.882 0.837 0.885 0.805 0.88 0.844 0.857 0.888 0.864 0.901 0.813 0.887 

HMSB 0.709 0.76 0.854 0.753 1 0.775 0.796 0.766 0.862 0.762 0.894 0.768 0.785 0.731 0.767 0.785 0.805 0.809 0.766 

RDL 0.921 0.983 0.898 0.886 0.775 1 0.92 0.914 0.844 0.995 0.835 0.98 0.906 0.898 0.987 0.926 0.917 0.859 0.989 

RPB 0.861 0.907 0.932 0.844 0.796 0.92 1 0.937 0.801 0.903 0.831 0.916 0.939 0.872 0.915 0.941 0.915 0.873 0.915 

RDB 0.903 0.907 0.884 0.882 0.766 0.914 0.937 1 0.873 0.901 0.837 0.919 0.91 0.86 0.905 0.912 0.933 0.86 0.904 

RMSB 0.837 0.836 0.816 0.837 0.862 0.844 0.801 0.873 1 0.832 0.863 0.852 0.823 0.791 0.825 0.827 0.853 0.872 0.834 

UDL 0.917 0.983 0.88 0.885 0.762 0.995 0.903 0.901 0.832 1 0.818 0.98 0.894 0.904 0.99 0.919 0.918 0.854 0.991 

UMSB 0.76 0.836 0.871 0.805 0.894 0.835 0.831 0.837 0.863 0.818 1 0.815 0.848 0.821 0.822 0.84 0.839 0.82 0.827 

FDL 0.944 0.988 0.883 0.88 0.768 0.98 0.916 0.919 0.852 0.98 0.815 1 0.893 0.915 0.989 0.919 0.925 0.87 0.991 

FDB 0.844 0.882 0.925 0.844 0.785 0.906 0.939 0.91 0.823 0.894 0.848 0.893 1 0.912 0.891 0.974 0.948 0.903 0.893 

FMSB 0.849 0.905 0.849 0.857 0.731 0.898 0.872 0.86 0.791 0.904 0.821 0.915 0.912 1 0.915 0.908 0.93 0.888 0.919 

TDL 0.925 0.989 0.894 0.888 0.767 0.987 0.915 0.905 0.825 0.99 0.822 0.989 0.891 0.915 1 0.919 0.922 0.857 0.997 

TPB 0.858 0.902 0.909 0.864 0.785 0.926 0.941 0.912 0.827 0.919 0.84 0.919 0.974 0.908 0.919 1 0.94 0.918 0.92 

TDB 0.888 0.913 0.915 0.901 0.805 0.917 0.915 0.933 0.853 0.918 0.839 0.925 0.948 0.93 0.922 0.94 1 0.909 0.92 

TMSB 0.817 0.853 0.84 0.813 0.809 0.859 0.873 0.86 0.872 0.854 0.82 0.87 0.903 0.888 0.857 0.918 0.909 1 0.863 

FBDL 0.93 0.99 0.891 0.887 0.766 0.989 0.915 0.904 0.834 0.991 0.827 0.991 0.893 0.919 0.997 0.92 0.92 0.863 1 
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Figure 5.4 – Scatterplot matrix of age and the four measurements obtained from the radius. The 
green line is the linear regression line and the red line is the loess line.
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AGE ESTIMATION 
 

In an effort to mitigate heteroscedasticity, especially observed in the residuals, the 

response variable – age – required a square root (sqrt) or cube root (cbrt) transformation (Figure 

5.5). Because the response variable (age) required a transformation, the standard errors also 

reflected the transformation; however, the SE’s presented herein are simply in years. 

The single predictor variables, the multivariate bone, measurement and element type 

subsets, and all-measurement subset were used in a multitude of methods to identify the best fit 

Table 5.15 – MANOVA conducted on the different subsets of measurements. Bold 
indicates significance. 

 Sex  Age  Sex*Age 

 Pillai Pr(>F)  Pillai Pr(>F)  Pillai Pr(>F) 

Humerus 0.15 <0.001*** 
 

0.908 <0.001*** 
 

0.007 0.45 

Radius 0.123 <0.001*** 
 

0.912 <0.001*** 
 

0.011 0.57 

Ulna 0.159 <0.001*** 
 

0.899 <0.001*** 
 

0.011 0.12 

Femur 0.240 <0.001*** 
 

0.894 <0.001*** 
 

0.015 0.01** 

Tibia 0.160 <0.001*** 
 

0.880 <0.001*** 
 

0.011 0.2 

Upper 
Limbs 0.916 <0.001*** 

 
0.324 <0.001*** 

 
0.043 0.954 

Lower 
Limbs 0.903 <0.001*** 

 
0.236 <0.001*** 

 
0.016 0.4 

Proximal 
Elements 0.895 <0.001*** 

 
0.279 <0.001*** 

 
0.021 0.48 

Distal 
Elements 0.880 <0.001*** 

 
0.325 <0.001*** 

 
0.195 0.05* 

*p < 0.01; **p<0.001; ***p<0.0001 
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for the data. Measurements were subject to a linear model with and without a transformation of 

age; linear models with different basis spline combinations with and without the transformation 

of age; and a MARS model with and without a transformation of age. In order to compare the 

MARS models to the basis spline models, the MARS models were converted into linear models. 

The model that presented with the highest R-squared, lowest standard error (SE), and lowest 

Akaike Information Criterion (AIC) was chosen as the most suitable for each particular predictor 

variable(s). The simpler of the two models was chosen if the models were similar. For each 

measurement(s), 95% prediction intervals were created through cross-validation.  

 

 

UNIVARIATE AGE AT DEATH MODELS 
  

The univariate models obtained R-squared values ranging from 0.66 to 0.95 and standard 

errors (SE) from 0.97 years to 2.18 years (Table 5.16). The femur diaphyseal length displayed 

the highest R-squared value of all models while the lowest R-squared value was the humerus 

midshaft breadth. The six diaphyseal lengths presented with the best models as demonstrated by 

the highest R-squared values (0.93 - 0.95) and the smallest SE’s. Four of the five midshaft 

breadths demonstrated the models with the smallest R-squared values (0.65 – 0.75) and widest 

SE’s. The proximal and distal breadths cluster between these two limits. Cube root 

transformations of age were conducted for the majority of univariate models as this alleviated the 

heteroscedasticity that was present in the y-axis residuals, although square root transformations 

of age and basis splines were also employed. Tables 5.17 and 5.18 are exemplars for MARS and 

spline models.  

Although the cross-validated 95% prediction intervals present the same size intervals 

from birth to twelve when a transformation is applied to age, in actuality the intervals are 

dynamic and present with narrow intervals for the younger ages and wider intervals for the older 

ages (Figure 5.6). The summary tables of each fit and the associated age at death tables are listed 

in Appendices III – VIII for each univariate measure. If the lower 95% prediction interval 

included negative ages (younger than birth) the associated diaphyseal measurements were 

removed.  
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 Figure 5.5 – The relationship between age and femur diaphyseal length with and without 
transformations of age. Age regressed on femur diaphyseal length without a transformation of 
age (top center); with a square root transformation of age (bottom left); and cube root 
transformation of age (bottom right).
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Table 5.16 – Summary table of univariate models including the R-
squared, model type and cross-validated percent correct. Variables 
are listed in decreasing order of SE. Spline models include the 
order and number of knots + 2. Cbrt (cube root) and sqrt (square 
root) MARS models refer to the type of transformation applied to 
the response variable (age). 

 Model SE Adj R2 cv R2 

FDL cbrt MARS 0.9 0.95 0.95 
TDL sqrt MARS 0.95 0.94 0.94 
HDL cbrt MARS 0.97 0.95 0.95 

FBDL sqrt MARS 0.99 0.93 0.93 
UDL cbrt MARS 1.01 0.93 0.93 
RDL cbrt MARS 1.02 0.94 0.94 
TDB spline (2,4) 1.35 0.8 - 
RPB sqrt MARS 1.38 0.87 0.86 
TPB sqrt MARS 1.39 0.81 0.79 
RDB cbrt MARS 1.47 0.86 0.86 
FDB sqrt MARS 1.51 0.77 0.76 
HDB cbrt MARS 1.55 0.85 0.84 

TMSB cbrt MARS 1.59 0.72 0.71 
HPB spline (2,3) 1.6 0.83 - 

FMSB cbrt MARS 1.62 0.75 0.74 
RMSB cbrt MARS 1.76 0.81 0.79 
UMSB cbrt MARS 1.76 0.8 0.78 
HMSB sqrt MARS 2.18 0.66 0.64 
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Table 5.17 – MARS model for femur diaphyseal length. 
The residual standard error (Residual Std. Error) is in 
years and is not affected by the transformation of age. 

 Predictor Variable 

 Cube root of age 

(Intercept) 2.234*** 

h(FDL - 282.32) 0.006*** 

h(282.32 - FDL) -0.008*** 

h(FDL - 167.91) -0.002*** 

h(FDL - 342.03) -0.002*** 

Observations 1117 

cv R2 0.95 

Adjusted R2 0.95 

Residual Std. Error 0.90 

F Statistic 5678.00*** 
Note:                           *p < 0.01; **p<0.001; ***p<0.0001 

Table 5.18 – Spline model for the humerus proximal 
breadth. The residual standard error (Residual Std. Error) 
is in years and is not affected by the transformation of 
age. 

 Predictor Variable 
 Sqrt of age 

(Intercept) 0.278* 

bs(HDB, degree = 2, df = 3) 0.867*** 

bs(HDB, degree = 2, df = 3) 3.467*** 

bs(HDB, degree = 2, df = 3) 3.040*** 

Observations 813 
Adjusted R2 0.83 

Residual Std. Error 1.6 
F Statistic 1284.00*** 

Note:                              *p < 0.01; **p<0.001; ***p<0.0001 
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Figure 5.6 – The cross-validated 95% prediction intervals when age is regressed on femur diaphyseal length. The figure on the left 
displays the prediction intervals with the cube root transformation of age and the figure on the right displays how the prediction 
interval adjusts as age increases.
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MULTIVARIATE MODELS 
 

Since multicollinearity is known to significantly affect MARS models, the multivariate 

models were subjected to PCA using the variance-covariance matrix to remove the high inter-

variable correlations. Multivariate models were created with both original variables and the PC 

scores. The model type, variables utilized in model creation, SE and R-squared for each 

multivariate model is located in Table 5.19. For the humerus, ulna, and femur models – both with 

the original variables and the PC scores – only one variable (HDL, UDL and FDL, respectively) 

contributed to model creation. Thus, the inclusion of breadth measurements did not increase 

predictive abilities; rather the univariate model utilizing the diaphyseal length of the humerus, 

ulna and femur yielded the most accurate estimation.  

All multivariate models presented with SE’s smaller than 1 year, with the exception of 

the upper limb subset using the PC scores that presented with a SE of 1.04 years. The all-

measurement subset using the PC scores and the distal element subset, using the raw variables 

and the PC scores, presented with the smallest SE’s of all the multivariate models (0.77, 0.78 and 

0.79 years, respectfully). The distal element subset was also the only model that did not 

demonstrate a better fit with a transformation of age. The diaphyseal lengths or PC1 were 

retained and recognized as the most influential predictor variable in each model. Overall, the 

trend was for the SE to decrease when utilizing the PC scores, indicative of a higher accuracy, 

which is a likely consequence of uncorrelated diaphyseal dimensions (e.g. removal of 

multicollinearity).  

The PCs identified as important variables exhibited contributions from the same 

measurements that were identified in the model using the original measurements. For example, 

the raw measurements that were chosen for the multivariate tibia model were TDL and TPB. The 

PCs identified as influential for the same model were PC1 and PC2. Loadings display which 

variables contributed to each PC, as this is the weight each standardized raw measurement is 

multiplied by to obtain the component score. The results of the PCA revealed that TDL 

accounted for nearly all of the variation in PC1; this is expected as PC1 usually accounts for the 

largest variance and is recognized as expressing size variation (Jolliffe, 2002; Berner, 2011). PC2 

had substantial contributions from TPB as well as smaller contributions from TDB and TMSB.  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



!

 104 

All measurements were used to create the full model (all-measurement model), but the 

sample size was drastically reduced, thus some measurements were excluded to increase the 

sample size. Variables removed from the all-measurement model were UMSB, RMSB, RPB, and 

RDB. MARS selected six of the 14 measurements, which explained 93% of the variation in age 

with a standard error of 0.80 years (Table 5.20). FDL, HDB, TPB, RDL, TDL, and UDL were 

the stepwise selected models. The 14 measurements utilized in the all-measurement model were 

subject to PCA using the VCVM. MARS selected six of the 14 predictors, which explained 93% 

of the variation in age with a standard error of 0.78 years (Table 5.21). PC1, PC3, PC2, PC8, 

PC5 and PC10, were stepwise selected and appear in the order of variable importance. PC1-3 

and PC5 have large contributions from diaphyseal lengths (FDL, TDL, and HDL) whereas PC8 

and PC10 have large contributions from TDB, HPB and TMSB (Table 5.22). The cross-validated 

95% prediction intervals for both all-measurement models ranged between 1 and  

5 years for the youngest and oldest ages, respectively. The multivariate models serve as 

an example of the potential success of the application of MARS to subadult skeletal remains 

when estimating age at death. Appendix IX contains the age at death chart for the all-

measurement model using the original variables. Because it is impossible to account for all 

variable combinations, the age at death chart only includes variables from the current dataset.  
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Table 5.19 – Standard error (SE), adjusted R-squared (adj R2) and cross-validated R-squared 
(cv R2) for the multivariate models. 

 Model Variables SE Adj R2 cv R2 

Radius 
sqrt MARS RDL, RMSB 0.98 0.95 0.94 
cbrt MARS PC1, PC2, PC4 0.97 0.96 0.95 

Tibia cbrt MARS TDL, TPB 0.98 0.91 0.90 
cbrt MARS PC1, PC2 0.97 0.91 0.90 

Upper cbrt MARS UDL, RMSB, RDB, 
HMSB 0.99 0.95 0.87 

cbrt MARS PC1, PC9 1.04 0.95 0.85 

Lower 

cbrt MARS FDL, TDB 0.86 0.92 0.91 

cbrt MARS 
PC1, PC2, 

PC5, PC6 
0.85 0.92 0.91 

Proximal cbrt MARS 
FDL, HDB, 

HPB, HDL 
0.87 0.92 0.90 

cbrt MARS PC1, PC3 0.88 0.91 0.90 

Distal 
cbrt MARS 

RMSB, TPB, TDB, 
FBDL, UDL, RDB, 

UMSB, TDL 
0.78 0.93 0.82 

cbrt MARS PC1, PC4, PC6, PC7, 
PC9, PC10 0.79 0.93 0.77 

All-
measurement 

cbrt MARS FDL, HDB, TPB, RDL, 
UDL, TDL 0.80 0.93 0.84 

MARS PC1, PC2, PC3, PC5, 
PC8, PC10 0.77 0.92 0.83 
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Table 5.20 – MARS all-measurement model 
explaining 93% of the variation in age.  The 
residual standard error (Residual Std. Error) is 
in years and is not affected by the 
transformation of age. 

 Predictor Variable 
 Cube root of age 

(Intercept) 1.593*** 
h(FDL - 252.55) 0.0037*** 
h(252.55 - FDL) -0.0087*** 
h(HDB - 40.24) 0.0074* 
h(40.24 - HDB) 0.0195*** 
h(42.66 - TPB) -0.0302*** 

h(RDL - 124.85) 0.0080*** 
h(220.29 - TDL) 0.0052** 
h(UDL - 167.78) -0.0090*** 

Observations 157 
cv R2 0.85 

Adjusted R2 0.93 
Residual Std. Error 0.80 

F Statistic 253.1*** 
Note:           *p < 0.01; **p<0.001; ***p<0.0001 
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Table 5.21 – MARS all-measurement model (with 
PCA) explaining 92% of the variation in age. 

 Predictor Variable 
 Age 

(Intercept) 3.037*** 
h(PC1 - 125.525) -0.01461** 
h(125.525 - PC1) 0.02727*** 
h(-8.26472 - PC3) 0.2296*** 
h(-5.62152 - PC2) -0.1498*** 
h(PC8 - 2.56825) 0.7755** 
h(2.56825 - PC8) 0.08215* 
h(PC10 - 1.888) -0.9047** 

h(PC5 - -2.43291) 0.05599** 
Observations 157 

cv R2 0.82 
Adjusted R2 0.92 

Residual Std. Error 0.77 
F Statistic 227.1*** 

Note:            *p < 0.01; **p<0.001; ***p<0.0001 
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Table 5.22 – The eigenvectors and proportion of variance for each of the principal component scores using the variance-covariance matrix for the all-measurement 
model. The PC scores chosen in model creation were PC1, PC2, PC3, PC8, PC5 and PC10; presented in order of most to least important. 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 

TDL -0.460 -0.158 0.517 -0.110 -0.231 0.052 -0.614 -0.192 0.063 -0.028 -0.028 0.084 0.019 -0.033 
TPB -0.067 -0.087 -0.210 -0.457 -0.033 -0.117 -0.043 0.236 0.215 0.142 -0.748 0.046 0.077 0.172 

TMSB -0.025 -0.023 -0.058 -0.157 -0.001 0.036 0.076 -0.003 -0.108 0.479 0.041 0.558 -0.198 -0.608 
TDB -0.051 -0.028 -0.097 -0.302 -0.057 0.035 -0.094 -0.042 -0.293 0.543 0.176 -0.677 0.074 -0.073 
UDL -0.274 -0.472 -0.293 0.187 0.314 0.104 -0.202 0.343 -0.505 -0.218 -0.067 0.018 -0.013 -0.079 
FDL -0.540 0.700 -0.129 -0.062 0.439 0.028 -0.027 -0.030 -0.032 -0.028 0.001 0.018 0.012 0.018 
FDB -0.072 -0.091 -0.255 -0.561 -0.076 -0.281 -0.069 0.212 0.227 -0.353 0.533 0.055 0.033 -0.094 

FMSB -0.025 -0.029 -0.045 -0.115 -0.044 0.054 -0.036 0.042 -0.190 0.274 0.235 0.307 -0.438 0.724 
RDL -0.262 -0.412 -0.277 0.216 0.319 -0.194 0.056 -0.442 0.480 0.235 0.083 -0.045 -0.026 0.066 

HMSB -0.016 -0.058 -0.081 -0.114 -0.040 0.097 0.109 -0.256 -0.244 0.075 0.097 0.332 0.812 0.211 
HDB -0.047 -0.094 -0.141 -0.209 -0.021 0.901 0.114 -0.097 0.240 -0.139 0.027 -0.056 -0.093 -0.030 
HDL -0.354 0.136 -0.447 0.356 -0.718 -0.007 0.033 0.095 0.044 0.042 0.002 -0.005 0.015 -0.019 
HPB -0.042 -0.027 -0.140 -0.247 -0.146 -0.157 0.182 -0.645 -0.398 -0.353 -0.215 -0.039 -0.296 -0.065 

FBDL -0.458 -0.206 0.430 -0.076 -0.058 -0.059 0.705 0.214 -0.031 0.002 0.023 -0.076 -0.003 0.028 
Proportion 
of Variance 0.985 0.004 0.003 0.003 0.002 0.0005 0.0004 0.0004 0.0003 0.0002 0.0001 0.0001 <0.0001 <0.0001 
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BIAS 
 

Plots of the bias and chronological age were constructed to determine if the point 

estimates of the models tended to under- or overestimate age. The bias is the difference between 

the chronological age and the point estimate for each individual (i.e. residual). Although the 

mean bias was normally distributed for each model and always approximating zero, and the 

majority of individuals were aged within one year of their true chronological age, an increase in 

error with an increase in age was apparent. Whereas the range of bias error was +/- 3 years in the 

univariate models, the range of bias error was only +/- 2 years in the multivariate models (Table 

5.23). All univariate models demonstrated an increase in bias error as age increased (i.e. 

heteroscedastic). Most univariate models were unbiased until approximately 10 years of age. 

Following 10 years of age, the degree of underestimation increased as age increased (Figure 5.7). 

Overall, the bias consistently paralleled zero for the multivariate models but the 

heteroscedasticity persisted (Figure 5.8). Multivariate subsets had smaller sample sizes, which 

affect the range of error associated with bias. The original dataset was used to verify the cross-

validated 95% prediction intervals associated with each univariate and multivariate model. The 

accuracy of the chronological age falling within the prediction intervals ranged from 94% to 

100%. Thus, even though the models lose precision and may be slightly biased, 95% – or more – 

of the observed values fell within the prediction intervals. 

Loess lines by sex were plotted to further investigate if trends in bias differed between 

the sexes. Males and females followed similar trends in bias for all models.  However, larger 

disparities were apparent in the breadth measurements than the length measurements (Figure 

5.9). The trend for the diaphyseal breadths was for the females to be underestimated whereas the 

trend for the diaphyseal lengths was for the males to be slightly underestimated. The different 

patterns demonstrate the tendency for males to have larger breadths than females and the 

tendency for females to have larger lengths than males. In contrast to the univariate models, no 

sex difference was noted in the bias error of the multivariate models, which suggests the 

multivariate models negated the effects of sex.  

When the bias of the femur diaphyseal length models was assessed with the holdout 

sample (n=28), the error range was reduced to a range of +/- 1 year and a mean of 0.14 years. 
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Because none of the individuals in the holdout sample had all of the measurements required to 

test the all-measurement model, the tibia multivariate model was utilized as this model only 

required two variables and consequently had one of the larger samples (n=14). The mean bias 

and range in the residuals for the multivariate tibia model was 0.09 years and -2.4 years to 1.76 

years, respectively. 
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Table 5.23 – Bias is listed in decreasing order 
based on the range.  

Model 
Bias of Point Estimates 

Mean Range 
All-measurement -0.02 -2.2 to 1.9 
All-measurement 

(PCA) 0.00 -2.2 to 2.1 

Distal (PCA) -0.03 -2.4 to 1.4 
Upper (PCA) -0.05 -2.7 to 2.18 

Distal -0.03 -2.7 to 1.8 
Upper -0.05 -2.9 to 2.0 
Lower -0.04 -2.9 to 2.1 
Radius -0.03 -2.9 to 3.1 

Lower (PCA) -0.04 -3.0 to 2.0 
Proximal (PCA) 0.00 -3.1 to 2.1 

Proximal -0.05 -3.2 to 2.1 
Radius (PCA -0.05 -3.2 to 3.0 

TDL -0.03 -3.5 to 2.6 
FDL -0.05 -3.6 to 3.3 
HDL -0.05 -3.7 to 3.0 
UDL -0.06 -3.7 to 2.8 

FBDL -0.03 -3.9 to 3.5 
RDL -0.06 -4.2 to 3.4 
Tibia -0.05 -4.4 to 2.4 
RPB -0.08 -4.3 to 4.6 

Tibia (PCA) -0.05 -4.4 to 2.4 
TDB -0.06 -4.6 to 3.8 
TPB -0.06 -4.6 to 3.9 

TMSB -0.14 -4.8 to 4.1 
FDB -0.08 -5.4 to 4.8 
RDB -0.13 -5.6 to 4.5 
HPB -0.10 -5.8 to 4.6 

RMSB -0.17 -5.8 to 3.6 
FMSB -0.14 -5.9 to 5.0 
HDB -0.13 -6.0 to 4.0 

UMSB -0.18 -6.2 to 4.2 
HMSB -0.19 -7.0 to 6.0 
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Figure 5.7 – The difference between the predicted values and true chronological age (residuals) 
for the femur diaphyseal length model plotted against age with a loess line depicting the local 
estimated bias.  
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Figure 5.8 – The difference between the predicted values and true chronological age (residuals) 
for the all-measurement model plotted against age with a loess line depicting the local estimated 
bias. 
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Figure 5.9 – The two figures depict the difference between the predicted values and true chronological age (residuals) for the femur 
diaphyseal length (left) and femur distal breadth (right) plotted against age with a loess lines depicting the local estimated bias of 
males and females. 
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SEXUAL DIMORPHISM 
 

Sex differences were shown in sympercents (sp) in order to provide objective size 

differences in showing proportional differences between males and females. For an easier 

comparison, measurements were grouped according to type of measurement (i.e. proximal 

breadths, distal breadths, lengths, and midshaft breadths) rather than skeletal element. As seen in 

Figure 5.10 and Tables 5.24 – 5.27, males are larger than females in the midshaft breadths, distal 

breadths, and proximal breadths throughout most of the growth period. On average from birth to 

nine years, males have 4.2 sp larger proximal breadths, 3.4 sp larger distal breadths, and 3.0 sp 

larger midshaft breadths than females. Ten through 12 year olds demonstrate a smaller disparity 

between males and females for the same variables. Specifically, males have 2.7 sp larger 

proximal breadths, 1.9 sp larger distal breadths, and 1.7 sp larger midshaft breadths than females. 

However, different tendencies are noted between the upper limb breadths and the lower limb 

breadths at 12 years of age. Sympercent differences in upper limb breadths decrease between 

males and females as age increases whereas males are consistently larger than females in the 

lower limb breadths. 

Diaphyseal length measurements follow a different pattern than diaphyseal breadth 

measurements (Table 5.27). Females demonstrate larger diaphyseal lengths at birth and again 

around 12 years; specifically, in the first year of life, females displayed diaphyseal lengths that 

were approximately 5 sp larger than males. For ten to 12 year olds, females displayed diaphyseal 

lengths 1.3 sp larger than males. However, from one to nine years of age females had, on 

average, only a 0.6 sp advantage. Mean male and female ages were similar for each age interval, 

thus for most of childhood, negligible sex differences are noted in diaphyseal lengths.  
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SEX CLASSIFICATION 
 

Multiple classification models were employed in an attempt to identify the model that 

consistently yielded the highest correct sex classification. The models included quadratic, linear 

and flexible discriminant analysis (QDA, LDA and FDA, respectively), logistic regression (Log 

Reg), naïve Bayes (NB), and random forests (RF). The classification models were conducted on 

the raw measurements, ratios, y-axis residuals of the basis spline or MARS age estimation 

models (i.e. size-adjusted variables), and PC scores using the VCVM. Each measurement and 

ratio was subject to univariate classification models whereas the multivariate subsets, which 

included the multivariate bone subsets, multivariate subsets (i.e. measurement type and element 

type subsets) and the all-measurement subset, were subject to multivariate classification models. 

Stepwise variable selection for the QDA and LDA models was used for the multivariate bone 

subsets. The FDA automatically conducts variable selection and the logistic regression identifies 

which variables significantly contributes to model creation, thus the reported classification 

accuracies may or may not include all the variables that were included in the classification 

models.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.24 – Sympercent differences for the 
proximal breadths. Female dimensions were 
subtracted from male dimensions, thus negative 
sympercents indicate females are larger than males. 

Age  
(years) 

Sympercent Differences 
Humerus Radius Tibia 

<1 -1.67 1.81 NA 
1 1.55 0.18 5.53 
2 4.12 2.76 4.48 
3 4.25 2.6 2.84 
4 5.2 5.95 4.48 
5 7.04 5.23 6.59 
6 2.1 1.79 2.93 
7 5.93 3.85 6.76 
8 7.41 6.63 6.01 
9 6.05 8.43 5.44 

10 7.98 5.92 3.21 
11 4.2 0.81 1.42 
12 0.15 -2.25 3.01 
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Table 5.25 – Sympercent differences for the midshaft breadths. 
Female dimensions were subtracted from male dimensions, thus 
negative sympercents indicate females are larger than males. 

Age  
(years) 

Sympercent Differences 
Humerus Ulna Radius Femur Tibia 

<1 0.23 -1.06 8.16 0.42 NA 
1 2.77 -3.50 -8.30 4.69 1.24 
2 2.93 4.20 4.00 2.76 6.89 
3 2.31 6.41 2.64 -0.19 2.25 
4 2.91 4.37 0.64 2.35 1.49 
5 4.57 4.65 -2.32 -0.40 4.80 
6 2.49 3.02 -4.86 1.56 -3.10 
7 6.21 8.64 2.99 5.07 5.81 
8 8.69 10.23 7.35 4.43 3.05 
9 6.86 9.43 11.59 5.32 10.18 

10 4.30 4.40 2.27 2.17 1.06 
11 3.59 9.59 2.60 4.19 2.61 
12 -2.63 -13.39 -4.62 1.07 8.47 

Table 5.26 – Sympercent differences for the distal 
breadths. Female dimensions were subtracted from male 
dimensions, thus negative sympercents indicate females 
are larger than males. 

Age 
(years) 

Sympercent Differences 
Humerus Radius Femur Tibia 

<1 4.93 3.77 NA -1.44 
1 4.36 -0.35 7.54 1.63 
2 3.4 3.86 6.39 4.13 
3 0.31 3.83 4.26 0.17 
4 2.66 6.76 4.7 2.4 
5 6.34 4.07 6.04 4.56 
6 0.05 1.18 5.45 0.89 
7 4.48 5.2 7.08 3.92 
8 4.01 8.56 4.99 4.05 
9 4.43 4.64 4.54 2.58 

10 -0.23 4.17 4.25 2.56 
11 2.08 3.31 3.94 1.39 
12 -5.41 -0.18 4.94 1.88 
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Table 5.27 – Sympercent differences for the diaphyseal lengths. Female 
dimensions were subtracted from male dimensions, thus negative sympercents 
indicate females are larger than males. 

Age 
 (years) 

Sympercent Differences 
Humerus Ulna Radius Femur Tibia Fibula 

<1 -4.57 -5.29 -4.18 -4.91 -6.72 -1.17 
1 1.09 0.25 2.55 1.67 2.98 3.37 
2 -0.88 -0.74 0.7 -2.61 -1.06 -1.87 
3 -0.82 -2.18 -0.81 -2.86 -2.38 -2.78 
4 -0.34 0.69 1.7 -0.04 -0.17 -0.05 
5 1.59 0.26 0.46 -0.27 -1.39 -0.98 
6 0.75 -0.27 0.91 0.17 -0.74 -0.76 
7 -0.41 0.9 1.32 1.02 0.18 1.03 
8 -0.42 -1.32 0.21 -1.57 -2.58 -1.49 
9 -1.03 -0.52 -0.16 -0.46 -1.28 -0.68 

10 -2.33 -1.86 -1.47 -1.87 -1.08 -2.25 
11 1.3 3.82 1.1 0.4 -0.66 0.39 
12 -1.9 -1.22 -4.63 -2.59 -4.81 -3.89 
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Figure 5.10 – The figure on the left displays the sympercent differences of male and female diaphyseal length measurements and the 
figure on the right displays the sympercent differences of male and female distal breadth measurements. Female dimensions were 
subtracted from male dimensions, thus negative sympercents indicate females are larger than males.
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UNIVARIATE AND MULTIVARIATE BONE MODELS 
 

Classification accuracies for the univariate and multivariate bone models for each element are 

listed in Tables 5.28 – 5.33. Classification accuracies ranged from 47% to 74%. A comparison of all 

elements demonstrated the humerus (71%) and the femur (74%) achieved the highest number of correct 

classifications. In the univariate models, ratios generally yielded slightly higher accuracies than original 

variables and the breadths always demonstrated higher accuracies than lengths. Multivariate bone subsets 

and stepwise selected models yielded significantly better classifications than the univariate models.  

Evaluation of variable importance in the multivariate bone models demonstrated that breadth 

measurements were the most important, but the diaphyseal lengths were always retained in the model. 

The breadth measurements that contributed the most to each of the specific multivariate bone models 

were HPB, RDB, FDB and TPB. An evaluation of all of the models revealed that logistic regression 

achieved the overall highest classification rates. Though the univariate QDA and LDA models usually 

achieved a lower number of correct classifications, stepwise selection for the multivariate bone models 

was usually comparable to the logistic regression as well as the FDA. The NB and RF rarely achieved 

similar accuracies.  

 

Table 5.28 – Classification accuracies for the humerus. The multivariate bone model only 
includes original variables (no ratios). Model abbreviations:  QDA = quadratic discriminant 
analysis; LDA = linear discriminant analysis; FDA = flexible discriminant analysis; Log Reg 
= logistic regression; NB= naïve Bayesian; RF = random forest.  Refer to Table 4.1 and 4.2 
for measurement abbreviations. 

 n 
Classification Accuracy 

QDA LDA FDA Log Reg NB RFM 

HDL 1069 54% 54% 54% 63% - - 

HPB 814 57% 58% 55% 62% - - 
HDB 710 56% 55% 50% 65% - - 

HMSB 963 57% 58% 55% 62% - - 
HDPB 773 58% 54% 64% 65% - - 
HDDB 667 47% 51% 45% 66% - - 
HDMS 930 49% 49% 60% 64% - - 

Multivariate 
bone model 497 66% 66% 69% 71% 57% 65% 

Stepwise 
selected 

measurements 
497 67% 67% - - - - 
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Table 5.30 – Classification accuracies for the radius. The accuracy in bold is the best for the 
element. Refer to 4.1 and 4.2 for measurement abbreviations and Table 5.26 for model 
abbreviations. 

 n 
Classification Accuracy 

QDA LDA FDA Log Reg NB RFM 

RDL 1182 54% 52% - 63% - - 

RPB 523 57% 56% 56% 63% - - 

RDB 565 55% 54% 55% 62% - - 

RMSB 438 53% 50% 64% 63% - - 

RDPB 511 58% 55% 58% 63% - - 

RDDB 547 58% 56% 61% 64% - - 

RDMS 440 61% 61% 59% 63% - - 

Multivariate 
bone model 281 63% 66% 64% 67% 57% 57% 

Stepwise selected 
measurements 281 66% 66% - - - - 

Table 5.29 – Classification accuracies for the ulna. The accuracy in bold is the best for the 
element. Refer to 4.1 and 4.2 for measurement abbreviations and Table 5.26 for model 
abbreviations. 

 n 
Classification Accuracy 

QDA LDA FDA Log Reg NB RFM 

UDL 1182 56% 54% 49% 65% - - 

UMSB 438 57% 56% 54% 66% - - 

UDMS 440 60% 54% 58% 67% - - 
Multivariate 
bone model 281 58% 57% 58% 67% 66% 57% 

Stepwise selected 
measurements 281 56% 57% - - - - 
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Table 5.31 – Classification accuracies for the femur. The accuracy in bold is the best for the 
element. Refer to 4.1 and 4.2 for measurement abbreviations and Table 5.26 for model 
abbreviations. 

 n 
Classification Accuracy 

QDA LDA FDA Log Reg NB RFM 

FDL 1069 53% 53% 61% 62% - - 

FDB 710 60% 60% 59% 60% - - 
FMSB 963 53% 55% 60% 61% - - 
FDDB 667 56% 56% 64% 64% - - 
FDMS 930 56% 52% 60% 61% - - 

Multivariate 
bone model 497 70% 72% 73% 74% 59% 68% 

Stepwise 
selected 

measurements 
497 71% 72% - - - - 

Table 5.32 – Classification accuracies for the tibia. The accuracy in bold is the best for the 
element. Refer to 4.1 and 4.2 for measurement abbreviations and Table 5.26 for model 
abbreviations. 

 n 
Classification Accuracy 

QDA LDA FDA Log Reg NB RFM 

TDL 1069 53% 52% 60% 60% - - 

TPB 814 56% 57% 56% 59% - - 

TDB 710 53% 54% 54% 60% - - 

TMSB 963 50% 52% 57% 57% - - 

TDPB 773 58% 58% 63% 64% - - 

TDDB 667 56% 55% 63% 63% - - 

TDMS 930 58% 56% 63% 63% - - 
Multivariate bone 

model 497 64% 67% 67% 69% 56% 65% 

Stepwise selected 
measurements 497 68% 68%  - - - 
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RESIDUALS 
 

The residuals obtained from the spline or MARS age estimation models were used in the 

classification models as size-independent measures (Jungers et al., 1995; Berner, 2011). All 

residuals demonstrated a normal distribution and a mean of zero. Univariate classification 

models inclusive of QDA, LDA, FDA, and logistic regression were used.  

Classification accuracies utilizing the residuals of the age estimation models ranged from 

52% to 66% (Tables 5.34 – 5.39). The results were similar to the univariate models using the 

original measures and ratios. The highest correct classifications for each bone were achieved by 

residuals of HDB, UMSB, RDB and RPB, TPB; thus, residuals of breadths performed better than 

lengths in sex estimation. The classification method that yielded the overall highest number of 

correct classifications was logistic regression.  

 

 

 

 

 

 

 

 

 

 

Table 5.33 – Classification accuracies for the fibula. The accuracy in bold is the best for 
the element. Refer to 4.1 and 4.2 for measurement abbreviations and Table 5.26 for model 
abbreviations. 

 n 
Classification Accuracy 

QDA LDA FDA Log Reg NB RFM 

FBDL 1182 54% 53% - 60% 60% 52% 

Table 5.34 – Classification accuracies using the residuals of the humeral MARS and 
spline models.  Refer to 4.1 and 4.2 for measurement abbreviations and Table 5.26 
for model abbreviations. 

 
n Model* 

Classification Accuracy 

QDA LDA FDA Log Reg 

HDL 1069 cbrt MARS 58% 51% 60% 63% 

HPB 814 BS (2,3) 61% 59% 61% 63% 

HDB 710 cbrt MARS 58% 58% 59% 65% 

HMSB 963 sqrt MARS 55% 55% 56% 63% 

*If the model is BS, then the parentheses include the degree and df for the model 
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Table 5.35 – Classification accuracies using the residuals of the ulna MARS models.  
Refer to 4.1 and 4.2 for measurement abbreviations and Table 5.26 for model 
abbreviations. 

 
n Model 

Classification Accuracy 

QDA LDA FDA Log Reg 

UDL 1031 cbrt MARS 56% 52% 60% 65% 

UMSB 403 cbrt MARS 63% 55% 60% 66% 

Table 5.36 – Classification accuracies using the residuals of the tibia MARS 
models. Refer to 4.1 and 4.2 for measurement abbreviations and Table 5.26 for 
model abbreviations. 

 n Model 
Classification Accuracy 

QDA LDA FDA Log Reg 
RDL 1069 cbrt MARS 54% 52% 53% 63% 
RPB 814 sqrt MARS 59% 58% 59% 64% 
RDB 710 cbrt MARS 58% 57% 61% 64% 

RMSB 963 cbrt MARS 61% 53% 55% 63% 

Table 5.37 – Classification accuracies using the residuals of the femur MARS 
models.  Refer to 4.1 and 4.2 for measurement abbreviations and Table 5.26 for 
model abbreviations. 

 n Model 
Classification Accuracy 

QDA LDA FDA Log Reg 
FDL 1069 cbrt MARS 54% 53% 53% 61% 
FDB 710 sqrt MARS 61% 61% 62% 64% 

FMSB 963 cbrt MARS 56% 53% 57% 61% 
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PRINCIPAL COMPONENT SCORES AND CLASSIFICATION 
 

The principal component scores derived from a variance-covariance matrix for each 

multivariate bone subset were utilized in the classification models (QDA, LDA, FDA, Log Reg, 

NB, RF) to remove the effects of multicollinearity. Three different analyses were run for each 

element. The first run was conducted on all of the PC scores, the second run included only the 

stepwise selected variables from the QDA and LDA (Table 5.40), and the final run was 

conducted on the PC scores for each element with the exception of PC1. As previously stated, 

PC1 is recognized to reflect size variation within the dataset (Jolicoeur, 1963); removing the 

substantial effects of size in sex estimation permits the shape variables (i.e. breadth 

measurements), captured in PC2 through PCx, to be used in model creation.  

The classification accuracy of all models for the humerus, femur, and tibia ranged from 

58% (naïve Bayes results for the tibia) to 74% (FDA and logistic regression results for the 

Table 5.38 – Classification accuracies using the residuals of the radius MARS 
models. Refer to 4.1 and 4.2 for measurement abbreviations and Table 5.26 for 
model abbreviations. 

 n Model 
Classification Accuracy 

QDA LDA FDA Log Reg 
TDL 1047 sqrt MARS 54% 53% 53% 60% 
TPB 747 sqrt MARS 60% 60% 60% 63% 
TDB 637 cbrt MARS 57% 53% 53% 60% 

TMSB 564 sqrt MARS 58% 57% 58% 59% 

Table 5.39 – Classification accuracies using the residuals of the fibula MARS 
model.  Refer to 4.1 and 4.2 for measurement abbreviations and Table 5.26 for 
model abbreviations. 

 n Model 
Classification Accuracy 

QDA LDA FDA Log Reg 
FBDL 1030 sqrt MARS 54% 53% 53% 60% 
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femur) (Table 5.41). Similar to the multivariate bone models using the original measurements,  

the femur and humerus achieved the highest correct classifications of 74% and 72%, 

respectively. The radius and ulna had the lowest number of correct classifications (52% to 68%) 

of all five elements. Overall, the removal of PC1 did not drastically increase correct 

classifications. Logistic regression, FDA and NB consistently yielded the highest number of 

correct classifications of all models. RF had similarly bleak results to QDA and LDA.  

Table 5.40 – Stepwise selected principal components for the 
QDA and LDA models. 

 QDA Stepwise  LDA Stepwise  

Humerus PC1 – PC4 PC2 and PC3 

Radius PC2 and PC3 PC2 – PC4 

Ulna PC1 PC2 

Femur PC2 PC2 and PC3 

Tibia PC2-4 PC1-2 
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Table 5.41 – Classification accuracies for the principal components of all long bone datasets. 
The highest correct classification for each combination of variables is noted in bold. Refer to 
Table 5.26 for model abbreviations. 

 n Variables 
Classification Accuracy 

QDA LDA FDA Log Reg NB RFM 

Humerus 497 
PC1-PC4 66% 66% 70% 71% 72% 68% 
PC2-PC4 66% 66% 70% 70% 66% 69% 
Stepwise 66% 68% - - - - 

Radius 281 
PC1-PC4 63% 66% 65% 67% 69% 56% 
PC2-PC4 62% 65% 65% 68% 61% 58% 
Stepwise 65% 65% - - - - 

Ulna 400 
PC1-PC2 53% 57% 62% 67% 67% 56% 

PC2 52% 58% 58% 67% 67% 57% 
Stepwise 57% 58% - - - - 

Femur 778 
PC1-PC3 70% 72% 73% 74% 72% 66% 
PC2-PC3 70% 71% 74% 72% 60% 64% 
Stepwise 71% 72% - - - - 

Tibia 521 
PC1-PC4 64% 67% 69% 70% 58% 63% 
PC2-PC4 67% 67% 70% 69% 58% 63% 
Stepwise 67% 68% - - - - 
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MULTIVARIATE CLASSIFICATION MODELS 
  

The multivariate subsets were utilized to preserve a suitable sample size while including 

a large number of predictor variables. Based on the success of ratios in the univariate 

classification models, a ratios-only dataset was also created. The variables utilized in the five 

subsets are noted in Table 5.40. Similar to the previous analyses, and because multicollinearity is 

such a problem for the classification methods, the multivariate subsets were subject to PCA 

using a variance-covariance matrix and the PC scores were also utilized in model creation. 

Because some of the subset sample sizes were small, the classification accuracies of each model 

were bootstrapped in order to validate the results. Bootstrapped classification accuracies were 

conducted for each of the subsets for the LDA, FDA, and logistic regression classification 

models as these models either consistently yielded the highest correct classifications (FDA, 

logistic regression) or the methodology is commonly employed in anthropology (LDA).  

Correct classifications – excluding the results of the ratios subset – ranged from 74% to 

89% utilizing the original variables and 72% to 90% utilizing the PC scores (Tables 5.43 and 

5.44). Specifically for the original variables, the all-measurement subset and upper limbs subset 

achieved the highest accuracies (89% and 81%, respectively) and the ratios subset achieved the 

lowest accuracy (66%). The bootstrapped estimates provided a standard error for the estimated 

classification accuracies, which resulted in 95% confidence intervals. For example, the all-

measurement model bootstrapped 95% confidence intervals for accuracy were 73% – 85% for 

the LDA, 86% - 92% for the FDA and 84% – 94% for the logistic regression. Results 

demonstrate that FDA and logistic regression yielded higher correct classifications than the 

stepwise LDA. An evaluation of variables that either had significant relationships with sex or 

were recognized as important variables in the model creation for the multivariate subset were 

similar for the logistic regression and FDA. Specifically for the all-measurement subset, the 

logistic regression identified FDB and TDB as making significant contributions to sex estimation 

while the FDA model retained diaphyseal lengths with breadth measurements, such as HPB, 

HDL, FDB, FDL, TDB, TPB and RPB (listed in order from most important to least important).  

The classification accuracy slightly increased when using the PC scores in the 

multivariate subsets but some subsets slightly decreased, such as the proximal element subsets. 

The first PC was not included in any model creation, thus the effects of size were removed.  
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Similar to the original variable models, the highest accuracies were observed in the all-

measurement (90%) and upper limbs (83%) subsets, the ratios presented with the lowest number 

of correct classifications and the FDA and logistic regression yielded the overall highest number 

of correct classifications. The standard error for each of the estimated classification accuracies 

was similarly low as compared to the models utilizing the original variables. Although the best 

performing model was the FDA for the multivariate subsets, which is in contrast to the univariate 

approaches, the logistic regression had similar results to FDA for most of the multivariate 

subsets. 

PC2, 3, 5 and 6 contributed the most to the logistic regression and FDA models. The only 

difference was that the FDA model also included PC4. While PC2 had the largest contributions 

from diaphyseal lengths, namely the femur and humerus, PC3, PC4, PC5, and PC6 had 

contributions from a combination of diaphyseal breadths, namely FDB, TPB, HDP, HPB and 

TDB (Table 5.45). All of the variables utilized in the FDA and logistic regression models 

utilizing the PC scores were generally the same variables that were considered important 

variables in the multivariate bone models. As the PCA of the variance-covariance matrix retains 

all of the variation present in the original dataset even though the PC scores are uncorrelated and 

transformed, the above-mentioned outcomes are expected (Jolliffe, 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.42 – Measurements included in each multivariate subset. 

 n Variables 

All-
measurement 

63 
FDL, FDB, FMSB, HDL, HPB, HDB, HMSB, 

RPB, RDB, TPB, TDB* 

Ratios 394 HDPB, TDPB, FDDB 

Upper Limbs 96 
HDL, HPB, HDB, RDL, RPB, RDB, RMSB, 

UDL, UMSB 

Lower Limbs 458 
FDL, FDB, FMSB, TDL, TPB, TDB, TMSB, 

FBDL 

Proximal 
Elements 

316 HDL, HPB, HDB, HMSB, FDL, FDB, FMSB 

Distal Elements 100 
RDL, RPB, RDB, RMSB, UDL, UMSB, TDL, 

TPB, TDB, TMSB, FBDL 

*Some variables were excluded due to the effects on sample size 
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Table 5.43 – Bootstrapped classification accuracies for the generated multivariate subsets utilizing original 
measurements.  

 n 
LDA  FDA  Log Reg 

Accuracy 95% CI  Accuracy 95% CI  Accuracy 95% CI 
All-

measuremen
t 

63 79% 73% – 85%  89% 86% – 92%  89% 84% – 94% 

Ratios 394 65% 63% – 67%  65% 63% – 67%  66% 64% – 68% 

Upper 
Limbs 96 74% 69% – 79%  81% 77% – 85%  74% 69% – 79% 

Lower 
Limbs 458 70% 68% – 72%  72% 70% – 74%  72% 70% – 74% 

Proximal 
Elements 316 73% 70% – 74%  78% 76% – 80%  77% 75% – 79% 

Distal 
Elements 100 73% 67% – 79%   67% 62% – 72%  76% 71% – 81% 
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Table 5.44 – Bootstrapped classification accuracies for the generated multivariate subsets using the PC scores, with 
the exception of PC1.  

 n 
LDA  FDA  Log Reg 

Accuracy 95% CI  Accuracy 95% CI  Accuracy 95% CI 
All-

measureme
nt 

63 70% 64% – 76%  90% 88% – 92%  87% 82% – 92% 

Ratios 394 57% 55% – 59%  64% 61% – 67%  63% 61% – 65% 

Upper 
Limbs 96 73% 68% – 78%  83% 80% – 86%  76% 71% – 81% 

Lower 
Limbs 458 69% 67% – 71%  72% 70% – 74%  71% 69% – 73% 

Proximal 
Elements 316 75% 73 – 77%  75% 73% – 77%  76% 74% – 78% 

Distal 
Elements 100 70% 65% – 75%  81% 77% – 85%  77% 72% – 82% 
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Table 5.45 – The eigenvectors and proportion of variance for each of the principal component scores using a variance-
covariance matrix for the all-measurement subset. 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 
FDL 0.816 0.544 0.185 0.034 0.042 0.006 -0.019 -0.009 0.001 0.007 -0.012 
FDB 0.110 -0.315 0.437 -0.241 -0.163 0.124 -0.673 0.216 0.143 0.270 -0.070 

FMSB 0.038 -0.077 0.097 -0.015 -0.180 -0.266 -0.253 0.011 -0.446 -0.737 -0.271 
HDL 0.539 -0.606 -0.583 -0.016 -0.045 0.021 0.018 -0.001 0.007 0.008 0.002 
HPB 0.061 -0.224 0.246 -0.222 0.751 0.227 0.063 -0.273 0.193 -0.295 -0.132 
HDB 0.074 -0.279 0.343 0.871 -0.051 0.032 0.062 -0.102 0.137 -0.026 -0.051 

HMSB 0.021 -0.094 0.092 0.055 0.238 -0.011 -0.068 -0.312 -0.788 0.443 0.054 
RPB 0.032 -0.072 0.086 0.069 0.199 0.080 -0.037 0.439 -0.166 -0.237 0.811 
RDB 0.042 -0.111 0.134 -0.009 0.251 -0.242 0.357 0.711 -0.132 0.176 -0.406 
TPB 0.104 -0.219 0.396 -0.303 -0.459 0.351 0.568 -0.092 -0.135 -0.067 0.067 
TDB 0.079 -0.174 0.239 -0.180 -0.016 -0.820 0.136 -0.253 0.201 0.087 0.266 

Proportion 
of  

Variance 
0.987 0.005 0.005 0.001 0.0006 0.0004 0.0003 0.0002 0.0002 0.0002 0.0001 
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CHAPTER 6: DISCUSSION 
 

 

MEASUREMENT ERROR AND RELIABILITY 
 

Utilization of radiographic images as a data source mitigates two major problems 

surrounding the creation of techniques for the subadult biological profile. First, the lack of large 

samples of modern children in skeletal collections from which to create or validate techniques; 

and second, the problems associated with mortality bias in cemetery populations. High 

agreement between measurements obtained from radiographic images of dry bones and the dry 

bones themselves (Stull et al., 2013) and the low intra- and inter-observer error in the 

measurements obtained in radiographic images indicate that Lodox Statscan-generated images 

are a valid data source to obtain metric variables from the subadult skeleton. Thus, large, modern 

samples are acquirable from which to evaluate variation in subadults. 

An evaluation of published literature demonstrates the intra- and inter-observer TEM and 

%TEM obtained in the current study are comparable even though the specifics for each study 

vary (i.e. anthropometrics, craniometrics) (Utermohle et al., 1983; Ulijaszek and Kerr, 1999; 

Cardoso, 2005; WHO Multicentre Growth Reference Study Group, 2006; Sicotte et al., 2010). 

The largest measurement errors in the current study were associated with the smallest 

measurements, specifically, UMSB (inter-observer %TEM = 1.92; inter-observer %TEM = 1.84) 

and RMSB (inter-observer %TEM = 2.27). Comparisons of measurement error obtained from 

skeletal data are limited. One exception is Cardoso (2005), however, the only available 

comparative measurement is femur diaphyseal length. Cardoso (2005) reported an intra-observer 

TEM of 0.40 mm, which is smaller than the intra- and inter-observer error observed in the 

current study (0.91 mm and 1.58mm, respectively).  

The Bland-Altman plots indicate no systematic bias; larger measurements did not incur 

larger errors. Furthermore, most measurements were within the upper and lower agreement 

levels, which were approximately +/- 2 mms. Error between the two observers can be attributed 

to observer experience as well as the option of choosing either left or right-sided elements for 

each of the 15 individuals. The results indicate that the repeatability of the measures is high. 
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The measurements applied in this study are similar to the measurements associated with 

standard data collection for adults, thus the variables are not drastically different from normal 

standards, which may attribute to the high consistency in measurements (Fazekas and Kósa, 

1978; Buikstra and Ubelaker, 1994). Consequently, measurements can be reliably obtained from 

Lodox Statscan-generated images and the results, including the measurement definitions, are 

applicable. The reliability of the measurements indicates that sources other than skeletal 

collections can act as a data source for anthropologists interested in evaluating subadult or adult 

skeletal structures. Additionally, the definitions presented herein can be applied to skeletal 

remains – because the measurements are not specific to radiographic images – which would 

permit direct comparison between samples.  

 

 

AGE ESTIMATION 
 

Diaphyseal dimensions were historically acknowledged as having the potential to be 

good indicators of subadult age as seen in longitudinal studies that predict diaphyseal lengths 

from age and the few anthropological publications that attempted to predict age from diaphyseal 

lengths (i.e. Maresh, 1970; Gindhart, 1973; Hoffman, 1979; Rissech et al., 2008, 2013; López-

Costas et al., 2012). However, previously published studies are inadequate for two reasons: 1) 

inappropriate statistics and 2) unsuitable samples. Black and coloured South African children 

aged six to ten years have significantly increased in height and weight between 1962 and 2013 

(Hawley et al., 2009; Anholts, 2013). In the current study over 70% of the sample was born after 

2000. Of the sample that was born before 2000, most were post 1996 though the earliest date of 

birth was 1992. Thus, the data should reflect the variation within the current South African 

population. Most published age estimation research is derived from historic samples, which 

ignores secular changes and is an inadequate reflection of the population.  

The current study is also the first to provide suitable statistical analyses to estimate age at 

death. MARS and basis spline models allow for the creation of 95% prediction intervals, which 

offer an appropriate technique to estimate age in subadults. Overall, MARS models are 

recognized as presenting with a good bias-variance trade-off. MARS models are flexible enough 

to model nonlinearity and variable interactions (low bias) while the basis functions prevent too 
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much flexibility (low variance) (Milborrow, 2013). Diaphyseal dimensions exhibit different 

velocities through growth, hence the square or cube root transformation of age in all age 

estimation models and the need for a flexible fit within the model. The results of this study are in 

contrast to recently published literature that show linear relationships between age and the 

diaphyseal lengths of the tibia, humerus, and femur, humerus proximal breadth (transverse 

diameter breadth), humerus distal (epicondylar) breadth, and tibia proximal breadth (Rissech et 

al., 2008, 2013; López-Costas et al., 2012). The appearance of linearity is most likely a product 

of the small sample sizes. Thus, the current study offers the capability to generalize to the entire 

population and employs statistical methods that satisfy Daubert criteria. 

 

 

PREDICTION INTERVALS, BIAS, STANDARD ERRORS AND R-SQUARED 
 

Dynamic prediction intervals were calculated for each model that compensated for 

smaller variation in diaphyseal dimensions at younger ages and larger variation in diaphyseal 

dimensions in older ages. Using FDL as an example, the 95% prediction interval for the smallest 

diaphyseal length (75 mm) is approximately a three month interval (0.04 years to 0.33 years). 

When the femoral diaphysis is 348 mm the associated 95% prediction interval is approximately 

five years (8.5 years to 13.4 years). The lower prediction intervals of all models were adjusted to 

only include the age range of the collected sample. For example, the size of FDL ranged from 73 

mm to 418 mm and the first two measurements (i.e. 73 mm and 74 mm) had lower 95% 

prediction intervals as negative ages. Femoral diaphyses greater than 398 mm in length have 

fitted values of 12 years and upper 95% prediction intervals of 15 years of age. Because the 

current sample did not amass data on 13 through 15 year olds, prediction intervals that extend 

beyond 12 years of age (inclusive) should be substantiated with additional age 

indicators/techniques such as epiphyseal fusion or dental formation. If long bone lengths are the 

only age indicator available, then one must acknowledge that the ages included in the estimate 

were not incorporated in the original dataset. 

In the published literature, the standard error is frequently supplied and offers a probable 

error for future prediction. However, a prediction interval offers a value in which future 

observations should fall and is ultimately more informative than the standard error and is 
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required in most court systems (Stine, 1985). Because the models were semi- or nonparametric, 

the prediction intervals were obtained indirectly through resampling. The resampling resulted in 

cross-validated prediction intervals and fitted values, offering an explicit interval with upper and 

lower bounds. A holdout sample was used as a means to gauge model accuracy and 

generalization performance. Using femur diaphyseal length on a discrete sample of 28 

individuals resulted in 100% of the individuals having a chronological age within the 95% 

prediction intervals. Results of the validation test confirm the applicability of the age at death 

models.  

The majority of age estimation models had decreased precision as age increased though 

the models retained high accuracy because the 95% prediction intervals accounted for error in 

the point estimates. Overall, bias, or precision of the point estimate, is generally of less 

importance than accuracy because anthropologists should only use point estimates to measure 

model performance and not as an age estimate. Mean bias for the created models were 

effectively zero, but bias error increased as age increased. For the diaphyseal length models, the 

trend for underestimating age does not seem to be evident until approximately 10 years of age; 

females entering their adolescent growth spurt would normally explain the underestimation. 

However, a sex-specific trend was not noted in the bias error for diaphyseal lengths which 

indicate other factors are likely responsible. For example, South African black, white, and 

coloured children aged between 6 and 10 years demonstrate statistically significant differences in 

height. Thus, ancestry should be further explored as an influential factor in age estimation. The 

bias for diaphyseal breadths showed a larger discrepancy between the sexes as well as the 

underestimation of age for females even though the overall trend for both sexes was the same. 

The pattern in bias for diaphyseal breadths is likely due to the higher number of significant 

differences between males and females in breadth than in length measurements.  

Sex-specific MARS femur diaphyseal length and distal breadth models were created to 

evaluate sex differences. Both male and female FDL models demonstrated similar R-squared and 

SEs and both had three hinge functions. However, the three hinges were required approximately 

1 to 2 years earlier (~20 mm) in females than males. Essentially, the female trajectory changes at 

an earlier age as females present with larger diaphyses at younger ages (Figure 6.1). In contrast, 

to the sex-specific diaphyseal length models, the hinge functions in the sex-specific FDB models 

were both at 68 mm and approximately 10 years of age. Although the bias error in the original 
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breadth models demonstrated a larger disparity between the sexes than the diaphyseal length 

models, the trajectory of the FDB is similar between males and females. 

The R-squared values and SEs in the current study are larger and smaller, respectively, 

when compared to all available published models (Table 6.1). The one exception is the lower SE 

of the tibia distal breadth model presented by López-Costas et al. (2012), however, this is likely 

an artifact of a small sample size. Although few studies acknowledge the value of diaphyseal 

breadth measurements in age estimation, the majority of the univariate models in the current 

study – including breadths – resulted with SEs that are comparable or smaller than previously 

published work of Rissech et al. (2008, 2013) and López-Costas et al. (2012). For example, in 

the current study, only one measurement – the humerus midshaft breadth – resulted in a SE as 

wide as 2 years while every other univariate model achieved a SE between 0.90 and 1.8 years. In 

contrast, the published literature provided SEs that ranged from 1.19 years to 2.32 years; SEs that 

are on average much wider than this study. R-squared values of the current study are also higher 

than recently published R-squared values obtained from linear regression models (i.e. Rissech et 

al., 2008, 2013; López-Costas et al., 2012) (Table 6.1). However, it is acknowledged that the R-

squared value is inadequate to compare different studies to one another because it does not 

follow a distribution (Hawkins, 2004).  

 

 

 
Figure 6.1 – Sex-specific femur diaphyseal length models. 
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Though the SE provides a means to compare models, the lack of associated prediction 

intervals in the published studies does not meet Daubert criteria. The published studies (i.e. 

López-Costas et al., 2012; Rissech et al., 2013) only provide a SE with their formulae and the 

authors state the SE is not a reliable indicator until 8 years of age as the value does not adjust to 

the increased variance in the measurement as age increases. However, even when the age is 

greater than 8 years, the SE is still inflexible and unable to adjust to the increase in variance that 

coincides an increase in age. Besides being fixed and inapplicable at the lower ages, the 

application of SE in forensic estimates still fails to fulfill Daubert, as the statistic is a measure of 

the error of the mean and not the population.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1 – Comparison of the SE and adjusted R-squared values 
obtained in the current study compared to recently published SE 
and R-squared values of the same measurements. All models were 
with sexes combined. 

Measure 
South African Sample Literature 

SE Adj R2 SE* Adj R2* 
HDL 0.97 0.95 1.39 0.87 
HPB 1.60 0.83 2.32 0.84 
HDB 1.55 0.85 2.15 0.83 
FDL 0.90 0.95 - 0.93 
TDL 0.95 0.94 1.66 0.87 
TDB 1.35 0.80 1.19 0.88 

*Humerus variables (Rissech et al., 2013); femur variables (Rissech 
et al., 2008); tibia variables (López-Costas et al., 2012) 
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MODEL SELECTION: AGE ESTIMATION 
  

In the current study standard errors were smaller in most of the multivariate models than 

the univariate models with the exception of HDL, FDL and TDL (Table 6.2). Evaluation of the 

cross-validated prediction intervals associated with each multivariate model reveal that the 

intervals are flexible but the models are not applicable to younger ages (~ < 2 years). The 

inapplicability to younger ages is a result of sampling, as sample sizes were small for the breadth 

measurements in the younger age categories. In contrast, prediction intervals associated with 

univariate diaphyseal length models allow for a more narrow prediction interval at the younger 

ages. Essentially, univariate models provide narrower estimates at the younger ages but the 

multivariate models provide narrower estimates at the older ages. If the available data includes 

the femur, ulna, or humerus diaphyseal length, the breadths do not increase the likelihood of a 

narrower prediction interval. In application of a multivariate model, the PCA models will yield 

more accurate age estimations than the original variables because MARS cannot handle 

multicollinearity.  

The preference of a multivariate model at the older ages is demonstrated using the femur 

distal breadth model that yielded age ranges as wide as nine years in the older groups. In 

contrast, the multivariate subsets offer age ranges of five or six years for comparable age groups. 

Because a diaphyseal length was always chosen in the multivariate models, a model was created 

excluding diaphyseal lengths (breadths-only model). The SE was 1.22 years with an associated 

cv Rsq of 0.78 and the bias was +/- 3 years; the results are comparable or better than most 

univariate breadth models (Table 6.2). Evaluation of the cross-validated prediction intervals 

revealed age ranges between 2 and 7 years, which are slightly larger than some of the univariate 

breadth models, but not the majority of them. Generally, the multivariate breadths-only model 

followed the same tendencies as the other multivariate models, which is to have wider intervals 

at younger ages but narrower intervals at the older ages than the univariate models. Furthermore, 

the bias associated with the multivariate breadths-only model did not exhibit the same 

discrepancies between males and females as the univariate breadth models. Thus, if diaphyseal 

lengths are not available, the application of a multivariate model is encouraged prior to a 

univariate breadth model.  
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The difference between the applications of a univariate versus multivariate approach is 

related to the relationship each measurement has with age and how this changes with growth. For 

example, if data are separated into age intervals that generally follow the subdivisions of growth 

then the correlations between age and diaphyseal length change (Table 6.3). Strong correlations 

are noted between the lengths and age in the two youngest age groups, which indicates the 

inclusion of multiple diaphyseal lengths will not improve the model. The correlations gradually 

weaken as age increases, which suggest a multivariate model is more appropriate for older 

children. The causes for a weaker relationship with age are due to a multitude of factors all of 

which result in adults of different sizes and proportions. Furthermore, the majority of breadth 

measurements only have a range of 15 mm; the range is small and thus the variation is high, 

especially in the older ages. The inclusion of more variables results in a reduction in the size of 

variation and thus produces a narrower age estimate. 

For all models, the widest prediction intervals are noted in the period of adolescence, 

which is the transition from childhood to adulthood. During this period children increase in size, 

however, the timing – or tempo of growth – is highly variable (Hauspie and Roelants, 2012). The 

inclusion of both males and females within the estimates further increases variation, as 

individuals – within each sex and between the sexes – present with different ages for the onset of 

puberty. Thus, large differences in diaphyseal dimensions are apparent in children of the same 

age and subsequently the prediction intervals compensate for this variability. Although the 

provided prediction intervals appear wider than most anthropologists typically provide for 

subadults, it is a proper prediction interval that compensates for 95% of the population obtaining 

an accurate age estimation.  
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Table 6.2 – Aggregation of all of the models, standard errors, and 
adjusted R-squared values, in order from smallest to largest standard 
error.  

 Model SE Adj R2 
Multivariate 

(PCA) MARS 0.77 0.92 

Distal cbrt MARS 0.78 0.93 
Distal (PCA) cbrt MARS 0.79 0.93 
Multivariate cbrt MARS 0.8 0.93 
Lower (PCA) cbrt MARS 0.85 0.92 

Lower cbrt MARS 0.86 0.92 
Proximal cbrt MARS 0.87 0.92 

Proximal (PCA) cbrt MARS 0.88 0.91 
FDL cbrt MARS 0.9 0.95 
TDL sqrt MARS 0.95 0.94 
HDL cbrt MARS 0.97 0.95 

Radius (PCA) cbrt MARS 0.97 0.96 
Tibia (PCA) cbrt MARS 0.97 0.91 

Radius sqrt MARS 0.98 0.95 
Tibia cbrt MARS 0.98 0.91 
FBDL sqrt MARS 0.99 0.93 
Upper cbrt MARS 0.99 0.95 
UDL cbrt MARS 1.01 0.93 
RDL cbrt MARS 1.02 0.94 

Upper (PCA) cbrt MARS 1.04 0.95 
TDB spline (2,4) 1.35 0.8 
RPB sqrt MARS 1.38 0.87 
TPB sqrt MARS 1.39 0.81 
RDB cbrt MARS 1.47 0.86 
FDB sqrt MARS 1.51 0.77 
HDB cbrt MARS 1.55 0.85 

TMSB cbrt MARS 1.59 0.72 
HPB spline (2,3) 1.6 0.83 

FMSB cbrt MARS 1.62 0.75 
RMSB cbrt MARS 1.76 0.81 
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SEXUAL DIMORPHISM IN DIAPHYSEAL DIMENSIONS 
 

The current study is the first to discover sex differences in absolute diaphyseal breadth 

measurements from infancy through adolescence. Although breadth measurements are 

recognized to perform well as discriminators between adult males and females (Pearson, 1915; 

France, 1998; Spradley and Jantz, 2011; Tise et al., 2013), attempts to apply them to subadult 

postcrania is rarely noted in the literature. In this study, the most marked sex differences were in 

diaphyseal breadths between the ages of two and ten years. The absence of sex differences 

among children within the first two years of life may be the consequence of sampling, as 

positioning a young individual (~ < 2 years) into proper anatomical position is difficult and often 

not performed. Thus, the majority of the breadth measurements on the lower limbs were not 

possible to collect in the younger samples. For example, FDB was one measurement that 

exhibited the most sexually dimorphic differences throughout many of the sampled ages; 

however, in the less than 1 year age interval, only five individuals had an associated 

Table 6.3 – Pearson correlation coefficients of 
diaphyseal lengths and age that demonstrate how the 
relationship between the two weakens as age 
increases. 

Age (years) 
 <4 

(n=199) 
4 – 8 

(n=332) 
9 – 12 

(n=165) 

HDL 0.881 0.843 0.377 
RDL 0.867 0.809 0.363 
UDL 0.862 0.807 0.369 
FDL 0.913 0.853 0.435 
TDL 0.897 0.82 0.417 

FBDL 0.898 0.826 0.409 
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measurement. Following 10 years of age, sexually dimorphic differences are less apparent as 

females and males present with differing growth rates, which subsequently affect size and shape 

related differences. Sex differences – especially of the upper limb – decrease as some 

individuals, especially girls, enter adolescence. Adolescence is marked by a sudden and rapid 

increase in growth rate, thus if some children present the transition to adolescence earlier, they 

will likely exhibit larger sizes than those who have not yet transitioned into adolescence (Bogin, 

1997). The greatest factor in early and late onset ages is attributed to sex differences (Cameron, 

2012; Hauspie and Roelants, 2012); but, as previously mentioned, population differences may 

also be an influential factor and should be considered in future analyses.  

The humerus and femur consistently resulted in the largest number of mean significant 

differences by age compared to the other four elements. With regard to measurements, the HPB, 

TPB and FDB showed the highest number of statistically significant mean differences, though 

the ratios including them were more sexually dimorphic than the original variables. The results 

of this study contradict the few studies that have examined diaphyseal breadths for sex 

differences. Particularly, Rissech et al. (2013) did not identify statistically significant differences 

in the humeral proximal breadth or humeral distal breadth and López-Costas et al. (2012) did not 

identify any statistically significant differences in the tibia distal breadth. The differences in the 

results are likely attributed to the five-year age intervals the above-mentioned authors had 

grouped their samples which likely obscured sexually dimorphic patterns. Further, the population 

differences in the studies may also be a reason for differential results.  

In the current study, midshaft measurements rarely showed significant differences 

between the sexes. The lack of sex differences in midshaft measurements supports previous 

research that did not find any significant differences in midshaft cross-sectional area and cortical 

area of prepubertal boys and girls matched for age, height, and weight (Gilsanz et al., 1997; 

Schoenau et al., 2002; Nieves et al., 2005).  

In contrast to results based on longitudinal growth studies in the United States (Maresh, 

1970; Gindhart, 1973; Smith and Buschang, 2004), no sexually dimorphic differences were 

found in any of the absolute diaphyseal lengths in South Africans from birth to twelve years in 

the current study. Multiple researchers observed the tendency of North American males to have 

absolutely longer radii and tibiae than females (Maresh, 1970; Gindhart, 1973; Smith and 

Buschang, 2004; Smith, 2007), but this tendency was not evident in the South African sample.  
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As expected from the Student’s t-tests results, the sympercent differences of the 

diaphyseal lengths are minimal (~1 sp) between the sexes from approximately two years until 

approximately 10 years of age. Similar results were demonstrated by Clark et al. (2007) who 

identified a 1% difference in humeral diaphyseal length in a large modern sample of 9 year old 

English children – with females being larger than males. Earlier maturation and attainment of an 

earlier peak height velocity in females is likely responsible for the increased disparity in 

diaphyseal lengths (mean 4 sp) in the current sample around 12 years of age, with larger 

differences in the lower limbs than upper limbs. Previous research has recognized that the 

growth spurt in the lower limbs of females is concurrent to peak height velocity while the growth 

spurt in the upper limbs of females occurs approximately one year later (Smith and Buschang, 

2005). Smith and Buschang (2005) also noted the earlier maturation of the girls produces longer 

diaphyseal lengths with differing magnitudes for each bone. As in the current study, the sex 

differences in the Child Research Council sample were greater in the lower limb elements than in 

the upper limbs (Smith and Buschang, 2005).  

Furthermore, the lack of significant differences in lengths suggests a coinciding lack of 

differences in stature. A Student’s t-test revealed no sex differences in stature or weight by age in 

the current South African sample. The pattern of reduced sexual dimorphism in the diaphyseal 

lengths follows a similar pattern to body weight and stature; more than half of the dimorphism 

that is apparent in adults is supposed to result from the slower development of the male 

compared to the female in adolescence (Willner and Martin 1985, Harrison et al 1988, 

Humphrey 1998). Because body size was accounted for in the sample, as no differences were 

found in height or weight at any ages, the differences in diaphyseal breadths can be related to 

factors independent of body size, such as muscle mass and sex-specific tissue responses.  

 

 

MODEL EVALUATION AND APPLICABILITY: SEX 
ESTIMATION 

 

The current research was able to elucidate sex differences in the skeletal dimensions of 

males and females because of the large sample size and multivariate approach. Utilizing FDA or 

logistic regression with a large number of predictor variables, an anthropologist can accurately 
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estimate sex between birth and 12 years with up to 90% accuracy. The classification methods 

utilizing multivariate subsets achieved higher accuracies than the univariate and multivariate 

bone models. The univariate and multivariate bone models obtained classification accuracies that 

were comparably as low as previously published metric and morphological sex estimation 

techniques (Choi and Trotter, 1970; Weaver, 1980; Schutkowski, 1987; Holcomb and 

Konigsberg, 1995; Scheuer, 2002; Galdames et al., 2008). Higher accuracies for multivariate 

subsets when compared to univariate and multivariate bone models are expected for several 

reasons. The multivariate subset includes the greatest number of variables and as previously 

stated, when estimating a dichotomous biological variable a large amount of overlap is usually 

present. Generally the use of more measurements maximizes differences among groups, 

especially in discriminant analyses, and thus in turn increases correct classification (Ousley and 

Jantz, 2012). The hypothesis tests, particularly the t-tests, suggested that the best discriminators 

would be the ratios. However, the three variables included in the ratios subset compared to the 

eleven in the all-measurement subset may be the explanation for the lower correct classifications.  

Of all the classification techniques employed, logistic regression and FDA consistently 

yielded the highest number of correct classifications. Logistic regression was superior to FDA 

when employed on univariate models but FDA was comparable or superior to logistic regression 

when employed on multivariate models. Both methods are recognized as more flexible than 

QDA and LDA and thus tend to outperform other classification methods when nonlinear 

relationships are evident. FDA and logistic regression were expected to, and did, outperform the 

other classification methods in the current sample. Because both logistic regression and FDA 

perform poorly if multicollinearity is present, the ability of FDA and logistic regression would 

likely improve if PCA were applied (De Veaux and Ungar, 1994). Even though the 

classifications were only slightly increased with the use of PCA, the models including the PC 

scores are nonetheless superior to the utilization of the original variables because the 

transformations associated with PCA removes multicollinearity amongst diaphyseal 

measurements. Thus, the PC scores allow for a more reliable model that permits practical use 

within the field of anthropology.  

The results are examples of the classification potential of long bone dimensions when all 

ages were combined. Although age and sex estimations can be conducted independent of the 

other, the number of correct classifications may increase if a smaller age range is included in the 
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sex estimation analyses. For example, although the proximal subset achieved a 78% correct with 

FDA with the inclusion of all ages, a smaller age range from 5 to 8 years resulted in a 

classification accuracy of 84%. However, a smaller age range does not automatically result with 

an increased accuracy. For example, an age range of 2 to 4 years also achieved a higher 

classification accuracy (82%) than the original model but an age interval of 9 to 12 years 

achieved a lower classification accuracy (76%) than the original model. The classification 

accuracy will be specific to each case, the measurements available and the age of the individual 

as the levels of sexual dimorphism vary through the ages and vary among the measurements. 

Thus it is not possible to guarantee the result of a higher classification rate with the inclusion of 

an age estimate.  

 

 

 SOFTWARE PROGRAM 
 

The vast number of age at death and sex estimation tables required to represent all 

permutations of multivariate models would not be concise nor would it be an easily accessible 

resource for anthropologists. The age-at-death tables provided in Appendices III - IX are based 

on the analyses conducted within this dissertation. Although the univariate models are 

immediately applicable, the multivariate examples are specific to the combination of variables 

chosen and were chosen as examples of the potential of a multivariate model. Multivariate age 

estimation models are necessary to employ, especially when presented with remains of older 

individuals, and will require cross-validated 95% prediction intervals specific to each situation. 

Similarly, sex estimation with high accuracy is dependent on more rather than fewer 

predictor variables. Furthermore, the inclusion of age estimates and many predictor variables 

may drastically reduce sample sizes, so resampling in the form of bootstrapping is necessary to 

ensure a realistic rather than an optimistic result. For both age and sex estimations, the number of 

possible permutations is too large for one to provide all possible combinations and thus a 

software program is required to account for all possible multivariate models and meet the 

requirement of cross-validated prediction intervals or bootstrapped classification accuracies, 

which will be specific to each skeletal analysis. 
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CHAPTER 7: CONCLUSION 
 

The current study is the first to successfully estimate subadult age and sex using an 

extensive number of measurements and univariate and multivariate methods. The successful 

results of the current study are directly related to the largest, modern sample size ever collected 

for subadult diaphyseal dimensions. Subadult studies have been plagued by small sample sizes, 

which ultimately affects their validity. The use of Lodox Statscan-generated images have proven 

to be a valuable resource as there is minimal distortion noted in the radiographic images and thus 

the images provide a means to collect data from many subadults. The populations that comprised 

this sample are reflective of the current South African population, which allowed for the creation 

of proper country-specific techniques.  

In contrast to previously published age at death studies, the current research is the first to 

present statistics appropriate for predicting age that include 95% prediction intervals along with 

point age estimates. Although both basis splines and MARS were equally explored as viable age 

estimation models, MARS outperformed basis splines in almost every situation. MARS makes 

no assumptions about the underlying functional relationship between the dependent and 

independent variables nor does MARS imply causality between the predictor and response 

variables (Butte et al., 2010). The latter is especially appropriate because age of an individual 

does not cause a specific diaphyseal length. Most importantly, MARS is flexible enough to 

model nonlinear relationships and allows for the interactive effects of the predictor variables in 

estimating the response variable (Hastie and Tibshirani, 1990; Muñoz and Felicísimo, 2004). 

Because MARS can handle a large number of predictor variables, the current study offers the 

first multivariate approach to subadult age estimation utilizing long bone lengths.  

Each MARS model has associated 95% prediction intervals derived from cross-validation 

resampling, which results in the first age at death technique – utilizing long bone lengths – that 

fulfills Daubert criteria for presenting results with known error rates. Differences between the 

sexes were evident, but the variation between the sexes was smaller than the 95% prediction 

intervals associated with the age estimation models. Nonetheless, if sex were known, a sex-

specific age at death estimation model would yield smaller age estimates. The application of a 

univariate model versus a multivariate model will be dependent on the remains being analyzed 
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with the suggestion to employ a univariate model for remains of younger individuals and 

multivariate model for remains of older individuals.  

Previous sex estimation techniques were generally conducted on one element and did not 

capture the differences exhibited over numerous skeletal structures. In this study, univariate and 

multivariate bone models resulted in inapplicable classification accuracies. In contrast, the use of 

more variables led to increased classification accuracies that offer practical application in the 

field. Bootstrapped classification accuracies were evaluated because small sample sizes could 

lead to overly optimistic results. Breadth measurements were consistently recognized as the most 

sexually dimorphic measurements, particularly the knee and the shoulder, which is further 

supported by the biomechanical and endocrinological literature. The combination and interaction 

of the variables in the multivariate model achieve correct classifications that are comparable to 

commonly used sex estimation techniques in adults. Classification models were inclusive of all 

ages, but accuracies could increase if a smaller age range were provided. However, because the 

levels of sexual dimorphism vary through the ages and among the measurements, the best model 

for sex estimation will be specific to the unique combination of measurements available for each 

case.  

Comparison of the six classification methods clearly demonstrated the better performance 

of the logistic regression and FDA. Both models require the fulfillment of fewer assumptions and 

are preferred when nonlinear relationships are apparent in the data. Though the logistic 

regression outperformed FDA in the univariate models, the correct classifications were either 

comparable or the FDA yielded higher accuracies in the multivariate models. Because FDA 

utilizes the MARS algorithm, the better results are not unexpected.  

The current study provided only a subset of the potential variable combinations and 

results for age and sex estimation, as it is impossible and impractical to provide results for all the 

number of possible variable combinations. Thus, a computer software program will be created 

based on the South African subadult data that will allow for any possible variable combinations 

and provide the results of the different models employed with their associated error rates. 

Consequently, the user will be able to provide age and sex estimations specific to each 

anthropological analysis for South African children aged between birth and 12 years.  
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APPENDIX I - MEASUREMENT DEFINITIONS  
 
Humerus diaphyseal length (HDL) – The maximum distance between the most proximal edge 
of the diaphysis to the most distal edge of the diaphysis (modified from Fazekas and Kósa, 
1978).  
Comment: The most distal portion is generally the medial portion. 
 
Humerus proximal breadth (HPB) – The distance between the most medial and lateral edges 
of the proximal diaphysis, perpendicular to the long axis of the bone, when the element is in 
anatomical position.  
Comment: This is not a maximum breadth. 
 
Humerus distal breadth (HDB) – The distance between the most medial and lateral points on 
the distal diaphysis, perpendicular to the long axis of the bone, when the element is in anatomical 
position (Fazekas and Kósa, 1978).  
 
Humerus midshaft breadth (HMSB) – The distance between the most medial and lateral edges 
at midshaft, perpendicular to the long axis of the bone, when the bone is in anatomical position 
(Fazekas and Kósa, 1978).  
Comment: Determine midshaft when obtaining diaphyseal length. Note, this is not a minimum or 
maximum.  
 
Ulna diaphyseal length (UDL) – The maximum distance between the most proximal edge of the 
diaphysis to the most distal edge of the diaphysis (Fazekas and Kósa, 1978).  
 
Ulna midshaft breadth (UMSB) – The distance between the most medial and lateral edges at 
midshaft, perpendicular to the long axis of the bone, when the bone is in anatomical position 
(Fazekas and Kósa, 1978).  
Comment: Determine midshaft when obtaining diaphyseal length. Note, this is not a minimum or 
maximum.  
 
Radius diaphyseal length (RDL) – The maximum distance between the most proximal edge of 
the diaphysis to the most distal edge of the diaphysis (Fazekas and Kósa, 1978).  
 
Radius proximal breadth (RPB) – The distance between the most medial and lateral edges of 
the proximal diaphysis, perpendicular to the long axis of the bone, when the bone is in 
anatomical position (modified from Urcid, 1992). 
 
Radius distal breadth (RDB) – The distance between the most medial and lateral edges of the 
distal diaphysis, perpendicular to the long axis of the bone, when the bone is in anatomical 
position. 
Comment: The measurement is obtained from the anterior projections on the distal diaphysis. 
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Radius midshaft breadth (RMSB) – The distance between the most medial and lateral edges at 
midshaft, perpendicular to the long axis of the bone, when the bone is in anatomical position 
(modified from Fazekas and Kósa, 1978).  
Comment: Determine midshaft when obtaining diaphyseal length. Note, this is not a minimum or 
maximum.  
 
Femur diaphyseal length (FDL) – The maximum distance between the most proximal edge of 
the diaphysis to the most distal edge of the diaphysis (Fazekas and Kósa, 1978).  
Comment: The most distal point is generally the medial projection on the metaphysis. The 
expression is slight in infants but becomes more pronounced as age increases.  
 
Femur distal breadth (FDB) – The distance between the most medial and lateral edges of the 
distal diaphysis, perpendicular to the long axis of the bone, when the bone is in anatomical 
position (modified from Fazekas and Kósa, 1978). 
 
Femur midshaft breadth (FMSB) – The distance between the most medial and lateral edges at 
midshaft, perpendicular to the long axis of the bone, when the bone is in anatomical position 
(Fazekas and Kósa, 1978).  
Comment: Determine midshaft when obtaining diaphyseal length. Note, this is not a minimum or 
maximum. 
 
Tibia diaphyseal length (TDL) – The maximum distance between the most proximal edge of 
the diaphysis to the most distal edge of the diaphysis (Fazekas and Kósa, 1978).  
Comment: Generally, the most proximal point is medial and the most distal point is lateral.  
 
Tibia proximal breadth (TPB) – The distance between the most medial and lateral edges of the 
proximal diaphysis, perpendicular to the long axis of the bone, when the bone is in anatomical 
position (modified from Moore-Jansen et al., 1994). 
 
Tibia distal breadth (TDB) – The distance between the most medial and lateral edges of the 
distal diaphysis, perpendicular to the long axis of the bone in anatomical position (modified from 
Moore-Jansen et al., 1994). 
Comment: The lateral edge is the anterior projection of the fibular notch.  
 
Tibia midshaft breadth (TMSB) – The distance between the most medial and lateral edges at 
midshaft, perpendicular to the long axis of the bone, when the bone is in anatomical position 
(Fazekas and Kósa, 1978).   
Comment: Determine midshaft when obtaining diaphyseal length. 
 
Fibula diaphyseal length (FBDL) – The maximum distance between the most proximal edge of 
the diaphysis to the most distal edge of the diaphysis (Fazekas and Kósa, 1978).  
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          Superior view of the proximal                              
          humerus diaphysis to emphasize              
          the measurement is not a 
          maximum but rather a medial-  
          lateral. 
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Additional image of the RDB to emphasize the 
measurement is obtained from the anterior 
projections on the distal diaphysis. 
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The medial projection of the distal diaphysis of the femur. The expression is slight in younger 
subadults (left) but is more pronounced in older subadults (right).  
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APPENDIX II – ANOVA  
 
 
 
 

 
 
 
 
 
 

Table A2 – ANOVA results evaluating the statistical significance of age, sex, and the interaction of 
age and sex for each measurement. Bold indicates significance.   

  

Sex Age Sex*Age 

F-value Pr(>|t|) F-value Pr(>|t|) F-value Pr(>|t|) 

Humerus 

HMXL 50.90 <0.001*** 10271.30 <0.001*** 10.60 0.001** 

HPB 85.87 <0.001*** 2626.72 <0.001*** 1.24 0.27 

HDB 31.71 <0.001*** 2532.80 <0.001*** 2.53 0.11 

HMSB 47.30 <0.001*** 1333.70 <0.001*** 0.00 0.97 

Radius 

RMXL 13.78 <0.001*** 10136.03 <0.001*** 5.54 <0.001*** 

RPB 45.87 <0.001*** 2442.14 <0.001*** 0.03 0.87 

RDB 40.60 <0.001*** 2291.03 <0.001*** 0.96 0.33 

RMSB 7.28 0.007** 1188.02 <0.001*** 0.38 0.537 

Ulna 
UMXL 62.24 <0.001*** 8059.45 <0.001*** 4.22 0.04* 

UMSB 49.97 <0.001*** 485.34 <0.001*** 2.54 0.11 

Femur 

FMXL 41.90 <0.001*** 12248.70 <0.001*** 10.3 0.001*** 

FDB 157.70 <0.001*** 2398.56 <0.001*** 0.01 0.94 

FMSB 52.58 <0.001*** 2187.34 <0.001*** 1.52 0.22 

Tibia 

TMXL 12.26 <0.001*** 9685.54 <0.001*** 7.49 0.006** 

TPB 69.50 <0.001*** 2493.50 <0.001*** 0.00 0.99 

TDB 27.93 <0.001*** 2278.80 <0.001*** 0.23 0.63 

TMSB 8.60 0.004** 1279.50 <0.001*** 2.30 0.13 

Fibula FBMXL 22.51 <0.001*** 8975.59 <0.001*** 8.85 0.003** 

Note:  *p < 0.05; **p<0.01; ***p<0.001 
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APPENDIX III – HUMERUS: UNIVARIATE AGE 
ESTIMATION MODELS AND THE ASSOCIATED 

PREDICTION TABLES  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A3.1 – MARS model for humerus 
diaphyseal length. The residual standard 
error (Residual Std. Error) is in years and 
is not affected by the transformation of 
age. 

 Predictor Variable 
 Cbrt of age 

(Intercept) 2.114*** 

h(HDL – 191.21) 0.011*** 

h(191.21 – HDL) -0.013*** 

h(HDL – 125.49) -0.003*** 

h(HDL – 223.52) -0.004*** 

Observations 1064 

cv R2 0.95 

Adjusted R2 0.95 

Residual Std. Error 0.97 

F Statistic <0.0001*** 
Note:   *p < 0.01; **p<0.001; ***p<0.0001 
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Table A3.2 – The point estimate (fit) 
and 95% prediction interval (in 
years) for HDL. 
HDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

60 0.10 0.02 0.28 
61 0.11 0.02 0.29 
62 0.12 0.03 0.31 
63 0.13 0.03 0.33 
64 0.14 0.03 0.35 
65 0.15 0.04 0.37 
66 0.16 0.04 0.39 
67 0.17 0.05 0.41 
68 0.18 0.05 0.43 
69 0.19 0.06 0.45 
70 0.20 0.06 0.47 
71 0.22 0.07 0.49 
72 0.23 0.08 0.52 
73 0.25 0.08 0.54 
74 0.26 0.09 0.57 
75 0.28 0.10 0.59 
76 0.29 0.11 0.62 
77 0.31 0.12 0.65 
78 0.33 0.13 0.68 
79 0.35 0.13 0.71 
80 0.36 0.14 0.74 
81 0.38 0.16 0.77 
82 0.40 0.17 0.80 
83 0.43 0.18 0.83 
84 0.45 0.19 0.87 
85 0.47 0.20 0.90 
86 0.49 0.22 0.94 
87 0.52 0.23 0.98 
88 0.54 0.25 1.01 
89 0.57 0.26 1.05 
90 0.59 0.28 1.09 
91 0.62 0.29 1.13 
92 0.65 0.31 1.17 
93 0.68 0.33 1.22 
94 0.71 0.35 1.26 
95 0.74 0.36 1.30 

HDL 
(mm) Fit Lower 

95% PI 
Upper 
95%PI 

96 0.77 0.38 1.35 
97 0.8 0.4 1.4 
98 0.83 0.42 1.44 
99 0.87 0.45 1.49 

100 0.90 0.47 1.54 
101 0.94 0.49 1.59 
102 0.97 0.52 1.65 
103 1.01 0.54 1.70 
104 1.05 0.57 1.75 
105 1.09 0.59 1.81 
106 1.13 0.62 1.87 
107 1.17 0.65 1.92 
108 1.21 0.68 1.98 
109 1.26 0.70 2.04 
110 1.30 0.73 2.10 
111 1.34 0.76 2.16 
112 1.39 0.80 2.22 
113 1.44 0.83 2.29 
114 1.48 0.86 2.35 
115 1.53 0.89 2.42 
116 1.58 0.93 2.48 
117 1.63 0.96 2.55 
118 1.68 1.00 2.62 
119 1.74 1.04 2.69 
120 1.79 1.08 2.76 
121 1.84 1.12 2.84 
122 1.90 1.16 2.91 
123 1.96 1.20 2.99 
124 2.02 1.24 3.06 
125 2.07 1.28 3.14 
126 2.13 1.32 3.21 
127 2.18 1.36 3.28 
128 2.23 1.40 3.35 
129 2.28 1.43 3.42 
130 2.33 1.47 3.48 
131 2.38 1.51 3.55 
132 2.43 1.55 3.61 
133 2.49 1.58 3.68 
134 2.54 1.62 3.75 
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HDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

135 2.59 1.66 3.81 
136 2.64 1.70 3.88 
137 2.69 1.74 3.95 
138 2.75 1.78 4.02 
139 2.80 1.82 4.09 
140 2.86 1.86 4.16 
141 2.91 1.90 4.23 
142 2.97 1.95 4.30 
143 3.03 1.99 4.38 
144 3.09 2.03 4.45 
145 3.15 2.08 4.53 
146 3.20 2.12 4.60 
147 3.27 2.17 4.68 
148 3.33 2.21 4.76 
149 3.39 2.26 4.84 
150 3.45 2.31 4.92 
151 3.51 2.36 5.00 
152 3.58 2.41 5.08 
153 3.64 2.46 5.16 
154 3.71 2.51 5.24 
155 3.77 2.56 5.32 
156 3.84 2.61 5.41 
157 3.91 2.66 5.49 
158 3.98 2.72 5.58 
159 4.05 2.77 5.67 
160 4.12 2.83 5.76 
161 4.19 2.88 5.85 
162 4.26 2.94 5.94 
163 4.33 2.99 6.03 
164 4.41 3.05 6.12 
165 4.48 3.11 6.21 
166 4.56 3.17 6.30 
167 4.63 3.23 6.40 
168 4.71 3.29 6.49 
169 4.79 3.35 6.59 
170 4.87 3.41 6.69 
171 4.95 3.48 6.79 
172 5.03 3.54 6.89 
173 5.11 3.60 6.99 
174 5.19 3.67 7.09 

HDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

175 5.27 3.74 7.19 
176 5.36 3.80 7.29 
177 5.44 3.87 7.40 
178 5.53 3.94 7.50 
179 5.62 4.01 7.61 
180 5.70 4.08 7.71 
181 5.79 4.15 7.82 
182 5.88 4.22 7.93 
183 5.97 4.29 8.04 
184 6.06 4.36 8.15 
185 6.15 4.43 8.26 
186 6.24 4.51 8.37 
187 6.33 4.58 8.47 
188 6.42 4.65 8.58 
189 6.51 4.72 8.69 
190 6.60 4.80 8.80 
191 6.69 4.87 8.91 
192 6.77 4.94 9.01 
193 6.85 5.00 9.11 
194 6.93 5.07 9.21 
195 7.01 5.13 9.30 
196 7.09 5.20 9.40 
197 7.17 5.26 9.50 
198 7.25 5.33 9.60 
199 7.34 5.40 9.70 
200 7.42 5.46 9.80 
201 7.50 5.53 9.90 
202 7.59 5.60 10.00 
203 7.67 5.67 10.10 
204 7.76 5.74 10.20 
205 7.85 5.81 10.31 
206 7.93 5.88 10.41 
207 8.02 5.95 10.52 
208 8.11 6.03 10.62 
209 8.20 6.10 10.73 
210 8.29 6.17 10.84 
211 8.38 6.25 10.94 
212 8.47 6.32 11.05 
213 8.56 6.40 11.16 
214 8.65 6.47 11.27 
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HDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

215 8.74 6.55 11.38 
216 8.84 6.63 11.49 
217 8.93 6.70 11.60 
218 9.03 6.78 11.72 
219 9.12 6.86 11.83 
220 9.22 6.94 11.95 
221 9.31 7.02 12.06 
222 9.41 7.10 12.18 
223 9.51 7.18 12.29 
224 9.60 7.26 12.40 
225 9.67 7.32 12.49 
226 9.74 7.37 12.57 
227 9.80 7.42 12.64 
228 9.85 7.47 12.70 
229 9.90 7.51 12.76 
230 9.95 7.55 12.81 
231 10.00 7.59 12.87 
232 10.05 7.63 12.93 
233 10.09 7.67 12.98 
234 10.14 7.71 13.04 
235 10.19 7.74 13.09 
236 10.23 7.78 13.15 
237 10.28 7.82 13.20 
238 10.32 7.86 13.26 
239 10.37 7.90 13.31 
240 10.42 7.94 13.37 
241 10.46 7.98 13.42 
242 10.51 8.02 13.48 
243 10.56 8.06 13.53 
244 10.61 8.10 13.59 
245 10.65 8.13 13.65 
246 10.70 8.17 13.70 
247 10.75 8.21 13.76 
248 10.80 8.25 13.81 
249 10.84 8.29 13.87 
250 10.89 8.33 13.93 
251 10.94 8.38 13.98 
252 10.99 8.42 14.04 
253 11.04 8.46 14.10 

HDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

254 11.09 8.50 14.16 
255 11.14 8.54 14.21 
256 11.18 8.58 14.27 
257 11.23 8.62 14.33 
258 11.28 8.66 14.39 
259 11.33 8.70 14.44 
260 11.38 8.74 14.50 
261 11.43 8.79 14.56 
262 11.48 8.83 14.62 
263 11.53 8.87 14.68 
264 11.58 8.91 14.74 
265 11.63 8.95 14.80 
266 11.68 9.00 14.86 
267 11.73 9.04 14.92 
268 11.78 9.08 14.97 
269 11.83 9.12 15.03 
270 11.89 9.17 15.09 
271 11.94 9.21 15.15 
272 11.99 9.25 15.21 
273 12.04 9.30 15.27 
274 12.09 9.34 15.34 
275 12.14 9.38 15.40 
276 12.20 9.43 15.46 
277 12.25 9.47 15.52 
278 12.30 9.52 15.58 
279 12.35 9.56 15.64 
280 12.40 9.60 15.70 
281 12.46 9.65 15.76 
282 12.51 9.69 15.82 
283 12.56 9.74 15.89 
284 12.62 9.78 15.95 
285 12.67 9.83 16.01 
286 12.72 9.87 16.07 
287 12.78 9.92 16.14 
288 12.83 9.96 16.20 
289 12.88 10.01 16.26 
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Table A3.3 – MARS model for humerus 
distal breadth. The residual standard error 
(Residual Std. Error) is in years and is not 
affected by the transformation of age. 

 Predictor Variable 
 Cbrt of age 

(Intercept) 2.085*** 

h(HDB – 43.96) 0.017*** 

h(43.96 – HDB) -0.061*** 

Observations 706 

cv R2 0.84 

Adjusted R2 0.85 

Residual Std. Error 1.56 

F Statistic <0.0001*** 
Note:      *p < 0.01; **p<0.001; ***p<0.0001 
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HDB 
(mm) Fit Lower 

95% PI 
Upper 

95% PI 
40 6.3 3.52 10.26 
38 5.16 2.76 8.67 
39 5.72 3.13 9.45 
40 6.3 3.52 10.26 
41 6.92 3.94 11.11 
42 7.58 4.39 12.01 
43 8.27 4.88 12.95 
44 8.94 5.36 13.86 
45 9.23 5.56 14.24 
46 9.5 5.75 14.59 
47 9.76 5.94 14.94 
48 10.01 6.12 15.27 
49 10.25 6.29 15.59 
50 10.49 6.47 15.91 
51 10.74 6.65 16.24 
52 10.99 6.83 16.57 
53 11.24 7.01 16.9 
54 11.5 7.2 17.24 
55 11.76 7.39 17.58 
56 12.03 7.59 17.93 
57 12.3 7.79 18.28 
58 12.57 7.99 18.63 

Table A3.4 – The point estimate (fit) 
and 95% prediction interval (in years) 
for HDB. 

HDB 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

18 0.12 0 0.55 
19 0.17 0.01 0.69 
20 0.24 0.02 0.84 
21 0.31 0.04 1.02 
22 0.41 0.07 1.22 
23 0.52 0.11 1.44 
24 0.65 0.16 1.69 
25 0.8 0.22 1.97 
26 0.97 0.29 2.27 
27 1.16 0.38 2.61 
28 1.38 0.49 2.98 
29 1.62 0.61 3.38 
30 1.89 0.75 3.81 
31 2.19 0.92 4.28 
32 2.51 1.1 4.79 
33 2.87 1.31 5.34 
34 3.26 1.55 5.92 
35 3.69 1.81 6.55 
36 4.14 2.1 7.21 
37 4.64 2.41 7.92 
38 5.16 2.76 8.67 
39 5.72 3.13 9.45 
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Table A3.5 – MARS model for humerus 
midshaft breadth. The residual standard 
error (Residual Std. Error) is in years 
and is not affected by the transformation 
of age. 

 Predictor Variable 
 Sqrt of age 

(Intercept) 2.042*** 

h(HMSB – 15.93) 0.041*** 

h(15.93 – HMSB) -0.153*** 

Observations 959 

cv R2 0.67 

Adjusted R2 0.68 
Residual Std. 

Error 2.19 

F Statistic <0.0001*** 
Note:    *p < 0.01; **p<0.001; ***p<0.0001 

Table A3.6 – The point estimate (fit) 
and 95% prediction interval (in years) 
for HMSB. 
HMSB 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

9 0.91 0.00 3.43 
10 1.43 0.09 4.38 
11 2.18 0.34 5.64 
12 3.10 0.75 7.07 
13 4.19 1.32 8.66 
14 5.43 2.06 10.42 
15 6.85 2.96 12.35 
16 8.42 4.02 14.43 
17 9.23 4.58 15.49 
18 9.75 4.96 16.16 
19 10.29 5.34 16.85 
20 10.85 5.74 17.56 
21 11.41 6.16 18.28 
22 12.00 6.59 19.01 
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APPENDIX VI – RADIUS: UNIVARIATE AGE 
ESTIMATION MODELS AND THE ASSOCIATED 

PREDICTION TABLES  
 
 

Table A4.1 – MARS model for radius 
diaphyseal length. The residual standard 
error (Residual Std. Error) is in years and is 
not affected by the transformation of age. 

 Predictor Variable 
 Cbrt of age 

(Intercept) 2.177*** 

h(RDL – 149.85) 0.013*** 

h(149.85 – RDL) -0.017*** 

h(RDL – 97.87) -0.005*** 

h(RDL – 180.07) -0.006*** 

Observations 1177 

cv R2 0.94 

Adjusted R2 0.94 

Residual Std. Error 1.024 

F Statistic <0.0001*** 
Note:      *p < 0.01; **p<0.001; ***p<0.0001 
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Table A4.2 – The point estimate (fit) 
and 95% prediction interval (in 
years) for RDL. 
RDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

56 0.18 0.05 0.45 
57 0.20 0.06 0.48 
58 0.22 0.06 0.51 
59 0.24 0.07 0.54 
60 0.26 0.08 0.58 
61 0.28 0.09 0.62 
62 0.30 0.10 0.65 
63 0.32 0.12 0.69 
64 0.35 0.13 0.73 
65 0.37 0.14 0.78 
66 0.40 0.16 0.82 
67 0.43 0.17 0.87 
68 0.46 0.19 0.92 
69 0.49 0.20 0.96 
70 0.52 0.22 1.02 
71 0.56 0.24 1.07 
72 0.59 0.26 1.12 
73 0.63 0.29 1.18 
74 0.67 0.31 1.24 
75 0.71 0.33 1.30 
76 0.75 0.36 1.36 
77 0.79 0.38 1.42 
78 0.84 0.41 1.49 
79 0.89 0.44 1.56 
80 0.93 0.47 1.63 
81 0.98 0.50 1.70 
82 1.04 0.54 1.78 
83 1.09 0.57 1.85 
84 1.14 0.61 1.93 
85 1.20 0.65 2.01 
86 1.26 0.68 2.10 
87 1.32 0.72 2.18 
88 1.39 0.77 2.27 
89 1.45 0.81 2.36 
90 1.52 0.86 2.45 
91 1.59 0.90 2.55 
92 1.66 0.95 2.64 

RDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

93 1.73 1.00 2.74 
94 1.81 1.06 2.84 
95 1.88 1.11 2.95 
96 1.96 1.17 3.06 
97 2.04 1.22 3.16 
98 2.13 1.28 3.27 
99 2.21 1.34 3.38 

100 2.28 1.39 3.48 
101 2.34 1.44 3.56 
102 2.41 1.49 3.65 
103 2.48 1.54 3.74 
104 2.54 1.59 3.83 
105 2.61 1.64 3.92 
106 2.69 1.69 4.01 
107 2.76 1.74 4.11 
108 2.83 1.80 4.21 
109 2.91 1.85 4.30 
110 2.98 1.91 4.40 
111 3.06 1.97 4.50 
112 3.14 2.03 4.61 
113 3.22 2.09 4.71 
114 3.30 2.15 4.81 
115 3.39 2.21 4.92 
116 3.47 2.27 5.03 
117 3.56 2.34 5.14 
118 3.65 2.41 5.25 
119 3.73 2.47 5.37 
120 3.82 2.54 5.48 
121 3.92 2.61 5.60 
122 4.01 2.68 5.71 
123 4.10 2.75 5.83 
124 4.20 2.83 5.96 
125 4.30 2.90 6.08 
126 4.40 2.98 6.20 
127 4.50 3.06 6.33 
128 4.60 3.14 6.46 
129 4.70 3.22 6.59 
130 4.81 3.30 6.72 
131 4.92 3.38 6.85 
132 5.02 3.47 6.99 
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RDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

133 5.13 3.55 7.13 
134 5.25 3.64 7.27 
135 5.36 3.73 7.41 
136 5.47 3.82 7.55 
137 5.59 3.91 7.69 
138 5.71 4.00 7.84 
139 5.83 4.10 7.99 
140 5.95 4.20 8.14 
141 6.07 4.29 8.29 
142 6.20 4.39 8.44 
143 6.32 4.49 8.60 
144 6.45 4.59 8.75 
145 6.58 4.70 8.91 
146 6.71 4.80 9.07 
147 6.85 4.91 9.24 
148 6.98 5.02 9.40 
149 7.11 5.12 9.55 
150 7.23 5.22 9.71 
151 7.33 5.30 9.83 
152 7.43 5.38 9.95 
153 7.53 5.46 10.06 
154 7.62 5.53 10.18 
155 7.72 5.61 10.30 
156 7.82 5.69 10.42 
157 7.92 5.77 10.54 
158 8.02 5.85 10.66 
159 8.12 5.94 10.78 
160 8.22 6.02 10.90 
161 8.32 6.10 11.03 
162 8.43 6.19 11.15 
163 8.53 6.27 11.28 
164 8.64 6.36 11.40 
165 8.74 6.44 11.53 
166 8.85 6.53 11.66 
167 8.96 6.62 11.79 
168 9.07 6.71 11.92 
169 9.18 6.80 12.05 
170 9.29 6.89 12.19 
171 9.40 6.98 12.32 
172 9.51 7.07 12.45 

RDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

173 9.62 7.16 12.59 
174 9.74 7.26 12.72 
175 9.85 7.35 12.86 
176 9.97 7.45 13.00 
177 10.08 7.54 13.14 
178 10.20 7.64 13.28 
179 10.32 7.74 13.42 
180 10.42 7.82 13.54 
181 10.50 7.89 13.64 
182 10.57 7.94 13.71 
183 10.62 7.99 13.78 
184 10.66 8.02 13.83 
185 10.70 8.05 13.88 
186 10.74 8.09 13.92 
187 10.78 8.12 13.97 
188 10.83 8.16 14.02 
189 10.87 8.19 14.07 
190 10.91 8.22 14.12 
191 10.95 8.26 14.17 
192 10.99 8.29 14.22 
193 11.03 8.33 14.26 
194 11.07 8.36 14.31 
195 11.11 8.39 14.36 
196 11.15 8.43 14.41 
197 11.19 8.46 14.46 
198 11.24 8.50 14.51 
199 11.28 8.53 14.56 
200 11.32 8.57 14.61 
201 11.36 8.60 14.66 
202 11.40 8.64 14.71 
203 11.45 8.67 14.76 
204 11.49 8.71 14.81 
205 11.53 8.74 14.86 
206 11.57 8.78 14.91 
207 11.61 8.81 14.96 
208 11.66 8.85 15.01 
209 11.70 8.88 15.06 
210 11.74 8.92 15.11 
211 11.78 8.95 15.16 
212 11.83 8.99 15.21 
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RDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

213 11.87 9.02 15.26 
214 11.91 9.06 15.31 
215 11.96 9.10 15.36 
216 12.00 9.13 15.41 
217 12.04 9.17 15.46 
218 12.09 9.20 15.52 
219 12.13 9.24 15.57 
220 12.17 9.28 15.62 
221 12.22 9.31 15.67 
222 12.26 9.35 15.72 
223 12.31 9.39 15.77 
224 12.35 9.42 15.83 
225 12.39 9.46 15.88 
226 12.44 9.50 15.93 
227 12.48 9.54 15.98 
228 12.53 9.57 16.04 
229 12.57 9.61 16.09 
230 12.62 9.65 16.14 
231 12.66 9.69 16.19 
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Table A4.4 – The point estimate (fit) 
and 95% prediction interval (in years) 
for RPB. 

RPB 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

8 0.57 0.03 1.77 
9 0.94 0.15 2.40 

10 1.61 0.48 3.41 
11 2.46 0.98 4.60 
12 3.48 1.66 5.98 
13 4.79 2.59 7.66 
14 6.35 3.77 9.59 
15 7.85 4.95 11.43 
16 9.25 6.06 13.10 
17 9.86 6.56 13.83 
18 10.48 7.07 14.57 
19 11.08 7.57 15.27 
20 11.69 8.07 15.99 
21 12.32 8.60 16.72 
22 12.97 9.14 17.47 

Table A4.3 – MARS model for radius 
proximal breadth. The residual standard 
error (Residual Std. Error) is in years and is 
not affected by the transformation of age. 

 Predictor Variable 
 Sqrt of age 

(Intercept) 2.371*** 

h(RPB – 15.73) -0.211*** 

h(15.73 – RPB) 0.095*** 

Observations 519 

cv R2 0.86 

Adjusted R2 0.87 

Residual Std. Error 1.389 

F Statistic <0.0001*** 
Note:      *p < 0.01; **p<0.001; ***p<0.0001 
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Table A4.5 – MARS model for radius 
distal breadth. The residual standard 
error (Residual Std. Error) is in years and 
is not affected by the transformation of 
age. 

 Predictor Variable 
 Cbrt of age 

(Intercept) 2.014*** 

h(RDB – 24.4) 0.02** 

h(24.4 – RDB) -0.111*** 

Observations 562 

cv R2 0.86 

Adjusted R2 0.86 

Residual Std. Error 1.48 

F Statistic <0.0001*** 
Note:  *p < 0.01; **p<0.001; ***p<0.0001 

Table A4.6 – The point estimate (fit) 
and 95% prediction interval (in years) 
for RDB. 

RDB 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

9 0.08 0.00 0.41 
10 0.15 0.01 0.62 
11 0.27 0.04 0.90 
12 0.44 0.09 1.25 
13 0.66 0.17 1.68 
14 0.95 0.30 2.19 
15 1.31 0.47 2.81 
16 1.75 0.70 3.53 
17 2.28 1.00 4.36 
18 2.91 1.38 5.31 
19 3.65 1.83 6.40 
20 4.50 2.38 7.62 
21 5.48 3.03 8.99 
22 6.58 3.78 10.51 
23 7.83 4.65 12.20 
24 9.22 5.64 14.05 
25 9.98 6.19 15.05 
26 10.26 6.40 15.43 
27 10.55 6.61 15.80 
28 10.84 6.82 16.19 
29 11.14 7.04 16.58 
30 11.44 7.27 16.97 
31 11.75 7.50 17.38 
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Table A4.8 – The point estimate (fit) 
and 95% prediction interval (in years) 
for RMSB. 

RMSB 
(mm) Fit 

Lower 
95% 
PI 

Upper 
95% 
PI 

4 0.12 0.00 0.63 
5 0.37 0.05 1.26 
6 0.83 0.19 2.20 
7 1.56 0.51 3.52 
8 2.63 1.06 5.29 
9 4.10 1.90 7.56 

10 6.05 3.11 10.42 
11 8.11 4.47 13.32 
12 9.11 5.15 14.72 
13 10.09 5.82 16.05 
14 10.82 6.33 17.05 
15 11.58 6.86 18.08 
16 12.38 7.43 19.14 

Table A4.7 – MARS model for radius 
midshaft breadth. The residual standard 
error (Residual Std. Error) is in years and is 
not affected by the transformation of age. 

 Predictor Variable 
 Cbrt of age 

(Intercept) 1.976*** 

h(RMSB – 10.73) 0.099** 

h(10.73 – RMSB) -0.219*** 

h(RMSB – 12.71) -0.081*** 

Observations 431 

cv R2 0.81 

Adjusted R2 0.82 

Residual Std. Error 1.72 

F Statistic 678*** 
Note:      *p < 0.01; **p<0.001; ***p<0.0001 
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APPENDIX V – ULNA: UNIVARIATE AGE ESTIMATION 
MODELS AND THE ASSOCIATED PREDICTION TABLES  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A5.1 – MARS model for ulna 
diaphyseal length. The residual standard 
error (Residual Std. Error) is in years and is 
not affected by the transformation of age. 

 Predictor Variable 
 Cbrt of age 

(Intercept) 2.064*** 

h(UDL – 161.55) 0.012*** 

h(161.44 – UDL) -0.015*** 

h(UDL – 195.38) -0.006*** 

h(UDL – 112.52) -0.004*** 

Observations 1026 

cv R2 0.93 

Adjusted R2 0.93 

Residual Std. Error 1.01 

F Statistic <0.0001*** 
Note:      *p < 0.01; **p<0.001; ***p<0.0001 
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Table A5.2 – The point estimate (fit) 
and 95% prediction interval (in 
years) for UDL. 
UDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

54 0.08 0.01 0.25 
55 0.08 0.01 0.27 
56 0.09 0.02 0.29 
57 0.10 0.02 0.31 
58 0.11 0.02 0.33 
59 0.12 0.03 0.35 
60 0.14 0.03 0.37 
61 0.15 0.03 0.40 
62 0.16 0.04 0.42 
63 0.18 0.04 0.45 
64 0.19 0.05 0.48 
65 0.21 0.06 0.50 
66 0.22 0.06 0.53 
67 0.24 0.07 0.56 
68 0.26 0.08 0.60 
69 0.28 0.09 0.63 
70 0.30 0.10 0.66 
71 0.32 0.11 0.70 
72 0.34 0.12 0.74 
73 0.36 0.13 0.77 
74 0.39 0.14 0.81 
75 0.41 0.16 0.85 
76 0.44 0.17 0.90 
77 0.46 0.18 0.94 
78 0.49 0.20 0.98 
79 0.52 0.22 1.03 
80 0.55 0.23 1.08 
81 0.58 0.25 1.13 
82 0.61 0.27 1.18 
83 0.65 0.29 1.23 
84 0.68 0.31 1.28 
85 0.72 0.33 1.34 
86 0.76 0.35 1.39 
87 0.80 0.38 1.45 
88 0.84 0.40 1.51 
89 0.88 0.43 1.57 
90 0.92 0.45 1.63 

UDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

91 0.96 0.48 1.70 
92 1.01 0.51 1.76 
93 1.06 0.54 1.83 
94 1.10 0.57 1.90 
95 1.15 0.60 1.97 
96 1.20 0.63 2.04 
97 1.26 0.67 2.12 
98 1.31 0.70 2.20 
99 1.37 0.74 2.27 

100 1.42 0.78 2.35 
101 1.48 0.82 2.44 
102 1.54 0.86 2.52 
103 1.61 0.90 2.61 
104 1.67 0.94 2.69 
105 1.73 0.99 2.78 
106 1.80 1.04 2.87 
107 1.87 1.08 2.97 
108 1.94 1.13 3.06 
109 2.01 1.18 3.16 
110 2.09 1.24 3.26 
111 2.16 1.29 3.36 
112 2.24 1.34 3.46 
113 2.30 1.39 3.55 
114 2.36 1.43 3.63 
115 2.43 1.48 3.71 
116 2.49 1.52 3.80 
117 2.56 1.57 3.89 
118 2.62 1.62 3.97 
119 2.69 1.67 4.06 
120 2.76 1.72 4.15 
121 2.83 1.77 4.25 
122 2.90 1.82 4.34 
123 2.97 1.87 4.44 
124 3.05 1.93 4.53 
125 3.12 1.98 4.63 
126 3.20 2.04 4.73 
127 3.28 2.10 4.83 
128 3.36 2.16 4.93 
129 3.44 2.22 5.03 
130 3.52 2.28 5.14 
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UDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

131 3.60 2.34 5.24 
132 3.68 2.40 5.35 
133 3.77 2.47 5.46 
134 3.85 2.53 5.57 
135 3.94 2.60 5.68 
136 4.03 2.67 5.80 
137 4.12 2.73 5.91 
138 4.21 2.80 6.03 
139 4.31 2.87 6.15 
140 4.40 2.95 6.27 
141 4.50 3.02 6.39 
142 4.59 3.09 6.51 
143 4.69 3.17 6.64 
144 4.79 3.25 6.76 
145 4.89 3.33 6.89 
146 5.00 3.41 7.02 
147 5.10 3.49 7.15 
148 5.21 3.57 7.28 
149 5.31 3.65 7.41 
150 5.42 3.74 7.55 
151 5.53 3.82 7.69 
152 5.64 3.91 7.83 
153 5.76 4.00 7.97 
154 5.87 4.09 8.11 
155 5.99 4.18 8.25 
156 6.10 4.27 8.40 
157 6.22 4.37 8.54 
158 6.34 4.46 8.69 
159 6.47 4.56 8.84 
160 6.59 4.65 8.99 
161 6.71 4.75 9.14 
162 6.81 4.83 9.27 
163 6.91 4.91 9.40 
164 7.01 4.99 9.51 
165 7.11 5.07 9.63 
166 7.20 5.14 9.75 
167 7.30 5.22 9.86 
168 7.39 5.30 9.98 
169 7.49 5.38 10.10 
170 7.59 5.45 10.22 

UDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

171 7.69 5.53 10.34 
172 7.79 5.61 10.46 
173 7.89 5.69 10.58 
174 7.99 5.77 10.70 
175 8.09 5.85 10.83 
176 8.19 5.93 10.95 
177 8.29 6.02 11.07 
178 8.39 6.10 11.20 
179 8.50 6.18 11.32 
180 8.60 6.27 11.45 
181 8.70 6.35 11.58 
182 8.81 6.44 11.70 
183 8.92 6.53 11.83 
184 9.03 6.61 11.96 
185 9.13 6.70 12.09 
186 9.24 6.79 12.23 
187 9.35 6.88 12.36 
188 9.47 6.97 12.49 
189 9.58 7.06 12.63 
190 9.69 7.16 12.76 
191 9.81 7.25 12.90 
192 9.92 7.34 13.04 
193 10.03 7.43 13.17 
194 10.13 7.52 13.30 
195 10.23 7.60 13.41 
196 10.31 7.66 13.50 
197 10.38 7.72 13.59 
198 10.45 7.77 13.67 
199 10.51 7.82 13.74 
200 10.56 7.87 13.81 
201 10.61 7.91 13.87 
202 10.65 7.94 13.92 
203 10.68 7.97 13.95 
204 10.71 8.00 13.99 
205 10.75 8.02 14.03 
206 10.78 8.05 14.07 
207 10.81 8.07 14.10 
208 10.84 8.10 14.14 
209 10.87 8.12 14.18 
210 10.90 8.15 14.22 
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UDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

211 10.94 8.18 14.25 
212 10.97 8.20 14.29 
213 11.00 8.23 14.33 
214 11.03 8.26 14.37 
215 11.06 8.28 14.41 
216 11.10 8.31 14.45 
217 11.13 8.34 14.48 
218 11.16 8.36 14.52 
219 11.19 8.39 14.56 
220 11.22 8.42 14.60 
221 11.26 8.44 14.64 
222 11.29 8.47 14.68 
223 11.32 8.50 14.71 
224 11.35 8.52 14.75 
225 11.39 8.55 14.79 
226 11.42 8.58 14.83 
227 11.45 8.60 14.87 
228 11.49 8.63 14.91 
229 11.52 8.66 14.95 
230 11.55 8.69 14.99 
231 11.58 8.71 15.03 
232 11.62 8.74 15.07 
233 11.65 8.77 15.11 
234 11.68 8.79 15.15 
235 11.72 8.82 15.18 
236 11.75 8.85 15.22 
237 11.78 8.88 15.26 
238 11.82 8.91 15.30 
239 11.85 8.93 15.34 
240 11.88 8.96 15.38 
241 11.92 8.99 15.42 
242 11.95 9.02 15.46 
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Table A5.3 – MARS model for ulna midshaft 
breadth. The residual standard error 
(Residual Std. Error) is in years and is not 
affected by the transformation of age. 

 Predictor Variable 
 Cbrt of age 

(Intercept) 1.886*** 

h(10.32 – UMSB) -0.214*** 

h(UMSB – 5.71) 0.034** 

Observations 392 

cv R2 0.79 

Adjusted R2 0.80 

Residual Std. Error 1.76 

F Statistic 810*** 
Note:      *p < 0.01; **p<0.001; ***p<0.0001 

Table A5.4 – The point estimate (fit) 
and 95% prediction interval (in years) 
for UMSB. 
UMSB 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

4 0.14 0.00 0.70 
5 0.41 0.05 1.40 
6 0.93 0.22 2.46 
7 1.83 0.61 4.07 
8 3.18 1.32 6.27 
9 5.07 2.43 9.15 

10 7.59 4.03 12.79 
11 8.83 4.86 14.53 
12 9.27 5.15 15.14 
13 9.72 5.46 15.77 
14 10.19 5.78 16.42 
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APPENDIX VI – FEMUR: UNIVARIATE AGE 
ESTIMATION MODELS AND THE ASSOCIATED 

PREDICTION TABLES  
 

Table A6.1 – The point estimate (fit) 
and 95% prediction interval (in 
years) for FDL. 
FDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

75 0.14 0.04 0.33 
76 0.15 0.05 0.34 
77 0.16 0.05 0.35 
78 0.16 0.05 0.37 
79 0.17 0.06 0.38 
80 0.18 0.06 0.39 
81 0.19 0.07 0.4 
82 0.19 0.07 0.42 
83 0.2 0.07 0.43 
84 0.21 0.08 0.45 
85 0.22 0.08 0.46 
86 0.23 0.09 0.48 
87 0.24 0.09 0.49 
88 0.25 0.1 0.51 
89 0.26 0.1 0.52 
90 0.27 0.11 0.54 
91 0.28 0.11 0.55 
92 0.29 0.12 0.57 
93 0.3 0.13 0.59 
94 0.31 0.13 0.61 
95 0.32 0.14 0.62 
96 0.33 0.15 0.64 
97 0.35 0.15 0.66 
98 0.36 0.16 0.68 
99 0.37 0.17 0.7 

100 0.38 0.17 0.72 
101 0.4 0.18 0.74 
102 0.41 0.19 0.76 
103 0.42 0.2 0.78 
104 0.44 0.21 0.8 
105 0.45 0.21 0.82 

FDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

106 0.47 0.22 0.84 
107 0.48 0.23 0.86 
108 0.5 0.24 0.89 
109 0.51 0.25 0.91 
110 0.53 0.26 0.93 
111 0.54 0.27 0.96 
112 0.56 0.28 0.98 
113 0.58 0.29 1 
114 0.59 0.3 1.03 
115 0.61 0.32 1.05 
116 0.63 0.33 1.08 
117 0.65 0.34 1.11 
118 0.67 0.35 1.13 
119 0.69 0.36 1.16 
120 0.71 0.38 1.19 
121 0.72 0.39 1.21 
122 0.74 0.4 1.24 
123 0.77 0.42 1.27 
124 0.79 0.43 1.3 
125 0.81 0.44 1.33 
126 0.83 0.46 1.36 
127 0.85 0.47 1.39 
128 0.87 0.49 1.42 
129 0.9 0.5 1.45 
130 0.92 0.52 1.48 
131 0.94 0.53 1.52 
132 0.97 0.55 1.55 
133 0.99 0.57 1.58 
134 1.01 0.58 1.61 
135 1.04 0.6 1.65 
136 1.06 0.62 1.68 
137 1.09 0.64 1.72 
138 1.12 0.66 1.75 
139 1.14 0.67 1.79 
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FDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

140 1.17 0.69 1.83 
141 1.2 0.71 1.86 
142 1.22 0.73 1.9 
143 1.25 0.75 1.94 
144 1.28 0.77 1.98 
145 1.31 0.79 2.01 
146 1.34 0.82 2.05 
147 1.37 0.84 2.09 
148 1.4 0.86 2.13 
149 1.43 0.88 2.18 
150 1.46 0.9 2.22 
151 1.5 0.93 2.26 
152 1.53 0.95 2.3 
153 1.56 0.97 2.34 
154 1.59 1 2.39 
155 1.63 1.02 2.43 
156 1.66 1.05 2.48 
157 1.7 1.07 2.52 
158 1.73 1.1 2.57 
159 1.77 1.13 2.61 
160 1.8 1.15 2.66 
161 1.84 1.18 2.71 
162 1.88 1.21 2.75 
163 1.91 1.23 2.8 
164 1.95 1.26 2.85 
165 1.98 1.29 2.89 
166 2.02 1.31 2.94 
167 2.05 1.34 2.98 
168 2.09 1.37 3.03 
169 2.12 1.39 3.07 
170 2.16 1.42 3.12 
171 2.19 1.45 3.16 
172 2.23 1.47 3.21 
173 2.27 1.5 3.26 
174 2.3 1.53 3.3 
175 2.34 1.56 3.35 
176 2.37 1.58 3.39 
177 2.4 1.6 3.43 
178 2.43 1.63 3.47 
179 2.47 1.65 3.51 

FDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

180 2.5 1.68 3.55 
181 2.53 1.7 3.59 
182 2.56 1.73 3.63 
183 2.6 1.75 3.67 
184 2.63 1.78 3.71 
185 2.66 1.8 3.76 
186 2.7 1.83 3.8 
187 2.73 1.86 3.84 
188 2.76 1.88 3.88 
189 2.8 1.91 3.93 
190 2.83 1.94 3.97 
191 2.87 1.96 4.01 
192 2.9 1.99 4.06 
193 2.94 2.02 4.1 
194 2.97 2.05 4.15 
195 3.01 2.08 4.19 
196 3.05 2.1 4.24 
197 3.08 2.13 4.28 
198 3.12 2.16 4.33 
199 3.16 2.19 4.38 
200 3.2 2.22 4.42 
201 3.23 2.25 4.47 
202 3.27 2.28 4.52 
203 3.31 2.31 4.57 
204 3.35 2.34 4.61 
205 3.39 2.37 4.66 
206 3.43 2.4 4.71 
207 3.47 2.43 4.76 
208 3.51 2.47 4.81 
209 3.55 2.5 4.86 
210 3.59 2.53 4.91 
211 3.63 2.56 4.96 
212 3.67 2.6 5.01 
213 3.71 2.63 5.06 
214 3.76 2.66 5.11 
215 3.8 2.7 5.17 
216 3.84 2.73 5.22 
217 3.88 2.76 5.27 
218 3.93 2.8 5.32 
219 3.97 2.83 5.38 
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FDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

220 4.01 2.87 5.43 
221 4.06 2.9 5.49 
222 4.1 2.94 5.54 
223 4.15 2.97 5.59 
224 4.19 3.01 5.65 
225 4.24 3.05 5.7 
226 4.28 3.08 5.76 
227 4.33 3.12 5.82 
228 4.38 3.16 5.87 
229 4.42 3.2 5.93 
230 4.47 3.23 5.99 
231 4.52 3.27 6.05 
232 4.57 3.31 6.1 
233 4.61 3.35 6.16 
234 4.66 3.39 6.22 
235 4.71 3.43 6.28 
236 4.76 3.47 6.34 
237 4.81 3.51 6.4 
238 4.86 3.55 6.46 
239 4.91 3.59 6.52 
240 4.96 3.63 6.58 
241 5.01 3.67 6.64 
242 5.06 3.71 6.7 
243 5.11 3.76 6.77 
244 5.17 3.8 6.83 
245 5.22 3.84 6.89 
246 5.27 3.88 6.96 
247 5.32 3.93 7.02 
248 5.38 3.97 7.08 
249 5.43 4.01 7.15 
250 5.49 4.06 7.21 
251 5.54 4.1 7.28 
252 5.59 4.15 7.34 
253 5.65 4.19 7.41 
254 5.7 4.24 7.48 
255 5.76 4.28 7.54 
256 5.82 4.33 7.61 
257 5.87 4.38 7.68 
258 5.93 4.42 7.75 
259 5.99 4.47 7.81 

FDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

260 6.04 4.52 7.88 
261 6.1 4.56 7.95 
262 6.16 4.61 8.02 
263 6.22 4.66 8.09 
264 6.27 4.71 8.16 
265 6.33 4.75 8.22 
266 6.39 4.8 8.29 
267 6.44 4.85 8.35 
268 6.5 4.89 8.42 
269 6.55 4.94 8.48 
270 6.61 4.98 8.55 
271 6.66 5.03 8.62 
272 6.72 5.07 8.68 
273 6.77 5.12 8.75 
274 6.83 5.17 8.81 
275 6.88 5.21 8.88 
276 6.94 5.26 8.95 
277 7 5.31 9.01 
278 7.05 5.35 9.08 
279 7.11 5.4 9.15 
280 7.17 5.45 9.21 
281 7.22 5.49 9.28 
282 7.28 5.54 9.35 
283 7.34 5.59 9.42 
284 7.39 5.64 9.48 
285 7.45 5.68 9.55 
286 7.5 5.72 9.61 
287 7.55 5.77 9.67 
288 7.6 5.81 9.73 
289 7.65 5.85 9.79 
290 7.7 5.89 9.85 
291 7.75 5.94 9.91 
292 7.81 5.98 9.97 
293 7.86 6.02 10.03 
294 7.91 6.07 10.09 
295 7.96 6.11 10.15 
296 8.01 6.16 10.21 
297 8.07 6.2 10.28 
298 8.12 6.24 10.34 
299 8.17 6.29 10.4 
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FDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

300 8.23 6.33 10.46 
301 8.28 6.38 10.52 
302 8.33 6.42 10.59 
303 8.39 6.47 10.65 
304 8.44 6.51 10.71 
305 8.5 6.56 10.78 
306 8.55 6.61 10.84 
307 8.6 6.65 10.91 
308 8.66 6.7 10.97 
309 8.72 6.74 11.04 
310 8.77 6.79 11.1 
311 8.83 6.84 11.17 
312 8.88 6.89 11.23 
313 8.94 6.93 11.3 
314 9 6.98 11.36 
315 9.05 7.03 11.43 
316 9.11 7.08 11.5 
317 9.17 7.13 11.56 
318 9.22 7.17 11.63 
319 9.28 7.22 11.7 
320 9.34 7.27 11.76 
321 9.4 7.32 11.83 
322 9.46 7.37 11.9 
323 9.51 7.42 11.97 
324 9.57 7.47 12.04 
325 9.63 7.52 12.11 
326 9.69 7.57 12.18 
327 9.75 7.62 12.24 
328 9.81 7.67 12.31 
329 9.87 7.72 12.38 
330 9.93 7.77 12.45 
331 9.99 7.83 12.53 
332 10.05 7.88 12.6 
333 10.11 7.93 12.67 
334 10.17 7.98 12.74 
335 10.23 8.03 12.81 
336 10.3 8.08 12.88 
337 10.36 8.14 12.95 
338 10.41 8.18 13.01 
339 10.46 8.23 13.07 

FDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

340 10.51 8.27 13.13 
341 10.56 8.31 13.19 
342 10.62 8.36 13.25 
343 10.66 8.39 13.3 
344 10.7 8.43 13.35 
345 10.73 8.46 13.38 
346 10.76 8.48 13.41 
347 10.78 8.5 13.44 
348 10.8 8.52 13.47 
349 10.83 8.54 13.49 
350 10.85 8.56 13.52 
351 10.87 8.58 13.55 
352 10.9 8.6 13.57 
353 10.92 8.61 13.6 
354 10.94 8.63 13.63 
355 10.97 8.65 13.65 
356 10.99 8.67 13.68 
357 11.01 8.7 13.71 
358 11.04 8.72 13.74 
359 11.06 8.74 13.76 
360 11.08 8.76 13.79 
361 11.11 8.78 13.82 
362 11.13 8.8 13.85 
363 11.15 8.82 13.87 
364 11.18 8.84 13.9 
365 11.2 8.86 13.93 
366 11.23 8.88 13.95 
367 11.25 8.9 13.98 
368 11.27 8.92 14.01 
369 11.3 8.94 14.04 
370 11.32 8.96 14.07 
371 11.34 8.98 14.09 
372 11.37 9 14.12 
373 11.39 9.02 14.15 
374 11.42 9.04 14.18 
375 11.44 9.06 14.2 
376 11.46 9.08 14.23 
377 11.49 9.1 14.26 
378 11.51 9.12 14.29 
379 11.54 9.14 14.32 
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FDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

380 11.56 9.17 14.34 
381 11.59 9.19 14.37 
382 11.61 9.21 14.4 
383 11.63 9.23 14.43 
384 11.66 9.25 14.46 
385 11.68 9.27 14.48 
386 11.71 9.29 14.51 
387 11.73 9.31 14.54 
388 11.76 9.33 14.57 
389 11.78 9.35 14.6 
390 11.81 9.37 14.63 
391 11.83 9.4 14.65 
392 11.86 9.42 14.68 
393 11.88 9.44 14.71 
394 11.91 9.46 14.74 
395 11.93 9.48 14.77 
396 11.95 9.5 14.8 
397 11.98 9.52 14.83 
398 12 9.54 14.85 
399 12.03 9.57 14.88 

FDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

400 12.05 9.59 14.91 
401 12.08 9.61 14.94 
402 12.1 9.63 14.97 
403 12.13 9.65 15 
404 12.15 9.67 15.03 
405 12.18 9.69 15.06 
406 12.2 9.72 15.08 
407 12.23 9.74 15.11 
408 12.25 9.76 15.14 
409 12.28 9.78 15.17 
410 12.31 9.8 15.2 
411 12.33 9.82 15.23 
412 12.36 9.85 15.26 
413 12.38 9.87 15.29 
414 12.41 9.89 15.32 
415 12.43 9.91 15.35 
416 12.46 9.93 15.38 
417 12.48 9.96 15.41 
418 12.51 9.98 15.44 
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Table A6.3 – The point estimate (fit) 
and 95% prediction interval (in years) 
for FMSB. 
FMSB 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

10 0.98 0.31 2.25 
11 1.33 0.48 2.83 
12 1.74 0.70 3.51 
13 2.24 0.98 4.29 
14 2.83 1.32 5.18 
15 3.51 1.74 6.19 
16 4.29 2.24 7.31 
17 5.22 2.85 8.63 
18 6.30 3.58 10.12 
19 7.40 4.35 11.63 
20 8.50 5.13 13.09 
21 9.22 5.65 14.06 
22 10.00 6.21 15.08 
23 10.51 6.58 15.75 
24 10.71 6.73 16.01 
25 10.91 6.88 16.28 
26 11.12 7.03 16.55 
27 11.33 7.18 16.82 
28 11.54 7.34 17.09 
29 11.75 7.50 17.37 
30 11.97 7.66 17.65 

Table A6.2 – MARS model for femur 
midshaft breadth. The residual standard 
error (Residual Std. Error) is in years and is 
not affected by the transformation of age. 

 Predictor Variable 
 Cbrt of age 

(Intercept) 2.041*** 

h(FMSB – 19.89) 0.053*** 

h(19.89 – FMSB) -0.106*** 

h(FMSB – 22.56) -0.038** 

Observations 940 

cv R2 0.73 

Adjusted R2 0.75 

Residual Std. Error 1.62 

F Statistic 937*** 
Note:      *p < 0.01; **p<0.001; ***p<0.0001 
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Table A6.4 – MARS model for femur distal 
breadth. The residual standard error 
(Residual Std. Error) is in years and is not 
affected by the transformation of age. 

 Predictor Variable 
 Sqrt of age 

(Intercept) 2.148*** 

h(FDB – 67.47) 0.009*** 

h(67.47 – FDB) -0.035*** 

Observations 809 

cv R2 0.76 

Adjusted R2 0.77 

Residual Std. Error 1.51 

F Statistic <0.0001*** 
Note:      *p < 0.01; **p<0.001; ***p<0.0001 
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Table A6.5 – The point estimate 
(fit) and 95% prediction interval 
(in years) for FDB. 
FDB 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

36 1.24 0.28 2.88 
37 1.36 0.34 3.06 
38 1.49 0.40 3.26 
39 1.62 0.48 3.45 
40 1.76 0.55 3.65 
41 1.91 0.64 3.86 
42 2.06 0.72 4.08 
43 2.22 0.82 4.30 
44 2.38 0.92 4.52 
45 2.55 1.03 4.76 
46 2.72 1.14 4.99 
47 2.90 1.26 5.24 
48 3.09 1.38 5.49 
49 3.29 1.51 5.75 
50 3.55 1.69 6.09 
51 3.82 1.88 6.45 
52 4.11 2.08 6.82 
53 4.40 2.29 7.20 
54 4.71 2.52 7.59 
55 5.03 2.75 7.99 
56 5.36 2.99 8.40 
57 5.69 3.25 8.82 
58 6.04 3.51 9.26 
59 6.40 3.79 9.70 
60 6.77 4.07 10.15 
61 7.15 4.37 10.61 
62 7.54 4.67 11.09 
63 7.94 4.99 11.57 
64 8.35 5.31 12.06 
65 8.77 5.65 12.57 
66 9.20 6.00 13.08 
67 9.64 6.35 13.60 
68 10.07 6.70 14.11 
69 10.20 6.81 14.27 
70 10.32 6.91 14.41 
71 10.44 7.01 14.56 
72 10.56 7.11 14.70 

FDB 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

73 10.69 7.21 14.85 
74 10.81 7.31 14.99 
75 10.93 7.41 15.14 
76 11.06 7.52 15.28 
77 11.19 7.62 15.43 
78 11.31 7.73 15.58 
79 11.44 7.83 15.73 
80 11.57 7.94 15.88 
81 11.70 8.04 16.03 
82 11.83 8.15 16.18 
83 11.96 8.26 16.34 
84 12.09 8.37 16.49 
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APPENDIX VII – TIBIA: UNIVARIATE AGE ESTIMATION 
MODELS AND THE ASSOCIATED PREDICTION TABLES  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A7.1 – MARS model for tibia 
diaphyseal length. The residual standard 
error (Residual Std. Error) is in years and is 
not affected by the transformation of age. 

 Predictor Variable 
 Sqrt of age 

(Intercept) 2.271*** 

h(TDL – 226.13) 0.009*** 

h(226.13 – TDL) -0.011*** 

h(TDL – 130.53) -0.004*** 

h(TDL – 272.25) -0.003*** 

Observations 1036 

cv R2 0.94 

Adjusted R2 0.94 

Residual Std. Error 0.95 

F Statistic <0.0001*** 
Note:      *p < 0.01; **p<0.001; ***p<0.0001 
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Table A7.2 – The point estimate 
(fit) and 95% prediction interval 
(in years) for TDL. 
TDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

61 0.16 0.00 0.59 
62 0.18 0.00 0.62 
63 0.19 0.00 0.64 
64 0.20 0.01 0.66 
65 0.21 0.01 0.68 
66 0.22 0.01 0.70 
67 0.24 0.01 0.73 
68 0.25 0.02 0.75 
69 0.26 0.02 0.77 
70 0.28 0.03 0.80 
71 0.29 0.03 0.82 
72 0.31 0.03 0.84 
73 0.32 0.04 0.87 
74 0.34 0.05 0.89 
75 0.35 0.05 0.92 
76 0.37 0.06 0.95 
77 0.38 0.06 0.97 
78 0.40 0.07 1.00 
79 0.42 0.08 1.03 
80 0.44 0.09 1.05 
81 0.45 0.09 1.08 
82 0.47 0.10 1.11 
83 0.49 0.11 1.14 
84 0.51 0.12 1.17 
85 0.53 0.13 1.20 
86 0.55 0.14 1.23 
87 0.57 0.15 1.26 
88 0.59 0.16 1.29 
89 0.61 0.17 1.32 
90 0.63 0.18 1.35 
91 0.65 0.20 1.38 
92 0.68 0.21 1.41 
93 0.70 0.22 1.44 
94 0.72 0.23 1.48 
95 0.74 0.25 1.51 
96 0.77 0.26 1.54 
97 0.79 0.27 1.58 

TDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

98 0.81 0.29 1.61 
99 0.84 0.30 1.64 

100 0.86 0.32 1.68 
101 0.89 0.33 1.71 
102 0.91 0.35 1.75 
103 0.94 0.36 1.78 
104 0.97 0.38 1.82 
105 0.99 0.40 1.86 
106 1.02 0.42 1.89 
107 1.05 0.43 1.93 
108 1.08 0.45 1.97 
109 1.10 0.47 2.01 
110 1.13 0.49 2.05 
111 1.16 0.51 2.08 
112 1.19 0.53 2.12 
113 1.22 0.55 2.16 
114 1.25 0.57 2.20 
115 1.28 0.59 2.24 
116 1.31 0.61 2.28 
117 1.34 0.63 2.32 
118 1.37 0.65 2.36 
119 1.40 0.67 2.41 
120 1.44 0.69 2.45 
121 1.47 0.72 2.49 
122 1.50 0.74 2.53 
123 1.54 0.76 2.58 
124 1.57 0.79 2.62 
125 1.60 0.81 2.66 
126 1.64 0.83 2.71 
127 1.67 0.86 2.75 
128 1.71 0.88 2.80 
129 1.74 0.91 2.84 
130 1.78 0.94 2.89 
131 1.81 0.96 2.93 
132 1.85 0.99 2.98 
133 1.89 1.02 3.03 
134 1.92 1.04 3.07 
135 1.96 1.07 3.12 
136 2.00 1.10 3.17 
137 2.04 1.13 3.22 
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TDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

138 2.08 1.16 3.26 
139 2.12 1.18 3.31 
140 2.15 1.21 3.36 
141 2.19 1.24 3.41 
142 2.23 1.27 3.46 
143 2.27 1.30 3.51 
144 2.32 1.34 3.56 
145 2.36 1.37 3.61 
146 2.40 1.40 3.67 
147 2.44 1.43 3.72 
148 2.48 1.46 3.77 
149 2.52 1.50 3.82 
150 2.57 1.53 3.87 
151 2.61 1.56 3.93 
152 2.65 1.60 3.98 
153 2.70 1.63 4.04 
154 2.74 1.66 4.09 
155 2.79 1.70 4.14 
156 2.83 1.73 4.20 
157 2.88 1.77 4.25 
158 2.92 1.81 4.31 
159 2.97 1.84 4.37 
160 3.02 1.88 4.42 
161 3.06 1.92 4.48 
162 3.11 1.95 4.54 
163 3.16 1.99 4.59 
164 3.21 2.03 4.65 
165 3.25 2.07 4.71 
166 3.30 2.11 4.77 
167 3.35 2.15 4.83 
168 3.40 2.19 4.89 
169 3.45 2.23 4.95 
170 3.50 2.27 5.01 
171 3.55 2.31 5.07 
172 3.60 2.35 5.13 
173 3.65 2.39 5.19 
174 3.71 2.43 5.25 
175 3.76 2.47 5.31 
176 3.81 2.52 5.37 
177 3.86 2.56 5.44 

TDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

178 3.92 2.60 5.50 
179 3.97 2.65 5.56 
180 4.02 2.69 5.63 
181 4.08 2.73 5.69 
182 4.13 2.78 5.75 
183 4.19 2.82 5.82 
184 4.24 2.87 5.88 
185 4.30 2.91 5.95 
186 4.35 2.96 6.01 
187 4.41 3.01 6.08 
188 4.47 3.05 6.15 
189 4.52 3.10 6.21 
190 4.58 3.15 6.28 
191 4.64 3.19 6.35 
192 4.69 3.24 6.41 
193 4.75 3.29 6.48 
194 4.81 3.34 6.55 
195 4.87 3.39 6.62 
196 4.93 3.44 6.69 
197 4.99 3.49 6.76 
198 5.05 3.54 6.83 
199 5.11 3.59 6.90 
200 5.17 3.64 6.97 
201 5.23 3.69 7.04 
202 5.29 3.74 7.11 
203 5.35 3.79 7.18 
204 5.42 3.85 7.25 
205 5.48 3.90 7.33 
206 5.54 3.95 7.40 
207 5.60 4.00 7.47 
208 5.67 4.06 7.54 
209 5.73 4.11 7.62 
210 5.80 4.17 7.69 
211 5.86 4.22 7.77 
212 5.92 4.28 7.84 
213 5.99 4.33 7.92 
214 6.06 4.39 7.99 
215 6.12 4.44 8.07 
216 6.19 4.50 8.14 
217 6.25 4.56 8.22 
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TDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

218 6.32 4.61 8.30 
219 6.39 4.67 8.37 
220 6.46 4.73 8.45 
221 6.53 4.79 8.53 
222 6.59 4.85 8.61 
223 6.66 4.91 8.69 
224 6.73 4.97 8.77 
225 6.80 5.03 8.84 
226 6.87 5.09 8.92 
227 6.94 5.15 9.00 
228 7.01 5.21 9.08 
229 7.08 5.27 9.17 
230 7.15 5.33 9.25 
231 7.23 5.39 9.33 
232 7.30 5.45 9.41 
233 7.37 5.52 9.49 
234 7.44 5.58 9.57 
235 7.52 5.64 9.66 
236 7.59 5.71 9.74 
237 7.66 5.77 9.82 
238 7.74 5.84 9.91 
239 7.81 5.90 9.99 
240 7.89 5.97 10.08 
241 7.96 6.03 10.16 
242 8.04 6.10 10.25 
243 8.11 6.16 10.33 
244 8.19 6.23 10.42 
245 8.27 6.30 10.51 
246 8.34 6.36 10.59 
247 8.42 6.43 10.68 
248 8.50 6.50 10.77 
249 8.58 6.57 10.86 
250 8.66 6.64 10.94 
251 8.74 6.71 11.03 
252 8.81 6.78 11.12 
253 8.89 6.85 11.21 
254 8.97 6.92 11.30 
255 9.05 6.99 11.39 
256 9.14 7.06 11.48 
257 9.22 7.13 11.57 

TDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

258 9.30 7.20 11.66 
259 9.38 7.27 11.76 
260 9.46 7.34 11.85 
261 9.54 7.42 11.94 
262 9.63 7.49 12.03 
263 9.70 7.55 12.11 
264 9.75 7.60 12.17 
265 9.79 7.63 12.22 
266 9.83 7.67 12.26 
267 9.87 7.70 12.30 
268 9.91 7.74 12.34 
269 9.94 7.76 12.38 
270 9.97 7.79 12.41 
271 10.00 7.82 12.45 
272 10.03 7.85 12.48 
273 10.06 7.87 12.52 
274 10.09 7.90 12.55 
275 10.12 7.93 12.59 
276 10.15 7.96 12.62 
277 10.19 7.98 12.66 
278 10.22 8.01 12.69 
279 10.25 8.04 12.73 
280 10.28 8.07 12.76 
281 10.31 8.09 12.80 
282 10.34 8.12 12.83 
283 10.37 8.15 12.87 
284 10.41 8.18 12.90 
285 10.44 8.21 12.94 
286 10.47 8.23 12.97 
287 10.50 8.26 13.01 
288 10.53 8.29 13.04 
289 10.56 8.32 13.08 
290 10.60 8.35 13.11 
291 10.63 8.37 13.15 
292 10.66 8.40 13.18 
293 10.69 8.43 13.22 
294 10.72 8.46 13.25 
295 10.75 8.49 13.29 
296 10.79 8.52 13.33 
297 10.82 8.54 13.36 
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TDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

298 10.85 8.57 13.40 
299 10.88 8.60 13.43 
300 10.92 8.63 13.47 
301 10.95 8.66 13.50 
302 10.98 8.69 13.54 
303 11.01 8.72 13.58 
304 11.05 8.75 13.61 
305 11.08 8.77 13.65 
306 11.11 8.80 13.68 
307 11.14 8.83 13.72 
308 11.18 8.86 13.76 
309 11.21 8.89 13.79 
310 11.24 8.92 13.83 
311 11.27 8.95 13.87 
312 11.31 8.98 13.90 
313 11.34 9.01 13.94 
314 11.37 9.04 13.98 
315 11.41 9.07 14.01 
316 11.44 9.10 14.05 
317 11.47 9.13 14.08 
318 11.50 9.16 14.12 
319 11.54 9.18 14.16 
320 11.57 9.21 14.20 
321 11.60 9.24 14.23 
322 11.64 9.27 14.27 
323 11.67 9.30 14.31 
324 11.70 9.33 14.34 
325 11.74 9.36 14.38 
326 11.77 9.39 14.42 
327 11.80 9.42 14.45 
328 11.84 9.45 14.49 
329 11.87 9.48 14.53 
330 11.91 9.51 14.57 
331 11.94 9.54 14.60 
332 11.97 9.57 14.64 
333 12.01 9.60 14.68 
334 12.04 9.63 14.71 
335 12.07 9.66 14.75 
336 12.11 9.69 14.79 
337 12.14 9.73 14.83 

TDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

338 12.18 9.76 14.87 
339 12.21 9.79 14.90 
340 12.24 9.82 14.94 
341 12.28 9.85 14.98 
342 12.31 9.88 15.02 
343 12.35 9.91 15.05 
344 12.38 9.94 15.09 
345 12.42 9.97 15.13 
346 12.45 10.00 15.17 
347 12.49 10.03 15.21 
348 12.52 10.06 15.24 
349 12.55 10.09 15.28 
350 12.59 10.13 15.32 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



!

 211 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A7.3 – MARS model for tibia 
proximal breadth. The residual standard 
error (Residual Std. Error) is in years and is 
not affected by the transformation of age. 

 Predictor Variable 
 Cbrt of age 

(Intercept) 2.038*** 

h(TPB – 226.13) 0.049*** 

h(226.13 – TPB) -0.034*** 

h(TPB – 130.53) -0.023*** 

h(TPB – 272.25) 0.021*** 

h(TPB – 226.13) -0.039*** 

Observations 735 

cv R2 0.80 

Adjusted R2 0.81 

Residual Std. Error 1.4 

F Statistic 643*** 
Note:      *p < 0.01; **p<0.001; ***p<0.0001 
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Table A7.4 – The point estimate 
(fit) and 95% prediction interval 
(in years) for TPB. 
TPB 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

31 1.22 0.31 2.76 
32 1.36 0.38 2.97 
33 1.51 0.46 3.18 
34 1.67 0.54 3.41 
35 1.83 0.64 3.64 
36 2.00 0.74 3.88 
37 2.18 0.85 4.12 
38 2.37 0.97 4.38 
39 2.56 1.09 4.64 
40 2.76 1.23 4.91 
41 3.01 1.39 5.24 
42 3.33 1.61 5.65 
43 3.66 1.85 6.09 
44 4.01 2.10 6.53 
45 4.38 2.36 7.00 
46 4.76 2.65 7.48 
47 5.15 2.94 7.97 
48 5.55 3.24 8.46 
49 5.93 3.54 8.94 
50 6.31 3.84 9.40 
51 6.70 4.14 9.87 
52 7.09 4.45 10.35 
53 7.50 4.77 10.84 
54 7.92 5.11 11.34 
55 8.35 5.45 11.86 
56 8.79 5.81 12.38 
57 9.24 6.18 12.91 
58 9.70 6.56 13.46 
59 10.17 6.95 14.01 
60 10.41 7.14 14.29 
61 10.53 7.25 14.44 
62 10.66 7.35 14.58 
63 10.78 7.45 14.73 
64 10.91 7.56 14.87 
65 11.04 7.66 15.02 
66 11.16 7.77 15.17 
67 11.29 7.88 15.32 

TPB 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

68 11.42 7.98 15.47 
69 11.55 8.09 15.62 
70 11.68 8.20 15.77 
71 11.81 8.31 15.92 
72 11.94 8.42 16.08 
73 12.07 8.53 16.23 
74 12.21 8.64 16.38 
75 12.34 8.76 16.54 
76 12.48 8.87 16.70 
77 12.61 8.98 16.85 
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Table A7.5 – Spline model for tibia distal breadth. 
The residual standard error (Residual Std. Error) 
is in years and is not affected by the 
transformation of age. 

 Predictor Variable 

 Sqrt of age 

(Intercept) 1.188*** 

bs(TDB, degree = 2, df = 4) 0.407** 

bs(TDB, degree = 2, df = 4) 1.532*** 

bs(TDB, degree = 2, df = 4) 2.230*** 

bs(TDB, degree = 2, df = 4) 2.282*** 

Observations 630 

Adjusted R2 0.80 

Residual Std. Error 1.35 

F Statistic 650*** 
Note:      *p < 0.01; **p<0.001; ***p<0.0001 
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Table A7.6 – The point estimate 
(fit) and 95% prediction interval 
(in years) for TDB. 
TDB 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

21 1.36 0.33 3.09 
22 1.54 0.45 3.28 
23 1.75 0.59 3.53 
24 2.00 0.76 3.83 
25 2.27 0.94 4.18 
26 2.58 1.15 4.58 
27 2.93 1.39 5.03 
28 3.32 1.66 5.53 
29 3.75 1.98 6.09 
30 4.24 2.33 6.71 
31 4.78 2.74 7.38 
32 5.37 3.19 8.12 
33 6.00 3.68 8.88 
34 6.60 4.15 9.61 
35 7.17 4.61 10.29 
36 7.71 5.04 10.94 
37 8.20 5.44 11.52 
38 8.65 5.81 12.05 
39 9.06 6.15 12.54 
40 9.46 6.48 13.00 
41 9.83 6.79 13.44 
42 10.18 7.08 13.85 
43 10.50 7.35 14.22 
44 10.80 7.59 14.57 
45 11.07 7.82 14.88 
46 11.31 8.02 15.16 
47 11.52 8.19 15.40 
48 11.69 8.34 15.62 
49 11.84 8.45 15.80 
50 11.95 8.53 15.95 
51 12.03 8.58 16.07 
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Table A7.7 – MARS model for tibia 
midshaft breadth. The residual standard 
error (Residual Std. Error) is in years and 
is not affected by the transformation of age. 

 Predictor Variable 

 Cbrt of age 

(Intercept) 2.061*** 

h(TMSB – 18.99) 0.037*** 

h(18.99 – TMSB) -0.108*** 

Observations 554 

cv R2 0.71 

Adjusted R2 0.72 
Residual Std. 

Error 1.59 

F Statistic 720*** 

Note:    *p < 0.01; **p<0.001; ***p<0.0001 

Table A7.8 – The point estimate (fit) 
and 95% prediction interval (in years) 
for TMSB. 
TMSB 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

10 1.30 0.47 2.78 
11 1.72 0.69 3.47 
12 2.23 0.97 4.27 
13 2.83 1.33 5.18 
14 3.53 1.76 6.21 
15 4.33 2.27 7.37 
16 5.25 2.88 8.67 
17 6.30 3.59 10.11 
18 7.47 4.40 11.71 
19 8.65 5.24 13.29 
20 9.22 5.65 14.05 
21 9.73 6.02 14.72 
22 10.25 6.40 15.41 
23 10.78 6.79 16.10 
24 11.33 7.19 16.81 
25 11.88 7.60 17.53 
26 12.46 8.03 18.28 
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APPENDIX VIII – FIBULA: UNIVARIATE AGE 
ESTIMATION MODELS AND THE ASSOCIATED 

PREDICTION TABLES  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A8.1 – MARS model for fibula 
diaphyseal length. The residual standard 
error (Residual Std. Error) is in years and 
is not affected by the transformation of 
age. 

 Predictor Variable 

 Sqrt of age 

(Intercept) 2.281*** 

h(FBDL – 239.72) 0.007*** 

h(239.72 – FBDL) -0.009*** 

h(FBDL – 135.89) -0.003*** 

h(FBDL – 271.99) -0.003*** 

Observations 1025 

cv R2 0.93 

Adjusted R2 0.93 
Residual Std. 

Error 0.99 

F Statistic <0.0001*** 

Note:  *p < 0.01; **p<0.001; ***p<0.0001 
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Table A8.2 – The point estimate 
(fit) and 95% prediction interval 
(in years) for FBDL. 
FBDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

65 0.26 0.02 0.79 
66 0.28 0.02 0.81 
67 0.29 0.03 0.83 
68 0.31 0.03 0.86 
69 0.32 0.04 0.88 
70 0.33 0.04 0.91 
71 0.35 0.05 0.93 
72 0.37 0.05 0.96 
73 0.38 0.06 0.98 
74 0.40 0.07 1.01 
75 0.42 0.07 1.04 
76 0.43 0.08 1.06 
77 0.45 0.09 1.09 
78 0.47 0.10 1.12 
79 0.49 0.10 1.15 
80 0.50 0.11 1.17 
81 0.52 0.12 1.20 
82 0.54 0.13 1.23 
83 0.56 0.14 1.26 
84 0.58 0.15 1.29 
85 0.60 0.16 1.32 
86 0.62 0.17 1.35 
87 0.64 0.18 1.38 
88 0.67 0.20 1.41 
89 0.69 0.21 1.45 
90 0.71 0.22 1.48 
91 0.73 0.23 1.51 
92 0.75 0.25 1.54 
93 0.78 0.26 1.57 
94 0.80 0.27 1.61 
95 0.82 0.29 1.64 
96 0.85 0.30 1.68 
97 0.87 0.31 1.71 
98 0.90 0.33 1.74 
99 0.92 0.35 1.78 

100 0.95 0.36 1.81 
101 0.97 0.38 1.85 

FBDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

102 1.00 0.39 1.89 
103 1.03 0.41 1.92 
104 1.05 0.43 1.96 
105 1.08 0.44 2.00 
106 1.11 0.46 2.03 
107 1.14 0.48 2.07 
108 1.16 0.50 2.11 
109 1.19 0.52 2.15 
110 1.22 0.54 2.19 
111 1.25 0.56 2.23 
112 1.28 0.58 2.27 
113 1.31 0.60 2.30 
114 1.34 0.62 2.35 
115 1.37 0.64 2.39 
116 1.40 0.66 2.43 
117 1.43 0.68 2.47 
118 1.47 0.70 2.51 
119 1.50 0.72 2.55 
120 1.53 0.75 2.59 
121 1.56 0.77 2.64 
122 1.60 0.79 2.68 
123 1.63 0.82 2.72 
124 1.66 0.84 2.77 
125 1.70 0.86 2.81 
126 1.73 0.89 2.85 
127 1.77 0.91 2.90 
128 1.80 0.94 2.94 
129 1.84 0.97 2.99 
130 1.87 0.99 3.03 
131 1.91 1.02 3.08 
132 1.95 1.04 3.13 
133 1.98 1.07 3.17 
134 2.02 1.10 3.22 
135 2.06 1.13 3.27 
136 2.10 1.16 3.32 
137 2.13 1.18 3.36 
138 2.17 1.21 3.41 
139 2.21 1.24 3.46 
140 2.25 1.27 3.51 
141 2.29 1.30 3.56 
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FBDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

142 2.33 1.33 3.61 
143 2.37 1.36 3.66 
144 2.41 1.39 3.71 
145 2.45 1.42 3.76 
146 2.50 1.46 3.81 
147 2.54 1.49 3.87 
148 2.58 1.52 3.92 
149 2.62 1.55 3.97 
150 2.66 1.59 4.02 
151 2.71 1.62 4.07 
152 2.75 1.65 4.13 
153 2.79 1.69 4.18 
154 2.84 1.72 4.24 
155 2.88 1.76 4.29 
156 2.93 1.79 4.35 
157 2.97 1.83 4.40 
158 3.02 1.86 4.46 
159 3.07 1.90 4.51 
160 3.11 1.93 4.57 
161 3.16 1.97 4.62 
162 3.21 2.01 4.68 
163 3.25 2.05 4.74 
164 3.30 2.08 4.80 
165 3.35 2.12 4.85 
166 3.40 2.16 4.91 
167 3.45 2.20 4.97 
168 3.49 2.24 5.03 
169 3.54 2.28 5.09 
170 3.59 2.32 5.15 
171 3.64 2.36 5.21 
172 3.69 2.40 5.27 
173 3.74 2.44 5.33 
174 3.80 2.48 5.39 
175 3.85 2.52 5.45 
176 3.90 2.56 5.51 
177 3.95 2.61 5.57 
178 4.00 2.65 5.64 
179 4.06 2.69 5.70 
180 4.11 2.74 5.76 
181 4.16 2.78 5.83 

FBDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

182 4.22 2.82 5.89 
183 4.27 2.87 5.95 
184 4.33 2.91 6.02 
185 4.38 2.96 6.08 
186 4.44 3.00 6.15 
187 4.49 3.05 6.21 
188 4.55 3.10 6.28 
189 4.60 3.14 6.35 
190 4.66 3.19 6.41 
191 4.72 3.24 6.48 
192 4.78 3.28 6.55 
193 4.83 3.33 6.61 
194 4.89 3.38 6.68 
195 4.95 3.43 6.75 
196 5.01 3.48 6.82 
197 5.07 3.53 6.89 
198 5.13 3.58 6.96 
199 5.19 3.63 7.03 
200 5.25 3.68 7.10 
201 5.31 3.73 7.17 
202 5.37 3.78 7.24 
203 5.43 3.83 7.31 
204 5.49 3.88 7.38 
205 5.55 3.93 7.45 
206 5.62 3.99 7.52 
207 5.68 4.04 7.60 
208 5.74 4.09 7.67 
209 5.80 4.15 7.74 
210 5.87 4.20 7.82 
211 5.93 4.25 7.89 
212 6.00 4.31 7.96 
213 6.06 4.36 8.04 
214 6.13 4.42 8.11 
215 6.19 4.47 8.19 
216 6.26 4.53 8.26 
217 6.32 4.59 8.34 
218 6.39 4.64 8.42 
219 6.46 4.70 8.49 
220 6.52 4.76 8.57 
221 6.59 4.81 8.65 
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FBDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

222 6.66 4.87 8.72 
223 6.73 4.93 8.80 
224 6.80 4.99 8.88 
225 6.86 5.05 8.96 
226 6.93 5.11 9.04 
227 7.00 5.17 9.12 
228 7.07 5.23 9.20 
229 7.14 5.29 9.28 
230 7.21 5.35 9.36 
231 7.28 5.41 9.44 
232 7.36 5.47 9.52 
233 7.43 5.53 9.60 
234 7.50 5.59 9.68 
235 7.57 5.66 9.77 
236 7.64 5.72 9.85 
237 7.72 5.78 9.93 
238 7.79 5.85 10.01 
239 7.86 5.91 10.10 
240 7.94 5.98 10.18 
241 8.01 6.04 10.27 
242 8.09 6.10 10.35 
243 8.16 6.17 10.43 
244 8.24 6.24 10.52 
245 8.31 6.30 10.61 
246 8.39 6.37 10.69 
247 8.47 6.43 10.78 
248 8.54 6.50 10.86 
249 8.62 6.57 10.95 
250 8.70 6.64 11.04 
251 8.78 6.70 11.13 
252 8.85 6.77 11.21 
253 8.93 6.84 11.30 
254 9.01 6.91 11.39 
255 9.09 6.98 11.48 
256 9.17 7.05 11.57 
257 9.25 7.12 11.66 
258 9.33 7.19 11.75 
259 9.41 7.26 11.84 
260 9.49 7.33 11.93 
261 9.57 7.40 12.02 

FBDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

262 9.66 7.48 12.11 
263 9.73 7.55 12.20 
264 9.81 7.61 12.28 
265 9.88 7.67 12.36 
266 9.94 7.72 12.43 
267 9.98 7.76 12.48 
268 10.02 7.80 12.52 
269 10.05 7.82 12.55 
270 10.08 7.85 12.59 
271 10.11 7.87 12.62 
272 10.14 7.90 12.65 
273 10.17 7.93 12.69 
274 10.20 7.95 12.72 
275 10.23 7.98 12.75 
276 10.26 8.00 12.78 
277 10.28 8.03 12.82 
278 10.31 8.06 12.85 
279 10.34 8.08 12.88 
280 10.37 8.11 12.92 
281 10.40 8.14 12.95 
282 10.43 8.16 12.98 
283 10.46 8.19 13.02 
284 10.49 8.21 13.05 
285 10.52 8.24 13.08 
286 10.55 8.27 13.12 
287 10.58 8.29 13.15 
288 10.61 8.32 13.18 
289 10.64 8.35 13.22 
290 10.67 8.37 13.25 
291 10.70 8.40 13.28 
292 10.73 8.43 13.32 
293 10.76 8.45 13.35 
294 10.79 8.48 13.38 
295 10.82 8.51 13.42 
296 10.85 8.53 13.45 
297 10.88 8.56 13.49 
298 10.91 8.59 13.52 
299 10.95 8.62 13.55 
300 10.98 8.64 13.59 
301 11.01 8.67 13.62 
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FBDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

302 11.04 8.70 13.66 
303 11.07 8.72 13.69 
304 11.10 8.75 13.72 
305 11.13 8.78 13.76 
306 11.16 8.81 13.79 
307 11.19 8.83 13.83 
308 11.22 8.86 13.86 
309 11.25 8.89 13.90 
310 11.28 8.92 13.93 
311 11.31 8.94 13.96 
312 11.35 8.97 14.00 
313 11.38 9.00 14.03 
314 11.41 9.03 14.07 
315 11.44 9.05 14.10 
316 11.47 9.08 14.14 
317 11.50 9.11 14.17 
318 11.53 9.14 14.21 
319 11.56 9.16 14.24 
320 11.59 9.19 14.28 
321 11.63 9.22 14.31 
322 11.66 9.25 14.35 
323 11.69 9.28 14.38 
324 11.72 9.30 14.42 
325 11.75 9.33 14.45 
326 11.78 9.36 14.49 
327 11.82 9.39 14.52 
328 11.85 9.42 14.56 
329 11.88 9.45 14.59 
330 11.91 9.47 14.63 
331 11.94 9.50 14.66 
332 11.97 9.53 14.70 
333 12.01 9.56 14.73 
334 12.04 9.59 14.77 
335 12.07 9.62 14.80 
336 12.10 9.65 14.84 
337 12.13 9.67 14.87 
338 12.17 9.70 14.91 
339 12.20 9.73 14.94 
340 12.23 9.76 14.98 
341 12.26 9.79 15.02 

FBDL 
(mm) Fit Lower 

95% PI 
Upper 
95% PI 

342 12.30 9.82 15.05 
343 12.33 9.85 15.09 
344 12.36 9.88 15.12 
345 12.39 9.90 15.16 
346 12.43 9.93 15.20 
347 12.46 9.96 15.23 
348 12.49 9.99 15.27 
349 12.52 10.02 15.30 
350 12.56 10.05 15.34 
351 12.59 10.08 15.38 
352 12.62 10.11 15.41 
353 12.65 10.14 15.45 
354 12.69 10.17 15.48 
355 12.72 10.20 15.52 
356 12.75 10.23 15.56 
357 12.78 10.26 15.59 
358 12.82 10.28 15.63 
359 12.85 10.31 15.67 
360 12.88 10.34 15.70 
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APPENDIX IX – ALL-MEASUREMENT MODEL: AGE ESTIMATION 
PREDICTION TABLE 

 
Table A9 – The chronological age and measurements of individuals in the original sample used in the all-measurement model with 
the point estimate (fit) and 95% prediction interval (in years). The table is an example of prediction intervals associated with 
multivariate models. 

Age 
(years) TDL TPB TMSB TDB UDL FDL FDB FMSB RDL HMSB HDB HDL HPB FBDL Fit Lower 

95% PI 
Upper 

95% PI 

1.47 127 32 13 26 106 152 47 14 95 13 26 121 27 127 2.02 1.23 3.09 

1.69 131 35 12 24 102 155 41 13 90 12 33 117 26 126 1.61 0.94 2.54 

2.20 145 37 13 26 112 185 47 14 99 12 30 135 26 143 2.99 1.94 4.36 

2.35 156 38 13 27 120 183 47 16 108 12 32 135 27 154 2.67 1.70 3.94 

2.50 150 40 13 26 125 186 46 14 110 11 33 140 24 152 3.03 1.97 4.41 

2.54 147 39 11 24 114 173 47 12 99 10 30 125 22 144 2.45 1.54 3.66 

2.59 150 36 13 24 115 185 40 14 101 12 29 133 21 150 2.78 1.79 4.09 

2.62 152 38 13 25 117 184 46 14 108 12 32 136 25 147 2.69 1.72 3.97 

2.71 154 40 15 28 119 189 50 16 106 12 33 139 27 154 3.11 2.03 4.51 

2.82 159 44 14 30 126 189 50 16 112 15 36 140 28 158 3.02 1.97 4.40 

2.84 152 42 15 29 116 188 53 14 106 15 35 139 31 150 3.13 2.05 4.53 

2.85 141 38 11 24 109 176 44 13 97 11 30 130 22 137 2.54 1.61 3.77 

2.89 170 45 14 30 127 202 55 15 116 13 37 148 28 167 3.33 2.20 4.79 

3.00 158 45 14 30 120 196 54 15 110 14 38 141 28 160 3.09 2.02 4.49 

3.00 146 37 13 26 106 179 46 15 93 12 31 123 24 139 2.37 1.48 3.55 

3.00 174 41 14 26 135 213 49 16 119 14 35 160 25 176 4.04 2.74 5.69 

3.02 154 43 15 29 118 192 49 15 105 12 34 143 27 154 3.54 2.36 5.06 

3.07 155 39 13 26 124 195 46 13 109 12 33 142 26 155 3.11 2.03 4.51 

3.10 166 43 12 29 126 203 48 16 110 13 35 148 26 161 3.70 2.48 5.27 

3.27 159 42 15 28 127 190 48 15 114 13 35 141 26 159 2.99 1.95 4.36 

3.33 173 46 15 29 124 210 55 17 111 13 38 146 28 171 3.63 2.43 5.17 

3.33 187 45 14 30 138 215 55 16 123 15 33 157 31 178 4.26 2.91 5.97 
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Age 
(years) TDL TPB TMSB TDB UDL FDL FDB FMSB RDL HMSB HDB HDL HPB FBDL Fit Lower 

95% PI 
Upper 

95% PI 
3.35 178 45 14 31 139 221 56 16 125 12 39 154 27 177 4.03 2.73 5.68 

3.56 166 44 14 29 119 198 53 15 103 14 34 140 28 165 3.30 2.17 4.75 

3.56 157 44 14 28 121 190 53 15 110 14 37 151 31 154 2.81 1.81 4.13 

3.72 180 44 16 29 140 217 53 16 126 14 37 162 28 177 3.89 2.63 5.51 

3.75 189 46 17 32 140 224 54 16 126 13 35 163 27 185 4.37 3.00 6.10 

3.77 139 38 13 27 111 176 45 15 98 13 28 126 27 137 2.61 1.66 3.86 

3.92 175 45 15 28 133 216 55 17 120 14 33 153 28 174 4.54 3.13 6.32 

3.92 174 50 15 32 135 213 59 16 123 13 36 151 28 172 4.09 2.78 5.75 

4.01 167 42 13 26 133 203 50 15 120 13 35 147 29 163 3.29 2.17 4.74 

4.08 181 49 14 32 143 224 58 16 126 15 39 162 28 181 4.14 2.82 5.81 

4.09 176 43 14 27 139 209 49 15 122 13 33 153 25 174 3.78 2.54 5.36 

4.12 164 43 13 28 129 204 50 15 116 13 35 145 24 163 3.58 2.39 5.11 

4.17 189 45 16 32 140 222 54 18 124 14 38 156 28 188 3.76 2.53 5.34 

4.22 165 47 16 31 123 194 56 18 110 14 34 146 29 162 3.16 2.07 4.57 

4.29 180 49 17 33 139 224 58 17 126 15 39 167 29 174 4.11 2.79 5.77 

4.40 185 52 15 32 137 223 60 17 124 13 36 149 31 184 4.34 2.98 6.07 

4.53 193 48 14 30 147 241 56 15 133 13 37 176 28 192 5.36 3.77 7.33 

4.54 176 46 15 30 133 215 54 17 121 14 38 158 31 176 3.78 2.54 5.37 

4.54 200 47 16 31 154 243 55 17 138 14 40 176 28 200 5.09 3.56 7.00 

4.55 177 46 14 27 138 222 51 14 125 13 32 160 28 183 4.90 3.41 6.76 

4.55 213 48 17 35 152 270 57 18 134 12 40 185 30 212 6.15 4.40 8.30 

4.57 215 54 18 37 151 272 66 21 134 15 40 188 33 207 6.38 4.59 8.58 

4.60 176 44 14 28 135 214 50 16 120 12 35 152 27 172 4.01 2.72 5.65 

4.65 186 47 15 31 142 228 57 16 125 13 37 162 30 188 4.40 3.03 6.15 

4.67 190 46 16 29 142 240 55 18 132 14 37 175 30 192 5.72 4.06 7.78 

4.88 189 49 15 31 142 235 57 16 128 14 35 169 31 187 5.28 3.71 7.23 

4.99 208 52 17 37 158 263 63 19 142 15 41 186 34 210 6.22 4.46 8.38 

5.00 218 48 17 32 154 262 51 18 147 13 40 188 31 215 6.10 4.37 8.24 
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Age 
(years) TDL TPB TMSB TDB UDL FDL FDB FMSB RDL HMSB HDB HDL HPB FBDL Fit Lower 

95% PI 
Upper 

95% PI 
5.11 206 48 17 31 153 252 56 17 137 15 39 179 30 208 5.66 4.02 7.71 

5.24 186 43 16 30 133 229 53 17 120 14 34 162 29 185 4.45 3.06 6.21 

5.26 192 41 13 27 147 243 51 16 132 12 37 179 28 192 4.86 3.38 6.72 

5.36 223 53 17 36 164 259 62 18 146 16 44 189 35 219 5.92 4.22 8.03 

5.40 202 51 17 34 157 253 61 18 135 17 39 183 37 201 5.89 4.20 7.99 

5.45 207 48 15 31 145 250 56 16 130 13 37 171 30 201 5.41 3.82 7.40 

5.59 226 56 19 34 158 276 67 20 142 15 43 191 36 221 6.56 4.73 8.80 

5.67 243 52 18 35 180 291 62 18 165 17 43 209 32 238 8.04 5.94 10.59 

5.80 221 51 15 34 159 273 59 16 146 12 39 187 32 216 6.49 4.68 8.72 

5.92 207 49 18 33 154 252 55 18 141 18 37 173 32 207 6.17 4.42 8.33 

6.02 224 50 18 36 162 268 63 18 144 17 42 193 33 217 6.10 4.36 8.24 

6.06 210 52 18 37 159 265 59 18 144 17 41 184 33 210 6.23 4.47 8.40 

6.12 230 49 19 33 154 269 58 20 139 14 41 193 32 226 5.77 4.10 7.84 

6.13 218 54 18 36 163 281 61 19 149 15 41 189 33 215 7.00 5.09 9.34 

6.23 198 48 17 32 152 251 56 18 139 16 40 177 36 198 5.41 3.82 7.39 

6.29 216 53 18 37 162 269 63 18 146 16 41 185 35 221 6.34 4.55 8.53 

6.42 226 51 16 36 161 284 62 17 147 16 42 197 36 230 7.03 5.11 9.37 

6.47 236 47 16 32 159 284 58 18 144 13 41 187 30 233 7.06 5.14 9.41 

6.49 230 52 17 33 169 261 62 19 153 15 39 189 34 230 6.46 4.66 8.68 

6.54 234 51 18 37 163 284 61 21 148 13 39 200 32 231 7.38 5.40 9.80 

6.68 235 50 15 32 165 279 61 18 152 15 41 204 34 235 7.02 5.10 9.36 

6.70 230 51 17 35 166 278 61 19 155 18 42 203 36 226 6.91 5.01 9.22 

6.71 220 54 19 35 168 279 62 19 152 16 41 195 36 223 7.01 5.09 9.34 

6.77 254 52 18 38 177 299 62 20 159 14 43 214 34 250 8.06 5.95 10.62 

6.78 208 51 17 34 155 252 60 18 139 16 42 177 31 210 5.15 3.61 7.07 

6.84 250 54 21 36 170 308 60 20 153 15 42 209 32 250 8.46 6.28 11.10 

6.92 234 49 17 36 173 286 58 20 156 17 40 207 32 232 7.41 5.42 9.84 

6.98 232 55 19 34 172 276 63 19 155 15 42 200 34 235 6.87 4.99 9.18 
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Age 
(years) TDL TPB TMSB TDB UDL FDL FDB FMSB RDL HMSB HDB HDL HPB FBDL Fit Lower 

95% PI 
Upper 

95% PI 
6.99 257 54 22 38 179 296 62 20 165 17 45 201 33 255 8.00 5.91 10.55 

7.02 229 54 18 35 158 287 62 18 143 15 40 190 33 226 7.16 5.22 9.53 

7.10 253 48 17 35 177 298 56 19 161 15 42 210 30 249 7.93 5.84 10.46 

7.11 242 50 16 35 169 283 55 17 149 13 40 200 30 237 6.91 5.02 9.23 

7.25 213 45 15 28 159 272 53 15 146 12 36 191 27 214 6.80 4.93 9.10 

7.39 223 50 16 34 158 275 60 19 143 14 40 200 33 221 6.37 4.58 8.57 

7.42 231 55 20 37 167 283 68 19 149 16 40 203 35 233 7.11 5.18 9.47 

7.49 245 50 18 35 178 306 58 18 165 15 46 214 33 246 8.73 6.50 11.42 

7.50 207 50 18 32 154 255 57 17 140 13 36 181 29 213 6.16 4.42 8.32 

7.55 248 60 20 40 175 302 69 21 157 17 43 218 39 244 8.26 6.12 10.86 

7.63 227 43 14 29 161 278 51 15 146 11 36 186 27 223 6.88 5.00 9.20 

7.69 236 54 18 39 173 304 65 19 158 15 40 215 32 238 8.50 6.31 11.15 

7.74 244 57 18 38 171 289 65 20 157 16 44 211 34 242 7.49 5.49 9.93 

7.79 225 52 17 36 168 280 63 17 153 15 37 194 32 220 7.56 5.55 10.02 

7.84 222 48 16 34 154 271 59 18 144 13 41 187 29 215 5.83 4.15 7.91 

7.93 219 48 18 36 160 276 59 18 145 14 36 197 33 219 7.21 5.26 9.59 

7.95 231 50 17 37 167 274 59 18 146 16 41 192 33 229 6.48 4.67 8.71 

7.98 290 60 20 41 206 336 68 21 186 16 45 231 41 287 9.90 7.46 12.81 

8.00 271 53 19 40 184 314 60 20 167 15 41 217 34 271 8.76 6.52 11.45 

8.11 257 53 16 36 193 311 61 20 172 14 39 219 34 256 8.93 6.66 11.66 

8.13 265 58 21 40 178 312 65 21 163 18 45 225 39 265 8.84 6.59 11.56 

8.14 235 48 17 34 168 298 61 18 152 13 42 210 32 232 7.70 5.66 10.18 

8.14 229 56 18 37 165 290 64 20 150 14 43 207 34 230 7.22 5.27 9.61 

8.16 254 55 18 36 181 301 65 19 161 16 44 213 36 256 8.03 5.93 10.58 

8.23 240 57 21 41 172 290 67 21 155 17 45 205 38 240 7.55 5.54 10.00 

8.38 265 54 18 40 183 318 66 21 170 16 44 222 39 264 9.01 6.73 11.75 

8.40 259 58 19 38 178 316 67 21 167 15 42 217 36 256 9.02 6.74 11.77 

8.44 259 54 18 38 181 306 63 19 168 15 43 226 37 254 8.44 6.26 11.07 
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Age 
(years) TDL TPB TMSB TDB UDL FDL FDB FMSB RDL HMSB HDB HDL HPB FBDL Fit Lower 

95% PI 
Upper 

95% PI 
8.46 264 57 19 41 181 318 65 22 161 16 42 225 36 262 8.84 6.59 11.55 

8.48 204 47 17 32 157 255 59 19 139 13 38 184 28 210 5.78 4.11 7.85 

8.51 247 52 18 36 178 299 63 20 162 16 42 215 32 246 7.85 5.78 10.37 

8.51 247 56 18 37 173 289 65 20 156 16 44 209 35 244 7.36 5.38 9.77 

8.51 264 56 19 37 185 324 67 20 171 17 36 227 39 261 10.93 8.32 14.04 

8.52 231 53 18 35 161 280 59 19 147 15 39 194 33 229 7.03 5.11 9.37 

8.54 283 61 20 40 198 329 73 21 179 17 48 233 37 280 9.73 7.33 12.62 

8.54 175 51 16 31 144 239 56 16 128 14 35 181 31 175 5.01 3.50 6.91 

8.63 245 57 17 37 182 306 64 19 162 17 45 221 39 245 8.29 6.14 10.89 

8.65 254 54 19 37 174 299 63 19 163 15 42 205 31 252 8.01 5.91 10.56 

8.70 253 57 18 37 181 300 65 20 165 16 45 215 36 253 8.07 5.96 10.62 

8.72 254 56 19 37 179 315 64 20 162 16 47 230 34 249 8.90 6.64 11.62 

8.75 261 55 19 37 188 310 62 19 175 16 45 223 36 260 8.63 6.42 11.30 

8.88 255 55 19 37 188 316 65 21 171 17 46 222 37 254 8.79 6.55 11.50 

9.09 227 50 18 34 172 287 58 18 160 14 39 202 35 232 7.73 5.68 10.22 

9.11 270 54 20 39 194 329 64 22 181 19 46 233 41 266 9.47 7.11 12.31 

9.19 291 58 20 41 199 322 66 23 180 17 48 242 37 280 9.19 6.88 11.97 

9.21 264 55 18 37 188 313 61 19 174 16 41 220 35 268 8.78 6.54 11.48 

9.25 274 63 23 42 204 326 75 24 185 18 48 240 36 274 9.35 7.01 12.16 

9.41 299 65 22 47 217 351 78 25 198 22 54 251 41 298 11.11 8.47 14.25 

9.43 260 53 15 37 178 307 61 18 164 14 41 216 34 258 8.40 6.23 11.02 

9.43 280 54 17 38 195 335 64 20 178 18 42 246 36 279 9.54 7.17 12.38 

9.50 265 63 22 40 189 316 74 21 170 16 47 216 37 265 8.90 6.64 11.63 

9.61 281 60 23 41 196 352 66 24 180 16 48 248 38 276 10.74 8.17 13.81 

9.68 289 57 21 40 201 339 65 23 184 15 44 233 34 286 9.71 7.31 12.59 

9.69 268 55 19 37 188 340 64 20 176 15 42 231 35 263 9.98 7.53 12.91 

9.78 255 60 22 40 184 306 70 22 166 20 50 208 37 250 8.52 6.33 11.17 

10.04 278 58 19 40 191 333 68 21 173 18 50 235 40 278 9.86 7.43 12.77 
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Age 
(years) TDL TPB TMSB TDB UDL FDL FDB FMSB RDL HMSB HDB HDL HPB FBDL Fit Lower 

95% PI 
Upper 

95% PI 
10.04 258 57 20 36 180 321 67 19 165 16 44 213 37 259 9.10 6.80 11.86 

10.04 260 51 17 34 176 313 60 18 165 16 41 215 37 258 8.66 6.44 11.34 

10.10 276 59 21 44 198 328 72 23 178 18 50 223 39 275 9.50 7.13 12.33 

10.16 280 65 24 43 195 342 73 24 176 18 52 243 43 273 10.48 7.95 13.50 

10.16 244 59 21 41 177 299 69 21 162 17 47 208 38 241 8.05 5.94 10.60 

10.17 279 70 24 44 197 332 82 23 185 18 41 232 42 274 9.35 7.01 12.15 

10.26 265 62 21 44 188 324 74 23 179 19 47 227 42 272 9.40 7.05 12.21 

10.56 294 61 24 43 211 361 69 22 193 19 48 251 39 296 11.14 8.50 14.29 

10.60 285 65 22 46 211 352 70 23 189 18 53 242 38 287 10.73 8.16 13.80 

10.79 298 56 21 38 206 347 68 22 190 14 44 250 36 297 9.96 7.52 12.89 

10.86 278 65 20 45 202 350 75 22 187 15 51 246 37 279 10.82 8.23 13.90 

10.94 292 56 20 44 183 369 69 20 167 16 45 240 39 287 11.95 9.17 15.23 

11.04 293 58 19 41 202 342 69 22 185 16 41 243 38 293 9.62 7.24 12.48 

11.07 277 59 19 45 180 333 68 20 167 16 39 238 41 270 9.81 7.39 12.70 

11.09 262 60 22 40 185 331 69 21 170 18 47 220 37 266 9.66 7.27 12.53 

11.26 302 60 21 40 203 376 70 25 187 16 44 253 38 302 11.52 8.81 14.72 

11.68 259 55 19 41 182 323 65 19 170 16 44 221 36 251 9.14 6.84 11.91 

11.69 309 63 23 44 201 380 69 23 181 18 44 251 39 304 11.78 9.04 15.04 

11.76 293 65 23 44 198 354 73 20 189 20 53 252 41 296 11.35 8.67 14.53 

12.10 300 60 20 42 211 353 70 21 192 16 50 257 39 297 10.45 7.92 13.47 

12.21 343 72 23 49 229 393 82 24 210 17 48 274 46 338 12.75 9.85 16.17 

12.21 329 66 22 47 224 387 75 24 208 19 50 264 38 322 12.45 9.59 15.82 

12.36 290 62 20 46 203 358 74 24 183 18 50 237 40 288 10.84 8.24 13.92 
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