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Summary

This study focuses on the development of a generalised multivariate beta type II distri-
bution as well as the noncentral and bimatrix counterparts with positive domain. These
models emanate from a sequential quality monitoring procedure with the normal and
multivariate normal distributions as the underlying process distributions. Three differ-

ent scenarios are considered, namely:

1. The variance is monitored from a normal process and the mean remains unchanged;

2. The above-mentioned scenario but the known mean also encounters a sustained
shift;

3. The covariance structure of a multivariate normal distribution is monitored with

the known mean vector unchanged.

The statistics originating from the above-mentioned scenarios considered are constructed
from different dependent chi-squared or Wishart ratios. Exact expressions are derived for
the probability density functions of these statistics. These new distributions contribute
to the statistical discipline in the sense that it can serve as alternatives to existing proba-
bility models, and can be used in determining the performance of the quality monitoring

procedure.
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Chapter 1

Introduction

1.1 Background

This thesis introduces the generalised multivariate beta type II distribution as well as
the noncentral and matrix variate counterparts. The research emanates from a practical
problem in the process or quality control environment where a control chart is used to
monitor the quality of a process over time. In this chapter some background of the
quality monitoring procedure is given to set the platform of this study. It is important
to note that the author does not intend to present a complete discussion of the aspects
of Statistical Process Control (SPC). Instead, only the key aspects will be considered to
equip the reader with the necessary terminology in order to grasp the content covered in
this thesis.

A control chart is a statistical procedure that can be depicted graphically that is used to
monitor an attribute (such as the mean or variance) of a process with the objective to
determine whether the process is stable or in-control. The simplest and most widely used
control chart is the Shewhart-type of chart; this chart is named after the father of quality
control Dr. Walter A. Shewhart (1891-1967). A typical Shewhart-type control chart is
shown in Figure 1.1. The chart is a basic graphical display of the successive values of a
summary measure (charting statistic) calculated from a sample of measurements taken
on a key quality characteristic and plotted on the vertical axis versus the sample number
or time on the horizontal axis. The control chart usually has a centerline (CL) and two
horizontal lines, one line on either side of the centerline. The line above the centerline is
called the upper control limit (UCL) whereas the line below the centerline is called the
lower control limit (LCL). These three lines are placed on the control chart to aid the
user in making an informed and objective decision whether a process is in-control or not;

this decision is primarily based on the pattern of the points plotted on the chart and/or

1
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1.1. Background

their position relative to the control limits. Notice that it is customary to join the points

on a control chart using straight-line segments for easier visualisation over time.

ucL

CL

\/’\ //\/'\\
YN YN

Charting Statistic

LCL

1 2 3 4 5 6 7 8 9 10
Sample number / Time

Figure 1.1. A Shewhart-type control chart

The Shewhart-type control charts are typically based on (i) taking successive samples
from the output of the process, (ii) calculating the specified sample statistic from each
sample, and (iii) comparing the value of each sample statistic (i.e. the charting statistic),
one after the other, with the control limits. An alarm (a signal) is issued if a single
point (charting statistic) plots on or outside the control limits i.e. lies on or above the
upper control limit or lies on or below the lower control limit. The alarm signals that
the process is deemed to be in an out-of-control state and a search for assignable causes
typically follows. A desirable property of a chart is to signal quickly when a change takes
place and not signal too often when the process is actually in-control (which is when no
shift or change has taken place). Hence the performance of the chart i.e. how efficient
the chart is in detecting changes, is of importance. To gain insight into the performance
of a control chart, the run-length distribution is considered. Once a shift in the process
parameter occurred, the run-length is defined as the number of samples collected until
the shift is detected (i.e. an out-of-control signal is observed). For a detailed discussion
see Montgomery (2009) [31].

In this thesis the attribute of interest is the variance or covariance structure of a process.
In practice, process variability is often monitored by plotting the sample range (R chart)
or sample standard deviation (S chart) on a Shewhart control chart. Alternatively the
cumulative sum (CUSUM) or the exponentially weighted moving average (EWMA) charts
could be used. The CUSUM and EWMA control charts are different from the Shewhart-
type chart in that they are memory-based charts which sequentially combine the informa-
tion from multiple (past) samples with the present (or current) sample information in the
decision making process. The Shewhart-type of chart, however, uses only the information

available from the most recent (last) sample. For all of these control charts calibration

2
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1. INTRODUCTION
1.2. Example

samples are needed to first estimate the parameters (used for setting up the control limits)

before real-time charting begins.

Classical control charts such as the Shewhart, CUSUM and the EWMA are designed for
processes where either the process parameters are known, or sufficient historical data is
available to estimate any unknown parameters (see e.g. Montgomery, 2009 [31]). Que-
senberry (1991) [41], however addressed the problem of monitoring an attribute from
the start of production, whether or not prior information is available and proposed the
so-called Q-charts. These Q-charts are constructed by calculating a sample statistic
and then transforming this statistic to obtain the charting statistic that is plotted on a

Shewhart-type control chart.

The practical problem that initiated the research and that is covered in this thesis is
monitoring the process variance, when the measurements are taken from a normal distri-
bution, using a Q-chart; this was then extended to also focus on monitoring the covariance
structure of a multivariate normal distribution. An example is given in the next section

to explain how a Q-chart operates.

1.2 Example

In this example a Q-chart is used to monitor the unknown process variance, assuming that
the observations from each independent sample are independent identically distributed
(i.i.d.) normal random variables with the mean known. The purpose of this example
is to give an overview of the procedure to set up the control chart; for more detail see
Quesenberry (1991) [41].

To describe the construction of a Q-chart suppose that twenty samples each of size four
were generated. The first ten samples were generated from a normal distribution with
mean ten and variance equal to one, denoted by N (10,1). Between samples ten and
eleven it is assumed that the process variance encountered a sustained shift and therefore
the last ten samples were generated from a N (10, 2) distribution. The simulated data
set is given in Table 1.1 and the control chart in Figure 1.2. Let (Y}, Y, ..., Yin,),
1 = 1,2,...,20 represent successive, independent samples of size n; > 1 measurements
made on a sequence of items produced in time. Note that in this example n; = 4. The
charting statistic is obtained using the following steps:

1 o
1. Calculate the sample variance for each sample ie. S? = — S (Vi — p1o)° for i =
k=1

n;
1,2,...20 where p, = 10.
The sample variance is used since it is an unbiased estimator of the variance.

3
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2. Calculate the two sample test statistic, for testing the null hypothesis at time

that the two independent samples are from a normal distribution with the same

norma
G2 9 1 n;S;

unknown variance, ———— where S;?7"** = % Thus, the variance of the
poole .
Si—l Zizl n;

it" sample is divided by the pooled variance of the first i — 1 samples combined, for

i=2,3,...20.

pooled
Sifl

2,3,...20 where F),, n,+ny+. +n,, () denotes the cumulative distribution function

g2
3. Calculate the charting statistic, Q; = ®! Frnatnototn; 4 <Q—Z>] for i =

of the F' distribution. The two sample test statistic given in step 2 has an F
distribution under the null hypothesis (see Remark 2.1 in Chapter 2). &' ()
denotes the inverse of the standard normal cumulative distribution function. The
charting statistic is a standard normal random variable obtained by transforming
the two sample test statistic using the classical probability integral transformation

theorem.

Remark 1.1 The classical probability integral transformation theorem states: for a
random variable Y with continuous distribution function G, the transformed random
variable G (Y) has a uniform distribution on the unit interval (0,1) ; and conversely,
if V' is a uniform random variable on the unit interval, then G~ (V') has the distri-
bution of Y (see Bain and Engelhardt, 1992 [3], p.201).

4. Plot the charting statistic on a Shewhart-type chart with the typical three sigma
control limits where sigma refers to the standard deviation of the statistic (Q;)
plotted on the chart. Take note that the Q-chart is plotted in a standardised
normal scale therefore the LC'L and UC'L are equal to £3 and the centerline C'L is
0 (see Montgomery, 2009 [31], p.184).

4 -

3 vct
5 |

Ke:

51

2

7 4&/\‘

v
0 cL

Z L

£

21

Q

-3 LCL

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sample number / Time

Figure 1.2. Q-chart for the example
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Table 1.1. Simulated data set

G2
Sample | Y Yio Yi3 Yia 522 B - Q;
S,l‘f(ided
8.4 9.1 10.6 8.9 | 1.235 NA* NA
2 96| 88| 88| 11.3| 1.183 | 0.957 0.041

3 1011 99| 9.6 |10.8 | 0.205 | 0.170 1.625
4 10.3 | 10.6 | 10.6 | 10.7 | 0.325 | 0.372 0.932
5 10.7 1 10.0 | 9.6 | 10.1 | 0.165 | 0.224 1.412
6 86| 96| 94|10.5|0.683| 1.096 | —0.291
7 9.0 91103 |10.0|0475| 0.751 0.169
8

9

10.0 | 10.9 | 10.7 | 9.2 0.485 | 0.795 0.096

9.1]10.0| 9.5]10.1|0.268 | 0.450 0.744
10 10.1 | 11.2 1 10.0 | 9.7 { 0.385 | 0.690 0.263
11 113 9.6 | 11.2 | 11.1 | 1.125 | 2.080 | —1.273
12 10.1 | 11.0 | 11.5 | 9.3 0.938 | 1.579 | —0.853
13 9.0 72| 11.7| 7.8|4.143| 6.655 | —3.491
14 93| 78| 97| 9.8|1365| 1.528 | —0.815
15 9.7111.9|10.2| 82| 1.745| 1.882 | —1.144
16 951 90| 9.0|129]| 2665 | 2.715 | —1.774
17 78| 11.6| 95| 7.7(3.235| 2977 | —1.950
18 105 9.6 9.6 |10.5]0.205 | 0.169 1.680
19 109 | 95| 11.2| 9.6 | 0.665 | 0.575 0.473

20 | 11.1[13.2| 9.8|10.3|2.895| 2.559 | —1.693
4
(Ya,—10)* = 0.205

52 0.20

_ ] —
Ppooled  IXLZILAXLIEE — 0.170
2 8

Qi= &' [F,5(0.170)] = 1.625

T The Q; for sample 3 is computed as follows: S2=

There is no charting statistic that corresponds to sample number one as this sample is
used to obtain an initial estimate of the process variance. Take note that in practice
the variance is unknown and that it was only assumed for illustration purposes in this
example that the variance changed from one to two. The process is effectively monitored
from sample two onwards. For this example, the process is declared out-of-control at
sample number thirteen since this is the first sample where a charting statistic plots on
or outside the control limits (see Figure 1.2). Note that, in this example the variance

changed between samples ten and eleven. Three samples were collected after the change

* Not Applicable

5
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1. INTRODUCTION
1.2. Example

in the variance before the control chart signalled that the process is out-of-control by
plotting outside the lower control limit, therefore the run-length is three. Once the

process variance encountered a sustained shift, some questions arise, for example:

e What is the probability that a charting statistic will plot inside or outside the control

limits?

e What is the probability that the chart will signal immediately? In other words,
what is the probability that the run-length is equal to one?

e In general, what is the probability that the run-length is equal to k for k =1,2,...7

A broad outline of this example is summarised in Figure 1.3. Independent samples of
observations are taken from a normal distribution; the latter is referred to as the process
distribution. A sample statistic, namely the sample variance (S?), is calculated for each
incoming sample. The charting statistic (@;) is a function of the sample variances.
The distribution of the charting statistics as well as the joint distribution thereof, after
the change in the process parameter, will be derived in this thesis. Finally, the joint

distribution of the charting statistics can be used to determine run-length probabilities.

[ Process distribution]
[Sam ple statistic]
[ Charting statistic distribution ]

Eoint distribution of the charting statistica

2

[R un-length probabilities]

Figure 1.3. Broad outline of the example

6
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1. INTRODUCTION
1.3. Objectives and scope

Starting from the questions raised above originating from the sequential quality monitor-
ing procedure, it will be endeavoured in this study to contribute to the distribution theory
field. Distribution theory lies at the intersection of probability and statistics and is the
foundation from which all statistical theory and application originates. Enhancing our
knowledge of distribution theory therefore implies that the general body of knowledge of
statistics is improved. The objectives and scope of this study will be highlighted in the

next section.

1.3 Objectives and scope

e Present the problem statements within the SPC environment from which new dis-

tributions emanated.

e Follow a systematic approach in building-up the distributions, starting in each case
from successive, independent samples of measurements that are made on a sequence
of items produced in time with the assumption that the process distribution is a

normal distribution or a multivariate normal distribution.
e Specifically focus on the development of these new distribution models.

e Investigate the role of the closed form expressions of the distribution models in the

SPC environment with specific focus on calculating the run-length probabilities.

The example in Section 1.2 portrayed the situation when independent samples are taken
from a normal distribution and the variance of the sequential process is monitored and
it encounters an unknown sustained shift. Only a permanent upward or downward step
shift in the variance is considered; other types of shifts falls outside the scope of this thesis.
The run-length is a measure to gain insight into the performance of a control chart. To
develop exact expressions for the probabilities of run-lengths, the joint distribution of the
charting statistics is needed. This will be discussed in Chapter 2 as well as Chapter
5. This thesis introduces closed form expressions for the joint distribution of charting

statistics.

The sequential procedure to monitor the variance is an on-going process; therefore theoret-
ically the charting statistics could be calculated for all time periods as it tends to infinity.
In this thesis the charting statistics from immediately after the shift in the variance up to
p samples afterwards will be considered. The properties of the new distribution models

as p tends to infinity fall outside the scope of this thesis.

7
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The emphasis of this study, as can be seen from Figure 1.4, is a systematic approach in
building up new generalised multivariate beta type II distribution models from a sequential
process. In Chapter 2 the generalised multivariate beta type II distribution is derived; this
distribution stems from monitoring the variance of a normal random variable where the
mean remains unchanged. The statistical property that will be focused on in this chapter
is the moments to shed light on the nature of this distribution. The property is of
importance because once the process is out-of-control the charting statistics are no longer
independent and in order to investigate this, the correlation structure is of particular

interest.

. ~
GBS « Generalised multivariate beta type I
process distribution distribution
monitoring the
variance ¢ Chapter 2

Univariate normal . oo
e i © Noncentral generalised multivariate

monitoring the beta type Il distribution
variance with shiftin" ¢/ P11V &}
mean J

WIEIETERELELEIGIEIRY o Bimatrix variate generalised beta
process distribution type Il distribution

with shift in
e e a1 © Chapter 4 )

~

o lllustrative example

* Chapter 5
J
~

e Conclusions

* Chapter 6
J

Figure 1.4. Thesis outline

The focus of Chapter 3 is on the scenario where the variance of a normal random variable
is monitored but the mean also encounters a sustained shift. This introduces the non-
central generalised multivariate beta type II distribution. Since the correlation will be
investigated in Chapter 2, only the effect of the noncentrality parameter will be demon-
strated.

In Chapter 4 the generalised bimatrix variate beta type II distribution is proposed. Two
cases will be considered here, namely the special case where the covariance structure

changes with a scale factor, and secondly the more general case with a complete change in

8
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1.3. Objectives and scope

the covariance structure. The product moments will be derived to determine the distrib-
utions of the determinants of the statistics needed to calculate the run-length probabilities
in Chapter 5.

To the author’s knowledge, the newly derived exact expressions of the generalised mul-
tivariate beta type II distribution models are used for the first time in an illustrative
example to calculate probabilities needed for charting statistics, instead of the existing
methods within the SPC environment (e.g. simulation). A measure is also presented
in Chapter 5 if measurements are made where the samples are independent having been

collected from a multivariate normal distribution.

Chapter 6 gives some conclusive remarks and further developments. The Appendix, to-
wards the end of this study, is a collection of some fundamental mathematical results used

in this study.

9
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Chapter 2

Generalised multivariate beta type 11

distributions

2.1 Introduction

In this chapter the generalised multivariate beta type II distribution is derived; this
distribution stems from monitoring the variance of a normal random variable by taking
successive, independent samples of measurements over time. These measurements are
independent and identically distributed collected from a N (p,,0?) distribution. The
mean (/) is known and the unknown variance change from o2 to 02 = Ao (also unknown)
where A # 1 and A > 0 somewhere between samples k — 1 and . Therefore, from sample
k onwards the process is considered out-of-control. This scenario is depicted in Figure
2.1.

I I I
1 2 - k-1

N(uo, 02)

| | |

T 1 >
K kK+1

N (o, 02 = Ao?)

Figure 2.1 Monitor the variance when the known mean remains unchanged

Section 2.2 gives an overview of the process monitoring problem that leads to the random
variables of interest. The joint distribution of these random variables gives rise to a new
distribution that can be regarded as a generalised multivariate beta type 1I distribution.
Sections 2.3 and 2.4 focus on the joint and marginal distributions, respectively. Since the
moments are needed to investigate the correlation structure between the random variables,
this is the only statistical property of the distribution that is focused on in Section 2.5.
A shape analysis of the univariate and bivariate distributions as well as the correlation of

the charting statistics for the bivariate case is considered in Section 2.6. An example of

10
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using the generalised multivariate beta type II distribution to calculate some run-length

probabilities is deferred to Chapter 5.

2.2 Problem statement

The example in Section 1.2 illustrated the use of a Q-chart and it highlighted the im-
portance of the joint distribution of the charting statistics once a shift in the process
parameter occurred. In this section the random variables of interest are derived when

monitoring the variance of normal random variables using a Q-chart.

Let (Y1, Yia, ..., Yin,), i = 1,2,... represent successive, independent samples of size n; > 1
measurements made on a sequence of items produced in time. Assume that these values
are independent and identically distributed having been collected from a N (i, 0?) dis-
tribution where the parameters j, and o denotes the known process mean and unknown
process variance, respectively. Suppose that the unknown process variance has encoun-
tered a permanent upward or downward step shift between samples (time periods) x — 1
and k with k > 1 from 02 to 02 = Ao? (also unknown) where A # 1 and A > 0. In
practice k and A would be unknown (but deterministic) values. Take note that other

types of shifts, for example a trend or cycle, falls outside the scope of this thesis.

Since the process variance o2

is unknown, the first sample is used to obtain an initial
estimate of o2. It is assumed that the process starts in-control. This is an important
assumption because the data is used to compute estimates of the unknown process para-
meter which will in turn be incorporated in the charting statistic that is used to determine
if the process is in-control. This initial estimate is continuously updated using the new
incoming samples as they are being collected, as long as the estimated value of o2 does
not change, i.e. is not detected using the control chart. To this end, let

T nS?
G2pocted _ 72213—7,1 D00 for 1 = L2... (2.1)
i=1 "

1 o
where S? = - S° (Yip — p1p)? for sample i =1,2,...,
i k=1

where S-7°”** denotes the pooled sample variance of all the measurements up to and
including sample 7; and S? denote the variance of the i*" sample with y, representing the
known population mean. According to (2.1), i denotes time and r is a specific point in
time. Take note that a sample can even consist of an individual observation because the
process mean is assumed to be known and the variance of the sample can still be calculated

as S? = (Y — pp)° fori =1,2,.... The sequential sample quantity in (2.1) is computed

11
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as each new sample becomes available. Therefore, the variance of the first sample, i.e. 5%,
estimates 02 at sample one. At sample two S7 is compared to S? to determine whether
the value of o2 is still the same. If the hypothesis of equal variances cannot be rejected,
i.e. the charting statistic plotted inside the control limits, a new updated estimate of o2
is obtained. The updated estimate is S;”""led and includes information from samples one
and two; this point estimate is then used to check if the value of o2 is still the same at
sample three by comparing S5 to S;”""led. This sequential updating-and-testing procedure
continues until a change is detected in the value of o2. A change in the variance will be

detected when a charting statistic plots on or outside the control limits.

The control chart and the charting statistic are based on the in-control distribution of
the process, in other words they are derived under the null hypothesis of no change in
the process variance. The two sample test statistic for testing the hypothesis at time
i = 7 that the two independent samples (the measurements of the 7" sample alone and
the measurements of the first » — 1 samples combined) are from normal distributions with
the same unknown variance o2 (see Bain and Engelhardt, 1992 [3], p.402), is based on
the statistic

2
Ur = S forr=2,3,..., (2.2)

r S2pooled
r—1

where S2 and 527" are defined in (2.1).

Remark 2.1

(i) The statistic (2.2) can be determined from r = 2 onwards, i.e. sample number two.

This is due to the unknown variance that must be estimated from the first sample.

(i) Independent samples are taken from the process distribution (i.e. from the N (p1q, 0?)),

TsQ 7‘:1 iS2pooled

therefore n - and 2z " 5 "L are independently chi-squared distributed with
o o

degrees of freedom n, and Z:;ll n;, respectively (see Bain and Engelhardt, 1992 [3],

p.271).

nTS2 r:l n; S2pool6d SQ

(i4i) Furthermore, if the process is in-control, ——* /ZZ_1 771’_1 = ——— follows an
o'y a2y Sopepted

F distribution with n, and Z:;ll n; degrees of freedom (see Bain and Engelhardt,

1992 [3], p.275). This is the reason why the charting statistic is a function of the

F distribution (see the example in Section 1.2 step 3).

(iv) The term charting statistic will be used for the two sample test statistic defined in

(2.2) as well as the transformed value thereof that is plotted on the control chart.

12
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The focus will be on the part where the process is out-of-control, i.e. encountered a shift.
The exact distribution of the charting statistic is then unknown because after a change
in the process parameter occurred, the charting statistics are no longer independent.
Essentially this means that the distribution of the statistic (2.2) is investigated under the
alternative hypothesis that the process is out-of-control. To simplify the notation used
in expression (2.2), following a change in the process variance between samples k — 1 and

k, define the random variable
S

2pooled
poole
Sﬁ—l

Uy =U; =

K

(2.3)

The subscript of the random variable Uj indicates the number of samples after the pa-
rameter has changed, with zero indicating that it is the first sample after the process

encountered a permanent upward or downward step shift in the variance.

Consider the sample variance, i.e. S2, before and after the shift in the process variance

took place:
Before the shift in the variance: After the shift in the variance:
Samples: i =1,2,...,k—1 Samples: i =k, k+1,...
Distribution: Y, ~ N (i, 0?) Distribution: Yjz ~ N (g, 03 = \o?)
9 1 n; 9 9 1 n; 9
S; :_Z(Yik—ﬂo) S; :_Z(Yz‘k—ﬂo)
N; k=1 n; k=1
- x? (ni) - x* (ni)
o o7
Remark 2.2

(i) x? (n;) denotes the central chi-squared distribution with degrees of freedom n; (see

(B.31)).

(i) The degrees of freedom is assumed to be n;, since the mean is not estimated because
it is assumed that the mean is a fized / deterministic value. In case the mean is
unknown and has to be estimated too, the degrees of freedom changes from n; to

n; — 1 and the p, would be replaced by fiy, i.e. a point estimate of L.

13
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Following a change in the variance between samples x — 1 and k, (2.3) can be rewritten

as:

] S:
UO - 2pooled
Snfl
r—1 52
= n; X —*
12_1: Z?—ll n,SZ?
n.S?  o?
r—1 )
_ D iy M % ot o’
Ny r—1 nz57,2
Zi:l =
r—1
~ i AW
_ 2= M (2.4)
Ny X
o2
where \ = —; (2.5)
N, S?
Wy = == ~ x*(n,) and
o7
r—1 nzSQ

X=> ~ x? (a) with a=3"1" n,.
Note that A indicates the unknown size of the shift in the variance. In general, at sample
1,2,..

(all based on the two sample test statistic for testing the equality of variances):

K+ j, where kK > 1 and j = ., p define the following sequence of random variables

2
Ur = Sits
J S2pooled
k+7—1
2
_ K+j—1 SH+]
- Zi:l ni x k—1 52 n-l—] 1 SQ
. 2 2
nHJrJSHJrj 01
Kk+j—1 - 5 D)
_ Do i % ol o?
- 2 2
Nptj anl n;S; i Znﬂel n;S; o1
=1 0_2 1=K O'% 0_2
. Q2 2
nHJrJSHJrj 07
k+j—1 - 5 )
Doiei i 01 o?
— X 3
Mt et S st Tt o
1 o?
k+j—1 ] )
Doini M )\VVJ

Ng+j

X —
X+AY W

14
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2
o
where \ = —;,
o 2
_ nl{+isﬁ+i 2 . .
VViZTNX (nyqq) fori =0,1,...,7 and
1
1 nZSQ

X =5 =50 ~ ¥ (a) with a= 307 0y,
Take note that this is an on-going process and even though j could theoretically go up
to infinity, it will be restricted to p in this thesis when defining the random variables and
determining the joint distribution. This will serve as a cut-off point for the monitoring of
the process; therefore only the random variables from immediately after the change in the
variance took place up to p samples afterwards will be considered. However, there is not
a restriction placed on the value of p. The properties of the multivariate and marginal

distributions as p tends to infinity fall outside the scope of this thesis.

To simplify matters going forward and for notational purposes the factors, Z;:ll N /Ny
and Zfif /Ny in (2.4) and (2.6) are omitted and the (x) superscript dropped, since
the factors are deterministic and can therefore be incorporated in the control limits when
they are calculated (see Chapter 5, Section 5.1.1). Therefore, the random variables of

interest for this study are:

AW,
Uo=—~— 2.7
0" T x (2.7)
AW
U; = ]-_1 , 7=1,2,...,pand A > 0,
X+ A0 Wi
where
2
= U—; indicates the unknown size of the shift in the variance,
o

= Y2 (ni) ~ x%(a), i.e. X is a chi-squared random variable with degrees of
k—1
freedom a=3% """ n,,
W; ~ x?(v;), i.e. W; is a chi-squared random variable with degrees of freedom v;=n, ;

fori=0,1,...,p.

Take note that X represents the sum of x — 1 independent x? random variables, i.e.

X2 (n1),...,x? (ne_1) since it is assumed the samples are independent.

The random variable U, corresponds to time period r, and U; to time period s + j.
X, W; with j =0,1,2,...,p are independent chi-squared random variables with degrees
of freedom a and v; for j = 0,1,2,...,p, respectively. The random variable X relates
to the samples before the change in the variance took place, with degrees of freedom

a = Z;:ll n; which represents the total number of observations (for all samples) before

15
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the shift in the variance occurred. The random variable W; for j = 0,1,2,...,p relate to
the samples after the change in the variance occurred, with degrees of freedom denoted
by v; = n,; which represents the sample size of sample x + j. Take note that j = 0
corresponds to sample k, j = 1 to sample x + 1, and so forth. The parameter \ is

deterministic and represent the ratio of the new variance (after the change) with respect
2

to the previous variance (before the change), i.e. A = U—; and indicates the unknown size
of the shift in the variance. The information regarding the time from which the shift
occurred (k), is contained in the degrees of freedom of the random variable X; if samples
of equal size (n) are taken at equally spaced time periods the degrees of freedom of X

reduces to (k — 1) X n

Remark 2.3 Consider the case where independent samples each of size n > 1 measure-
ments are made on a sequence of items where these values are independent and identi-
cally distributed having been collected from an exponential distribution with a parameter
0 as the unknown process mean. Suppose that from sample k the process parameter has
changed from 0 to 01 = A0 where X # 1 and A > 0. The two sample test statistic for
the Q-chart for comparing the means follows from the likelithood ratio test and is based
on the ratio of the mean for a specific sample to the overall mean of all the preceding

samples (see Bain and Engelhardt, 1992 [3], p.418). The resulting random variables

are the same as (2.7) with \ = el indicating the unknown size of the shift in the mean,

0
X = ZZ L2 (2n) ~ x?(a), i.e. X is a chi-squared random variable with degrees of

freedom a=2n (k — 1) and W; ~ x*(v;), i.e. W; is a chi-squared random variable with
degrees of freedom v;=2n fori =0,1,...,p. Thus, when monitoring the unknown process
mean when observations are from an exponential distribution, the charting statistics are
the same as for the case of monitoring the variance when observations are from a normal
distribution with the key difference being the fact that it is only the degrees of freedom of
the chi-squared random wvariables that changes. For a detailed discussion the reader is
referred to Human and Chakraborti (2010) [17] and Adamski et al.(2012) [1].

The joint distribution of the random variables (2.7) will be derived in the next section.

2.3 The generalised multivariate beta type II distri-

bution

In this section the joint probability density function (pdf) of Uy, Us, ..., U, (see (2.7)) is

derived. This distribution is unknown and is important for studying the probabilistic

16
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properties and performance of the control chart, for example determining the run-length

probabilities.

Theorem 2.1 Let X, W; with j = 0,1,2,...,p be independent chi-squared random var-

iables with degrees of freedom a and v; with j = 0,1,2,...,p, respectively. Let
AW, AW

U, = =2 and U; = I where j = 1,2,...,p and A\ > 0. The pdf of
X XYW

Up,Uy,. .., U, is given by

wla

r j=0 2 L | p—1 P Y
f (o, - ., up) = F(() (22]) (1:1 , ) (kgo(uuk)zj—m ) (2.8)
B ~(8+2 50 )
X<A+u0+iuj:]:[o(l+uk)> ;

where I' () denotes the gamma function (see (B.1)).

Proof. The joint pdf of X, Wy, Wy,..., W, is

1 R
[ (x,wo,wy, ... ,w,) = ™ —a e ijz e . (2.9)
LI
AW, AW,

Let U = X, Up =~ and Uj =

1 1 i
This gives the inverse transformation, X = U, W, = XUOU and WW; = XU b (U + A Zi:}) Wi
where j =1,2,...,p.

Consider W :

1 1 1
fOI'j21: WI:XU1<U+)\WO):XUl(U_'_UOU):XUlU(l_’_UO)v

1 1
forj=2: W = U (U+ AWy +AW1) = Uz (U + UU + DU (1 + Up))

1
= XUQU (1+U) (1+Uy).

1
~U;UT— (1 +Uy)  where

Therefore, by observing the pattern, in general W, = 3

i=1,2,...,p.

17
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The Jacobian of the transformation is,

J (x, wo, wr, ..., wp = U, Uy, Ut, .. ., Up)
1 0 0 0
Uo u
A A 0 0
uy (1+ug) Uiy u (1+ug) 0
A A A
T g (14w) (T+wy)  ugu (14u) usu (1+ug)
—_— 0
A A A
p—1 . p—1 p—1 p—1
up [T (ue)  wpu [T (Lun)  wpu (1+uo) TT (1+us) w [T (14ux)
k=0 k=1 k=2 k=0
A A A A
u\p+l P J—1
N (X) Jl;[1 k=0 (1 * Uk)
u\ptl P
= (5)" ILI+u0)... (1+u;-1)]
)\ j=1
w\ pt+1 p
— <X> (1+uo)” TT[(1+u1) ... (1+uj-)]
j=2
u\ p+1 . P
_ (X) (14 uo)” (1 +uy)"™" [ [0+ ) (1 )]
J:
+1
= (3)" (o) (1w ()2 (14 )
+1 p—1
_ (ﬁ)p TT (1+u)” ™. (2.10)
A k=0

Thus, making the transformation and substituting in (2.9), the joint pdf of U, Uy, ..., U,

is given by

P 1 Jj—1 _ u p+1p=1 B
x 1 Tt [T+ uk)] e ? (X) [T (14 wu)" ™"
j=1 k=0 =0

18
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7Zf70£21 Zp
)\ - a o El‘,l v p vi
= u e uO_QQ ' (H u? 1) (2.11)

j=1 Lk=0 k=0
~4 (1207, 2 [T 0e)
Xe
p [i-1 A
Consider the term [] { (1+ uk)] in (2.11):
j=1 Lk=0
forj=1: (1+u0)32171,

wls

for j =2 [(1+up) (1+u)]2 ",

Vp

forj=p:[(14+wu)(X+u)...(1+u,—1)]?

Therefore,
. %
p [j—1 2 p—1 v
H[ Gtuw)| =[O +u)Sren o, (212)
j=1 Lk=0 k=0

p u; j—1
s S
(H 2o 3 L Lo ()

X
YOERS
o
g
+
e
z
i
x>
t
(V)
|
3
=
~_
VRS
3
— 1
—
+
S
Bl
s
E
~__
® \
NS

y L% (o
— S w T TTup (2.13)
AP (4 =0
I1
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Now, integrating (2.13) with respect to u using (B.18), yields the desired result (2.8) after

simplification,

= 7 ?.Z:_O% : (ﬁ U;zl1> (pHI(lﬂLuk)Zf"““%l)

22T ()T (3) o) e
FAED DI (FE O DRSS | NG
x/u = e du

pj—1
1+“§+2131k1‘[0(1+uk)
a Vj J= =

X ()\—FUo—l-in]ﬁl(l—l-uk))

j=1 k=0

Remark 2.4 The joint distribution of Uy, Uy, ..., U, (see (2.7)) derived in Theorem 2.1
gives rise to a new distribution that can be regarded as the generalised multivariate beta
type II distribution. The random variables in (2.7) are constructed from independent chi-
squared random variables using the variables-in-common (or trivariate reduction) tech-
nique and the resulting distribution is defined on the positive domain. A literature
overview of relevant multivariate beta type Il distributions is briefly discussed in order
to conteztualise the new distribution (2.8). Tiao and Guttman (1965) [45] obtained a
multivariate analogue of the beta type II distribution (see (B.29)) by performing the appro-
priate transformation on the Dirichlet distribution. Note that the beta type II distribution
15 also referred to as the inverted beta distribution or the betaprime distribution. They
also considered an alternative development through stochastic representation. Suppose

that X, W; with j = 0,1,2,...,p are independent chi-squared random variables as men-
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tioned in Theorem 2.1, but with degrees of freedom 2a and 2v; with j = 0,1,2,...,p,
respectively. Define

U, = % where j =0,1,2,...,p. (2.14)

The pdf of Uy, Uy, ..., U, is
- a+2::ovj
B (a—i— Z] o%) o ) ( )
[ (ug,uy, ... upy) = Tl T T (1) H u; 1 —l—J;) u; . (2.15)

Jj=0

Uj>0,j:0,1,...,p.

Tiao and Guttman (1965) [45] named this the inverted Dirichlet distribution. In literature
this is also referred to as the standard inverted Dirichlet distribution, the multivariate
inverted beta distribution or the type II Dirichlet distribution. The distribution (2.15)
can also be obtained by supposing X, W; have standard gamma distributions. For a
thorough discussion on the inverted Dirichlet distribution see Kotz et al. (2000) [26], p.485
and Ng et al. (2011) [35], p.175. Libby and Novick (1982) [27] derived the generalised F
distribution from ratios of independent gamma variables. Let X, W; with j = 0,1,2,...,p
be independent gamma distributed random variables with parameters 3,, a and 3;, v; with

Jj=0,1,2 ... p, respectively. The joint pdf of the random variables in (2.14) is

f(ug,u, ... uy) = 11:(<§)Jr fzfl“o(z)) (}i (%)Uj U§j1> (2.16)

- (HZfzo ”j)

(egi)

Uj>0,j:0,1,...,p.

Note that substituting % = 1 in (2.16), the generalised F distribution reduces to the

J
inverted Dirichlet distribution in (2.15). Rada-Mora and Nagar (2007) [42] extended the
generalised beta type II distribution given in Patil et al. (1984) [37] to obtain a multivariate
generalisation. The stochastic representation and the resulting pdf follow. Let X, W;

with 7 = 0,1,2,...,p be independent standard gamma distributed random variables and
define
1
W\ ©
Uj:b(yj) for j=0,1,2,....p, (2.17)
21
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where ¢ # 0 and b > 0 are constants. The joint pdf of the random variables in (2.17) is

I'(a+ >0 v P
[ (ug,uy, ... upy) = <a Z]_OU >p |c\pJrl (H u;vj_1> (2.18)
T (a) [[P T (0;) b 20"

_p 20
(5 () ,

Uj>0,j:0,1,...,p.

Substituting c = b =1 in (2.18), the pdf reduces to the inverted Dirichlet in (2.15).

Remark 2.5 [t is important to note that there exists a known relationship between the
beta type I distribution and the beta type II distribution. Several beta type I distributions
have been proposed in literature, see for example Gupta and Wong (1985) [15], Jones
(2001) [23], Olkin and Liu (2003) [36], Nadarajah and Kotz (2005) [33], Nadarajah (2009)
[34], Arnold and Ng (2011) [2]. For an overview of the beta type I distribution consider
Gupta and Nadarajah (2004) [12], Johnson et al. (1995) [22], Balakrishnan and Lai
(2009) [4] and Kotz et al. (2000) [26].

The next two lemmas derive alternative expressions for the multivariate generalised beta

type II distribution given in (2.8).

Lemma 2.3.1 An alternative expression for the joint pdf in (2.8) in terms of the bino-
mial series, 1Fo(-) (see (B.7)) is

f (uo,uq, ... uy

o (s+5503) M (ﬁ 4> -

1—A
=0,1,....p, | =5 <1
P 'Hi_o(1+uk)
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P Ui
*<%+Zj:0 _2l>

Proof. Consider the term ()\ +up+ D5 Uy [Ty (1+ uk)) in (2.8),
p J—1
Atuo+ D uy [T (1 + uy)
J=1 " k=0
p Jj-1
=A+uo+ur (L4+uo) + 3wy T (1 +w)
=2 " k=0
p j=1
j=2 " k=0
p J-1
=2 " k=0
p j—1
= A4+ (L+wug) (1 4ur) +ug (L +ug) (L +ur) + > u [T(A+up)—1
j=3 " k=0
D J=1
= A+ (14w (T+w)(I+u)+ 3 u [T (A +w) -1
i=3 " k=0
p
=2+ J] (1 +ug) — 1. (2.20)
k=0
p
1
Substituting (2.20) in (2.8) and multiplying it with M, gives
ko (1 + k)
f (uﬂuulv 7up)

) T (% +2 0 %)./\% <1£[ u%_1> (pﬁ1(1+uk)2§—k+1321>
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S () (1w

§ (A+H§_O(1+uk) - 1><

vl
+
I
o
w}f
~—

i:o (1 + ux)
Note that
p—1 - p (#r200%)
k=0 k=0

Il
VR
i
_
|
S
(S]]
+
!
I
o
vl
N——
N——
|
/N
[NS)
+
\g
Il
o
MLF
~—

T+ uk)‘(%+25—0321) , (2.22)

Expression (2.21) can be simplified to the desired result (2.19) using (B.7) with

Ao +uw) —1

1—2
Z:O(l"‘uk)

A P (1 —1 1—A 1—A
Then:z::—( +H§:0( + ur) —1):p— With‘p— < 1.
Theref k=0 (1 + ug) k=0(1+“k) Hk=0(1+“k)

erefore,

f(u(]aula"'aup)

F(%_'_Z_Z;:O 221) )\% p vi 1 p _(2+Zk Z.L)
- v; u’ - 1+u 2 =0 2

DT (%) (” ) ) (31( g

P 1—A

X 1 Fo | 24> %,

' 0<2 1202 Hz_o(1+uk)>

]
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Lemma 2.3.2 The joint pdf of (Uy, Uy, .

., Up) in (2.8) can also be expressed in terms
of the product of beta type II pdfs,

a OO a p ) j—1
flug,ug, ..y uy) = A" (Z')b (1 — X\’ ][ Beta!! (321,%+ > +b) : (2.23)
b=0 O =0 k=0
Uj>0,j:0,1,...,p,

where Beta!! (-,-) denotes the known beta type II pdf defined in (B.29) and (), is the

Pochhammer coefficient defined in (B.4).

Proof. Expanding ; Fy(-) in expression (2.19) in series form (see (B.7)), gives

f(U(), Uty ... up)

a

TS o ()
ERIOIAAE) <Huj )(H(l—i—w&) )

j=0 2 7=0 k=0

oo( +Z] 01)2.) 1—X\ b
xb; ! [ o (1 + Uk)} '

Rewriting the Pochhammer coefficient in terms of gamma functions, (see (B.4)), gives

fluo,ur, ..., up)

a

_<+Z 03) N =T (5+500% +b) o 2 i
_F() (%); ( s U) (1—>\)< j)

7=0 2

+Zfzo 321+b) )

NS

X (ﬁ (1 +Uk)_(

k=0

Rearranging the terms, using (B.4) and (B.29), yields the desired result (2.23),

fuo,ur, ..., up) ( )

T S D PR (R VS L) N E A

A ETHr UV TE LT ( )
* <1ﬁ 1y (52 03%))
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( +>0 0”;+b)

&0 F(5+ 0 0T (%)
« ﬁou? 1 (1+u)) (a+2k o‘2k“+b)
=
a (ﬂ) j=1
=AY Q'b )HBeta”(UQJ,‘Q‘jLZ%’“ij).
b=0 3=0 k=0

[ ]
This alternative representation of the joint pdf is used in some of the subsequent deriva-

tions.

Remark 2.6 For A\ = 1 (see (2.5)) the process variance did not encounter a shift and
therefore the process is in-control. Using (2.20), (2.22), the joint pdf (2.8) simplifies to

f(uo,ua, ... uyp)

_ F(a%+§§ 7;) (Hufl 1) (pﬁ1(1+uk)25—k+13§)

X <1+u0—|—zp:ujj]_[1(1+u1c)>

F( +Z] 01)2) 4 321_1 p—1 Zpkl%
onEne (“ )(ﬂ)“*uw )

Uj>0,j:0,1,...,p.

The latter expression is a product of independent beta type II pdfs (see (B.29)). This

confirms the independency of the random variables when A = 1.

2.4 Marginal generalised beta type II distributions

This section focuses on the pdf of any subset of random variables of the generalised

multivariate beta type II distribution derived in (2.8). The marginal pdf of U;, j =

26
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0,1,...p, is derived in Section 2.4.1. In Section 2.4.2 the bivariate pdf of (U, Ujtm),
7=0,1,2,...,p, m=1,2,3,...is derived which will be used to investigate the correlation
structure discussed in Section 2.6. This section is concluded with the derivation of the
pdf of a subset of (Up, Uy, ..., U,) in Section 2.4.3. The marginal distributions derived in

this section will also be used to determine the moments in Section 2.5.

2.4.1 Generalised univariate beta type II distribution

Theorem 2.2 Let X, W; with j =0,1,2,...,p be independent chi-squared random vari-

ables with degrees of freedom a and v; with j = 0,1,2,...,p respectively. Let
AWy AW

Uo = —— and Uj = X+)\Zj_1Wk
k=0

X where 7 = 1,2,....,p and A > 0. If the joint
pdf of Uy, Uy, ..., U, is given by (2.8), then the marginal pdf of

(a) Uy is given by

u? (O up) (8:%) Jup > 0, (2.24)

W+ uj)_(%+ %) (2.25)

where o Fy (+) denotes the Gauss hypergeometric function defined in (B.10).

Proof. (a) For j = 0, the marginal pdf of U, can be obtained using a similar approach
as in Theorem 2.1. The joint pdf of W, and X is given by

w,
1 %01 g-1 4o

rere

NS)
N

/ (wOa I) =

U,
T

[N

2

N
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AW,
By applying the transformation Uy = 70 with Jacobian,
z %
J (wo, z — ug, ) = AA = ;,
0 1
the joint pdf of Uy and X is
A~ vg 1 a.,¥0 _ z (X0
) = g R ), (2.26)
22T ()T (5)

The marginal pdf of Uy is obtained by integrating (2.26) with respect to z using (B.18),

)\__ZQ v o 2+%_1 -% X0
f (uo) = Py u0_2Q—1 fo x2+ 2 16 2( N\ +1)dl,
22T ()T (3)
AT v 0 ! -(5+%)
T w3 1r(§+421)( .

a) ’UJ()%Qi1 (Uo + )\)_<%+%Q) .
2

(b) Let T = f;é Wy, therefore T has a \? distribution with parameter Zj Lo T,

k=02 €
joint pdf of W;, X and T' is given by

[SE

j—1
1 I D
f(wjax>t) = j j2

R . w A e
2 S Fr (2 ()T (S %)

Nl

AW
Applying the transformation ¥ = X + A\T" and U; = J

, gives the inverse transfor-
X+ ®

1 1
mation X =Y — AT and W, = XUj (X +AT) = XU]‘Y, with Jacobian,

Y
AA 0 y
0 0 1

28
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The joint pdf of U;,Y and T is

f(ujvyut)
iy .
1 1 2 4- o
S (wa) (y—x)t 2o
+D v " 1
o#+2 k=0 ZF(EL)F(E)F<Z?C Do
% e*%(%ujy)fé(yf)\t)fég
A
%732171 v %71 j—1 v Y El ,
= : sy (1) S )y
a i A .

ey H) (2.27)

o u H05%) xSy NPT g - ~
Let I) = fo yze foA =" (— — t> e dtdy. Integrating I; with re-
spect to t using (B.21), gives

a j—1 v =14
I foo y%Je ;2!(:”_&1) r (5) r (Zi:o 7]6) Yy %Jrzk:; k1
' N a —1 v (_>
I <§+ k=0 _2&> A

where 1 F} denotes confluent hypergeometric series or Kummer’s hypergeometric series
(see (B.9)). Solving the integral in (2.28) using (B.22) gives
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O >=o G0 L0

_ 4 (2.29)

Rewriting the Gauss hypergeometric function, oF (-), in (2.29) using (B.23) with

A1 _
T = A — Al gives
(1+%)  A+u

I = , 1+-2
r(s+Xin%) 4
a I . .
1_|_uj _(2+Zk:0 2) J Jj—1 1—)
F (e v a.a Vg
j—1
- %+Zk:022kh71 a J v j
DT (T %) T (5 + %) A 242 ¥ (1)(%&—0%&)
r(3+2ib%) 4
— g_,_zj ) 1+u; ( +Zk 0 2) j Jj=1 1=\
X (A w; (2 k=0 2 ( ) ol e+ Y 2.0y %k
( i) At 241\ 2 1;222 = 2 1+u;
+1 a
D) T (S %) 0 (5+ T ) A7 2 i 3
_ 2 02 02 Ot ) (2+Zk:0 2) (2.30)
r(s+ ey
14w\~ %'*'Zi:oﬁzk J Jj—=1 1—)
% U; ( )2F1 %"‘Z%’“,%;% 27’“
)\"‘Uj k=0 k=0 +uj
Substituting (2.30) back in (2.27) yields the desired result (2.25). n
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Remark 2.7 If A = 1, i.e. when the process is in-control, the marginal pdf of U;, j =
0,1,2,...p (see (2. 24) (2.25)) simplifies to a beta type II pdf (see (B.29)) with parameters

7—1
2 and & +Z ,
P(§+5hod) o, (32010 %)
[ (u;) = u? " (1+uy) - , uj > 0.

DT (s +2iey)

Remark 2.8 Remark 2.7 mentions that the beta type II distribution (see (B.29)) is a spe-
cial case of the newly derived generalised univariate beta type II distribution (see (2.25)).
Next a short discussion follows of univariate beta type II distributions. The stochastic
representation of the beta type 11 distribution as well as other univariate beta distributions
that is defined on the positive domain will be considered. Let X and Wy be independent

chi-squared random variables with degrees of freedom a and vy respectively. The random

Wo/?)g

variable Uj = X/

(B.30))

has an F distribution with vy and a degrees of freedom with pdf (see

~—~
[SJIS]

/ 5+ 2) Yo e /31 Yo 7(%+%Q) !
f(ug) = o )F(%)(a) Uy (1+ uo) , ug > 0.

The beta type II distribution is just a multiple of the F distribution, i.e.

NS

Up = =2, (2.31)

with pdf (see (B.29))

The generalised betaprime distribution given in Patil et al. (1984) [37] (also see Malik
(1967) [28]) is derived assuming Wy and X in (2.31) have generalised gamma distributions
with parameters (0, By, vo, ¢) and (0, 5,, a,c), respectively. The pdf is given by

(a+vg)

f(ug) = %c (g—z)vocugoc—l <1 + <§—0u0)) , ug > 0. (2.32)
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Substituting c = 1 in (2.32) gives the marginal distribution of the generalised F distribution
(2.16) proposed by Libby and Nowvick (1982) [27] with pdf

—(a+vp)

f@@:%%%%%(%ﬁm() @+%y0 o > 0. (2.33)

This distribution (2.33) can also be obtained by determining the distribution of (2.31)

assuming X and Wy are independent two parameter gamma random variables.

Remark 2.9 [t is important to take note that the marginal pdf of Uy in (2.24) is also the

marginal generalised F distribution in (2.33),

P+ 22" 5, ~(8+%)
f(UQ) = Wuoz ()\“‘UO)
~(8+%)
N(E+%) s p |
= %)\ 2u02 1(1"‘}”0) , ug > 0.
2 2

2.4.2 Generalised bivariate beta type II distribution

Theorem 2.3 Let X, W; with j =0,1,2,...,p be independent chi-squared random vari-
ables with degrees of freedom a and v; with j = 0,1,2,...,p respectively. Let

Uy = % and U; = AWJ.;I where j = 1,2,...,p and X\ > 0. If the joint
X X+ A0 Wy

0
pdf of Uy, Uy, ..., U, is given by (2.8), then the bivariate pdf of U; and U, is given by

f(uj’ uj+m)

e

o (& j—1
DS (Z')b(l—)\)beetaH <%’%+Z%€+b) (2.34)
! k=0

b=0

Jj+m—1
><Beta” <U3+m a+ Z Vg ‘I‘b)

NT(5+ X0 %) 0 (5 + 200 y) 5
= U
vj Vj+m 1o m—1 v J
DT () (5+ T ) (s y)

J v . JEm
—( e+ _ _k> Yitm _(E+ N _k>
Zkfo 2 uj+2m 1 (1 + Uj+m) 2 Zkfo 2

7 jtm . o J+m71 j—1 1=\
> a Vk a Vg a. .
3 2<2+k:0 2’2+ Z 2720 kZ:O = ’<1+u3) <1+uj+m)) )

(2.35)

~—

wl@
oS
ola
+
m|§

u]‘,u]'+m>0, 7=0,1,....p m=1,2 ...
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where 3F5 () denotes the hypergeometric function (see (B.5)).

Proof. Expression (2.34) follows from integrating the appropriate variables from the

joint pdf in the form given in (2.23).
Expression (2.35) in terms of the hypergeometric function, 35 (-) , follows from expanding

the product of the beta type II pdfs, rearranging the terms and simplifying,

S (g, wirm)

a ) j—1 . j+m—1
=\’ ZT(l—A)beetan (%,%4—];)”—2’“ —|—b)><Beta” <%,%+ kz—:o %’“—l—b)

)\%i(%)b(l_)\)b ( + X0+ ) u]fv%—1<1+ )(+Zk 0v2k+b>

D(YT (5+500 % +0)
( ZH—m Yk ) u:_%:—l (1+Uj+m) (
[ (Ym) [ (+23+m1”k+b>

53000 )

% v [ a J Yk Yi+m J+mu
= 4 w? (1 + ) (120 z)uﬁl (14 Ujm) (e 2)

r(ﬂ)r(% !

+Z]+mvk ) <+Zk02 )F(%+b) 1\ b
Z]+m 1vk ) < Lyl )P(%)b'<(1+uﬂ)(1+uﬂ'+m))

k=0 2

§F< +Zk 002)11(2_’_2{;?%) Yo
= u? (L4 uy)

DT ()T (3 + S %) T (s + 505 y)
Yim g —(%+Zi§%‘“)

Xt (L4 tjm)

(3+ zt?%)b(%+zi_o%)b<%)b( 1) )
(1 + u; )

) (1 + Ujtm

- (%+Zizo Ezk“)

o |2
XZ + 1 j—1
S (em ), (o)

NP5+ S ) T(5H S Y) o

= Uu :
vj Vj+m a —1 v m—1 v J
DT ()T (5+ 2004 T (5 + 20 %)
(e I Yi+m _ (e I oy
% (1+Uj) (2+Zk:0 2)U:Z 1<1+uj+m) (2+Zk:0 2)
X 3k 2+ ”_’2_‘_ U_’Q;2+ ”_’2 Vi .
2T 2T Ly A x 1+ ;) (1 + )
|
33
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Remark 2.10 In the following three remarks the cases if m = 1 and/or j = 0 in expres-

sion (2.835) is considered, since the form of the bivariate pdf will be illustrated for these
cases in Section 2.6.

(i) If m=1,
f(uj>uj+1)
a a . 1 v
NT (34 200 %)
= — (2.36)
vy Vj+1 a J—L1 v
r (7) r (T+) r (5 + Zk:o 7k)
v (e Ik v _(a AR
Xujz 1(1—|—Uj) (2+Zk:0 2 ) Uj+21 1 (1+Uj+1) (2+Zk:0 2)
F ( PETES o )
X Q_|_ U_72;2 + U_; )
ST & T S () (L un)
1—A
Ui, Ui > 0, < 1.
7 (1 +uy) (1 + ujpa)
(i) If j =0,
f(u0>um)
AT+ (52 %)
L (2D (=T (2T (2 m—1 v (237)
()T ()T (5T (5+ 205 %)
cud (1 4 ) () e T (1 4 ) (5420 F)
X oF g+iﬂg+mg+m_lv_k 1-A
251\ 3 k:02=2 272 k—o2’(1+uo)(1+um) )
1—A
Ug, U, > 0, <1
0 (14 ) (1 + wp,)
j—1
Take note in this case Y % =0 for j < 1.
k=0
(i) If j =0, m=1,
f(U(],Ul)
NTE 4+ 4m) g () ma(gee)
= 2=y (1+u) u (14u) (2.38)
T(§r(g)r(y) !
1—A
a V) V1. 1-)
X 1F0(2 + % + 217 (1+u0)(1+u1))’ (1 + UO) (1 + ul)
34
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Nrlgrses) 5o a oy (44+%)
= ” ) o U (1+U0) u 2 [>\+Uo+u1(1+U0)] (239)
FETETE) " !
Y (5—‘)b (1—X\)" x Beta' (2,2 +b) (2.40)
b=0 :
j+m—1
x Beta'! (“—21,§+ > % +b) :
k=0
Ug, ug > 0.

Remark 2.11 Other bivariate beta type II distributions that is defined on the positive
domain will be briefly discussed. Let X, Wy and Wy be independent chi-squared random
variables with degrees of freedom a, vy and vy, respectively. The bivariate F distribution

is the joint distribution of
CLWO CLWl

T T (2.41)
with pdf -
ug, up > 0,
where C' = E((%%);(z:f;(vg;)) a*(%+%‘l+%)a%v§2&v? (see Balakrishnan and Lai, 2009 [{],
p.367).

El-Bassiouny and Jones (2008) [10] explored the case if a further chi-squared random
variable is added to the denominator of the second ratio in (2.41). This has the advantage
that the marginal distributions do not share a common degree of freedom. To this end
let Wy be a further chi-squared random variable, independent of X, Wy and W1, with
vy degrees of freedom. They proposed the extended bivariate F distribution as the joint

distribution of
aWy (CL + U2) Wi

Up=—L Uy =—— 2L
0 ’U()X7 ! (%1 (X+W2)’
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with pdf
—(§+ 2+ 3+
v, 1 31_71 0 Ul
up,ur) = Cuy uy” | L+ —ug+ u
S (uo, ur) 0 1 < a (a+ vq) !
a o v1 V2 v2.a Yo v2 %)uo
Xoli | 5+ + 5+ T 313 jL7’1+ﬂluo+(i uy |’
a a+v2)
24,
U(),U1>0, v . V1 <1’
1+ fuo + (Q_H)Q)Ul
a V) v v a v e El
where C' = P(§+§+71+72)F(§+§) (E)_QQ( - )2
TETEIEIGH+5) Vo) ot

The bivariate version of the generalised F distribution (2.16) proposed by Libby and Novick
(1982) [27] is given by

 Tlatvwt4v) (Ba\" womt (B oot
[ (uo,ur) = T (@) T (o) T (1) (ﬁo) ug ( 1) ul (2.42)
—(a+vo++v1)
(14 Z2un + 22 ) ,
Ug, U1 > 0.

From (2.39) and (2.42) it is evident that these distributions are different for the bivariate

case.

2.4.3 Distribution of a subset

Theorem 2.4 Let X, W; with j =0,1,2,...,p be independent chi-squared random vari-

ables with degrees of freedom a and v; with j = 0,1,2,...,p respectively. Let

A AW
Uy = Ao and U; = Wj.il
X X+ Ao Wy

pdf of Uy, Uy, ..., U, is given by (2.8), then the joint pdf of the subset U,,U,4q,...,U,

where r =0,1,...,p is giwen by

where j = 1,2,...,p and X\ > 0. If the joint

f(urauT+17 ,Up)
. )\% i (%)b (1 . )\)b ﬁ Beta!l | 4 a +j*1 Lo p (2 43)
= s 202 T '
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f[ w1+ uj)(§+ 1—0%)> (2.44)

Proof. The pdf of the subset (U,, U,41,...,U,) where r < p can be obtained by inte-
grating the appropriate variables from the joint pdf in the form given in (2.23), similarly
as in the proof of Theorem 2.3.

Therefore

0o p —
Z%(l—)\)aneta” (%1’%_‘_222& )duo...dur_1

b=0 Jj=0

a OO (a p j—1
— a5 8l 0 (] Beta (%,g+l§)%+b).

b=0 j=r

The expression in (2.44) in terms of the Gauss hypergeometric function, o £} (-), follows

from expanding the product of the beta type II pdfs (see (B.29)),

f(ur,urﬂ, . ,up)

e (s sing +o)

(%)b Y T (§+2 0% +0)
R T I CRS S e
] (+Zk 0v2k+b>

(2.45)
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+Zk0

p

)

Note that

I1

j=r

L3
r(s+

+ 0% +)
ko3 +O)T

(8 +> 0% +0) ..

P (§+> k0% +b)

+Zk02

(§+Zk:0v7k+b)"'

(s
5+ Xicos +
(s
5+ Xico +
Simplifying (2.45) using (B.4)

f(ur,urH, ey Up)

BRIV EE ]

+b)T
b)
+b)
and

(B.10),

LF( )T (5

+ 2

J=r

(5+>

) <ﬁ U?_l (1 +uj)_(2+

"o% +b)

I
k=0 2

<3

b=0

<+zmz><>b 1= )
(+Zk02)

_ T(§+ 30 ovz) <
?:rf( )T (5 + 500 %)

2.5 Product moments of the random variables

In this section a general expression is derived for the product moments of the joint and
bivariate distributions as well as for the distribution of a subset. Theorem 2.5 provides a
derivation of the joint moments of Uy, Ui, ..., U,. The product moments for the bivariate

case, £ (UrUs,,,) and a subset, E(U’“"Uhj;{l

Jj+m T T

UZ?”) are given in Theorem 2.6 and 2.7,
respectively. The moments for the bivariate case will be used in Section 2.6 to investigate

the correlation structure of this sequential process.
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Theorem 2.5 The joint moments of Uy, Uy, ..., U,, where Uy, Uy,...,U, has joint pdf
(2.8), is given by

E (U(?OU{“ . UI?”)

D(3+h)D(5+ g +0—hy)
J=0 ( +3 00 %+ )

with the values of the parameters such that E (Ug0 U .UZ,L ”) is defined.

—1
Take note that Z L =0ij<l.

Proof. The joint moments of Uy, Uy, ..., U,, using the joint pdf in the form given in

(2.19) and expanding | Fy(+) in series form (see (B.7)), is defined as

E (U(?OU{“ . UI?”)

=0 b!

E (Uhumh . Uh) = G R=027b (1 - \)°
A O] (N A OO > R A
p v, L U
(ot ey 65,
Jj=0 9
Evaluation of the above integrals using (B.2), yields the desired expression (2.46). n
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Theorem 2.6 The product moment of U;,Ujir,, where U;,Ujyp, has the bivariate pdf
(2.835), is given by

E(UUs

J+m)

_ A\’ F(E—I—T)I_‘(@—I—S)F(Q_|_Z?f é%k_r) ( _I_ZJer lvk >

(2.47)
F() ( Ziég’“) (M) ( Z]-i—mluk) 247

-1 j+m—1 j+m—1 j—1
afy (35 4orgt 3 dongia S 1)),

where 7 =0,1,2,...,p and m=1,2,3,....

Proof. The product moment of U;, U, using the bivariate pdf in the form given

in (2.35) and expanding the hypergeometric function 3F5(-) in series form (see (B.5)),
defined as

E (Ui Ujm)

D5+ k%) (520 %)
DT (5+Sha%) T (=)0 (5 + 505 )
o

io: ( Z?j?v;) ( +Z£=0%)b(%)b [
>< .
( +Zj+m1v>b(%+2?“:%)v_2k>bb! (
Rearranging the terms in the above expression give
E (UjU}ym)
(i) T (s iy y) N
L(y)T ( zg D) ()T (5+ X %)

)T
) (4450 ovk) B,
) v

tm g + = 4b
o T 1y (72
0
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Evaluation of the above integrals using (B.2), and simplifying yields the desired result
(2.47),

E(UUS.,,)
__ T(rEleyr (+ )
(s reEe) (s y)
(3+i %), (3 Mz) .
(325" >(+2m>
D(3+n)T(3+ X% +b—7) D (42 +9)T (3 + 500 S +b—s)
P (4+ Sl % +0) s+ % +0)
P(3+ho%) T (3 + i 3) N
r(gr (+Zié”;) (52T (3 + 2 %)
f:F(% Ko s +0)T (34 Sh, % +0) T (3+0)T (3+ X %)
0 T (54 S0 )T (5+ S %) DT (5+ X" % +0) o
r(s+oiy) (30T (5T +o-7)
(-
8+ % +b) D(4+ 0% +0)
()T (34 SE 4 o)
( +Z”’”Ji+b)
NP (5 )T (S 49D (5 + S ) (5 + S0 )
D)7 (5+ i %) D (=)0 (5 + il %)
o T(3+0)T(3+ 505" %) (
ST ()T (54 % +0) T (5 + S0b % +0)
F(§+ £;§%+b—r>r(g+ ?jﬁ”i«ﬂy—s)
P(s+3ib s —r)T (3 + 50ty —s) 0

<%

X

X

X

IS
7
I
o =
NS
N———

X

X (1—M)".
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Remark 2.12 In the following three remarks the cases j = 0 and / or m =1 in expres-
sion (2.47) is considered respectively, since the correlation is plotted for these cases in
Section 2.6.

(i) If j =0,
o AT (BT ()T ()T (BT % )
B ) = D (3)T (3T ()T (3 3y ) (245)

k=0 k=0
1-) <1
j—1
Take note thatZ%:Oifj<1_
k=0
(i) If m =1,
e Rl i SOl RO b Sl Ll CROY Bh el
jYi+1) — - - - » ’ —=
P(?J)P<§+Zi_f)7’“ I ( ;1)F(§+Zi:07k)
1

k=0 k=0 k=0 k=0
1-Al <1
(2.49)
(iii) If j =0, m =1
)\%Pm I (x (e —¥\T (& + 2w _—
paguy = MGG TG ITG -
FErErEIreE+s)

42
© University of Pretoria



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

2. GENERALISED MULTIVARIATE BETA TYPE II DISTRIBUTIONS
2.6. Shape analysis and correlation

Theorem 2.7 The joint moments of a subset U,,U,+1,...,U, wherer =0,1,...,p with
joint pdf (2.44), is given by

E (Ufr . U;“‘P)

= (+Zk ovzk) Oo(_ :f)b(%)b 1\ 951
(+Z§;é“;) LT () ( s, B
p D(3+h)T (5 + S0 +0— 1)
X

Y

J=r ( +Zk02 )

with the values of the parameters such that FE (Ur"’" e U;L ") is defined.

Proof. Using the pdf of a subset given in (2.44) and expanding the hypergeometric
function o F(+) (see (B.10)),

E (U’“" Uh”)

o (_Fzzév;) rr(lg)ﬂ/Q/(Hu] (1+u])( ))

_ )\gr(%_l_Zi:O 2251) i (%_'_ZZI;:O 22&)1) (%)b (1_)\)b
CE+E LT (3) im0 (5+Timg),0

( + 2 002) i (5 +200%), (%)b(l_)\)b
r—1 v vj a r—1 v
I (3 +Zk 0 %) rr(7) =0 (520 %), !
P r vi o J ) U
iy
Jj=r
0
Evaluation of the above integrals using (B.2), yields the desired expression (2.51). u

2.6 Shape analysis and correlation

In this section the shape of the univariate and bivariate marginal pdfs of the generalised

multivariate beta type II distribution will be illustrated for different values of the para-
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meters A\, a and v;. The effect of the different parameters on the correlation between U;

and Uj,, will also be investigated.

In terms of the process control application the parameters can be interpreted as follows:
A:  size of the unknown shift in the variance,
a : pooled number of observations before the shift in the unknown variance took
place,
v; :  sample size at time period k + j,

k: the first time period following the shift in the unknown variance.

Take note that in this section it will be assumed that the sample sizes at each point in

time are equal, in effect v; = v = n and therefore a=3""'n = (k — 1) x n.

Figure 2.2 illustrates the effect of the parameters A, a and v on the univariate pdf (see
(2.24), (2.25)). The software package Mathematica was used to draw graphs. In all
four panels, the solid black line (A = 1.5, v = 5 and a = 20) is the same and is used as
reference in order to easily make comparisons between the panels. In terms of the SPC
application this reference case represents monitoring a process where the variance changed
with a factor of 1.5 (i.e. A = Z—z = 1.5) between samples four and five (i.e. K = 5) using
samples of size five (i.e. v=n=>5and a = (k — 1) x n = 20). Panels (i) to (iii) focus on
the random variable Uy. In panel (i) the role of A is investigated. Take note that when
A = 1, the pdf simplifies to that of a beta type II pdf (see Remark 2.7). Panel (ii) shows
that for larger values of a (meaning the shift took place after a long time) the plot moves
towards the vertical axis. Take note that a depends on the sample size at each point in
time as well as x, the sample from which the process parameter has changed. Panel (iii)
examines the effect of the v =n. Note that for the special case when individual samples
are considered (i.e. when v = n = 1), the shape is different. In panel (iv), the influence
of j is investigated, where j represents the position of the random variable in the process.

For larger values of j the pdf moves towards the vertical axis.
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Uo

0.0 05 1.0 15 2.0 0.0 05 10 5 2.0

(iii) A\=1.5, =5 (iv) A=15v=>5a=20
Figure 2.2 The marginal pdfs (2.24) and (2.25) for different values of the

parameters A, a and v

Figures 2.3 and 2.4 plot the bivariate pdf (see (2.35), (2.36), (2.37), (2.39)) for different
values of the parameters \,a and v. In each panel the reference case (A = 1.5, v = 5,
a = 20) will be included for easy comparison between the panels. Panels (i) to (iii)
consider the two consecutive random variables Uy and U;, while Figure 2.4 illustrates the
bivariate pdf for consecutive random variables further along in the process (for example
(Uy,Us)) and random variables that are not consecutively observed (for example (Up, U3)).
Panel (i) shows the effect of \. For A < 1 there was a downward shift in the process
parameter, while for A\ > 1 an upward shift occurred. The role of «a is investigated in
panel (ii), where a has to do with when the shift took place. For bigger values of a, the
process was longer in-control. Panel (iii) examines the effect of v. Note that for v = 1
the shape is different. A similar behaviour was observed in the marginal case (see Figure
2.2 (iii)). Since the pdf has an asymptote at vy = u; = 0 a truncated version of the joint

pdf is also included to get a better idea of the shape close to zero.
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(1) f (uo,uy) witha=20,v=>5

0.0 0.2 0.4 0.6 0.8 1.0 12 T0.0

0.2 0.4 0.6 0.8 1.0 12 T0.0

02 04 06 0.8 1.0 1.2
1ty

1ty

(i) f(up,u1) with A=15,v=5

u
S /
"s””".
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7

AT
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22

0.0 0.2 0.4 0.6 0.8 1.0 12

iy

0.6

1y

Figure 2.3 The bivariate pdf of (Uy, U;) (see (2.39)) for different values of the
parameters A\, a and v
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(iii) f (uo,u1) with A =15, k =5

)
s
o e oy v
s e s

Ve e Y ey
SRR I T

T0.0 0.2 0.4 0.6 0.8 1.0 12 T0.0 0.2 0.4 0.6 0.8 1.0 12

iy uy uy

Figure 2.3 The bivariate pdf of (U, Uy) (see (2.39)) for different values of the

parameters A, a and v

A=15,a=20,v=>5
f(anul) f(@buz)

AT A

0.8

0.8
0.6 0.6

0.4

1)

£04

)

0.2

0.0

0.0 0.2 0.4 06 08 1.0 12 0.0 02 04 06 0.8 1.0 1.2
g uy o

Figure 2.4 The bivariate pdf of (Uy, Uy), (U1, Usz) and (Up, Us) (see (2.39), (2.36)
and (2.37), respectively) for A = 1.5,a =20 and v =5
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Substituting the appropriate values for r and s in (2.47) (see also (2.48), (2.49) and (2.50))
the correlation between U; and Uj,.,, can be calculated. Take note that j represents the
number of samples after the change in the parameter value and m indicates how far apart
the two random variables are. The software package Mathematica was used to compute
these correlations. In Figure 2.5 panel (i) the correlation is plotted as a function of A for
J=0m =1 v =2>5and a = 20. In other words, the correlation between U, and U,
when monitoring a process where the variance changed between samples four and five (i.e.
k = b) using samples of size five (i.e. v =5 and a = (k — 1) x v = 20). The shape will
be similar for other values of the parameters j,m,a and v. The sign of the correlation
depends on the value of A\, for A < 1 (downwards shift in the process parameter) the
correlation is positive while for values of A > 1 (upwards shift) the correlation is negative.
For A\ = 1 (i.e. the process is in-control), the random variables U; and Ujiy,, m > 0,
are uncorrelated. Panels (ii) to (v) investigate the influence of the other parameters on
the correlation for the cases where A = 0.5 and A = 1.5. Panel (ii) plots the correlation
between consecutive observations since m = 1. For larger values of j (long time after the
change in the parameter took place) the correlation gets very small in absolute terms.
Panel (iii) shows that the further apart the two random variables are, the smaller the
correlation in absolute terms. Panel (iv) looks at the influence of x, the sample number
when the variance parameter changed. From x = 1 to k = 2 the correlation initially
increases in absolute terms and from x > 2 the correlation slowly decreases. The shape of
the plot suggests that the correlation will be zero for k = 1. Only values for k > 1 were
considered, since it was assumed that the process started in-control. In theory a value of
k = 1 implies that the process was out-of-control from the start of production. This can
be viewed as if the process was "in-control" at an out-of-control value for the variance
which would imply that charting statistics are independent since all the collected samples
come from a normal distribution with the same out-of-control value for the variance. This
would imply that the correlation is zero. Panel (v) plots the correlation as a function of

the sample size (i.e. v = n); for individual samples the correlation is smaller.
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(i) Role of A (ii) Role of j
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A=0.5 A=15
P
0.15}
P
0.10f 0.12 o
' 0.10 000 5 101520
0.05F 0.08f -0.02
A 0.06 -0.04f -
0.5 1.0 1.5 2.0 0.04 .
—0.05F 0.02 e . —-0.06} .
—0.10f % 5 0 s w0 0%
(iii) Role of m (iv) Role of x
j=0,a=20,v=>5 j=0m=1v=5
A=0.5 A=15 A=0.5 A=15
017 01
\/‘) g
0.10! 0.00 5 0 s 20 m 0.10] . N 0.00 5 10 15 20
008 " 002 R 0.08 "L ~0.02)
0.06 . L 0.06) .
. —004f . * .. —004f
0.04 . 0.04
0.02 ’ 0.0 . 0.02 e -0.06
0.0f . o = Sm =008 0.00¢ - = = S« -008
(iv) Role of v
71=0m=1 k=6
A=0.5 A=1.5
o
0.08 »
""""" 0.00y v
2 4 6 8 10
006
00} -
0.04] .
—-0.04
0.02) e,
-0.06r T e
0.00 v
0 2 4 6 8 10 -0.08

Figure 2.5 The correlation for different values of the parameters \,j, m,v and k

2.7 Conclusion

A new generalised multivariate beta type II distribution with pdf in a closed form is
proposed, emanating from a sequential process where a distribution is needed for the
run-length of a Q-chart that monitors the process variance when measurements are from
a normal distribution with known mean and unknown variance. The product moments
of this generalised multivariate beta distribution are derived to shed light on the nature
of this distribution, specifically the correlation structure. In Chapter 5 an example
will demonstrate the calculation of run-length probabilities by making use of the exact

expressions of the distribution of the charting statistics.

49
© University of Pretoria




UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Chapter 3

Noncentral generalised multivariate

beta type 1I distributions

3.1 Introduction

In this chapter the noncentral generalised multivariate beta type II distribution is pro-
posed. This distribution emanates from a sequential process and is constructed from
independent noncentral chi-squared random variables using the variables in common tech-
nique. This is a new contribution to the existing noncentral beta type II distributions
considered in the literature. A brief overview of relevant noncentral univariate, bivariate
and multivariate cases will be highlighted in order to contextualise this new distribution
that will be derived. Tang (1938) [44] studied the distribution of the ratios of noncentral
chi-squared random variables defined on the positive domain. In this paper of Tang, the
ratio (consisting of independent random variables) is considered, where the numerator is
a noncentral chi-squared random variable while the denominator is a central chi-squared
random variable. Also presented is the ratio where both the numerator and denominator
are noncentral chi-squared random variables - this was applied to study the properties
of analysis of variance tests under nonstandard conditions. Patnaik (1949) [38] coined
the phrase noncentral F' for the first ratio. The second ratio is referred to as the doubly
noncentral F' distribution. Let X and W, be independent noncentral chi-squared random
variables (see (B.32)) with degrees of freedom a and vy and noncentrality parameters d,

and dg, respectively. According to Tang (1938) [44] the pdf of the random variable

Us = < (3.1)

18
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_ — . F(%+%Q+k1+k2)6§15§2ef(éamo)%QJrklfl 1 L tky+1 -
[ (ug) = Z Z (32 +h )D& +ko ) b ths! 1+ ug , (3.2)
k1=0 ko=0

ug > 0.

Setting J, = 0 in (3.2) gives the pdf for the first ratio mentioned above i.e. the case
with central chi-squared distributed random variables in the numerator. The stochastic

representation of the noncentral F' distribution (see Patnaik, 1949 [38]) is

- e

where W, has a noncentral chi-squared distribution with degrees of freedom vy and non-

(3.3)

centrality parameter 0y, but X has a central chi-squared distribution with a degrees of

freedom. The pdf is given by

e a Yo 5_0k —% v vg _(ayr)_
f(up) = ZP( ?”k)(?) © 7 () B ) B (1 ) BT (3

2
£~ T w4k (

uy > 0.

An overview of these distributions is given by Johnson et al. (1995) [22]. More recently
Pe and Drygas (2006) [39] proposed an alternative presentation for the doubly noncentral
F distribution (see (3.2)) by using the results on the product of two hypergeometric
functions. The pdf is given by

1) doug

5 L A A R L
f(UO): 67(62+%Q)Z (2 2 k )( ) 02 Qi 2F1(1_ﬂ1_k’_k'a~453_)’

a

< 1.
50’&0

’UO>0,

In a bivariate context Gupta et al. (2009) [14] derived a noncentral bivariate beta type
I distribution, using a ratio of noncentral gamma random variables, that is defined on
the unit square; applying the appropriate transformation yield a noncentral beta type
IT distribution defined on the positive domain. After the transformation the random

variables of interest are

(3.5)

where Wy, W, have standard gamma distributions with parameters vy and v, respectively

o1
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and X has a noncentral gamma distribution with parameters (1, a,d,). The pdf of (3.5)

is

da
e 2l (a4vg+v1) ro-tot 5
l0u) = T ) T 1 (oo v )

Ug, u1 > 0.

The noncentral Dirichlet type II distribution was derived by Troskie (1967) [46] as the

joint distribution of

2 ,7=0,2,...
ij )< » D,

where W; is chi-squared distributed with degrees of freedom v; and X has a noncentral

U, =

chi-squared distribution with a degrees of freedom and noncentrality parameter d,. The
pdf of Uy, Uy, ..., U, is

p v 15 7<%+ ::o%i>
( ) F(%+Zj:0"21)6 2 12{ %y Zp:
f(ug,uy, ..., u,) = - — u? 14+ u;
N AN CI R P
1
X B | g+ 00358 2 ) w;>0,5=0,1,....p.

P
42w
7=0

Sénchez et al. (2006) [43] stated the pdf of the version where both W; and X are non-
central gamma random variables with parameters (o, v;,0;) and (o, a,d,), respectively

as

f(uo,ul,...,up)

a y (5#2520 5j)
[ (a+ X0 00)e (m) (1+iuj>

I'(a )Hj:OP(Uj) j=0 j=0
P 0 ) 0q
x Ut g 4 Zvj;vo,...,vp,a;o—?,..., p'l;)p , - ,
= L+2u T+ uy 143
= =0 j=0

U >0,7=0,1,...,p,
where \Ifép ™2 i the confluent hypergeometric function in p+ 2 variables (see (B.11)) with
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the values of the parameters such that f (uo,u1,...,u,) is a valid pdf.

Section 3.2 provides an overview of the practical problem which is the genesis of the

random variables U, = 70 and U; = X )\Zi_é W 7=12...,pwith A\ > 0 where
X and W;, i =0,1,...,pare noncentral chi-squared distributed (see also (2.7)). In Section
3.3 the distribution of the first three random variables, i.e. Uy, Uy, Us is derived. Bivariate
pdfs and univariate pdfs of (U, U, Us) also receive attention. Section 3.4 proposes
a multivariate extension, followed by a shape analysis in Section 3.5. An example of
determining the probability to detect the shift in the variance immediately is discussed

in Chapter 5.

3.2 Problem statement

Monitoring the unknown process variance when the known location parameter sustained
a permanent shift leads to a noncentral version of the generalised multivariate beta type
IT distribution proposed in Chapter 2. The derivation of this new noncentral generalised
multivariate beta type II distribution will be discussed in two steps. Firstly, the practical
setting which motivates the derivation of the distribution is described, and secondly the

distributions are derived in Sections 3.3 and 3.4.

In the same way as Chapter 2, let (Y1, Yio,...,Yin,), ¢ = 1,2,... represent successive,
independent samples of size n; > 1 measurements made on a sequence of items produced
in time. Assume that these values are independent and identically distributed having
been collected from a N (pg,0?) distribution where the parameters p, and % denotes
the known process mean and unknown process variance, respectively. Take note that a
sample can even consist of an individual observation because the process mean is assumed
to be known and the variance of the sample can still be calculated as S? = (Y;; — uO)Q,
1 =1,2,.... Suppose that the unknown process variance has encountered a permanent
upward or downward step shift between samples (time periods) x — 1 and k with k > 1
from o2 to 03 = Ao? (also unknown), where A # 1 and A > 0. Additionally, suppose that
the known process mean also encountered an unknown sustained shift between samples
(time periods) d — 1 and d where 1 < d < k, i.e. it changed from p, to p, where p,
is also known. To clarify, the mean of the process at start-up is assumed to be known
and denoted by i, but the time and the size of the shift in the mean will be unknown
in a practical situation. In order to incorporate and/or evaluate the influence of the
change in the mean on the performance of the control chart for the variance, assume
fixed /deterministic values for the mean — essentially this implies then that the mean is

known following the shift, i.e. denoted by p,. Note that, in practice d, x and A would
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be unknown (but deterministic) values. Therefore, the main interest is in monitoring
the process variance when the process mean is known, although this mean can suffer an

unknown shift at some point in time.

Based on the time of the shift in the process mean, this problem can be viewed in three

ways, as illustrated in Figure 3.1.

Scenario 1 (S1): d==x

The mean and variance change simultaneously

! I I
1 2 v k-1

N(uo, 0%)
Scenario 2 (S2): d< &

The mean changes before the variance

| | |

T »
K k+1

N(uy, 0% = Ac?)

] ]

| |

d - k-1
N(Ml) 02)

| | |

— 1 1
kK k+1
N(uy, 0% = A0%)

NGio,0?) |
Scenario 3 (S3): d >k

The mean changes after the variance

| | | | | | | |

] B T 1 1

1 2 « k=1 k - d-1\ d d+1
N(to,o?) | N(ug 0% = A0?)| N(uy, 0% = Ac?)

Figure 3.1 The scenarios for monitoring the variance

when the mean also encountered a shift

From Figure 3.1 the following is evident:

Scenario 1: the mean and the variance change simultaneously from i, to i, and from
02 to o2, respectively. Note that, it is assumed that the shift in the process parameters
occurs somewhere between samples x — 1 and k.

Scenario 2: the change in the mean from i, to j1; occurs before the change in the variance
from o2 to o3.

Scenario 3: the change in the variance from o2 to o2 occurs before the change in the

mean from p, to p.

Like in Chapter 2, it is assumed that the process starts in-control and that the variance

0? is unknown, therefore the first sample is used to obtain an initial estimate of o2.
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This initial estimate is continuously updated using the new incoming samples as they
are collected, as long as a change in the estimated value of 02 is not detected using the
control chart. The control chart and the charting statistic are based on the in-control
distribution of the process. This sequential updating and testing procedure is based on
the two sample test statistic for testing the hypothesis at time r that the two independent
samples (the measurements of the 7" sample alone and the measurements of the first r — 1
samples combined) are from normal distributions with the same unknown variance, and
is given by (see (2.1) and (2.2))

52
U =—"—forr=223,..., (3.6)
Srgl
r—1
where 770t = % and S2 = — 3 (Vi — p;)* fori=1,2,...,r.
Yoy N =1

[Take note: p,; denotes the known population mean of sample i.]

The focus will again be on the part where the process is out-of-control, i.e. encountered
a shift, since the exact distribution of the charting statistic is then unknown. As in
Chapter 2, to simplify the notation used in expression (3.6) following a change in the
process variance between samples k — 1 and r, define the random variable (see (2.3))

52

2pooled
poole
Snfl

Uy =U; =

K (3.7)
The subscript of the random variable U indicates the number of samples after the process
variance encountered a shift, with zero indicating the first sample after the process para-

meter has changed.

Note that, the three scenarios can theoretically occur with equal probability as there
would be no reason to expect (without additional information such as expert knowledge
about the process being monitored) that the mean would sustain a change prior to the
variance (and vice versa). In fact, it might be more realistic to argue that in practice
the mean and variance would change simultaneously in the event of a “special cause”, as
such an event might change the entire underlying process generating distribution; hence
both the location and variability might be affected. Having said the aforementioned, the
likelihood of the three scenarios will most likely depend on the interaction between the
underlying process distribution and the special causes that may occur. The focus of this
chapter is on scenario 2 displayed in Figure 3.1 since the results for the other scenarios

follow by means of simplifications (by setting the noncentrality parameter equal to zero)
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and will be shown as remarks.

Consider the sample variance, i.e. S?, before and after the shifts in the process mean and

variance took place:

Before the shift in the mean:
Samples: i =1,2,...,d—1
Distribution: Yj, ~ N (g, 0?)

1 m
S2 == (Yie — o)’
n; k=1

2
n;—fi ~ X% (ni).
After the shift in the mean:

Samples: i =d,...,k— 1

Distribution: Yi, ~ N (g = pg + &40, 02)

[Take note: The observer is unaware of the shift in the process mean

and therefore still wrongly assumes Yj, ~ N (i, 0?) ]

St == (Y — ho)
N k=1
niSiQ = kZ (Yir — pug + p1y — MO)2
—1
mSE o (Y =
e i +
e

— 3 (Zun + £,)? where Zip ~ N (0,1)
k=1

~ XSZZ- (n:)

where 9; = Z €2 =n€ > 0 with &, = th—to
k=1 o

After the shift in the mean and variance:

Samples: 1 =k, k+1,...

Distribution: Yiz ~ N (u; = po + &,01,02 = \o?)

[Take note: The observer is unaware of the shifts in the process

parameters and therefore still wrongly assumes Yy, ~ N (p,02) ]

1 2
S o=—> (Ya —M0)2
NG k=1
7%512 = kZ (Yik — Myt g — /uo)2
=1
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nS? o (Y- — 1\
27, _ Z ( E— My n M1 No)
k=1 01 01

= (Zi + 51)2 where Z;, ~ N (0, 1)

where §; = 3 €2 = n;€2 > 0 with ¢, = L1110,
k=1 01

Remark 3.1

(i) X/52i (n;) denotes the moncentral chi-squared distribution with degrees of freedom n;

and noncentrality parameter §; (see (B.32)).

(i) The shift in the mean, before the variance changed, is modelled as follows: &, =

Fi— Ho
%> ie. iy = fig + o0

(iii) The shift in the mean, after the variance changed, is modelled as follows: &, =

M7 e iy = fg + §01.
01

(iv) The key to the noncentral case is the fact that the observer is unaware of the change
i the mean since the charting statistics and the transformations used depends on
the in-control distribution of the process. In practice it is important to note that
even though the mean and the variance of the normal distribution can change in-
dependently (i.e. the mean changes without affecting the variance and vice versa),
the performance of a Shewhart-type control chart for the variance depends on the
process mean. This dependency stems from the charting statistics used and the
manner in which the control limits of a Shewhart-type control chart are calculated
(see e.g. Montgomery, 2009 [31]). To clarify, the known mean is used to calculate
the sample variance. If the mean value changes but it is not incorporated in the
variance calculation, the sample variance will be inflated. This could lead to the
control chart signalling that there is a change in the variance even though this is not
the case. Therefore, the focus is on deriving the joint distribution of the charting
statistics of the Shewhart-type Q-chart for detecting changes in the unknown vari-
ance, while accounting for the impact that a change in the known mean will have on
the performance of this chart. This impact is analysed by incorporating the possi-
bility of changes in both the mean and variance in the underlying data generating

distribution.

(v) From (iv) it is evident that the proposed control chart could be useful in practice when

the control chart for monitoring the mean fails to detect the shift in the mean. For
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example, in case a small shift in the mean occurs and a Shewhart-type chart for the
mean is used (which is known for the inefficiency in detecting small shifts compared
to the EWMA and CUSUM charts for the mean which are better in detecting small
shifts (see Montgomery, 2009 [31]) the shift might go undetected.

Following a change in the variance between samples x — 1 and «, (3.7) can be rewritten
as (see (2.4)):

2
oS
0 - S2pooled

k—1
k—1 5,2
= an X
i=1 Zz 1 nZSQ—i_Zz =d nl

neS: o
rk—1
— Zz:l U % O-% o?
T d-1 i w1 157
Zi:l 0_2 Zi:d 2
L Xihim AW
N Ny X’
2
where, as before, A = — (see (2.5))
but now,
N, S?
Wy = ~ X5 (n,) and
ot
_ d—1 nzSZQ k—1 nZSz2 k—1 nz‘SQ . Kk—1
X=>0 2 + 2 imd o2 D im1 02 ~ X5, (a) with a= "7 "ng and 0, = 301 4,
((Ofori=1,....d—1
where §; — ni§3>0with§0:uforz':d,...,/{—l
i = o

n.&3 > 0 with &, = B0 for i = k.
01

d-1 il
Take note: Y. x%(n;) = > x& (n;) .
i=1 i=1
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In general, at sample k + j, where kK > 1 and j = 1,2, ..., p define the following sequence

of random variables (see (2.6)):

2
U* o SH+]
J o Sonoled
Kk+7—1
2
2,

_ ktj—1
= D miXx

S RS 4 S S2 4 S 82

Tty Sff-i—j 01

- R v A §
S ol o’
= - X 2 2 2 2
Ng+j Zd—l nZSz + Zﬁ—l nZSz + Zﬁ-l-j—l nZSZ > ﬁ
=1 0.2 i=d 0-2 1=K a-% 0'2
. Q2 2
nﬁ-i-]sn—i-j 01
il IR v A |
Dl i 0’% o’
- — X 2 2
Ntj del nZSz +ZH 1 nz ZJ 1 nn—l—kSHJrk % ﬁ
=1 o2 1 o2
i—1
ST, AW
. J—
Tt j X+AY oW
where
ol
)\ e —2,
o
2
— nff-l—iSnJrz 2
VI/Z - 2 X(S,L (nn-}-z) Y
01
2 2 2
_ d—1 nZSz k—1 nZSz _ k—1 nZS . o k—1 o k—1
X=>u0 2 + D icd o2 > i 02 Xa (a) with a= 7"} n; and 6, = > ;7 di,
(
Ofori=1,...,d—1
2 . H1 — Ho .
n;Eo >0 with §g=———fori=d,...,k—1
where §; = €0 $o o e

n€2 > 0with & = 2 F0 for i = k4.
01

\

In the same way as Chapter 2, the deterministic factors, Z;:ll n;/n, and Zfif e,
respectively are omitted and the (x) superscript dropped. Therefore, the random variables

of interest are (see (2.7)):

U, = =2, (3.8)
U, = AW
j—1
X AW

, 7=12,...,pand X\ > 0,
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2
1

o
=  —, indicates the unknown size of the shift in the variance,
o
= Z;:ll ng (n;), i.e. the sum of x — 1 independent noncentral y? random variables,
X ~ X% (a),ie. X is a noncentral chi-squared random variable with degrees of freedom

a= Z;:ll n; and noncentrality parameter §, = 0 + Z;.:dl d;, d < k where

51‘ = n,fg with SO = = ,U/O’
o
W; ~ ng, (v;), i.e. W; is a noncentral chi-squared random variable with degrees of
freedom v;=n,.,; and noncentrality parameter §; = n,,;£] with &, = M1 Ho
01

1=0,1,...,p.

The random variable X in (3.8) relates to the process before the change in the variance
occurred, while the components W;, © =0, 1,...,p, relate to the process after the change
in the variance occurred. The noncentrality of these chi-squared random variables is
dependent on whether a shift in the mean occurred or not, and furthermore the timing of
this shift. The influence of the timing of shift in the mean on (3.8) will be highlighted in

the remark that follows.
Remark 3.2

(i) Scenarios 1 and 38 of Figure 3.1 can be obtained as follows:

When the process mean and variance change simultaneously (scenario 1), i.e. d = K,
then 6, = 0, i.e. the component X in (3.8) reduces to a central chi-squared random
variable. The superscript (S1) in the expressions that follow indicate scenario 1 as
discussed and shown in Figure 3.1. From (8.8) it then follows that

U](SU: Am_l ) 1=12,....,pand XA > 0,
X+ XY o Wi
where
X = Y (n0) ~ 2 (a) with a = Y
Wi~ Xg (vi) with v; = Nyers, 6; = Nyl and & = %, 1=0,1,...,p.

For scenario 3, the process variance has changed between samples (time periods)
k—1 and k > 1, but the process mean encountered a sustained shift between samples
(time periods) d — 1 and d where d > k, i.e. the mean changed after the variance.
The random variables X and W; fori = 0,1,...,d—1 that relate to the process before
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the change in the mean occurred reduce to central chi-squared random variables 1i.e.
0o =0and 0; =0 fori=0,1,...,d—1. The random variables in (3.8) will change

as follows:
53y AW
Uy = ~
AW
U](S?’): g  J=1,2,...,p and A >0,
X+ A0 We
where

X =303 (ng) ~ X2 (a) with a = Y7 n;,
0 fori=0,1,...,d—1
Wi ~ Xg (vi) with v; = Ny, 6; =
Nprils and &, = BB fori=d,d+1,...,p.
(i) If the process mean remains unchanged and only the process variance encountered a
sustained shift, the components X and W; in (3.8) will reduce to central chi-squared
random variables (see (2.7)). The joint distribution of the random variables (3.8)

will then be the generalised multivariate beta distribution derived in Chapter 2.

In Section 3.3 the joint distribution of the random variables Uy, Uy, U (see (3.8)) is derived,
i.e. the first three random variables following a change in the variance. In Section 3.4
the multivariate extension is considered. The reason for this unorthodox presentation of

results is to first demonstrate the different marginals for the trivariate case.

3.3 The noncentral generalised trivariate beta type
II distribution

The joint pdf of Uy, Uy, Us (see (3.8) with ;7 = 1,2) is derived in Theorem 3.1. The
bivariate and univariate marginal pdfs of Uy, Uy, U, are considered in Theorems 3.2 and

3.3, respectively.

3.3.1 The probability density function

Theorem 3.1 Let X, W; with i = 0,1,2 be independent noncentral chi-squared random

variables with degrees of freedom a and v; and noncentrality parameters 6, and o; with
22U L and Uy = AW, (see
X T X W, 2T X AW AW,
(3.8)) and A > 0. The joint pdf of (Uy, Uy, Us) is given by

1= 0,1, 2, respectively. Let Uy =
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f(U(], Uy, u?)

(TN () g g g e
_ _ . . K U u u —|—'LL(]
LTI ()T(F) o
vy ~ (atvgtvitv 3'9

s« W |atvgtvitva. a vo v wa. Sy Squg S1wr(ltuo) Spuz(lfug)(lfur)
2 3 120202020 220 220 22 22 ;

u; >0, j=0,1,2,

where z = X + ug + ug (1 4 ug) + ua(1l + uo)(1 + uq), \1154) is the confluent hypergeomet-
ric function in four variables (see (B.11)) with the values of the parameters such that
f(ug, w1, uz) is a valid pdf.

Proof. The joint pdf of X, Wy, Wy, Wy is

JRESTIY .
= F (& a:E) F (& w )
@, % vl _ v o1 (5575 ) ol'1 2,M4
g§+ P+ L(HT()T(3)T(%2) (3.10)
a _ Yo _ vy vy 1
X OFl (’0—217 51;01) OFl (11_227 522{02) x% 1w02 1w12 1w22 1e 2(x+w0+w1+w2)’

where ¢F} (-) is defined in (B.8).

. AW, AW, AWy
Apply the t f tionU =X,Uy=—,U; = ————and U, =
pply the transformation , 10 L 11 X TN and U, S @V A\
with inverse transformation Wy = XUOU, Wi = XUIU (1+ Up) and
1
Wy = —UsU(1 + Up)(1 + Uy), and with Jacobian,

A

J(':C7 Wp, W1, W2 — U, Ugp, U7, UQ)

1 0 0 0

Uo u

— — 0 0

A A
= |+ ) mu ultuw)

A A A
ug(1 4+ wo)(1 4+ uy) wou(l+uy) weu(l+wug) w(l+ug)(l+ug)
A A A A
_ u3(1+u0)32(1 —i—ul)' (3.11)
A
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Using (3.10) and (3.11), the joint pdf of U, Uy, Uy, Us is

f(ua Uop, U1, u2)

67(%&+%Q+%+%2) 5a ) Squg S1ugu(1+uo)
— F (g, u F (ﬂl u u) F (ﬂ 1U1Y uo )
2 %0, o1 v 05182y 74 ) 051 "2 7gn ) 051 { 72> 4
22+ 2t +3 F(g)r(m)r(ﬂ)r(ﬂ)
2 2 2 2

a | |
. v . Oaugu(l+ug)(14uq) 371 /1 2 1 2
X oFy (922, 2, 75 U (Xugu) (;ulu (1+ uo))

Pt =3 (wrduourfuruQrug)+dusurug) aun)) ud (1 + ug)? (1 + uyp)

X (Fusu(l+ug)(14u1)) = e

)\3
_(%a %081 82 _ (v 4 v1, v2
e (F+P+F+F) \— (B +3+2) Py (35 538) o, (10 B o, (1, Bl
Tl v v v 041 \2y74 ) 01\ 041 5)
2 P(i)r( 2 )P( 2 )P( 2 )
a, ¥ ¥l Y2, Yo 4 V1 _; Y2_ v v v
x oF1 (v_22762U2u(1Z§0)(1+U1))U%HMM 1“()2 1U12 1“22 1(1+U0)2+2 (1+“1)2

y ,%(pr%(l U1(1;ru0)+u2(1+u(;)(1+u1)>
(&

Expanding the (F} (-) expressions in series form (see (B.8)) and integrating with respect

to u using (B.18) gives,

S 1 00, 01,6
e~ (B +P+3+3) - (R+3+3) Wy 2y U2 %
- v v v U, u u (l—l—uo) (1+U1) X
2%*‘2(1*—21*—221-1 a\[(L (L) (22 0 L 2
(HILE)DEH)()
k‘3 k?4
o oo oo oo k1 5 ko (51u1(1+UO)> (52U2(1+U0)(1+Ul)>
9a oqug
Z Z Z Z (4 ( 59) 4A A
2 m | v | v2 |
k1=0 ko=0 k3=0 k4=0 2 2 k2k2' (2)k3k3‘ (2)k4k4’
0 (Ltug) | ug(1+ug)(1+uy)
on o1 v _u uilltug)  uplltug)litey
QB0 UL 02k kg btk —1 2( 15+ )
U du
0
5, 81 & vy v v
(), (B R) o g po o 3
— F(%)F(%Q F(%)F(Eg‘) UO ul U2 (1 —I—UQ) (1 +u1) (3.12)
k‘g k4
d1uq (14uo) 52uz(1+u0)(1+u1))

) ()" () (P2f) (B
LYY R B B

k1=0 k2=0 k3=0 k4=0

% (1 + uf + u1(1)\+uo) + uz (14-ug) (1+u1)

> —(%+E2Q+E2l+£22+k1+k2+k3+k4)
A

D (4% + % 42 4 kg + ko + ks + ka) .
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The desired result (3.9) follows easily from simplifying (3.12) and using (B.11),

3 3 —1 #
u” uy (14 up)

(1 + ul)

0o 0o oo oo (J_Q)kl (M)kz (61u1(1+u0)>k3 (52u2(1+u0)(1+u1)>k4
2
%

I
y 53N 2\ 2\
2.2 2.2 W) h Bk Gk

k1=0 ko=0 k3=0 k4=0

% ()‘ + up + uy (1 + ug) + ua(1 4 up)(1 + ul))(%+%Q+£zl+322+k1+k2+k3+k4)
A

2 W ) ,
’ (5+%5+%+%) (5+5+3+%)
e UEREEER N (S ) g g o
- INCINCIINCIINE D) uy  u” uy (14 uo) (14 uy)
X A ug + s (14 ug) + ua(l + ug)(L + uy)] " BFEHEE)
S8 (%+ +U71+v72)k +ko+kg+k Ad k1
X Z kz kz kz % kl(%& kz(ﬂzl)k?)(éz);kf!kzﬁcs!k;;! <2[>\+u0+u1(1+uo)+uz(1+u0)(1+ul)})
=0 k2=0 k3=0 k4=0

X daug F2 d1u1 (14-uop) ks

2[Auo+ui (14+uo)+uz (14uo) (1+u1)] 2[A+uo-+u1 (1+uo)+uz (1+uo) (1+u1))
X 52u2(1+u0 1+uq) )k4

2[ M uo+u1 (14-uo)+uz (14uo) (1+u1)]

Sa 1 %0491 ,%2) a
CEHIIND (58 48+ ) 5o 5o be 4

- T(2)T (%) (2)0(2) ug u uy (14 u) (14 uy)
2/ 3 2 2
X A ttg + un (1 + o) + uz(1 + up) (1 + uy)] " (EFF+2+7)
% \yg4) a | v 4w 4 va.a vg w1 v2. Mg Squg Srw(ltuo) 52U2(1+UO)(1+H1)]
2 T2 T2 T 22222 20 4 0 2 ;
where z = 2 [A 4+ ug + uy (1 + ug) + ua(1 + up)(1 4+ wy)] . u

Remark 3.3 (i) The expression for the joint pdf of (Uy,Ur,Us) in (3.9) can also be
obtained by setting p = 2 in (3.28) (see Section 3.4) and applying result (B.12).

(i) For the special case when A =1 (i.e. the process variance did not encounter a shift
although the mean did), this trivariate pdf (3.9) simplifies to
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f(u07 Ui, Ug)

da+89+061+6
a+vo+v1+4v
O S )l (=SS ES S Yy 7
1

= ug Uy Uy (1 + o) (14 uq)

INCINCIINCINGD)
a+vo+vq +v
X (1 + o) (1 ) (1+ )] ()
% \11(4) |:a+’l)Q+’U1+’U2,g vg w1 wa.8g Joug O1ui(l4wuo) Saua(14uo)(14ui)
2 2 1272929 292y 2y 2y ) 2y )

w; >0, j=0,1,2,

where y = (1 +up) (1 +uy) (1 4+ u2) and the values of the parameters are such that
f(ug, w1, us) is a valid pdf.

(iii) When the shift in the mean and the variance occurs simultaneously (scenario 1), the
noncentrality parameter 6, = 0, and using (B.12) and (B.8) it follows that

(4) a+vg+v1+v2.a vo
\]:12 >y 2

v v -0 Joug  91u1(14up) 52“2(1+UO)(1+H1)]
120 2

) ) 2z 0 2z ) 2z
a+vo+v1+v2 1

- T (a+v a+vo+vi+va ) fO

> OFl (v_21’ 61u1(1+u0)t) OFl (2 52uz(1+u0) 1+u1 ) dt

2z 27 2z

0F1 (§:0) oFy (4p;2qumt)

2z

a+vQ+vl +v2

- T (a+v atvo+vitva ) fO

% F <_l. 51U1(1+u0)t> 0F1 (22' 62u2(1+u0) 1+u1 >dt

TR (g tat)

’ 2z 27 2z

v
2

Y Y

2 I

— p®) | atvotvites. v
2 2 ) 2z 0 2z ’ 2z

vy . Sgug 91u1(14up) 52u2(1+u0)(1+u1)}
5 a0 .

The trivariate pdf (3.9) is then given by

f(u(bulau?)
67(6 e ))\%I‘ (a+vo+vl+vz)

= 2 ul u (1 + up) (1+uy)
a v v v 0 1 2
INCINCINCINCD)

X A g+ (14 1g) + ua(1 + ) (14 uy)] (72

N

v1 wz. doug d1wa(1+uo) dzuz(l+uo)(l+wr)
272

7 2z 0 2z ) 2z )

u; >0, j=0,1,2,

Y Y

(3) | atvotvitvy. v
X Wy 5 ;5

where z = Aup+uy (1 4 up)+ug(1+ug)(14+uq), \1153) is the confluent hypergeometric
function in three variables (see (B.11)) with the values of the parameters such that

f(ug, w1, uz) is a valid pdf.
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(iv) When monitoring the variance and the mean did not change, i.e. §, = dg = 01 =

9o = 0, the trivariate pdf (3.9) simplifies to the generalised multivariate beta distri-
bution, derived in Chapter 2 (see (2.8) with p = 2):

AT (o) oy o G D
= 1 1
f(uﬂau1>u2) F(%)F(%)F(%)F(%)uo Uy Uy ( —I—Uo) ( +u1)

a+'UQ +7J1 +7J2 )

x [\ + g + 1y (1 + ug) + us(1 + ) (1 4 )]~ )
w; >0, j=0,1,2.
3.3.2 Marginal noncentral generalised beta type II distributions

Theorem 3.2 Let X, W; with i = 0,1,2 be independent noncentral chi-squared random

variables with degrees of freedom a and v; and noncentrality parameters 6, and O; with

. Wo AW, AWy

=0,1,2 tively. Let Uy = —— = ——— and Uy = d
i , 1,2, respectively. Let U x U T o and Us X+ NV £ 0T, an
A > 0.
(a) The joint pdf of (Uy, Uy) is given by

[ (uo, u1) (3.13)
_((M—Jﬂ;()ﬁl))\%r (w) ro vy N a+vg+v
= — ug ug (L4 ue)” A+ uotus (1—|—u0)]*( )
FEIrEIrs) o
> \11(3) [aJerJrvl a vy vi. P doug d1u1(1+uo)
2 2 127 20 29 2[A+u0+u1(1+u0)}’ 2[)\+u0+u1(1+u0)]’ 2[A+uo+u1(1+u0)] )
u; >0,7=0,1,
with the values of the parameters such that f(ug,uy) is a valid pdf.
(b) The joint pdf of (Uy, Us) is given by
f(’LLO, ’Ug) (314)
e—(w))\%r (a-l—vo—;m—l—vz) I (a—;vo) o — (4t b2y
= a v V2 at+vg+v1 uO (1 + uo) u2
D(5)D()T ()T (=)
atvgtvy+ov 0o oo oo oo oo [&tvotuvitve
x (1+ u2)7<ﬂ+71+_2) S Y ( Oa2 1 23k1+/€2+k3+k4+k5
k1=0 ko=0 k3=0 k4=0 k5=0 ( ) (§ ko ( )

(ﬁfvl)h-i—kz-l—ks

k1
(a+v2+v1)k1+k2+k3+k5 kl'kQ'k3'k4'k5' ( (1 + Uo 1 * U2 )

( o )k2 < : )k3 ( &= ) )ks
X Y
2(1 + up)(1 4 ug) 2(1 4+ u9) 2(1 4 ug) 1+u0 1+u2)

u; >0, 7=0,2,

X
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with the values of the parameters such that f(ug,us) is a valid pdf.
(c) The joint pdf of (Uy,Us) is given by

f(ulaUQ) (315)
Satég+d1 42 | a
€_< 2 ))\EF a+v9+v1+v2 v _ (atvg+v; vy
- ( : )u_12 1(1+u1) (4 )u22 '

~ (atvgtv)tvo ) 00 00 00 0o 0o (a+UQ+U1 +v2

<(hw) TS 85 5 S (i)(_)

k1=0 ko=0 k3=0 ks=0 k5=0

) (a)k1+k5 ( )\5(1 )kl ( (50 )kz
(agvo)kl—kkz—kks alkolkslhalks! \ 2 (1 4 u1) (1 4 ug) 2(1+u) (1 + u2)

: (2 (1+ Tfll)u(ll + U2))k3 (2 (f2j2u2))k4 ((1 + le)_<1)\+ u2))k5 ’

Uj>0, 7=1,2,

with the values of the parameters such that f(uq,us) is a valid pdf.

Proof. (a) Expanding \1154)(~) in (3.9) in series form (see (B.11)) and integrating this

trivariate pdf with respect to us, yields

(o, uq)
(et 4 (ctwtue) oo o v14vg v
€ 2 g1 F p 3
= — - Uy U (14 up) (1+u) (3.16)
NCINCINCINCY o
S SRR (552 ) bk AN
X 1 2 3 4 < )
000 (@), (50, (3], (5),, bR
y 50u0 RS (14 wo) \ ™ [ 02(1 + uo) (14 ug)\ ™
2 2
X /u;z+ [Auo+uy (1+ug) +u2(1+u0)(1—|—u1)]7<a+v TR bk ) dus.
0
Rewriting and solving the integral in (3.16) using (B.19) gives
m@g”ﬁ-i—kl-‘rb-‘rk:ﬁ-m) dUQ

222+k:471 _(
Us A+ up + w1 (14 ug) + ug(1 + up)(1 + uy)]
0

LRI Y2 4k otk +ha )

= [\ o+ ur (14 up)]

X/ B2 kg1 l1+ u2(1+UO)(1+U1)
>\+UQ+U1(1+U0)

— (Y2 ke ks +hia )

d’LLQ
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%;frvz +k1+ka+k3 +k4)

= [>\+U0+U1 (1+U0)]_(

(L)) JFMT (G k)T (G4 + 5 + ot ko + o)
A+ ug + up (14 up) D (849 +% 42 4k +ky+ k3 + ka)

= [Adup+u(1+ uo)]_<%ﬂ+kl+k2+k3) (3.17)

v I'(& k)T (¢ Yo v k k k
¢ [(1+ o) (1 + wy)]~(F+#1) (za+ 04) v(2 +02 T35 kit h A+ 3)‘
T(§+%+%+%+k+k+ ks + ka)

Substituting (3.17) in (3.16) gives

f(U(), ul)

_ (%a+00+d1+02 a
( 2 ))\zp(wlﬂz) W ogo

v
€ =

— 2 1 )\ _(a+v0+v])
T v u o (Trua)” Do do (1)l
(stsugutn N .
«E 853 s a )
Z0k=0ks=0 k120 (5), (5) 5, (5) s, (F) 5, Fathalisthia! \2[A+ w0 + wr (1 + o))

L4 hy) D (§4+% 4% + ki + ko + ks)

" ( N )k2( drug (14 up) )k3 (@)lﬂ
I (
* D+ +9 424k hy+hs+ k)

Rewriting the Pochhammer coefficients in terms of gamma functions, using (B.4) give

f<u07u1)
,(Mo;_ﬁﬂr_“z))\% (aJrU vyt ) . i} o
€ J—l—“ 0oy Y > _(a+vQ+v1)
= a V) v v U, u (1+u0) >\+UO+U1(1+U0) 2
NONCNCYNC) B | |

“ & oxo= Ty gihithtk k) (3)
Z Z Z Z a o v1 v2 a 0 V1 v2 1o ol e
fsokZok=0kZo T (5 + 9 + 5 +5) (5),, (3)i, (5), T (5 + ka) kalkslhslha!

)\5(1 )kl (50U0 )k2< 61u1 (1+U0) ks
2 (A +ug+ ug (14 o) 2 [A+ug+ ug (14 )] 2 [A+up+ug (14 uo)]
52>k4 (2+k)T (4 +2+% + ki + ko + k)

D(&+%+% 42 4k +ky+ ks + ky)

© UnngI%ity of Pretoria



&

o} UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

3. NONCENTRAL GENERALISED MULTIVARIATE BETA TYPE II
DISTRIBUTIONS
3.3. The noncentral generalised trivariate beta type II distribution

6_ 32]- a+vQ+u1 )

P H —(
uy  u;” (T4wug) " [A+ug+ur (1+ up)] 2

)k1+/€2+/€3
)y, kol

s ),

k1=0 k2=0 k3=0 2

. (2 A+ o iil (1+ uo)])kl (2 A+ o T:ﬁ (1+ uo)])kz (2 B fﬁlfuj(ﬂ uo)]>k3
(G

xz o

ka=

Subsequently, the joint pdf of Uy and U; in (3.13) follows by applying (B.6) and (B.11).

(b) Expanding \1154)(.) in (3.9) in series form using (B.11) and integrating the trivariate
pdf (3.9) with respect to u;, it follows that

f(u0>u2)
. (6a+50+5]+52))\%r (W) v, (1 )g]#z wo (3 18)
= a v v v U + ug U .
MO :
X i i i i (aJrU ng - )k +kot+ks+ka (Ada)kl <50u0)k2
K20 k=0 k=0 k=0 (5),, ()1, (%), (%), Falkalkalka! \ 2 2

y <51 (12—|-U0)) ((52U2 1+U0 ) /uleJrkS 1+u1)322+k4
0

— (TR oy ko ks tha) g

X [+ ug + ug (14 ug) 4 (1 + u) (1 + uq)] Ui

Solving the integral in (3.18) using (B.20) gives

73 - % atvg+vytvo
/ulz +k3—1 (1_'_”1) = +ky [)\+u0+u1 <1+u0) —|—u2(1—|—U0)<1+U1)]_< 3 +k1+k2+k3+k4) du1
0
3 - % a+vg+vytv
= / u? T () T o bus(Lbug)Fun (1) (1u)) (57 Hhthathatha) g
0
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w +k1+ko+ks +/€4)

= [)\ + Ug + UQ(l + UO)]_(

o0

3 2
></uf+ 1+u)” [Huluwo—)(lﬂm .

— (SO gy kg kg tka )
>\+uo+u2(1+uo)}

0
SE0EONED ey otk tka )

= [)\ + ug + Ug(l + UQ)]i(
U (% +kg) T (%52 + Ky + ko)
D (St 4k + Ky + ks)

xQﬂ<ﬁﬂ%ﬂﬂ+h+b+%+m,—M&“””“+h+b+%, m%%%%%ﬁ

f(ﬂo%lﬂ+k1+k2+k3+k4) I (U_Ql + k?’) r (% + kl + k2)
F(%;Ul—l-k‘l—l-k‘z—i—k’g)

X gy (SRR oy gk, kg S ks i )

= [(T+uo)(1 + up)]

The latter step follows by using (B.24) with

)\—FUO—I—Ug(l—FUQ) )\—I—UQ—FUQ(l—I—Uo)

Substituting (3.19) in (3.18) gives

f(an u2)
e (—0—1—2‘6‘1+(s +0149 ))\%F (a+vg+v1+v2) s
0

O S CI .

o 2 )kl +ko+k3+ky ( )\5a ) M
X
Z0 kgz() k‘gzo k4Z:0 (%)kl (ﬂzl)kz (ﬂ)kg (& ) kilkolkslky! \ 2(1 + uo)(1 + ug)

) (2(1+j§;(01+u2)>k2 (2(1(‘5;U2))k3 (%)k4

(D5 k) T (55 + b + Fo)
F(M;m—l—k’l—i—k’g—l-k‘g)

X o] (J—l—HJrv +2v = +k1+kot+ks+ky, %l—l-k‘l—l-k‘g; J—M+v2+v +k1+ko+ks; —(1+ui;(i\+u2)) .

1 a+vg 322,1 a+vg+vytvg )

(1+u0)_( 2 )u2 (1+u2)_( P

(a+vg+v1 +vg

Replacing some of the Pochhammer coefficients with gamma functions (see (B.4)) and
expanding o F} (+) (see (B.5)) in series form, the desired result (3.14) follows after simpli-
fication,

© Univgr%ity of Pretoria
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f(u0>u2)
6_(w))\% (MQUH'W) 12(1,1<1 n )_(M) 22271<1 n )_(a+v0+v]+u2)
= u uo 2 u2 u2 2
INCINCINCIING D) °
oo 00 00 T (a+v0+2v1+v2 + kl + k2 + k’g + k;4) (ﬂ)

X
klz() kzZO kgzo k420 D (ko) (2), (%), T (% +ks) (%), kalkelkslk!

(o) (i) (b)) (@)

T (% 4 k) T (250 4 foy + k)
F(M;vl—l—k’l—i—k’g—l-k‘g)
oo T (hvodtiitta 4 ko) kythg+katks) D (950 kg +ko+ks) T (42950 4 kg +ko+ks )

»>

kom0 I (S0t oy 4 ot kgt ko) T (9520 kg +ko) T (9950 kg +kp+ s+ ) k!

8 ((1 +7jo)_(1A+ u2))k5

_( 5a+59;51+52 )

X

)\%P (a+vg+v1+vz) vy

o e 5 01 _(M) %2,1 _(a+v0+v]+u2)
_ a U v U (1 +tu ) 2 (1 Tu ) 2
Morre e (T e (e

[ (etvotvitve 4 fo foo 4 kot koyt-kis w+k,‘1+k2+kz5
XYY Sy - = )

K120 K2=0 kom0 =0 kgm0 T (FE0EE02) T (SR04 |y kot ks +K5) (5), (%)), (%)

k4

wwmsig (i) (i) (0m)
kllkiglkig'k’4'/{75' (1 + Uo)(l + Ug) 2(1 + UQ)(I + UQ) 2(1 + UQ)

% 52”2 ks
1+U2 1_'_”0 1+UQ)

. (6a+6 Sa+30+81+52 ))\% a+vo+vl+vz) I (agvo) 32071(1 N ),(M) 322‘71(1 n )7(a+vg+v1+vg
- UO Uo 2 U2 u2 2
D(HT(FIC(F)T (5)
+vo+v1+ +
& & (a . 2U1 U2)k1+k2+k3+k4+k5 (%Q)k1+k2+k5

e T, T (B, (s

Vol kal ksl k=]
S R Y S AT

(arrairw) (i) (ate) (@)

8 ((1 —Hjo)_(l)\—l— uQ))k5'

(c) Proof follows similarly as in (b). n

a
2

Remark 3.4 (i) Alternatively, the proof of Theorem 3.2(a) can be derived by substi-
tuting p=1 in (3.28) in Section 3.4.
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(ii) Substituting §, = 09 = 01 = 0 in (8.13), the pdf simplifies to the bivariate distribu-
tion derived in Chapter 2 (see (2.38)),

f(u07u1)

A2 (etvotui) o () u (rgtu)
:r<e)r((m)2r<v_1))“°2 Ltu) T’ (L)

2/t 9 )t

a+UQ+UJ )

)\+U0+U1(1+U0) _< 2
(l—I—UQ) (1—|—U1) ’

U; > 0,7 =0,1.
This can be rewritten using the binomial series (B.7) with 1 — z = %m
Therefore,
f(anul)
D )n oy () g ()
= a v o U (1+u0) uy’ (1+u1)
L(HT($)0(Y) :
a+vo+4v1 . 1-X
1 Fo( TR (1+u0)(1+ul))’ 1
u; >0,7=0,1, — < 1.

(14 uo)(1 + up)

Theorem 3.3 Let X, W; with i = 0,1,2 be independent noncentral chi-squared random

variables with degrees of freedom a and v; and noncentrality parameters 6, and §; with

A A
1 =0,1,2, respectively. Let Uy = %, U, = X—i—L)\IVV and Uy = an )\WW2+ NI and
0 0 1
A > 0. The marginal pdf of
(a) Uy is given by
f(uo)
Sa+3 o
6_(—2Q))\§F(a+_m) 21 7(@) a—+v a v U
= (e (L 2 'Z,LO2 (UO_'_)\) 1112 (%7 9 %7 2(2(?1)\), 2(%2)%») s (320)
(GT(3)

ug > 0,

with Wy the Humbert confluent hypergeometric function of two variables (see (B.13)) with
the values of the parameters such that f(ug) is a valid pdf.
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(b) U, is given by

f(ur)
(M)A% ((l+v0+l}1) » 7(a+u0+v] )
_ € 2 F-1 2
o 22;1_ F (a+v ) Uyq (1 + ul) (321)

a

> Z Z Z Z k1+ka+k3+ks (§)k1+k5

Z0k=0 k5204520 (5) 1, ()10 (5) pyorgsy K1 K2l ealls!
(oova) (ota) () (52)
2(1+w) 2(1+w) 2(1+ uy) l+u )

U1>O,

(a+v a+vo+v1 )

with the values of the parameters such that f(uy) is a valid pdf.
(c) Us is given by

f(u2)

67( Sa+80+51+52 )

2

T uy  (1+up) (3.22)

a+v0+v] +'U2
71 - )

)\%F (a—l—vg—l—vl—l—vz) vy (
(

(a+vg+v1 +vg

X Z Z Z Z Z 2 )k1+k2+k3+k4+k5 (§)k1+k5

a v2 atvotvy 1V 1)
=0 k2=0 k3=0 kq4=0 k5= (Q)kl (2)k4( 2 )k1+k2+k3+k5 kl.kg.kg.k;l.kg).

g (2(1%;2))]“ (2(&)“2))’“2 (2(1(1%))]% (2(%32))@ (ﬁiuj))k

’LL2>O,

with the values of the parameters such that f(us) is a valid pdf.

Proof. (a) Expanding \I/é?’)(.) in (3.13) in series form using (B.11) and integrating
with respect to u;, gives

o
v _ 24 vy
7 1 2 3

u g u? ug + Uy U —(g)
et 0 G 2t o (L wo)]

0
oo o0 00 (a—l—vg—f—m)k bk ( )\5a )kl
>< 1 2 3
22 2 ) (3, bl \2D T (1 ]

X ( doUo . ( d1u1 (1 + u) )kg du
2 [\ + o + up (14 ug)] 2 [N+ g + up (14 up)] !
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TN () 7 S [TWPRY (RUCEETA Iy
CoTerer - T U O w)
0
(m) "
[o%) fee) 0 a+vo+v )\(5
v 2 ki+ko+ks a
2 2 2 0 () () bl \ 2 (v (15 2]

y ( dolo ) - ( d1uq (1 + ug) ) : dus
2“A+w)@+”§$yﬂ 2“A+w)@+ﬂﬁﬁ$ﬂ

T DT i (3 ()
= a U, v 0 ’
ey O

XZZZ

k1+ko+ks ( )\5(1 ) m
ki1 =0 ko =0 k3=0 %) )kz( ) Ky lkolkes! \ 2 (A + uo)
o[ douo " (01 (1+u0) ’“75 |, u () —(mgmwwg)d
2(A+ up) 2 (A +up) ! (A + ug) uz-
0

Solving the integral in (3.23) using (B.19) and (B.3) gives

(3.23)

a—l—v +v1 )

o0 " _ a+vQ+v1 k k k
/ k1 (1+U1 (1 +UO)) (Gt ks ;s

t O\ + o)

B (1 + uo>—<%+k3) (% + k) T(Z52 4y + k) @24)
IRCERT D40t 4 kg +kgt-ks) ’
Substituting (3.24) in (3.23) and using (B.4),
[f(uo)
J— ei(w))\%r (mgﬂ-)u%ail (A_i_u >_(%Q>
PEITEITG) ’ C
[e%) (a+vQ+v +k’1 +k’2 + k?)) (1)21) )\(5a k1
XZZZ m (_;L_l_k;) (a+v+v)klklk 2 (A + up)
=0 ko=0 k3= k:l 2 2 1:h2:hv3: 0
y ( Sotio ) k2 (ﬁ)k r(gl + k3)D(SE2 oy + o)
2 ()\ + Uo) 2 F(%;m‘l'k‘l—l—k‘g—l—k‘g)
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— 2 u(;?(lﬂ ()\_‘_uo)f(#(l) Z

S () o)

(3.25)

The result (3.20) follows after applying (B.6) and (B.13).

(b) Integrating (3.15) with respect to us, gives

fur) (3.26)

e_<6a+5g42»51+52))\%r (a+v gv1+v2) 22171 7(a+UQ2+'UJ)
- o\ (22T (%tw up (14 w)
L)L) (=5

( a+vg+v1+ve a

X X X X X 2 )k1+k2+k3+k‘4+k‘5 (§)k1+k5
020 2020 (), (B)r (3),, (45

iookZo k06 20k=0 (), (%) (2) 0, (5520), o, g, Flhallislhalhs!

(em) () () () G

—(SAROLIED2 gy kg kg g+ )
o [ (1 " u2) dU2.

Evaluation of the above integral using (B.2) and (B.3) gives

o0
a+u0+u1 +7J2
/ 322+k4—1 7( 5 +k1tkot+kztkytks

Usy (14 ug) dus (3.27)

0
D (%2 4 k) D (S 4k + hy 4 ks + ks)
D (Rt gy kg kg +ks)

The result (3.21) follows from substituting (3.27) in (3.26), then using (B.4) and (B.6):
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f(ur)
e—(w))\%r (a+vg+v1+v ) u_ 7(a+v02+v])
= v1 Vo a+wvg Uy (1 + ul)
D)L ()T (=52)

F(Mﬂﬂz+k1+k2+k3+k4+k5)( )k+k5r(22)

X
iﬂzzjo kzz::() k3Z::O /g::o lg::o ()1, (54, (952) g T (F95E2) T (% 4 k) B ool kg g s

(i) (o) () (3) ()
X —_— J—
2(1+w) 2(1+w) 2(1+w) 2 1+
U (%2 + k) T (255 kg + Ky + kg + ks)

[ (etrotintes 4k + ko + ks + ks + ks)

R ) ) & (3)"
- [(4) (o) “ “ ka0 Ka!
x© 00 o o (HU N )k1+k2+k3+k5( )k1+k5

XZZZZ(

k1=0 k2=0 k3=0 k5

%) ( ) (a+00)k1+k2+k5 kl'kg'k’g'l{?g,'

(2(1)\7:S:L’M1))k1 (2(1iu1))k <2(fljflu1))k3 <11ﬂ:?j\1)k5

X

ei(aaﬂzgwl))\gr Mﬂ;) o ,(m(%ﬁL)
= V1 a+vg 2 u12 (1 + ul)
F(?)P ( 2 )
x x & & (a+vg+vl)k1+k2+k3+k‘5 (%)k1+k5

R D ) A 3 R ) N

() Goltw) (o) (52)

(c) Proof follows similarly as in (b). n

Remark 3.5 (i) Substituting 6, = §o = 0 in (3.20), the pdf simplifies to the univariate
distribution derived in Chapter 2 (see (2.24)), namely

AST (2£) w (=)
f Ug) = a—iou S ug + A ,
up > 0.

(ii) Replacing 6, and 6o with 20, and 25y, respectively and setting X = 1, the pdf (3.20)
reduces to that of Tang (1938) [44] given in (3.2).
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3.4 The noncentral generalised multivariate beta type
II distribution

In the previous section the noncentral generalised trivariate beta type II distribution
emanating from a sequential process, was developed where the focus was on j = 1,2
n (3.8). Now the interest shifts to the corresponding multivariate case for the problem
statement described in Section 3.2. In this section the noncentral generalised multivariate

beta type II distribution is proposed.

Theorem 3.4 Let X, W; with « = 0,1,2,...,p be independent noncentral chi-squared

random variables with degrees of freedom a and v; and noncentrality parameters 6, and

W ;
0; with 1 = 0,1,2,...,p, respectively. Let Uy = —0, and U; = J where
X X+ AT Wy
j=1,2,...,p, and A\ > 0. The joint pdf of (Uy,Uy,...,U,) is given by

f(uo,ul,...,up)

e

a4 Yi )\% ,
2 2‘6 2) pov_q\ [Pl > 4
_ v fa? ) (7 G+

. ( p -1 ><;+]~i@%> (3.28)

)\"—’UJO—FZ’UJJ‘ H (1+uk)

j=1 " k=0
by T1 (1+u0)
% \I/(PJFQ) a ZU_] a v Vp. AMa doug 91u1(14wuo) " o
2 02’2’2’ 20 2z 2z 2z ? ’ 2z ’
J:

uj>0,j:1,2,...,p,

P Jj—1
where z = X+ ug+ > u; [ (14 w), \I/gp+2) 15 the confluent hypergeometric function in
j=1 " k=0

p + 2 variables (see (B.11)) with the values of the parameters such that f (ug,u1,. .., u,)
1s a valid pdf.

Proof. The joint pdf of X, Wy, Wy,..., W, is

f <x7w07w17 ce pr)
_(5a+50+51+4.4+5ﬂ)
e

= oF1 (5:%5) oFy (%5 202) oF (%5 %)

v . dowa )
X oF1 (_22’ 4 ) 4
a1 X0, 45 2 4 7l(x+w0+w1+w2+ +wp)
X x® wy w  wy w,’ : ,
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where (F} (a; z) is defined in (B.8).

A AW
Let U =X, Uy = ﬂandU W?_l where j =1,2,...
X X+ XD Wy

) D-

1
This gives the inverse transformation: X = U, W, = XUOU and

W; = 4U; (U + AS{ZWi) = 30U TTZ (14 Uy) where j = 1,2, p with Jacobian
(see (2.10))

w\ pt+1 p—1 —k
T (2, W0, .., Wy — U, U, ... Up) = (X> IT (1 +up)” "
k=0
Thus, the joint pdf of U, Uy, Uy, ..., U, is
(6a+60+61+ +52) (— f)f})
2 J=
f (u; uo, -->up) = Tatugttup B of1 (%; 6Zu) o1 (v_20; JOZ)?H) (3.29)
2T (IR T (%)
j—1 P v,
P " Sjuju [T (1+ug) %+j§0~21—1 v 4 P%y
XL ofy | 55— | | v up | ITuy
j=1 j=1
powu; J—1
p—1 > -3 (”%Q* > By kgo(H“k))
X (1 4+ uy)= k“ e - -
k:O
P j—1 R > 3 —(p—k)
Note that (see (2.12)) [[}_, [ o (1 + uk)} = T1220 (1 + uy)2es=rtr 2 .

Expanding the o F] (-) expressions in (3.29) in series form (see (B.8)) and integrating with
respect to u using (B.18) gives

f (U, Ug, -+ Up)

(e (- £%) [ b G
N QHW_.—WEF (9)T (2)...T ()9 ki=0k=0 (5 w ! (ﬂ?l)’fz ba!

i1 kjt2
djuju T (1+ug)
A=

P v,
p 0 BRI S NV (R S
j=0 P} 3
|11 > (L), ksl Y Yo [T u;
2 Jkjto Jj+2:

St
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Doy
_<5a+50+51+.4.+ap> - Py,
e 2 )\ S A(p 211) (pl > 4)
3 -

U ITu [T (1 4 wy)i=r+
a+vg+...+v 0 e J o
O T R A
j—1 kjt2
djuj TT (14ug)
k=0
o) o) k) k1 J ko [e.9) 4A
3% ()" (%) ﬁ S
v
k1=0 k2=0 (%)kl kl' (%l)kz k2' j=1 kji2=0 (El)kjﬂ kj+2
7 %+§0321+k1+k2+.4.+kp+271 -% <1+%Q+j§3/\111i[;(1+uk)>
x/u = e du
0

TR I SR b,
€7<6a+(50+521+ +6 ))\( jgo 2) 22(1,1 P vy p—1 ,Z 31
wp | 1L ™) T+ =

a+v0+.4.+u 1l L]
g r(g). oy A e
j—1 kjyo
jus [T (1+u)
k=0
o oo 54\ k1 5 k2 o A
DI N Tl BIDY
o
k1=0 k2=0 (%)kl et (v_;)kQ kol | =1 k) 12—0 (Ej)kjﬂ Kji2
Py, 9=l (%*i Ezi”flJF/ICZJF-~~+/’%+2>
14504 3 =TT (T+uy) 7=0
j=1 k=0
2

p
XT(§+ > F+ki+ht. . +hyo)

<
Il
o

© Univgrgsity of Pretoria



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

3. NONCENTRAL GENERALISED MULTIVARIATE BETA TYPE II
DISTRIBUTIONS
3.4. The noncentral generalised multivariate beta type II distribution

_ (Sa+dg+di+...43p a p Vs a
]:

rErs) I

X()\‘i‘uo_'_iuj]ﬁl(l—'—’ltk)) o )

7j=1 k=0
kl k2
Y doug
P i1 P j=1
0o o0 2(>\+uo+ Zl uj kH0(1+Uk)> 2<)\+u0+ Z:l uj kno(:H_Uk))
oy A e
—0 ky=0 (§)k1 ka! (%)kz ka!
i1 kjiyo
O u; ]:[O(lJruk) »
, o 2<A+uo+i 1(1+Uk)> P<%+Z~;+k1+k2+...+kp+2>
j=1 =0 7=0
% 1;[1 > (), ke »
= kj2=0 2 Jkjg2 Y T % + ZO %3
]:

7(5a+50+51+~-~+5p)
e 2 r

LTI

SIS

— £+
p j—1 2 = )
X<A+u0+2ujn(l+uk)> X

j=1 " k=0
¥4
<% JEO%L) k k k3
- k1+kot...+kpto g\ *1 [ Sgu 2 [ d1u1(14ug)
X Z Z Z 220 (), kllk:!...k,,m ( 2z) (_%jl) ( 22 )
=0 ko= kpyo= 0 2 P+2
—1 kp+2
dpup H (1+ug)
x 2z )
P Jj—1
where z = A +up+ > u; [] (1 +ug). Result (3.28) follows from (B.11). u
j=1 " k=0
Remark 3.6 If §, = §p = 01 = ... = 0, = 0, the distribution with pdf given in (3.28)

simplifies to the multivariate distribution derived in Chapter 2 (see (2.8)),
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p
N 2 A ,
f( ) (2 _'_j;) 2) (121 2211> (;Dl (1+ )Z+ %)
U, Upy ..., U = p % ™ U - uy, )7=k+1
TOTETE) T (3) =

P Jj—1 _<%+1§o%ﬁ>

J=1 k=0

3.5 Shape analysis

In this section the shape of the univariate (see (3.20)) and bivariate (see (3.13)) mar-
ginal pdfs will be illustrated and the influence of the noncentrality parameters will be

investigated. The software package Mathematica was used.

The parameters can be interpreted as follows, based on the process control application:

A :  size of the unknown shift in the variance,
a : pooled number of observations before the shift in the unknown variance took
place,

vo . sample size at time period k, the first sample following the shift in the variance;
the shift in the variance took place between samples x — 1 and x,

0, : mnoncentrality parameter that quantifies the change in the mean before the change
in the variance took place,

dop : noncentrality parameter that quantifies the change in the mean after the change

in the variance took place.
Take note that if the mean and variance changes simultaneously, then d, = 0.

Panels (i) and (ii) of Figure 3.2 illustrate the effect of the noncentrality parameters J,

and ¢y on the univariate marginal pdf of Uy (see (3.20)).
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(i) Role of 4, for §p = 2 (ii) Role of ¢ for 6, =0
1 (o) AL
2.0 2.0
60=0
0a=5
1.5 . 1.5
10 10 s
0.5 ‘ Ga= 1(;‘\ s =0 0.5 j' e Nt v .
' o S =10 T
00 05 o 1s 20" | 00 05 10 15 20

Figure 3.2 The marginal pdf (3.20) for different values of the

parameters ¢, and dg for A = 1.5,k =5,a =20 and vg =5

Panel (i) shows the effect of §,; as d, increases the pdf initially moves towards the vertical

axis and then towards the horizontal axis.

In panel (ii) the pdf moves towards the

horizontal axis for bigger values of dg. The influence of the parameters a,vy = v and A

on the marginal pdf is discussed in detail in Chapter 2, Section 2.6.

Panels (ii) to (v) of Figure 3.3 illustrate the effect of the noncentrality parameters d,, dg
and d; on the bivariate pdf of Uy, U; (see (3.13)) for A = 1.5,k = 5,a = 20,v9 = v; = 5.

Panel (i) is the central case, i.e. d, = dg = 91 = 0 (see (2.39)), included for comparison

purposes. For A < 1 the pattern is similar.

Section 2.6.
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Figure 3.3 The bivariate pdf (3.13) for different values of the

parameters ¢, and dg for A = 1.5,k =5,a =20 and vg =5
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3.6 Conclusion

In this chapter, the distributions are proposed for the case when measurements from
each sample are independent and identically distributed normal random variables and
the unknown variance is monitored when the known mean encountered a sustained shift.
Three scenarios were considered based on the timing of the shift in the mean. The
proposed model is also extended to the multivariate case i.e. the noncentral generalised
multivariate beta type II distribution. The effect of the noncentrality parameters were

investigated graphically.

In Chapter 5 the focus for the example will also be on this sequential process where the
unknown variance is monitored with a shift in the known mean. The probability to
detect a shift in the variance immediately will be calculated using the exact pdf of Uy (see
(3.20)).
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Chapter 4

Generalised bimatrix variate beta

type 1I distributions

4.1 Introduction

In this chapter the generalised bimatrix variate beta type II distribution is proposed. This
distribution emanates from monitoring the process covariance structure of ¢ attributes
where samples are independent, having been collected from a multivariate normal distri-
bution with known mean vector and unknown covariance matrix. Two matrix variates
that correspond to the two time periods, immediately after the change in the covariance
structure took place, will be considered. Section 4.2 gives an outline of the sequential
process that introduces new Wishart ratios. The generalised bimatrix variate beta type
IT distribution is derived in Sections 4.3.1 for the case where the covariance structure
changes by a scale factor and in Section 4.3.2 it is derived for the case with a complete
change in the covariance structure. In each of these sections the joint and marginal pdfs
are given, the moments and product moment of the determinants as well as the pdfs of
the determinants and product of the determinants are derived. The latter property is

investigated since it plays a role in the calculations discussed in Chapter 5.

4.2 Problem statement

In this section the problem of monitoring the process variance, when the mean remains
unchanged and measurements are from a normal distribution, will be extended to matrix

variates.

Suppose the covariance structure of ¢ attributes of the items of a single process are

monitored simultaneously where the samples are independent having been collected from

© Univc§|5sity of Pretoria
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a multivariate normal distribution with known mean vector ( Ho) and unknown covariance
matrix (X :¢ X ¢), denoted as MV N (Ho’ 2) . At each point in time (i) a sample of size

n; is collected. To this end let Y : n; x ¢ denote the matrix of observations for time

period 7, where xﬁ“,zg), e ,Z((f) denote the column vectors (i.e. the n; observations of
each attribute) and XE%,XE%, e ,XEQi) denote the row vectors (i.e. observations of each

sample) of Y i.e.

i i i (@)

vy ovg o vy Y

‘ Y(i) Y(i) . Y(i) . ' Y(i)
YOinxq=| 7 0% = ( v v vy ) =
v ve v yo,

Assume that the observations within each sample are independent, therefore the row
vectors XE%,XE%, e ,ngi) represent independent observations from a MV N (H(yz)

distribution. The sample covariance matrix at time ¢ is denoted by

Sitgxg——3 (v — ) (v -
i g= L) " Ho) \F6) T H)

i j=1
The first sample is used to obtain an initial estimate of 3, i.e. the sample covariance
matrix S;. At sample number two, S, is compared to S; to check whether the covariance
structure is still the same, if it is still the same a pooled sample covariance matrix is cal-
culated which will be compared to S at time period three. This sequential updating and
testing procedure continues until the process is declared out-of-control. It is known that
S; has a Wishart distribution (see Muirhead, 1982 [32], Definition 3.1.3, p.82; Corollary
3.2.2, p.86; (C.59)).

In SPC, once the process encountered a permanent / sustained upward or downward
step shift, one is interested in determining the probability of detecting the change in
the parameter 3 as soon as possible. Suppose that between samples x — 1 and x the

covariance structure changes as shown in Figure 4.1, i.e.

(a) from X to AX where A > 0 and A\ # 1;

(b) from X to ;.
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K—1 K K+1

l l l

| | |
/K— K— K—\ [K' K K\fl("?' K+ K+\
SRS RS S ML (D SIS SRR <1 | DS TARID St T i

-1) —1) -1) ) ) ) +1) +1) +1)
LD R S ¢S S | B S C AR ¢

Y(K—l) Y(K—l) Y;K—lg Y(K) Y(K) YSIK)q Y(K+1) Y(K+1) Y(K+1)
k-1 K

\n,(,ll ne 2 \n,(l ne2 j\n,ﬁll ne 2 0 "qu/

[(a) MVN(HO,Z) MVYN (. ,12)]

(®) MYN(u,%) MvN (g, 3))

Figure 4.1 Matrix scenarios

In this study the two matrix random variables, Uy and Uy, that corresponds to the two
successive time periods immediately after the change in the covariance structure occurred

(i.e. sample x and sample k + 1) will be studied and is defined analogous to (2.7) by

Uy = X 3AW X3,

1 1 4.1
U1 = (X + )\Wo)ii >\W1 (X —|— )\Wo)ii . ( )

In this case X has a Wishart distribution with parameters v; and 3, denoted W, (v, X)
(see (C.59)), Wy is W, (v2,X) distributed and W, has a W, (vs, ) distribution with
X, Wy and W; independent (v; > ¢,i =1,2,3). Note that A3 is the unique positive
definite square root of A (see (C.33)). In terms of the SPC application the parameters
v = Z;:ll n;, v3 = n, and v3 = n,y1. The latter expression (4.1) can be rewritten
Uy = X 2 WX 3, (4.2)
Uy = (X +Wy) 2 W, (X + W) 2,

where X ~ W, (v1,%), Wy ~ W, (v2,AX) and Wy ~ W, (v3,A\X) for Scenario (a).
Furthermore Wy ~ W, (v2, ;) and Wy ~ W, (vs, ;) for scenario (b) with X, Wy and
W independent (v; > ¢,i = 1,2,3). The symmetric form of the ratios will be considered.

Subsequently, a short overview of existing bimatrix variate beta type II models will be

given to position the new model that will be derived.
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e Diaz-Garcia and Gutiérrez-Jdimez (2010) [8] extended the bivariate generalised beta

type II / or F distribution to the matrix variate case with ratios:

Uy = X WX 2, (4.3)
U, = XTW, X3,

where X ~ W, (v1,%), W; ~ W, (vi42,%) ¢ = 0,1 be independent.
The pdf of (Ug, Uy) (see (4.3)) is

r (% (1)1 + vy + 'Ug))

Ly (301) Ty (5v2) T (303)

where U; > 0,7 =0,1 with Re(v;) >¢—1,i=1,2,3.

Q

‘U ‘2”272 (g+1) ‘U |2”3 2(‘1+1 |I +U0—|—U ‘ 2(01+vz+v3)

N[~

e Bekker et al. (2011) [5] defined the bimatrix variate extended F distribution as fol-

lows:

Uy = X WX 2, (4.4)
U = (X+W,) TW, (X +W,)2,

[un

where W; ~ W, (vi42,%), i« = 0,1,2 and X ~ W, (v1,X) are independent.
The pdf of (Ug, Uy) (see (4.4)) is

By (5 (1 + v2) , 504)

1 1 1 1

|U0‘%vzfé(q+1) ‘U1|%v3*%(q+1) L, + U1|f%(v1+vz+v3+v4)
6(1 (5”1, 502, 5U3; §U4) !

X o1 (3 (1 +v2), 2 (01 +vg + v +04) 31 (01 + v +04); —Ug (I, + Uy) )

where U; > 0,4 = 0,1 with }—Uo (I, + Ul)_l} <1,Re(v;) >q—1,i=1,2,3,4 and
B, (% (v1 + va) %1)4) is the multivariate beta function (see (C.36)), 3, (%vl, %02, %1)3; %1)4)
is the multivariate Dirichlet function (see (C.37)) and oF; (-) is the Gauss

hypergeometric function of matrix argument (see (C.52)).

This chapter focuses on the matrix variate random variables (4.2), because the distribution
of these matrix random variables is unknown and plays a role when calculating the run-
length probabilities. In Chapter 5 some measures are proposed. To develop an exact
expression of a run-length of one, one may use the distribution of |Ug|; for N = 2 the

joint distribution of |Ug|, |U;| plays a role, because after a change occurred, there is no
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longer independency. Furthermore, as a two-sample statistic for testing the hypothesis
at time k that the two independent samples are from the g—variate multivariate normal
distributions with the same unknown covariance matrix 3, the statistic |Uy| may be of
interest as a test statistic. Subsequently |U;| can be used at time x + 1. Thus |Up| and
|U;| may be used as charting statistics for the multivariate process. For scenario (a) (see
Figure 4.1), |Up| is in fact a test statistic to check whether A = 1 (i.e. the covariance
matrices are the same) versus A # 1 (i.e. the covariance matrix change with the scale
factor \). For A = 1, |Ug| is the Wilks’ statistic type II (see Pham-Gia and Turkkan,
2011 [40]). Take note that it is assumed that the mean vector is known; without any loss

of generality it is assumed that the mean vector is the zero vector.

In the next section the generalised bimatrix variate beta type II distribution is derived.
Section 4.3.1 considers the case where X ~ W, (v1,3), Wy ~ W, (v3,AX) and W; ~
W, (v3, AX) are independent. In Section 4.3.1.1 the pdf of this newly defined bimatrix
variate generalised beta type Il distribution is derived with the marginal pdfs in Section
4.3.1.2. The product moment E [|Up|"|U;|"2] is derived in Section 4.3.1.3 and is used
to obtain exact expressions for the pdfs of |Uy|, |U;|and |UyU,| in Section 4.3.1.4. The
case where it is not only a scale transformation of the covariance matrix but a complete
change in the covariance matrix structure (i.e. from X to 3;) will be discussed in Section
4.3.2.

This study only considers the situation where the process covariance matrix structure
changed. The case where the mean also changes from Ky o p falls outside the scope of
this thesis.

4.3 The generalised bimatrix variate beta type II dis-

tributions

4.3.1 The covariance structure change from X to \X

In this section the generalised bimatrix variate beta type II distribution is derived for
the case where the covariance structure X changes with a scale factor i.e. \3. For the
bivariate case (¢ = 2) an example of a contour plot of the multivariate normal distribution
is given in Figure 4.2 to illustrate the effect of the change in the covariance matrix. The
pdf of (Up,U;) (4.2) is derived in Theorem 4.1. Sections 4.3.1.2 to 4.3.1.4 consider
some characteristics of this distribution with specific focus on the marginal distributions,

followed by an exact expression for the product moment. Finally the pdfs of |Ug|, |U;]|
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and |UgU,| are derived. Note there is no loss of generality in assuming 3 = I, in the

derivation of the pdfs.

MVN(u, %) MVN(p,, 7%)

Figure 4.2 Contour plot to illustrate the change of

the covariance matrix by a scale factor

4.3.1.1 The probability density function

The pdf of the generalised bimatrix variate beta type II distribution is derived in Theorem
4.1.

Theorem 4.1 Suppose that X ~ W, (v, %) is independent of Wy ~ W, (v, AX) and
Wi ~ W, (vs, A\X) . Then the pdf of (4.2) is given by

Pq (% (U1 + U9 + Ug)) )\%qvl
[T, T, (3v:)

% |U1|%v3*%((I+1)

£(Us, Uy) U 27272 |1, 4 U2 (4.5)

— 3 (v1tva+vs)

AL + Up + (I, + Ug)% Uy (I, + Uy) ,

=

where U; > 0, i = 0,1 with Re(v;) > q¢—1,i=1,2,3 and L', (-) is the multivariate
gamma function (see (C.34)).

Proof. The joint pdf of X, W, W is given by (see (C.59))
f (X, W, W) = C X200 [wg 20270 [y 30070 (4.6)
X etr(—%X)etr(—%)flwo)etr(—%)flwl) ,

where )
O~ 1 — 9za(vi+vatus) H?:l r, (51)@) )\%q(uﬁvs)_ (4.7)

Making the transformation

=

U=X, Uy=X WX 3, U =(X+Wy) W, (X+Wy) 2,
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1 1
X—U, W,=UU,U?, W, :(U+U%UOU% ‘U, (U+U%UOU%)2

S

— (U% (I, + Uy) U%) U, (U% (I, + Up) U%)
From (C.41) and (C.42) the Jacobian of the transformation is

J (X, WO’ WlﬁU, Uo, Ul) = J (X—>U) (WOHU()) (WlﬁUl)
% Q(Q+1)

— |UE@tY U (I, + Up) Ut
= U™ T, + U2ty (4.8)

Therefore, substituting in (4.6) gives the joint pdf of (U, U,, U;) as

f (U, U, Uy)

2(1)2 q-1)

— o [upe )U2UOU2

1
15(v3—g—1
22( )

M

% |U‘q+1 \Iq + UO‘%(Q-H)
— C Ut =) g e et | T |3 (U, F R (49)

xetr(~3U)etr(~ A UUp)etr (~ AU (I, + Up) UFU, )

From (4.9) follows that

f(UOaUl)
_C ‘UO‘%vzfé(qul) ‘Iq + U0|%v3 |U1‘%v3*é(q+1)

X / Uzt =2 D o (1) etr(— 1A UU)
U>0
X etr(—%)\_lU% (I, + Uy) U%Ul) dU

= C U,z 20D |1, 4 U2 U, 27204 g (1) | (4.10)
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where
g1 (Uy) = / U st 2@ g (1) etr(— 1A 1UU)
U>0

xetr (—%A*IU% (I, + Uy) U%Ul) dU.
Expanding etr (—%)flU% (I, + Uy) U%Ul) in terms of the zonal polynomial using (C.50)

and applying (C.44) it follows that for any H € O (¢), the orthogonal group, it can be
easily seen that ¢; (Uy) = g1 (HUH') (see Muirhead, 1982 [32], p.248). Thus

g1 (HUlH/)
- / Ut B e (1) etr(— 1A TUU)
U>0
x / etr(—gxlué (I, + Up) U%HUIH’) dHAU
O(q)
— / U =3 @ o (10 etr (— 1A 'UU)
U>0
1
2P IE e (—%A*IU% (I, + Uy) U%HU1H/) dHJU
t 17 YJO(q)

_ / Ut R (1) etr(— 1A 1UU)
U>0

M

DO

U(L, + Uy)* HU1H/> dHAU,
T “JO(q

C, (—%A‘l (I, + Up)
)

and

g1 (Uyp) = / |U|%(Ulﬂﬁw’)*%(qﬂ)etr(—%U)etr(—%)\*lUUg) (4.11)
U>0

xetr(—gxl (I, + Ug)? U (I, + Uy)? Ul) dU.

Substituting (4.11) in (4.10) gives

f(UO’Ul)
—C |U0|%02*%(q+1) L, + U0|%”3 |U1|%03*%(q+1)

x / Ut ) o (1 etr (— AU
U>0

X etr(—%)fl (I, + Up)? U (L, + Uy)? Ul) dU

© Univgr%ity of Pretoria



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

4. GENERALISED BIMATRIX VARIATE BETA TYPE II DISTRIBUTIONS
4.3. The generalised bimatrix variate beta type II distributions

= C |U0‘%U2—%(q+1) ‘Iq + UO|%”3 |U1\%U3_%(q+1) (4'12)
X / U st 2@ g (1) etr(— 1A 1UU)
U>0
X etr(—%xlu (L, + Uy)? U, (I, + UO)%) dU
= C'[Ug|2" 30 |1, 4 U3 [U, 3% 30D (4.13)
></ ‘U‘%(v1+v2+v3)7;(q+1)
U>0

x etr(—%)flU [AIq +Ug + (I, + Ug)? Uy (I, + UO)%D dU.

Integrating (4.13) with respect to U using (C.54) and substituting C' (4.7) gives the

desired result

f(UO’Ul)
_ 1 ; |UO‘%1)2—%(¢1+1) ‘Iq + U0|%v3 |U1‘%v3—%(Q+1)

93a(vitvates) [T3_ T, (Lv;) \za(v2tus
1 Lqv
_ Fq (5 (Ul + vg + 'US)) 21"t |U0‘%vz—%(q+1) ‘I + U0|%v3 |U1‘%U3—%(q+l)
JEE (3v1) !

1 1

X NI+ U + (I, + Ug)2 Ui (1, + Uy)’

— 3 (vitv2tvs)

N

xTq (3 (v1 +v2 + v3))

1
AT AL + Ug + (I, + Uy)? U (I, + Up)

—1 (vitvz2+us)

4.3.1.2 Marginal probability density functions

In this section the marginal pdfs of the generalised bimatrix variate beta type II distrib-

ution (4.5) are derived.

Theorem 4.2 Suppose that X ~ W, (v1,X) is independent of Wy ~ W, (v, \X) and
Wi ~ W, (v3,A\X) . If the joint pdf of (4.2) is given by (4.5), then the pdf of

(a) Uy is given by

Fq (% (Ul + UQ))
Ly (301) Ty (5v2)

where Uy > 0, with Re (v;) >¢—1,1=1,2,

F(Uy) = ARV [U|3%2 730D |\, 4 Uy | 3002 (4.14)
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(b) Uy is given by

Fq (% ('Ul + (%) + 1)3))
Fq (% (Ul + UQ)) Fq (%Ug)
X2F1 (%Ug, % <U1—|—U2+’U3) )

1 _ 1
% (U1+U2) ?Iq_ (Iq‘l'Ul)2 (>‘Iq+U1) ' (Iq+U1)2) ’

B U, |70 L, 4 Uy R (415)

f(Uy) =

where Uy > 0, HIq — (I, + Ul)% (AL, +Uy) " (I, + Ul)% H <1 withRe(v;) >q—1,i=
1,2,3 and oF) (+) is the Gauss hypergeometric function of matriz argument (see (C.52)).

Proof. (a) The marginal pdf of Uy is obtained by integrating f(Uy, U;) (see (4.5))
with respect to U; using (C.53),

f (Uo)
T, (L (v 4 vy + v3)) AZ? 1 1
_ ¢ (3 (01 + vz + v3)) |U0‘évz é(q+1)‘1q+U0‘%vﬁ

H?:1 I (%Ul)

x/ U323 XL, + Ug + (I, + Ug)? Ui (I, + Ug)
U:>0

— 3 (v1+v2tvs)

D=

1

1 1w
= Lo (Ul3+ = +1U3)> . |Uo\%”2—%(‘ﬁl) L, + Uo\%v3 / ‘U1|%v3—%(Q+1)
[T Ty (301) U;>0
X [(AL+00)? (T + (AL, +U0)# (I,+U0)? Ui (I,+Up)? (A,+Uy) ? )

— 2 (v1+v2tvs)

1

(M, +Up)?

1 Lqus
= L'y (2 (Ul+v2+v3)) A2 |U0‘%vz—%(q+1) ‘Iq+UO|%’U3 ‘)\Iq_I_UO‘_%(’Ul-Hm-FUS)

H?:l I (%v,)

1 1
lys—L(g+1
></ U, 2™ z(7+1)
U;:>0

I+ (M, +Up) 2 (IL+U,)? Uy (I,4+Up)

— 3 (v1+v2tvs)

D=

(M, +Up) 2

X

1

1 1qu
— Ly (5 (01 + va +v3)) A2 |U0‘%vz—%(q+1) L, + Uo\%vi” I, + U0|—%(v1+u2+v3)

H?:l Iy (%Uz)

1 1
lys—L(g+1
></ U, 2™ 2(2+1)
U;>0

— 2 (v1tv2+vs)

I, + (T, + Ug)® (AT, + Up) ™ (I, + Uy)? U,
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1 $qu1
= Fq (2 <U1 T U2+ U?’)) A2 |UO‘%U2*5((I+1) ‘Iq + UO‘%% |)\Iq + U0|*%(vl+vz+v3)

H?:1 I (%Ul)

X8, (303, 3 (v1 + v2)) ‘(Iq + Uy)

— 3 (v1tv2+vs)

N =

(AL, + Up) ™" (I, + Uy)?
X 3B (£ (01402) 3 (01402+05) 4 (01+02405) Ty = (L +Ug) ™2 (L +Up) (1,+Uo) 2

F ( <U1+U2—|—U ) 2qv1

)
[T Ty (30s)
X, (33,3 (v1 + v2)) ‘(Iq—l—Uo)

% 1Fo (301 00)sL, = (L + Uo) ™ (AL, + Ug) (1, + Uo)”

U, sv2=3 (1) | + U, 39 | \T 1 U, —3 (vitvatv3)
q q

— 3 (v14v2+vs3)

L, (3 +ve+v )\5(11/'1 1,1 14w
= = (2 <1—EB PQ (15;) [Uo|2™ 20t I, + Uy 2(tez) ﬁq (%U:'n % (v1 + U2>)
i=1-9\277
X 1F0< (01 +v2) 3 I, — (I, + Up) 2 (AIq+U0)(Iq+U0)*%)
) Ty (5 (01 +02)) Ty (505)
Fq (% ('Ul + vg + 'Ug))

N =

(ML, + Uy) " (I, + Uy)?

=

T, (L (v) + vy + v3)) AZT 11 1
_ (1(2( 1 2 3>) |U0‘évz é((ﬂrl)‘Iq_'_Uo‘ 3 (v1tv2

H?:1 I (%Ul)

I, — (T, = (I, + Uy (AL + Ug) (I, + Ug) )|

—% (vitv2)

_F ( Ul—l-’l)z))\?qvl

1.1 S
D, o) T, by 1001 HED AL+ U 20,
qa\2 2

where 3, (-) is the multivariate beta function (see (C.36)) and 1 Fy () is the hypergeometric
function of matrix argument (see (C.51)). The latter two steps follows from writing the
multivariate beta function in terms of the multivariate gamma function (C.36), applying

(C.51) and simplifying the result.

(b) From (4.12) follows that
f(U1)

— / / C ‘U0|%U2*%((I+1) |Iq + Uo‘%% ‘U1|%U3*%((1+1) |U|%(Ul+v2+y3),%(q+1)
Uy>0JU>0

x etr(~3U)etr(~ 1A UUp)etr (— A7 (I, + Uy)? U (I, + Ug)? Uy ) dUAU,
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=C |U1|%U3_%(q+1)/ |U|%(vﬁvﬁv?’)_%(q“)etr(_%U)/ |Uo|%v2_%(q+1) 1, + U0|%v3
U>0 1 Us>0
X etr(—%)\_lUUo)etr(—%)\—l (I, +U)2 U (I, + Uy)? U1> dU,dU

= C|U, |33t / U@t e o (1) g, (U,)dU, (4.16)
U>o0
where
¢(U}) = / U |22 |1, 4 Uy |3 etr(—1A""UUy)
Up>0
wetr (—%xl (I, + Up)? U (I, + Up)? Ul) dU,.

Expanding etr(—%)fl (I, + Uo)% U1, + UO)% Ul) in terms of the zonal polynomial us-
ing (C.50) and applying (C.44) it follows that for any H € O (q), ¢g2(U;) = go (HU;H')
with

g2 (HUlH/)
— / U |22 |1, 4 Uy |2 etr(—1A""UU)
Up>0

x/ etr(—%)\*l (I, + UO)% UI,+ UO)% HUlH’) dHdU,
O(q)
- / U |22 20D |1, 4 Uy |3 etr(—1A""UU)
Up>0
1
x>, ]
t T

*J0(q)
- /U U272 1, 4 U |2 etr (—2A~1UUy)
0>0

Cr (=307 (1, + Uo)? U (1, + Up)? HUH' ) dHAU,

2

xzt:z%

C, <_l)\*1U% (I, + Uy) U%HUlH/) dHdU,,
T “JO(q)

and
1yo—1 1, _
92<U1) = L o |U0‘2 2-3(0+D) ‘Iq +U0‘2 3etr(—%)\ 1-U"U-o) (417)
0

xetr(—%)flU% (I, + Up) U%U1) dU,.
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Substituting (4.17) in (4.16) gives

f(U1)

where

C |U1‘%v3—%(q+1)/

uﬁmmw#%HMW%W/)\WWW%”mﬁUﬁ%
U>0

Up>0
xetr(~3A " UUJetr(~307"U* (I, + Ug) U, ) dUpdU

Cluprday [ e e (4u) [ U L, 4 Uyl
U>0 Uo>0

xetr(~3A 7 UUgJetr(~ AU, Jetr (~ 1A UU,UR U, ) dUgdU
C |U1‘%v3—%(q+1) / ‘U‘%(v1+v2+v3)_%(q+1)etr(—%)flUUl)etI‘(—%U)
U>0
x/ U |72 2D |1, + UO\%”ﬁetr<—§x1UO (U + U%UIU%)) dUydU
Up>0
C |U1‘%v3—%(q+1)/

Up>0

‘UO‘%vz—%(qH) I, +U0|%v3/ |U‘%(v1+v2+v3)—%(q+1)
U>0
xetr(~3A7TUU, Jetr(~4U)etr (~ 1A' UU* (1,+0;) U ) dUAUy
C U,y [z 3@t / U227 30D T, 4 Uy |2 g4 (U,) dU,, (4.18)
Up>0

g5 (Up) = / Ut =i eg (_IA\TUU, etr (—3U)
U>0

xetr (—%A‘lUOU% (L+U,) U%) dU.

Expanding etr(—%)fonU% (I,+U,) U%> in terms of the zonal polynomial using (C.50)
and applying (C.44) it follows that for any H € O (¢), ¢3(Up) = g5 (HU H') with

gs (HUoH/>
— / Ut =3 @ o (LIA\TUU, etr(—1U)
U>0

X / etr(—%)ﬁlHUoH’U% (Iq+U1)U%) dHJU
O(q)
- / Ut 6 o (G, etr(— 10)
U>0

1
DI DE e (—%A‘lHUOH/U% (L+U,) U%) dHAU
t o

T .
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_ / U0t =3 @ o (IA1U U, et (— LU)
U>0

(SIS

DO

C, (—%A‘lHUOH’ (I+U))
T “JO(q)

U (Iq+U1)%) dHAU,

and
g3(Up) = / \U\%(”1+”2+”3)_%(q+1)etr(—%A‘lUUl)etr(—%U) (4.19)
U>0

1y-1 3 3
xetr<—§)\ Uy (I,+U,)? U (Iq+U1)2) dU.

Substituting (4.19) in (4.18) and applying (C.56) gives

f(Uy)
_ C|U1‘%U3_%(q+l)/

U272 30D |1, 4 U [ / Ut
Up>0

U>0

><etr(—%xIUUI)etr(—%U)etr(—gxlUO (I,4U,): U (Iq+U1)%) dUdU,

= C|U1\%”3—%<q+”/ U2t =it e (_I\TUU, etr (—1U)

U>0
X / U227 |1, +Uo\%“3etr(—gxluo (I,+U,)? U(Iq+U1)%) dUydU
Up>0

= 0|U1\%”3—%<q+1>/ U2t =it e (_I\TUU, etr (—1U)

U>o0

XL (§o2) ¥ (§va.§ (12 va) + 3 (0 +1) 30 (LU P U (1,400 ) dU

— C[U, [z (Lyy) / Uzt @t ey (1A (U, + ML) U) (4.20)
U>o0

XU (32,3 (v + 03) + 3 (g +1), 307 (I, + V)2 U (I, + Uy)? ) dU.
Integrating (4.20) with respect to U using (C.58) and substituting C' (4.7) gives

f(Uy)
_ I (% (v1+ v + U3)) L'y (%Ul) I (%7}2)
2o T[T, () ML, (3 11+ 1)

I (1, ¢ Uy RO

‘Ul‘%v:ﬁ%(fﬂrl)

=
=

X 2F1 (% <U1+U2+U3) s %Ul; % (U1—|—U2) ;Iq— (Iq—FUl)i ()\Iq+U1) (Iq—FUl)i

)
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- Fq (% (Ul + vy + U3>) )\%qvl
Ty (303) g (5 (v1 + v2))
X o (3, gt nie L (140)) 72 AL+ 0 (I+0)) 7).

|U1|%vsf§(q+l) I, + Ulré(vlﬂﬁm) (4.21)

2

Rewriting the hypergeometric function of matrix argument, oF} (+), using (C.55) gives
f(Uy)

_ F (% (Ul—l-’Uz—i—Ug)) )\%qvl
Ty (508) Ty (3 (1 + 02))

0+ U (AL, + Uy (I, + 0y

|U1‘%v3—%<q+1> L, + Ul\‘%(“ﬂz”ﬁ)

— 2 (v1tvz2+vs)

N =
N———

1 _
X 2F1< U2,2 (U1+U2—|—U3) %(U1+U2>;Iq— (Iq+U1)2 ()\Iq+U1) 1(Iq+U1)

— Fq (% (Ul + vy + U3)> )\Eqvl
T, (Lus) Ty (2 (01 + )

X 2F1< UQ,Q(U1+U2+U3) %('Ul—l—’Ug);Iq—(Iq—i—Ul)

|U1‘%Ua—%(q+1) ‘)\Iq + Ul‘—%(v1+v2+v3)

=
=

(X[q + Ul)il (Iq + Ul)

).

Remark 4.1 Substituting A = 1 (i.e. there is no change in the covariance structure and
therefore the process remains in-control) in (4.14) gives the well-known matriz variate

beta type II distribution (see (C.61)) with parameters (3v1, 3v2) with pdf

P ( (U1+U2))

va—2(g+1) —=(v14wv2)
) T, (e 10 et Dol

U, > 0.

4.3.1.3 Product moment of the determinants

The (hy, ko)™ product moment, E (\U0|h1 |U1\h2) , where (Uy, U,) is distributed as (4.5)
is derived in Theorem 4.3 with the A" moments of |[Up| and |U;| given in Lemma 4.3.1.
The moments are used to determine the distribution of |Uy|, |U;| and |UyUy| in Section
4.3.1.4.
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Theorem 4.3 Suppose that X ~ W, (v1,X) is independent of Wy ~ W, (v, \X) and
Wi ~ W, (vs, A\X) . If the joint pdf of (4.2) is given by (4.5), then
E (100" 10,
_ Tyt =) Ty (s 4 1) Ty G = h) Ty (o ) M
[T, T, (3vi) Tq (3 (01 + v2))
X oFy (§u1 — ha, 5 (01 +v2) — ho g (01 +12); (1= A) 1),

where [|[(1 —A\) 1, < 1, Re
Re(%vl—hl) >%(q—1),R

Ul+U2)—h2) > 1(g—1), Re(%vgjth) > 2(g—1),

2

o~

Proof. From (4.5),
B (JUl" [uil™)

T, (L (o 4+ vg 4+ vg)) ABL ) o
— /U O/U i q (2 (1—:[l3 If (1;))> |U0‘évz+h1 é(‘H—l) |Iq 4 Uo‘ém |U1|év3+h2 é(tﬁ-l)
0>07/ 1> i=11q \2Vi

x )Alq + Uy + (I, + Up)? Uy (I, + Up)?

—1 (v1+vatvs)

dU,dU,

Ty (& (01 + vz +v3)) AT ) . N
= q(2 <U13 U2 1U3>) / |Uo‘év2+h1*é(q+1) |Iq+UO‘;U3/ ‘U1|;v3+h2*;((1+1)
[Tea Ty (302) Uo>0 U,>0
% |(AL, + Uo)? (T, + (AL, + Up) 2 (I, + Uy)2 Uy (I, + Ug)? (AL, + Ug) 7

—1(v1+vztus

, )
(AL, + Up)? dU,dU,

1 Lqvy
_ L (3 (1 + vz +v3)) A2 / |UO‘%U2+h1*%(q+1) L, + Uo\%vﬁ | AL, + Uo\*%(vlﬂzﬂs)
Up>0

H?:1 I (%Ul)

1 _1
X/ |U1‘ svsth2—3(g+1)
Ui1>0

1

I, + (M, + Ug) "2 (I, + Ug)? Uy (I, + Up)% (M, + Up)

1 $qu1
_ Lo (o (o) X [ O g LU ) 42)
Up>0

3
[l Ty (%Uz)
% |U1‘%vs+h2*é(q+1)
U;>0

—% (v1tvatos

)
X dUldUO

— 3 (v14v2+vs)

x |I, + (I, + Ug)? (M, + Ug) 1 (I, + Ug)? U, dU,dU,,.
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Integrating (4.23) with respect to U; using (C.53) gives

B (JUl" Ui

1 1qun
= Fq (21(_});_"?_"(113))))‘2 / |U0‘%U2+h1_%(Q+l) ‘Iq+U0|%v3 |)\Iq+U0‘_%(v1+v2+U3)
i=11q (Vi Uo>0

Xﬁq (%’Ug + hz, % (Ul + ’Uz) — hg) ’(Iq + UO)

—1 (v1+vztvs3)

Nl

()‘Iq + UO)il (Iq + U0)§

_1 _1
% 1Fy (% (01 + v2) — hai I, — (I, + Ug) "% (AL + Up) (I, + Up) ) dU,

Lo (50t vat0g)) 2™ (4.24)
B H§:1 I (%Ul) .

X/ |U0‘%Uz+h1—%(Q+1) |Iq+UO‘%U3 |)\Iq+UO‘—%(vl+vg+u3)
U0>0

5 1 (v1+vatv
Xﬁq (%,U?’ + h2> % (Ul + 'U2) - h2) |Iq + U0|72(v1+v2+v3) ‘)\Iq + UO‘z( 1+v2+v3)

_1 _1
X 1F0 (% (’U1 + U2> — hQ;Iq — (Iq + U()) 2 ()\Iq + UO) (Iq + U()) 2) dUO

The hypergeometric function of matrix argument, 1 Fy (+), in (4.24) can be simplified by
using (C.51), then

_1 _1
1F0 (% (Ul + U2> — hQ;Iq — (Iq -+ U()) 2 ()\Iq -+ Uo) (Iq + Uo) 2)

— % (vi4v2)+ho

N =
N =

- )(Iq +Uo) 2 (AL + Uo) (I, + Uo)

= I, + U2 2772 AL, 4 Y| 2t the (4.25)
Substituting (4.25) in (4.24) gives

E <|Uo\h1 \U1|h2)
Ty (& (01 + vy + vg)) AZO
_ g (3 (V1 + 05+ v3)) By (305 + ha, 5 (i +v2) — ha)

H?:l I (%Uz)

X/ |UO|%vz+h1—%(q+l) ‘Iq + U0|—h2 P‘Iq + UO‘—%(vl-f—vz)-f—hz dUo
Up>0

Fq (% (Ul —+ U9 + U3>) )\%qvl
T, T, (3vi)

X/ |U0‘%Uz+h1—%(Q+l) ‘Iq + U0|—h2 P\ (Iq + )\flUO) }*%(v1+v2)+h2 dUO
Up>0

Bq (%Ug + hg, % (Ul + UQ) — hg)
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Iy (3 0n 4 02 4 ) Ao
- el (k4 ) =) (4:26)
=1

X/ |U ‘2v2+h1—§(q+1 ‘I +U0|_h2 ‘I +)\ lU ‘ U1+U2)+h2 dUO
Up>0

Integrating (4.26) using (C.53) and subsequently replacing the multivariate beta function
using (C.36), the (hy, he)"™ product moment is

E <|UO\h1 ‘U1|h2>
Ty (L (01 + vy + vg)) A7372Hah2
_ q(z 1H32F E’l)) B, (%v3+h27%(v1+v2>_h2)
i=1"49

% 6 ( U2+h1,21}1 )‘)\ qu‘ v1+vz)+h2

X oFy (Gu1 = Py, 5 (01 +v) = has g (01 + v2) Ty — AL
Ty (3 (v1 + vz + v3)) A% Ty (3v3 + ho) T (3 (01 + v2) — ha)
TRE £y G 1o o)
Iy (%W + hl) Iy (%“1 - hl)
Ly (5 (v1 4+ v2))
X oFy (%Ul—hl,%(vlﬂ”}z) 7%(U1+U2> I _)‘Iq)
Ty (3 (v1+v2) — ho) Ty (Rvs + ho) Ty (o1 — ha) Ty (302 + )
[T Ty (301) Ty (5 (01 + w2 )
X oFy (501 = ha, 5 (V1 4 v2) = ha; 5 (1 +v2) 5 (1= A) I).

Az

Lemma 4.3.1 The h'" moment of |Uy| and |U;| where (Uy, Uy) is distributed as (4.5)
can be obtained from (4.22):

(a)

1., _ 1

o (‘U0|h) Y (5v1 1 h) Ty (§U2 +h) A\ (4.27)
Ty (3v1) Ty (302)

where Re (3v1 —h) > (¢ —1), Re (3ua+h) >4 (¢—1).
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(b)

hY _ L'y (% (v1 + v2) — h) I, (11;3 + h) 3014
E (\U1| > N Ty (3v3) Ty (3 (01 + 19))
X 2F1( U172<U1+ ) ,2(1}1—1—1}2) (1_)\)Iq)

(4.28)

where [|(1 = A)I,|| <1, Re (3 (v1 +v2) —h) >1(¢—1), Re(3vs+ h) > 3 (¢ —1).

Proof. (a) Set hy = h and hy = 0 in (4.22) and using (C.51) it follows, then

E (‘U |h) _ Pq (% (Ul + U2)) Fq (%Ug) Pq (%Ul — h) Pq (%7)2 + h) )\%qvl
0 [T T (30:) Ty (& (01 + v2))
X oF] (%U1 - h, 2 <U1 + U2) 3 ; (111 + Ug) (1 — )\) Iq)
Ty (2 )T, (Rt 1) A

2
By (301) T (502)
_ La (3o = W)Ly (Geat ) M
By (301) T (502)
_ Ty (5 —h) Ty (5021 1) i
Fo (301) Tq (302)

1F0 (%Ul — h, (1 — )\) Iq)

1, = (=N, G

(b) Set hy =0 and hy = h in (4.22), then

b I, (% (v1 + vg) —h)F ( 1)3+h) ( vl)F (21)2) Az9
" <‘U1| ) [T, Ty (3v1) Ty (5 (01 +v2))
X 9Fy (501, 5 (01 +v2) — hy 5 (v +v2) 5 (1= M) I,)
0y (3 )~ )Ty () Ao
T, ()T, (1 )
X oF1 (3u1, 4 (U1 +v2) — hy 5 (01 4+ v2) 5 (1= N L) .

4.3.1.4 Distributions of |Uy|, |U;| and |UyU;|

Exact expressions for the pdfs of |Uy|, |U;| and |UyU;| are derived in Theorem 4.4. Note
that the expressions of the cumulative distribution function of |Uy| and |U;| are included
- see Chapter 5, Section 5.3.
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Theorem 4.4 Suppose that X ~ W, (v1,X) is independent of Wy ~ W, (v, \X) and

Wi ~ W, (vs, AX) . If the joint pdf of (4.2) is given by (4.5) with marginal pdfs given in
(4.14) and (4.15) respectively, then

(a) the pdf of |Uq| is given by

.....

F(V0D) = iy G (VT Ul 5 (4.29)

(b) with cumulative distribution function (CDF)

Fiu(¢) = Pr(|Ug| <o)

q(g—1)
2

- Gaa! ()\ G| Lot “q“), c>0, (4.30
T, (%Ul)Fq (%Uz) gt1,g+1 Clyit b0 (4.30)

where G(-) denotes Meijer's G-function (see (B.16)) and

aj=—3v1+3(j—1) andbj =302 — 3 (j+1) forj=1,2,...,q.

(¢) The pdf of |U4| is given by

\bvig, 2oL

f(‘UID = T (—Ul)r (—Ug) (431)

PP IR Lawr) g yye, ) (Ul ).

Ty (3 (v +wp), 7yttt 0 T e LT b

‘Ul‘ > 0,
with the values of the parameters such that f (|U1|) is a valid pdf,
(d) with CDF
Flu, () = Pr([Ui <¢)
Ly1q la=1)
A (4.32)
I (5“1) Iy (5”3)

Fq (%11177) t +1 1,a1+1,....aq+1
"y (3 (01 +v2),7)t! (1= A)Cr () Gafigan (C bt bqﬁlvo)’

c >0,

XD o2
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where a; = —% (v1 +v2) —tj+5 (j — 1) and b; = svs—3 (j+ 1) for j =1,...,q, with
the values of the parameters such that Fiy,| (c) is a valid CDF and T, (-,-) denotes the
generalised gamma function (see (C.40)) and C. (-) is the zonal polynomial defined
in (C.43).

(e) The pdf of |[UgU,| is given by

A3
fF(UU4|) = 4.33
= o T, (o T, G -
m@ (1= NG (1)
x 352 LG (10U ).
Zt—o ZT Fq (% ('Ul + UQ) ’7_) t' 2q,2q | 0 1‘ ‘bl ..... b2q
‘UOU1| > 0,
where
—%vl—tj;_l —i—%l(j—l) for j=1,3,...,2¢—1
aj = . .
_%(U1+U2)_t%+i(‘7—2) fO’f’]:2,4,...,2q,
, log—1 UL for j=1,3,...,2¢—1
T %vg—l——(jf) for 7=24,...,2q,
with the values of the parameters such that f (|JUgU4|) is a valid pdf.
Proof. (a) From (4.27),
E <|U0|h71) _ Ly (301 —h ‘1" T, (%W +h—1) Aah=1)
Ty (501) Ty (5v2)
therefore _— ) _— .
. Ly —h+1)T, (2 —1
E (P\fon}h 1) _ 14 (301 ‘1" ) Ty (§U2 + ) (4.34)
Lq (301) Tq (502)
The Mellin transform (see (B.14)) of f (|)\_1U0|) is
My (n) = B (A0, (4.35)

Expressing the multivariate gamma functions in (4.34) as a product of gamma functions
(see (C.35)) and substituting it in the Mellin transform (4.35), gives

aa-1) 2 d
7% [IT[L —a;— h] [T [b + ]

- j=1 j=1
My (h) = O, (o) Ty (3es) |

where aj = —1v; + 3 (j—1) and b; =3, — (i +1), j=12,...,q.

(4.36)
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The pdf of [A"'Up| is uniquely obtained from the inverse Mellin transform (see (B.15))
of (4.36) and the definition of the Meijer’s G-function (see (B.16)) and is given by

fF((A00))
= o JoT My () AU d
= 17#(12_1l Ty or i H DL —a;— K [T Db+ A [ATo| " dh
Ty (301) Tq (302) ' =i
q(g—=1)
T, (%Z) T, (30s) Gl </\ U0l [y, > : (4.37)
Therefore s

FIoh = A1y (AUl

77777

Ty (301) Ty (5v2)
(b) Let u = |Uy|, u > 0 then from (4.29) the CDF is defined as

Fug (¢) = Pr([Us| <¢)
a(g—1)
2

T 4
)\_q/ GPL N Ty, du.
E, (ol () Jp G (i)

Applying (B.27), (B.28) and (B.25), yields the desired result:

a(g—1)

T2 — ¢ ai,l),...,(ag,1)
F C = A q H ()\ q (a1, qs )du
o = F ot SRS
ﬂ_q{q;lz
— P s (A a. (0,1),(a1,1),...,(aq, ))
o) Ty Gy Aot (X o, onn. iy
7Tq q;l
= N G qul ()\ch 0,a1,...,aq >
g o Ty Gy v (e
a(q—1)
T2

_ 0,q+1 —q | Lar+l,.aq+1
- T (L Gq+1 q+1 (A C‘b1+1 ..... bg+1,0 |
Ul) q (5”2)

!
Q
—
N =

(c) From (4.28) the Mellin transform (see (B.14)) of f (|U;]) is

B ()

D3+ w) —h+1)T (us+h—1) AzZv1 (4.38)
B Fq (%’Ug) P (l (’Ul + Ug)) ’

X oFy (501,53 (v1 +v2) = h+ 155 (v +02); (1 = M) 1) .

My (h)
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Using (C.49) and (C.40) the Gauss hypergeometric function of matrix argument in (4.38)
can be written as

2F1( U1,2<U1+U2) h—i‘l;%(Ul—'—Ug);(l—)\)Iq)

e o (), GEitm) —ht D) C (- N1

— ZtZO Z’T (l (Ul + 'UZ))T t'

B ¢ (3o, 1) Ty (3 (v + ) —h+1,7) T,
Z“)ZTI‘( 1) TG (vi+wm)—h+1) T,

This gives

T, (v +h — 1) A3
M = %12 4.
r) = T )T, () (439)

XD o0 2 r Lo (57}1’ T) 1;

(i (v1 + v3) 7‘) t! Cr (1= 1)

From (C.35) the multivariate gamma function in (4.39) can be written as

(g— i
Ty (Svs+h—1) =25 [[T[b; +1], (4.40)

Jj=1

where b; = v3 — 5 (j+1) for j=1,... ¢,

and using (C.39), the generalised gamma function of weight 7 can be written as

q
Fq(%(vl+vg)—h+1,r):7r 4 H [1—6Lj—h],

(4.41)
J:
where a; = —3 (1 +v2) —t;+3(j— 1) for j =1,2,...,¢.
Substituting (4.40) and (4.41) in (4.39) gives
)\%’Ulq P (l'Ul,T) q(q—1
M; (h) = T2 4.42
f( ) T, (%Ul)rq(% )Zt OZ ( (01 + v2) | )t! ( )
q q
X [[T1—a;—h] [T [b;+hC-(1—-N)I,).
7j=1 J=1
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The pdf of |U,| is obtained from the inverse Mellin transform (see (B.15)) of (4.42) and
from the definition of the Meijer’s G-function (see (B.16)) as

S (| UL])
— L [0 N (b)) Uy dh

2w Jw—ioco
1
= 1
204 Fq (§U1, 7') a(g=1)

S )T, (o) 2T, (o e VT

q

x oL [etice ,H T'[1—a;—h] [T [b; + h] Uy " dh

27 Jw—i00
J=1

1 q(q 1) 1
A2V (51)1,7')

=T T T, Bog) =0 X T (o 1 0) )

(d) Let u=|Uy|, u > 0 then from (4.31) the CDF is defined as

(1- )\)t C; (I, )G <|U1‘ ‘ 7777777777 q)

Floy (@) = Pr(|Uy| <o)
)\%Ulqﬂ_q(q;l)
EERIERE
V1, T) o N\t Ty (€ g (1L aq
XZtOZ ( ) )t!(l_)‘ fquq< ..... bq)du’

(% (v1 + vq)

Applying (B.27), (B.28) and (B.25), yields the desired result:

(q 1)

A2 i
Ty (301) Tg (303)
0o Fq (%UlvT) t c (a1,1),...,(aq,1)
0T T oy )y 1V O @ I (G e
J‘I_ll

F|U1| (C) =

)\21)1(1

Ly (301) Ty (5v8)

I (%Ul T) t 0,1),(a1,1)
xS : 1= N Cr () eHg by (el et
Zt_() ZT Pq (% ('Ul + 'U2) ’7_) £ ( ) ( ) q+1,9+1 |(bl ..... (bq ),(—1,1)
)\%mqﬂ.l—u 1

Ly (301) T (%Us)

lU , T at,...,a
=M Lo (o) T (1= O (L) Gt Crnet)

%(U1+U2),T
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q(g—1)
2

AZVM
Ty (5v1) Ty (5vs)

Fq (%Ul T) t 1 1 1
X Oi ! 1—)\ C’ Gq ,q+1 (C ,a1+1,..., aq+ ) ‘
2o 2ur Ty (5 (01 +v2),7) ! ( ) Cr () Gotrgnn (Cloan,. o0

(e) From (4.22), (C.49) and (C.40) the Mellin transform (see (B.14)) of f (|JUyU,|) is

My (h)
= £ ((lusui)" )
Ty (5 (1 +v2) —h+1) Ty (bos +h — 1) Ty (3vs — h+1) Ty (2vg + h — 1) Az
[T, Ty (Bui) Ty (3 (01 + )
X oFy (301 —h+ 1,2 (v1 +v2) — h+ 155 (v1 +va); (1 = N\) L)
Ty (5 (01 +v2) —h+1) Ty (bos +h — 1) Ty (3vs — h+ 1) Ty (v + h — 1) Az
[T T (301) T (5 (01 + 12)
—h+1) (3(vi+wv)—h+1) C.(1-NI
gy G ()2(5)1117}2))? ). G- (( ~ ML)
Ty (5 (01 +v5) = h+1) Ty (bog +h — 1) Ty (3vy — h+1) Ty (Lvg + h — 1) Az
[Ties T (301) T (3 (01 + 12)
xzﬁ5zfg@m—h+LﬂFA§m+mg—h+Lﬂ T,
Ly(3oi—h+1) Ty(3(wi+w)—h+1) Ty
XCL«1;Aﬂ0
_ Dy (us+h—1)T, (Joa+h—1) 2™ (4.43)
Ty (%vl)l‘ (302) Ty (303)
—h+1,7)T, v +ve) —h+ 1,7
X im0 2 el T, (%)(vl%(—v(z)l,T) t2!) )

(% U1—|—U2)
%(U1+U2 )

CT ((1 - >‘) IQ) :

From (C.35) the multivariate gamma functions in (4.43) can be written as
Ly (3vs+h—1)Ty (302 +h—1)

— q . q .
= o5 HF[%vg—l—h—l—Lzl)} HF[%vgth—l—(j;;)]
j=1

J=1
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a(g—1) 2
= [T + 1], (4.44)
j=1

bere log =11 for j=1,3,...,2¢—1
where 0; = .
’ %Ug—l—(]%f) for j=2,4,...,2q.

Using (C.39) the generalised gamma function of weight 7 can be written as

Ly(31—h+1,7)0y (3 (01 +v2) —h+1,7)

o1y A . 1 '
= T o — b+ 14— £ G = D] TIT[S (ot 2) — b+ 144 — (= 1)]
j=1 7=
ga(g—1) 29
=177 2 HF[l—aj—h], (445)
=1

—301 — tL+ (j—1) for j=1,3,...,2g—1
—§(v1+vz)—t%+i(j—2) for j=2,4,...,2q.

where a; =

Substituting (4.44) and (4.45) in (4.43) gives

A3
M (h) = 4.46
1= T, T T, (2) (440
2 2
74a=) [[T[1 —a; — h] T[T [b; + 7]
() j=1 j=1
C((1— ML),
X Zt:O ZT Fq (% (Ul + 'UQ) 7/7_) t' (( ) (1)

The pdf of [UyU,| is obtained from the inverse Mellin transform (see (B.15)) of (4.46)
and from the definition of the Meijer’s G-function (see (B.16)) as

S ([GoUx])

= L[5 () (JUGUL|) " dh

B A2 s 3 7100, (1 - M\)1,)
Ty (301) T (évz) Ty (3vs) T Ty (3 (01 +v2) ,7) 8!
2q
C A H (1 —a;—h] T[T [b; + h] (|UU.|) " dh
|
Az w10 (1= N)' €y (L) g2

- UoU, |20
(o) T Goa T (o) o Ty o 05 ) 1 G (000 22
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Remark 4.2 Substituting g=1 in (4.29) and using (B.26) yields the marginal pdf of Uy
given in (2.24):

1 —Luy
o) = Sy ()
RS W ') i o YT ™) K
(o) T () (14 A hug) 5

l’U - — -1 v (%
ATERu T N (A )] T

Remark 4.3 Substituting q=1 in (4.31) using (C.40) and (B.26) yields the marginal pdf
of Uy given in (2.25):

)\%Ul ZOO Iy (%’Ul,t)
r (%Ul) r (%’Ug) =0 Pl (% (Ul + 'UQ) ,t) t!
A2 . (zv1), T (o)
T (301) T (30s) =" (3 (vl+vz))tf(% (v1 +v2)) #!
(% (v1 + v2 +v3) + 1) uf
(1 +uy ) 1 (v1tvatuz)+t

AZY Lyt L (o vnn) ($v1) ( 1— A )t

— 1 5 (v1+v2+v3 o] t

r (%Us) I (l (Ul + 'UQ)) Uq ( + Ul) Zt:o (% ('Ul + UQ))tt' 1+

X (5 (v1 + vz +vs) + 1)

1 51

F((Ql(vl)+ 722 +UU3%)—)U>\;) ulévrl (1+ Ul)fé(vlﬂzﬂg)

503 1 2
DY (“)(<“*"@+W”t(1_A)t

t=0

(2 (U1+U2>)tt! 1—|—U1
r (% ('Ul + U9 + Ug)) )\%Ul Lys—1

1
_ 2 1 —3 (v1+v2+tvs)
TE) T o) 4 T

flu) =

(1= G G (w2

11}3 1

(1=

< 1.

1—A 1—A
X 2F} (—Ulaz(U1+U2+U3) %(U1+02);m)> up > 0, 'm
1 1

Remark 4.4 Pham-Gia and Turkkan (2011) [40] discussed the two kinds of Wilks’ sta-
tistic. If Uy = X 3WoX 2 with X and W, Wishart matrices (W, (v, X2), i =1,2), then

Uy has the matrixz variate beta type II distribution. They derived the exact expression for
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the pdf of Wilks’ statistic type II: [Ug|, the latter expressed as the product of q univariate
betas of the second kind, which in turn, can be expressed as Meijer G-functions. Thus,
(4.29) and (4.81) can be considered as Wilks’ type II statistics.

4.3.2 The covariance structure change from ¥ to ¥

In this section the generalised bimatrix variate beta type II distribution is derived for
the case where the covariance structure of the multivariate normal process changes from
3 to Xy, i.e. not just a scale transformation. The difference between this scenario and
the one discussed in Section 4.3.1 is evident from the comparison of the contour plots
of the multivariate normal distribution for the bivariate case (¢ = 2) given in Figure 4.2
and Figure 4.3 respectively. This section is organised in the same way as Section 4.3.1
where the pdf (U, Uy) (4.2) is derived in Section 4.3.2.1 and the marginal pdfs in Section
4.3.2.2 for the case where the covariance matrix change to 3 instead of A . In Sections
4.3.2.3 and 4.3.2.4 exact expressions for the moments and product moment and the pdfs

of |Ug|, |U;| and |UyU,| are derived, respectively.

61

MVYN(u,.%) MYN(p,.21)

Figure 4.3 Contour plot to illustrate the effect of a change

of the covariance matrix

4.3.2.1 The probability density function

In this section the joint pdf of the generalised bimatrix variate beta type II distribu-
tion is derived for the general case where the change in the covariance structure of the

multivariate normal distribution of the process is not restricted to a scale factor only.
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Theorem 4.5 Suppose that X ~ W, (v1,X) is independent of W ~ W, (v9,%1) and
Wi ~ W, (v3,3). Then the pdf of (4.2) is given by

f (UOle)
- Fq (% (1)1 + Vo + Ug))
H?::l Fq (%'UZ) |2|%U1 |21|%(v2+v3

(4.47)
) ‘U0|%vz—%(q+1) |U1‘%v3—%(q+1) ‘Iq + U0|%v3

—1 (v1+vztvs)

S

1 1 _1 _1
X271 UISUG 4 (1, + U0t B UL (1 4 U)

Y

where U; > 0, with Re (v;)) >q¢—1,1=1,2,3.
Proof. The joint pdf of X, W, and W} is given by (see (C.59))

f (X W, W) = O X[E00 [Wo 202707 [ 2o (448)
x etr(—3E7'X)etr (-1 "Wo)etr (—3 27 'W) |

where

Ot = ittt o) T T, (Ju) [ 35, [5020). (4.49)

The transformation

U=X, Uy=X WX 2, U = (X+ W) W, (X+W,)~

=

)

give

-

1 1
X —=U, W,=UU,Us, W, = :(U+U%UOU% ‘U, (U+U%UOU%)2

-

- (U% (I, + Uy) U%)% U, (U% (I, + Uy) U%) ’

Y

with Jacobian (see (4.8))

J (X, Wy, W, — U, Ug, Uy) = [U]* I, + Uy 2.
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Substituting in (4.48), the joint pdf of (U, U,, Uy) is

f (U> UO’ Ul)

1 1
X etr(—%El_l (U% (I, + Uy) U%> ‘U, (U% (I, + Up) U%) 2) U7 I, + U0|%(q+1)

= U 3@ g s g, 23 @ | 4 U (4.50)

)

x etr(~3 2 10)etr(~421URULUY )

=

1
X etr(—%El_l (Ué (I, + Uy) U%) ‘U, (Ué (I, + Uy) U%)

From (4.50) follows that

f(U07U1>
= CU A [ g U [ e e )

U>0
x etr(~3 2 10)etr (-3, URULUY )
x etr(—%le (Ué (I, + Uy) U%)% U, (Ué (I, + Uy) U%> ) dU
= C[[* DU, 30 L, 4 Tl s (271), (452)
where

o (21_1) = / \U\%(01%2%3’)7%(%1)6&(—%2’1U)etr<—
U>0

1 1
X etr <—§2;1 (U% (I, + Uy) U%) ‘U, (U% (I, + Uy) U%) ) dU.

[

1 1
Expanding etr(—%E;lU%UoU%) and etr(—%Zl_l (U% (I, + Uy) U%) ‘U, (U% (I, + Uy) U%) 2)
in terms of the zonal polynomials using (C.50) and applying (C.46) it follows that for any
HeO(q), g4(37") = g4 (HE'H') with
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g (HE'H)
_ / |U|%(U1+U2+U3)_%(q+1)etr(—%2_1U) etr(—%HEle’U%UOU%>
U>0 O(q)

1
2

1
xetr(—%HEl_lH’ (U% (I, + Up) U%> U (U% (I, + Up) U%> ) dHJU

= / |U|%(”1“’”“3)_%(q“)etr(—%zl_lU) Y TY / C. (—%HZle’U%UOU%)
U>0 s t T O(q)

1 1
xC, (—%Hzle/ (U% (I, + Uy) Ué) Uy (U% (Ig + Uo) Ué) 2) dHdU

1 1 11
= / |U|%(v1+u2+v3)—é(q+1)etr(_%2—1U) ZZZZ__/ C. (—%HZle’U%UOU%)
U>0 ST T s o
1 1
xC,y (—%HE;lH’UfU% (I, + Uy) U%Uf) dHAU.
Applying (C.48) gives
g (HE'H)

_ / |U|%(v1+vz+v3)—%(q+1)etr(_12—1U) ZZZZ
U>0 2 s ¢ t T
% C, (—%HE;IH (I, + Uy)? USU, U3 (I, + UO)%) dHAU,
and
(ST = / |U|%@1*”2*”3)*%<q“)etr(—%2*1U)etr(—%21—1U§UU§) (4.53)
U>0
xetr(—%Efl (I, + Up)? UsU,US (I, + Uo)%) dU.
Substituting (4.53) in (4.52) gives
f (U07 Ul)

_C |U0\%U2_%(q+1) ‘U1|%v3—%(q+1) I, + Uo‘%v3/ \U\%(v1+v2+v3)_%(q+1)etr(—%2_1U)
U>0

N|=

xetr(—%UéEl—lUéU)etr(—% (I, + Ug)? 271 (I, + Up) U%U1U%) dU

— U230 [, | 20D T, 4 U, |7 g5 (U)), (4.54)
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where
_ 2 (v14v24v3)—3 (g+1) 1wyl _1y-1 3 B
g5(Uy) = U] etr(—3X'U)etr( —1X'UZUUE
U>0
xetr (—% (I, + UO)% NI, + UO)% U%UlU%) du.
Expanding etr(—% (I, + Uo)% NI+ Uo)% U%UlU%> in terms of the zonal polynomial
using (C.50) and applying (C.45) it follows that for any H € O (¢) , g5(U;) = g5 (HU;H)

with

gs (HUlH/)
— / ‘U‘%(v1+v2+v3)_%(q+l)etr(—%2_1U)etr(—%U§ZIIU(%U)
U>o0

X / etr(—% (I, + Up)? =7 (I, + Up)? U%HU1H/U%) dHJU
O(q)
= [t e ey (s 10 e (~ LU 51U U)
B U>0 2 270 0

1 1 1
« ; o ; C. (—%U% (I, + Ug)? B (I, + Up)? U%HUlH’> dHJU

)
1 1
. / U3t 5 ey (151U et (~ LU B U U)
U>0
1 _1 1 11
X ; 2 o )CT <—%21 * (I, +Up)? UL, + Up)? 5, 2HU1H/> dHdU,
T * q

and

g5 (U1)
1 1
= /U 0\U\%(”1+v2+v3)_%(q+1)etr(—%2_1U)etr(—%US21IUSU) (4.55)
>

xetr(—%El_% (I, + Up)? U (I, + Uy)? zl‘%Ul) dU.
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Substituting (4.55) in (4.54) gives

f (U0>U1)
= U2 3@ Uy 7730 |1, 4 U2 / U4 )
U>0
1 1
xetr(~3271U)etr(-1UF ;U U)
_1 1
Xetr(—% (I, +Up)? £, 7U 5, 7 (I, + Uy)* U) dU

= (U2 20D Uy 7520 |1, 4 U 2 / Utz (g 56)
U>0

1 1 _1 _1
etr(—% (2*1 FUZETIUZ + (I, + Up)? 2,20, 3,2 (I, + UO)%) U) dU.
Integrating (4.56) with respect to U and substituting C' (4.49) gives the desired result,

f <U07 Ul)
1

— - - ‘U0|%v2—%(Q+l) |U1‘%U3_%(q+l)
2aalvtest ) T Ty (3ur) (B2 32027
1=

X |Iq + IJ()‘%U3 Fq (% (1)1 + vy + 1)3))

—1(v1+vztvs)

N=

X

1 1 _1 _1
L (2—1 FUZETIUZ + (I, + Up)? B, 2U, %, 2 (I, + Up)

r l(vl+vg+vg) 1,1 1yl .
I rq((f TR \%)<v2+v3> (Uo7 2 U 21720 T, + Uy 2
i=1 L q (Vi 1

1 —% (v14va+vs)

1 1 _1 _
X )2*1 FURETIUR 4+ (I, + Up)? 37U, 5, % (I, + Up)?

4.3.2.2 Marginal probability density function

In this section the marginal pdfs of (4.47) are derived.

Theorem 4.6 Suppose that X ~ W, (v1,X) is independent of Wo ~ W, (v9,%1) and
Wi ~ W, (vs,%4) . If the joint pdf of (4.2) is given in (4.47), then the pdf of
(a) Uy is given by

Ly (3 (01 +v2))
Ly (300) Ty (J0o) |S535

1 —%(vl-i—vz)

_1 _1
IR SNE] O/ S

‘UO | %m*%(qul)

f(Uo) =

Y

(4.57)
where Uy > 0, with Re (v;) >q¢—1,1=1,2.
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(b) Uy is given by

f(uy) = L (G (v +oa + Ug)) (4.58)

v l7.) :
T, (303) Ty (& (01 + y)) DR N

1 —1 (v1tv2+us)

1 1
X U [F7300) |24 Uy Uy

11 1
><2F1 (51)2, 5 (Ul + ()] + ’U3) ; 5 (’Ul + 1)2)
1 1\3 1 1 1\3

1, - (B0 + Uiz ur ) <2‘1+Uf21‘1Uf) (st +Uisut) )

1

1 1\ 3 1 1\ —1 1 1
where Uy > 0, ‘ I,— (21‘1+Uf21‘1Uf)2 (2‘1+Uf21‘1Uf) (21_1+Uf21‘1Uf) :
with Re (v;) >q—1,i=1,2,3.

<1

Proof. From (4.50) follows that

f(Uo)
1 _1 1,1 1,1 1
= / / C‘U‘Q(U1+U2+US) 5(g+1) |U0‘2U2 5(g+1) ‘U1|2v3 5(a+1) |Iq ‘l‘UO‘ZUS
U;>0/U>0
x etr(~3 2 10)etr (4%, URULUY )
1 1
x etr(—%E (Uz (I, + Uy) U%> U, (U% (I, + Uy) U%> ) dUdU,

SYoR) A ERREICAN) S SN L / Uzttt st e (—15-1U) (4.59)
U>0

><etr<—%21_1U%UOU%) / |U1‘%vsf%(q+1)
U

1>0

o=

1
xetr(—% (U% (I, + Uy) U%) o (U% (I, + Uy) U%) U ) dU,dU.

Integrating (4.59) with respect to U; using (C.54) gives

f(Uo)
= C‘U0|%v27%(q+l) |Iq —|—U0‘%U3/ ‘U|%(v1+1}2+v3)*%(q+1)etr(_lz_1U)
U>0 2
xetr(—%EflU%UoU%)
1 1 % 1 1 % _%U?’
< T, (Jus) |3 (UF @+ U UF) =t (U (L + U0 UF)F| - aU
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- 0|U0|%”2‘%(q+1>\Iq+Uo\%“3/ U] 3@t e Ly-1y)
U>0

xetr(~ 3 URUGUE ) T, ($g) 280

1
2

U (I, + Up) U] 7 3,2 dU

= CT, (%113) 934V |U0\%U2_%(q+1) ‘21‘%1)3
></ U202 30 ety (— 15 10)etr (~ 4 UL Uy ) dU
U>0
= CTy (Sus) 250 [Up[2"2 721D |33, [2% g (Uy) , (4.60)
where

95 (Up) = / |U|%@1*”2’*%<q“>etr(—§2*1U)etr(—gU%21—1U%UO) dU.
U>0

Expanding etr(—%U%EIIU%U()) in terms of the zonal polynomial using (C.50) and ap-
plying (C.44) it follows that for any H € O (q) , g6(Uo) = g6 (HU H') with

Je (HU()H/)

_ / |U|%(Ul+v2)—%(Q+1)etr(_%2—1U) /
U>0

etr(~$ UL S 'UTHU H' ) dHAU
0(9)

C; (—$USS'USHUH' ) dHAU
O
1 1 1 1 _1
— / |U|é(vﬁ—vz)—%(Q+1)etr(_%2—1U) D _/ C. _%21 %Uzl éHUOH’) dHdU,
U>0 toT O(qg)

and

1 1

gG(UO):/ |U|%(”””2)_%(q“)etr(—%E_lU)etr(—%EIEUZIEU())dU. (4.61)
U>0
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Substituting (4.61) in (4.60) gives

f (Uo)
= (T, (%03) 234w ‘U0|%v27%(q+1) |21|%v3

_1 1
x/ U270 ey (32 710) etr (—4%, U, 2 Uy ) dU
U>0
= (T, (%03) 234w ‘U0|%v2_%(q+1) |21|%v3
_1 1
X/ ‘U‘%(vﬂrvz)*%((ﬂrl) etr (—%ZflU) etr <_%21 2U021 2U) JU
U>0
= CT, (%03) PELL \U0|%”2—%(q+1) |21|%v3

_1 _1
x/ U3 ey (4 (2714 27U 7 ) U) U,
U>0

(4.62)

Integrating (4.62) with respect to U using (C.54) and substituting C' (4.49) gives the
desired result

f(Uo)

1 1 1,1 1
— T (1.) 239%s |U,|2Y2 3(a+1) 3, |23
2%q(v1+v2+v3) H3_1 Fq (%Uz) |2‘%v1 ‘21‘%(v2+v3) q (2 3) ‘ 0| | 1|

— 3 (v1+v2)

_1 _1
Xy (3 (01 + ) |3 (B + 2707

= Pq (% (Ul + U2)) ‘U0|%v2_%(Q+1) )2_1 4 Zl—%Uozl_% —3(v1+v2)
1 1
Ty (301) Tg (Gu2) B2 [32]*

(b) From (4.51) follows that

f(U1)

_ / C ‘U0|%v2—%(q+1) |U1|%v3—%(q+1) I, + UO‘%v:a ‘U|%(v1+vz+v3)—%(q+1)
Up>0/U>0
x etr(~3 2 10)etr (-3, URULUY )

1 1
x etr(—%Ell (Ué (I, + Uy) U%> ‘U, (U% (I, + Uy) U%> ) dUdU,
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— C’|U1|%“3—%(q+1)/ |UO|%”2—%(Q+1) |Iq —I—U0|%U3

Up>0

X / |U|%(Ul+vz+v3)*%((I+1)etr(_%EflU) etr(_%zl—lU%UoU%)
U>0

X etr (—%21_1 (U

[ME

(Iq+U0)U%) U, (U% (Iq+U0)U%) )dUdUO

— Uy / U272 72 |1, 4 U2 g7 (77 dU, (4.63)

Up>0

where
gr (21—1) — / |U|%(U1+vz+v3)_%(Q+1)etr(_%EflU)etr(_%EIIU%UOU%)
U>0
l
xetr (—%211 (U% (I, + UO)U%) U, (Uz (I, + UO)U%) ) dU.
1 1 1 1 3 1 1 3
Expanding etr(—%2f1U5U0U5> and etr(—%Ell <U5 (I,+Uy) U§> ‘U, (UE (I,+Uy) U5> 2)

in terms of the zonal polynomials using (C.50) and applying (C.46) it follows that for any
HeO(q), g:(21") = g7 (HE]'H') with

g7 (HX'H)
— / |U|%(u1+u2+u3)—%(q+1)etr(_%2—1U) etr(_%Hzl—lHlU%UoU%>
U>0 0(9)
;
xetr(—%HEl_lH’ (Ué (I, + Uy) U%) U, (Uz (I, + Uy) U%) )deU
_ /U>O |U|%(v1+v2+v3)—%(Q+1)etr(_%2—1u)

x 2222 G (-iHz ' H'URU,US)

t! S'
1
« C. <—%H211H/ (U% (I, + Uy) U%) U, (Uz (I, + Uyp) U%) ) dHdU

X ZZZZ C. (—%HE;lH’U%UOU%)

t! 3'

x C, (-%Hz;IH'UEUE (I, + Uy) U%U%) dHdU,
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and
g (571) = /U U S0 ey (L5 10 etr (— 13, UTULUR ) (4.64)
>0
x etr(—%EflU%U% (I, + Uy) U%U%) du.
Substituting (4.64) in (4.63) gives

f(Uy)

— C|U1|%v3—%(q+1)/ |U0\%”2_%(q+1)\1q+U0\%”3
Up>0

X/ |U|%(U1+U2+U3)*%(qul)etr(_%ZflU)etr(_%Zl—lU%UOU%)
U>0

1 1
X etr(—%ZflUfU% (I, + Uy) U%Uf) dUdU,

— C’|U1|%“3—%(q+1)/ |UO|%U2—%(Q+1)|Iq+UO|%”3
Up>0

X/ |U|%(U1+U2+U3)*%(qul)etr(_%ZflU)etr(_%Zl—lU%UOU%)
U>0
1 1 1 1
X etr(—%ZflUfUUf>etr<—%2f1UfU%UoU%Uf> dUdU,
— C’|U1|%”3%(q+1)/ |UO|%U2*%(Q+1)|I(1+UO|%U3
Up>0
1 (v1+vatvs)—L(g+1) 11 17735 —1773
<[ U etr(—13 U)etr(—§U121 UlU)
U>0

x etr(—3U% (570 + U%E;lUf) UUy) dUdU,

ol sHELR1C / [Uo| 272 2@V |1, + Up|3* gs (Up) dU,, (4.65)
Up>0

where
1 1
g5 (Up) = / U0 S0 e (151U etr (~ U B, U U)
U>0
1 1
xetr (—%U% (2;1 + UfZl‘lUf) U%Uo) dU.

1 1
Expanding etr (—%U% (21_1 + U} El_lUf) U%Ug) in terms of the zonal polynomial using
(C.50) and applying (C.44) it follows that for any H € O (q), gs(Up) = gs (HU H') with

© Univ%%s%ty of Pretoria



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Que# YUNIBESITHI YA PRETORIA

4. GENERALISED BIMATRIX VARIATE BETA TYPE II DISTRIBUTIONS
4.3. The generalised bimatrix variate beta type II distributions

gs (HU()H/)
— / |U|%(U1+U2+U3)_%(q+1)etr(—%2_1U)etr(—%UI% ZIIU%U>
U>0
1 1
X / etr<—%U% (2;1 + Ufzflulz) U%HUOH') dHJU
O(q)
— / |U|%(U1+U2+U3)_%(q+1)etr(—%2_1U)etr(—%U% ZIIU%U)
U>0

1 1 1
x X[ 6 (-3Ut (S + UTE'UT) UBHUGH') dHau
t v UJO(q)

1 1
:/ U S e (— I 1U etr (~ U B, U U)
U>0

2

1 1 1\ L . N
t 7 »JO(g)

and
1 1
95(Up) = / |U|%@1*”2*”3)*%<q“)etr(—%2—1u)etr(—%Uf2;1U12U) (4.66)
U>0
(s Ut U (s s Ut
x etr( —1 (21 L UE; U1> U(z1 L UTE; Ul) U, | dU.
Substituting (4.66) in (4.65) and applying (C.56) gives

F (U
- C Luz—21(g+1) Lug—21(q+1) Loz
= C|u,p / NONEES N M GAT

Up>0
3 (v14va+vs)— 3 (g+1) 1y1—1 1773 s —1713
L 20 Vetr (— 131U etr (- LU B U U)
U>0
1 1\ 3 1 13
xetr(—% (21_1+U1221‘1U12) U<2;1+U122;1U12) Uo) dUdU,

= C\Uﬂ%w%(qﬂ)/

1 1
U S0 e (LU etr (- JU B U U)
U>o0

Up>0

1
2

1 1\3 1 1
X etr(—% (2;1 + UfEl‘lUf> ‘U (2;1 + UfZl‘lUf) Uo) dU,dU
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_ C‘Ul‘%v3_%(q+l) /

‘U|%(U1+U2+03)_%(Q+1)etr( 12 1U)etr<——U22 IU U>

U>o0
xTy (302)
1 1\3 1 1\3
X (—22 apn el LS040 07 )T U (B0 0 ) dU
~ (T, (%Uz) |U1‘%v3%(q+1)/ ‘U‘%(v1+v2+v3)*§(q+l) (4.67)
U>0

xetr(—1 (27 + Ui 510} ) U)
XU (-22 vatun gt 1 (211+U§211U§>é U (211+U%211U%)%) dU.
Integrating (4.67) with respect to U using (C.58) and substituting C' (4.49) gives
f(U1)

_ Ly (3v
3

2 5q(v1+va+uv3)

2) Tq (5 (01 + 02 +v3)) Ty (301) e be
T (), (3 vl+02)\2|2”1\2 |3 (v2s)

- % v1+v2+v3)

) (= LUE; 1U1%)

X oFy (3u1, 3 (01 + 02+ v3) 53 (v1 4 v2)
L uisod) 7 (s uisiud) (sl utsiut)
1, (21 LUrS; Ul) (2 LUPS; Ul) (21 LUrS; Ul)

r V] + v + v Lyal 1 1—L(v1+va+us)
= ql( ( ! 2 30)1) ) \U1|é 3 %(Q+1) ’EII+U122I1U12 2
FQ( ) Q(§ U1+U2)) PAEREINE

X oFy (3u1, 3 (01 + 02+ v3) 53 (v1 4 v2)

1 1\ 3 1 1 1 1\ -1
1 (SU4+UEEUE) U (2UiE ) (50U UT) )
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Rewriting the hypergeometric function of matrix argument, oF} (+), using (C.55) gives

f(Uy)
Ly (3 (01 + vz +v3)) 3 (oteate)

— ‘ | 2”3 2 3(a+1)

F ( )Pq (% U1 +'U2)) |2‘%U1 |21|%(’02+v3

¥t +Uf2 1U1

_1 -1 (vitvatus)

1
2

1 1\ 3 1 1 1 1
<|(Zruimug) (B ursy) (B4 0PSO

X 2F1( UQ,Q(U1+U2+U3),%('U1+'U2)

1 1\3 1 1\ -1 1 1\ 3
1,- (Zr+uisuy) (2us ) (211+Uf211U12>2>

- Ly (5 (01 + v +”3)) 71U |[Femalet) 5 +Uf2 1U1 S
Fy () Ty (3 00+ ) (95 3, 5025
X 2F1( UQ,Q(U1+U2+U3),2('U1+'U2)
L ursut) (soauis-ut) (s teuis- it )
1 (BU4UEE 0T (B Ui s ) (3 UTE O
|
Remark 4.5 Substituting X =1, and 31 = M\, in (4.57) simplifies to (4.14)
1
/ (UO) - Fq (5 (Ul * ?2)) - |UO‘%U2_%(Q+1) |Iq + )\—1U0|*%(v1+vz)
Ly (%) T (%) 12" |>\Iq|5”2
DGl b)) et |y (g, 4 vy RO
0, () 1 () 7 q
T, (L (v 4 vg)) AZ™™ 1,1 _1
- (r2 ((;) P2)()v_2) [Up|27+7 3@ AT, + Up| 2+
q\2 a\2
Uy > 0.
Remark 4.6 Substituting ¥ =1, and 31 = M\, in (4.58) simplifies to (4.15),
f (Ul) — F (% ('Ul + vo + 'U3)) . ‘U1|%v3—%(q+1) }Iq + )\71U1}7%(U1+v2+v3)
Iy (%03) Iy (5 (v1 + UQ)) ‘Iq|2v1 |)‘Iq|§(v2+v3)

=

v2 1+v2+v37 v1+v2 I _ (Aiqu—l—)\ilUl)% (Iq_i_)\*lUl)*l ()\fIIq_i_)\flUI)

2 2

X of

/N

)

pj

1
—v+v + v L1y, 1 _ —L(v1+vetv
_ Q(z 1 2 3)) U |§ 3 é(q+1)}>\ 1(>\Iq Ul)| 3 (v1+v2+vs)

T, (Lvs) Ty (3 (01 + ) AzeC2H09)

X 2F1( UQ,;(Ul—l-’l)g—l-’l}g),%(vl—l—'l}g);lq—(Iq—l-Ul)

SN—

N|=
=

()‘Iq + Ul)i1 (Iq + Ul)

)
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1
_ qu(§ (vy +1U2 + U3>> \Z9V1 |U1|%v3—%(q+1) AL, + U1|—%(v1+vz+v3)
F (57)3) F (5 (Ul + Ug))

% 0B (Ba, % (01 + v+ 0) 13 (00 4 02)5T, = (I, + U2 (ML, + Uy ™ (1, + Uy)

M

)

U, >0, |I, — (I, + Up? (AL + Uy) " (I, + Up)? || < 1.

4.3.2.3 Product moment of the determinants

The (hy, ko)™ product moment, £ (|U0|h1 \U1|h2> , where (U, U,) is distributed as (4.47)

is derived in Theorem 4.7 with the h* moments of |[Uy| and |U;| given in Lemma 4.3.2.

Theorem 4.7 Suppose that X ~ W, (v1,X) is independent of W ~ W, (v9,%;) and
Wi ~ W, (vs,%4). If the joint pdf of (4.2) is given by (4.47), then,

B (U™ [y ™)

— Fq (% (Ul + UQ) — h2> Fq (%,U?’ + h'2) Fq (%Ul — hl) Fq (%02 + h'l) (4 68)
H?:l Ty (3v1) Ty (3 (01 + v2))

X |3 7E | 2

1 1
X o F (%vl — Ry, 5 (U1 +v2) — has 5 (V1 +v2) ;1 — 23122*1212)

where

Iq—E%Z}*lEf‘ (l(vl+v2)—h2)>%(q—1) Re (Los+h) >1(g—1),
Re (301 —h1) >3 (¢—1), Re(v2+h1) T(g—1).

Proof. From (4.50)

£ (JUol" [U:[)
1 1 1 1 1 1 )
= / / / C ‘U‘g(v1+v2+v3)_§(Q+l) ‘U0‘502+h1—§(Q+1) ‘U1|§v3+h2—§(q+1) |Iq + U0‘§U3
U>0/Up>0JU;1>0

X etr(—1%~ 1U)etr<— D 1U%U0U%)

1
2
1 1

x etr(—%Z (Uz (I, + Up) U%>§ U, (Ué (I, +UO)U%)2) dU,dU,dU
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_ C/ ‘U‘%(v1+v2+v3)—%(Q+1)etr(_lzflU)

U>0 2

X/ ‘U0|%v2+h1_%(Q+1) |Iq +U0‘%U3€tr(—%2;1U%U0U%)
Up>0

></ ‘U1|%v3+h2—%(q+1)
U;>0

1 1
xetr(—% (U% (I, + Uy) U%) o (U% (I, + Uy) U%) : Ul) dU,dUodU.
Solving the integral with respect to U; using (C.54) gives
E (100" 10"

U>0 2

X/ |UO‘%U2+h1—%(Q+1) |Iq—FUO‘%Ugetr(—%El_lU%UoU%)
Up>0

1 —(%va—khz)
<Ty (bus + 1)

1
1 (U% (I, + Uy) U%) 3l (U% (I, + Uy) U%) dUydU

_ er (%'US + hg) 2%qvg+qh2 ‘21‘%U3+h2/ ‘U‘%(U1+v2)*h2*%((I+1)etr(_%ZflU)
U>0

></ [U|zvz =2l g, +U0rh2etr(—§21—1U%UoU%) dUydU
Up>0

— er (%'US + hg) 2%qv3+qh2 ‘21‘%1)3—1—}12/ ‘UO‘%vz—f—M—%(‘H—l) ‘Iq + U0|—h2
Up>0

x / U030 ey (— 15710 )etr (~4 271 UTUGUE ) dUAUy
U>0

— CT, (bvs + hy) 23ustake |53, 3vathe (4.69)

1, _1 _
></ [Ug| 220D |1, 4 Ug| ™" g (Up) dU,,
Up>0

where

T2

Jo (UO) = / ‘U‘%(U1+U2)*h2*%((I+1)etr(_%EflU)etr< 121—1U%U0U%) dU
U>0

Expanding etr(—%EflU%UoU%) in terms of the zonal polynomial using (C.50) and ap-
plying (C.44) it follows that for any H € O (q), 99(Ug) = go (HUyH') with
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o1} (HU()H/)
- / U [prte)mhemz @ g (_1m-1y) / etr(—%E;lU%HUOH’U% dHAU
U>0 0(9)

a

1 1 1
— / |U|é(vﬁ—vz)—hz—%(Q+1)etr(_%2—1U) ZZ 5/ C. (_% %EIIU%HUOH/> dHJIU
U>0 t 7 “JO

— _1
= /U |U|%(vﬁ—vz)—hz—%(Q+1)etr(_%2—1U) ; 21 Uzl 2HU0H/> dHdU,
>0

2]
bt I
o
Q

and
_1 _1
9o(Up) = /U>O \U\%(”1+”2)_h2_%(q+1)etr(—%2_1U)etr(—%21 U, 2U0> dU.  (4.70)
Substituting (4.70) in (4.69) gives

B (10" [y ")

= CT, (Rvs + hy) 2bavrtaha |53, 300 +h2 / [Uo| 222D |1, 4 Uy~
Up>0

_1 _1
X/ |U|%(v1+v2)—h2—%(Q+1) etr (_%2—1U) otr (_%21 2US, 2U0> dUdU,
U>0
- Cf‘q (%US + h2) 2%‘1v3+qh2 ‘21‘%Us+h2 / |UO‘%Uz+h1*%((I+1) ‘Iq + U0|7h2 (4'71)
Up>0

_1 _1
X/ |U|%(v1+vz)*h2*%((1+1)etr<_% (2—1 4 21 2U021 2) U) dUdUo
U>0
Integrating (4.71) with respect to U using (C.54) gives

B (10" [uy ™)

— Cl"q (%'US + h2) 2%qv3+qh2 ‘21‘%U3+h2 / |UO‘%U2+h1*%(‘1+1) ‘Iq + U0|*h2
Up>0

xTq (1 (v1 + v2) — ho)

) ‘(%(U1+U2)h2) U,

_1 _1
ORI
= er (%Ug, + hg) Fq (% (7)1 —+ U2) _ h2) 2%q(v1+v2+v3) ‘21‘%1)3—1—}12

X/ |U0‘%U2+h1_%(‘1+1) ‘Iq —|—U0‘_h2
U0>0

—(L(vi+va)—h
(2 1+v2 2) U,

1

_1 _1
X )2—% (Iq IR ULS, 22%) >3
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= C’Fq (%'Ug—i—hg) Fq (% ('Ul—l—’UQ) —hg) 2%(1(”1—’—”2—’—”3) |Z|%(”1+”2)_h2 ‘21‘%U3+h2 (472)

11— (3otv2)—ho)
I+, °28, 2 U, dU,.

></ ‘U0|%vz+h1*%((1+1) |Iq+U0rh2
Up>0

Integrating (4.72) with respect to Uy using (C.53), substituting C' (4.49) and rewriting

the multivariate beta functions using (C.36) gives

B (JUdl" [U. ")

Ty (Bvs + ho) Ty (& (v1 + va) — hy) 23901 teates) |z [ztee)he |3 | geathe
e VN TSI E R

*(%(U1+U2)*h2)

_1 1
X Bq (%Ug + hl, %’Ul — hl) 21 2221 2

2
_ Fq (% (’Ul + 'UQ) - hg) Fq (%Ug + hg) Fq (%'Ul - hl) Fq (%UQ + hl) ‘2|*%U1 ‘21‘%01
[T Ty (50) Ty (5 (01 + v2))

1 1
X oF} (%111 — h1, 5 (01 + v2) — has § (01 + 0v2) ;I — 27 271212) :

1 1
X o} (lvl — ha, % (v1 + v2) — ha; % (01 +v2) 51, — 2122—1212)

Lemma 4.3.2 The h'" moment of |Uy| and |U;| where (Uy, Uy) is distributed as (4.47)
can be obtained from (4.68):

(a)

1 11h
T, (Lo, = )T, (boy + b )252—125
E <|U0|h) _ q (2 1 ) q1(2 2 1) 1 1 ’ (473)
Ty (3v1) Ty (502)
where Re (3v1 —h) > (¢ —1),Re (3v2+h) > 1(qg—1).
(b)
1 _ 1
E (o) = v ea) =)Dy (ts £1) oy o (4.74)
Ty (3u3) Ty (3 (01 + v2))

1 1
X o F (%Ulv 3 (U1 o) = hyg (0 +v2) 51, — 212271212) :

1 1
I, - S:yly?

where <1L,Re(:(vi+v2)—h)>32(g—1),Re(Fvs+h) >1(qg—1).
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Proof. (a) Set hy = h and hy = 0 in (4.68) and using (C.51) it follows

oleaNER

N Ty (ot o)) T, () Dy (boy — )Ty (3os + 1)
B(I0") = = o) Ty Qo T o) B (o o2

1 1
X o F) (%vl —ho k(4 va) 1L (0 + ) T, — 23122*1212)

Ty 2oy — k) Ty (Rva+h) 1y 1, R
_ 4 (:2[3;1(17)15 FZ Eizz) ) ‘2‘ ; 1 |21|é 1 1F0 (%Ul _han — 2122—1212)
2 2
ZIQ@“@hFMEW;W)mr%WzA%lg—(g—zﬁzaxﬂ\@”h)
Pq 51)1 Fq 51)2
r l’Ul—hF l’UQ—I—h i 1h
= ‘1(? (lvl) Fq (iUQ) ) ‘2122 1212’
a\2 q\2
1—‘q (%Ul—h; Pq E%UQ“"h) . h
=T, (o), (e 2
q\2"1 q\2"2

(b) Set hy =0 and hy = h in (4.68), then

£ (o) = Pl Z BT G ATy () o (o)
Fq (%Ul) Fq (%Uz) Pq (%’Ug,) Fq (% (Ul 4 02))

X oy (%Ulv % (v1 4+ v2) — hy % (v1 +v2); 1, — 21%2—121%>

Dy (Bt vs) =BTy (Jus + )
Ty (50) Ty (5 (01 + 12))

1 1
< oFy (01 (00 0) = B (o 4 0)1 1, — BPRIRE).

Dol AR

|7 [ 2

4.3.2.4 Distributions of |Uy|, |U;| and |U,U;|

Exact expressions for the pdfs of |Ug|, |U;| and |UyU,| are derived in Theorem 4.8.
Similarly as before, the expressions of the cumulative distribution function of |Uy| and

|U;| are also included.
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Theorem 4.8 Suppose that X ~ W, (v1,X) is independent of Wo ~ W, (v9,%;) and
Wi ~ W, (vs,%1). The ratios (4.2) have joint pdf (4.47) with marginal pdfs given in
(4.57) and (4.58), respectively. Then,

(a) the pdf of |Ug| is given by

a(g—1)
T 2
Uo|) = )IPED) G%q(zzlz Upl | ) 475
f(‘ 0|) Fq (%’Ul) Fq (%Uz) } 1 } q,q } H OH ..... bq ( )
[Uo| >0
(b) with CDF
Fy,(¢) = Pr(|Uo| <¢)
a(g—1
T2 1 _ l,a1+1,...,aq+1
- T (lvl) r (lv2) ngiq+1 (‘21 12} C|b1+11 ..... bq+1,0) ) (4-76)
q\2 q\2
c >0,

where a; = —3v1 + 5 (j —1) and b; = 3vo — 5 (j + 1) for j=1,2,... ¢

(c) The pdf of |Uy| is given by

f(IUl\)q ;
- (Ei‘) - (|§;3|)2 (4.77)
T ((+)) T);O (L—=fzmf) cu (ol ).
[Ui| >0,
(d) with CDF
Fu,| (¢) =Pr(|Us] < ¢)

202 T

Fq( U1, T ) 1 1 1 1 Lagtl i
Lo (Tesiss) anth (i)
Ly (3 (v +vs),7) 1! ¢ 1) Yg+1,g+1 \ Clor+1,..,b4+1,0

where a; = —5 (1 +v2) —t;+35(j —1) and b; = su5 — 3 (j+ 1) for j =1,2,.
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(e) The pdf of |[UgU,| is given by

f (10U
I (4.79)
L (5v1) Tg (502) Ty (5v3) .
= 00 Lo (1, - sisoisd) a2 (Juguy e
XZt:OZTF ( ('Ul‘l"UQ) T)E T(q_ 1 1) 2q2q<| 0 1H ..... bzq)7
‘UOU1| > 0,

where
—%vl—tjgl +31(G-1) for j=1,3,...,2¢—1

a; =

’ —3 (1 +vg) — tl—l— (1—2) for j=24,...,2q,
) log =11 for j=1.3,...,2¢—1
! %Ug—l—% for 7=24,... 2q.
Proof. (a) From (4.73),
E (\U ‘hil) Ly (301 —h+ )T, (oo +h—1) B8
0 = )
Ly (501) To (5v2)
therefore the Mellin transform (see (B.14)) of f (|21_12U0D is
My (h)
= £ (|50,
LG —h+ 1T (Grath—1) (4.80)
Ty (301) T (302) | '

As in the proof of Theorem 4.4(a), Section 4.3.1.4, it follows that

oz ﬁru—aj—h] ﬁr[ijrh]
jZIF (lvl) T (l;:)l ) (See (4.36))

My (h) =

where aj = —2v; +5(j—1) and b; =30, — 3 (j+1),j=1,2,...,¢.
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The pdf of |S1 ' Up| is uniquely obtained from the inverse Mellin transform (see (B.15))
of (4.36) and the definition of the Meijer’s G-function (see (B.16)) and is given by

f (=200
= S [ My (h) |[S7TS 0| " dk

2wt Jw—1i00

a(g—1)

= T L (T TT T —a;—h ) I'b; +h| 272U " an
Fq (%vl)f‘ (%'UQ) 27 fw 100 ]H [ a; ]]1;[1 [J ]| 1 0}
a(g—1)
T 2
— Goa (|27 50| 1)
T Gy 5 (B SOOI 25
Therefore
7Tq(q2*1)
_ 1 1Y |77 | |91y
(V) = sy 150 1 G (125 S0l 5.

(b) Let u = |Uy|, u > 0 then from (4.75) the CDF is defined as

Fiuy (¢) = Pr(|Us| <o)

q(q 1)

- 5 |2 12|/ Gra (=S| ulyl5e) du.

Applying (B.27), (B.28) and (B.25), yields the desired result:

oo (©) = T ) yImes] [ (st )
T, (%:1;;:(%@2) =03 eH (‘2 2 |Egll (fl..l,(lb);“)’(?ql)l))
iy (%Z:)q;; Ty |20 Bl Citian (=] el
S (O]

(c) From (4.74) the Mellin transform (see (B.14)) of f (|Uy]) is

Mj (h)
= (|U1|h_1)
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_ r, (% (v1 +vg) —h + 1) Ty (%U3 th- 1) |2‘_%”1 \21|%”1 (4.81)
T, (S0s) Ty (& (01 + v3))

1 1
0B (Jond (0 0) = bt L (o 4+ 02) 5T, — SIS ).

From (C.49) and (C.40) the Gauss hypergeometric function of matrix argument in (4.81)

can be written as

1 1 1 1 1
2F1 (51}1, 5 (Ul —+ UQ) —h + 1; 5 (Ul -+ Uz) ;Iq — 2122_1212)
(%Ul)r (% (Ul + Ug) —h + 1
(% (Ul +U2>)7t!

—ZOO Z Pq(%vl,T)Pq(%(Ul—FUQ)—h+1,7’) Fq
t=0 T Fq (%Ul) Fq (% <U1+U2)—h+1) (

SR o, (1,- sins))

(% V1 + U2 ) 1
o o)) (4.82)
2

<y (1, - 2%2*121%).
Substituting (4.82) in (4.81) gives

My (h)

_ Ty (% (v +v2) —h+ 1) I (%U?’ +h- 1) —iun 1uy
B r, (lvg) I, (% (v1 + UQ)) > 4]
( v, 7) Ty (4 (or40m) =ht1,7) T, (L (o)) 1
R T (o) T (2 () i) T G (ortn).

1 1
5 et (Iq - 23122*1212)

Ty (vs +h—1 1
_ LG ) S RELN) SHER (4.83)

L, (b Ty (1)

X T Ly (301, 7 )IEZ( Loy +0y) —h+1,7)

D) U1—|—U2>,T)t!

¢, (1,-si='5t).

Similarly as in the proof of Theorem 4.4(c), Section 4.3.1.4, it follows that

q
Ty (3vs+h—1) =75 [[T[b;+h], (see (4.40))
where b; = —Ug—%(j+1)a]:1a--->q7

and
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r, (%(vl+v2)—h+1,7')—7r T HF[l—a]—h] (see (4.41))

7=1

Whereaj:—%(vl+vg)—tj+%(j—1),j:1,2,...,q.

Substituting (4.40) and (4.41) in (4.83) gives

My (h)
‘Erzvl |2 |2v1 (l'Ul,T) ﬂ_qqil
Ty (Bo) Ty (ug) 2027 T (X (v + 02), 7) &

(4.84)
q 1 1
« TIT[ —a;— B [T, + 1] C, (Iq—zfz—lzf).
j=1 j=1

From the inverse Mellin transform (see (B.15)) of (4.84) and the definition of the Meijer’s
G-function (see (B.16)), the pdf of |U,] is

S (101])
— L (TN (h) Uy dh

2wt Jw—100
I E Ly (on.7) 1
=T, o) T, (o) 202 Ty (X (o 1 0) 1) @

qfl

CT(I 2212)

X A [ .H T [b; + h] H I'[1—a;— k] [Uy| ™" dh

21 Jw—i00

N Iy (bor.7)

1 1 1
- I _2227122 G U
T, (3v1) Ty (Sog) Z”Z ((v1+v2) )t!CT<q ! 1) (‘ s

(d) Let u =|U;|, u > 0 then from (4.77) the CDF is defined as

F|U1|<C)
=Pr(|JU;| <¢)
> T
Fq (301) Ty (3v3)
() 1 —
X 3% ’ ~c, (I —222—122) CG‘M( a1 “q)d.
Zt—OZTP ( (UI+U2) )t! q 1 1 fo q,9 U‘bl ..... bg U
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Applying (B.27), (B.28) and (B.25), yields the desired result:

HU1| (C)

ql)

PRI
F (2”1) Iy (2”3)

17), 1 1 1 .
5, o ) Lo (q _sheosd) g (w0l

Ly (b (or ), 7) 8 0 \ 101 1) 00 1)

> R
P ( vl)F ( U3)
( b, T ) 10 I 2 S-ln2 qu+1 (0,1),(a1,1),...,(aq,1)
XD oZ ( (v1 + ) | T) 4 ( - ) q+1q+1( |(b1 ..... (bg:1) (11))
B > Bl 1T
T, (1U1)r (s
501, 1 N a1,..,aq
<R B e (1, - tm e e ()

e
Ty (301) T, (lm)

1
(_U17 ) 1 +1 1,a14+1,...,aq+1
X Zt oz ( (Ul n U2> ) t'C (I — 2 ylye2 > Ggﬁl q+1 (C b1+11 ..... bq+1,o> .

(e) From (4.68), expanding the Gauss hypergeometric function of matrix argument in
series form using (C.49) and (C.40), the Mellin transform (see (B.14)) of f (|JUoUy|) is

My (h)

= £ ((lusu))")
Ly (3(vi4v) —h+1)T (3us+h—1)Ty (3u1 —h+1) Ty (o2 +h—1)
Ly (301) Tg (302) Ty (508) Ty (5 (01 + 02))
x |27

1 1
X o Fy (%vl—h+1,§(v1+v2)—h+1;%(v1+vg);lq—zfz—1zf)
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Ly(3(vi4v) —h+1)T,(3us+h—1)Ty (301 —h+ 1) Ty (Fv24+h—1)
I (%Ul) Ly (%W) I (%U3) Ly (% (v1 + U2))
X |72 |32

1 1
% (31 —h+1)_(3 (U1+02)—h+1)TCT (Iq_2f2_12f>
X Zt:O ZT (% (Ul +U2))T f

Ly(3(vi+vs) —h+1)T (3us+h—1)T (G —h+1) Ty (va+ h — 1)
Iy (%Ul) Iy (%“2) I (%W) Iy (% (v1 + ”2))
X |S535

1 1
Dy (W—ht1,7) Ty (92 —h+1,7) T, (ute) Cr (Iq—EfE’IEf)

) Dol NER (4.85)

T (%Ul—h—i-l,T)Fq (%<U1+U2)—h+1,7—)
I, (%(v1+vg),7)t!

1 1
C, (Iq - 2122—1212) .
Similarly as in the proof of Theorem 4.4(e), Section 4.3.1.4, it follows that

Fq(%vg—l—h—l)l“q(%vg—l—h—l)

p(p— 2(]
=" T by + 4], (see (4.44))
j=1
log—1 -1 for j=1,3,...,2g—1
%Ug—l—(]%f) for j =2,4,...,2q,

and

Ly(3v1—h+1,7) 00 (3 (v1 +v2) —h+1,7)

(a—1) 2q
= [IT[1—a;—h], (see (4.45))
7j=1
. —%vl—t;;u%—i(j—l) for j=1,3,...,2¢g—1
with a; =
—%(v1+v2)—t%+i(j—2) for j=2,4,...,2q.
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Substituting (4.44) and (4.45) in (4.85) gives

D2 b

Ly (301) Tq (302) Ty (503)

mP(P—1) HF[b+h]HF[1 a;—h]
DI IE — =

(% (Ul + UQ) ) t!

M, (h) = (4.86)

1 1
c, (Iq—2f2‘12f) .

The pdf of |UyU,| is obtained from the inverse Mellin transform (see (B.15)) of (4.86)
and from the definition of the Meijer’s G-function (see (B.16)) as

f(1GoU1])
= o5& [T M (h) (UL UL ) "dh

R N L ) (Tt ot
=T o) T, G Ty (o) =02 T, (3 (0r + 0m).7) 1

wW-T100 2(] —
wﬁLonFw+mnru—%—mqumhM

1 1
SRCINE ria O, (1, - 7T 15}

=T, o) Ty (boa) Ty (o) 02" T, (X (on - 0) )

<G (UG ).

L1yeees b2q

Remark 4.7 Substituting ¥ =1, and 31 = N, in (4.75) simplifies to (4.29),

q(g—1)

. ™ 1 17 | 11T | (Qloeees
PV = Ty oy Tl G (Tl 10l 1557
q(¢g—1)
T 2
= o - A~ qG AU H """""
Ty (5) Ty (%) ( B )
[Uo| >0

Remark 4.8 Substituting ¥ =1, and 31 = M\, in (4.77) simplifies to (4.31),

faon
B ‘)\Iq‘ivl ‘Iq|_5mﬂ'q 2 (101,7')

T, Qo) T, Gog) =02 T

((Ul+02) )_!CTC[(I_ AL) G (‘U1|| 7777777777 q)
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A2 QU1 q(q 1) ( v, T ) P
e G T T T g A (O V)G (O )
Y Lo e (o).

0 () (o) =0 T ) 1) A Gl

Remark 4.9 Substituting ¥ =1, and 31 = M, in (4.79) simplifies to (4.33),

S ([UoUx])

1 1

I, L T0IC, (1, = ML)

= it Gzt (10U [yt

Fy (o) T G By (i) == 7 Ty (3 7)o 8 (0 o
A2 TG (1= N T,) 2y

= > UpU,y | |
Ly (301) Dy (302) Ty ($v3) 20 2 Ly (3 (v1+02),7)t! G2y <‘ oUtl . b%)

_ A%qvl 00 ﬂ-Q(q_l) (1 _ )‘) O (I ) 2q 2¢ (17T TT | [@Lsees (L2q
T, (501) Tq (502) Tq (03) 220 20 Ly (3 (v +v),7) 0! Caglzg (‘UOU1| b ) ’

4.3.2.5 Distribution of (|Uy|,|U,|)

In Chapter 5, Section 5.3, a measure is proposed to determine the probability that a
control chart will signal immediately after a change in the covariance matrix, or after
one sample (i.e. the run-length probabilities). For this measure the joint distribution of

(|Uo|, [Uyq]) is of interest and will be derived in this section.

Theorem 4.9 Suppose that X ~ W, (v1,X) is independent of Wo ~ W, (v9,%1) and
Wi ~ W, (v3,%1). Then the joint pdf of |Ug| and |U4| is

3q(q—1) —1 —2
f (U, [U4]) = 11, + Ul [|UP G [
E, o) T, (2ea) Ty (1) I oI
o (U] Uy (UL, + Ul U]
<G (Mg o, ) G (Pl L Y aron,

where |Ugl|, |U;| > 0, with Re (v;) >q¢—1,i=1,2,3.

Proof. From (C.60) follows

EX[" _Ty(z0+h)
2=t Ty(m)
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The Mellin transform (see (B.14)) of f (“22‘0 is

o((5)")
Ly (301 +h—1)

— . 4.87
T, o) (457

My (h)

From (C.35) the multivariate gamma function in (4.87) can be written as
(g— q
Ty (bvy +h—1) = a5 [[ T [b; + A],
j=1
where b; = sv1 — 3 (j + 1) for j=1,...,¢

X
The pdf of |‘22“ is obtained from the inverse Mellin transform (see (B.15)) of (4.87) and

from the definition of the Meijer’s G-function (see (B.16)) as
X
/(b
~h
1 w100 ‘X‘
== [TV Mp(h) | =] dh
271 Jw—io0 f( ) <‘22|)

Fq (%Ul) 21 Jw—i00 |22‘

a(g—1)
T G ( 1X] b, )
=T /1. )\ 20,q | Ton b1 by | -
L, (%01) \22|

Therefore )
7quf B |X|
X|)==—F——2% G :
L I =
Similarly
qql
_ Wl
Wo| 0wyt (Wl
Pl =5y ™ GBS (oo )
Wherea]:; —§(j+1) forj=1,....,q,
and

q qfl

d —1 q,0 ‘W1| )
- /1 N\ 22 Gq ( C1l,...,C Y
Fq (%U3) ‘ | 0,q |221“ 15:--5Cq

Wherecj:%vg—i(j—l—l)forjzl,...,q.

F(IWhl) =
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The joint pdf of |X|,|Wy|, |W,]| is given by

X]| | W o (Wi
X, [Wol,[Wi[) = o (- GO a1y | GO S
(| | | 0| | 1|) 0,q (|22|| bi,..., bq) 0,q |221|| Lyess q 0,q |221|| LyesCq |

3q(q 1)

23] 7" 25|
T, (avl) Ty (302) Ty (308)

Making the transformation

where C' =

U=X, Uy=XW,X3, U, =(X+Wy) W, (X+W,) 7,

give

M

D=
N =

1
X =U, W,=UU,U?, le(U% (Iq+U0)U%>2U1 (U (I, + Uy) U

)

Therefore |X| = U], [Wo| = [U||Uo| and [W,| = ) (U% (I, + Uy) U%) ) Uy| = |U| I, + Uy| Uy
with Jacobian (see (C.41))

J(IX], [Wo|, [W1| = U, |Ugl,|Us]) = |UP L, + Uy .

The joint pdf of |U|, |Ug| and |Uy] is

o (1Y o (101U
FUOL UL ) = 06 (il ) 635 (Tl o

00 (UL, + Ug| Uy
XGOQ( 123, |

777777

Thus, the joint pdf of |Up| and |U,] is

% oo (U] o (101U
FUL[U) = CIL,+ Ul U] Gg,q(mz‘nl ..... ) 685 (g e

q,0 ‘U‘ ‘Iq + U0| ‘U1| dIU
XGO#] ( ‘221| | ~~~~~ ‘ ‘

4.4 Conclusion

In this chapter the bimatrix variate beta type II distribution that originated from Wishart
ratios is introduced. This distribution originates from monitoring the process covariance
structure of ¢ attributes where samples are independent, having been collected from a
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multivariate normal distribution with known mean vector and unknown covariance matrix.
The case where the covariance matrix changes with a scale factor as well as a more general
case were discussed. The product moments of these new distributions were explored since
they were needed to derive the pdfs of the determinants of the statistics of interest. The

latter is required in Chapter 5.

The exact expressions of the pdfs are in terms of zonal polynomials, hypergeometric
functions of matrix argument and Meijer’s G-function. These functions are computable
due to the availability of packages (for example the Mathematica software package) and
algorithms (see Koev and Edelman, 2006 [25]). The computational aspect of the run-
length probabilities will be considered in Chapter 5.
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Chapter 5
Illustrative examples

The usefulness of the exact expressions for the pdfs of the newly derived distributions will
be illustrated in this chapter. Note that there are other methods available to calculate
the probabilities stemming from the sequential quality monitoring procedure, which are

also briefly addressed in this chapter.

The following will be addressed in this chapter:

e (Calculation of the run-length probabilities if the unknown process variance changes;
this is done using the generalised multivariate beta type II pdf. Other methods to

calculate these run-length probabilities are also included (Section 5.1).

e (Calculation of the run-length probabilities if both the unknown process variance and
the known process mean changes. The focus will be on the effect of the noncentral-
ity parameter of the noncentral generalised multivariate beta type II distribution
(Section 5.2).

e Tabulation of some percentage points of |Uy| as an avenue to address the calculation

of run-length probabilities within the matrix environment (Section 5.3).

5.1 Run-length probabilities if the unknown process

variance has changed

This section considers a practical application in the SPC environment where the proposed
distribution (see (2.8)) is used to calculate run-length probabilities. In Section 5.1.1 the
generalised multivariate beta type II distribution is used to determine the probability

that a Q-chart will signal after the process variance encountered a sustained shift. For

© Univ%ﬁ%ty of Pretoria
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5.1. Run-length probabilities if the unknown process variance has changed

comparison purposes these probabilities will also be calculated by means of (i) an approx-
imate method using simulation, (ii) an approximation assuming independence and (iii)
an exact method using a conditioning and unconditioning approach. These alternative

methods are discussed in Sections 5.1.2, 5.1.3 and 5.1.4, respectively.

The example used throughout this section is a continuation of the example in Section 1.2
where a QQ-chart was used to monitor the process variance of a normal random variable
using twenty samples of size four each. The first ten samples of the simulated data
set were generated from a N (10,1) distribution; the next ten samples from a N (10, 2)
distribution. The simulated data and Q-chart is given in Table 1.1 and Figure 1.2,
respectively. Based on the information of the simulated data set, it is evident that A = 2
(variance increased by a factor of 2), v; = n; = n = 4 (equal sample sizes at each point in
time), k = 11 (the process variance encountered a shift between samples ten and eleven)
and thus a = (k — 1) x n = 40 (forty observations were available to estimate the unknown
variance before the shift occurred). The goal is to calculate the probabilities that the
control chart will signal that the process is out-of-control on samples one, two and three
following the shift.

Once a shift in the process parameter occurred, the run-length is the number of samples
collected from time k (i.e. first sample after the change) until an out-of-control signal is
observed (i.e. a charting statistic plots on or outside the control limits). The discrete
random variable defining the run-length is called the run-length random variable and
typically denoted by N. The distribution of N is called the run-length distribution.

Let A; be the event that the random variable U;, j = 0,1,. .., p, plots inside its respective

control limits, i.e.
Aj = LCL,H_]' < Uj < UCL,H_]‘. (51)
The probability of detecting a shift immediately, in other words, the probability of a
run-length of one is then
Pr(N =1) = Pr(A§) (5.2)
=1- PI'(A())

=1-Pr(LCL, < Uy < UCL,).

Remark 5.1 Take note that (5.2) is the probability that the control chart will signal

on the first sample collected after there was a change in the process variance. This is
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essentially a conditional probability that the control chart will signal given that the process

s out-of-control.

5.1.1 The generalised distribution approach

The generalised multivariate beta type II distribution can be used to calculate probabili-
ties that a charting statistic will plot inside or outside the control limits. The probability
of detecting a shift immediately (see (5.2)), is the likelihood that a signal is obtained at

time k,

Pr(N =1)
UCCLLf (ug) dug (see (2.4))
— Jroers f (uo) dug. (see (2.7)) (5.3)

The marginal pdf of Uy (see (2.24)) can therefore be used to determine the probability
of detecting the shift in the process variance immediately, i.e. when collecting the first
sample after the shift took place. The difference between the random variables U (see
(2.4)) and Uy (see (2.7)) will be incorporated in the limits of integration. Note that LC' L,
and UC L, depend on k whereas LC'L and UC'L equals —3 and 3, respectively (regardless

the value of k).

The limits of integration, LC'L,, and UC'L,;, will be discussed next.

Wo/’fl,{
X/ 1 1

Remark 2.1), then the Q charting statistic is given by

When the process is in-control, i.e. A = 1, Uj = ~ I (nmzﬁ 11 nz) (see

QUF) = 7 [Fy sz, 15)].

and the control limits UCL, and LCL, are determined as follows:

Nk,

=3 < O [F, g, U9)] <3

= P(-3) < E, sr1n, (U7) <P (3)
= Fn;El — [@(-3)] < Us < Fnﬂlzﬁ i, (@ (3)]
o P PR " _ Pt 0 0)

Nk Nk
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F e, [203)] F e, [2(=3)]
Therefore UCL, = ——=— and LCL, = ——=— ,
Do m 721':1 i

where

F (v1,v9) denotes the F distribution with v; and ve degrees of freedom;

Fiy v, (+) denotes the cumulative distribution function of the F' (v, v2) distribution;

F,%, (-) denotes the inverse of the cumulative distribution function of the F' (vy,vy) dis-
tribution;

® (-) denotes the standard normal cumulative distribution function; and

@1 (-) denotes the inverse of the standard normal cumulative distribution function.

In general, at time x + j, the limits of integration will be

U0L, = ezt BOL o P PO (5.4)
H+] = Z_li J— an K+j = - Kk+j— Y °
Zi:l 1ni ’ Zzil 1ni
Nk+j Np+j

since the control limits of the control chart are based on the in-control distribution of the

process (i.e. when A =1).

The probability of a the run-length of two is the probability of not detecting the shift at
time k, i.e. the charting statistic Uy plots inside the control limits, but the control chart

signals at time x + 1, i.e. U; plots on or outside the control limits. Therefore

Pr(N = 2)
— Pr (4o N AS)
=Pr (Ao) —Pr (A() N Al)

UCLxk

— Jrow. fUCLRHfUCLH (o, ur) duodus. (5.5)

U() dUO LCL.i1

The run-length probabilities for higher values of N can be determined in a similar fashion.
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The probability of a run-length of 7 is then

Pr(N = n)
ﬂ A; mA
]_
CLktn— CLs
- LU(JLLK:,;7 22- LU(;LL U0>---,Un_2)duo...dun_2 (5.6)
CLy CLxk
fUCLL,i:nn 11- fU . Uo,---,un_l)duo...dun_l
forn=2,3,....

The run-length probabilities, up to N = 3, for the example (where A = 2, v; = n = 4,
k=11, a = 27 'n = (k—1) x n = 40) is calculated next. The software package
Mathematica was used to calculate these probabilities. An exact solution can be obtained
for N = 1 while numerical integration is necessary for determining run-lengths greater
than one.

The probability of detecting the shift in the process variance immediately at time period

eleven is calculated using (5.3) and (2.24):

=1-0.956871 = 0.043129,

where, from (5.4)

Fii[®(=3)]  Fylk[0.001349898]

LCL.yy = —2400_ =4 — 0.0025837, (5.8)
0 10
Frh[@(3)]  Fpk [0.998650102
UCLj—11 = 4’40£0 B _ Finl 0 L 0 5444577,
n

Remark 5.2 [t is well-known that the type I error in hypothesis testing is P(reject Hy
| Hy true). In the SPC context this is the same as the false alarm rate (FAR). The
FAR is defined as the probability for a single charting statistic to plot on or outside the
control limits when the process is in-control. In terms of the example above, that is the
probability that Uy plots on or outside the control limits given that the process variance

did not encounter a shift, i.e. A\ =1.
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Therefore

FAR = 1—Pr(LC’L <Uy<UCL, | A=1)

0.5444577
= f oozssar | (o) dug

= 0.0027.

In the SPC environment it is desirable to have a FAR of 0.0027.

The probability of detecting the shift in the process variance at time period twelve is
calculated using (5.5), (2.24) and (2.39):

Pr(N =2) = LUCCLL;:; (ug) dug — fUCCLL;:l - g&i“jilf(uo,ul) dugduy
0.5444577 0.4858039 (-0.5444577
= Jooozssar J (€0) duo = Jo 0093536 Jo.002sssr | (Yo, ur) dugduy
= 0.956871 — 0.924702 = 0.032169,
where, from (5.4)
Fl[®(-3 F; L [0.001349898
LOLyi1my = —H [44( I _ Fau - I 0.0023536, (5.9)
4
FoL[®(3 F7L [0.998650102
UCLy11y = —2 L B _ Faul - ] — 0.4858039.

4

Note that in calculating the above probability the form of f (ug,u1) used was (2.39) and
not in terms of the product of beta type II pdfs (see (2.40)) since the latter form has an

infinite sum.

The probability of detecting the shift in the process variance at time period thirteen is
calculated using (5.6), (2.39) and (2.8) with p = 2:

UCLky1=12 pUCLk=11
Pr( = /5 LOLn s Jrorny | (w0, ur) dugduy

_ (UCLkyo=13 fUCLkt1=12 fUCLk=11
LCLy42=13 JLCLx41=12 JLCLx=11

0.4858039 (0.5444577 £ )
0.0023536 J0.0025837 J (10, U1

0.4384660 ~0.4858039 0. 5444577f (
0.0021612 J0.0023536 J0.0025837

= 0.924702 — 0.899646 = 0.025056,

f (U0> Uy, U2) dugduydus

duodu1

Ug, U1, UQ) duoduldUQ

where, from (5.4)
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FyK[®(=3)]  Fyi[0.001349898]

LOLgpa=13 = — g5 == — 0.0021612, (5.10)
4
Fih[®(3)]  Fyk[0.998650102
UCLyyoo1y = —2 L BN _ Fus | > L _ 0.4384660.

4
These run-length probabilities can then be used to estimate the average run-length (ARL)
using the formula F (N)=ARL= Z nPr(N=n)=~ Z nPr(N=n). The accuracy of the

ARL estimate will depend on the cut off value, M The evaluation of high dimensional
multiple integrals become increasingly more complex (i.e. time consuming and resource

intensive) as the dimension increases and is beyond the scope of this thesis.

In the next section the run-length probabilities calculated above (using the pdf of the
generalised multivariate beta type II distribution) will be determined heuristically using

Monte Carlo simulation.

5.1.2 The simulation approach

The run-length probabilities for the example (where A = 2, v; =4, k = 11, a = 40) can be
approximated using Monte Carlo simulation. The Pr(N =) for n = 1,2, 3 is calculated
using the SAS software package. An algorithm of the SAS program follows:

Step 1:

Generate random numbers from the distributions of the building blocks of the random
variables in (2.7), i.e. X ~ x?(a =40) and Wy, W1, Wo ~ 2 (v=n=4).

Step 2:
. AW, AW, AW,
Det AL 5 A ALLE S, I A .
etermine U = ==, U = oy and Ve = = o,
Step 3:

Count the number of times a simulated value of the random variables lie between the
limits of integration,
ie. (a) countl =0.0025837 < Uy < 0.5444577,

(b) count2 = 0.0025837 < Uy < 0.5444577 and 0.0023536 < U; < 0.48580390,
(c) count3 = 0.0025837 < Uy < 0.5444577 and 0.0023536 < U; < 0.48580390
and 0.0021612 < Uy < 0.4384660.

© Univ%%glty of Pretoria



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Que# YUNIBESITHI YA PRETORIA

5. ILLUSTRATIVE EXAMPLES
5.1. Run-length probabilities if the unknown process variance has changed

These control limits are the same as those determined in Section 5.1.1 (see (5.8), (5.9)
and (5.10)).

Repeat steps 1 to 3 one million times.

Step 4:

Aggregate the results of step 3 to determine the approximate probability that the random

variable(s) are inside their control limits,

‘ countl
ie. pl=Pr(0.0025837 < Uy < 0.5444577) = 1000000
count?
p2 = Pr (0.0025837 < Uy < 0.5444577 N 0.0023536 < U; < 0.48580390) = 1000000°

5_p ( 0.0025837 < Uy < 0.5444577 N 0.0023536 < U; < 0.48580390 > count3
po=rr

M 0.0021612 < U, < 0.4384660 ~ 1000000

Step 5:
Determine the run-length probabilities analogous to (5.3), (5.5) and (5.6),
ie. Pr(N=1)=1-pl

Pr(N =2) =pl —p2

Pr(N =3) = p2 — p3.

The approximate run-length probabilities using this method are: Pr(/N = 1) = 0.043133
Pr(N = 2) = 0.032287
Pr(N = 3) = 0.02492.

This method offers a straightforward approximation of the high order multiple integrals
needed to determine the run-length probabilities. In Section 5.1.3 another approximate

solution will be considered.

5.1.3 Assuming independence

Zantek (2005) [47] studied the performance of a Q-chart in the detection of process mean
shifts when observations are collected from a normal distribution. He proposed that an
approximation of the run-length probabilities can be obtained by treating the charting
statistics as if they are independent. The first charting statistic calculated following
a shift in the variance (i.e. Up) is independent of each of the previous test statistics
when the process was in-control; therefore an exact probability of a run-length of one
can be calculated. From time period x onwards, the charting statistics (i.e. Uy, Uy, ...)

are not independent random variables and therefore the events that the chart will signal
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at certain time periods are not independent events. This dependency complicates the
calculation of the run-length probabilities for NV > 1 as seen in Section 5.1.1. Treating
these charting statistics as independent random variables simplifies the computational
aspect of the probabilities because it reduces to the product of univariate probabilities.
Following this approach, the approximate run-length probabilities can be calculated as
(see also (5.3), (5.6))

Pr(N =1) =1 — Pr(4), (5.11)
Pr(N =n) = [T/ Pr(4;) [1 = Pr (4, 1)],
UCL

where Pr (4;) = " f(uj)du; ,j=0,1,...n—1forn=2,3,....

LCLyy;

Take note that Pr(/N = 1) is the same as the exact solution (see (5.3)) in Section 5.1.1.

Continuing with the example (where A =2, v; =4, k = 11, a = (n — 1) x k = 40), the
corresponding approximate run-length probabilities are:
Pr(N=1) =1—Pr(A)

0.5444577
f 0.0025837 4 (U0) duo
=1-—0.956871
— 0.043129,

Pr(N = 2) = Pr(Ag)[1 — Pr(A;)]

0.5444577 0.4858039
0.0025837 f dUQ [ f 0.0023536 f dul]

= 0.956871 x (1 —0.967036)
= 0.031543,

Pr(N =3) =Pr(A) Pr(A;)[1 — Pr(Ay)]

0.5444577 0.4858039 0.4384660
0.0025837 f ( ) dug 0.0023536 f dul [ f 0.0021612 f du?]

= 0.956871 x 0.967036 x (1 — 0.973753)
= 0.024287.

This method underestimates the run-length probabilities. An advantage of this approx-
imation is that the software package Mathematica could get exact solutions of the uni-

variate integrals evaluated. The final approach to determine the run-length probabilities

that also yields an exact solution is discussed in the next section.
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5.1.4 A conditioning approach

Section 5.1.1 described an exact approach to determine the run-length probabilities using
the pdf of the generalised multivariate beta type II distribution (2.8). In this section
another exact approach is discussed that makes use of the joint pdf of the independent
chi-squared random variables X and W; with j =0,1,2,...,p with degrees of freedom a
and v; with j = 0,1,2,...,p respectively (see (2.7)). Deriving the run-length distribution
can be done via the so-called "conditioning and unconditioning" approach; this involves

two steps; namely:

(i) Derive the conditional run-length distribution by conditioning on the random vari-
able X. This random variable contains all the information prior to the change in

the process variance, i.e. Pr(N =n|X).

(ii) Obtain the unconditional run-length distribution by integrating over all possible
values of the random variable X, i.e. Pr(N =17) = Ex [Pr(N =7|X)].

The conditional probability that the run-length is one (see (5.1), (5.3) and (2.7)), is:

Pr(N=1|X =1z)
Pr (A§ |X =x)

].—PI'(A0|X:Z2§')
1-Pr(LCL, <Uy<UCL,|X =1z)

:1—Pr<L(JLH<%<U0LH\X:x)
X

=1-Pr <xL§LH <Wy < foL” X = x)

zUCLg
A

=1- f (wo |z ) dwy. (5.12)

zLCLg
A

The unconditional probability that the run-length is one, is then from (5.12):

Pr(N =1)
— Ex [Pr(N = 1/X)]

:/Ooopr(zv:uxzx)f(a;)dx

© Univ%?s%ty of Pretoria



&
J UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

5. ILLUSTRATIVE EXAMPLES
5.1. Run-length probabilities if the unknown process variance has changed

:/0 ll—ﬁw% f(wo\:c)dw()] f(x)dz

zUCLy

=1 —/000/4& [ (wo|z) f () dwodx

0o zUi’Lﬁ
=1- / / f (x,wp) dwodz.
0 :L‘LCA’Lﬁ

Take note that X and W, are independent chi-squared random variables with degrees of

freedom a and vy, respectively (see Theorem 2.2), therefore

zUCL

Pr(N=1)=1- /0 h /_C& F (@) f (wo) dwodz. (5.13)

The conditional probability that the run-length is two (see (5.5)), is:

Pr(N =2|X =)
=Pr (AgNA{ |X =z)

=Pr (A{ |[4p, X = z) Pr (Ao |X =2), (5.14)
where
in’Lﬁ
Pr(Ay|X = ) :/ T () du, (5.15)
:ELALH

given in (5.12). It follows from (2.7), that

Pr (A{ [4g, X =)
:1—PI'(A1‘A0,X:.CL’)
=1—-Pr(LCLut1 <U; <UCLyyy | X =2,LCL, < Uy < UCL,)

AW
=1-"Pr (LCLH+1< i ! <UCLH+1 |X:ZL’,W0)

T + Awg
LCL L
—1_Pr (($+>\UJO>)\ C K+1 < Wl < (l"l‘)\w()))\UC’ k1 |X _ :L‘,Wo)
(z4+Awg)UC L1
A
=1- [ (wy |z, wo) dw. (5.16)

(z+Awg)LCL, 44
A
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Therefore, substituting (5.15) and (5.16) into (5.14),

Pr(N =2|X =1z)

(z+Awg)UCL 41 xUCLg
X P
= [1 Rl [N f (wr |x,w0)dw1] [ﬁw% f (wo \:c)dw()]
X X
a;Ung
= f (wo |x) dwg (5.17)
xLC Ly
P
(z4+Awg)UCL 1 zUCLg
I S— X
N (z4+Awg)LCLy 4 f <w1 ‘SL’, wo) dwl zLCLy f (wo |x) dwo'
X X

Using (5.17), the unconditional probability that the run-length is two, is:

Pr (N =2)
= Ex [Pr(N = 2|X)]

:/OOOPr(N:2\X::c)f(a:)dx

0o zUC Ly (z+Awg)UCL, 41 ngLK
- / [/ Fluolo)do = foprenny, S 011 w0)dwn [, f<wo\:c>dwo]
x)dx
zUCL
- / / F o ) dwo () da
;LLCL
% 2UCLy
A A
_/ [HMOMCLKH f(wr ‘xjwo)dwl/mm [ (wo|x) dwo f () dx
A
zUCL
:/ / (x,wg) dwodx
xLCL
% 2UCLyg
A
/ [HMOMCLKH f(wy |z, wg)dwllLCL [ (x,wp) dwodx

aUCLy (z+Awg)UC Ly 41 zUCLy

/ /zLCL (x, wo) dwodx —/ [@+Aw0)LCLK+1 ﬁw% [ (wy |z, wo) f (2, wp) dwydwodx
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xzUCLyg (z+Awg) UCL/@+1 xzUC Ly
= (x, wp) dwodx — x, wo,wy ) dwidwodx
/ /;LCL (z4+Awg) LCLNH ;LLCLN f ( )
xUC’L

_ / / f (wo) duwydz (5.18)

(z+Awo UCLKH zUCL,.C

/ [ﬂc+AwO )LCL, 41 sLOLs f (iU) f (wo) f (wl) dwidwydzx.

The conditional probability that the run-length is three, is:

Pr(N=3|X=ux)

=Pr (A |[AoN A1, X =2) Pr(A4; |40, X =) Pr (4| X =2), (5.19)

and from (5.12) and ((5.16))

zUCLyg
A
Pr(Ag| X =2) = e I (wo |z) dwy (5.20)
(zAJrAwO)UCL,,€ 1

Pr(A;|Ap, X =2) = f (wy |z, we) dwy. (5.21)

(z+Awg)LCOL 41
A

Then, from (2.7),

Pr (A§|A0mA1,X :Zlf)
= 1-PI‘(A2‘AOQA1,X:.T)

=1—Pr(LCLys < Uy < UCLyss|X =2, LCL, < Uy < UCLy,, LCLy sy < Uy < UCL,1)

AW,
T+ Awg + Awq

=1-—Pr (LCLH+2 < < UCLH+2 ‘X =, W(),W1>

1P <(:c + A\wg + iwl) LCL, 5 W, < (x + dwgy + ))\\wl) UCL, s X W, W1)
(z4+Awo+Aw1 ) UC L. 42
A
= 1 — /(‘z—&—)\wo—l—)\wl)LCLnjLz f (w2 |.CC, Wo, wl) d’wg. (522)
A
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Substituting (5.20), (5.21) and (5.22) in (5.19), the conditional probability that the run-
length is three, is

Pr(N =3|X =1z)

(z4+Awo+Aw1)UCL 12 (z4+Aw)UC L 41
A X
= [1-— (z+Awo+/\;m)LCLﬁ+2 I (wa |2, wo, wy ) dws [ (4 M) LCLug 1 [ (wy |z, wo ) dw,
A
ZUSLE
x [/ £ (w \x)dwo]
2L CLy
A
(x+Awg)UCL 1 xUC Ly
A A
= d d 2
(#+Awg)LCL, 41 f (wy |, wo) wl[cLCL,i J (wo lw) dwy (5.23)
- x X
(z4+Awo+Aw1)UCL 12
A
| | @ worAwi ) LC L f (ws |z, wo, wy) dwy
A
(z4+-Awg)UCL 1 xzUCLg
d d .
(z+Awg)LCL, 41 f (wl ‘x’ wo) wl[cLCLﬁ f (’LUQ |$) ’LU()]
A A

Using (5.23), the unconditional probability that the run-length is three, is:

Pr (N = 3)
= Ex [Pr(N = 3|X)]

:/OOOPr(N:3|X::U)f(:C)dx

(z+Awg)UCL, 1 zUCLg

o0 X X
- /0 [/(‘erAwo))\LCLmH f (wl ‘x’ wo) dwl/;LgLﬁ f (wo ‘x) dwp

(z+Awo+Aw1 )UC Ly 42 (z+Awg)UCL, 11

(z+Awo+Aw1)LC L2 f (w2 |$, Wo, W1 ) de (z+Awg) LOL, 41 f (wl ‘QU, Wo ) dwl

A Y

zUCLyg

></ " f(w0|x)dwg>]f(:c)dx

zLCLg
A
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z+)\w0 JUCL,, 2UCLy
A
/ [Mwo S [ (wy |z, wo ) dw, / . f (wo |7) dwo f () dz
A
o (:p+)\w0+)\w1)UCL,.i+2 (z+Awg)UCL, 1
A X
_ /0 (z+>\wo+)\f1)L0Ln+2 f (w2 ‘SC, Wo, w1) dws (zMwo)ALCLH ) f (w1 |x, wo) dwy
xzUCLg
A
X f(wo |z) dwof (x) dz
:cLCL,i
(ac+Aw0)UC'LK+1 2UCLy
A
d dwod,
/ [IHMO ot [ (wy |z, wy) wlﬁw% f (z,wo) dwodx
o (l‘+>\w0+)\’l)1\)1)UCLH+2 (z+)\w0)AUCLK+1
_ /0 (:p+)\wO+)\§\01)LCLR+2 I (wa |z, wo, wy ) dwsy ORI f (wy |z, wg) dwy
ZUELK
X f (‘Tu U)()) ddeCC
cLCLg
A

(z+)\w0)UCL,.€+1 :cUCLn
_ wy |, wo T, wo) dwidwodx
/ [1+Aw0 LCLN+1 zLCLgk ( | ) ( )
A

(ff+>\wO+)\w1)UC’L~+2 (x+AwO)UCLK+1 sUCLs

A
/ /I+>\wo+)\w1)LCLn+2 (:c+>\w0)LCLR+1 zLCLH (w2 |£L’ Wo, wl) (wl |.T wO)
A

X f (2, wp) dwedw, dwodz]

(z+>\w0)UCLR+1 :vUCL,i

- T, wo, wy ) dwydwodx
/ [ﬁxwo )LCL, 41 ELOLs o 0, w1) dwidwy

(z+Awo+Aw1)UCLky2  (a+dwg)UCLy41  zUCL,
)

[e.9]
) [ (ws ] )
— Wy | T, Wo, W
0 (z+>\wo+Af1)L0Ln+2 (z+>\w0)>\LCLK+1 eLOL 2 [ 0, L

X f (2, wo, wy) dwedwydwodzx]

(z+>\w0)UCLR+1 2UCLg
A

= T, wo, wr) dwidwodx
/ [erAwO LCLFqul SLOLs o 0, w1) dwidwy

(4+Awo+Aw1)UCLxq2  (2+Awg)UCL ;g SUCLy
A X

T, Wo, Wi, Wy ) dwsdwy dwedx
/ /I+)‘w0+)\’w1)Lan+2 (1+AwO)LCLK+1 sLOLs f( » 05 W 2) 201 0Wo
X

(z+Awp) UCLKH zUCL,.C

s [, £ 70 1)

(I+>\w0+/\’w1)UCLn+2 (a4 \w)UCL 11 2UCL.
A X

(5.24)

_/0 (z+dwo+Aw1)LOLk42 [ (@+dwg)LCLyt1 | aLcL, f (iU) f (wo) f (wl) / (wQ) dwadwydwodz.
)

A
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have changed

For N of higher orders, the conditional and unconditional probabilities can be determined

in a similar way.

Continuing with the example (where A = 2, v; = 4, k = 11, a = 40), the corresponding
approximate run-length probabilities are (see (5.13), (5.18) and (5.24)):

05444577z
Pr(N = _1—/ / f (wo) dwodz = 0.043129,
00025837z

0. 5444577z

/ / f (wo) dwodzx
0 54445771‘

0. 54445771 0. 0023536(z+2w0)

-[ / / ey 1 0T )1 (01) i

= 0.956871 — 0.924702 = 0.032169,

0. 544457736 0. 0023536(z+2w0)

/ / [ () f (wo) f (w1) dwidwodz
0.5444577 0. 4858039(1+2w0)

0.54445775  0.0023536(z+2wq)  0.4384660(2+2wo+2w1)

2
/ A54445771 0. 4858039(z+2w0) 0 0021612(z+2w0+2w1) f (x) f (wo) f (wl) f (w2) dedwlddem

=0.924702 — 0.899646 = 0.025056.

Take note that this method obtains exactly the same run-length probabilities as the
method using the derived pdfs discussed in Section 5.1.1.

For this method there is already a warning that the numerical integration converges too
slowly when calculating Pr (N = 3). Therefore, for both exact methods (see also Section

5.1.1) there are computational difficulties with determining the higher order integrals.

5.2 Run-length probabilities if the unknown process

variance and known process mean have changed

This section continues with the practical example (based on simulated data) mentioned
in the introduction of Section 5.1 where A = 2, v; = n =4, k = 11, a = 40. It will be
assumed that the mean and variance changed simultaneously between sample number ten

and eleven, therefore 9, = 0.
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The run-length probabilities can again be calculated using (5.3), (5.6) together with the
pdf of the noncentral generalised multivariate beta type Il distribution given in (3.28).
The focus of this section is to determine the effect of the different parameters of the
noncentral generalised multivariate beta type Il distribution on the probability to detect
the shift in the variance immediately, i.e. Pr(N = 1) —f UCC;.JL f (ug) dug with f (uo)
given in (3.20). The software package Mathematica was used to calculate the probabilities
by using the summation form of the Humbert function (see (B.13)) in (3.20).

Table 5.1 summarises the effect of the different parameters on the probability to detect
the shift in the variance immediately with reference case A\ = 2, v; = n = 4, Kk = 11,
a =40, ), =0 and 6y = 5.

Table 5.1 Run-length probabilities for different parameter values

Roleof | §, [do |n |k | A | Pr(N=1) Comment / Interpretation
A :Z—i 0O |5 |4 [11]0.5| 0.015217 | The larger the step shift,
0.053953 | the greater the probability.
2 0.330066
K 0[5 (4 |3 2 0.092279 | The more historical samples
0.203600 | available before the shift took
11 0.330066 | place, the greater the probability.
n 0 |5 |1 |11] 2 0.260396 | The larger the sample size, the
4 0.330066 | greater the probability.
10 0.382749
0o 0 [0 |4 [11| 2 0.043129 | The larger dg, (i.e. the relative
0.140078 | change in the mean), the greater
0.330066 | the probability.

5.3 Run-length probabilities in the matrix environ-

ment

This section proposes a method to address the calculation of run-length probabilities in
the matrix set-up. Percentage points are calculated as an illustration for the probability

to detect the shift immediately (i.e. run-length of one).

The probability of detecting a shift immediately, in other words, the probability of a
run-length of one, is the probability that the charting statistic will plot on or outside
the control limits upon collecting the first sample after the change in the variance (see

(5.2)). In the matrix environment |Uy| is of interest as a test statistic for testing the null
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hypothesis at time x that the covariance matrix structure did not change, i.e. the process
is in-control. Therefore, if the statistic |Ug| exceeds a critical value (say ¢g) it will be an
indication that the covariance matrix structure changed and that the process is declared
out-of-control. Note that this proposed method deviates from the univariate case where a
two sided hypothesis is considered (see (5.2)). Thus, once the covariance matrix structure
changes, the probability to detect this change immediately, in other words, the probability

of a run-length of one is

Take note that ¢q indicates an upper critical value and not a control limit as before (see
(5.2)). If ¢ = 1 then ¢y is comparable to the UCL of a one-sided hypothesis in the

univariate case. Also, like before, this is essentially a conditional probability.

In a similar way the run-length of two implies that even though the covariance matrix
changed, this change is not detected using the control chart at time , but that the chart

only signals that the process out-of-control at time x + 1. Therefore

PI"(N = 2) =Pr [|UO‘ < Cp, ‘Ul‘ > Cl] (526)
= Pr[|Uo| < co] = Pr[|Ug| < co, [Us] < 4]

From (5.26) it is evident that the joint pdf of (|Ugl|,|U;|) is needed to calculate the
probability of a run-length of two. This joint pdf was derived in Theorem 4.9, but a closed
form expression could not be obtained. Another possibility is to assume independence
of the statistics |Up| and |U;| (see discussion in Section 5.1.3), then the approximate

run-length probability is

PI‘(N = 2) ~ Pr [|U0| < Co] —Pr HU()‘ < CO] Pr HU1| < Cl] .

Even in the case of the above approximation one still encounters computational challenges,
since the pdf of |Uy| (see (4.31), (4.77)) contains a zonal polynomial. This computational

aspect needs further investigation and is not in the scope of this study.

In the example that follows percentage points will be calculated for a run-length of one for
the scenario where the covariance matrix changes with a scale factor from 3 to A¥. Only
the simplest two cases with ¢ = 1,2 (i.e. a univariate and bimatrix process) is considered.
From (5.25)

Pr(N =1) =1 — Fly,((co),
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where Fiy,|(-) is the CDF of |Ug| given in (4.30).

From (4.30) for ¢ = 1 follows

1
[ (3u0) T (5v2)
Using (4.30) and (C.35) for ¢ = 2, follows

HUO| (CO) =

% (A—lcof”%”l“) . (5.27)

1
5’[}270

1

Pl (0 = (LT (o~ T (Ge) T (G — )

23 (A2, |1,—év1+1,—év1+g
33 Ollvy,2ua—1.0 '

The percentage points ¢y of |Uy| are obtained numerically by solving the equation

Fiug(co) = / F(Uol)d [Ug| = 1 — 7. (5.28)

Evidently, this involves computation of the Meijer’s G-function and routines are widely

available. The built-in routines of the package Mathematica was used.

Table 5.2 provides the numerical values of ¢ for different values of A\ and « for the case
if ¢ = 1 (univariate) and ¢ = 2 (bimatrix). In this example samples of equal size of four
is collected at each point in time, i.e. v = n = 4. It is assumed that the covariance
matrix changes with a scale factor \, between samples xk — 1 and x where k = 3, therefore
v1 = (k — 1) xn = 8. The value of « is different from the value used in the other examples,

due to compuational resources.

Table 5.2 The upper percentage points c¢q

A g vy=001 y=0025 =005 =01
2 1| 7.00608 5.05263  3.83785  2.80643
1 1350304 252632  1.91893 1.40321
05 1| 175152 1.26316  0.95946 0.70161
2 2| 7.20343 450351  2.97902 1.80558
1 2364671 2.25176  1.48951 0.91746
05 2| 1.82336 1.12588  0.74475  0.46006

Similar tabulations can be obtained for other values of the parameters, as well as the

lower percentiles.
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5. ILLUSTRATIVE EXAMPLES
5.4. Conclusion

Remark 5.3 The upper percentage points cq in the simple case when ¢ =1 can be related
to the contol limits (see (5.4)). In the above example a one-sided test was considered,
i.e. the chart would signal that the process is out-of-control if |Ug| > c¢o. Remark 5.2
mentioned that the desirable FAR of a two-sided control chart is 0.0027.  Substituting
v = &327 = 0.00135 in (5.28) with ¢ = 1 and A = 1, gives co = 6.58684. This value
corresponds to the UCL in (5.4) when i.e.

Floo @B3)] rlia(s
UCLy—y = —it = =2 [8 B _ 6 55680,
Zi:l i 4

Nk

5.4 Conclusion

The computational aspect of the run-length (i.e. evaluating multiple integral expressions)
was illustrated for the scenario when monitoring the variance when the underlying process
distribution is normal. The use of the exact expressions for the pdf (2.8) was illustrated.
Further the effect of the parameters on the probability to detect the shift in the variance
immediately for the scenario when the known process mean has changed as well was
demonstrated. The chapter was concluded with proposing a method to address the

run-length concept and some percentage points were calculated.
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Chapter 6
Conclusions

In this thesis a generalised multivariate beta type II distribution as well as the noncentral
and bimatrix variate counterparts with positive domain were developed; these distribu-
tions emanated from a sequential process with the normal distribution and multivariate

normal distribution as the underlying process distributions.

Figure 6.1 provides a visual representation of the framework of this thesis. The green
panel shows the process distribution from which the samples are collected and the para-
meter being monitored. The red panel indicates the change in the process parameters.
The new distributions that were derived in this thesis is given in the yellow panel. Re-
lations between the distributions are indicated in the blue panel. At the bottom of the

figure the chapter is indicated where each situation was addressed.
To summarise:

e In Chapter 2 the generalised multivariate beta type II distribution was derived; this
distribution stems from the scenario where the variance of a normal random variable

is monitored assuming that the mean remains unchanged.

e Chapter 3 generalised the ideas of Chapter 2. The focus of Chapter 3 was on
the scenario where the variance of a normal random variable is monitored and it
is assumed that the mean also encounters a sustained shift. This introduces the
noncentral generalised multivariate beta type II distribution. It was shown that by
setting the noncentrality parameters equal to zero this distribution will reduce to

the generalised multivariate beta type II distribution of Chapter 2.

e In Chapter 4 the generalised bimatrix variate beta type II distribution was pro-
posed. Two cases were considered: (i) the special case where the covariance struc-

ture changes with a scale factor, i.e. from ¥ to AX and, (ii) the more general case
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6. CONCLUSIONS

where the complete covariance structure change from 3 to ¥;. This was achieved
using newly derived results based on the principles of Muirhead (1982) [32], p.248
and Davis (1979) [7]. The latter case simplifies to the generalised multivariate beta
type II distribution of Chapter 2 for ¢ = 1.

e In Chapter 5 an example demonstrated the use of the exact expressions of the pdfs

in calculating the probabilities of run-lengths, the measure to gain insight into the

monitor ¥

performance of a Shewhart-type Q-chart.

N(,Lto, 62)

monitor o2

Bimatrix variate
generalised
beta type IT

Noncentral
generalised
multivariate
beta type II

Generalised
multivariate
beta type II

Distribution

\ VAN J\ J

Y Y Y

Chapter 2 Chapter 3 Chapter 4

Figure 6.1. Summary of the framework of this thesis

The following concluding remarks prevail:

The generalised multivariate beta type II distribution and the marginal distributions, as
well as the noncentral and the bimatrix variate cases contribute two-fold, namely: (i)
as new developments in the distribution theory field and (ii) for the first time the exact
probabilities of Q-charting statistics plotting inside or outside the control limits can be
calculated, and it is not restricted to the existing methods known in the statistical process

environment, e.g simulation.

Areas for further research include, but are not limited to:

e An extension of the scenario in Chapter 2 where the process variance is monitored
but instead of the single shift in the process variance between samples xk — 1 and &,

multiple shifts will occur from sample x — 1 onwards.
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e Studying the distributions of the Q-charting statistics when monitoring a process

for mean shifts when the observations are sampled from a normal distribution.

e Further exploring the statistical properties of the newly derived distributions and

their contribution in distribution theory field.

e Supposing that the covariance structure of ¢ attributes of the items of a single
process are monitored simultaneously where the samples are independent, having

been collected from a multivariate normal distribution with known mean vector (Ho)

and unknown covariance matrix (3 :q X ¢), denoted as MV N (Ho’ 2) :

(i) The reader may be interested in more than two successive time periods imme-
diately after the change in the covariance structure occurred, which will lead

to new matrix variate Dirichlet type II distributions;

(ii) There may be a change in the known mean vector, similarly as in Chapter
3 with the normal process distribution. This will result in the noncentral

bimatrix variate beta type II distribution.

In conclusion, with a sequential process monitoring scheme as the genesis, this study
contributed to the distribution field by proposing new generalised multivariate / univariate
/ bivariate / bimatrix variate beta type II distributions that may serve as alternative to

the existing models.
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A. Abbreviations and notation
CDF Cumulative distribution function
CL Centerline
CUSUM  Cumulative sum chart
EWMA  Exponentially weighted moving average chart
FAR False alarm rate
LCL Lower control limit
pdf Probability density function
SPC Statistical Process Control
UCL Upper control limit
4 Equal in distribution
Yii Observation k£ from sample ¢
n; Size of sample ¢
K The first time period following the shift in the process variance
A Unknown size of the shift in the variance
d The first time period following the shift in the known process mean
Lo Known process mean
1y Known process mean after the shift in the mean
o2 Unknown process variance before the variance encountered a shift
o? Unknown process variance after the variance encountered a shift
S? The variance of the i sample
GFpocted The pooled sample variance of all measurements up to and including sample r
N Run-length random variable
Y® Matrix of observations for time period 7
Ky Known mean vector
b Unknown process covariance matrix before the covariance encountered a shift
3 Unknown process covariance matrix after the covariance encountered a shift
S; Sample covariance matrix at time ¢
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U [o; By, By ]

A is a positive definite symmetric matrix

Unique positive definite square root of A

Determinant of the square matrix A

The maximum of the absolute values of the characteristic roots
of A

Inverse of a square matrix A

Transpose of matrix A

Trace of the square matrix A

exp(tr(A)) if A is a square matrix

The Jacobian of the matrix transformation f

Gamma function

Multivariate gamma function

Generalised gamma function of weight 7
Pochhammer coefficient

Generalised hypergeometric coefficient

Beta function

Multivariate beta function

Multivariate Dirichlet function

Hypergeometric series with r upper parameters and s lower
parameters

Meijer’s G-function

Fox’s H-function

Confluent hypergeometric function

Confluent hypergeometric function in s variables
Humbert’s confluent hypergeometric function
Zonal polynomial

Mellin transform

Normal distribution with mean p and variance o>
CDF of standard normal distribution

Inverse of the CDF of standard normal distribution
F distribution with v; and vy degrees of freedom
CDF of F (vq,vq) distribution

Inverse of the CDF of F' (v, v2) distribution

Chi-squared distribution with v degrees of freedom
Noncentral chi-squared distribution with v degrees of freedom

and noncentrality parameter 9,
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Beta!(a, B) Beta type II distribution with parameters o and (3
MV N (Ev Z) Multivariate normal distribution with mean vector p and covariance
matrix X
W, (v, %) Wishart distribution with parameters v and X
Bgl (o, B) Matrix variate beta type II distribution with parameters o and
B. Scalar special functions and theory
Result 1 (Gradshteyn and Ryzhik, 2007 [11], p.892; p.897)
The gamma function, denoted I' (a) , is defined as
['(a) = /ett‘lldt, (B.1)
0
where Re (a)) > 0.
Result 2 (Gradshteyn and Ryzhik, 2007 [11], p.908; p.909)
The beta function, denoted B («, 3), is defined as
B(a,f) = / 2211 4 )0 g (B.2)
L(a)'(B)
B(a,8) = B.3
@8 = T (B.3)
where Re (o) > 0, Re (5) > 0 and I'(+) is the gamma function.
Result 3 (Mathai, 1993 [29], p.96)
The Pochhammer coefficient is defined as
. T'(a+7)
(CM)j:CM(a—i‘l)...((X—i‘]—l)Zw, (B4)

where j =1,2,..., (o), =1, « # 0, Re(o) > 0, Re(a+j) > 0 and I' (-) is the gamma
function.

Result 4 (Mathai, 1993 [29], p.96)

The hypergeometric series with r upper parameters and s lower parameters is defined as
TFs(alv'"JaT;Bla---aﬁs;x):Z?—)]'f (B5)

where (); is the Pochhammer symbol.
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The following holds for the series:

(i) if any «y, © = 1,...7, is a negative integer or zero the series terminates and , F}
becomes a polynomial in = provided none of 5,, k = 1,...,s, is zero or a negative
integer;

(i) if any 5, k = 1,...s, is zero or a negative integer then the series is not defined
unless there is an a;, 7 = 1,... 7, such that (o) ; becomes zero first. That is, suppose
a; and 3, are two negative integers such that (o;), =0 for £ > j and (), = 0 for
¢ > n. Then in order for , F to be defined j must be less than n;

(iii) the series converges for all z if r < s and for |z| < 1if r=s+1;
(iv) the series diverges for all z, x # 0 for r > s + 1;

(v) if r = s+ 1 and |z| = 1, the series is absolutely convergent if Re (y) < 0 where

v = a;— Y B; divergent if Re (y) > 1; andif r = s+1and [z| =1, v # 1, the
j=1 j=1
series is conditionally convergent if 0 < Re(v) < 1.

Some special cases of the hypergeometric series:

* o i
ofo(Gz) = — =€ (B.6)
j=0J:
e The binomial series
1Fo(a,iﬂ)—2(a)jﬁ =Q1-z)" , |zf <1 (B.7)
§=0
. .
Fi(Bir) = 5 — (B3)
[x) = .
o = (), J!
e The confluent hypergeometric series or Kummer’s hypergeometric series
Fi(a; ;) = i (@); 27 (B.9)
141\, Ly - T .
e The Gauss hypergeometric function
(). o
(o gicia) = 30 Ty (B.10)
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Result 5 (Sdnchez et al., 2006 [43] p.1681)
The confluent hypergeometric function \Ilés) in s variables x1, ..., x, is defined as
U5 s By, ., By, ] = R e S (B.11)
Co B MZJ_O (B1);, - (B, ! - !
where the series expansion is valid for all x; € R.
An alternative representation of \Ilés) is given by
S ]' o —tio— >
U5 [0 By, By, ] = m/ﬂ et H oF1 (B;; tw;) dt. (B.12)

1=1

For s = 2, \Ifgs) = W, is the Humbert’s confluent hypergeometric function of two variables:

J1 .02

Ty T
Uy [; By, By w1, 2] = zz ““2 2 (B.13)

13
= = (B1);, (B2), 2!

Result 6 (Mathai, 1993 [29], p.23)

If f(x) is a real function which is single valued almost everywhere for = > 0 and if the
integral

f:ck1|f )| dz,

converges for some value of k£ then the Mellin transform of f (z) is defined as follows:
= [2"1f (2) da, (B.14)
0

where M (h) is the Mellin transform of f with respect to the parameter h and h is a
complex number. The inverse Mellin transform is given by the inverse integral

wio0o
f(z) =2 f My (h)z~"dh, (B.15)
where ¢ =+/—1 and w is a real number in the strip of analyticity of M, (h).
Result 7 (Mathai, 1993 [29], p.60)

Meijer’s G-function with the parameters aq,...,a, and 34,..., 3, is defined as
G (el ) = o / g (h)x~"dh, (B-16)
° L
where ¢ =+/—1, L is a suitable contour, x # 0,

H;n r(8; +h)H" I(1—oj—h)
Hj:m+1 ( —B; h)Hg n+1r(0‘j+h)7

g(h)=
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where m, n, r and s are integers with 0 <n <rand 0<m <s.

The parameters aq,...,a, and (3,,...,3, are complex numbers such that no pole of
F(ﬁj+h),j:1,...,m coincides with any pole of I' (1 — o, — h), k=1,... n.

The empty product is interpreted as 0.

Result 8 (Mathai, 1993 [29], p.140)

Fox’s H-function is defined as

.....

m,n (a ey ) 7777 (a'ﬁar) J— —h
H,s (l“‘wf,ﬁf) (bs,b’s)) - ﬁ/cg (h)z~"dh, (B.17)

where . .
[T r(o48,0) [T r(1—a;—a;n)

g(h) = HS

i DO=05=8,0) [T, Taj+ash)

and where 0 <m < s, 0<n <r,a; >0for j=1,2,...,r, 8; >0for j =1,2,...,s,

Y

and a; (j=1,2,...,7)and b; (j =1,2,...,s) are complex numbers such that no pole
of T (bj + ﬁjh) for j = 1,2,...,m coincides with any pole of I' (1 — a; — a;h) for j =
1,2,...,n. Furthermore, C' is a contour in the complex hA-plane running from w — 700 to

w 4100 for some real number w.

Result 9 (Gradshteyn and Ryzhik, 2007 [11], p.337)

o0

/xﬁ_le_izaﬁf‘(ﬁ), (B.18)

0

for a, B > 0.

Result 10 (Gradshteyn and Ryzhik, 2007 [11], p.315)

i a—1
/x—ﬁdaj =7 *B(a,f — a), (B.19)
)

for largy| < m,Re (8) > Re («) > 0 where B(,-) is the beta function.

Result 11 (Gradshteyn and Ryzhik, 2007 [11], p.317)

2711+ 2)%(1 + y2)%dr = Bla, —¢ — B — @)y Fi(—c¢,a; —c — ;1 — ), (B.20)

0

for |argy| < m,— Re(c+ ) > Re(a) > 0 where B(-,-) is the beta function and 5 F (-) is
the Gauss hypergeometric function.
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Result 12 (Gradshteyn and Ryzhik, 2007 [11], p.347)

/C 2 He—2)" e de = B(a, B) TN Ry (B o+ Biye), (B.21)
0

for Re (o) > 0 and Re (8) > 0 where B(-, ) is the beta function and ; F} (+) is the confluent
hypergeometric series.

Result 13 (Gradshteyn and Ryzhik, 2007 [11], p.815)

fo ¢ te™® Fy(aq,...,ap; By, ..., B, 01) d (B.22)
=T (c)v ¢, 11F;s (Oéb---;Oémc;ﬁp---,ﬁs;f),

for r < s, where Re (¢) > 0 and Re(y) > 0 if r < s; and Re () > Re(p) if r = s.

Result 14 (Gradshteyn and Ryzhik, 2007 [11], p.1008)
2Fi (. Bicm) = (1—2)7 1R (5> c—a;c ﬁ) (B.23)

oF1 (o, Bc0) = (1—2)" oF (a,c — Bic; %) . (B.24)

Result 15 (Mathai, 1993 [29], p.69)

e G (al ) = GRS (el e i) - (B.25)

Result 16 (Mathai, 1993 [29], p.130)

B/ar B
1,1 a|l=y+B8/a & (v)x a
Glyl (Cl' ‘6/;/ / > — m, |CI’ ‘ < 1. (B26)

Result 17 (Mathai, 1993 [29], p.142)

m,n A7 ,enny ar m,n ai,l),..., ar,l
G () = H (2]l (B.27)

Result 18 (Mathai et al., 2009 [30], p59)

c — o— m.n ar Oy o— m,n 1—p,k),(ar,cr
/(; z” ' (C o ':C) ' Hr,s7 ( ‘Eb Bs) ) z=c" IP( )Hr-l—ll_-:‘:l-l (bck‘gbs,gs)?((lfpfcz,k)) )
(B.28)
for Re (p) > 0,Re(b) > 0 and Re (¢) > 0, k > 0.
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Result 19 (Johnson et al., 1995 [22], p.248)
The beta type II distribution, denoted X ~ Beta!!(a, 3), has pdf:
Mo+ B) o ~(a
f(z) = T(@)T(8)" Y14 z)~ P (B.29)
where z > 0 and a, 8 > 0 and I (+) is the gamma function.
Result 20 (Johnson et al., 1995 [22], p.325)
The F' distribution denoted X ~ F(vy, vy) has pdf:
T(L (01 + v2)) <U1)22l " 1( vy )é(vlm)
T)=—r—m | — 2 1+ —ux , B.30
f( ) F(%Ul)r(%’l}g) V2 Vo ( )
where x > 0 and vy, vy > 0.
Result 21 (Johnson et al., 1994 [21], p.416)
The x? distribution denoted X ~ x? (v) has pdf:
flz) = = z27le73 (B.31)
221 (10) ’ '
where x > 0 and v > 0.
Result 22 (Johnson et al., 1995 [22], p.438)
The noncentral y? distribution denoted X ~ x% (v) has pdf:
e 3 v 0T\ % z
_ (2.2 2 e B.32
)= i (55) e (B.32)

where x > 0 and v, > 0.

C. Matrix special functions and theory
Result 23 (Gupta and Nagar, 2000 [13], p.7)

If A is a positive definite ¢ X ¢ matrix then there exists a positive definite matrix B (¢ x ¢)
such that A = B2. Furthermore, the square root of A is then defined as

N =

A7 =B. (C.33)
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Result 24 (Gupta and Nagar, 2000 [13], p.18; p.19 )
The multivariate gamma function, denoted I', («) , is defined as
T,(a) = / etr (—S) [S[* 7Y 48 (C.34)
S>0
q9
T,(a) = 7% D[ [a—-1G-1)], (C.35)
i=1

where Re(a) > 1 (¢ —1), and the integral is over the space of ¢ X ¢ symmetric positive

definite matrices.

For ¢ = 1 it simplifies to the gamma function.

Result 25 (Gupta and Nagar, 2000 [13], p.20)

The multivariate beta function, denoted by f3, (a, b), is defined as

Balas) = [ ISP, -8 s
! 0<S<I,

T () Ty (B)

Lt 5) (C-36)

where Re (o) > 1 (¢—1),Re(8) > 3(¢—1) and Ty (-) is the multivariate gamma
function.

For ¢ = 1 it simplifies to the beta function.
Result 26 (Gupta and Nagar, 2000 [15], p.21)

The multivariate Dirichlet function is defined as

oy La(B) [[i-i Ty (ai)
/Bq(alv”'aarwg)_ Pq<04+ﬁ) )

where Re(a;) >3 (¢—1),i=1,....,r,Re(8) >3(¢—1) and a=3 .
i=1

(C.37)

Result 27 (Gupta and Nagar, 2000 [13], p.30)

Let 7= (t1,...,ty),t1 >+ >1t,>0,t; 4+ - +t, =t. The generalised hypergeometric
coefficient (), also known as the generalised Pochhammer symbol of weight 7, is defined
as

(@), = rj[l (a—L(-1), (C.38)
B qiala—1) ;1,:1 r [a +t; — % (j — 1)}
(a)T B Ly () 7
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where Re (@) > 1 (¢—1) —t,, I'(+) is the gamma function and I, (-) is the multivariate

gamma function.

For ¢ = 1 it simplifies to the Pochhammer coefficient.

Result 28 (Gupta and Nagar, 2000 [13], p.30)

Let 7= (t1,...,ty),t1>--->t,>0,t1+---+t, =t. The generalised gamma function
of weight 7 is defined as

T,(,7) = mid@ D) f[ [la+t;—320G—1)] (C.39)
(7)) = (), Ty(a), (C.40)

where the integral is over the space of ¢ x ¢ symmetric positive definite matrices, («)_ is
the generalised hypergeometric coefficient, Re (o) > £ (¢ — 1) —¢, and Ty (a,0) =T (a) .

Result 29 (Gupta and Nagar, 2000 [13], p.12)
For matrix transformations Y = F'(X) and Z = G (W) is
JX,W =Y, Z)=J(X—Y)J(W—Z). (C.AL)
If Y (qxgq)andX (qx q) are symmetric matrices, A (¢ x ¢) and Y = AXA’, then
J(Y = X) = A" (C.42)

A brief description of zonal polynomials and results involving zonal polynomials are given
next. For a more detailed discussion see James (1960 [18], 1961 [19], 1964 [20]), Con-
stantine (1963) [6] and Khatri (1966) [24].

Result 30 (Gupta and Nagar, 2000 [13], p.29)

Let S be a (¢ X ¢) symmetric matrix and let V; be the vector space of homogeneous
polynomials ¢ (S) of degree ¢ in the ¢ (¢ + 1) distinct elements of S. The space V; can be
decomposes into a direct sum of irreducible invariant subspaces V, where 7 = (t1,...,1,),
ty>--->t,>0,t;+---+t, = t. The polynomial (trS)" € V; has a unique decomposition

(trS)" = > C, (8), (C.43)

into polynomials, C;. (S) € V,, belonging to the respective invariant subspaces.

The zonal polynomial C, (S) is defined as the component of (trS)’ in the subspace
V.. It is a symmetric homogeneous polynomial of degree t in the latent roots of S and
holds for all ¢. If the partition 7 has more than ¢ parts, the corresponding zonal
polynomial will be identically zero.
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Result 31 (Ehlers, 2011 [9], p.9; Muirhead, 1982 [32], p.243; Gupta and Nagar, 2000
[15], p.830)

If S(gxgq) isasymmetric matrix, R (¢ x ¢) >0 and T (g x ¢) > 0, then
/ c, (R%TR%HSH/) dH = / C, (T%RT%HSH/) dH, (C.44)
O(q) O(q)

where O(q) = {H (¢ x ¢)|HH =HH =1,} and dH denotes the normalised Haar
invariant measure on the orthogonal group O (q) (see Muirhead, 1982 [32], p.72).

Proof. From Muirhead, 1982 [32], Theorem 7.2.5 and Gupta and Nagar, 2000 [13],
Equation 1.5.3 it follows that

/ C. (R%TR%HSH’> JH — (RQTRQ)CT
0(q) (L)
(TzRT%) C. (S
Cr (I,)
- /O (q)CT (TERTiHSH’) JH.

Result 32

If S (¢gxgq) isasymmetric matrix, V (¢ X q¢) >0, W (¢ xq) >0 and A (¢ xq) >0,
then

/ C, (V%A%WA%V%HSH') dH = / . (W%A%VA%W%HSH') dH.  (C.45)
O(q) O(q)

Proof. From Muirhead, 1982 [32], Theorem 7.2.5 and Gupta and Nagar, 2000 [13],
Equation 1.5.3 it follows that

/ C. (V%A%WA%V%HSH/)OZH _
O(q)
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Result 33

If S (g¢xgq) isasymmetric matrix, R (¢ x¢q) >0, T (¢x¢q) >0,V (¢gxq) >0 and
W (g x q) > 0, then

/ C. (R% TR%HSH’) C, (V%WV%HSH’) dH
O(q)
(a) = /O (q)cg (R%TR%HSH’) C. (W%VW%HSH’) dH (C.46)
(b) = /O (q)cg (T%RT%HSH’) . (W%VW%HSH’) dH. (C.47)
Proof. (b) From Davis (1979) [7] follows that
/O (q)cg (R% TR%HSH/) C, (V%WV%HSH’) dH

cs” (R% TR%,V%WV%) C57 (S,S)

a 2¢6§7T Ct;b (Iq>
s (T%RT%,W%VW%) C57 (8, S)
=>
oeeT Ct;b (Iq>

- / C. (T%RT%HSH/) C, (W%VW%HSH’) dH.
O(q)
The proof for (a) is similar. n

Result 34

If S (¢gxgq) isa symmetric matrix, R (¢ x¢q) >0, T (¢xq) >0,V (¢gxq) >0,
W (¢ xq)>0 and A (¢ x ¢q) > 0, then

/ C. (R% TR%HSH/) c, (V%A%WA%V%HSH’) dH
O(q)
— / C. (T%RT%HSH/) . (W%A%VA%W%HSH’> dH.  (C.48)
O(q)
Proof. From Davis (1979) [7]

/ C. (R% TR%HSH’) C, (V%A%WA%V%HSH') dH
O(q)

s (R%TR%,V%A%WA%V%> C57 (S, 8)
= vecr
v Ct;b (Iq>
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s (T%RT%,szaVA%W%> C57 (S, S)

- / C. (T%RT%HSH’) o (W%A%VA%W%HSH') dH.
O(q)

|
Result 35 (Constantine, 1963 [6]; Gupta and Nagar, 2000 [13], p.34)
The hypergeometric function of matrix argument is defined by
Fo(on o By 8) = 23 ez 10, (8), (C.49)
where o, 0 =1,...,7;8;,j = 1,..., s are arbitrary numbers, S (¢ X q) is areal symmetric

matrix, > denotes summation over all partitions 7, C; (S) is the zonal polynomial of S,
(a)_ is the generalised hypergeometric coefficient.

Conditions for the convergence of the series

(i) the series converges for all S (¢ x ¢) if r < s+ 1, otherwise the series may only
converge for S = 0;

(ii) for r=s+1 the series converges for ||S|| <1 (where ||S|| denotes the maximum
of the absolute values of the characteristic roots of S);

(iii) for r < s the series converges for all S;
(iv) for r > s+ 1 the series diverges for all S # 0 unless the series terminates;

(v) none of the /3, is zero, an integer or half integer < 3 (¢ — 1) (otherwise some of the
denominators in (C.49) will vanish);

(vi) if a; is a negative integer, say —w, then for t > qw + 1, all coefficients in (C.49)

vanish and the function reduces to a finite polynomial of degree quw.

Result 36 (Constantine, 1963 [6])

Fo(S) =3 > Cft(!s) — et (S). (C.50)

t=0
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Result 37 (Herz, 1955 [16])
If X (¢ x¢q) is asymmetric matrix where ||X|| < 1, then

Fy (0 X) = Fql(a) /S e[S (1, - X) S| e gs — 1, - XY, (C51)
where Re (a) > 3 (¢ —1).
Result 38 (Gupta and Nagar, 2000 [13], p.36)
If X (¢ xq) isasymmetric matrix where || X|| < 1, then

oI (o, B; ¢; X) (C.52)

where Re(c) > 1(¢—1) and Re(c—a) > 3(¢—1). This is known as the Gauss

hypergeometric function of matrix argument.

Result 39 (Gupta and Nagar, 2000 [13], p.51)

/ S|°" 2@ ) 1, + 8| |1, + BS| °dS (C.53)
S>0
=B, (.8+c—a)|B| [ (B+c—a,8+¢I,—B™),

where |[I, -B7'|| <1, Re(f4+c¢—a) > 3 (¢—1), and Re(a) > 5(¢—1), 3, () is the

2
multivariate beta function and oF} (-) is the Gauss hypergeometric function of matrix

argument.

Result 40 (Herz, 1955 [16])

For Re(X) >0 and Re(a) > 3(¢—1), then
/ etr (—SX) [S|* 2@V 48 =T, (a) |X|7°, (C.54)
S>0
where I, () is the multivariate gamma function.

Result 41 (Gupta and Nagar, 2000 [13], p.37; Muirhead, 1982 [32], p.265)

2Py (. B0 X) = I, = X7 5P (e —a, B0 =X (I, - X)) . (C.55)
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Result 42 (Gupta and Nagar, 2000 [13], p.38 and p.52)

The confluent hypergeometric function ¥ of symmetric matrix R (¢ x ¢) is defined by

1 1 ol
(oo R) = - ) /S Oetr(—RS) |S|* 2@ 1, 4+ s 2@ gg (C.56)
q >
where R > 0 and Re(a) >3 (¢—1).
Then
/Y Y e (<XY) ¥ (0,0 X) Y (C.57)
>
_ I'y(8)T, (ﬁ (q + 1))

Pq(a+5—c—|— (g+1))
x oFy (B —c+ 1 (q+1),5 a+f—c+3(qg+1);1,—X)

where [[I, — X|| <1 and Re(a)>3(¢—1),Re(8—c¢) > —1.
Proof.

/ Y72 epr (—XY) U (a, ¢, Y) dY
Y>0

= / \Y\B—%W“)eu(—XY) / etr (—YS) [S|*" 20 1, + S| 2@+ g8 qy
Y>0 S>0

I'y ()

q S>0 Y>0
1 _1 a1 -
= T (a>/s O|S|oz 3 (¢+1) I, + S| 2(q+1)rq (8) X + 8| B as using (C.54)
q >
1|8
= ;q Eg;/ |S|a7—((1+1 |I +S|c af— (¢g+1) X (I + X~ 2SX__) X2 ds
q S>0
= PO [ sy XS] s
g (a) S>0
Ly (B e
- R0 e )
q
X oFy (B—c+3(q+1),8; (a+B—c+3(g+1));I, — X)using (C.53)
Ly (B)Ty (B—ct+3(a+1)

Fq(a+6—c+ q+1)
X oFy (B—c+3 (q+1),6,(a+ﬁ—c+%(q+1));Iq—X).
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Furthermore, let B > 0

/ Y72 ety (—XY) W (a, c, B%YB%) dY (C.58)
Y >0

-8 L, (8)T (5—c+%(q+1))
Ty(a+f—ct+3(g+1)
%oy (Bt g+ 1).B:(a+ 8 —ct (g + 1)L, - BIXB)

= [B|

where ||I, — B*%XB—%
Proof. Let Z = B3YB?, then Y = B~ 2ZB % with Jacobian J (Y — Z) = [B| 26V

Then
Lo
1 1

= B|™” Jz0 \Z‘B—%(qﬂ)etr(—B*aXB—a > U (v, ¢, Z) dZ
L, (B)T, (B—c+1(g+1))
Ty(a+B8-ct+i(g+1)
X 2f1 (ﬁ_”%(q“)’ﬁ; (O‘+5—C+%(CJ+1));Iq—B—%XB’%>,

< 1.

1 5—%(11-1-1)

B :ZB:

1

etr (—XB‘EZB‘%> U (a,¢,Z) [B| 72" 4z

= B|™? using (C.57)

Result 43 (Gupta and Nagar, 2000 [13], p.87)

A ¢ x g random symmetric positive definite matrix S is said to have a Wishart
distribution with parameters ¢, v, and X (¢ X ¢) > 0, written as S ~ W, (v, %), if its
pdf is given by

-1
{2%vqrq (2) |2|%“} S[2 1 Vet (-1%7'S), §>0, v>q, (C.59)
where I'; () is the multivariate gamma function.

Result 44 (Muirhead, 1982 [32], p.101)
The h" moment of X where X ~ W, (v, X) is

1
E (‘X‘h) — |2‘h 2th‘

C.60
r, (30) (C50)
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Result 45 (Gupta and Nagar (2000) [13], p.166)

A ¢ x g random symmetric positive definite matrix S is said to have a matrix variate
beta type II distribution with parameters («, ), denoted as S ~ Béf (cv, B), if its pdf is
given by

[, (0, )] IS L, 4 8|7, (C.61)
S >0 where o > 5 (¢ —1), 8> 5 (¢—1) and j3, (-) is the multivariate beta function.
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