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Abstract

This study involves the investigation of the early actinide systems using ab initio

techniques based on density functional theory (DFT). It was motivated by: (i) the

incomplete description of these systems using conventional DFT because they are

strongly correlated, (ii) the usefulness of these systems in nuclear energy genera-

tion, (iii) the complexity that arises in experimentally studying these systems due

to their inherent radioactive nature and (iv) their limited availability.

The results obtained from this study are divided into two broad sections. The

first comprises chapters 3 and 4 while the second comprises chapters 5 and 6.

Thorium based compounds are studied in chapters 3 and 4. In the first section,

the Hubbard U parameter is not necessary to accurately describe the electronic,

elastic and mechanical properties of these systems. In the second, the inclusion of

the Hubbard U parameter is shown to be paramount for the accurate description of

most compounds considered.

Chapter 3 presents the electronic, structural and bonding character of thorium

based nitrides. We obtained the result that Th2N2NH, which is crystallographi-

cally equivalent to metallic Th2N3, is insulating. Chapter 4 demonstrates that the

formation of a meta-stable thorium-titanium based alloy is plausible and also fur-

ther information on bonding, electronic and elastic properties of the determined

meta-stable alloy is provided. This has provided important new knowledge about

these bulk systems.

In Chapter 5 the DFT + U based study on Pa and its oxides is presented. The elec-

tronic, structural and bonding character of these systems was studied. We found

that PaO2 is a Mott-Hubbard insulator with an indirect band gap of 3.48 eV within

the generalized gradient approximation GGA + U. Chapter 6 discusses various

actinide nitrides. We explored the electronic properties, elastic properties, lattice

dynamics and the energetics of the various compounds using GGA + U. Also, we
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investigated the effect of the Hubbard U parameter and magnetic configuration on

these systems.

The use of the DFT + U based method provides a rapid way to study strongly cor-

related systems, while other methods such as Hybrid functional, GW, DMFT+DFT,

etc. are highly intensive, computationally speaking. Finally, the results obtained

with the inclusion of this ad hoc parameter give a very good description of these

systems.

iv

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



I would like to dedicate this thesis to my family for all they have done, provided

and put up with to help me achieve this extraordinary milestone in my life.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Acknowledgements

I would like to acknowledge the University of Pretoria for funding, members of

the computational and theoretical physics group at the department of Physics for

useful discussions, my supervisor for his guidance, and my friends and loved ones

for their general support. Lastly, I am grateful to my family for their unwavering

support and prayers.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Contents

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Actinide systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Thorium based alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Effect of Hubbard U parameter . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical Framework 7

2.1 Many-Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Kohn-Sham equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Local Spin Density Approximation . . . . . . . . . . . . . . . . . . . 15

2.3.2 Generalized Gradient Approximation . . . . . . . . . . . . . . . . . . 16

2.4 Algorithms used in the implementation of the Kohn-Sham equation . . . . . . 17

2.4.1 Plane wave formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Pseudopotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Projector augmented wave method . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Brillouin zone integration . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.4.1 Linear tetrahedron method . . . . . . . . . . . . . . . . . . 24

2.4.4.2 Special k-points . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.4.3 Fermi level smearing . . . . . . . . . . . . . . . . . . . . . 25

2.4.5 Atomic relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2.4.5.1 Hellmann-Feynman theorem . . . . . . . . . . . . . . . . . 26

2.5 Elastic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Lattice Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 DFT+U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 Rotationally-invariant formulation . . . . . . . . . . . . . . . . . . . . 35

2.7.2 A simplifier formulation . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Software code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Ab initio studies of Th3N4, Th2N3 and Th2N2(NH) 41

4 A theoretical study of thorium titanium-based alloys 51

5 First principles LDA + U and GGA + U study of protactinium and protactinium
oxides: dependence on the effective U parameter 71

6 GGA + U studies of the early actinide mononitrides and dinitrides 99

7 General conclusions 123

7.1 Thorium and its alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Other actinide compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Future investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

References 127

ii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



List of Figures

2.2 Schematic representation of the pseudopotential method, where the all-electron

(solid lines) and pseudo-electron (dashed lines) potentials and their correspond-

ing wave functions. They both agree at the designated radius rcut . . . . . . . . 21

iii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



iv

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



List of Tables

2.1 Number of unique elastic constants for unit cells of different symmetry . . . . . 28

v

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



vi

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Acronyms

AE all-electron. 21, 23

BOA Born-Oppenheimer Approximation. 8, 30

BZ Brillouin zone. 19, 24, 25

DFT Density Functional Theory. 2, 4, 5, 7, 11, 13, 20, 39, 45, 119, 120

DFT+U DFT plus the Hubbard U Correction. 5, 7, 34, 119–122

FFT fast Fourier transform. 17

GGA Generalized Gradient Approximation. 3, 4, 16, 17, 32

GGA+U GGA plus the Hubbard U Correction. 4

HF Hartree-Fock approximation. 9–11

KS Kohn-Sham. 13–15, 17–19, 24, 27, 34

LDA+U LDA plus the Hubbard U Correction. 4, 34–36, 38, 39

LSDA Local Spin Density Approximation. 4, 15–17, 32, 35

MP Methfessel-Paxton. 25, 26

OPW Orthogonalized Plane Wave. 20, 22

PAW projector augmented wave. 21–23, 39

vii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



PBE Perdew-Burke-Ernzerhof. 3, 4

SCF Self-Consistent Field. 18

XC exchange-correlation. 14–17, 32

viii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 1

Introduction

1.1 Actinide systems

The actinides can be divided into two sub-series: the early (Th-Pu) and the late (Am-Lr). [1]

This is based on their position in the series and the different characteristics exhibited. The

early actinides comprise the elements Thorium (Th 90), Protactinium (Pa 91), Uranium (U 92),

Neptunium (Np 93) and Plutonium (Pu 94).

One of the major aspects of the importance of actinide compounds are their potential ap-

plication in advanced fuel materials for fast breeder reactors. In particular, actinide nitrides

are considered important as a source for nuclear fuel material in the proposed Generation IV

nuclear power plants (future fast neutron fission reactors). [2;3;4;5;6;7;8;9;10] Also, actinide com-

pounds find a use as target materials to transmute plutonium and minor actinides in fast reactor

cores and in accelerator driven systems. The high density of the nitride fuel creates more excess

neutrons and has a higher potential to transmute the long-lived fission products. If one consid-

ers the breeding ratio, appropriate thermophysical properties, high thermal conductivity, high

melting point and fuel density, chemical compatibility with the Na coolant, and reprocessing

feasibility, actinide nitrides appear to be a compromise between oxide and metal fuels.

The understanding of the early actinide compounds from both scientific and technologi-

cal points of view is a very complex and challenging area of research. [11;12;13;14;15;16;17] The

theoretical description of the early actinide compounds presents a considerable challenge due

to the onset of 5f-electron localization phenomena. They contain a partially filled 5f-orbital

that is spatially localized around the nucleus. The large number of electrons per atom in

these strongly correlated compounds leads to various exotic properties such as half-metallicity,

1
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metal-insulator transition, Mott insulators, high-Tc, heavy Fermion materials, etc. Noteworthy

is a parabolic decrease of the volume as a function of the atomic number, which shows a similar

trend to that of the transition metals. For the early actinides, this behavior is attributed to the

nature of electron-electron interactions in the 5f compounds. However, for the transition met-

als, this behavior is attributed to the 3d electrons. Hence, the actinides are sometimes referred

to as a form of the 5f transition series. [18]

The crossover of localization/delocalization influences the phase diagram of actinide com-

pounds immensely. This can be seen in the difference between the electronic and magnetic

properties of Uranium and Berkelium compounds. [19] The f-electron contribution to the chem-

ical bonding character can be greatly influenced by a minimal change in the external or chem-

ical pressure of the system. This results in a wide array of characteristics for the alloys and

compounds of a given actinide element. It was suggested by Hill [11] that the actinide-actinide

bond distance determines the extent of magnetic order through the control of the f - f overlap in

actinide compounds. Various studies have shown that actinide compounds do not necessarily

follow the systematics based solely on f-band formation. The f-d and f-p hybridizations are

equally important in describing the electronic and magnetic properties of these compounds.

Electronic correlation, which is not considered in traditional density functional approxima-

tions or Hartree-Fock theory, treats the systems as non-interacting entities, which is the essen-

tial feature that defines these systems. To give a qualitative description of the early actinides

(particularly Pa to Pu), going beyond standard Density Functional Theory (DFT) or Hartree-

Fock theory, is consequently essential. Several methods such as the DFT + U, [20;21;22;23;24]

SIC, GW, etc. as well as simplified model Hamiltonians (e.g Hubbard-like models) have been

proposed to account for these.

This study focuses on the actinide compounds formed by these elements with nitrogen,

oxygen and titanium.

1.2 Aims and objectives

This study is divided into two parts. The first comprises chapters 3 and 4, which focus on

the Thorium based compounds. This part shows that such compounds do not need inclusion

of the Hubbard U parameter for a proper description of these systems, in spite of their being

early actinides. In the second section, which comprises chapters 5 and 6, the importance of the

Hubbard U parameter is underscored for the proper description of these systems.

2
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1.2.1 Thorium based alloys

The first part of this study demonstrates that the structural, elastic, and mechanical properties

and the formation energy of the actinide compounds without the 5f electrons can be accurately

determined without the inclusion of the Hubbard U parameter. This part is divided into two

chapters.

Firstly, using a DFT approach within the Perdew-Burke-Ernzerhof (PBE) Generalized Gra-

dient Approximation (GGA) [GGA (PBE)] implemented in the VASP codes, we investigate the

structural, elastic and electronic properties of Th3N4, Th2N3 and Th2N2(NH). The calculated

structural properties of the nitrides are in good agreement with experimental data. We observed

that all the Th-N based compounds considered are energetically favorable and elastically sta-

ble. We found that Th3N4 is semiconducting with a band gap of 1.59 eV, which compares

well with the experimental band gap of 1.7 eV, while Th2N3 is metallic. Th2N2(NH), which

is crystallographically equivalent to Th2N3 is insulating with a band gap of 2.12 eV. This is

due to the -(NH) group that results in the shifting of the energy bands consequently opening

up a gap at the Fermi-level. We observe that all the investigated Th-N based compounds are

predominantly ionic. [25]

Secondly, using a quantum chemical method, we investigate the dearth of ordered alloys

involving thorium and titanium. Based on the fact that both these elements are known to alloy

very readily with various other elements, for example with oxygen, nitrogen and carbon current

experimental data suggests that Th and Ti do not alloy very readily with each other. This

study explored the possibility of the formation of a stoichiometry compound involving these

elements by considering a variety of ordered alloys of ThTi based compounds. By probing the

energetics, electronic, phonon and elastic properties of these systems, we confirm the scarcity

of ordered alloys involving Th and Ti, since for a variety of reasons many of the systems that we

considered were found to be unfavorable. However, our investigations resulted in one plausible

ordered structure: We propose ThTi3 in the Cr3Si structure as a metastable ordered alloy. [26]

1.2.2 Effect of Hubbard U parameter

The second part of this study highlights the importance of the Hubbard U parameter for the

proper determination of the structural, elastic, and mechanical properties and energetics of

formation for the various actinide compounds with 5f electrons. This part is divided into two

chapters.

3

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Firstly, the electronic structure and properties of protactinium and its oxides (PaO and

PaO2) were studied within the framework of the Local Spin Density Approximation (LSDA),

GGA (PBE), LDA plus the Hubbard U Correction (LDA+U) and GGA plus the Hubbard U

Correction (GGA+U) implementations of DFT. The dependence of selected observables of

these materials on the effective U parameter has been investigated in detail. The examined

properties include lattice constants, bulk moduli, effect of charge density distributions, the

hybridization of the 5f orbital and the energy of formation for PaO and PaO2. The LSDA

yields better agreement with experiments for the bulk modulus than the GGA for Pa, while

GGA results in better lattice parameters. We observed that PaO is metallic while PaO2 is a

Mott-Hubbard insulator [27] (materials that should conduct electricity under conventional band

theories, but are insulators when measured). This is consistent with observations for the other

actinide oxides. [28] We discovered that GGA and LSDA incorrectly give metallic behavior for

PaO2. The GGA+U calculated indirect band gap of 3.48 eV reported for PaO2 is a prediction

and should stimulate further studies of this material. [29] Other oxides involving uranium, nep-

tunium and plutonium were not explored because they have been studied previously within the

DFT+ U approach. [30;31;32;33;9]

Secondly, we present a detailed comparative study of the electronic and mechanical proper-

ties of the early actinide mononitrides and dinitrides within the framework of the GGA (PBE)

and GGA+U implementations of DFT with the inclusion of spin-orbit coupling. The depen-

dence of selected observables of these materials on the effective U-parameter is investigated

in detail. The properties include the lattice constant, bulk modulus, charge density distribu-

tion, hybridization of the atomic orbitals, energy of formation and the lattice dynamics. The

inclusion of the Hubbard U parameter results in a proper description of the 5f electrons, and

is subsequently used in the determination of the structural and electronic properties of these

compounds. The mononitrides and dinitrides of the early actinides are metallic except for

UN2, which is a semiconductor. These actinide nitrides are non-magnetic with the exception

of UN, NpN, PuN, NpN2 and PuN2: these are magnetic systems with orbital-dependent mag-

netic moments oriented in the z-axis. We observed that ThN2 is elastically unstable to isotropic

pressure. We discovered that UN2 is thermodynamically unstable, but may be stabilized by N

vacancy formation. [34;6;10]

4

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



1.3 Thesis structure

The structure of the thesis is described below:

• Chapter 1 presents a brief and general introduction. Some properties of the actinide

compounds and the motivation behind the studies are highlighted. In-depth introductions

and further motivations behind these studies are presented in the subsequent sections on

individual systems considered.

• In Chapter 2, the theoretical formulation used to develop and implement DFT as a prac-

tical tool in the study of many-body systems is presented. Also, a brief overview on

the need for an additional parameter, the onsite Hubbard correction term U for certain

systems, is given. Methods and algorithms implemented to make the calculation practi-

cal for large systems are presented. Furthermore, the basic theory on the elasticity and

lattice dynamics needed to ascertain structural strength and stability is covered.

• Chapter 3 presents the studies on the various stoichiometries of Th-Ti based compounds.

A detailed study on Th-Ti based alloys is carried out to evaluate their stability and feasi-

bility.

• In Chapter 4 the studies on the Th-N based compounds are presented. We explored the

electronic properties, elastic properties and the energetics of the various compounds.

• Chapter 5 presents the studies on Pa and its oxides. We explored the electronic properties,

elastic properties, lattice dynamics and the energetics of the various compounds. Also,

we investigated the effect of the Hubbard U parameter and magnetic configuration on

these systems.

• Chapter 6 contains the studies on various actinide nitrides. We explored the electronic

properties, elastic properties, lattice dynamics and the energetics of the various com-

pounds. In addition, we investigated the effect of the Hubbard U parameter and magnetic

configuration on these systems.

• In Chapter 7, a the general conclusion is drawn.

In the next chapter, the theoretical framework is introduced, with emphasis placed on DFT

and DFT plus the Hubbard U Correction (DFT+U).

5

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



6

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2

Theoretical Framework

First, the methodology used in the study of physical and electronic properties of real materials

is introduced. This involves determining the solution of the Schrödinger equation using ab

initio based methods. In this study, total energy of any given system, which is a many body

problem, is obtained using DFT. DFT using quantum mechanical based concepts, which relies

on the notion that the physical properties (equilibrium lattice constants, bulk moduli, phonons,

piezoelectric constants, phase transition pressures and temperature, etc.) and the electronic

properties (band structure, density of states, valence charge density distribution, etc.) of any

given system can be accurately determined provided the charge density and ionic framework is

known. Subsequently, the algorithms implemented within the broad theory of DFT for the de-

termination of the total energy is presented. Next, the theory behind the calculation of the elas-

tic properties and the lattice dynamics are provided. Lastly, we discuss the basic background

of DFT+U approximation, which is relevant in capturing the physics of strongly correlated

systems.

2.1 Many-Body Problem

Any given material can be described as a quantum mechanical system that is composed of

atoms and consists of a positive core (referred to as the ion) surrounded by a cloud of electrons.

Neglecting relativistic effects, this quantum mechanical system is described by solving the

many-body fully-interacting Schrödinger equation: [35]

7
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ĤΨ = E Ψ

[
T̂I + T̂e + V̂II + V̂ee + V̂eI

]
Ψ({ri, σi}) = EΨ({ri, σi})

(2.1)

where Ψ is the many-body wavefunction dependent on both the ionic and electronic degrees of

freedom (Rα and ri, σi).

The ionic (I) and electronic (e) kinetic energy terms are given below as:

T̂I =

N∑

α=1

− ~
2

2Mα
∇2
α (2.2)

T̂e =

n∑

i=1

− ~
2

2m
∇2

i . (2.3)

The potential energy terms describing the various interactions are given by:

V̂II =
1
2

∑

α,β

e2 ZαZβ
|Rα − Rβ| , (2.4)

where V̂II is the potential energy due to ion-ion interactions

V̂ee =
1
2

∑

i, j

e2

|ri − r j| , (2.5)

where V̂ee is the potential energy due to electron-electron interactions, and

V̂eI = −
N∑

α=1

n∑

i=1

e2Zα
|Rα − ri| (2.6)

where V̂eI is the potential energy due to electron-ion interactions.

To solve equation 2.1, the ionic and electronic degree of freedom is partially decoupled

using the concept of Born-Oppenheimer Approximation (BOA), which is also referred to as the

adiabatic approximation. This approximation assumes that the faster moving electrons become

the stationary ground state for a given instantaneous configuration of the slowly varying nuclei,

which arises due to the massive mass difference between the electrons and nuclei, and hence,

results in the simplification of the many-body problem. [36] The many-body wavefunction is a

product of electronic and ionic wavefunctions with the electronic Schrödinger equation given

by:

8
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[T̂e + V̂ee + V̂eI]Ψe({ri, σi}, {Rα}) = Ee(Rα)Ψe({ri, σi}, {Rα}). (2.7)

The electronic wavefunction has a parametric dependence on the fixed ionic configuration

but not on their velocities

Ψ({Rα}, {ri, σi}) = ΨI({Rα})Ψe({ri, σi}, {Rα}). (2.8)

Therefore, the electronic energy obtained is an effective interaction potential that varies

with the ionic configurations in the ionic Schrödinger equation given by:

[T̂I + V̂II + Ee(Rα)]ΨI(Rα) = EI ΨI(Rα). (2.9)

It is now imperative to find the ground state wavefunction that minimizes the following

Hamiltonian for the electronic system

[T̂e + V̂int + V̂ext]Ψ (ri, σi) = E Ψ (ri, σi)

E = 〈Ψ |Ĥ|Ψ〉 = 〈T̂ 〉 + 〈V̂int〉 +
∫

d3r Vext(r) n(r)
(2.10)

where V̂ee = V̂int is the potential from electron-electron interaction, V̂eI = V̂ext is the potential

from electron-ions interaction and n(r) is the electronic density.

The major challenge in solving the electronic Schrödinger equation is that of determin-

ing the electron-electron interaction potential. Various approaches have been formulated that

incorporate this interaction to make the problem more manageable. The Hartree-Fock approx-

imation (HF) [37;38] is the simplest approach, which accounts for the anti-symmetric nature

of many-electron wavefunction called Pauli correlation by using a Slater determinant [39] that

minimizes the Hamiltonian of a fully interacting system. [40]

Ψe({ri, σi}) = Φ = 1√
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ1(r1, σ1) Φ2(r1, σ1) Φ3(r1, σ1) . . . Φ1(r1, σ1)
Φ1(r2, σ2) Φ2(r2, σ2) Φ3(r2, σ2) . . . ΦN(r2, σ2)
Φ1(r3, σ3) Φ2(r3, σ3) Φ3(r3, σ3) . . . ΦN(r3, σ3)

...
...

...
. . .

Φ1(rN , σN) . . . . . . ΦN(rN , σN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φi(r j, σ j) = Ψσ
i (r j)αi(σ j)

(2.11)

9
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where each single particle spin-orbital Φi(r j, σ j) can be decoupled into its position Ψσ
i (r j) and

spin variable αi(σ j) components.

The expectation value of the many-body electronic Schrödinger equation (spin indepen-

dent) of equation 2.7 using the wavefunction (equation 2.11) in Hartree atomic units (where

~ = me = e = 4π/ε0 = 1) is given by: [40]

EHF = 〈Φ
∣∣∣Ĥ

∣∣∣ Φ〉 =
∑

i,σ

∫
d3rΨσ∗

i (r)[−1
2
∇2 + VeI]Ψσ

i (r) + EII

+
1
2

∑

i, j,σi,σ j

∫
d3r dr′ Ψσi∗

i (r)Ψσ j∗
j (r′)

1
|r − r′| Ψ

σi
i (r′)Ψσ j

j (r)

− 1
2

∑

i, j,σ

∫
d3r dr′ Ψσ∗

i (r)Ψσ∗
j (r′)

1
|r − r′| Ψ

σ
j (r′)Ψσ

i (r).

(2.12)

The first term in equation 2.12 is the single-body expectation value, the second term de-

scribes the classical interaction between the nuclei, the third term gives the direct exchange

interactions and the fourth term accounts for the exchange interactions among electrons. The

fictitious self-interactions in the direct and exchange terms also known as the self-interaction

terms are included but cancel each other out. Including these interactions and summing over

all orbitals results in the electron density, while the direct term is the Hartree energy given by:

EH =
1
2

∫
d3r dr′

n(r) n(r′)
|r − r′| (2.13)

where the classical charge density of the self-interacting energy with density n(r) is used to

treat EH .

The exchange energy term comprises of two effects: from the self-term and Pauli exclu-

sion. This effects must be deducted to cancel out the spurious self-term included in the direct

Coulomb Hartree energy. The exchange energy leads to lowering of the energy as a result

of each electron interacting with its positive exchange hole. This is the difference between

the total energy of the interacting many-body system of density n(r) and the HF system with

anti-symmetric uncorrelated electrons given below as:
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Ex = E − EHF = [〈V̂int〉 − EH]HF . (2.14)

The minimization of equation 2.12 with respect to all the degrees of freedom using the

many-body wavefunction in the form of equation 2.11 gives the single-electron HF equations

as presented below

[−1
2
∇2 + VeI(r) + VH(r) + V i,σ

x (r)]Ψσ
i (r) = εσi Ψ

σ
i (r)

VH(r) =
∑

j,σ j

∫
d3r′ Ψσ j∗

j (r′)Ψσ j
j (r′)

1
|r − r′| =

∫
d3r′

n(r′)
|r − r′|

V i,σ
x (r) = −


∑

j

∫
d3r′ Ψσ∗

j (r′)Ψσ
i (r′)

1
|r − r′|


Ψσ∗

j (r′)

Ψσ∗
i (r′)

.

(2.15)

The Hartree potential VH accounts for the electric fields of the other electrons and they

act as a smooth background electron density n(r) to the single electron. The exchange po-

tential Vx incorporates the Pauli exclusion principle for all the electrons and eliminates the

self-interaction terms in VH .

The solution to the many-body problem using HF is intractable except for very small sys-

tems and specialized cases. Another way to solve the many-body problem, which is currently

the most popular method, entails changing from N internal degrees of freedom to a single quan-

tity: the ground state electron density using Density Functional Theory (DFT). Note that, DFT

is an exact formalism and Hartree-Fock approach is forever an approximation.

2.2 Density Functional Theory

The two theorems by Hohenberg and Kohn [41] in 1964 laid the foundation for DFT and can be

stated (as presented Richard Martin’s book [40]) as follows:

Theorem 1 For any system of interacting particles in an external potential Vext(r), the potential
Vext(r) is determined uniquely, except for a constant, by the ground state particle density n0(r).

Corollary I: Since the Hamiltonian is thus fully determined, except for a constant shift of

the energy, it follows that the many-body wavefunctions for all states (ground and excited) are
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determined. Therefore all properties of the system are completely determined given only the

ground stated density n0(r).

Theorem 2 A universal functional for the energy E[n] in terms of the density n(r) can be
defined, valid for any external potential Vext(r). For any particular Vext(r), the exact ground state
energy of the system is the global minimum value of this functional, and the density n(r) that
minimizes the functional is the exact ground state density n0(r).

Corollary II: The functional E[n] alone is sufficient to determine the exact ground state

energy and density. In general, excited states of the electrons must be determined by other

means.

Using a reductio ad absurdum Theorem 1 is proved as follows:

Given two different V(1)
ext(r), V(2)

ext(r) with the same ground state density n0(r) but different

Hamiltonians Ĥ(1) and Ĥ(2) and ground state wavefunction Ψ(1) and Ψ(2), it follows using the

Rayleigh Ritz variational principle, that:

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉. (2.16)

Hence

E(1) < 〈Ψ(2)|Ĥ(2)|Ψ(2)〉 + 〈Ψ(2)|Ĥ(1) − Ĥ(2)|Ψ(2)〉

< E(2) +

∫
d3r[V (1)

ext(r) − V (2)
ext(r)] n0(r).

(2.17)

Similarly, considering E(2) results in

E(2) < 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 + 〈Ψ(1)|Ĥ(2) − Ĥ(1)|Ψ(1)〉

< E(1) +

∫
d3r[V (2)

ext(r) − V (1)
ext(r)] n0(r).

(2.18)

Addition of equation 2.17 and equation 2.18 results in the contradictory inequality

E(1) + E(2) < E(1) + E(2), (2.19)

hence the same ground state density cannot yield two external potentials that differ by more

than a constant. Therefore the external potential Vext(r) is uniquely determined to within a con-

stant by the ground state density n0(r), for a system of interacting particles.
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Provided the functional of the density is properly defined, theorem 2 is proved as follows

EHK[n] = T [n] + Eint[n] +
∫

d3r Vext n(r) + EII

≡ FHK[n] +
∫

d3r Vext n(r) + EII

(2.20)

where FHK[n] = T [n]+Eint[n] represents all internal energies, kinetic and potential energy;

while EII represents the interaction energy of the nuclei.

For a system having a ground state density n(1)(r) with wavefunction Ψ(1), which corre-

sponds to an external potential V (1), and a different density n(2)(r), which corresponds to a

wavefunction Ψ(2), then

E(1) = E[n(1)] = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉

E(2) = E[n(2)] = 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 > E(1)

(2.21)

Therefore the evaluated ground state density n(1)(r) is indeed a global minimum of the

Hohenberg-Kohn energy functional. Also, the exact ground state density and energy can be

obtained by minimizing the total energy of a given system with respect to changes in the density

function n(r) provided the functional FHK[n] is known.

The brilliance of DFT is finding the solution to the density n(r) in 3-dimension that mini-

mizes the functional E[n(r)] rather than the solution of the N-body problem in equation 2.7. In

the current form of equation 2.20, the solution is intractable and general properties of the sys-

tem cannot be deduced from the density since the exact form of the universal energy functional

is unknown. [40]

2.3 Kohn-Sham equations

Kohn and Sham [42] in 1965 transformed the problem of the fully interacting system to a non-

interacting auxiliary system which has the same ground state density, leading to the practicality

of DFT.

This electronic ground state density is defined as

n(r) =
∑

σ

nσ(r) =
∑

σ

Nσ∑

i

∣∣∣Ψσ
i (r)

∣∣∣2 , (2.22)

13

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



where σ =↑ or ↓ spin for all Kohn-Sham (KS) electron orbitals Ψσ
i (r).

The energy functional for the auxiliary system has the form [43]

EKS [n] = Ts[n] + EH[n] +

∫
d3r Vext(r) n(r) + Exc[n]

with Ts[n] =
∑

σ

Nσ∑

i

〈Ψσ
i |T̂ |Ψσ

i 〉

EH =
1
2

∫
d3r dr′

n(r) n(r′)
|r − r′|

(2.23)

where the Hartree energy is as presented in equation 2.13.

The auxiliary KS energy functional has the same ground state energy as the fully interacting

energy functional, which is solvable. The exchange-correlation (XC) energy Exc contains all

the difficult many-body terms missing and some corrections related to the kinetic energy, going

from a fully interacting system to the auxiliary KS non-interacting system, allowing the KS

equation to be an exact formulation. [40]

Exc[n] = E[n] − EH[n] (2.24)

Using the KS variational equation, [40]

δ EKS

δΨσ ∗
i (r)

=
δTS

δΨσ ∗
i (r)

+

[
δ Eext

δ nσ(r)
+

δ EH

δ nσ(r)
+

δ Exc

δ nσ(r)

]
δ nσ(r)
δΨσ ∗

i (r)
= 0 (2.25)

depending on the constraints of orbital orthonormalization

〈Ψσ
i |Ψσ′

j 〉 = δi, jδσ,σ′ . (2.26)

This results in the KS equations
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[
−1

2
∇2 + Vext + VH + Vσ

xc

]
Ψσ

i = εσi Ψ
σ
i

Vext(r) =
δ Eext

δ nσ(r)

VH(r) =
δ EH

δ nσ(r)
=

∫
d3r′

n(r)
|r − r′|

Vσ
xc(r) =

δ Exc

δ nσ(r)

(2.27)

The crucial term in the KS approach is the XC energy. The exact form of the XC is un-

known, with the exception of the free electron gas. Therefore, there is a need for approxima-

tions to carry out practical calculations.

2.3.1 Local Spin Density Approximation

The first approximation to account for the Exc is the LSDA. In this approximation, the general

inhomogeneous electronic system is considered as a local homogeneous electron gas. [42] The

XC energy density at each point r is the same as homogenous electron gas with the same

density.

ELS DA
xc [n↑, n↓] =

∫
d3r n(r) εhom

xc (n↑(r), n↓(r))

=

∫
d3r n(r)

(
εhom

x (n↑(r), n↓(r)
)

+ εhom
c (n↑(r), n↓(r)))

(2.28)

The formulation of LSDA can be in terms of n↑ and n↓, or n(r) and the fractional spin

polarization parameter ξ(r)

ξ =
n↑ − n↓

n
. (2.29)

ELS DA
xc is generated using highly accurate results from the Quantum Monte-Carlo simula-

tion established by Ceperley and Alder [44] and parameterized by Perdew and Zunger [45] that

has a simple analytical form.
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The LSDA potential undergoes an asymptotic decay having an exponential form, whereas

the true XC potential decays in a Coulombic manner much slower. This leads to various de-

ficiencies in the LSDA potential such as: (i) Inability to support a Rydberg series and to bind

with high energy states. A consequence of that is very high HOMO energy, which gives inac-

curate ionization potential based on Koopman’s theorem. (ii) Also, erroneous predication of

species as being unstable as a result of poor description of electron-rich species such as anions

because often these do not bind to an additional electron. [40]

In spite of the above-mentioned drawbacks, LSDA has proven to be successful, [46;40] even

though it relies on the assumption that the electron density is slowly varying. The reasons are

that the XC hole obeys all the sum rules and does not require a detailed shape for the hole.

Also, there is error cancellation in the exchange and correlation energy. The success of LSDA

has led to its extensive use and the motivation for improved XC functionals (like the GGA).

2.3.2 Generalized Gradient Approximation

The GGA tries to remedy the deficiency of the LSDA, by taking into account the gradient of

the electron density. This involves inclusion of the subsequent term in the derivative expansion

of the electron density,

EGGA
xc [n↑, n↓] =

∫
d3r εxc(n↑, n↓, |∇ n↑|, |∇ n↓|, . . .)

≡
∫

d3r εhom
x (n)Fxc(n↑, n↓, |∇ n↑|, |∇ n↓|, . . .)

(2.30)

where εhom
x gives the exchange energy of the unpolarized gas and Fxc is a dimensionless

quantity.

Symbolically GGA is presented as follows:

EGGA
xc = EGGA

xc (n(r),∇n(r)) (2.31)

where ∇n(r) is the gradient of the density as a function of position.

GGA offers significant improvement in the treatment of molecules compared to LSDA. It

leads to improvement in the total energies, atomization energies, energy barriers and structural
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energy differences. However, GGA tends to expand and soften bonds, sometimes overcor-

recting the LSDA prediction. Generally, GGA is more suitable for inhomogeneity in density

than LSDA. [47] Among the numerous available GGA XC functionals there are three widely

used forms of the these: Beck (B88) [48], Perdew and Wang (PW91) [49] and Perdew, Burke,

and Enzerhof (PBE) [47]. Moreover, various forms of PBE (revPBE, PBEsol [50], rPBE, etc.)

have been developed to deal with different kinds of systems (surfaces, closed packed systems,

defects, etc).

2.4 Algorithms used in the implementation of the Kohn-Sham equa-
tion

The various algorithms implemented in practice to obtain the converged total energy of any

given system are presented. These algorithms solve the KS equations employing different

techniques like:

1. Using localized atomic orbitals to study atom-like features typically used in chemistry.

2. Using the augmented plane wave (APW), Green’s functions Korringa-Kohn-Rostoker

(KKR) [51;52] and the muffin-tin orbital (MTO) methods, etc., which implements the

atomic sphere methods.

3. Using the plane wave grid approach that implements fast Fourier transform (FFT) to

determine the solution of the KS equations.

The plane wave grid approach as implemented in the VASP code is used in this study.

2.4.1 Plane wave formalism

In practice, crystalline solids have a finite number of atoms and a very large number of elec-

trons. Based on the periodicity of the system, the large number of one-electron wavefunctions

is reduced to approximately half the electron number in the unit cell of the crystal by applica-

tion of Bloch’s theorem. [53] For any periodic system, the KS potential is a periodic function

given as:

VKS (r + R) = VKS (r); ∀R ∈ Bravias Lattice. (2.32)
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Initial guess

n↑, n↓

Calculate effective potential

Vσ
e f f = Vext + VH + Vσ

xc

Solve KS equation

[−1
2∇2 + Vσ

e f f ] Ψσ
i = εσi Ψσ

i

Calculate electron density

nσ =
∑

i |Ψσ
i |2

Self-consistent?

Output quantities

Energy, forces, stresses, eigenvalues,...

Yes

No

Figure 2.1: Schematic representation of the Self-Consistent Field (SCF) procedure to solve the
KS equations. [54]
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Applying the Bloch theorem shows that the wavefunction of an electron in a periodic po-

tential is a product of the plane wave eik.r and the cell periodic function ui(r):

ui(r) =
∑

G
ci,G eiG.r

ψi(r) = eik.rui(r) =
∑

G
ci,k+G eik+G.r

(2.33)

Where, the electronic wavefunction is the sum of the plane waves at each k-point within

the first Brillouin zone (BZ) and ci,k+G are the coefficients of the planes waves. Substituting

equation 2.33 into equation 2.23 allows the KS equations to be expressed in the reciprocal

space [53]

∑

G′

(
~2

2m
|k + G|2δGG′ + Vion(G −G′) + VH(G −G′) + Vxc(G −G′)

)
ci,k+G′ = εici,k+G′ .

(2.34)

Therefore, using Bloch’s theorem, the infinite solution of equation 2.23 can be determined,

where the electronic wavefunction is represented as an expansion of plane waves that involves

the convergence of a single parameter, the energy cut-off Ecut (which originates from the kinetic

energy term). The kinetic energy term is diagonal, and the various potentials in equation 2.23

are described in terms of their Fourier transforms. [53] The use of fast Fourier transforms allows

for translation between real and reciprocal space, significantly improving the efficiency of plane

waves calculations. In equation 2.34, the kinetic energy term is the diagonal components and

the potentials are given in terms of their Fourier components.

For practical calculation, we define the kinetic energy cut-off as shown in equation 2.35,

which limits the maximum length of the G vectors leading to a finite Hamiltonian matrix.

Ecut =
~2

2m
|k + G|2. (2.35)

The truncation of the plane waves expansion that results in the kinetic energy term be-

ing less than the cut-off energy might introduce errors in the computed total energy of some

systems. Hence, an increase in the Ecut would lead to reduction of the error in the total energy.

The flowchart in Fig. 2.1 summarizes the KS equations derived in section 2.3 and expanded

in equation 2.34. This shows how an actual calculation can be performed to determine the
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ground state energy, forces, stresses, etc. A numerical procedure is implemented in DFT codes

to successively update the n and Ve f f until self-consistency is achieved.

2.4.2 Pseudopotential

In the pseudopotential approximation, the numerous plane waves in the tightly bound core elec-

trons are replaced with an effective potential acting on the valence electrons. [55;56;57;58;59]. This

approach was developed largely from the Orthogonalized Plane Wave (OPW) method intro-

duced by Herring, [60] where the expansion of the valence wavefunctions in a set of plane waves

is orthogonalized to all of the core wavefunctions. The orthogonality of the wavefunctions is

because they are eigenstates of a Hermitian operator. It effectively reduces the computational

time required for convergence of the total energy of the system.

In Fig. 2.2, the pseudo wavefunction oscillates less than the original wavefunction; hence,

needs fewer plane waves to describe compared to the original plane wavefunctions. The pseudo

wavefunction is applicable to a large number of systems, which is a smooth function within the

core region. [61]

Several methods exist for pseudopotentials generation; therefore they are not unique. How-

ever, they must satisfy the following criteria:

1. The pseudo wavefunctions and the atomic wavefunctions must produce the same core

charge (both should agree beyond a chosen core radius Rc).

2. The pseudo-electron and the atomic eigenvalues must be the same for a chosen atomic

reference configuration.

3. Logarithmic derivatives of the two wavefunctions at Rc must be norm-conserving (should

agree).

4. The integrated charge inside the Rc must be norm-conserving.

5. The first energy derivative of the logarithmic derivatives must agree at Rc for both wave-

functions.

As a result of points 1 and 2, the pseudo atom and the ionic core will yield the same scattering

properties while a smooth pseudo-electron wavefunction is guaranteed from point 3. From

point 4, the correct charge inside the core is guaranteed, and point 5 guarantees an adequate

description of an ion in a quantum system for a given pseudopotential. The choice of the Rcut
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Figure 2.2: Schematic representation of the pseudopotential method, where the all-electron (solid
lines) and pseudo-electron (dashed lines) potentials and their corresponding wave functions. They
both agree at the designated radius rcut .

ensures adequate description of the wavefunction close to the atom but large enough to give

smooth wavefunctions.

Various pseudopotentials have been developed such as: the norm-conserving pseudopoten-

tial (the norm of each pseudo-wavefunction is identical to the all-electron (AE) wavefunction

outside the cutoff radius), the ultrasoft pseudopotential (reducing the basis-set size by relaxing

the constraint imposed by the norm-conserving), etc. A closely related technique is the projec-

tor augmented wave (PAW) method (this leads to greater computational efficiency, which takes

into account concepts from the pseudopotential and linear augmented-plane-wave methods).
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2.4.3 Projector augmented wave method

The PAW [62;63;64] method reformulates the OPW method, leading to marked improvement in

the norm conserving [65] and ultrasoft [66] pseudopotential methods. This approach is adaptable

to modern methods for total energy, force, and stress calculations leading to high computational

efficiency and accuracy. However, complexity can arise in its implementation. This approach

maintains the full core wavefunctions and uses the pseudopotential operators.

The PAW method maps the physical all electron (AE) valence wavefunctions ψv
j(r) onto

a smooth pseudo wavefunctions ψ̃v
i (r), which is similar to the OPW and the augmented plane

wave (APW) formulation. [40] Also, a linear combination of ψv = τψ̃v links the set of all-

electron valence functions to their smooth pseudo wavefunction. The transformation is taken

to be unity τ = 1 except when a sphere is centered on the nucleus, τ = 1 + τ0. In PAW

formulation, the Dirac notation is adopted. The expansion of the smooth wavefunction within

the sphere (superscript v and subscript i, j are neglected for simplicity ) is given as

|ψ̃〉 =
∑

m

cm|ψ̃m〉 (2.36)

and the corresponding all electron wavefunction

|ψ〉 =
∑

m

cm|ψm〉. (2.37)

The full wavefunction in all space is given as

|ψ〉 = |ψ̃〉 +
∑

m

cm{|ψm〉 − |ψ̃m〉}. (2.38)

The coefficients cm represent the projection in each sphere, for a linear transformation τ

cm = 〈 p̃m|ψ̃〉. (2.39)

Provided that for some set of the projection operators p̃ the biorthogonality condition is

satisfied, [40]

〈p̃m|ψ̃′m〉 = δmm′ (2.40)

it follows that one-center expansion
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∑

m

|ψ̃m〉〈p̃m|ψ̃〉

ψ̃m = ψ̃m

(2.41)

of the smooth function is unchanged.

The transformation operator τ unlike the pseudopotential involves the full AE wavefunction

τ = 1 +
∑

m

{|ψm〉 − |ψ̃m〉}〈|p̃m|. (2.42)

The PAW equations can be written in the form of equation 2.42. The variation of the param-

eters leads to more response from the smooth wavefunction compared to the AE wavefunction.

Therefore the expectation value of the smooth function is given as follows [40]

Ã = τ†Âτ = Â +
∑

m,m′
{〈ψm|Â|ψm′〉 − 〈ψ̃m|Â|ψ̃m′〉}〈|p̃m|, (2.43)

The charge density and total energy of a given system can be evaluated from the operator

in equation 2.43. The density is divided into the smooth charge density ñ(r) evaluated on

a regular Fourier grid and the outer centre charge densities n1(r) and ñ1(r) evaluated in the

angular momentum on the radial grid, given by:

n(r) = ñ(r) + n1(r) − ñ1(r). (2.44)

The smooth and outer charge density components can be expressed in terms of the eigen-

states labeled i with occupation fi, where

ñ(r) =
∑

i

fi|ψ̃i(r)|2, (2.45)

(2.46)

n1(r) =
∑

i

fi
∑

mm′
〈ψ̃i|ψ̃m〉ψ∗m(r)ψm′(r)〈ψ̃m′ |ψ̃i〉, (2.47)

and the last term given as

ñ1(r) =
∑

i

fi
∑

mm′
〈ψ̃i|ψ̃m〉ψ̃∗m(r)ψ̃m′(r)〈ψ̃m′ |ψ̃i〉, (2.48)
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where the outer centre charge densities n1(r) and ñ1(r) are localized around each atom and

the integrals evaluated in the spherical coordinates. The VASP [67] code in this thesis imple-

ments this method, along with other codes such as ABINIT, [68] Quantum Espresso, [69] etc.

2.4.4 Brillouin zone integration

The total energy for a given system can be determined if the KS eigenvalues are known. The

eigenvalues are self-consistent solutions of the k-dependent Hamiltonian. [70] The first BZ can

be mapped out by a continuous set of k-points throughout the reciprocal space. To carry out

a numerical calculation for the total energy, the integral over the first BZ is converted into a

summation over discrete points in k-space. The k-points represent the position in the first BZ

where the electronic states are calculated in a solid system. The choice of the k-points should

maximize accuracy and minimize the number of k-points set because for each new k-point a

self-consistent KS calculation will be carried out. Errors in the self-consistent calculation can

be minimized by using a dense set of k-points in the BZ (metallic systems need more k-points

because of difficulty in calculating the Fermi surface).

2.4.4.1 Linear tetrahedron method

Lehmann [71] developed the linear tetrahedron method, which is largely used to evaluate inte-

grals in the BZ. This was further improved by Bloch et al. [72] In this approach, the irreducible

wedge of the BZ is divided into equal volume tetrahedra, with the matrix element and the

energy eigenvalues evaluated at each vertex.

In this study, this method is used for the BZ integration due to its simplicity. But some

problems might arise due to the negligence of the second-order band information leading to

difficulties in band crossing and bad representation of the van Hove singularities. [73]

2.4.4.2 Special k-points

In this study, the special k-points are used to determine the choice of points needed to sample

the BZ. They are well suited for the plane wave representation of the Hamiltonian and lead

to simple and accurate calculations. This approach uses the ”mean value point” developed by

Baldereschi [74] that integrates a function averaged over the entire BZ, which was extended by

Chadi [75], while later a more systematic approach was devised by Monkhorst and Pack [76;77]

F(r) =
Ω

2π3

∫

BZ
f (k)d3k (2.49)
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where Ω is the volume of the unit cell, f (k) is the Fourier transformation of F(r) and the

function provides a complete representation of the lattice symmetry. The Fourier transform is

given in terms of Am(k):

f (k) = fo +
∑

m=1

Am(k) (2.50)

where the transformation expression Am(k) =
∑

eik.r and m is any given integer. Am(k) is

a real function and is associated with any given shell of the lattice. Using this scheme, the

integral in equation 2.49 yields an approximate value that is exact when Am(k) = 0.

The Monkhorst and Pack generated set of points using this scheme provides an unbiased

approach for choosing the set of k-points required to sample the BZ in fractional co-ordinates.

Monkhorst and Pack-points are also referred to as k-mesh. They present the generated points

in a rectangular grid (kx, ky, kz). Larger k-mesh leads to finer and more accurate sampling but

uses up increased computational time. The k-mesh is determined by the crystal lattice (simple

cubic, body centered cubic, face centered cubic, etc.), and therefore takes advantage of the

space group symmetry operations to reduce computed points by determining equivalent points.

Am(k) in equation 2.50 is satisfied by the choice points for the lattice vectors (represented by

the infinite set of nearest-neighbor shells).

2.4.4.3 Fermi level smearing

The basic difference between an insulator and a metal is the presence of a band gap which is

determined by the location of the Fermi level in the systems. In terms of BZ integration, [78]

insulators play a smooth function with the density of state easily going to zero, while metals

have unoccupied states close to the Fermi level; hence the necessity to smear the bands to obtain

a smooth integrated function which is more tractable. There are various kinds of smearing

schemes, such as, Methfessel-Paxton (MP), Gaussain, Fermi-Dirac and Marzari-Vanderbilt

smearing. [78] The MP smearing is used in this study because of the systems investigated and

its simplicity.

The MP smearing scheme expands the delta-function in the form of Hermite functions

(which are the product of Hermite polynomials and Gaussians) then integrates it.

δ(x) ≈ DN =

N∑

n

AnH2ne−x2
(2.51)
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where An are suitable coefficients. They use Hermite polynomials of even order only since

the delta function is even. The delta function is obtained by integrating DN in the following

way

δ(x) ≈ S N = 1 −
∫ x

−∞
DN(t)dt (2.52)

Using recursion properties of Hermite functions, we arrive at

S N = S 0x +

N∑

n

AnH2n−1e−x2

S 0 =
1
2

(1 − er f (x))

(2.53)

where S 0 corresponds to the Fermi-Dirac smearing whereas the other terms serve to correct

errors introduced. MP smearing results in good zero temperature energies using large smearing

widths, but has a downside, which is the presence of negative occupation values that might

be problematic in visualizing the density of states. The proposed Marzari-Vanderbilt approach

addresses the negative occupancies by estimating the delta-function with a Gaussian multiplied

by a first order polynomial term.

2.4.5 Atomic relaxations

To study the atoms in different coordination, a self-consistent total energy calculation is re-

quired. The forces acting on the atoms needs to be determined in order to update the atomic

positions (geometric optimization) and then determine the dynamic evolution of the system.

These forces can be obtained using the Hellmann-Feynman theorem.

2.4.5.1 Hellmann-Feynman theorem

The Hellmann-Feynman theorem [79;80] (also referred to as the force theorem) [40] proposes that

the force on the atoms is given by [40]

FI =
∂ETot

∂RI
= −{ ∂

∂RI
〈ψi|H|ψi〉 + ∂Eion

∂RI
}, (2.54)

where RI represents the atomic positions. If the wavefunction ψi is an eigenstate of a given

Hamiltonian H, then
∂

∂RI
〈ψi|H|ψi〉 = 〈ψi| ∂H

∂RI
|ψi〉. (2.55)
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Based on the fact that the energy is an extremal with respect to all feasible changes of the

wavefunction at the true ground state solution (using equation 2.55), the force will be

FI = −{〈ψi| ∂
∂RI

H|ψi〉 + ∂Eion

∂RI
}. (2.56)

From equation 2.56, the partial derivative of the KS energy functional with respect to the

atomic positions gives the force on the atoms provided each wavefunction ψi is an eigenstate

of H. However, to avoid incurring errors that arise from the use of unconverted wavefunctions,

the Hellmann-Feynman theorem should only be implemented once the wavefunctions are close

to self-consistency because the force (unlike the energy) is not a variational quantity.

In equation 2.54, an additional term called the Pulay force can arise from taking the partial

derivative of the basis set with respect to their atomic positions. Using a plane-waves basis,

the Pulay force vanishes because the derivate reduces to zero, which is one of the numerous

advantages of this basis set compared to any other localized basis set approach.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, [81] also known as the quasi-

Newton or the variable metric method, implements the Hellmann-Feynman theorem for the

convergence of the total energy with respect to the atomic positions. This approach is based

on the fact that the energy surface around the minimum is quadratic, and therefore, can be

determined from the second derivative of the energy, which is a Hessian matrix. But the Hessian

matrix is unknown, so an approximation is made, using a progressive improvement of the trial

matrix as the atoms move. The BFGS method is used in this study because it leads to a rapid

convergence of the total energy.

2.5 Elastic Properties

The elastic constants characterize the elastic behavior of a given material. They describe its

reaction to an applied stress. The relationship between stress and strain is not trivial in a

general anisotropic material. Stress and strain comprise three tensile and shear components

respectively, resulting in six components in total. The stiffness tensor of elasticity subscripts

obey the added condition that [82] i jkl = kli j, since the strain tensor is symmetric.

Theoretically and experimentally the knowledge of elastic constants leads to the under-

standing of the elastic properties of any given system. The elastic constants of a given crystal

can be determined by using a strain matrix ”e” to shift the Bravais lattice vector R = a,b,c,
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leading to the deformation of the unit cell, therefore, changing the unstrained Bravais lattice

vector to R′ = a′,b′, c′

R′ = R


1 + exx

1
2 exy

1
2 exy

1
2 eyx 1 + eyy

1
2 eyz

1
2 ezx

1
2 ezy 1 + ezz

 . (2.57)

The total energy of the crystal changes in accordance with the deformation equation [78]

Etot = E0 +
1
2

V0 Ci j ei e j

U =
(Etot − E0)

V0
=

1
2

6∑

i=1

6∑

j=1

Ci jeie j

(2.58)

where E0 is the total energy of the undisturbed lattice, V0 is the equilibrium volume of the

undisturbed cell and the Ci j are the elements of the elastic constant matrix. Based on the

symmetry of the unit cell, the stiffness tensor (elastic constants) contains a maximum of 21

unique elements [78] as shown in Table 2.1.

Table 2.1: Number of unique elastic constants for unit cells of different symmetry

Crystal system Elastic constant

Triclinic 21
Monoclinic 13

Orthorhombic 9
Tetragonal 6 or 7

Rhombohedral 6 or 7
Hexagonal 5

Cubic 3

1

A detailed description of the symmetry of stress, strain and elastic constants is furnished

by Nye. [83] The ab initio elastic constants are determined by carefully choosing the applied

deformation (strain) and the resulting stress. This method is less computationally intensive

because structural optimization is not required.

1This table was copied from the Medea manual [78]
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As stated earlier, from the elastic constants, the elastic properties of all crystal classes can

be determined. The bulk modulus of a given material is the ratio of the change in pressure to

the fractional volume compression.

The bulk modulus (upper bound) from the Voigt approach:

KVoigt =
1
9

(c11 + c22 + c33) +
2
9

(c12 + c23 + c13) (2.59)

The shear modulus (upper bound) from the Voigt approach:

GVoigt =
1
15

(c11 + c22 + c33) − 1
15

(c12 + c23 + c31) +
1
5

(c44 + c55 + c66) (2.60)

Given that Si jkl is the compliance matrix (i.e. the inverse matrix to C), the bulk modulus

(lower bound) from the Reuss approach:

1/KReuss = (s11 + s22 + s33) + 2 (s12 + s23 + s13) (2.61)

The shear modulus (lower bound) from the Reuss approach:

15/GReuss = 4 (s11 + s22 + s33) − 4 (s12 + s23 − s13) + 3 (s44 + s55) + s66 (2.62)

In real (polycrystalline) materials, the stiffness matrix takes into account orientational dis-

order. This can be estimated if the system is assumed to be made up of crystallites rather

than grain boundaries. [84] Using that approach, Hill proposed that the true modulus is an arith-

metic mean of two extremes, which are the Voigt (lower bounds) and Reuss (upper bounds)

moduli. [85]

GHill =
1
2

[
GVoigt + GReuss

]

KHill =
1
2

[
KVoigt + KReuss

]
(2.63)

where G and K are the shear and bulk moduli respectively.

Subsequently, the Poisson’s ratio (α) and Young’s modulus (Y) can be determined from G

and K

α =
1
2


K − 2

3G

K + 1
3G



Y =
9K

1 + 3B
G

(2.64)
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Correspondingly, the Debye temperature which measures the hardness or stiffness of a

material is proportioned to the mean sound velocity, and is given as [84]

θD =
~

kB

(
6πq
V0

)1/3

vm, (2.65)

where h/kB have the usual definition as in quantum mechanics, q is the number of atoms in

the system, and V0 is the equilibrium volume of the unit cell. And, the mean vm sound velocity

is given by

vm =

(
1
3

(
2

vs
3 +

1
vl

3

))−1/3

, (2.66)

where the transverse vs and longitudinal vl sound velocity are defined by

vs =
√

G/ρ

vl =

√(
K +

4
3

G
)
/ρ

(2.67)

with ρ as the density.

2.6 Lattice Dynamics

From BOA, the dependence of electronic energies on the motion of the nuclei is neglected.

Therefore, the equations of motion for the ions are determined by the total energy E(R) of the

system, which has a parametric dependence on the fixed positions of the ions’ R. [40]

To give a complete quantum description of the ions from the Schrödinger equation is very

difficult [86] but treating the ions classically, reduces the problem to that of a coupled classical

equation of motion for each ionic position RI(t)

MI
∂2RI

∂t
= FI(R) =

∂

∂t
E(R), (2.68)

where RI are the coordinates and MI is the mass of the ions I, R ≡ {RI} shows the set of all

ionic coordinates, and E(R) is the ground state total energy, which is also referred to as the

Born-Oppenheimer energy surface.

The energy is expanded in terms of the powers of displacements and external perturbation

for stable solid systems at average temperature. At equilibrium position {R0} = R0, the zero-

force on each ion is

FI(R0) = 0. (2.69)
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At the quantum-zero point motion, the higher power of displacements gives the thermal

vibrations and response to perturbations, [40]

CI,α;J,β =
∂2E(R)

∂RI,α∂RJ,β
,CI,α;J,β;K,γ =

∂2E(R)
∂RI,α∂RJ,β∂RK,γ

, . . . , (2.70)

where α, β, . . . , represent Cartesian components.

Using the harmonic approximation [87], the displacements describe the vibrational modes

at frequency ω

uI(t) = RI(t) − R0
I ≡ uIeiωt. (2.71)

Then, for a given I, equation 2.68 becomes

− ω2MIuIα = −
∑

jβ

CI,α;J,βuJβ. (2.72)

The classical equation provides the complete solution for all vibrational states, which is the

set of independent oscillators having individual vibrational frequency ω

det

∣∣∣∣∣∣
1√

MI MJ
CI,α;J,β − ω2

∣∣∣∣∣∣ = 0. (2.73)

where the dependence upon the masses MI , MJ is given in a symmetric form.

Since the atomic displacement eigenvectors in a crystal obey the Bloch theorem (equa-

tion 2.33) the vibrations are grouped by k with the displacements us(Tn) ≡ Rs(Tn) − R0
s(Tn)

of atom s = 1, S in the cell Tn given by

us(Tn) = eik.Tnus(k). (2.74)

Putting equation 2.74 into equation 2.73 results in the decoupling of the equations at dif-

ferent k, with frequencies ωik, i = 1, 3S called dispersion curves, which are solutions of the

3S × 3S determinants equation

det

∣∣∣∣∣∣∣
1√

MsM′s
Cs,α;s′,α′(k) − ω2

ik

∣∣∣∣∣∣∣
= 0, (2.75)

where the reduced force constant matrix for wave vector k is presented as

Cs,α;s′,α′(k) =
∑

Tn

eik.Tn
∂2E(R)

∂Rs,α(0)∂Rs′,α′
(Tn) =

∂2E(R)
∂us,α(k)∂us′,α′

(k). (2.76)
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Quantization can be easily included as usual for the harmonic oscillators because the vi-

brations are independent: phonons are the quantized states of each oscillator with energy ~ωik.

To calculate the phonons ab initio, three approaches have been developed: (i) the direct

method which hinges on calculating the total energy changes or forces for atoms displaced

slightly from their equilibrium position, [59](ii) using a perturbative expansion of atoms around

their equilibrium position for analytical calculation of the force constant matrix, [88] (iii) the

Fourier transform of the atomic velocity autocorrelation function calculated from a molecular

dynamics trajectory. [78;89]

The major challenge for the third approach is equilibrating at reasonable simulating times;

the second approach requires specialized codes and significant implementation efforts, while

the first approach requires no specialized codes but makes use of a supercell for a small unit

cell. The first approach is used in this thesis to determine the phonon frequencies, and an

adequate interaction range is used to ensure accuracy.

2.7 DFT+U

LSDA/GGA XC functionals fail in properly describing the electronic structure and the conduc-

tion properties for highly localized and strongly interacting systems such as: in transition metal

oxides and rare-earth metal compounds. They tend to over-delocalize electrons, and hence do

not properly account for the onsite Coulomb repulsion. Self-interaction is a problem because

the electrons can see their own potential. Also, the solution from LSDA/GGA is mean-field,

hence the absence of correlation among the electrons. Some correlation phenomena exhibited

by the d and f compounds include metal-insulator transitions, Mott insulators, heavy Fermion

behavior, high-temperature superconductivity, etc. GGA functionals can lead to slight improve-

ment over LSDA in some cases for the physical properties of non homogeneous systems, such

as transition metal compounds and rare-earth metal compounds, mainly in description of there

binding energies, magnetic and structural properties, e.g, UO2, NiO, MnO, etc. [33;90;91] For

most strongly correlated systems LSDA (or GGA) gives a reasonable description of the crystal

structure and magnetic properties, but fails dramatically in the description of the conduction

properties, while sometimes resulting in totally wrong structural properties (δ-Pu). [18]

The poor description of the electronic structure of correlated systems can be analyzed from

a simple band structure calculation for a given system (such as a simple metal). If the band

structure is calculated for the valence states with a stepwise increase in interatomic distances,
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the width of energy bands around the Fermi level will diminish, leading to an insulating system

at infinite interatomic distance. This leads to extremely localized charge density distribution

around the atoms which hinders conduction of states around and crossing the Fermi level. [92;93]

To solve this paradoxical situation, the Hamiltonian of the many-body electron system is

presented in terms of second quantization [94;93],

Ĥ = Ĥ0 + V̂ee

Ĥ0 =

∫
d3r a†σ(r)


p̂2

2m
+ Vext(r)

 aσ(r)

V̂ee =
1
2

∫
d3rd3r′Vee(r − r′)a†σ(r)a†σ′(r

′)aσ′(r′)aσ′(r)

(2.77)

where the localized basis states are:

aσ(r) =
∑

i

ψRi(r)aiσ a†σ(r) =
∑

i

ψ∗Ri
(r)a†iσ. (2.78)

The Hamiltonian of the electronic system is:

Ĥ =
∑

ii′
a†iσtii′ai′σ +

∑

ii′ j j′
Uii′ j j′a

†
iσa†i′σ′a j′σ′a jσ

tii′ =

∫
d3rψ∗Ri

(r)


p̂2

2m
+ V(r)

ψ∗R′i (r)

Uii′ j j′ =
1
2

∫
d3rd3r′ψ∗Ri

(r)ψR j(r)V(r − r′)ψ∗Ri′ (r
′)ψR j′ (r

′).

(2.79)

The subsequent equation gives the ”simplified Hubbard model”. The Uii′ j j′ matrix elements

are largest when i = j and i′ = j′

Ĥ =
∑

ii′
a†iσtii′ai′σ +

∑

ii′
Uii′ii′a

†
iσa†i′σ′ai′σ′aiσ. (2.80)

If only i = i′ is most important then σ , σ′, and the Hamiltonian, becomes,

Ĥ =
∑

ii′ a†iσtii′ai′σ + U
∑

i a†iσa†i,−σai,−σaiσ

=
∑

ii′ a†iσtii′ai′σ + U
∑

i a†iσaiσa†i,−σai,−σ

=
∑

ii′ a†iσtii′ai′σ + U
∑

i n̂i↑n̂i↓.

(2.81)
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The Hubbard model in a more concise form is

Ĥ0 = −t
∑

<i j>

a†iσa jσ + U
∑

i

n̂i↑n̂i↓. (2.82)

From equation 2.82, the total energy is minimized by two competing factors: the kinetic

term and the Coulomb term. In simple metals, electron-electron scattering is weak with parti-

cles spending vanishingly small amount of time in the ionic regions, whereas in the strongly

correlated systems (typically systems with partially filled d or f orbitals), the electron-electron

scattering has a strong Coulomb repulsion due to the relatively large amount of time the elec-

trons spend within the ionic regions. If the kinetic energy is dominant (in simple metals besides

the nuclei attractions), the total energy is minimized by delocalization of the Bloch states re-

sulting in metallic behavior. On the other hand, if the Coulomb term is dominant (in systems

with partially filled d or f orbitals), the total energy is minimized by the localized states which

are linear combinations of all k-states (Wannier states); hence the systems become insulating

(Mott-Hubbard type). [93]

Therefore, band structure analysis gives an improper description of a correlated system.

This is because it uses the KS DFT that is a one-body problem to account for a many-body

problem. Also, the exchange correlation as previously stated is made primary for homogenous

electron gas, and hence does not properly describe correlated systems. Therefore, theoretical

treatment of correlated systems is carried out using model Hamiltonians (explicitly taking into

account the behavior of the system in regimes with different competing factors) or the introduc-

tion of an additional parameter using hints from many-body formalism in first principle DFT

calculation to account for onsite Coulomb repulsion, referred to as the DFT+U. [95;23;24;96;29]

The DFT+U method (henceforth referred to as LDA+U) takes into account the orbital

dependence of the Coulomb and exchange interactions which is absent in the LDA. The main

notion is to divide the electrons into two subsystems: [92;93]

• localized states (d or f) which accounts for the onsite Coulomb interaction term in a

model Hamiltonian

∑

ii′
Uii′ii′a

†
iσa†i′σ′ai′σ′aiσ =⇒ U

2

∑

i, j

nin j. (2.83)

• delocalized states (s or d) which can be described by the orbital-independent one-electron

potential.

34

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The new energy functional which is the generalized LDA+U is given as

ELDA+U[n] = ELDA[n] + EU[nσi ] − Edc[nσi ] (2.84)

where EU[nσi ] is the Hubbard term and Edc[nσi ] is the ”double counting” term, which removes

the energy contribution of orbitals already present in the LSDA functional included in the

Hubbard term. The double counting term is a mean-field value of the Hubbard term in line

with DFT representation. Hence Edc[nσi ] is UN(N − 1)/2, where N =
∑

ni.

Therefore, the ELDA+U[n] functional is

ELDA+U[n] = ELDA[n] +
U
2

∑

i, j

nin j − UN
(N − 1)

2
. (2.85)

The orbital eigenvalues or energies εi are obtained by taking the derivative of equation 2.85

with respect to the occupation number of that orbital ni:

εi =
∂ELDA+U

∂ni
= εLDA

i + U
∑
j,i

n j − U(N−1)
2 − UN

2

= εLDA
i + U(N − ni) − UN + U

2

= εLDA
i + U( 1

2 − ni).

(2.86)

For the occupied orbital (ni = 1), the LSDA orbital energy is shifted by −U/2 and for the

unoccupied orbitals (ni = 0) by +U/2, as presented in equation 2.86. A similar expression is

obtained for the LDA+U potential which is Vi(r) = VLDA(r) + U( 1
2 −ni). The Vi(r) formulation

makes the Hubbard potential repulsive for less than a half filled orbital and attractive for more

than a half filled orbital, encouraging localization on a particular site. This results in upper and

lower Hubbard bands with the energy difference being equivalent to the Coulomb parameter

U. This will qualitatively yield the correct physics of Mott-Hubbard insulators. [94;93] But, in

order to obtain a quantitively accurate computational scheme, the direct and exchange Coulomb

interaction inside a partially filled d or f orbital needs to be accounted for.

2.7.1 Rotationally-invariant formulation

The LDA+U formulation in equation 2.86 depends on the choice of the localized basis set

because the atomic orbital is not rotationally invariant. Liechtenstein et al. [21] introduced a
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formulation of LDA+U independent of the choice of basis set, where Hubbard on-site corre-

lation functional EU and the mean field double counting term Edc have a generic expression

obtained from the HF method to solve the orbital dependency. The EU term is evaluated start-

ing from equation 2.79, where the indices i, i′, j, j′ represents the different m orbitals of a given

I subspace. [21]

ÊU[{n}] =
∑

I,mm′m′′m′′′
Umm′′m′m′′′a†mσa†m′′σ′am′′′σ′am′σ (2.87)

The matrix element associated with U is:

Umm′′m′m′′′ = 1
2

∫
d3rd3r′ψ∗m(r)ψm′(r)V(r − r′)ψ∗m′′(r

′)ψm′′′(r′)

= 1
2 〈m,m′′|Vee|m′,m′′′〉

(2.88)

If σ , σ′, we obtain

a†mσa†m′′−σam′′′−σam′σ = a†mσam′σa†m′′−σam′′′−σ = nσmm′n
−σ
m′′m′′′ . (2.89)

and if σ = σ′, there are two possibilities:

a†mσa†m′′σam′′′σam′σ = a†mσam′σa†m′′σam′′′σ = nσmm′n
σ
m′′m′′′

a†mσa†m′′σam′′′σam′σ = a†mσam′′′σam′σa†m′′σ = −nσmm′′′n
σ
m′′m′ .

(2.90)

Putting together the Hubbard EU term gives:

ÊU[{n}] =
1
2

∑

{m},σ
{〈m,m′′|Vee|m′m′′′〉nσmm′n

−σ
m′′m′′′

+ (〈m,m′′|Vee|m′m′′′〉 − 〈m,m′′|Vee|m′′′m′〉)nσmm′n
−σ
m′′m′′′}

(2.91)

where Vee accounts for the screened Coulomb electron-electron interactions. The Edc term

accounts for double counting but in the absence of orbital polarizations equation 2.84 gives the

original ELS DA. The double counting term is given by

Edc[{n}] =
1
2

UN(N − 1) − 1
2

J[N↑ − (N↑ − 1) + N↓(N↓ − 1)] (2.92)
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where N = N↑ + N↓, U and J are screened Coulomb and exchange terms. [97;95] The expres-

sion in equation 2.92 is referred to as the full localized limit (FLL). Czyzyk and Sawatzky [98]

proposed another approach called around mean field expression for the Edc term which is

slightly different compared to the FLL.

In equations 2.91 and 2.92, the invariance stems from transformation of the interaction

parameters as quadruplets of localized wave functions and the functional’s dependence on the

trace of the occupation matrices respectively. [92;93] While the Vee integral accounts for the

Coulomb electron-electron interaction of the localized basis (e.g. d or f), we can compute

these quantities from the expansion of the Coulomb potential (2/|r − r′|) in terms of spherical

harmonics:

〈m,m′′|Vee|m′m′′′〉 =

∫
d3rd3r′R∗lm(r)Y∗lmRlm′(r)Y∗lm′V(r − r′)R∗lm′′(r)Y∗lm′′R

∗
lm′′′(r)Y∗lm′′′ (2.93)

and V(r − r′) is

V(r − r′) =
1

ε(r − r′)
=

1
ε

∞∑

l=0

4π
2l + 1

rl
<

rl+1
>

+l∑

m=−l

Ylm(r)Y∗lm(r′). (2.94)

Then

〈m,m′′|Vee|m′m′′′〉 =
∑

k

ak(m,m′′,m′,m′′′)Fk (2.95)

where 0 ≤ k ≤ 2l (l is the angular moment of the localized manifold; −l ≤ m ≤ l) and the

ak factors can be obtained as products of Clebsh-Gordan coefficients:

ak(m,m′′,m′,m′′′) =
4π

2k + 1

k∑

q=−k

〈lm|Ykq|lm′〉〈l′′m|Y∗kq|lm′′′〉. (2.96)

where 〈lm|Yl′m|lm′〉 are the Gaunt coefficients.

The Vee integral contains the same angular dependence present in the HF electronic inter-

actions, but they are calculated using a different approach that takes account of screening. In

describing the d electrons, the Slater integrals F0, F2 and F4 are needed, which are linked to

the Coulomb and Stoner parameters U and J as shown below:
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U =
1

(2l + 1)2

∑

m,m′
〈m,m′|Vee|m,m′〉 = F0

J =
1

(2l)(2l + 1)

∑

m,m′
〈m,m′|Vee|m,m′〉 =

F2 + F4

14
.

(2.97)

where m and m′ account for electronic orbitals with the identical l. For systems with f

electrons, J can be expressed as J = (286F2 + 195F4 + 250F6)/6435, which includes F6.

2.7.2 A simplifier formulation

The most complete formulation of the LDA+U scheme is given in section 2.7.1 that is based on

the multi-band Hubbard model. A simpler expression of the EU has been formulated by Du-

darev et al. [99] where only the lower order Slater integrals F0 are retained and F2 = F4 = J = 0.

This implies neglecting the non-sphericity of the electronic interactions (a0(m,m′,m′′,m′′′) =

δm,m′δm′′,m′′′), along with the coupling difference between the parallel spin and anti-parallel spin

electrons (captured by J the exchange interaction). The energy functional can be obtained from

recalculation of equations 2.91 and 2.92 from which we derive: [92;93]

EU[{nIσ
mm′}] = EHub

[
{nI

mm′}] − Edc[{nI
mm′}

]

=
∑

I

U I

2

(nI)2 −
∑

σ

Tr[(nIσ)2

 −
∑

I

U I

2
nI(nI − 1)

=
∑

I.σ

U I

2
Tr

[
(nIσ)(1 − nIσ)

]
.

(2.98)

The rotational invariance obtained in equations 2.91 and 2.92 is preserved in the simplified

functional given in equation 2.98. This is because the ”+U” functional depends on the trace of

the occupation matrices and its products but the formal resemblance to the Hartree-Fock energy

functional is missing. Therefore, only the U I interaction parameter is necessary to account for

the corrective functional. The simplified version of the Hubbard correction has been used in

numerous studies and proved to be successful with similar results to the fully rotational invari-

ant Hubbard correction. In some cases the Hund’s rule coupling J is essential to determine the

correct ground state of the system, for example in systems characterized by non-collinear mag-

netization, correlation effects in multi-band metals and heavy Fermion systems. For a detailed
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discussion on the theoretical formulation of LDA+U, strengths, limitations and comparison

with other corrective techniques see Reference 93. [93]

2.8 Software code

All calculations in this study were done within the framework of DFT as implemented in the

VASP codes. The PAW method was used for the non-magnetic, spin-polarized and spin-orbit

calculations. Elastic constants were obtained using the method of least-squares fit as imple-

mented in the VASP/MedeA-MT module. Phonon dispersions were obtained using the direct

method as implemented in the VASP/MedeA-PHONON module.

This concludes the overview of the theoretical framework. The next chapter presents the

results of the ab initio studies on Th-N based alloys.
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Chapter 3

Ab initio studies of Th3N4, Th2N3 and
Th2N2(NH)

This section to be submitted for publication as [25] ”Obodo, K. O., and Chetty, N. (2013). Ab

initio studies of Th3N4, Th2N3 and Th2N2(NH).”
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Abstract

Using density functional theory within the Perdew-Burke-Ernzerhof generalized gradient ap-
proximation [GGA (PBE)] implemented in the VASP codes, we investigate the structural, elastic
and electronic properties of Th3N4, Th2N3 and Th2N2(NH). The calculated structural properties
of these thorium-based nitrides are in good agreement with experimental data. We observe that
all the Th-N based compounds that we considered are energetically favorable and elastically sta-
ble. We find that Th3N4 is semiconducting with a band gap of 1.59 eV, which compares well
with the experimental band gap of 1.7 eV and we find Th2N3 to be metallic. Th2N2(NH), which
is crystallographically equivalent to Th2N3, is insulating with a band gap of 2.12 eV. This is due
to the -(NH) group that effects a shifting of the energy bands that results in the opening of a gap
at the Fermi-level. The Th-N based compounds that we considered are predominantly ionic.

Keywords: A. Thorium nitride; C. Density functional theory; D. Electronic and structural
properties

1. Introduction

Thorium-nitride (Th-N) based compounds are of great interest in the field of physics, chem-
istry and material science[1, 2, 3, 4] because of their properties such as high melting points, high
metal density, high thermal conductivity, low creep rate, good corrosion resistance, etc. [5] For
instance, these materials are used in nuclear reactor systems, in the breeder reactors where it is
incorporated into the mixed actinide nitride fuels and in subcritical accelerator driven systems.

There have been several theoretical studies using first principles approaches and experimental
studies of thorium mononitride. [6, 7, 8, 9, 10] To the best of our knowledge, a detailed theo-
retical analysis of the following Th-N based compounds within density functional theory (DFT)
approach is absent: Th2N2(NH), Th2N3 and Th3N4. The Th2N2(NH) compound is known to be
isomorphous to Th2N3 (also referred to as a sesquninitride). [11] Th2N2(NH) and Th2N3 crystal-
izes in the La2O3-type hexagonal structure with space group P3m̄1, whereas Th3N4 belongs to
the R-3m space group. We have shown in our previous studies that standard density functional
approximation without the inclusion of Hubbard U parameter gives an accurate description of
the electronic, structural and elastic properties of thorium based systems. [5, 12]

Email addresses: kingsley.obodo@up.ac.za (K. O. Obodo), nithaya.chetty@up.ac.za (N. Chetty)
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Recently, Silva et al. [11] experimentally synthesized Th2N2(NH) by heating ThNF and
LiNH2. These workers characterized Th2N2(NH) using x-ray diffraction (XRD), and the Ri-
etveld analysis to determine the crystal structure along with DFT approach to elucidate the crys-
tal chemistry. Also, from Fourier transform infrared spectroscopy (FTIR) and high-resolution
transmission electron microscopic (HRTEM) images, they confirm the presence of -NH group
due to the lattice fringe disruptions observed in nanoparticle areas of the nitride species.

In this letter, we use ab initio techniques to determine the structural, elastic, and electronic
properties and the energy of formation for Th2N2(NH), Th2N3 and Th3N4. Subsequently, by
analysing the valence charge density distribution, we examine the compounds to investigate their
bonding character. These systems are found to be non-magnetic (NM). The inclusion of spin-
polarization (SP) or spin-orbit coupling (SOC) did not result in any changes to the structural,
elastic and electronic properties. Hence, all the results presented are for the non-magnetic (NM)
case.

2. Theory

We perform ab initio calculations on the Th-N based compounds using density functional the-
ory [13] as implemented in the VASP code. [14] We use the Perdew-Burke-Ernzerhof (PBE) [15]
exchange-correlation functional for the generalized gradient approximation (GGA). A kinetic en-
ergy cutoff of 550 eV is chosen to ensure adequately converged total energies for the compounds
under consideration. A k-point spacing of 0.2 Å for the Monkhorst-Pack [16] grid is used to
sample the Brillouin zone (BZ), and a Methfessel-Paxton smearing [17] width of 0.2 eV is used
to integrate the bands at the Fermi level. The density of states function (DOS) is calculated using
the tetrahedron integration method with Blöchl corrections. [18]

A method using the least-squares fit, [19] as implemented in the MedeA-MT module, is used
to obtain the elastic constants. This method uses the tetrahedron method for the Brillouin zone
integrations. The elastic properties are calculated from the Hill value, which is a geometric mean
of the Voigt and Reuss values. The Hill values are used in the estimation of longitudinal (vl),
shear (vs) and mean (vm) sound velocities, and the Debye temperatures. [20]

The energy of formation for each compound is computed by taking the difference between the
total energy of the Th-N based compounds and the sum of the energies of its constituents in their
respective bulk elemental forms, and nitrogen in its diatomic gaseous form.

3. Results and Discussion

The crystal structures for Th2N3, Th2N2(NH) and Th3N4 are presented in Fig. 1. The ex-
perimentally determined structures are fully optimized geometrically using highly converged
parameters. A full description of the structural parameters for Th2N3, Th2N2(NH) and Th3N4 is
given in Ref 11, 21, 2.

In Table 1, we present the calculated lattice parameters (a0 and c), c/a0 and the energy of
formation for Th2N2(NH), Th2N3 and Th3N4. The calculated lattice parameters compare well
with the given experimental data. The calculated bond distances for Th-N(1) and Th-N(2) are
2.922 Å and 2.373 Å respectively for Th2N2(NH). This result is in good agreement with the XRD
measurement [11] where the bond distances for Th-N(1) and Th-N(2) are 2.696 Å and 2.34 Å
respectively.

The energy of formation for the Th-N based compounds considered is negative as presented
in Table 3. This implies that the formation of these compounds is energetically favorable with
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Figure 1: (Color online) The optimized structures for (a) Th2N3 (b) Th2N2(NH) (c) Th3N4;
where the blue atoms represents Th atoms, the purple atoms represents N atoms and the brown
atoms represents the oxygen atoms.

respect to the elements in their standard state. We find that Th3N4 is the most energetically
favorable nitride among those compounds considered.

Table 1: The calculated and experimental [21, 22] lattice constants, a (Å) and c (Å), c/a and the
energy of formation (eV) per formula unit for the Th-N based compounds.

Compound Method a c c/a E f

Th3N4
GGA 3.882 27.452 7.072 -11.380
Exp 3.873 27.385 7.072 -

Th2N3
GGA 3.913 6.161 1.575 -6.890
Exp 3.875 6.175 1.594 -

Th2N2(NH) GGA 4.021 6.165 1.533 -5.254
Exp 3.886 6.185 1.592 -

The elastic properties of thorium-nitride based systems considered are calculated for the NM
phase. The elastic constants (ci j) obtained are shown in Table 2. The elastic stability is related to
sum rules. Therefore, negative elastic constants does not necessary signify elastic instability.

Table 3 shows the calculated elastic properties of various ordered alloys of Th-N based com-
pounds in the NM phase. They are elastically stable with positive bulk, shear and Young’s
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Table 2: Elastic constants Cijs (values in GPa).

Compounds c11 c12 c13 c14 c33 c44

Th3N4 275.94 163.80 89.30 31.68 170.77 79.15
Th2N3 237.67 143.77 96.15 31.73 196.55 73.26

Th2N2(NH) 223.39 157.18 82.32 -18.94 109.24 92.50

moduli, positive shear velocity (obtained from the shear sound velocity) and positive longitudi-
nal velocity (obtained from the longitudinal sound velocity). [23] The calculated bulk modulus
for Th3N4, Th2N3 and Th2N2(NH) are 147.92 GPa, 147.10 GPa and 121.51 GPa respectively.
The mean velocity vm calculated from shear (transverse) velocity vs and longitudinal velocity vl

is used to determine the Debye temperature. The Debye temperature (θD) for the Th-N based
nitrides is calculated to determine the stiffness of the system. The θD for the Th3N4 is highest at
311.6 K, which indicates that Th3N4 is stiffer compared to the other compounds considered.

Table 3: The bulk, shear and Young’s moduli (Hill values in GPa), acoustic velocities (ms−1),
and Debye temperature (K)

Compounds B Shear Young’s vs vl vm θD

Th3N4 147.92 60.54 159.73 2406 4677 2695 311.6
Th2N3 147.10 52.34 140.07 2256 4593 2533 297.2

Th2N2(NH) 121.51 44.64 118.94 2140 4309 2401 293.9

In Fig. 2, we present the computed total density of states (DOS) for the Th-N based com-
pounds, together with projections on the thorium p, d, f, and nitrogen 2p states. Figure 2a and 2c
show that Th3N4 and Th2N2(NH) are insulating with a band gap of 1.59 eV and 2.12 eV re-
spectively. The top of the valence band for Th3N4 and Th2N2(NH) is determined mainly by the
N-2p states. The bottom of the conduction band shows significant hybridization of the thorium d
and f states with the nitrogen 2p states in Th2N2(NH) compound. For Th3N4, the bottom of the
conduction band is determined mainly by the hybridization of the thorium d and f states. Gouder
et al. [3], experimentally obtained a band gap of about 1.7 eV for Th3N4 using photoelectron
spectroscopy studies. This agrees well with our theoretically predicted band gap. On the other
hand, Figure 2b shows that Th2N3 is metallic. This metallicity is determined mainly by the N-2p
states. The insulating properties of Th2N2(NH), which is crystallographically similar to metallic
Th2N3 is attributed to the shifting of the valence band due to the presence of the -(NH) group.
It is worth noting that these Th-N based compounds all show significant hybridization of the
thorium p, d and f states with the nitrogen 2p states.

In order to elucidate the bonding characteristic for all the compounds considered, we present
their valence charge density distribution plots in Figure 3. The charge density distribution is
computed in the (110) plane. The scale in Figure 3 is such that blue is devoid of electrons and red
has a high concentration of electrons. In general, we observe charge accumulation around N and
charge depletion around the Th atoms. This suggests that there is charge transfer from thorium
to nitrogen, indicating that the Th-N chemical bonds are primarily ionic in character. This is
expected since the N atom is more electronegative than the metal actinide atom. Moreover, we
observe in Figure 3 a slight charge accumulation between the atomic spheres compared to the
rest of the interstitial regions.
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Figure 2: (Color online) The total and projected densities of states (DOS) for (a) Th2N2(NH) (b)
Th2N3 (c) Th3N4 within the description of the GGA. The Fermi energy level is set at zero and is
represented using dashed line.

Of note in Figure 3a is the distortion in the charge density due to the presence of the -(NH)
group that has resulted in a bean-shaped charge distribution compared to Figure 3b. This charge
density bridge is attributed to the covalent bonding by this group to the ionic parent structure. [24,
10, 12]

4. Conclusions

In conclusion, the DFT technique has been used to study the structural, elastic and electronic
properties of Th-N based compounds. This work is motivated by the physics of the thorium
nitrides and the usefulness of various Th-N based compounds in the generation of energy. The
inclusion of SP and SOC results in no significant change in the calculated properties of these
compounds. We determined that Th-N based compounds are energetically and elastically sta-
ble. We observed that Th3N4 is the most energetically stable nitride. We found that Th3N4 and
Th2N2NH are insulating, while Th2N3 is metallic. The insulating character of Th2N2(NH) is at-
tributed to covalent bonding of the -(NH) group to the otherwise ionic parent system. Generally,
the calculated DOS show significant thorium d and f states hybridization with the nitrogen 2p in
the Th-N based compounds.
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The next chapter presents results for the theoretical studies of thorium titanium alloys.

This is motivated by the technological and scientific importance of thorium alloys and titanium

alloys as demonstrated by their wide applications and vast scientific publications. Using DFT,

the possibility of obtaining an ordered alloy of ThTi based system is investigated. The stability

for the systems investigated is validated using arguments based on the bonding characters,

enthalpy of formation, charge density distribution, electron localization function, elastic and

lattice dynamic properties.
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Chapter 4

A theoretical study of thorium
titanium-based alloys

This section was published as [26] ”Obodo, K. O. and Chetty, N. (2013). A theoretical study of

thorium titanium-based alloys. Journal of Nuclear Materials, 440, 229 - 235.”
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Abstract

Using theoretical quantum chemical methods, we investigate the dearth of ordered alloys involving thorium

and titanium. Whereas both these elements are known to alloy very readily with various other elements,

for example with oxygen, current experimental data suggests that Th and Ti do not alloy very readily with

each other. In this work, we consider a variety of ordered alloys at varying stoichiometries involving these

elements within the framework of density functional theory using the generalized gradient approximation

for the exchange and correlation functional. By probing the energetics, electronic, phonon and elastic

properties of these systems, we confirm the scarcity of ordered alloys involving Th and Ti, since for a

variety of reasons many of the systems that we considered were found to be unfavorable. However, our

investigations resulted in one plausible ordered structure: We propose ThTi3 in the Cr3Si structure as a

metastable ordered alloy.
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I. INTRODUCTION

Thorium, a heavy metal, combined with various elements such as boron, carbon, nitrogen and

oxygen has been studied both theoretically1–3 and experimentally4–6 in relation2 to a range of

physical, chemical, electronic, and thermophysical properties, often exhibiting high density, good

thermal conductivity and good mechanical properties. The applications of Th-based alloys are

wide-ranging. These include uses in nuclear reactors and in the aerospace industry because of its

good corrosion resistant properties and high melting points. Th binary systems exist in various

ordered alloys such thorium monocarbide (ThC),7 mononitride (ThN)8 and monoxide ThO.9 ThO

crystallizes in the rock salt structure, while ThO2 crystallizes in the fluorite structure. ThB4
10 and

ThB6 exist in the ThB4 and CaB6 structures.

Titanium, a relatively light metal is strong, has excellent corrosion resistant properties and a

high melting point. Given its relatively small atomic size, Ti can be easily impregnated into ma-

terials without radically altering the host crystal structure. Therefore, Ti is a versatile element for

alloying and modifying the properties - especially the strength properties - of materials. Applica-

tions range from additives in paints to metals for aerospace and industry. In this way, Ti is useful

for engineering the properties of materials. Ti-based oxides are very well known, for example

TiO2 exists in the equilibrium rutile, and the metastable anatase and brookite structures, and the

high pressure monclinic and orthorhombic forms. Ti also combines very readily with other metals,

such as Pt in a variety of crystallographic forms and stoichiometries.

It would seem, then, that ordered alloys involving Th and Ti should form readily when in fact

this is not the case. Experimental evidence by Carlson et al.11dating back to 1956 still appears to

be the only authoritative view on this subject, although similar results were found by Pedersen et

al. in 1980.12 Carlson et al. discovered that Th-Ti forms a simple eutectic at 1190oC and at 12

wt % Ti, with no intermediate phases. Pedersen et al. found the eutectic composition to be 13.26

wt % Ti. The solid phases at the eutectic are α-Th (cubic) and β-Ti (hexagonal). Carlson et al.

concluded that solid solubilities at room temperatures are negligible. They argued that since the

atomic radii of Th and Ti differ by about 22%, and because the Hume-Rothery rules for alloying

suggest that extensive solid solubility should not occur between metals differing in size by more

than 15%, the dearth of compounds (ordered or not) should not be surprising. Furthermore, they

argued that since there is a marginal difference in the electronegativity of these two elements (the

electronegativities are 1.3 for Th and 1.5 for Ti), compound phases should not form readily.
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Since the authoritative experimental work done on these systems is more than fifty years old,

and given the technological interest in both Th and Ti, and the potential scientific and technological

interest in alloys involving these elements, we have investigated these alloy systems using modern

theoretical quantum chemical methods, which over the past two decades has proven to be an

excellent tool to study such systems for a variety of material properties.

In the next section we present a brief description of our theoretical and computational method-

ology. In Section III, we present analysis on various ordered alloys of Th-Ti based systems with

the aim of investigating their stability. In Section IV, an in-depth analysis of the bonding and elec-

tronic character of our proposed stable alloy is presented. Finally, we present our conclusions in

Section V.

II. METHODOLOGY

All calculations were performed using density functional theory13 as implemented in the VASP

code.14 We used the PBE15 and PBEsol exchange-correlation functional16 for the generalized gra-

dient approximation (GGA). A kinetic energy cutoff of 500 eV was chosen to ensure adequately

converged total energies for the alloy systems under consideration. A Monkhorst-Pack17 grid of

12×12×12 was used to sample the Brillouin zone (BZ) and Methfessel-Paxton smearing18 with

a width of 0.2 eV was used to integrate the bands to the Fermi level. The total energy, elec-

tronic band structure and density of states (DOS) were calculated using the tetrahedron integration

method with Blöchl corrections.19

We tested our calculations with so-called Hubbard-U corrections of 1 eV for the onsite correla-

tion energy, which for Th could in principle be important since it is an actinide. Our investigations

showed that the differences in a range of results involving the physical structure, the electronic

structure and the energetics over the conventional GGA approach were negligible. This, in hind-

sight, is not surprising since Th has a closed f-shell of electrons with no highly localized orbital.

All results subsequently presented have not included the Hubbard correction.

A method using the least-squares fit,20 as implemented in the MedeA-MT module, was used

to obtain the elastic constants. This method uses the tetrahedron method for the Brillouin zone

integrations. The elastic properties are calculated from the Hill value which is a geometric mean

of the Voigt and Reuss values. The eigenvalues of the stiffness matrix gives an indication of

the mechanical stability of the systems under consideration. The Hill values were used in the
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estimation of longitudinal, shear and mean sound velocities, and the Debye temperatures.21 The

phonon dispersion curves and lattice dynamics were determined using linear response theory as

implemented in the MedeA-PHONON package.

The heat of formation for each system was calculated by taking the difference between the

total energy of the alloy unit cell and the sum of the energies of its constituents in their respective

bulk elemental forms. The heat of formation of the system is strongly dependent on the spin-orbit

coupling (SOC) due to the presence of relativistic effects in this heavy atomic systems.

Lu et al.22 used the same method based on the elastic, valence charge density distribution and

phonon dynamics to study ThN, which has been experimentally synthesized with an experimental

lattice constant of 5.154 Å and bulk modulus of 175 GPa. This validates the approach used in this

study. Therefore, we applied our methods to studies of pristine cubic Th and hexagonal Ti, and

alloys of these elements in the Cr3Si, Cu3Au, Al3Ti, CsCl, CuAu, CuPt, and NiAs crystal forms.

For the off-50:50 compounds we considered both the alloy and its dual alloy, e.g. both Th3Ti and

ThTi3 in the Cr3Si structure.

III. INVESTIGATION OF STABILITY

The calculated elastic properties, phonon dispersion and heat of formation for thorium-titanium

alloys is used to determine the elastically, dynamically and energetically stable alloys of Th-Ti

based systems.

The GGA (PBEsol) exchange correlation functional is an improved functional that takes into

account the interactions present in closely packed structures. Hence, it is largely used in this in-

vestigation to understand the properties of Th, Ti and Th-Ti based alloys. The results obtained

using the GGA (PBEsol and PBE) for Th and Ti shows that the PBE23 exchange-correlation func-

tional gives a slightly improved description of the lattice constants for Th and Ti. But, there is no

fundamental difference in the description of the electronic properties of Th-Ti based alloys except

in the heat of formation were the PBEsol gives consistently lower heat of formation compared to

the PBE functional. Hence the results presented for the elastic properties, the electronic properties

and the phonon dispersion considers the non-magnetic (NM) structure of Th-Ti based alloys using

PBEsol. However, the heat of formation is strongly dependent on the exchange correlation func-

tional along with the presence of relativistic effects. Therefore, these issues are taken into account

only for the proposed stable alloy.
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The calculated lattice parameter using GGA (PBEsol) with the NM structure for Th (face cen-

tered cubic structure) is 4.95 Å, and Ti (hexagonal close pack structure) are a of 2.90 Å and c of

4.59 Å. The inclusion of SOC leads to a slight change in the lattice parameters of these systems.

The calculated equilibrium lattice constants (a0) for Th, Ti and Th-Ti based alloys is given in Ta-

ble I for the NM cases. The lattice constants for Th-Ti based alloys in the NM phase shows there

is an increase in the lattice constant with increase in Th concentration. This is expected because

the Th atom is larger compared to Ti atom.

TABLE I. Lattice constant a0 (Å), c (Å) and heat of formation (eV) of Th-Ti based alloys in various crystal

structure using PBEsol in the non-magnetic phase

a0 (Å) c (Å) E f (eV)

Th 4.95 4.95 −
ThTi3 (Cr3Si) 5.32 5.32 0.740

ThTi3 (Cu3Au) 4.28 4.28 0.683

ThTi3 (Al3Ti) 4.11 9.19 0.685

ThTi (CsCl) 3.60 3.60 0.433

ThTi (CuAu) 3.21 4.62 0.585

ThTi (CuPt) 3.25 15.54 0.773

ThTi (NiAs) 4.40 6.29 4.196

Th3Ti (Cr3Si) 6.05 6.05 2.514

Th3Ti (Cu3Au) 4.78 4.78 0.930

Th3Ti (Al3Ti) 4.60 10.27 0.336

Ti 2.90 4.59 −

The possibility of a magnetic ground state in Th-Ti based alloys is examined. For this purpose,

the spin-polarized (SP) calculations, assuming an initial ferromagnetic ground state are carried out

for the Th-Ti based alloys. We found that the ground state of all the Th-Ti based alloys considered

is NM, without any localized atomic magnetic moments. The NM and SP calculations yield similar

lattice parameters and lead to NM ground state structures for both PBE and PBEsol functionals.

Subsequently, the inclusion of relativistic effects leads to a slight (insignificant) change in the

lattice constant and a (significant) change in the heat of formation compared to the NM and SP

cases for both GGA (PBE and PBEsol) functionals.
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A. Elastic properties

The elastic properties of various ordered alloys of Th-Ti based systems are calculated for the

NM phase. The elastic constants (ci j) obtained are shown in Table II. The criteria for elastic stabil-

ity are: positive elastic constants, positive bulk, shear and Young’s moduli, positive shear velocity

(obtained from the shear sound velocity), positive longitudinal velocity (obtained from the longi-

tudinal sound velocity).24 The systems that satisfy these criteria are elastically stable. However,

this does not imply that such a system is dynamically stable. The negative elastic constant values

for Th-Ti based alloy (in CuPt and NiAs structures) shows that these structures might be unstable

because stability is related to sum rules.

TABLE II. Elastic constants Ci j’s (values in GPa)

C11 C12 C13 C14 C33 C44 C66

Th 69.55 52.54 52.24 − 69.55 49.32 49.32

ThTi3 (Cr3Si) 196.1 53.39 53.39 − 196.1 60.55 60.55

ThTi3 (Cu3Au) 122.2 77.94 77.94 − 122.2 39.64 39.64

ThTi3 (Al3Ti) 85.33 114.2 68.40 − 135.6 40.48 61.26

ThTi (CsCl) 105.0 67.23 67.23 − 105.0 9.020 9.020

ThTi (CuAu) 146.1 22.40 65.65 − 97.75 17.26 26.05

ThTi (CuPt) 135.9 42.39 57.15 −26.35 84.62 −4.750 −
ThTi (NiAs) −1078 17.28 −396.8 − 157.4 − −

Th3Ti (Cr3Si) 126.1 36.21 36.21 − 126.1 22.15 −
Th3Ti (Cu3Au) 91.85 58.40 58.40 − 91.85 45.24 45.24

Th3Ti (Al3Ti) 87.21 59.08 47.46 − 101.2 36.83 59.35

Ti 198.1 69.39 82.04 − 204.3 38.22 38.22

In Table III, we present the calculated bulk modulus of the various Th-Ti based alloys. The

calculated bulk modulus for Ti, Th and ThTi3 (in Cr3Si structure) are 118.48 GPa, 58.21 GPa and

100.98 GPa respectively. Other alloys of Th-Ti based systems have lower bulk modulus compared

to ThTi3 (in Cr3Si structure). ThTi3 (in Al3Ti structure) has the largest magnitude of shear modulus

and Young’s modulus compared to the other alloys. The mean velocity calculated from shear

(transverse) velocity and longitudinal velocity is used to determine the Debye temperature. The
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Debye temperature (θD) gives an indication of the stiffness of the material. ThTi3 (Al3Ti), Ti, ThTi3

(in Cr3Si structure) has θD of 445.0 K, 426.1 K, 346.7 K respectively. This shows that the alloying

of Th with Ti leads to considerable improvement in the mechanical properties of Th metal.

TABLE III. The bulk, shear and Young’s moduli (Hill values in GPa), acoustic velocities (ms−1), and Debye

temperature (K)

BH GH YH vs vl vm ΘD

Th 58.21 24.94 64.72 1401 2684 1568 149.7

ThTi3 (Cr3Si) 100.9 64.65 159.8 2798 4760 3101 346.7

ThTi3 (Cu3Au) 92.70 31.38 84.58 1986 4112 2232 246.5

ThTi3 (Al3Ti) 89.80 108.7 207.7 3697 5432 4030 445.0

ThTi (CsCl) 79.82 12.19 34.79 1106 3106 1257 131.0

ThTi (CuAu) 77.45 24.81 67.16 1592 3360 1791 185.5

ThTi (CuPt) 73.19 −52.86 −430.0 − − − −
ThTi (NiAs) −484.0 929.3 39630 15670 14130 15090 1138

Th3Ti (Cr3Si) 66.17 29.52 77.07 1626 3073 1817 178.9

Th3Ti (Cu3Au) 69.55 30.37 79.41 1638 3118 1832 181.1

Th3Ti (Al3Ti) 64.84 31.24 80.63 1657 3060 1849 183.2

Ti 118.5 51.44 134.1 3257 6223 3643 426.1

B. Phonon dispersion

The phonon frequency of crystalline structures is one of the basic aspects when considering the

phase stability, phase transformations, and the thermodynamics of these materials. The absence

of imaginary (negative frequencies in the figures) frequencies in phonon dispersion curve and the

phonon density of states give an indication that the structure is dynamically stable or vice versa.

The phonon frequency for various Th-Ti based alloys in the NM phase using PBEsol is presented

in Fig. 1. The use of PBE or PBEsol exchange correlation functional does not lead to a change in

the lattice dynamics of these alloys. In Fig. 1a, 1b and 1c, the phonon plots of Th, Ti and ThTi3

(in Cr3Si structure) are shown respectively. They possess no imaginary phonon frequencies mode.

Hence, they are structurally and thermodynamically stable. While, the other structures considered
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have various degree of instabilities due to the presence of imaginary frequencies. The phonon

frequencies for the unstable structures are presented for completeness.

0

2

4

6

8

F
re

q
u
en

cy
 (

T
H

z)

DOS

A H L A Γ K M Γ

(a) Th in FCC

0

1

2

3

4

F
re

q
u
en

cy
 (

T
H

z)

DOS

L XΓ KW W

(b) Ti in HCP

0

2

4

6

8

10

F
re

q
u
en

cy
 (

T
H

z)

DOS

R X Γ M R Γ

(c) ThTi3 in Cr3Si

-30

-20

-10

0

10

20

30

F
re

q
u
en

cy
 (

T
H

z)

Z Γ X P Γ N

DOS

(d) Th3Ti in Al3Ti

-40

-20

0

20

40

F
re

q
u
en

cy
 (

T
H

z)

Z Γ X P NΓ

DOS

(e) ThTi3 in Al3Ti

-4

-2

0

2

4

6

F
re

q
u

en
cy

 (
T

H
z)

DOS

L ZΓ Γ

(f) ThTi in CuPt

-30

-20

-10

0

10

20

30

40

F
re

q
u
en

cy
 (

T
H

z)

DOS

A H L A Γ K M Γ

(g) ThTi in NiAs

-4

-2

0

2

4

6

8

F
re

q
u

en
cy

 (
T

H
z)

DOS

R X Γ M R Γ

(h) ThTi3 in Cu3Au

-2

0

2

4

6

F
re

q
u

en
cy

 (
T

H
z)

DOS

Γ M X ZA RZΓ

(i) ThTi in CuAu

-2

0

2

4

F
re

q
u

en
cy

 (
T

H
z)

R X Γ M R Γ

DOS

(j) Th3Ti in Cu3Au

-2

0

2

4

F
re

q
u

en
cy

 (
T

H
z)

DOS

R X Γ M ΓR

(k) ThTi in CsCl

-2

-1

0

1

2

3

4

5

F
re

q
u

en
cy

 (
T

H
z)

R X Γ M R Γ

DOS

(l) Th3Ti in Cr3Si

FIG. 1. Phonon dispersion and phonon density of state (DOS) plots for Th, Ti and Th-Ti based alloys in

various ordered crystalline structures
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ThTi3 (in Cu3Au and in Al3Ti structures) have the same ratio of atoms as ThTi3 (in Cr3Si

structure). It is interesting to note that ThTi3 (in Cu3Au and in Al3Ti structures) is stable at the

Γ-point but possess few imaginary frequencies. This implies that the structure might transform to

another structure or undergo pressure-induced stabilization. Therefore, these ordered structures

with imaginary frequencies do not exist.

Isotropic pressure was applied to ThTi3 (in Cu3Au and in Al3Ti structures) with the aim of

stabilizing or transforming these structures to its stable form. These structures did not undergo

any structural stabilization or phase transformation with change in pressure. This can be attributed

to the size of the unit cell and the actual number of atoms.

In the same line, isotropic pressure is applied to the dual alloys of ThTi3 (in Cu3Au and in

Al3Ti structures) which is Th3Ti (in Cu3Au and in Al3Ti structures). The phonon dispersion is

evaluated to determine its stability. Pressure induced stabilization of these structures occurred for

Th3Ti (in Cu3Au and in Al3Ti structures) respectively. For Th3Ti alloy (in Cu3Au structure), a

pressure of about 324.7 GPa is applied to the dynamically unstable structure to achieve a stable

structure. Also Th3Ti alloy (in Al3Ti structure), a pressure of about -3.574 GPa was applied to the

dynamically unstable structure to achieve a stable structure. The energies of formation of these

pressure stabilized structures are positive and higher than that of ThTi3 alloy (in Cr3Si structure).

Therefore, Th-Ti based alloys is most likely to be found as ThTi3 (in Cr3Si structure) rather than

the pressure stabilized structures.

The phonon dispersion of ThTi3 alloy (in Cr3Si structure) has a splitting at Γ-point between the

LO-TO, owing to the fact that Th atom is heavier than Ti atom. The low lying frequency modes

are governed by the dynamics of heavy Th atoms, whereas the higher frequencies are governed by

the dynamics of lighter Ti atoms.

C. Heat of formation

The Gibbs free energy of the various alloys is calculated. These calculations are performed at

zero temperature and zero pressure, hence the Gibbs free energy reduces to the heat of formation,

∆H. The calculated heat of formation of the various alloys is investigated to determine its relative

stability. Th and Ti metal are used as the reference systems to obtain the heat of formation for the

alloys as described in the methodology. This is because they are the basic constituent of the alloy.

The heat of formation for all the structures are presented in Table I for the NM phase with PBEsol
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pseudopotential. The structure with the lowest heat of formation for the investigated Th-Ti based

alloys using the PBEsol (with NM) is ThTi (in CsCl structure). This structure is highly elastically

and dynamically unstable.

TABLE IV. The lattice constant a0 (Å), exchange-correlation functional, method, heat of formation (eV) for

Th, Ti and ThTi3 (Cr3Si) alloy using PBE and PBEsol. where non-magnetic, spin polarization and spin-orbit

coupling is represented by NM, SP and SOC respectively

a0 (Å) functional method E f (eV)

ThTi3 (Cr3Si) 5.409 PBE SOC 0.851

ThTi3 (Cr3Si) 5.406 PBE SP 1.003

ThTi3 (Cr3Si) 5.406 PBE NM 1.014

ThTi3 (Cr3Si) 5.322 PBEsol SOC 0.591

ThTi3 (Cr3Si) 5.325 PBEsol SP 0.727

ThTi3 (Cr3Si) 5.325 PBEsol NM 0.740

To accurately determine the total energy and the heat of formation for the stable alloys the

inclusion of SOC is essential for these alloys. We calculated the heat of formation for ThTi3 alloy

(in Cr3Si structure) using the PBEsol functional with SOC to be 0.591 eV as listed in Table IV.

Our calculated heat of formation for the system using PBEsol with SOC is less than NM and

SP methods. In addition, using PBE functional with NM, SP and SOC method this results in a

greater heat of formation compared to PBEsol with SOC. Generally, the inclusion of SOC leads

to an effective lowering of the heat of formation in the structure for both GGA (PBE and PBEsol)

functional.

The positive heat of formation of our system implies that the system will not occur sponta-

neously rather will require a positive energy input to create this alloy. The low value obtained for

the heat of formation gives an indication that the formation of a metastable ordered alloy of Th

and Ti is possible.

IV. THE PROPOSED METASTABLE ALLOY

The band structure, density of states, valence charge density distribution and electron localiza-

tion function (ELF)25–27 for the metastable system under consideration are presented to analyze
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the electronic properties and bonding character.

The metastable alloy obtained from our investigation is ThTi3 alloy (in Cr3Si structure) as

shown in Fig. 2. The alloy has the Pm-3̄n space group (with group number 223). And the Th

atoms in the unit cell are located in the (0.0, 0.0, 0.0) and (0.5, 0.5, 0.5) positions. The Ti atoms

are located in the (0.5, 0.25, 0) and (0.5, 0.75, 0).

FIG. 2. The Structure of ThTi3 in Cr3Si where the white atoms represents Th atoms and the black atoms

represents Ti atoms.

In Table IV, we present the GGA (PBE and PBEsol) results of the lattice parameter of the

proposed metastable alloy. The difference in the lattice parameter obtained using PBE and PBEsol

for the metastable system is about 1.6%. It should be mentioned here that ThTi3 alloy (in Cr3Si

structure) irrespective of the initial magnetic configuration gives a NM ground state as previously

stated for all Th-Ti based alloys. This is corroborated by the insignificant difference in the lattice

parameters between the NM, SP and SOC phase of the structure.

A. Band structure and partial density of states

In Fig. 3, we present the calculated band structures for Th, Ti and ThTi3 (in Cr3Si structure)

along the high symmetry lines of BZ, and this evidently shows that they are all metallic structures.

Th and Ti metals are comprised of two groups of bands with a huge difference of about 200%

between the Th and Ti valence bands. This difference in the valence bands suggests difficulty

in bonding between these two metals. It is no surprise then that only one plausible structure is

obtained from our investigation.

The band structure of ThTi3 (in Cr3Si structure) consists of three isolated groups of valence

bands with a slight energy dispersion E(k), which is typical of crystals with a relatively low degree

11

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



W L Γ X W K
-20

-10

0

E
n
er

g
y
 (

eV
)

(a) Band Structure of Th

A H L A Γ K M Γ
-40

-30

-20

-10

0

E
n
er

g
y
 (

eV
)

(b) Band Structure of Ti

R X Γ M R Γ

-30

-20

-10

0

E
n
er

g
y
 (

eV
)

(c) Band Structure of ThTi3

FIG. 3. The band structure for Th, Ti and ThTi3 alloy (in Cr3Si structure) with the Fermi energy level set

(dashed line) at zero.

of orbital hybridization.28 The lowest group of band is from the Th s-orbital and is located around

-38 eV. The following bands in Fig. 3c are from the Th p-orbital and are located around -21 eV

and -15 eV with a slight contribution from the Ti p-orbital in later bands. These bands have a

quasi-core character. The broadest occupied band is in the range of -5.5 eV to 1.5eV.

The PDOS for the metastable alloy is presented to highlight the effect of orbital hybridization

around the Fermi level. The Th (d and f)-orbitals and the Ti (p and d)-orbitals are presented in

PDOS for ThTi3 (in Cr3Si structure) in Fig 4. The most dominant contribution at the Fermi level

is from the Ti d-orbital while, the Th (d and f)-orbitals provide almost equal contribution of states.

The effect Ti p-orbital is marginal in determining the metallicity of ThTi3 (in Cr3Si structure).

Looking at the contribution from Th, the dominant state in the conduction band is the Th f-orbital

and in the valence band is the Th d-orbital. The system is very sensitive to the concentration of

Ti atoms due to its overall contribution in determining the metallicity of the alloy. Hence, the

configuration and concentration of Ti atoms will overall determine the electronic nature of this

alloy.

B. Valence charge density

The computed valence charge density for ThTi3 alloy (in Cr3Si structure) is presented to eluci-

date the bonding character. Fig. 5 shows the computed charge density distribution plot for ThTi3

alloy (in Cr3Si structure) in the (100) plane. The valence charge density is indicated by the color

scale on the side (blue is devoid of electrons and red has a high concentration of electrons). The

valence charge densities plotted pertains to the valence states only summed over both spin direc-
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FIG. 4. (Color online) The partial density of states (PDOS) for ThTi3 (in Cr3Si structure). The DOS are

calculated at the optimized geometry for the given density functional and magnetic ordering. The Fermi

energy level is set at zero and is represented using dashed line.

tions.

FIG. 5. (Color online) The valence charge density distribution for ThTi3 (in Cr3Si structure). The color

pattern of the calculated valence charge density in the (001) plane, where the Th atom is depicted by the

black balls and the Ti atoms by white balls.The color pattern of the valence charge density (scale: no

electrons are represented as deep blue (0.0) and large concentration of electrons is represented as deep red

(0.8); scale for remaining frames in increasing order of intensity: light blue, green, yellow, orange).

It is clearly seen that ThTi3 alloy (in Cr3Si structure) is metallic, characterized by a nearly

spherical charge density distribution around the Th and Ti ions with very high concentration of

13

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



valence charge and an appreciable charge density in all the interstitial regions. Hence, in k-space,

appreciable band overlap exists between Th and Ti ions. Compared to the charge density in the

rest of the interstitial region relatively high charge density bridges are present between the atomic

spheres. This indicates ionization in the bridge sites suggestive of the presence of covalency.

In order to ascertain the presence of covalency in all of the bridge sites, we calculated the

distribution of the ELF.

C. Electron localization function for ThTi3 (in Cr3Si structure)

The ELF for the ground state bonding configuration of ThTi3 alloy in (Cr3Si structure) is evalu-

ated to gain further insight into its bonding character and nature. ELF is given as [1 + (D/Dh)2]−1,

D is τ − tW represents an excess of the local kinetic energy due to the Pauli principle. Where

τ = 1
2

∑ |∇ϕi|2 is the Kohn-Sham local kinetic energy, ϕi are the Kohn-Sham orbitals, and tW is

the value of τ in the absence of the Pauli principle (∼ |∇ρ|2/ρ and ρ being the charge density).

Dh being D for the corresponding uniform electron gas (∼ ρ5/3). The spatial organization of ELF

provides a basis for a proper classification of bonds27,29. Based on this definition ELF takes values

ranging from 0 and 1, where 1 represents perfect localization. The Th metal has more valence and

core electrons than the Ti metal. They both exhibit similar features such as the large concentration

of electrons around the atoms and an appreciable density of electrons away from the atoms (non-

directional), which is consistent with metallic bonding. In Fig. 6 the ELF is shown for the same

plane as considered above for the valence charge-density distribution. Both picture are quite sim-

ilar, with almost spherical shapes of the ELF around the Th atoms and a lower localization of the

electrons on Ti atoms. Remarkably, the concentration of electrons between the Th and Ti bridges

has a region of electron depletion compared to the Ti and Ti bridges. This observation gives an

insight that the slight covalent character observed is from Ti atoms, which has a shared-electron

pair. Hence, this particular crystal structure with more number of Ti atoms is stable compared to

the corresponding structure (Th3Ti alloy in (Cr3Si structure) with more Th atoms.

Based on these observations, the ThTi3 alloy in (Cr3Si structure) is predominantly metallic.
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FIG. 6. (Color online) The electron localization function for ThTi3 (in Cr3Si structure). The color pattern of

the calculated electron charge density in the (001) plane, where the Th atom is depicted by the black balls

and the Ti atoms by white balls.The color pattern of the ELF (scale: no electrons are represented as deep

blue (0.0) and large concentration of electrons is represented as deep red (0.1); scale for remaining frames

in increasing order of intensity: light blue, green, yellow, orange).

V. CONCLUSIONS

This work is motivated by the usefulness of various alloys of Th and Ti, hence the search for the

possibility of ordered alloys involving Th and Ti. We considered a number of different structures

and stoichiometries involving these elements. A predicted metastable structure was established

using arguments based on elastic constants, phonon frequencies, electron localization function,

valence charge density, band structure, density of states and heat of formation.

The calculated phonon frequencies and elastic constants shows that ThTi3 (in Cr3Si structure)

is dynamically stable at zero Kelvin and zero pressure as indicated by their positive values. This

system using PBESol with the inclusion of SOC is energetically more favorable and gives an

appropriate description with a heat of formation of 0.591 eV compared with to the other methods.

Though stabilization of some systems where achieved via pressure, the heat of formation of these

systems are less favorable compared to ThTi3 (in Cr3Si structure). We propose ThTi3 (in Cr3Si

structure) as a plausible metastable ordered alloy of Th-Ti based systems.

This should stimulate experimental efforts to synthesize this material.
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This concludes the studies on actinide compounds with out the inclusion of the Hubbard

U parameter. The next chapter explores the significance of the Hubbard U parameter in the

proper description of actinide system. A case study of Pa and its oxides is presented.
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Chapter 5

First principles LDA + U and GGA + U
study of protactinium and
protactinium oxides: dependence on
the effective U parameter

This section was published as [29] ”Obodo, K. O. and Chetty, N. (2013). First principles LDA

+ U and GGA + U study of protactinium and protactinium oxides: dependence on the effective

U parameter. Journal of Physics: Condensed Matter, 25, 145603(12).”
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Abstract

The electronic structure and properties of protactinium and its oxides (PaO and PaO2) have been studied

within the framework of the LDA, GGA(PBE), LDA + U and GGA(PBE) + U implementations of density

functional theory. The dependence of selected observables of these materials on the effective U parameter

has been investigated in detail. The examined properties include lattice constants, bulk moduli, effect of

charge density distributions, the hybridization of the 5f orbital and the energy of formation for PaO and

PaO2. The LDA gives better agreement with experiment for the bulk modulus than the GGA for the Pa

but GGA give better structural properties. We obtained that PaO is metallic and PaO2 is a Mott-Hubbard

insulator. This is consistent with observations for the other actinide oxides. We discover that GGA and LDA

incorrectly give metallic behavior for PaO2. The GGA(PBE) + U calculated indirect band gap of 3.48 eV

reported for PaO2 is a prediction and should stimulate further studies of this material.

PACS numbers: 61.48.Gh, 68.35.bg, 73.22.Pr
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I. INTRODUCTION

Protactinium is the first element in the actinide series with a 5f electron.1 In some systems

(PaO2, UO2, NpO2, PuO2), the presence of 5f electrons leads to an improper description of the

electronic and the structural properties by DFT.2–7 Several approaches have been developed to

overcome these shortcomings of DFT such as the self-interaction correction (SIC), DFT hybrid

approach, DFT + U, GW etc. The DFT + U (LDA + U and GGA + U) approach has been shown

to effectively correct many of the deficiencies observed by this class of materials with regards to

the band gap.8–10 This approach introduces an on-site Hubbard U and the Hund’s J. Dudarev et

al.11 combined these two terms in the rotationally invariant formalism to a single term Ue f f=U−J,

referred to as the simplified LSDA + U. The introduction of this adhoc parameter leads to a

significant improvement in the description of some 5f systems where DFT fails but the choice of

the value of this parameter is debatable. The Ue f f parameter can be obtained: (i) from constrained

LDA approach,8 (ii) from constrained RPA,12 (iii) from a self-consistent approach,13 and (iv) from

fitting the parameter to experimental observables.14

Pa and its oxide are used in scintillators for detecting X-rays, for radioactive dating (determina-

tion of ancient artifact), in cathode ray tubes with bright green fluorescence, as high temperature

dielectrics for ceramic capacitors, in nuclear weapons (used as support in nuclear chain reactions),

etc.15 These materials have downsides which has limited its study, namely (i) the high toxicity

and radioactive nature and (ii) the limited availability. These materials are mainly found as a by-

product in nuclear reactions. Furthermore, these materials are (iii) strongly correlated, giving rise

to failures by conventional DFT methods.

The understanding of the electronic and structural properties is paramount to harness and con-

trol these materials optimally. The elements in the 5f series with localized electrons possess greater

atomic volumes and symmetrical structures compared to those with itinerant electrons.16,17 Hence,

Pa exists in the bct, fcc and orthorhombic (α-U) phase at standard temperature and pressure (STP),

high temperature and high pressure respectively. Pa metal possesses itinerant 5f electrons with

characteristic properties such as superconducting and high vaporization.15,18,19

There has been significant interest in the understanding of Pa metal,20 due to its unique behavior

as the first element with a 5f electron. The effect of pressure induced phase transitions has been

explored theoretically and experimentally. Haire et al.21 experimentally showed that Pa metal

undergoes a pressure induced structural phase transition at 77 GPa from the bct structure (space
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group I4/mmm) to an orthorhombic, α-U structure (space group Cmcm) with ∼ 30% atomic volume

reduction and no subsequent phase transition. This was predicted by theoretical studies,16,22 which

attribute this to the increase in 5f electron participation in the bonding.

The studies of protactinium oxides (PaO and PaO2) have been limited to the mode of synthesis

and purification for the production of Pa metal.15 Prodan et al.23 used the density functional hybrid

approach to study actinide dioxides and obtained a band gap of 1.4 eV for PaO2. To the best of our

knowledge, no further studies have been performed to shed more light on the electronic structure

of PaO2. Hence, a proper description of the electronic and structural properties of these oxides

within the DFT and DFT + U methods is appropriate to understand the physics of these materials.

A systematic first principles study of the dependence of the effective Hubbard-U parameter

on LDA + U and GGA + U functionals in Pa and its oxides is lacking. In this work, the DFT

methodology is applied to calculate the electronic and structural properties of Pa metal. Using

a semi-empirical fit, we then optimize the Hubbard U parameter to give a proper description of

PaO and PaO2. The structural and electronic properties of these oxide materials are determined to

investigate the role played by the 5f electrons.

In Section II, a brief description of the theoretical and computational methodologies is pre-

sented. In Section III, the results and discussions for Pa and its oxides are presented, followed by

the conclusions in Section IV.

II. THEORY AND COMPUTATIONAL DETAILS

All calculations were performed using density functional theory24 as implemented in the VASP

code.25 The electron wave functions were described using the projector augmented wave (PAW)

method of Blöchl in the implementation of Kresse and Joubert.26 The LDA27 and PBE28 form of

the GGA exchange-correlation potentials were used together with their LDA + U and GGA + U

variants. An adequately converged kinetic energy cutoff of 500 eV, 500 eV, 550 eV was cho-

sen to ensure fully converged total energies for Pa, PaO and PaO2 respectively. A spacing of

k-points of 0.2/Å fine mesh for the Monkhorst-Pack29 grid is used to sample the Brillouin zone,

and Methfessel-Paxton smearing30 with a width of 0.2 eV was used to integrate the bands at the

Fermi level. The total energy, electronic band structure and density of states (DOS) were calcu-

lated using the tetrahedron integration method with Blöchl corrections.

Subsequently, we introduce the Hubbard U parameter for the onsite interaction strength. The
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U parameter was computed by optimizing the lattice parameter with respect to U. This resulted in

differences for a range of results involving the physical structure, the electronic structure and the

energetics within the GGA and LDA schemes for the oxides. Results presented in this work uses

LSDA, GGA, LSDA + U and GGA + U for the oxides but without the U parameter for Pa atom.

TABLE I: Partial 5f occupation for Pa, PaO and PaO2 systems using GGA with SOC.

System U 5f

Pa 0 1.327

PaO 2.5 1.228

PaO2 2 1.414

A method using the least-squares fit,31 as implemented in the MedeA-MT module, was used to

obtain the elastic constants. This uses the tetrahedron method for the Brillouin zone integrations.

The elastic properties were calculated from the Hill values which are a geometric mean of the Voigt

and Reuss values. The eigenvalues of the stiffness matrix gives an indication of the mechanical

stability of the systems under consideration, which is used to obtain the elastic constants. The

Hill values32 were used in the estimation of longitudinal, shear and mean sound velocities, and the

Debye temperatures.33

The energy of formation for each structure was calculated by taking the difference between the

total energy of the compound (PaOn) and the energies of its constituents in their corresponding

bulk forms:

∆H f = Etot
(PaOn) − NPa Ebulk

(Pa) − NO Ebulk
(O) , (1)

where n is either 1 or 2, NPa and NO are the number of Pa atoms and O atoms in the PaOn

compound respectively, Ebulk
(Pa) is the energy per Pa atom in the bct phase, and Ebulk

(O) is the energy per

O atom in the oxygen molecule.

The phonon calculations were done using the general direct approach of lattice dynamics as

implemented in the MedeA-PHONON package.34
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III. RESULTS AND DISCUSSION

A. Preamble

We carried out self consistent calculations to determine the ground states of Pa and its oxides

using spin-polarized (SP) and spin-orbit coupling (SOC) within the DFT + U approach. The

inclusion of the effective Hubbard U is excluded for Pa metal because DFT gives a reasonable

description of the metal.16 Pa element is a heavy metal with an atomic number of 91, hence rel-

ativistic effects are important. In order to account for the relativistic effects in these systems, the

inclusion of SOC is important. In this study, we have shown that in order to obtain the correct

properties of PaO2, the effect of SOC has to be taken into account.

The U parameter in this study is optimized with respect to the lattice constant. The U parameter

obtained is used to calculate the structural and electronic properties of the systems. This gives a

qualitatively and quantitatively better description of the properties of PaO and PaO2.

The U parameter accounts for the onsite Coulomb interaction which leads to the localization of

the 5f electrons in these systems. In contrast, the standard DFT fails to account for the localization

of the electrons, but leads to the delocalization which is a consequence of the Pauli-exclusion

principle. The localization of the 5f orbitals leads to a non-magnetic (NM) insulating ground state

for PaO2 but does not change PaO from metallic to insulating.

In order to obtain the correct ground state for PaO2 for a given U parameter, we lifted the

symmetry constraints in the calculations of the electronic and the structural properties allowing the

systems to evolve and explore all of phase space, i.e. all stable and metastable phases, including

magnetic phases. This has an effect of significantly increasing the computational time as all k-

points in the Brillouin zone are treated independently, i.e. the special k-point set is not reduced by

symmetry.

Gryaznov et al.,35 studied UN, UO2 and PuO2 with the inclusion of SOC and showed that to

correctly describe these systems the lifting of symmetry constraints is absolutely essential. There

have been various methodologies proposed by different authors on how to achieve the true ground

state within the DFT + U formalism including SOC, such as monitoring the occupation matrix,36

ramping the Hubbard U parameter,37 etc. In this study, the symmetry constraints are lifted and the

correct ground state is obtained for PaO2 within the SOC scheme for all the values of U considered.

In our work, the symmetry constraints are lifted and the correct ground state is obtained for PaO2
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within the SOC. However, the SP does not yield the correct ground state because relativistic effects

are unaccounted for.

B. Crystal structures

Fig. 1 shows the conventional unit cells of Pa, PaO and PaO2.

Pa has three crystallographic forms which are (i) the body centered tetragonal structure (bct) at

STP which transforms to (ii) the face centered cubic structure (fcc) at elevated temperature, and

which undergoes a pressure-induced structural transformation to the (iii) α-Uranium structure.

The Pa (bct) phase is presented in Fig. 1a.

In Fig. 1b, we present the PaO system which crystallizes in the NaCl structure.

PaO2 contains antiferromagnetically (AFM) ordered Pa atoms with an underlying fluorite struc-

ture that leads to a double tetragonal unit cell (with c =
√

a) when the magnetic ordering is taken

into account. The AFM ordered structure is shown in Fig. 1c, where the magnetic ordering is in

the z-axis.

(a) Pa (b) PaO (c) PaO2

FIG. 1: (Color online) The crystallographic unit cells of (a) Pa, (b) PaO (c) PaO2. Blue spheres

depict Pa and the red spheres depict the oxygen atoms. The black arrows illustrate the AFM

ordering in the z-axis
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C. Structural properties

As indicated earlier, Pa has been observed to exist in various different phases. The STP phase

which is the bct structure has experimental lattice parameters of a0 = 3.925 Å and c = 3.238 Å.21

LDA is known to underestimate the lattice parameter while GGA generally overestimates the

lattice parameter. However, in the early actinides lattice constants obtained using the GGA are

found to be better corroborated with experiment compared with the LDA.38 In Table II, we show

our calculated values of the lattice parameters obtained using the GGA and the LDA within the

SOC and the SP schemes. Upon complete optimization, the system evolves to a NM ground state

consistent with experiment. The lattice parameter, density and volume obtained within the GGA

approximation are more comparable to experiment than LDA. As far as the structural properties are

concerned, the extension of our methodology to include the Hubbard U parameter is not necessary

in the case of metallic Pa.

In Fig. 2, we present the calculated lattice parameter of PaO as a function of the U parameter,

where the dotted line indicates the experimental value of a0. The variation of the lattice parameter

is a monotonically increasing function with respect to the U parameter within the SOC and SP

scheme. At U= 2.5 eV , the GGA + U (SOC and SP scheme) yields the experimental lattice pa-

rameter for PaO. The corresponding result using the LDA + U (SOC and SP scheme) significantly

underestimates the lattice parameter. Increasing U to a value of 5.5 eV still does not give a suffi-

ciently accurate result for the lattice parameter within the LDA + U scheme. This shows that the

use of the U parameter is better suited within GGA than LDA in the present case. Since a value for

U that is too large pushes the f orbitals too far down into the O2p based levels.39 At U= 0 eV , PaO

(within SOC scheme) results in a magnetic ground state. This system evolves with the increase of

the U parameter to a NM metallic ground state. This observation is similar to the SP case for the

GGA + U. LDA + U gives a NM metallic ground state at all values of the U parameter.

The PaO2 structure is fully geometrically optimized using the SP and SP + SOC (hence forth

referred to as SOC) within the DFT + U. The inclusion of SOC in the fluorite structure of PaO2

without SP does not transform the structure to the AFM ordered state similar to UO2. Rather, the

inclusion of SP does yield structures which are AFM ordered leading to the symmetry breaking

for the PaO2. For consistency, the structure used in the study is the tetragonally distorted structure

obtained when the PaO2 is in the AFM ordered state. In Fig. 3, the calculated lattice parameter as

a function of the U parameter is presented where the dotted line indicates the experimental value.
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FIG. 2: (Color online) The change in the lattice parameters is plotted within the description of

DFT + U (GGA, LDA) approximations for PaO. The U - parameter results in a significant

change in the structural parameters.

The variation of the lattice parameter is a monotonically increasing function with respect to the

U parameter within the SOC and SP schemes. Fig. 3a and 3b shows the variation of a0 and c0

respectively as a function of the U parameter. For U = 4.0 eV, the LDA + U with SOC yields

a reasonable lattice parameter (5.501 Å) which is approximately equal to the experimental value

(5.509 Å), compared to the LDA + U with SP, which grossly underestimates lattice parameter.

On the other hand, for U = 2.0 eV, the GGA + U with SOC gives a slightly higher (about 0.8 %)

lattice parameter for PaO2 and only slightly underestimates (about −1.01 %) the lattice parameter

using the SP scheme. With this value for U we go on to evaluate all further properties of interest

for this PaO2.

Our conclusions for PaO2 about the accuracy of GGA over LDA within the DFT + U schemes

are similar to those for PaO.

D. Elastic properties

We find Pa to be elastically stable due to the absence of negative elastic constants. In Table II,

we present the theoretical and experimental bulk modulus for Pa. There are discrepancies between

previously reported theoretical38 and experimental40,41 values for the bulk modulus of Pa. In these

previous studies, the value of the experimental bulk modulus obtained was found to be high com-

pared to the theoretical value. These discrepancies were suggested to result from (i) the presence

of a small amount of hard martensitic phase not detectable using X-rays and/or (ii) the presence of
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(a) change in a-axis as a function of U - parameter
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FIG. 3: (Color online) The change in the lattice parameters is plotted within the description of

DFT + U (GGA, LDA) approximations for PaO2. It shows that the U-parameter leads to a

change in the structural parameters.

large experimental errors in the early diamond anvil cell techniques.20 Recent experimental stud-

ies by Haire et al.21 obtained a bulk modulus of 118.00 GPa. This value is lower than previously

reported experimental results. In our study using LDA with SOC, the bulk modulus is found to be

117.93 GPa which compares excellently with the reported experimental value. The bulk modulus

obtained using GGA with SOC is 98.18 GPa, which is slightly lower than the experimental value

shown in Table II.

TABLE II: Calculated and experimental lattice parameters in Å, density in g/cm3, volume in Å3

and bulk modulus in GPa for Pa metal.

Type of calculation a0 c ρ volume bulk Modulus

Experiment (Ref. 17) 3.925 3.238 15.382 24.99 118.00

LDA (SOC) 3.815 3.104 16.978 22.75 117.93

LDA (SP) 3.833 3.108 16.805 22.83 115.24

GGA (SOC) 3.907 3.185 15.778 24.32 98.18

GGA (SP) 3.930 3.196 15.543 24.68 94.06

The elastic properties of PaO using GGA and GGA + U (SOC scheme) is presented in Table III.

The elastic constants obtained for PaO are all positive definite, hence PaO is elastically stable. But
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the value of the c44 elastic constant for PaO within GGA and GGA + U using the SOC approach

is very low compared to the other elastic constants. We calculated the elastic constants for NM

and SP cases. The c44 elastic constant obtained using NM and SP is also very low compared to the

other elastic constants. This is an indication that the material will readily yield to shear stresses.

The Debye temperature (ΘD) is calculated to determine the stiffness of the system. The ΘD for

PaO is 275.4 K.

TABLE III: Elastic constants, bulk and shear in GPa, Debye temperature in K for PaO. PaO

results presented are for the SOC case and the U parameter is 2.5 eV .

Type of Calculation c11 c12 c44 bulk shear ΘD

GGA 348.61 106.75 9.08 187.37 34.11 216.5

GGA + U 363.98 92.19 27.57 182.79 55.69 275.4

The elastic constants obtained for PaO2 are all positive definite. Hence, the PaO2 structure is

elastically stable within GGA and GGA + U as presented in Table IV. The elastic properties

obtained using GGA are less than those using LDA. This is also consistent with the GGA + U and

LDA + U. This is expected because the value of the lattice parameter is higher within the GGA

than those obtained using the LDA. The Debye temperature for PaO2 is 409.5 K. This material is

stiff and suggestive of covalent and ionic character. We conclude that PaO2 is significantly stiffer

compared to PaO. The bonding character is fully analyzed in the next subsection.

TABLE IV: Elastic constants, bulk modulus and shear modulus in GPa, Debye temperature in K

for PaO2. The PaO2 results presented corresponds to the SOC and U = 2.0 eV

Type of Calculation c11 c12 c13 c33 c44 c66 bulk shear ΘD

GGA 316.96 156.15 103.69 369.93 80.34 132.98 192.32 98.45 421.9

GGA + U 297.93 141.76 99.41 343.81 73.11 123.83 180.09 91.09 409.5

E. Valence charge densities of PaO and PaO2

The computed valence charge density using the GGA + U optimized structures (SOC scheme)

is presented to elucidate the bonding characteristics and crystal structures of PaO and PaO2. The
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computed charge density distribution plot for PaO and PaO2 is in the (100) plane. The electron

density is indicated by the color scale on the side (blue is devoid of electrons and red indicates a

high concentration of electrons). The charge densities plotted pertain to the valence states only,

summed over both spin directions.

In the PaO crystal structure, the Pa2+ ion is almost devoid of valence electrons and the cloud

of electrons around O6+ ion is almost the full eight electrons needed to give O2− (conventional

oxygen is lacking two electrons). The valence charge density for PaO is calculated at U = 2.5 eV,

which is determined to be the optimum U parameter for this structure. In Fig 4, it is clearly seen

that PaO is characterized by a high spherical charge density distribution around the Pa and O ions

and a low charge density in the interstitial region. Compared to the charge density in the interstitial

region, relatively high density bridges are present between the atomic spheres. These bridges are

an indication of weak covalent bonding between Pa and O atoms due to hybridization of oxygen

2p states with partially occupied Pa f and d states. Therefore, PaO is strongly ionic and weakly

covalently bonded.

FIG. 4: (Color online) The color pattern of the calculated valence charge density distribution for

PaO in the (100) plane, where the blue spheres depict Pa atoms and the red spheres depict the O

atoms.

In the AFM PaO2 crystal structure, the valence charge density is calculated at U = 2.0 eV,

which is determined to be the optimum U parameter for this structure. In Fig. 5, it is clearly seen

that PaO2 is characterized by high spherical charge density distribution around the Pa and O ions
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with a low charge density in the interstitial region. Compared to the charge density in the rest of

the interstitial region there is a low presence of charge density bridges present between the atomic

spheres. These bridges are an indication of weak covalent bonding between Pa and O atoms due

to hybridization of oxygen 2p states with partially occupied Pa f and d states. The charge density

around the Pa atom in PaO2 structure is low compared to the PaO structure. This is an indication

of stronger ionic character in AFM PaO2 and weak covalent character compared to PaO system.

Therefore, PaO2 is predominantly ionic with significant insulating behavior.

FIG. 5: (Color online) The color pattern of the calculated valence charge density distribution for

PaO2 in the (001) plane, where the blue spheres depict Pa atoms and the red spheres depict the O

atoms. The color scale: deep blue color represents low valence charge while the red color

represents high concentration valence charge.

Also, in Table I, the f occupation for PaO2 compared to PaO gives credence to the notion that

PaO2 is more ionic.

F. Band structure and density of states

The computed band structure and density of states (DOS) presented below is within GGA + U.

The result obtained using LDA + U (with a large value of U) gives qualitatively similar results to

GGA + U.

In Fig. 6, we present the band structure and density of states of Pa metal calculated using

GGA within the SOC scheme. The band structure and DOS clearly shows that Pa is metallic.

The metallicity is largely determined by the Pa-f electrons and a slight contribution from Pa-d

electrons, while the Pa-s and Pa-p electrons contribute to the deep lying states.
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FIG. 6: (Color online) The calculated band structure and DOS plot of Pa in the full Brillouin

zone.

Fig. 7 shows the band structure of PaO2 with an indirect band gap of 3.48 eV which is calculated

using GGA + U within the SOC scheme at U = 2.0 eV. The LDA + U within the SOC scheme

at U = 2.0 eV underestimates the band gap, while the SP scheme within the DFT + U results in a

metallic system. The valence band maximum for PaO2 using GGA + U within the SOC scheme

at U = 2.0 eV is located in between the Z-point (0.0 0.0 0.5) and the A-point (0.5 0.5 0.5). While,

the conduction band minimum is located at the R-point (0.0 0.5 0.5). In Table V, the effect of

tuning the U parameter on the band gap is tabulated. Increasing the U parameter leads to opening

of the band gap at U = 2.0 eV. Subsequently, increasing the U parameter leads to a decrease in the

band gap, which is accompanied by a change in the position of the conduction band minimum and

valence band maximum.

The DOS for the PaO system using GGA + U is presented in Fig. 8.We find that PaO using

various exchange correlation functionals (GGA and LDA) and inclusion of the U parameter is

a metallic system. The states around the Fermi level is dominated by the 5f-electrons, which

effectively determine the metallicity of the PaO system as shown in Fig. 8. The partial density of

states as a function of change in the effective U parameter for the SOC and SP schemes provides

an insight on the hybridization and magnetic nature of the system. In the SOC scheme, the PaO

system undergoes hybridization and evolves from a magnetic ground state at U = 0 eV with total

magnetization of 0.47 µB to a NM metallic ground state as a function of U. In the SP scheme,

the PaO system undergoes hybridization and evolves from a magnetic ground state at U= 0 eV

with total magnetization of 0.51 µB to a NM metallic ground state as a function of the U. This

is consistent with its neighboring oxides ThO and UO. This observation for PaO with respect to
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TABLE V: The optimum U parameter as a function of band gap (null band gap indicates a metal)

for PaO2. Where Z (0.0 0.0 0.5), A (0.5 0.5 0.5), R(0.0 0.5 0.5), X (0.0 0.5 0.0), and Γ (0.0 0.0

0.0)

U Band gap Position of Band gap

Valence Band Conduction Band

0.0 0.00 − −
1.0 0.00 − −
2.0 3.48 in between Z and A R

2.5 3.40 in between Z and A in between R and X

3.0 3.30 in between Z and A in between X and Γ

4.0 3.01 in between Z and A Γ

5.0 2.72 in between Z and A Γ

5.5 2.55 in between Z and A Γ

GGA is consistent with LDA, hence the figures and data on LDA are not presented.

The electronic structure of the early actinides dioxides (AO2, where A=Th, Pa, U, Np) all show

insulating character.23 The ground state of UO2 and NpO2 show varying degrees of magnetism,

Γ M X Γ Z A R Z
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FIG. 7: (Color online) The calculated band structure plot of PaO2 using DFT + U (U = 2.0 eV)

in the full Brillouin zone with an AFM structure. The system contains two unique Pa atoms due

to the spin configuration and the O atoms are same.
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Figure 9. The total and projected densities of states (DOS) for the spin polarized and spin–orbit coupling of PaO within the descriptions of
the GGA and GGA + U approximations. All the DOS are calculated at the optimized geometry for the given density functional and
magnetic ordering. The Fermi energy level is set at zero and is represented using dashed line. It contains one Pa atom and the O atoms are
same. (a) SOC U = 0. (b) SP U = 0. (c) SOC U = 1. (d) SP U = 1. (e) SOC U = 2.5. (f) SP U = 2.5.

Table 5. The calculated energy of formation (eV) for PaO and PaO2 using LDA + U and GGA + U within the SOC and SP scheme.

Compound Ueff LDA (SOC) LDA (SP) GGA (SOC) GGA (SP)

PaO 2.5 �6.19 �3.89 �5.43 �3.19
PaO2 2.0 �12.60 �10.30 �11.62 �8.93

8

FIG. 8: (Color online) The total and projected densities of states (DOS) for the spin polarized and

spin-orbit coupling of PaO within the descriptions of GGA and GGA + U approximations . All

the DOS are calculated at the optimized geometry for the given density functional and magnetic

ordering. The Fermi energy level is set at zero and is represented using dashed line. It contains

one Pa atoms and the O atoms are same.
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while ThO2 is NM. These characteristics of U and Np are attributed to the partially occupied 5f

electrons, which favors itinerancy for the early actinides. The PaO2 system within the standard

LDA and GGA approach (with SP or/and SOC scheme) is a metallic NM ground state. The

inclusion of the Hubbard U parameter leads to band gap opening for the system using the SOC

scheme (for GGA and LDA). Because the SOC splits the orbitals, thus allowing for a U induced

orbital polarization that opens a gap. However, the U parameter does not lead to band gap opening

using the SP scheme due to the negligence of relativistic effects. In the SOC and SP schemes, the

coupling between the Pa (5f and 6d) electrons and the O (2p) electrons is important as presented

in Fig. 9.

As mentioned in the preamble, PaO2 is a difficult system to study computationally due to the

subtle nature of the electron correlation for this system. The DOS for an energy cutoff of 400 eV

and 550 eV is shown in Fig. 10 and 9 to buttress this point. The lattice parameter of PaO2 is

fully converged as a function of the energy cutoff at 500 eV. Hence, a less converged energy cutoff

(400 eV) and a fully converged energy cutoff (550 eV) are used to show the sensitivity of the U

parameter. At an energy cutoff of 400 eV, tuning the U parameter leads to significant change in

the band gap from 0.3 eV at U = 3.0 eV to 1.37 eV at U = 5.5 eV. At an energy cutoff of 550 eV,

the converged U = 2 eV results in a band gap of 3.48 eV. Further tuning of the U parameter leads

to a decrease in the band gap, which is shown in Table V. The band gap obtained for U= 5.5 eV

at an energy cutoff of 400 eV is consistent with the study by Prodan et al. and recently by Wen

et al.39 using the HSE hybrid exchange-correlation functional. Using U = 2.0 eV at a converged

energy cutoff of 550 eV, the band gap obtained is 3.48 eV. This value is intermediate to that of

ThO2 (6.2 eV) and UO2 (2.0 eV) which is consistent with the trend because it shows the onset of

5f electron occupation. The Pa 5f electrons determine the conduction band maximum and play a

significant role in the electronic properties of these systems. The Pa f electrons are localized and

result in insulating behavior. This corroborates other results where the crystal structure and the

volume of actinides exhibit different bonding configurations.17

G. Energy of formation of PaO and PaO2

The energy of formation for the oxides is calculated using equation 1. The total energy of the

constituent elements is deducted from the total energy for the system (PaO or PaO2). In Table VI,

we present the energy of formation for the oxides using the LDA + U and GGA + U within the
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FIG. 9: (Color online) The total and projected densities of states (DOS) for the SP and SP + SOC

of PaO2 in the AFM ordered phase within the descriptions of GGA and GGA + U

approximations at an energy cutoff of 550 eV. All the DOS are calculated at the optimized

geometry for the given density functional and magnetic ordering. The Fermi energy level is set at

zero and is represented by the dashed line. It contains two unique Pa atoms (label Pa1 and Pa2)

due to the spin configuration and the O atoms are same.17
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SOC and SP schemes. The calculated energy of formation for PaO and PaO2 using SOC is lower

than that obtained with SP within the DFT + U (LDA and GGA). This implies that the SOC case

is more energetically favorable than the SP case. The formation for PaO and PaO2 is exothermic.

This indicates that metallic Pa will oxidize in the presence of oxygen. The energy of formation of

PaO2 is lower than that of the PaO. The implication is that PaO readily oxidizes in the presence

of oxygen to form the more energetically favorable di-oxide. Our theoretical results is in line with

experimental observation, that the oxides are more favorable than the parent metal and that PaO2

is more stable than PaO in the presence of oxygen.15

TABLE VI: The calculated Energy of formation (eV) for PaO and PaO2 using LDA + U and

GGA + U within the SOC and SP scheme.

Compound Ue f f LDA(SOC) LDA(SP) GGA(SOC) GGA(SP)

PaO 2.5 −6.19 −3.89 −5.43 −3.19

PaO2 2.0 −12.60 −10.30 −11.62 −8.93

H. Phonon studies of PaO and PaO2

The phonon dispersion for Pa, PaO and PaO2 is calculated within the GGA (PBE) scheme.

The lattice dynamics studies is not carried out for both the LDA and DFT + U scheme. This is

because, the inclusion of U parameter does not lead to significant changes in the phonon frequency

of these systems. The phonon dispersion calculated exploits the linearity relationship between the

induced forces on the atoms in the crystal and the displacement of the atoms from their equilibrium

position, which holds within the harmonic regime.

In Fig. 11a, no negative phonon modes for Pa are observed in the phonon dispersion plot,

hence this structure is dynamically stable. The maximum frequency for the acoustic modes is

about 4.5 THz due to the large mass of Pa atom which does not undergo significant perturbation.

In Fig. 11b, no negative phonon modes for PaO are observed in the phonon dispersion plot,

hence this structure is dynamically stable. The low lying frequency modes are governed by the

dynamics of heavy Pa atoms. The higher frequencies, on the other hand, are governed by the

dynamics of the oxygen atoms which are much lighter compared to Pa atoms. The difference
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in the frequency of oxygen atoms compared to the Pa atoms is rather large. This suggests that

instability in the system can arise from a small perturbation of the crystal structure.

In Fig. 11c, no negative phonon modes for PaO2 are observed in the phonon dispersion plot,

hence this structure is dynamically stable. The low lying frequency modes are governed by the

dynamics of heavy Pa atoms, whereas the higher frequencies are governed by the dynamics of

lighter oxygen atoms. The difference in the frequency of oxygen atoms compared to the Pa atoms

is lower compared with PaO. This implies that the extra oxygen atom has led to the stabilization

of the structure.

IV. CONCLUSIONS

The structural, mechanical and electronic properties of Pa have been studied within the DFT

method. Inclusion of SP and SOC give an adequate description of this system. As far as the

structural properties are concerned, the inclusion of the Hubbard U parameter is not relevant here.

We determined that Pa is elastically and dynamically stable.

The structural, mechanical and electronic properties of PaO have been studied within the

DFT + U approximation. The inclusion of SP and SOC gives an adequate description of this

system. Our calculations show that the properties of this system can be described accurately with

an effective U parameter of 2.5 eV within the GGA + U. The results using LDA + U were unsat-

isfactory. PaO is dynamically stable as shown by the phonon dispersion data. PaO is also stable

to isotropic stress because of its positive bulk modulus. However, PaO has a low shear modulus.

The charge density plot shows the presence of strong ionic bonding in this system. We conclude

that PaO structure will readily oxidize to PaO2 structure, which is the more stable form. This is in

line with observed experimental results.

The SOC inclusion together with the Hubbard U parameter is essential for the accurate deter-

mination of the total energy, electronic and magnetic properties of PaO2. Within the LDA + U

(SOC scheme) at U = 4.0 eV, the lattice parameter is 5.501 Å, which is approximately equal to

the experimental result. However, the results for the band gap and the energy of formation are

found to be unsatisfactory within this scheme. On the other hand, within the GGA + U (SOC

scheme) at U = 2.0 eV, the lattice parameter is 5.553 eV, which is approximately 0.78 % above the

experimental value. Within this scheme we derive accurate results for the electronic, elastic and

mechanical properties of the system. This method predicts PaO2 as an insulator with a band gap
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of 3.48 eV.

Hence, to obtain an accurate description of the PaO and PaO2, we have shown that the in-

clusion of the Hubbard U parameter is paramount. In general, the GGA is better suited for the

incorporation of the Hubbard U parameter for these systems.
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Figure 10. The total and projected densities of states (DOS) for the SP and SP + SOC of PaO2 in the AFM ordered phase within the
descriptions of GGA and GGA + U approximations at an energy cutoff of 400 eV. All the DOS are calculated at the optimized geometry for
the given density functional and magnetic ordering. The Fermi energy level is set at zero and is represented by the dashed line. It contains
two unique Pa atoms (label Pa1 and Pa2) due to the spin configuration and the O atoms are same. (a) SP + SOC U = 0. (b) SP U = 0.
(c) SP + SOC U = 3. (d) SP U = 3. (e) SP + SOC U = 5.5. (f) SP U = 5.5.

SP schemes. The calculated energy of formation for PaO and
PaO2 using SOC is lower than that obtained with SP within the
DFT + U (LDA and GGA). This implies that the SOC case is
more energetically favorable than the SP case. The formation
of PaO and PaO2 is exothermic. This indicates that metallic
Pa will oxidize in the presence of oxygen. The energy of
formation of PaO2 is lower than that of PaO. The implication
is that PaO readily oxidizes in the presence of oxygen to

form the more energetically favorable dioxide. Our theoretical
results are in line with experimental observations, that the
oxides are more favorable than the parent metal and that PaO2
is more stable than PaO in the presence of oxygen [15].

3.8. Phonon studies of PaO and PaO2

The phonon dispersion for Pa, PaO and PaO2 is calculated
within the GGA (PBE) scheme. Lattice dynamics studies

9

FIG. 10: (Color online) The total and projected densities of states (DOS) for the SP and

SP + SOC of PaO2 in the AFM ordered phase within the descriptions of GGA and GGA + U

approximations at an energy cutoff of 400 eV. All the DOS are calculated at the optimized

geometry for the given density functional and magnetic ordering. The Fermi energy level is set at

zero and is represented by the dashed line. It contains two unique Pa atoms ( label Pa1 and Pa2)

due to the spin configuration and the O atoms are same.
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FIG. 11: (Color online) The phonon dispersion plot of PaO and PaO2, showing the lattice

dynamics of Pa and O atoms.
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This concludes the studies on Pa and its oxides. The next chapter presents a comparative

study of various actinide mononitride and dinitride compounds. It shows the significance of

the Hubbard U parameter in the proper description of these actinide systems with 5f electrons.

These material have important technological application in nuclear energy generation (consid-

ered as possible nuclear fuel material).
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Chapter 6

GGA + U studies of the early actinide
mononitrides and dinitrides

This section was published as [10] ”Obodo, K. O. and Chetty, N. (2013). GGA + U studies of the

early actinide mononitrides and dinitrides. Journal of Nuclear Materials, 442(1-3), 235244.”

99

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



GGA + U studies of the early actinide mononitrides and
dinitrides

K. O. Obodo1

E-mail: Kingsley.Obodo@up.ac.za
1Physics Department, University of Pretoria, Pretoria 0002, South Africa; 2National Institute
for Theoretical Physics,Johannesburg, 2000, South Africa

N. Chetty1,2

E-mail: Nithaya.Chetty@up.ac.za
1Physics Department, University of Pretoria, Pretoria 0002, South Africa; 2National Institute
for Theoretical Physics,Johannesburg, 2000, South Africa

Abstract. We present a detailed comparative study of the electronic and mechanical
properties of the early actinide mononitrides and dinitrides within the framework of the
Perdew-Burke-Ernzerhof generalized gradient approximation (GGA [PBE]) and GGA + U
implementations of density functional theory with the inclusion of spin-orbit coupling.
The dependence of selected observables of these materials on the effective U-parameter is
investigated in detail. The properties include the lattice constant, bulk modulus, charge density
distribution, hybridization of the atomic orbitals, energy of formation and the lattice dynamics.
The inclusion of the Hubbard U parameter results in a proper description of the 5f electrons,
and is subsequently used in the determination of the structural and electronic properties of
these compounds. The mononitrides and dinitrides of the early actinides are metallic except for
UN2, which is a semiconductor. These actinide nitrides are non-magnetic with the exception of
UN, NpN, PuN, NpN2 and PuN2 that are magnetic systems with orbital-dependent magnetic
moments oriented in the z-axis. We observed that ThN2 is elastically unstable to isotropic
pressure. We discovered that UN2 is thermodynamically unstable, but may be stabilized by N
vacancy formation.
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1. Introduction

The investigation of actinide-based materials is an area of active research. [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11] The effects of 5f-electrons in the actinide nitrides are of significant interest to
both theorists and experimentalists, [12, 13, 14] because exotic properties often arise from
the strong electron-electron interactions paving the way for interesting physics and novel
applications. The actinide metals exhibit increased 5f electronic localization with increasing
atomic number which has a direct bearing on the orbital overlap and electronic band structure
of these systems.

Actinide nitrides are set to become a major component in large-scale energy generation
devices in nuclear power stations as an alternative to the current fuel sources that are being
used. [15, 16] The Generation-IV nuclear reactors (fast neutron fission reactors) are developed
to use the actinide nitrides as the primary fuel source. [17] Actinide nitrides release a larger
amount of fissile products (neutrons) compared to its consumption, and the long-lived fission
products have a higher probability to transmute leading to higher usable energy densities.

Based on the importance of the actinide nitrides from both a scientific and technological
point of view, the understanding of the electronic and structural properties is important to
harness, control, and effectively use these materials. The presence of 5f electrons poses
a considerable challenge in the theoretical description of the actinide compounds. This
is mainly due to the improper account of the electron-electron interactions by the local
spin density approximation (LSDA) and the generalized gradient approximation (GGA)
approaches implemented in density functional theory (DFT). The DFT + U [18, 19, 20]
(LDA + U and GGA + U) approach has been shown to overcome some of the shortcomings
and shows a lot of promise in the studies of the 5f electron systems.

In this work, the actinide nitrides of interest are the early actinide mononitrides (AcN)
and dinitrides (AcN2) where (Ac = Th, Pa, Np, U and Pu). At low temperatures, the AcN
crystallizes in the NaCl crystal structure, while the AcN2 mainly exists in the fluorite structure.
There also exist other actinide compounds that crystallize in the NaCl crystal structure such
as the mono-carbides, mono-pnictides, mono-chalcogenides, etc.

To the best of our knowledge, a detailed analysis of these systems within the DFT + U
approach is lacking. [21, 22, 9, 23] Petit et al. [9] investigated some actinide mono-carbides
and mononitrides using the self-interaction corrected (SIC) local spin-density approximation.
These authors observed ionic character in the mononitrides, increased localization in PuN,
and an itinerant picture for UN. Silva et al., [4] recently synthesized NpN and confirmed the
existence of other phases of neptunium nitrides using both experimental and computational
techniques. These authors showed the importance of the Hubbard U-parameter (accounting
for onsite interactions) along with relativistic effects to accurately describe these compounds.

Atta-Fynn et al. [21] treated all the nitrides on equal footing at different magnetic
configurations with and without spin orbit coupling (SOC). They showed that the type-I anti-
ferromagnetic (AFM) configuration gives similar results to the type-II AFM configuration and
results in a more energetically favorable configuration with the inclusion of SOC.

In our work, we have therefore considered the type-I AFM structure within the projector
augmented wave (PAW) method to analyze the mononitride systems. We compare our results
with available experimental data as well as with other theoretical results. All calculations
are based on density functional theory with and without the inclusion of the Hubbard U-
parameter (DFT + U). We evaluate the heat of formation, the structural, electronic, elastic,
and mechanical properties of the various actinide nitrides. Of interest is how well our zero
temperature DFT + U computations predict these properties. Previous studies proposed that
PaN has a more covalent character compared to UN, NpN, PuN that are predominantly ionic.
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Therefore, by scrutinizing the valence charge density distributions, we examine the AcN and
AcN2 compounds to give an account of the bonding character of these systems. The Hubbard
U-parameter is shown to be important in the prediction of the structural properties of the
actinide nitrides. The lattice dynamics of these systems gives an indication of the mechanical
stability.

The rest of this paper is organized as follows: in Section 2, we present a description
of the computational methodology. The calculated ground state properties of AcN and
AcN2 compounds, and the effect of the Hubbard U-parameter are given in Section 3 and 4
respectively. Finally, we make our concluding remarks in Section 5.

2. Computational Details

The calculations are performed using density functional theory [24] as implemented in the
VASP code [25]. The PAW approach of Blöchl in the implementation of Kresse and Joubert
is used to describe the electron wave functions. [26] The semi-core electrons and the valence
electrons of the actinides are represented by plane waves. The PBE [27] form for the GGA
and the GGA + U is used in the description of the exchange-correlation potential.

The unit cell parameters and atomic positions are optimized with an energy tolerance of
10−7 eV. The calculations are performed with an energy cut-off of 500 eV and 550 eV for AcN
and AcN2 respectively. The Brillouin zone (BZ) integrations are performed using a spacing
of 0.2 Å−1 for the Monkhorst-Pack [28] grid. Fractional electron occupancies and integration
of the bands at the Fermi level are determined using the Methfessel-Paxton smearing method
with a smearing parameter of 0.2 eV. The AcN and AcN2 with SOC (spin-orbit coupling)
calculations are performed within the constraints of symmetry. The lifting of the symmetry
constraints lead to no significant change in the total energy and electronic properties, with an
exception of PuN and UN2 were the calculation is performed with the symmetry constraints
lifted [3]. The total energy, electronic band structure and density of states (DOS) were
calculated using the tetrahedron integration method with Blöchl corrections.

We use the Dudarev et al. [29] simplified rotationally-invariant form for the Hubbard
correction to account for the on-site Coulomb interactions. This approach combines the
Hubbard U and Hund’s J to give the Ue f f = U − J. The rotational invariance is preserved
within this formalism because the U parameter depends on the trace of the occupation matrices
and their products. The generic expression for the energy functional in the DFT + U
formalism is represented by

EDFT+U = EDFT + EHub − Edc, (1)

where EDFT is the DFT (LDA or GGA) contribution to the total energy and EHub is
the electron-electron interaction from the Hubbard term. Edc is a double counting term,
introduced because part of the electron-electron interaction is taken into account in EDFT . The
last two terms depend on the occupation matrix of the correlated orbitals of the system under
consideration. In this study, the calculated Hubbard Ue f f parameter (henceforth referred to
as the Hubbard U) is optimized with respect to the experimentally determined lattice constant
for each of the actinide nitrides that we considered. The optimized U parameter is used to
determine the structural, electronic, elastic and mechanical properties of the compounds. This
results in a better qualitative and quantitative description of the various properties.

Relativistic effects are important for the actinides. This leads to lower calculated ground
state total energies compared to non-relativistic calculations. In this study, we present results
using the GGA and the GGA + U forms for the exchange correlation potential together with
spin-polarization (SP) and spin orbit coupling (SOC).
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A method using the least squares fit, [30] as implemented in the MedeA-MT module, was
used to obtain the elastic constants. The elastic properties are calculated from the Hill values,
which are a geometric mean of the Voigt and Reuss values. The eigenvalues of the stiffness
matrix give an indication of the mechanical stability of the systems under consideration. The
Hill values [31] were used in the estimation of longitudinal, shear and mean sound velocities
and the Debye temperatures. [32]

The energy of formation for each structure was calculated by taking the difference
between the total energy of the actinide compound and the energies of its constituents in
their corresponding bulk elemental forms:

∆E f = Etot
(AcNn) − NAc Ebulk

(Ac) − NN Ebulk
(N) , (2)

where n is either 1 or 2 for the mononitride and dinitride, respectively, and NAc and NN are the
number of Ac atoms and N atoms in the calculational unit cell of the compound, respectively.
Ebulk

(Ac) is the energy per Ac atom in its ground state structure, and Ebulk
(Ac) is the energy per N

atom in the nitrogen molecule.
The phonon frequencies are calculated using the direct approach of lattice dynamics

based on linear response theory, as implemented in the MedeA-PHONON package. [33]
This exploits the fact that within the harmonic regime, there is a linear relationship between
the induced forces on the atoms and the displacement of the atoms from their equilibrium
positions. We discovered that using GGA + U only has a marginal effect on the quantitative
description of the phonon frequencies. Therefore, we have only presented results for the
phonon frequencies within the GGA approximation.

We applied our methods to the study of the ferromagnetic (FM) and the antiferromagnetic
(AFM) configurations for the actinide mononitrides and dinitrides. The non-magnetic (NM)
systems consistently resulted in higher energies of formation for all the structures considered.
Therefore NM results are not presented in this study.

3. AcN

The AcN crystal structures are presented in Fig. 1. The ferromagnetic phase is the cubic NaCl
structure with the Fm-3m space group, and the antiferromagnetic phase is cubic NaCl with
the Pm3m space group.

3.1. Energy of Formation

In Table 1, the calculated equilibrium lattice constant, energy of formation, magnetic moment,
bulk and shear moduli, and Debye temperature are presented. The energy of formation for all
the AcN investigated, calculated using equation 2, is negative. This implies that the formation
of these structures is energetically favorable.

Also, in Table 1 we observe that ThN and PaN evolve to their non-magnetic ground states
with the AFM structure being slightly more energetically favorable than the FM structure.
UN to PuN give various degrees of magnetization due to the 5f orbitals, with the magnetic
orientation along the z-axis in both the AFM and FM ordering. This is attributed to strong
electron-electron correlations of the 5f electrons at each atomic site resulting in net local
magnetic moments. We observe that the degree of magnetization is over-estimated using the
PAW (GGA + U) approach compared to all-electron (AE) calculations and experimental data.
For the UN to PuN compounds, the total energy with PAW (with and without the Hubbard U)
results in the FM structure having the lowest energy of formation.
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Table 1: The Hubbard U (eV), optimize lattice parameters a (in Å), calculated energy of
formation ∆E f (eV), total magnetic moment µB (Bohr magnetons), bulk and shear moduli
(GPa), and the Debye temperature θD (K) using GGA + U within the SOC scheme. Where
AE results is from Ref [21] and the PAW results is our data.

Compound Method Theory U a0 ∆E f µB bulk shear θD

ThN
PAW AFM+SOC 0 5.172 -3.048 0 178 83 340.7

FM+SOC 0 5.171 -3.040 0 178 82 338.4

AE AFM+SOC 0 5.175 – 0 170 – –
FM+SOC 0 5.175 – 0 162 – –

PaN
PAW

AFM+SOC 0 4.952 -3.225 0 219 95 358
FM+SOC 0 4.951 -3.228 0 220 88 345.8

AFM+SOC 1 4.965 -2.636 0 223 102 371.1
FM+SOC 1 4.965 -2.639 0 224 94 357.3

AE AFM+SOC 0 4.947 – 0 200 – –
FM+SOC 0 4.953 – 0 210 – –

UN
PAW

AFM+SOC 0 4.871 -2.643 0 201 72 305.2
FM+SOC 0 4.872 -2.663 1.0976 206 85 316.2

AFM+SOC 1 4.903 -1.685 0 196 63 288.5
FM+SOC 1 4.889 -1.713 1.3713 198 52 262.9

AE AFM+SOC 0 4.873 – 0 221 – –
FM+SOC 0 4.873 – 0.96 219 – –

NpN
PAW

AFM+SOC 0 4.863 -2.299 0 178 78 317.3
FM+SOC 0 4.859 -2.341 2.4658 178 79 320.4

AFM+SOC 1 4.897 -1.268 0 167 71 303.5
FM+SOC 1 4.909 -1.299 3.0399 145 49 253.1

AE AFM+SOC 0 4.863 – 0 195 – –
FM+SOC 0 4.863 – 2.45 183 – –

PuN
PAW AFM+SOC 0 4.907 -6.580 0 159 86 328.1

FM+SOC 0 4.916 -6.404 4.2438 147 89 335

AE AFM+SOC 0 4.9531 – 0 141 – –
FM+SOC 0 4.9740 – 4.26 145 – –
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(a) AcN-fm (b) AcN-afm

Figure 1: Crystal Structure for AcN compounds in the FM and AFM phase

3.2. Structural Properties

We present the lattice constants calculated using the PAW method (GGA with and without
the inclusion of Hubbard U-parameter) in Table 1. We find a favorable comparison with the
AE [21] results for the various AcN compounds considered. For ThN, we obtain reasonable
results without the inclusion of the Hubbard U parameter. This is understandable since Th
lacks 5f electrons. Also for PuN, the lattice constant is not affected much by the inclusion of
the U. This is understood in terms of its relative position in the actinide series.

The inclusion of the Hubbard U parameter of 1 eV in UN and NpN results in lattice
constants that compare very well with experiment. The experimentally determined lattice
constant [34, 35] and the calculated result of our lowest energy structure in parenthesis for
ThN, UN, NpN and PuN are 5.154 Å (5.172 Å), 4.889 Å (4.889 Å), 4.894 Å (4.909 Å) and
4.905 Å (4.907 Å) respectively.

3.3. Elastic Properties

The calculated bulk modulus, shear modulus and Debye temperature for the AcN compounds
are presented in Table 1. They are all positive, which indicates that the compounds are all
elastically stable. The inclusion of the U parameter leads to an overall better agreement of the
calculated elastic properties with other available theoretical and experimental data [35, 36,
21, 7]. For instance, the experimentally determined bulk modulus and the calculated result of
our lowest energy structure in parenthesis for ThN and UN are 175 GPa [37] (178 GPa) and
193 GPa [35] (198 GPa) respectively.

PaN has the highest Debye temperature θD of 358 K of the systems that we considered.
This is associated with complex covalent bonding behavior in this system that will be further
explored in our discussion on the valence charge density. PaN, followed by UN, have the
highest calculated bulk modulus that also points to the inherent covalent bonding in these
systems.
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3.4. Density of States

The partial density of states (PDOS) for the 5f and 6d states for the actinides and the 2p states
of the nitrogen are presented for the ground state AcN compounds. All the compounds studied
within GGA and GGA + U are found to be metallic. There is a systematic increase in the
5f electron density of states at the Fermi level with increasing atomic number, and there is a
contribution from the N 2p states below the Fermi level.

As shown in Fig. 2 for the AFM structure of ThN, the metallicity of ThN is determined
mainly by the hybridization of the 5f and 6d states from the actinide with a very minute
contribution from 2p states of the nitrogen at the Fermi level.
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Figure 2: (Color online) Partial density of states for ThN in the AFM structure. The Fermi
level is the vertical line through E = 0

From PaN to PuN, we have a higher 5f electron contribution at the Fermi level compared
to the other orbitals in both the GGA and GGA + U descriptions shown in figures 3. This
is attributed to increased localization of the 5f electrons in the actinides. However, other
experimental and theoretical studies [13, 14, 6] of UN have confirmed that the U 5f states
have some itinerant character that is attributed to the presence of U 5f states at the Fermi-level
therefore preserving some band character. [14]

In Fig 4, we present the partial DOS for PuN in the AFM structure. There is a significant
difference in the peaks of the two actinide atoms of the 5f states (minority and majority spin)
compared to the AFM PDOS of ThN that has no difference in the peaks. This is an indication
of AF magnetic ordering in this system. Similar features are observed in the AFM structure
of UN to PuN.
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(a) PaN U = 0 (b) PaN U = 1 (c) UN U = 0

(d) UN U = 1 (e) NpN U = 0 (f) NpN U = 1

Figure 3: (Color online) Partial density of states for PaN, UN and NpN in the FM structure.
The Fermi level is the vertical line through E = 0

3.5. Valence charge densities

In Fig. 5, we show the valence charge density plots for the compounds that we investigated.
This gives us an indication of the character of the bonding. The charge density distribution
is computed in the (001) plane for the AFM configuration. The scale in Fig. 5f is such that
blue is devoid of electrons and red indicates a high concentration of electrons. The charge
densities plotted are for the valence states summed over both spin orientations.

In general, we observe near-spherical charge density distributions around the actinide and
nitrogen atoms with significant charge depletion between the atoms, which is characteristic
of the rock-salt structure with predominant ionic bonding. Between the actinide and nitrogen
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Figure 4: (Color online) Partial density of states for PuN in the AFM structure. The Fermi
level is the vertical line through E = 0

atoms there is a subtle charge density bridge, attributed to the slight covalent character in the
actinide nitrides. There is charge transfer from the actinide metals to the non-metallic nitrogen
atoms. As the atomic number increases (Th to Pu) resulting in higher valence localized 5f
electrons, there is a noticeable increase in the charge accumulation at the actinide site.

3.6. Phonon Studies

In Fig. 6, no negative phonon modes for the various AcN structures are observed in the phonon
dispersion plot. Therefore, these compounds are dynamically stable. The low-lying frequency
modes are governed by the dynamics of the heavy Ac atoms, and the higher frequencies by
the lighter N atoms. There is a significant difference in the frequency of N atoms compared
to the Ac atoms due to the large mass differences. This suggests that instability in the system
can arise from a small perturbation of the crystal structure.

PuN has the lowest acoustic velocity corresponding to the lowest bulk modulus and
overall strength of all the AcN systems that we studied. There are ”flatish” sections of the
optical branches in all systems that suggest low group velocities for these modes involving N.

4. AcN2

In Fig. 7, we present the AcN2 crystal structures. The ferromagnetic (FM) phase is the cubic
fluorite structure with space group Fm-3m, while the antiferromagnetic phase (AFM) is a
double tetragonal unit cell with space group P4/mmm, and the magnetic ordering is in the
z-axis.
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(a) ThN (b) PaN (c) UN

(d) NpN (e) PuN
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Figure 5: Valence charge density in the (001) direction of the AFM structure for AcN
crystalline structures, where the charge distribution at the center and corner of the slice is
from N atom, and that at face of the slice is from the Ac atom. Color scale: deep blue
represents low valence charge while red represents a high concentration of valence charge.

4.1. Energy of Formation

In Table 2, the calculated equilibrium lattice constant, energy of formation, magnetic moment,
bulk and shear moduli, and Debye temperature are presented. The calculated energy of
formation for the AcN2, using equation 2, is negative, which implies that the structures are
energetically favorable. The difference in the energy of formation of the AcN2 within the GGA
approach using the AFM and FM structures is about one-hundredth of an eV. The introduction
of the Hubbard U parameter results in a difference of about one-tenth of an eV in the energy of
formation between the AFM and the FM structures. We conclude that the AFM structures are
slightly more energetically favorable with the exception of ThN2 for which the FM is more
energetically favorable.

ThN2 to UN2 compounds evolve to the non-magnetic ground state irrespective of the
starting magnetic configuration. We observe that the magnetic orientation has little effect on
the structural, elastic and mechanical properties. For NpN2 and PuN2, the AFM structure
results in zero net magnetization. But, the FM structure for NpN2 gives a net magnetic
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Figure 6: Phonon dispersion for AcN crystalline structures

moment of 0.19 µB and 0.95 µB for GGA and GGA + U respectively. The FM structure
for PuN2 gives a net magnetic moment of 1.74 µB for GGA and 2.04 µB for GGA + U. The
magnetic orientation in these compounds is along the z-axis.

Comparing the energy of formation for the actinide mononitrides and dinitrides, we
observe that the dinitrides are more energetically stable with the exception of ThN2 that is
later shown to be elastically unstable. PuN2 has a slightly lower energy of formation than
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(a) AcN2-fm (b) AcN2-afm

Figure 7: Crystal Structure for AcN2 compounds in the FM and AFM phase

PuN.

4.2. Structural Properties

In Table 2, we present the calculated equilibrium lattice constant, magnetic moment, bulk
and shear moduli and Debye temperature. The lattice constant using the PAW approach
obtained for the various AcN2 compounds considered is calculated using GGA and GGA + U.
The experimentally determined lattice constant and the calculated result with the Hubbard U
parameter of our lowest energy structure in parenthesis for UN2 [34, 38] and NpN2 [4] are
5.308 Å (5.302 Å) and 5.3236 Å (5.32 Å) respectively. To the best of our knowledge, no
experimental data on the lattice parameters of ThN2, PaN2 and PuN2 is available.

4.3. Elastic properties

The AcN2 considered are all elastically stable except for ThN2, which is elastically unstable
to shear stress due to the negative shear modulus. The Debye temperature therefore cannot
be calculated for this system. This is consistent with experimental findings that suggest the
existence of two stable alloys of thorium and nitrogen, namely ThN and Th3N4. [39]

The bulk and shear moduli increases from ThN2 to UN2, then subsequently decreases to
PuN2. The calculated bulk modulus, shear modulus and Debye temperature with and without
the U parameter for PaN2 and UN2 are consistent for the AFM and the FM phases as shown
in Table 2. Also, for NpN2 without the U parameter, the elastic properties are consistent for
the AFM and FM phase. However, we discovered that the FM phase for both NpN2 and PuN2
are highly sensitive to structural optimization, which leads to significant structural distortion.

4.4. Density of States

The partial density of states (PDOS) for the 5f and 6d states for the actinide atom and the 2p
states of the nitrogen atom is presented for AcN2 in the ground state structures. We observe
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Table 2: The Hubbard U (eV), optimize lattice parameters a (in Å), calculated energy of
formation ∆E f (eV), total magnetic moment (scalar norm) µB (Bohr magnetons), bulk and
shear moduli (GPa), and the Debye temperature θD (K) using GGA + U within the SOC
scheme.

Compound Theory U a0 ∆E f µB bulk shear θD

ThN2 AFM+SOC 0 5.660 -1.590 0.00 145.6 -9.4 –
FM+SOC 0 5.664 -1.636 0.00 150.0 -4.3 –

PaN2

AFM+SOC 0 5.429 -3.777 0.00 214.3 89.8 405.7
FM+SOC 0 5.418 -3.762 0.00 217.3 89.2 404.5

AFM+SOC 2 5.460 -2.551 0.00 216.9 87.1 401.1
FM+SOC 2 5.451 -2.532 0.00 217.3 81.5 388.5

UN2

AFM+SOC 0 5.275 -4.094 0.00 249.8 98.1 413.3
FM+SOC 0 5.271 -4.072 0.00 250.0 98.5 414.1

AFM+SOC 2 5.302 -2.135 0.00 249.2 89.1 395.7
FM+SOC 2 5.297 -2.088 0.00 251.7 89.3 396.0

NpN2

AFM+SOC 0 5.223 -3.089 0.00 235.2 93.7 402.4
FM+SOC 0 5.219 -3.015 0.19 237.4 94.3 403.7

AFM+SOC 3 5.320 0.086 0.00 198.6 68.4 347.5
FM+SOC 3 5.307 0.518 0.95 193.3 86.5 408.6

PuN2

AFM+SOC 0 5.215 -6.217 0.00 203.9 56.2 309.5
FM+SOC 0 5.222 -6.209 1.74 209.6 74.4 354.7

AFM+SOC 3 5.321 -3.303 0.00 149.3 39.6 263.8
FM+SOC 3 5.351 -2.854 2.04 163.2 68.1 342.6

that AcN2 within the GGA and GGA + U are metallic with the exception of UN2 which has
a band gap.

In Fig. 10, an insulating character is observed for UN2 with a GGA band gap of 0.56 eV
and an increase in the band gap to 0.64 eV on the inclusion of the Hubbard U of 2 eV. This is
comparable to the band gap obtained by Weck et al. [22] of 0.94 eV using the AE approach
and by Lu et al. [7] of 0.75 eV using a Hubbard U of 4 eV. If we consider the FM structure,
which is less energetically favorable, a GGA band gap of 0.73 eV and a band gap of 0.83 eV
on inclusion of the Hubbard U of 2 eV (figure not presented) is obtained. The top of the
valence band is determined mainly by the hybridization of the U 5f and N 2p states, while the
electronic properties of UN2 is governed mainly by the 5f states because they dominate the
conduction band minimum and valence band maximum.

The metallicity of ThN2 is determined mainly by the 2p states as shown in Fig. 8. There
is significant hybridization of the 5f and 6d states for the thorium atom and the 2p states of
the nitrogen atom at the Fermi level.

While in PaN2 as shown in Fig. 9, there is approximately equal participation of the 5f
and 6d states around the Fermi level compared to the other orbitals in both the GGA and
GGA + U. The inclusion of the Hubbard U of 2 eV leads to an increase in the 5f states in the
conduction band but no noticeable change at the Fermi level.
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Figure 8: (Color online) Partial density of states for ThN2. The Fermi level is the vertical
line through E = 0

The NpN2 and PuN2 compounds results in metallic behavior as presented in Fig. 11
and 12 with the Fermi level dominated by the 5f states. There is weak hybridization of the
actinide 5f and 6d states at the Fermi-level in NpN2 and a significant hybridization of the
actinide 5f and 6d states with the nitrogen 2p state in PuN2 compound.

4.5. Valence charge densities

In Fig. 13, we show the valence charge density plots for all the compounds considered to
investigate the bonding character. The density distribution is computed in the (100) plane
for the AFM configuration. We observe that the bonding character is not dependent on the
magnetic configuration of the systems that we investigated. The scale in Fig. 13f is such that
blue is devoid of electrons and red indicates a high concentration of electrons. The charge
densities plotted are for the valence states summed over both spin orientations.

We observe significant distortion in the spherical charge distribution around the actinide
compared to the nitrogen atoms. Between the actinide and nitrogen atom there is a subtle
charge density bridge, attributed to the slight covalent character in the actinide nitrides. This
charge density bridge along with the actinide charge density increases with increase in the
atomic number of the actinide metal (Th to Pu) compared to the rest of the interstitial region.
This results in increased covalent bonding character of the actinide nitride with increase in the
atomic number. However, the AcN2 studied are all predominantly ionic compounds.

4.6. Phonon Studies

The calculated phonon dispersion curves along the W-L-Γ-X-W-K directions for AcN2 are
presented in Fig. 14 within the GGA approach. Generally, the phonon frequencies for all
the compounds considered are split roughly into two halves, where the lower frequencies are
governed by the dynamics of the heavy Ac atoms and the higher frequencies by the dynamics
of the N atoms.

The AcN2 are dynamically stable with no negative phonon modes in the dispersion
plot with the important exception for UN2, which has a small fraction of imaginary phonon
frequencies. This is due to the transverse modes of the nitrogen atoms.
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(a) U = 0 (b) U = 2

Figure 9: (Color online) Partial density of states for PaN2. The Fermi level is the vertical line
through E = 0

(a) U = 0 (b) U = 2

Figure 10: (Color online) Partial density of states for UN2. The Fermi level is the vertical
line through E = 0
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(a) U = 0 (b) U = 3

Figure 11: (Color online) Partial density of states for NpN2. The Fermi level is the vertical
line through E = 0

(a) U = 0 (b) U = 3

Figure 12: (Color online) Partial density of states for PuN2. The Fermi level is the vertical
line through E = 0
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(a) ThN2 (b) PaN2 (c) UN2

(d) NpN2 (e) PuN2
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Figure 13: Valence charge density in the (100) direction of the AFM structure for AcN2
crystalline structures, where the charge distribution at the center of the slice is from Ac atom
and that at face of the slice is from the N atom. Color scale: deep blue represents low valence
charge while red represents a high concentration of valence charge.

This result contradicts the theoretical observation by Lu et al.[40] that predicts a
thermodynamically stable structure for UN2. Our result corroborates experimental evidence
by Rundle et al. [34], Tagawa et al. [15, 16] and more recent studies [41, 42] that suggests UN2
has never been prepared as a stoichiometric compound. Experimentally, it has been concluded
that the correct stoichiometry may be UN1.75. UN2 is nonstoichiometric and was assigned a
hypothetical CaF structure on the basis of the experimental data for the actinide dinitrides
with N/U= 1.75 − 1.78 with the understanding that the non-stoichiometry arises from the
presence of nitrogen vacancies in UN2. This is consistent with our theoretical observation
that the nitrogen atom is the source of the instability.

A trend of reduced gap in the phonon frequency between the modes of the heavy actinide

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



GGA + U studies of the early actinide mononitrides and dinitrides 18

W L Γ X W K
0

5

10

15

20

F
re

q
u

en
cy

 (
T

H
z)

(a) ThN2

W L Γ X W K
0

5

10

15

20

F
re

q
u

en
cy

 (
T

H
z)

(b) PaN2

W L Γ X W K-5

0

5

10

15

20

Fr
eq

ue
nc

y 
(T

H
z)

(c) UN2

W L Γ X W K
0

5

10

15

20

F
re

q
u

en
cy

 (
T

H
z)

(d) NpN2

W L Γ X W K
0

5

10

15

20

F
re

q
u

en
cy

 (
T

H
z)

(e) PuN2

Figure 14: Phonon dispersion for AcN2 crystalline structures

metal and the light nitrogen atom is observed with increasing atomic number. Also, the
difference in the frequency of nitrogen atoms compared to the actinide atoms is low compared
to their AcN analogue. This implies that the addition of the extra nitrogen atom to the structure
has led to the further stabilization of the structure.

5. Concluding remarks

We studied the ground state electronic, structural and mechanical properties of the AcN and
AcN2 early actinide nitrides. The calculated lattice parameters with the inclusion of the
Hubbard U parameter agree well with available experimental data where that data exists.
There is the exception of ThN, PuN and ThN2 compounds where GGA gives agreeable results
for the actinide mononitrides and dinitrides. In general, all the actinide nitrides studied are
energetically favorable, and are elastically and mechanically stable with the exception of ThN2
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that is unstable to isotropic pressure. Notably UN2 is thermodynamically unstable and has
been speculated to stabilize under N-vacancy formation. This will be investigated in a future
study.

Comparison of the calculated and experimental magnetic properties of these systems
shows that the GGA + U with and without SOC gives a good qualitative account of the
properties compared with experiment, but not an accurate quantitative account. Therefore,
going beyond DFT + U is important to quantitatively determine the magnetic moments.

An analysis of the valence charge density distribution of the actinide nitrides shows the
presence of ionic bonding predominantly, with the dinitrides having higher covalent character
compared to the mononitrides. Also, we observe a consistent increase in the charge density
distribution at the actinide sites for the actinide mononitrides and dinitrides with increasing
atomic number.

All the actinide nitrides considered are metallic in nature with the exception of UN2.
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Based on the discussion from the last four chapters, the general conclusions are drawn

about the various actinide systems investigated. These are given in the next chapter.
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Chapter 7

General conclusions

In this study, we use first principle pseudopotential-based approach within the DFT and DFT+U

based approaches to determine the total energy for various actinide systems. The fully con-

verged total energy with respect to the kinetic energy cutoff and k-points sampling is used to

determine the structural, mechanical, elastic and electronic properties. The following moti-

vated the study: (i) the search for ordered alloys of Th-Ti systems, (ii) the understanding of

Th-N based compounds and (iii) the effect of 5f electrons on the actinide systems.

Conclusions drawn from these studies are given at the end of each chapter focused on the

results and discussion. This chapter presents the highlights of the study, which are divided are

into two broad headings: (i) Thorium and its alloys, (ii) Other actinide compounds.

7.1 Thorium and its alloys

In this section the inclusion of the effective Hubbard U parameter for the accurate determination

of the systems under investigation was found to be insignificant. This is due to the absence of

an 5f electron in the thorium system.

This work is motivated by the usefulness of various compounds of Th and N in the gen-

eration of energy. Also, it validates the ab initio technique used in the study. Th3N4, Th2N3

and Th2N2NH systems were investigated to determine the structural, elastic, and electronic

properties and the formation energy of these Th-N based compounds. The inclusion of SP and

SOC results in no significant change in the calculated properties of these compounds. There-

fore, the non-magnetic case was used in this investigation. We determined that Th-N based

compounds are elastically stable, with a negative heat of formation. Th3N4 has the lowest
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value of a0, followed by Th2N3, then Th2N2NH. Th3N4 is the most energetically stable nitride

of thorium considered. Using the valence charge density distribution, the bonding properties

were accurately determined, which shows the presence of a predominantly ionic bonding char-

acter. Th3N4 and Th2N2NH are insulating, while Th2N3 is metallic. The insulating character

of Th2N2NH, which is crystallographically similar to the metallic sesquinitride is attributed to

the effect of the -(NH) group on the electronic structure. There is significant hybridization of

the thorium 6d and 5f states with the nitrogen 2p in the Th-N based compounds

Next, the elemental, 50:50 and off 50:50 Th-Ti systems were investigated in order to de-

termine the possibility of formation of an ordered alloy involving a ThTi system. This work

is motivated by the usefulness of various alloys of Th and Ti. The structural stability was es-

tablished using arguments based on elastic constants, phonon frequencies, electron localization

function, valence charge density, band structure, density of states and heat of formation. Using

the valence charge density and electron localization function plots, the bonding properties were

accurately determined. The bonding character is described further from the electronic proper-

ties. From the MT-module, the elastic properties were determined. The calculation of elastic

properties and phonon dispersions correctly determined the elastic stability and dynamic sta-

bility for ThTi3 (in the Cr3Si structure). ThTi3 (in the Cr3Si structure) was found to be metallic.

Using arguments based on the calculated heat of formation, the investigated structure is pre-

dicted to be meta-stable.

7.2 Other actinide compounds

In this section the inclusion of the effective Hubbard U parameter for the accurate determination

of the systems under investigation was found to be essential. This is due to the presence of a

partially filled 5f orbital in the early actinide system.

The structural, mechanical and electronic properties of Pa, PaO and PaO2 have been studied

within the DFT and DFT+U approach. As far as the structural properties for Pa are concerned,

the inclusion of the Hubbard U parameter is not relevant here, but has been found relevant to

describe PaO and PaO2 accurately. Pa, PaO and PaO2 are elastically and dynamically stable.

They are all metallic within the DFT approach. The inclusion of the effective Hubbard U pa-

rameter results in a band gap of 3.48 eV for the PaO2 system using PBE (GGA). To accurately

describe PaO and PaO2, the inclusion of the effective Hubbard U parameter is essential.
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Next, the ground state electronic, structural and mechanical properties of the early actinide

mononitrides and dinitrides were studied using DFT+U. The calculated lattice parameters with

the inclusion of the Hubbard U parameter agree well with available experimental data where

that data exists. There is the exception of ThN, PuN and ThN2 compounds where GGA gives

acceptable results for the actinide mononitrides and dinitrides. In general, all the actinide ni-

trides studied are energetically favorable, and are elastically and mechanically stable, with the

exception of ThN2 that is unstable to isotropic pressure. Notably, UN2 is thermodynamically

unstable and has been speculated to stabilize under N-vacancy formation. This will be investi-

gated in a future study. Comparison of the calculated and experimental magnetic properties of

the actinide nitrides indicates that the GGA + U with and without SOC gives a good qualitative

account of the properties compared with experiment, but not an accurate quantitative account.

Looking at the valence charge density distribution of the actinide nitrides, the presence of ionic

bonding is predominant with the dinitrides having higher covalent character compared to the

mononitrides. Also, there is a consistent increase in the charge density distribution at the ac-

tinide sites for the actinide mononitrides and dinitrides with increasing atomic number. All the

actinide nitrides considered are metallic in nature, with the exception of UN2.

7.3 Conclusions

Firstly, the electronic and elastic properties of Th-N based alloys have been studied in detail.

We established that Th2N2(NH) is insulating, unlike the crystallographically equivalent Th2N3,

which is metallic. Next, we have demonstrated that the formation of an ordered alloy of a

Th-Ti based compound is plausible. This provided information on the electronic, elastic and

mechanical properties of this ordered alloy. This has furnished more information on the bulk

systems of these compounds.

Thereafter, we investigated the effect of the Hubbard U parameter on the Protactinium and

its oxides, and various actinide nitrides. We find that to accurately describe these systems the

inclusion of the U parameter is essential. Finally, a comparative study was presented on the

early actinide mononitrides and dinitrides.
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7.4 Future investigations

The various studies undertaken open up an avenue for further investigations. Future work

involves searching for other candidate stoichiometry structure of various actinide elements and

other alloying elements. The stability of the ordered alloys would be investigated using the

method presented in chapter 4.

The investigation of various actinide systems will be carried out. This will involve studying

how the Hubbard U parameter describes the various actinide carbides. An in-depth analysis of

UN2, looking at the effect of pressure, temperature on the stabilization of the UN2 structure

will be undertaken. Use of other available techniques such as dynamic mean field theory, GW

approach, etc. to investigate the electronic and magnetic properties of actinide compounds that

fails using the DFT+U approach will be considered.
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