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ABSTRACT  

The function concept is one of the most important concepts in the learning of mathematics 

(Dubinsky & Harel, 1992), yet it is considered by many researchers to be one of the least 

understood and most difficult concepts to master in the learning of high school mathematics 

(Eisenberg, 1992, Sfard, 1992). To this end, problems concerning its teaching and learning 

are often confronted (Mann, 2000) and few teachers know how learners come to understand 

functions (Yoon, 2007). As a result, most teachers teach functions using the conventional 

approach which starts by stating definitions followed by examples and then a few 

applications. The nature of this approach has not encouraged teachers to engage learners and 

their ways of reasoning in knowledge construction and adequately addressing their 

difficulties. 

  

The purpose of this study was to use design research to improve the teaching and learning of 

functions at grade 11 level. This was achieved by adapting design cycles of Wademan’s 

(2005) Generic Design Research model in which each cycle comprised different iterative 

APOS (Action, Process, Object, Schema) analysis, design, development and implementation 

of hypothetical learning trajectories (HLTs). I started by interrogating twelve grade 11 

learners of a particular rural high school on the June 2011 mathematics paper 1 examination 

they had written to determine the APOS theory conception level each learner was operating 

at, and their difficulties. Learners’ difficulties from initial interviews and literature were 

grouped under the function definition and representation. I then designed instruction based on 

HLTs embedded with Realistic Mathematics Education (RME) activities and two separate 

tasks on the definition and representation as a form of intervention to help learners move up 

from their initial conception levels to the next and to overcome their difficulties. After each 

design cycle I interviewed learners based on the task for a particular concept and learners’ 

responses were analysed using APOS theory and used to design further instruction to help 

learners approximate the schema level of understanding concepts related to functions. 

 

The major findings of this study were that the use of learners’ conceptions and RME 

activities in designing instruction helped learners to progress smoothly through APOS theory 

conception levels though they did not fully reach the intended schema level. In addition, 

design research cycles and their HLTs implemented in a constructivist environment enabled 

learners to collectively derive working definitions of the function concept and to improve 
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their conceptual understanding of the process of switching from a graph to an equation. 

Another contribution of this study has been a deeper understanding of the extent to which 

design research can be used to improve learners’ understanding of functions and an addition 

of some insights to the teaching and learning of functions. 

 

Key words: Clinical Interview; Conception level; Constructivism; Design Research; 

Function concept; Hypothetical Learning Trajectory; Intervention; Teaching Experiment; 

Realistic Mathematics Education; Understanding. 
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CHAPTER 1 
Introduction 

1.1 Background of the study 

The function concept “emerges from the general inclination of humans to connect two or 

more quantities, which is as ancient as mathematics” (Evangelidou, Spyrou, Elia & Gagatsis, 

2004, p. 351) and is “all around us” (Kalchman & Koedinger, 2005, p. 351). This means that 

the function concept is common among phenomena in everyday life in which people connect 

quantities to form functional relationships where one quantity completely determines the 

other. For example, “a functional relationship is at play when we are paying for petrol by the 

litre or fruit by the gram or kilogram. We can find the amount that we need to pay for the 

petrol when we know the number of litres that were filled” (Pillay, 2006, p. 4). In addition, 

phenomena in domains from physics and economics like motion, waves, and electric current 

and price, demand and rate of inflation respectively, are also modelled by functional 

relationships (Grinstein & Lipsey, 2001). Functions are also used “extensively for modeling 

and interpretation of such phenomena as local and world demographics and population 

growth, which are critical for economic planning and development” (Kalchman & Koedinger, 

2005, p. 351). Surprisingly, in most cases people deal with functional situations like these 

without being aware of them and use creative or informal ways which may not be well 

developed and not always consistent when solving functional problems.  

 

The function concept “is central to mathematics and its applications” (Evangelidou, Spyrou, 

Elia & Gagatsis, 2004, p. 351). It is used in every branch of mathematics, such as arithmetic 

and algebraic operations on numbers, geometric transformations on points in the plane or in 

space, intersection and union of pairs of sets, some solution sets to equations, formulae used 

in mensuration (perimeter, area, and volume), and regression functions (Akkoc & Tall, 2005). 

In addition, displacement, velocity, and rates of change are typical mathematical topics where 

functions are applied and learners may learn the mathematical concepts without being aware 

that they are functions. Apart from their use in calculus and analysis, “functions are also 

widely used in the comparison of abstract mathematical structures like determining whether 

two sets have the same cardinality and whether two topologies are homeomorphic. Functions 

can also be used as elements of abstract mathematical structures such as vector spaces, rings 

and groups” (Carlson, 1998, p. 115).  
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 Without doubt, functions have an important place in the secondary mathematics curriculum 

(Yerushlamy & Shternberg, 2001). As early as 1921, “the National Committee on 

Mathematical Requirements of the Mathematical Association of America recommended that 

the study of functions be given central focus in secondary school mathematics” (Cooney & 

Wilson, 1993, p. 17). With specific reference to the South African mathematics curriculum, 

function-related activities start as early as the fourth grade and continue through to the high 

school mathematics curriculum. In addition, Froelich, Bartkovich, and Foerester (1991) said 

“the idea of function is inherent in many parts of today's algebra and geometry programs” (p. 

1), making the concept of function an important part of the school mathematics curriculum. 

The National Council of Teachers of Mathematics (NCTM) proposed in the Curriculum and 

Evaluation Standards for School Mathematics that "one of the central themes of school 

mathematics is the study of patterns and functions" (NCTM, 1989, p. 98).  

 

1.2 Statement of the problem 

Within the function concept in modern mathematics and related fields, problems concerning 

its teaching and learning are often confronted (Mann, 2000) and internationally its difficulty 

is acknowledged (Tall & Bakar, 1992). Eisenberg (1992) argues that the function concept is 

“... one of the most difficult concepts to master in the learning of school mathematics” (p. 

140) and has proved to be “subtle and elusive whenever we try to teach it in school” (Tall & 

Bakar, 1992, p. 1). Despite its importance few teachers know how learners come to 

understand functions (Yoon, 2007) and how activities can be designed to improve learners’ 

understanding of the function concept.  

 

The understanding of the function concept does not appear to be easy for two main reasons. 

Firstly, many learners do not sufficiently understand the abstract but comprehensive meaning 

of the function concept (Mann, 2000). This may be caused by many different definitions of 

the function concept that appear in our high school textbooks. As a result teachers are 

compelled to give simple and understandable definitions of the function concept which do not 

integrate the core characteristic of the function concept, which sometimes creates 

misconceptions for learners (Mowahed, 2009). Secondly, because of the diversity of 

representations associated with the function concept, many learners do not understand the 

connections between different representations of the same function (Yamada, 2000). As a 

result, a substantial number of research studies have examined the role of different 

representations on the understanding and interpretation of functions (for example, Akkoc & 
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Tall, 2005; Thomas, 2003; Zazkis, Liljedahl, & Gadowsky, 2003). However, these studies 

have done little to demonstrate the connections between the different definitions of the 

function concept and the different representations. 

 

Moreover, the literature (Reed, 2007; Jones, 2006; Abdullah & Saleh, 2005 Akkoc & Tall, 

2005; Cunningham, 2005; Bayazit & Gray, 2003; Knuth, 2000; Hitt, 1998; Sfard, 1992; 

Eisenberg& Dreyfus, 1991; Vinner & Dreyfus, 1989; Markovits, Eylon & Bruckheimer, 

1986) on the function concept focuses mainly on the ‘bigger picture’ issues like finding, 

enumerating and explaining learners’ difficulties and misconceptions about the function 

concept. Insufficient attention has been given to the dynamics of how learners construct 

knowledge about the function concept which might have an impact on their understanding it.  

The literature cited above is also silent on how instruction can be designed to overcome 

learners’ difficulties and misconceptions because there was no attempt to analyse learners’ 

interpretations in order to design instruction to improve learners’ understandings of functions. 

Alluding to this silence, Markovits, Eylon and Bruckheimer (1986) said that many of the 

difficulties noted in their study about the function concept can be overcome if “we are willing 

to study them further, analyse carefully what we expect of a learner who understands, and 

experiment with various treatments” (p. 191). This apparent gap in the literature also has been 

echoed by Kalchman and Koedinger (2005) when they indicated “we need an instructional 

plan that deliberately builds and secures conceptual understanding and facility with 

representing functions in a variety of ways” (p. 364). The implication is that unless teachers 

use learners’ difficulties and misconceptions to design further instruction, they are going to 

be less likely to forge an understanding of the function concept. This prompted me to revisit 

the teaching and learning of functions with the aim of designing instruction by considering 

further research regarding eliciting, analysing and using the weaknesses in understanding of 

the function concept by grade 11 learners. A study of this nature would add to the literature 

on both learning and teaching of the concepts related to functions because it will inform the 

mathematics education community of learners’ reasoning processes as they engage in 

activities involving the function concept. This could include the planning and application of 

appropriate and efficient teaching and learning activities at high school level, for improving 

learners’ comprehension of functions. 

 

Ensor and Galant (2005) point out that a “considerable amount of educational research in 

South Africa points to a crisis in mathematics teaching and learning - many teachers are 
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deemed to be failing to teach adequately, and learners are failing to perform” (p. 301). 

Similarly, the literature (Kazima, Pillay & Adler, 2008; Maharaj, 2008) on the teaching and 

learning of functions in South Africa reveals that our classrooms are still characterised by 

traditional pedagogic practice in which learners are presented with concepts related to 

functions, provided examples of how to carry out procedures to solve related tasks, thereafter 

learners practise these through textbook set exercises. Such teaching approaches assume that 

learners will understand the presented concepts as intended. These approaches can create 

conceptual gaps in learners’ understanding of concepts resulting in their failure to perform.  

 

In summary, internationally there is a gap in research on the learners’ understanding of 

functions and in South Africa there is a need to focus on how teachers can teach the concepts 

related to functions competently. The intention of this study is to support both the teacher 

who is failing to teach adequately and the learner who is failing to understand and perform by 

designing and developing empirically grounded hypothetical learning trajectories and 

instructional activities. It is hoped that teachers will be able to use this in their classrooms to 

improve learners’ understandings of functions. 

 

1.3 Purpose of the study 

The purpose of this study was to interrogate grade 11 learners’ conceptual understanding of 

functions and to use design research to improve the teaching and learning of functions. In line 

with this purpose, Depaolo (2009) asserts that “understanding how learners learn complex 

mathematical concepts is essential for teaching and defining curricula and this is especially 

true on the elementary level” (p. 7). Moreover, I sought to understand and develop the 

connections learners make between the concepts related to functions. Due to the difficulties 

and misconceptions associated with functions this study focused on ‘seeing’ functions 

through the cognitive lenses of grade 11 learners of a particular rural high school. This was 

achieved by eliciting and analyzing the development of concepts related to functions by these 

high school learners as they engaged in activities involving the function concept. This helped 

me to understand learners’ cognitive processes and their weaknesses when learning the 

concepts related to functions. Such understanding enabled me to design and develop 

empirically grounded instructional activities to overcome these weaknesses in learners’ 

understanding of the function concept. These instructional activities specify patterns in 

learners’ learning of the concepts related to functions as well as the approach supporting that 

learning. To do the study I needed a conceptual understanding of the function concept, an 
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understanding of how learners learn the function concept and the learning difficulties which 

culminated in the research questions that follow.  

 

1.4 Research questions 

This study was guided by the following research questions: 

1 How do learners understand the function concept?  

    Sub-questions: 

    i)  What are grade 11 learners’ current understanding of functions? 

    ii) What are the weaknesses in the learners’ understanding? 

2 How can instruction be designed to improve learners’ understanding of the function 

    concept? 

 

1.5 Rationale for the study 

The rationale for this study hinges on my personal interest to improve the grade 12 pass rate 

in mathematics by developing a firm foundation in grade 11 and to reduce the difficulties in 

the teaching and learning of concepts related to functions. This brings the idea of teaching 

functions for understanding which Kalchman and Koedinger (2005) say “requires a set of 

instructional strategies for moving students along a developmental pathway and for 

addressing the obstacles and opportunities that appear most frequently along the way” (p. 

373). Kalchman and Koedinger believe that, these instructional strategies could assist 

learners to develop an understanding of the concepts related to functions, the ability to 

represent the function concept in a variety of ways, and flexibility in moving among multiple 

representations of the function concept.  

 

The importance of this study is the need to design instructional activities based on learners’ 

current understanding of the concepts related to functions, since “it is important to understand 

the world of children (learners) through their own eyes rather than those of the adult 

(teacher)” (Arksey & Knight, as cited in Cohen, Manion & Morrison, 2007, p. 48).  In 

support of the above proposition, Kalchman and Koedinger (2005) suggest “the importance 

of building new knowledge on the foundation of learners’ existing knowledge and 

understanding” (p. 352). In this study I explored and reveal why teachers need to know and 

understand how learners understand the concepts related to functions and the obstacles and 

misunderstandings of learners. 
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 A further motivation emerged from the importance of the function concept in mathematics, 

the mathematics curriculum, and its diverse applications in the sciences and related areas. In 

line with my motivation Lloyd, Beckmann and Zbiek (2010) declare that functions are one of 

the most important topics in secondary school mathematics because of their connection to 

other mathematical topics. Since my long term goal is to improve the grade 12 pass rate 

initially at my school and then, hopefully, both provincially and nationally, it is important at 

this point to show the links that the function concept has with other mathematics topics. On 

the one hand, areas in algebra and equations are closely linked to functions as algebra allows 

us to represent general relationships with algebraic formulas while equations define the 

relationship between one or more variables (Grinstein & Lipsey, 2001). The authors added 

that patterns and sequences are connected to functions as they are generally formed according 

to a rule that can be represented by an algebraic formula or equation. Grinstein and Lipsey 

(2001) also noted that, topics on finance, growth and decay and differential calculus mainly 

deal with the concept of rate of change of one quantity with respect to the other in a 

relationship which is also a function. Thus, for learners to be able to understand these related 

topics they have to have a good understanding of the function concept since it serves “a 

coalescing role” in learners’ understanding of these topics (Selden & Selden, 1992, p. 87). 

The views above indicate that the function concept ties algebra, geometry and calculus 

together. On closer interrogation of the new South African National Curriculum Statement 

(CAPS) and specifically the topics for the grade 12 mathematics paper 1 examination, one 

would observe that the topics discussed above are grouped together and contribute 135 marks 

of the total of 150 marks. The mark distribution is shown in Table 1.  
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Table 1: CAPS Mark Distribution for Mathematics Paper 1                                                                                                                                                           
 
 

 

 

 

 

    135 

    marks 

 

               

 

 

         

        Source: CAPS Grades 10-12 (DoBE, 2011, p. 8) 

 

Since the function concept unifies and forms the foundation of the related topics, marked by 

the right brace in Table 1 above, learners’ difficulties with the concepts related to functions 

should be identified and analyzed in order to design instruction that helps learners to improve 

their understanding of functions. Such an approach could improve their grade 12 mathematics 

results in the long term. 

 

Furthermore, identification and analysis of difficulties learners experience with understanding 

concepts in the context of the function concept is necessary for guiding the design and 

development of intervention programmes to ease the difficulties in the teaching and learning 

of functions (Kalchman & Koedinger, 2005). Without such analysis, intervention 

programmes stand little chance of being guided by informed judgments of how learners 

acquire understanding of essential function components. The National Research Council 

(2005) alluded to this view by asserting that “new learning is built on the foundation of 

existing knowledge and preconceived understandings regarding the subject-matter and that 

such learning is enhanced when these understandings are drawn out” (p. 4). With such a cycle 

of learning in place, new knowledge can be directly tied to what is already known. When they 

     
Description 

Grade 10 
Recommended 

marks 

Grade 11 
Recommended 

marks 

Grade 12 
Recommended 

marks 
Algebra & Equations 

(and inequalities) 

30 ± 3 45 ± 3 25 ± 3 

Patterns & Sequences 15 ± 3 25 ± 3 25 ± 3 

Finance and Growth 10 ± 3       

   Finance, growth & 

decay 

 15 ± 3 15 ± 3 

Functions & Graphs 30 ± 3 45 ± 3 35 ± 3 

Differential Calculus   35 ± 3 

Probability 15 ± 3 20 ± 3 15 ± 3 

TOTAL 100 150 150 
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are not better understood, learners can be made aware of how their existing conceptions fall 

short and be provided with more robust alternatives (National Research Council, 2005). To 

provide these alternatives, teachers need to be aware of and be guided by the weaknesses in 

learners’ understanding of mathematical concepts when planning their lessons. This study’s 

main thrust was to help teachers to develop an understanding of how their learners’ thinking 

about the function concept could form the basis for the development of informed instructional 

strategies. This was achieved by eliciting, analyzing, refocusing, reinventing (re-creating) and 

reinforcing learners’ conceptions. From the misconceptions and difficulties I designed and 

developed learning activities that challenged their understanding, and that worked with 

unpredictable preconceptions. These learning activities will be shared with teachers through 

the provision of easily modifiable activities that teachers can adapt for use in their own 

situations.  

 

1.6 Research design and methodology 

In order to answer the research questions for this study I needed access to situations in which 

learners would get the opportunity to explain their thinking and share ideas. Teaching 

experiments provided these situations and helped me to generate an in-depth case study of 

learners in a rural high school. The word experiment in teaching experiment refers to “an 

experimental classroom setting that is created as a result of the designed and developed HLTs 

and instructional activities” (Gravemeijer & Cobb, 2001, p. 14). Its primary purpose was to 

experience learners’ learning and reasoning first-hand, and it thus served the purpose of 

eliminating the separation between the practice of research and the practice of teaching 

(Steffe & Thompson, 2000). In the teaching experiment the instructional sequences were 

carried out by teaching and engaging learners in RME activities with the intention of 

understanding and improving the initial design on the basis of learners’ reasoning with 

respect to the created educational setting. During a teaching experiment, researchers and 

teachers take their ‘best bets’, as Lehrer and Schauble (2001) call it. That is, they use 

activities and types of instruction that seem most appropriate at that moment according to the 

planned goal. 

 

A sample of 12 grade 11 learners of mixed ability was purposively selected using their 

teacher’s record of marks and from those who were willing to participate in all the phases of 

design research for this study. Intervention was conducted after confirming learners’ 

difficulties and their APOS (Action, Process, Object, Schema) conception levels from the 
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initial task-based interviews. I conducted the conjecture-driven teaching experiments with 

grade 11 learners and I taught all the sessions. Since I did not normally teach these learners I 

met them daily after school hours in a program I termed ‘Extra Mile’. This program began on 

15 August 2011 and ended on 17 September 2011. During the course of the experiments, the 

learners passed through hierarchical levels of conceptual development of the function concept 

that were informed by both my personal experience with grade 11 learners and by the 

literature. During level one of the teaching experiment, learners were engaged with the 

development of the key idea of the function concept which led to a definition. In level two, 

they dealt with representations of the function concept and in the third level they extended 

their knowledge by learning about the inverse of the function. Within each hierarchical level 

of conceptual development learners were assisted to move from their initial level towards the 

desired schema level. 

 

In the first hierarchical level, learners were introduced to the function concept through 

activities that compelled them to develop an understanding of the key idea behind the 

function concept which is the dependence relationship between variable quantities. Kalchman 

and Koedinger (2005) concur with this approach by suggesting that learners should 

understand the core concept of a functional relationship. In addition, Tall, McGowen and 

DeMarois (2000) warn that if an understanding of the function concept does not depend on its 

key idea then it challenges further understanding of the concept. In this study, learners’ 

understanding of the key idea of the function concept helped them to evaluate different 

definitions of the function concept and also to derive their own working definitions. This 

enabled learners to move from lower conception levels to approximate the schema level. 

  

The second hierarchical level focussed on representations of the function concept as 

prescribed by the South African National Curriculum Statement (CAPS) namely tables, 

graphs, words and formulae. Learners are expected to move flexibly between these 

representations. As a result I engaged learners in activities that helped them to understand the 

links between these representations and the translation process from one representation to the 

other. This improved and strengthened learners’ construct of the meaning of the function 

concept while at the same time developing a rich network of associations among different 

representations. Learners were introduced to the inverse of the function concept in the third 

hierarchical level to extend their understanding of the representations and the translation 

process and to move them towards the desired schema level.  
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Each level described above had its own evolving hypothetical learning trajectory (HLT) and 

spiralling design research cycles which I adapted from Wademan’s (2005) Generic Design 

Research model. Each cycle comprised different iterative stages namely design and 

development of HLTs, implementation of the HLTs and APOS analysis. It is important at this 

point to describe an HLT, the stages of each design cycle. The APOS analysis of the data is 

explained in Chapter 3.  

 

Based on the ideas of Bakker (2004) I have defined a hypothetical learning trajectory (HLT) 

as a learning path or an instructional sequence I imagined. This was after considering the 

literature review and learners’ current understanding of concepts related to functions to help 

them overcome their difficulties and improve their understanding of functions. The HLT 

clarifies the learning goal, defines the path and direction to be followed, includes the learning 

activities that guide learners towards the learning goal and specifies the criteria for evaluation 

of the teaching experiment. It also guides the design and development of learning activities, 

the teaching experiment and the retrospective analysis. The HLT underwent refinement as it 

evolved during each of the design cycles that I carried out in this study. 

 

Each design cycle for problem situations identified in this study comprised the following six 

stages listed below. 

1) A literature study about teaching and learning of functions was carried out to assist me to  

     understand the development of the function concept, difficulties likely to be met along the 

     way and the teaching approaches to be used to forge an understanding of the 

     function concept. 

2)  An analysis of the existing HLTs I identified from the literature study and my teaching 

     experience, for example, the conventional HLT of starting by stating definitions, followed 

     by examples and then providing a few applications when teaching the function concept.  

     This has become ritualistic in our classrooms and is challenged in this study. 

3)  I elicited and analyzed grade 11 learners’ understanding of concepts related to functions. 

     This was achieved by conducting task-based clinical interviews with learners in the 

     sample. I coded learners’ transcribed interview responses and then used indicators of 

     APOS theory conception levels to determine the level of conception at which each  

     learner was operating. This enabled me to describe learners’ concept images and reasoning  

     about concepts related to functions which revealed their level of understanding and 

     accompanying weaknesses. 
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4)  I developed HLTs based on the three levels described above together with the 

     instructional activities to help learners to overcome their difficulties and then to progress 

     from their current APOS theory conception level to the next, thereby improving their 

     understanding of the function concept. 

5)  I implemented the developed HLTs in a teaching experiment which engaged learners in 

     Realistic Mathematics Education activities and compelled them to construct the 

     required knowledge. My main role in the teaching experiment was to guide learners along 

     the designed learning path towards the learning goal. 

6)  At the end of each design cycle I conducted a retrospective analysis of the teaching 

     experiment which enabled me to compare the HLT with learners’ actual learning. This 

     stage marked the end of the one cycle and its outcomes then fed into the first stage of the 

     next cycle. 

 

My research questions on teaching and understanding of the concepts related to functions 

were answered by these teaching experiments. I tested my ideas and conjectures about the 

teaching and learning processes of the function concept through the instructional sequences in 

classroom situations because I was interested in the development of learners’ conceptions in 

relation to the teaching processes.  

 

1.7 Ethical considerations 

I obtained ethical clearance from the University of Pretoria’s Faculty of Education Ethics 

Committee prior to data collection (See Appendix 6 for the Ethics Clearance Certificate). I 

obtained informed consent from participants by providing to them the purpose of the study, 

explaining that their participation is voluntary and assuring them that they could withdraw at 

any time if they chose to do so. I requested participants and their parents or guardians to sign 

letters of consent and assent respectively prior to commencing the data collection. I avoided 

potential risks to participants by ensuring that my “methods were free of any form of deceit, 

duress, unfair inducement or manipulation” (Berg, 2001, p. 56). I used learners’ preferred 

pseudonyms when reporting data and the real names of my participants are never mentioned 

in order to protect their privacy and confidentiality (Denzin & Lincoln, 2000, p. 139). The 

name of the school has also not been mentioned to ensure privacy and confidentiality. 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

12 

1.8 My roles in this research 

In this research study, I designed function tasks and the interview schedules which I used to 

conduct clinical interviews. I then analysed learners’ interview responses and used them to 

design and implement interventions. I also taught during the teaching experiments and 

evaluated my teaching by comparing the envisioned HLT and the learners’ actual learning 

which assisted me to adopt or modify the HLTs of each design cycle. 

 

1.9 Definition of terms 

This section explains the terms and phrases used in the previous and subsequent sections to 

clarify the nature of the research problem. 

 

Activity in this study refers to an educational procedure intended to stimulate learning. 

 

Function related concepts in this study refer to the definition, representations, inverse, 

intercepts, asymptotes, turning points, domain, range, variable, dependent and independent 

variable, relation, one-to-one, many-to-one, transformation of functions and vertical line test.  

 

The hypothetical learning trajectory (HLT) is “a path imagined by the teacher about how 

the thinking and learning, in which the learners might engage as they participate in certain 

instructional activities, relate to the chosen learning goal” (Bakker, 2004, p. 9). It is based on 

the actual situation in the classroom (where learners have difficulty in understanding the 

concepts related to functions) and assists learners to move from their difficulties towards the 

ideal situation (where they meet the requirements prescribed by CAPS).  

 

Instructional activities are topic specific, well-sequenced mathematical activities together 

with the ways of using them in teaching to help learners understand concepts which otherwise 

would be difficult for them. 

  

An inverse of a function is a function which “undoes what a function does” (Bayazit & Gray, 

2003, p. 2). 

 

A representation may be regarded as “something that stands for something else” (Janvier, 

1987, p. 10). 
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A mathematical task is a set of problems that focuses learners’ attention on a particular 

mathematical idea and/or provides an opportunity to develop or use a particular mathematical 

habit of mind. 

 

A teaching experiment is “a planned intervention that takes place over a significant period 

of time in a classroom where a continuing course of instruction is taught” (Gravemeijer & 

Cobb, 2001, p. 69). 

 

Translation refers to “the process involved in changing from one form of representation to 

another” (Janvier, 1987, p. 11).  

 

Working definition is used in this study to mean a definition of the function concept which 

learners could easily use to formulate examples or non-examples, identify independent and 

dependent variables and to determine if a given relationship is a function or not. 

 

1.10 Layout of the study 

Chapter 1: Introduction 

This chapter introduces the present study by describing its background, statement of the 

problem, purpose, research questions, rationale, context and ethical considerations. Also 

included in this chapter are the definitions of terms and the layout of the entire study.  

 

Chapter 2: Literature review 

This chapter examines the general views on learning and understanding of mathematics, but 

focuses mainly on the definitions, representations and inverse of the function concept. It 

includes an analysis of definitions, representations and students’ difficulties in learning and 

understanding the function concept and the approaches that are commonly used to teach it.  

 

Chapter 3: Theoretical framework 

This chapter explains the constructivist paradigm in which the present study is immersed and 

examines Piaget’s theory of cognitive development and APOS theory to provide a theoretical 

framework for analyzing learners’ understanding of the concepts related to functions. The 

Realistic Mathematics Education (RME) theory which informs instruction is explained in 

detail and lead to the merging of the three theories. 
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Chapter 4:  Research design and methodology  

This chapter describes the underlying ontological and epistemological assumptions for this 

study, study site and setting, the sample and sampling techniques, ethical issues, research 

design, data collection and analysis methods. Measures to ensure rigor and trustworthiness of 

the entire research process are explained in the last section of this chapter.  

 

Chapter 5: Presentation and analysis of data 

Chapter 5 presents and discusses the findings of this study within the context of the literature 

review and theoretical framework. Patterns or themes emerging from the results are discussed 

for their relevance to the research questions. 

 

Chapter 6: Summary, conclusions and recommendations  

In this chapter, I present a synthesis of the foregoing chapters, reflect on my research design 

and methodology, revisit my data, draw conclusions based on my findings and discuss the 

implications of the developed HLTs and instructional activities for classroom practice. Based 

on my study, I also make recommendations for classroom practice and future research. 

 

1.11 Concluding remarks 

While this chapter has provided the reader with an overview of the study, what follows seeks 

to provide an in-depth discussion of each stage of my journey. The next chapter examines the 

literature related to the teaching of functions. 
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CHAPTER 2 

Literature Review 

2.1 Introduction 

This chapter presents a review of the literature on studies related to the teaching of functions. 

I discuss the general views on learning and understanding mathematics, but focus particularly 

on the function concept with an analysis of definitions and representations. Learners’ 

difficulties in learning and understanding concepts related to the function concept and the 

approaches that are commonly used to teach these are included. This chapter is followed by 

the literature study that has informed my theoretical framework.  

 

 2.2 Learners’ understanding of mathematics 

The main purpose of this study was to improve learners’ understanding of concepts related to 

functions. As such, it is necessary to begin this section by clarifying the phrase “learners’ 

understanding of mathematics” in general and the role of the teacher in that process. The 

clarification is meant to serve as a guiding framework in describing the learning and 

understanding of the function concept in Section 2.4 and for designing instruction to improve 

the understanding of functions in Chapters 4 and 5. My explanation of learners’ 

understanding of mathematics was guided by the question: What knowledge and skills or 

competencies must a learner demonstrate or display about a mathematical concept so that the 

teacher may say that he/she understands the mathematical concept? To answer this question I 

refer to Usiskin’s (2012) assertion that a learner has a: 
full understanding of a mathematical concept if he/she can deal effectively with the skills and 

algorithms associated with the concept, with properties and mathematical justifications (proofs) 

involving the concept, with uses and applications of the concept, and with representations  for 

the concept (p. 19).  

 
 

The aspects of a mathematical concept summarised in the above quotation are referred to as 

dimensions of understanding. “Each aspect can be mastered relatively independently of the 

others, but these aspects are obviously connected when attached to a particular concept” 

(Usiskin, 2012, p. 19). As such, understanding is about being able to connect these aspects or 

ideas together, rather than simply knowing them as isolated facts. It is therefore important for 

learners to be able to connect together the different dimensions of understanding a 

mathematical concept because, according to Usiskin (2012), understanding can be measured 

by the quality and quantity of connections that a learner makes among these dimensions. 
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Similarly, Barmby, Harries, Higgins and Suggate (2007) regard learners’ understanding of a 

mathematical concept as the resulting network of connections that learners make between 

their mental representations associated with that mathematical concept. This implies that the 

greater the number of appropriate connections to a network of ideas, the better the resultant 

understanding (Haylock, 2008). Learners’ understanding can be measured in situations where 

they can demonstrate both verbal and written proficiency as well as competency in the 

dimensions of understanding cited above, together with the ability to identify and utilise the 

connections among these dimensions in problem solving.  

 

In the teaching process, teachers need to determine how learners understand the mathematical 

concepts that they teach and use learners’ understanding to plan further instruction which is 

the main focus of this study. According to Hiebert and Carpenter (1992), the main concern 

for mathematics education is to help learners understand mathematics. This implies that 

mathematics teachers should also be concerned “with the learners’ construction of schemas or 

networks for understanding mathematical concepts” (Dubinsky, 1991, p. 119). Bringing 

together Usiskin and Dubinsky’s ideas leads to the idea that when Usiskin’s dimensions of 

understanding are well connected they construct Dubinsky’s networks or schemas for 

understanding. As such, the teacher’s main focus should be on guiding learners to make these 

constructions. This indicates that teachers need to be clear about what learners’ understanding 

of mathematics entails to enable them to design instructional activities that promote an 

understanding of mathematical concepts. Therefore, it is necessary to examine the role of the 

teacher in learners’ understanding of mathematical concepts. 

  

 2.3 The teacher’s role in increasing learner understanding of mathematics 

Sowder (2007) regards effective teachers as teachers who can predict what mathematics 

learners will understand, how they will understand it, and the potential for 

misunderstandings. They consider the following questions in planning instruction for their 

learners: “What is the structure of the mathematical concept to be understood? What forms or 

ways of understanding exist for each concept? What are the possible and desirable aspects or 

components of mathematical concepts for learners to learn at a given time and under certain 

circumstances? How are these components developed?” (Godino, 1997, p. 2).  Sierpinska 

(1994) concurs when in her book on understanding in mathematics uses similar words: 

"…how to teach so that learners understand? What exactly don't they understand? What do 

they understand and how?” (p. xi). She claims that effective teachers are guided by these 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

17 

questions in their teaching. In addition, Sowder (2007) states that teachers can plan more 

effectively by anticipating learners’ difficulties, then by knowing what prior knowledge must 

be present to understand something new and finally by knowing how to scaffold knowledge 

to assist learners in developing understanding. This implies that teachers may need to 

continuously reshape their plans to take account of what their learners are thinking and 

understanding.  

 

Sowder’s observations above put into perspective the belief that teachers can effectively 

influence their learners’ understanding of mathematical concepts in a more indirect manner. 

To do so, teachers may need “to put themselves in the position of their learners by shifting 

from a teacher’s point of view to that of a learner” (Cobb, Yackel & Wood, 1992, p. 47). 

However, the challenge for the teacher is to try to see mathematical concepts through the 

cognitive ‘eyes’ of the learner in order to plan instructional activities that may foster learner 

understanding of mathematical concepts. This indicates that teachers need to shift their 

emphasis away from what they can do towards what learners know and do. 

 

Gravemeijer (2004) asserts that reform in mathematics education should aim at “shifting 

away from teaching by telling and replacing it by guiding learners to construct or reinvent 

knowledge” (p. 67). However, the challenge that arises is how to guide learners to construct 

or reinvent that knowledge. This indicates the need for instructional design strategies that use 

learners’ current understanding of concepts to create new knowledge through thorough 

planning. This planning would be much easier if teachers had some exemplary instructional 

activities at their disposal. However, Gravemeijer (2004) warns that these instructional 

activities should be open-ended to elicit a variety of learners’ interpretations and solutions, 

which can be used to plan further instruction. I agree with Gravemeijer’s use of instructional 

activities in knowledge construction provided there is a frame of reference, or a theory to 

guide the teacher’s planning and implementation of instruction.  Providing both is exactly the 

objective of this study in which I sought to develop instructional sequences consisting of a 

series of instructional activities or tasks that are supported by specific learning theories.  

 

In relation to instructional sequences mentioned above, Bakker (2004) speaks of a 

hypothetical learning trajectory (HLT) which he define as an imagined learning path that 

learners can follow in order to understand a particular concept. It also clarifies “the thinking 

and learning, in which the learners might engage as they participate in certain instructional 
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activities related to the chosen learning goal. Apart from the aspect of anticipating the mental 

activities of the learners, a key element of the notion of an HLT is that the teacher needs to 

investigate whether the thinking of the learners actually evolves as imagined” (Bakker, 2004, 

p. 42). The learning trajectory may need to be revised or adjusted depending on the teacher’s 

findings that could be the result of cyclic conditions. This would be similar to what Simon 

(1995) refers to as a mathematical teaching cycle or to what Freudenthal (1973) regarded as 

“thought experiments that are followed by instructional experiments in a cyclic process of 

trial and adjustment” (p. 374). 

 

The above approach can lead to the role of the teacher being that of helping learners to 

understand mathematics rather than merely instructing them. In order to perform this role 

effectively teachers need support in the form of modifiable instructional activities that can be 

used in constructing and revising hypothetical learning trajectories of mathematical concepts. 

This could enable teachers to consider a wider range of activities to help learners to learn and 

understand mathematics.   

 

2.4 Learning and understanding of the function concept 

There are two different views regarding understanding of the function concept. On one hand, 

Sajka (2005) views understanding of the function concept as having knowledge of: the 

definition, its origin, key idea, its basic properties; representations and different languages 

related to the concept. The knowledge aspects identified by Sajka (2005) are similar to the 

dimensions of understanding mentioned by Usiskin (2012) in Section 2.2 of this study. 

Sajka’s (2005) view equates understanding of functions to having knowledge of functions. In 

addition to having knowledge, I believe that understanding also involves the appropriate use 

of knowledge an individual has about functions to solve problems. While Sajka (2005) views 

understanding the function concept as ‘having knowledge’ of its aspects, Markovits, Eylon 

and Bruckheimer (1986) view understanding the function concept as ‘being able’ to: 

interpret, manipulate and use the concept in fields other than mathematics, together with the 

use of the concept in different contexts within mathematics itself. Markovits et al. (1986) 

regard these abilities as components of understanding. In this study I subscribe to the view of 

‘being able to’ provided all the aspects mentioned by Sajka (2005) are included because of 

my intention to determine and improve learners’ understanding of these aspects. In 

understanding, learners should also be able to interpret and manipulate the related concepts of 

domain and range because it is from this knowledge that the definition of the function 
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concept is built (National Council of Teachers of Mathematics, 2000). Furthermore, 

understanding the function concept is not complete without the ability to interpret the inverse 

function (NCTM, 1989). However, I am aware that a learner might be able to demonstrate a 

mathematical skill without a deep understanding of that concept, namely, having procedural 

understanding. For example, a learner can easily determine the inverse of a function by 

switching variables but cannot explain the switching of variables. To minimise such instances 

in this study, I compelled learners to demonstrate and explain their skills or abilities or 

competencies, namely, their conceptual understanding. From the above discussion and 

Usiskin’s (2012) general definition of understanding a mathematical concept discussed in 

Section 2.1, I can describe the understanding of functions as an ability to deal effectively with 

the skills and algorithms associated with the function concept, including its properties, 

classification of relations as functions and non-functions, uses and applications of functions, 

and representations of the function concept.  

 

Based on Sajka’s (2005) view on understanding the function concept, the requirements from 

the CAPS mathematics document and from my teaching experience I assume that learners 

understand the function concept if they are able to:  

• explain the key idea of the function concept which is a dependent relationship in 

which the value of one variable is dependent on the value of another; 

• derive a working definition of the function concept based on the key idea and other 

definitions from different textbooks; 

• explain and use the basic properties of the function concept which are univalence and 

arbitrariness; 

• classify relations into functions and non-functions; 

• give examples of relations which are functions, and relations which are not; 

• transfer from one representation to another; 

• identify key features in graphs and tables including intercepts, asymptotes, 

symmetries, maximum and minimum, intervals where the function is increasing, 

decreasing, positive or negative; 

• Calculate or determine key features from given equations; and 

• Sketch the graph using the given key features.  

 

These abilities coincide with indicators of APOS theory (see Sections 3.5.1 to 3.5.5). Thus, 
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each of these abilities is an indicator of the APOS level in which the learner is operating. In 

this study I grouped these abilities under the function definition and representation. Then, I 

developed instructional activities for the function definition and representation to compel 

learners to move from their initial APOS level towards the desired schema level. The ability 

to determine aspects of the function concept can be taught and understood in levels. These 

levels developmentally rely on each other in such a way that what learners learn in one level 

should propel them to the next. This is because these related aspects of the function concept 

connect with each other as they build to its conception. Kalchman (2001) concurs by 

remarking that “the levels of development of the function concept should accommodate the 

development of sub-concepts that also progressively build a concept” (p. 11). 

 

 Markovits, Eylon, and Bruckheimer (1986) observe that in learning and understanding the 

function concept, learners are expected to pass through three stages. First, they learn that the 

function concept is composed of three sub-concepts: domain, range and rule of 

correspondence. These sub-concepts of the function concept are related to its formal 

definition. As a result, this stage is in line with the CAPS curriculum which requires that the 

learner should first demonstrate knowledge of a formal definition of the function concept. In 

Markovits et al’s (1986) second stage, learners learn that functions can be represented in 

several forms, such as arrow diagrams, verbal, graphical and algebraic representations. 

Thirdly, they learn that the same function can be represented by each of the above 

representations, so they have to learn to translate a given function from one representation to 

another (Markovits et al., 1986) including the inverse. This implies that learners should be 

able to make connections between the function definition and the different representations 

and between the representations themselves. At the end of these three stages learners will be 

expected to give examples of a function, convert flexibly between the different 

representations and find the inverse and relate it to the original function. This is also in line 

with the grades 10-12 South African Curriculum and Assessment Policy Statements (CAPS) 

document (Department of Basic Education, 2011) which requires that the learner 

demonstrates the ability to work with various types of functions and relations by converting 

flexibly between numerical, graphical, verbal and symbolic representations. I agree with the 

stages suggested by Markovits, Eylon and Bruckheimer (1986) provided the first stage starts 

by helping learners to understand the key idea forming the concept, which is the dependence 

relationship between variable quantities, before developing an understanding of the definition 

because the definition of the function concept is built upon this key idea.  
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It is important at this point to explain the key idea behind the function concept because it 

helps learners to develop an understanding of the definition of the function concept in the 

next section. Hence, the study of the function concept can be regarded as the study of 

relationships and their properties (Ronda, 2009). Thus, it is important for learners to identify 

the changing and unchanging quantities in a relationship and to determine the effect of the 

change of one quantity over others. A quantity is called a function “only if it depends on 

another quantity in such a way that if the latter is changed then the former undergoes change 

itself” (Sfard, 1991, p. 3). This implies that learners experience the function concept 

whenever they consider how change in one variable can cause or have a corresponding effect 

on another. As a result, the initial learning and understanding of the function concept can 

focus on identifying change and what changes (Sierpinska, 1992). This idea of change can be 

introduced at an early stage through the study of many examples of variable quantities such 

as area, volume, motion, and growth. Learners first recognize quantitative change within a 

variable. Later they observe change between variables, connect these changes and then look 

for relationships (Sfard, 1991). 

 

 According to Maharaj (2008), the function concept always involves a relationship between 

two or more variables. The variable concept itself often requires a complex process to learn 

and to understand and should be well developed before functions are introduced.  The most 

important interpretation of a variable is ‘a varying quantity’. For example, related quantities 

that change together, like x and y in the equation, y = 2x + 3, are called variables. Thus, when 

one variable depends on another for its value, we say that it is a function of the other. As 

such, learners should be able to determine which variable uniquely describes the other, thus 

differentiating the independent and dependent variables. Ideally, this implies that, as the 

learners observe the change in the independent variable they should also be able to observe 

how that change affects the dependent variable in order to establish a functional relationship. 

Understanding the key idea behind the function concept might help learners to evaluate 

different definitions of the function concept that appear in various textbooks. However, for 

teachers to enable learners to evaluate these different definitions of the function concept they 

need to understand how these definitions of the function have developed. In the following 

section the development of definitions of the function concept is discussed followed by some 

definitions of the function concept that have been provided in some high school mathematics 

textbooks to determine their connection with the key idea and related concepts described 
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above. It should be mentioned, however, that this list is not exhaustive but sufficient to 

provide insights into the definitions of the function concept. 

 

2.5 Development of the function concept using its definitions 

According to Markovits, Eylon and Bruckheimer (1986) learners move through three stages 

of conceptual development of the function concept. Sfard (1992) asserts that there are 

different definitions that should be used at different stages of conceptual development of the 

function concept. The first stage is where the function concept is encountered, usually as a 

result of mathematical processes that generate it. Then learners begin to think of the concept 

as an entity separate to the processes that generated it and finally they are able to use it to 

solve problems (Sfard, 1992). In the first stage, genetical definitions are sufficient in 

developing the key idea underlying the function concept since they are related to the origin of 

the function concept. In this study learners first learnt about the key idea before being 

introduced to these genetical definitions.  Insook (1999) gives the following examples of 

genetical definitions: 

• “a function is a relationship between two variables such that changes in one variable 

result in changes in the other; and 

• a function is a relationship between two variables in which the value of the 

independent variable uniquely determines the value of dependent variable” (p. 50). 

Similarly, Laridon, et al (2007) stated the following: 

• “a function f is a relationship between two sets A and B where every element of A 

(the input set-domain) is mapped to only one element of B (output set-range)” (p. 42). 

 

These definitions allow learners to see the connection between the definition and key idea 

underlying the function concept, namely, that of dependent relationships. However, 

definitions cannot help separate functions and non-functions and can cause confusion, for 

instance, with constant functions where there is only one variable. Thus, separately, these 

definitions do not give a holistic picture of the function concept and they need to be 

complemented by other definitions that characterise the second stage.  

 

At the second stage learners think of the function concept as a separate entity that performs a 

specific operation. As a result teachers can use analogies to explain the function concept. 

According to Insook (1999) there are two types of analogies, namely, expression and process 
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which characterise the function concept as formulas or equations and as operations or 

machines. Insook (1999) gives the following examples: 

• “a function is a machine with a little elf inside of it that changes what you input into 

the machine before he throws it back out of the machine; and 

• a function is an equation that assigns a value to a variable by using several 

mathematical properties” (p. 50). 

Laridon et al (1987) provides the following definition: 

• “a function is a rule that assigns to each member of which each element of a first set 

(called the domain) is associated with only one element of a second set” (p. 96). 

 

These definitions help learners to liken the complex function concept to a simple 

phenomenon. However, they are only helpful in explaining and illustrating what the function 

concept does but do little to explain the real nature of the concept. They only reveal one 

aspect of the function concept, therefore, these definitions need to be augmented using other 

definitions that portray all aspects of the function concept. 

  

During the final stage learners are able to use the definition of the function concept to solve 

problems and teachers may put more emphasis on formal or logical definitions which enable 

recognition and identification of functions and non-functions. However, such recognition and 

identification does not necessarily explain the true nature and the real character of the 

function concept. The following are two examples of logical definitions. 

• “a function is a correspondence between two sets of elements such that to each 

element in the first set, there corresponds one and only one element in the second 

set” (Yang, 2011, p. 1).  

• “a function is a set of an ordered pair (x, y) for which there is never more than one  

value of y for any given value of x” (Foerster, 1984, p. 568). 

 

Logical definitions do not allow learners to connect the function concept to its nature and the 

practical contexts in which learners can identify relationships and recognize changes within a 

relationship. Many teachers and textbooks appear to emphasise the use of logically derived 

definitions which are used to determine whether a given relation is a function or not.  
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The definitions described above concentrate on different aspects of the function concept and 

have unique advantages and disadvantages. It should be emphasized that all the above 

definitions are important in developing a deep approach to understanding of the function 

concept. Teachers need to be familiar with these definitions of the function concept and show 

how they are linked in order to help learners develop a working definition. The working 

definition would combine essential components of these types of definitions for the sake of 

helping learners to understand the true nature of the function concept. They also bring out 

essential characteristics of the function concept, namely, dependence, arbitrariness and 

univalence (Freudenthal, 1983). Since the dependence characteristic of the function concept 

has been discussed as the key idea underlying the function concept, the following section will 

discuss arbitrariness and univalence as the main characteristics of the function concept. 

 

2.6 Characteristics of the function concept 

According to Yoon (2007), the arbitrariness of a function refers to: 
both the character of the relationships between the two sets on which the function is defined and 

the sets themselves. In terms of the relationship between the two sets, this means that the 

function does not have to exhibit some regularity, be described by any specific expression or 

particular shaped graph. In this case two sets means that functions do not have to be defined on 

any specific sets of objects; in particular, the sets do not have to be sets of numbers (p. 578). 

 The arbitrariness property of functions “expanded the definition to include many 

relationships that were not previously considered functions” (Leinhardt, Zaslavsky & Stein, 

1990, p. 7), for example, “functions defined on split domains, discontinuous functions, 

functions defined by a graph, functions composed of arbitrary correspondences, and functions 

defined by more than one rule” (Malik, 1980, p. 176).  

 

The univalence characteristic of the function concept refers to the part of the definition that 

states that for each element in the domain there is only one element (image) in the range 

(Even, 1992). Thus, in terms of a relation between two sets, a relation in which each single 

element in the domain is mapped to its own single element in the range, as in a one-to-one 

relation, or a relation in which more than one element in the domain is mapped to the same 

single element in the range as in a many-to-one relation, could be a function. In contrast, a 

relation in which each single element in the domain is mapped to more than one element in 

the range, as in a one-to many relation, or a relation in which more than one element in the 

domain is mapped to more than one element in the range, as in a many-to-many relation 
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could not be considered a function. The univalent nature of the function concept is used in 

this study to allow learners to determine whether relations are functions or not. 

Unfortunately, many teachers and learners prefer to use the vertical line test to determine 

whether a drawn graph is a function or not. 

 

Many learners use the vertical line test without any understanding of why it works (Clement, 

2001). The vertical line test uses the logical definition of the function concept which “is 

basically a set of points in which each element from some set, called the independent 

variables, is uniquely mapped to elements of another set, called the dependent variables” 

(Akkoc, 2006, p. 16). Therefore one cannot have two values for one independent variable. 

When a vertical line is drawn and it touches the curve twice, this indicates that one of the 

independent variables is indeed being mapped to two values. That is why the vertical line test 

works in determining what is not a function. Any vertical line will intersect with only one 

point of the graph of a function. 

 

2.7 The role of the definition in teaching the function concept 

 Teachers often introduce the function concept by first giving the definition of the function 

concept and then teaching how to use the definition to identify examples and non-examples 

of functions (Kwari, 2007). As a result, learners cannot see the connection between functions 

and the real world which makes the concept too abstract and difficult to understand. This 

method of teaching functions starting with the definition has also been criticized by Vinner 

(1992) when he said “Before suggesting definitions to the learners, suggest examples, 

manipulating and other experiential opportunities as a concept definition does not guarantee 

understanding of the concept” (p. 196). In line with this thinking, Kwari (2007) proposed that 

learners need to be given an opportunity to develop early experiences in dealing 

mathematically, with the many situations in which functions occur before being given the 

formal definition of the concept. Kwari believes that, these early experiences of functions 

from many sources contribute towards the development and understanding of the function 

concept that will help learners to formulate a definition later. Without a deep approach to 

understanding the definition of the function concept a learner may not know what conditions 

are necessary for a relation to be a function and how to use it when solving problems. It is, 

therefore, pertinent to determine how one defines the function concept in order to begin to 

describe one’s understanding of a function which is based not only on the learners’ definition, 
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but also on their ability to identify it in its different representations. The following section 

examines the different representations of the function concept. 

 

2.8 Representation of the function concept 

A representation can be regarded as “something that stands for something else” (Janvier, 

1987, p. 10) and it allows for an illustration of the function concept in coherent and consistent 

ways that facilitate acquisition and retention of the concept (Bayazit, 2011). Representations 

can be external or internal (Goldin, 2001). External representations refer to visible symbolic 

entities that can be written or spoken, for example, algebraic expressions, Cartesian graphs, 

arrow diagrams, tables, sets of ordered pairs, and situations from everyday life (Yerushalmy 

& Shternberg, 2001). Internal representations, on the other hand, refer to mental images of 

the function concept developed by the learners through their interactions with and reflections 

upon the external representations (Goldin, 2001). Since learners construct knowledge 

differently their internal representations of the function concept are likely to be different. This 

implies that their understanding of these representations varies from one learner to the other 

and from one representation to the other. 

 

In the classroom situation, many teachers use external representations because they can be 

written, spoken, observed and easy to assess (Yerushalmy & Shternberg, 2001). However, 

Moschkovich, Schoenfeld, and Arcavi (1993) found that learners can express a certain 

understanding of the function concept in one representation, yet express a different 

understanding of the function concept in another representation. This implies that it is 

important to examine the impact of each of the representations of functions on understanding 

the function concept. Eisenberg (1991) discovered that some success can be achieved by 

introducing the function concept in a variety of external representational contexts to aid the 

achievement of internalisation and so promote understanding. Eisenberg (1991) also argues 

that “... the unwillingness to stress the visual aspects of mathematics in general and of 

functions in particular, is a serious impediment to learners’ learning” (p. 152). The teaching 

implications are that instruction should focus on using different representations to help 

learners understand concepts. Furthermore, learners should be exposed to activities that 

require them to switch from one representation to the other and to focus on different 

formulations of mathematical statements. 

 

Representation of relationships between variables allows the translation of the real world  
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situation into the mathematical world (Yerushalmy & Shternberg, 2001). These 

representations also help learners to organise, create, record, understand and communicate 

mathematical ideas. In practice, “learners are often introduced to examples in various forms: 

a verbal representation of a function in formal or everyday language, a set diagram 

(representing a function by two sets and arrows between them), a function box 

(representation of an input-output relationship), a set of ordered pairs, a table of values, a 

graph and a formula” (Akkoc & Tall, 2005, p. 9). Goldenberg (1988) proposes that flexibility 

with these various representations will aid learners in achieving a deeper approach to 

understanding the function concept. However, each of these different representations also has 

its own peculiarities and is interpreted by learners in subtly different ways that add to the 

complication of the learner’s concept image (Akkoc & Tall, 2005). This has led to a growing 

criticism of these representations with respect to what they actually represent and how they 

are linked cognitively (DeMarois & Tall, 1996). For example, Thompson (1994) criticised 

the generally accepted meanings of representations: 
...the idea of multiple representations, as currently construed, has not been carefully thought out, 

and the primary construct needing explication is the very idea of a representation. ...the core 

concept of ‘function’ is not represented by any of what are commonly called the multiple 

representations of function, but instead our making connections among representational 

activities produce a subjective sense of invariance (p. 39). 

 

Thompson sees invariance in the function concept as it moves across the representations 

simply because one representation can only convey part of the meaning of the concept. As a 

result “learners will see each representation as a ‘topic’ to be learned in isolation of the 

others” (Thompson, 1994, p. 23). Eisenberg (1992) asserts that “an ability to make 

connections among representations of the function concept is the main component of a robust 

understanding of the function concept” (p. 76). This ability to make connections among 

different representations of the function concept is referred to as a mathematical translation. 

Thus, understanding of the function concept may be enhanced by “designing instructional 

activities that are not restricted in certain types of representation, but involve recognition and 

transformation activities of the notion in various representations” (Duval, 2002, p. 4). This 

idea was used when designing instructional activities in my project. Since the various 

representations represent the same function it is important to identify and analyse the 

connections among them. These connections are necessary in helping learners to flexibly  

move from one representation to the other. 
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2.9 Connections between different representations of the same function  

Translation is “the ability to move from one representation of a function to another or to 

recognise the same function in different representational forms” (Demana, Schoen & Waits, 

1993, p. 13), for example, from the graphic form to an equation, or from table form to the 

graphic form. The ability to flexibly move from one form of representation to another, “allow 

learners to see rich relationships, develop a better conceptual understanding and enhance their 

ability to solve functional problems” (Gagatsis & Shiakalli, 2004, p. 654). As such, learners 

need to understand the different types of representations in order for them to successfully 

answer questions involving these representations. Knuth (2000) added that since different 

representations emphasize different features of the function concept, the ability to move 

flexibly among representations is critical for learners to be able to choose the representation 

that will facilitate their ability to most efficiently solve a functional problem. In many 

instances learners’ limited concept formation and accompanying difficulties may be traced to 

the use of one or another representational setting of the function concept in isolation. In most 

cases learners experience difficulties translating among these parallel representations because 

the translation process is overlooked and, as a consequence, learners exhibit almost no 

flexibility whatsoever (Goldenberg, 1988). Thus their ability to translate between 

representations of the function concept in a given problem situation is important for every 

learner for the problem solving process to be successful. A learner needs to understand the 

equivalence between different representations of the same function. Van Dyke and Craine 

(1997) show diagrammatically the twelve directions for translating the four main 

representations in Figure 1 below. These are in line with those prescribed in the South 

African National Curriculum Statement and is important for learners to understand them. 

 

                                                   Verbal Statement   
                                                       
                                                   
                                                                                                                             
     Graph                                                                                                        Table of Values  
                                                                                                                           
 
 
 
                                                                              
                                                             Equation     

                
     Figure 1: Van Dyke and Craines’ 12 directions of equivalence (1997, p. 616)  
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Flexibility to move between these representations is a mathematical ability that helps learners 

to realize their equivalence and connection which they might utilize during problem solving. 

However, in most of our classrooms the connectivity between these representations is often 

absent (Knuth, 2000). It is important for learners to see these representations as 

‘informationally equivalent’ and when this equivalence is evident it demonstrates a deeper 

approach to understanding the relationship between these different representations which will 

enable them to use these representations interchangeably. 

  

The above discussion implies that meaningful learning of the function concept could be 

attained when a variety of representations have been developed and connections are 

established amongst them. “Establishing connections among the representations could 

produce a more coherent and unified understanding” (Knuth, 2000, p. 53). When planning 

instructional activities I will provide learners with an opportunity to experience the function 

concept across the representations since one representation can only convey part of the 

meaning of the concept. This flexibility with different representations of the function concept 

is aimed at helping learners to grasp the idea of the inverse of a function which can also be a 

function itself though not always so. 

 

2.10 Inverse function 

The Mathematics Modlin Dictionary (2006) defines an inverse function “as a function which 

‘does the reverse’ of a given function” (p. 106). For example, if we have the function            

f: x →  3x + 2, its inverse is found by reversing the operations that constructed it (reverse of 

multiplication is division and reverse of addition is subtraction) and the rules of precedence 

(BODMAS) are also reversed . The reversal of operations and rules of precedence gives the 

inverse denoted by  f -1: x →
3

)2( −x . On the other hand if we consider again the function f(x) 

= 3x + 2, we can evaluate f at 2 by substituting x by 2 in the function: f (2) = 3(2) + 2 = 8 and 

where it would help to think of f as transforming a 2 into 8 (Laridon et al., 2007). So if we 

think of f as ‘acting on’ numbers and transforming them, we define the inverse of f as the 

function that ‘undoes’ what f did. In other words, the inverse of f needs to take 8 back to 2. 

This can also be demonstrated using the function machine. Thus, if f is a one-to-one function 

with domain A and range B, then for each y in B there exists a unique x in A such that y = 

f(x). This x is specified uniquely by the corresponding y, so there is a new function with 

domain B and range A (Laridon et al., 2007). Thus, it is important to stress the fact that the 
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domain and the range of the function correspond, in this order, to the range and the domain of 

the inverse function. In essence, the existence of the inverse function is related to the 

definition of a function, and demands an analysis regarding the role of the domain and the 

range in finding the inverse function. In addition, Cetiner, Kavcar and Yildiz (2000) present 

the concept of an inverse function through a symbolic definition: f -1(x) = g(x) and g -1(x) = 

f(x). This means that, if the inverse of f(x) is g(x) it implies that the inverse of g(x) must be 

f(x). Again this definition involves the idea that “an inverse function undoes what a function 

does” (Bayazit & Gray, 2004, p. 2). Thus, the property of ‘one-to-one and onto’ is the basic 

criterion that a function must meet in order to be reversed. According to Benson and 

Buerman (2007) the inverse function “should be understood as a way of breaking something 

down by reversing the operations performed in the relationship” (p. 5), for example, that 

learners will have a greater understanding of inverse if they discuss reciprocals as 

multiplicative inverses and opposites as additive inverses.  

 

There is a connection between the Cartesian graphs of functions and their inverses which 

brings up the “horizontal line test”. The horizontal test verifies if a function is one-to-one and 

if it has an inverse function. At the same time, the graphs of the two functions are 

symmetrical with regard to the line y = x. In the case of the inverse function, a display of 

conceptual knowledge would be the ability to explain why the procedure of switching the x 

and y works in the process of calculating the inverse and by the questioning or testing the 

existence of the inverse function. Procedural knowledge implies the mechanical computation 

of the inverse, following the algorithmic steps of switching x and y, and then solving for y. It 

is this switching of the variables on which I will focus by mentioning that for the inverse 

function, the range of the original function becomes its domain while its range is the domain 

of the original function. 

 

However, the learning and understanding of the function concept in terms of its definition, 

representation and inverse is beset with both conceptual and pedagogical difficulties. These 

difficulties may hinder understanding of the function concept if they are not dealt with from 

the learner’s point of view. The next section discusses research on some of the difficulties 

that learners face when learning and understanding the function concept. 

 

2.11 Learners’ difficulties with the function concept 

The nature of the function concept with its different definitions and representations as  
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discussed in the previous sections presents some challenges for learners when they attempt to 

learn and understand it. Research on learners' understanding of functions (for example Tall, 

1996; Markovits, Eylon & Bruckheimer, 1988) has shown that it is one of the least 

understood topics. Many researchers who have conducted studies on learners’ understanding 

of the function concept concur that learners have misconceptions and difficulties in learning 

it (for example Reed, 2007; Jones, 2006; Abdullah & Saleh, 2005; Akkoc & Tall, 2005; 

Cunningham, 2005; Bayazit & Gray, 2003; Knuth, 2000; Hitt, 1998; Sfard, 1992; Eisenberg 

& Dreyfus, 1991; Vinner & Dreyfus, 1989). These studies have documented learners’ 

difficulties in learning and understanding the function concept in terms of its definition, 

different representations and inverse of a function separately. However, this study examines 

the difficulties and misconceptions associated with the function concept in order to determine 

their sources and effects in the design of instructional activities to address them. 

 

Research on the relationship between learners’ concept image and the formal definitions of 

the function concept has revealed some serious difficulties that emanate from the definition 

itself (Polaki, 2005). The formal function definitions may seem straight forward, but learners 

often exhibit strong tendencies to recall from their experiences in the classroom, rather than 

focusing on the definition of the function concept itself. Another reason for this difficulty 

might be that teachers only use the formal or logical definition instead of augmenting it with 

the genetical and analogical definitions as discussed in Section 2.4. Vinner (1992) also asserts 

that a concept definition does not guarantee understanding of the concept because the first 

examples of functions that learners encounter constitute, in the learner’s mind, the prototype 

of a function. As a result “many learners base their understanding of a function on their 

reservoir of examples rather than on definitions they have been taught. Furthermore, when 

learners are faced with a function different from the examples that they have been taught, 

they hesitate before accepting it as a function (Vinner, 1992, p. 257). This implies that 

learners need to understand the key idea underlying the function concept first and then use 

that understanding to generate a working definition. Using Vinner’s assertion above it means 

an understanding of the concept is what guarantees understanding of a definition. In this 

study learners were engaged in activities that helped them first to understand the key idea of 

the function concept and then to derive a working definition that they could use to determine 

when a given relation is a function or not and to provide examples of functions and non-

functions. 
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Dubinsky and Harel (1992) note that learners have difficulty with the unique nature of the 

function definition and confuse it with the notion of one-to-one correspondence of elements 

in the domain set to those in the range set. This leads to their general neglect of domain and 

range thereby indicating learners’ lack of ability to visualize functions. While learners may 

remember and understand the vertical line test which instructs them to slide a vertical line 

across the graph they are testing, Dubinsky and Harel observed that, it does not prevent 

learners, even when they are older, from confusing domain and range values. If the line ever 

crosses two points of the graph at once, the graph is not a function. Though this technique is a 

helpful aid for learners to comprehend what it means for the function to have uniqueness, 

data from Hitt’s (1998) study indicates that learners were still not able to anticipate sub-

concepts of the function definition, for example, domain and range.  Breidenbach, Dubinsky, 

Hawks, and Nichols (1992) also note confusion between the requirement for being a function 

and the definition of a one-to-one function. Learners thought that all functions are one-to-one 

and onto, graphs of functions are ‘nice’ namely, smooth and with no sharp corners, and 

tended to use the vertical line test as a rule and not a principle to follow. They did not 

consider constant functions, those with split domains, or a function obtained by composition 

to be a function. 

 

In his research, Hitt (1998) discovered that “most learners’ knowledge of functions was 

limited to functions that are continuous and defined by a single symbolic expression” (p. 42). 

Similarly, Clement (2001) reports the tendency by learners to regard a function “as something 

that can be defined in terms of a simple rule, a relation whose graph is continuous, and a 

relation that is one-to one” (p. 9). This indicates a very narrow understanding of function, 

because some functions can neither be represented in the form of a symbolic rule nor in the 

form of a graph. Moreover, some functions are not continuous, and others are onto. 

 

Sfard (1992) observes that learners are unable to connect different representations of 

functions (graphical, symbolic, and tabular). Cunningham (2005) alludes to this observation 

by stating that many learners have difficulties in comprehending concepts associated with the 

function concept in its different representations and find it difficult to link these 

representations in given problem situations. Learners’ difficulties in linking these different 

representations of the function concept have also been documented in several studies (for 

example, Abdullah & Saleh, 2005; Akkoc & Tall, 2005; Gagatsis & Shiakalli, 2004; Knuth, 

2000). Making these links, however, “have become associated with a foundational 
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understanding of the function concept” (Eisenberg & Dreyfus, 1991, p. 87). This implies that 

for learners to be able to successfully solve functional problems they need to have 

internalised rich connections between the different representations of the function concept. 

 

Knuth (2000) has also discovered that learners experience difficulties in translating from the 

graph to symbolic form and as a result fail to identify the link between these representations 

in a given problem situation. In this regard “learners are faced with the difficult task of not 

only understanding how each representation encodes and presents information but also of 

understanding how these representations relate to the concept they represent and to each 

other” (Ainsworth, 1999, p. 12). Thus, the inability to move flexibly among representations 

of the function concept can cause a conceptual gap that would keep a learner from 

progressing further until the gap is identified and bridged (Knuth, 2000). 

  

Sierpinska (1992) has found that learners have difficulties in interpreting graphs. This was 

indicated by learners’ failure to recognize the underlying equivalence between the graph and 

the equation of the graph, the verbal context or application and the table of values that the 

equation and graph represent. Learners’ difficulties with graphical contexts were also noted 

in Sierpinska’s (1992) study. Learners had problems reading the Cartesian coordinates of the 

graph and relating the equations to Cartesian coordinates, while other learners read 

coordinates (x, y) by looking at the furthest corner of the graph. Learners’ limited 

understanding of the connection between equations and their graphs was also observed by 

Knuth (2000) who found that learners do not understand that the ‘function value’ refers to the 

y-value, assuming conventional labelling of axes. For example, some learners struggled when 

relating equation y = f(x) with coordinates (x, f(x)) and what it means for one quantity to be a 

function of another (Carlson, 1998). A similar weakness emanated from a qualitative analysis 

of learners’ responses in a study by Abdullah and Saleh (2005) which indicated learners’ 

difficulties with symbols of f(x). “A few learners were unaware that x is a variable of f(x). 

They retain f(x) in the formula even though x has already been given a value. The difficulty in 

understanding that the symbol x is a variable in f(x) caused some learners to equate p(x-4) = 

p(x)-4” (Abdullah & Saleh, 2005, p. 3). In essence, learners have difficulty with function 

notation, that is, the role of the parentheses in the function representation.  

 

Similarly, Vinner and Dreyfus (1989) observe that learners lack the ability to explicitly relate 

a function and its graph. Learners are not able to move from the one to the other identifying 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

34 

domain and image of function.  Rigid and stereotyped ideas are often related to functions and 

their graphs (Markovits, Eylon & Bruckheimer, 1986). For example, learners have problems 

to grasp the idea of function as a relationship between variables, namely where one depends 

on the other. This indicates that learners have a discrete view of a function relating separate 

pairs of numbers, where each number may be considered as an input giving another number 

as an output. Although learners believe that there is a relationship between numbers, they 

conceive a relationship separately for each pair. Moreover, the relationship of dependency 

between the two variables is not visible in the graph and remains a static representation of the 

pair (x, y) and does not afford the meaning of dependency between the two variables 

(Carlson, 1998). 

 

Eisenberg (1992) asserts that learners have a strong tendency to think of functions in terms of 

formulas rather than as visual representations which can be helpful. The reason for learners’ 

reluctance to use visual representations is that: 
visual processing requires a higher level of skills than analytical processing. While analytical 

processing often involves only one degree of abstraction from an expression to concrete 

numbers, visualization requires the ability to evaluate an expression, develop trends, and 

transfer all the knowledge into a visual format (Eisenberg, 1992, p. 34). 

 If learners are not exposed to graphs and other visual representations they will be reluctant to 

attempt questions with graphs which will disadvantage them in an examination. 

  

Sfard (1992) also found that learners thought that the ‘function is its representation’ as 

indicated by their perception that a graph or an equation is a function. This, clearly, is a 

misconception that has led many learners to think that a computational formula is a necessary 

condition for a function or that variables must be present to indicate input and output 

(Briedenbach, Dubinsky, Hawks, & Nichols (1992). Sfard (1992) concurs that “some learners 

believe that functions must have a rule or algorithm behind them. Learners tend to see 

formulas as things in themselves rather than as representations of other entities and believe 

that there must be an algorithm corresponding to the function in order for it to be valid” (p. 

378). Thus, learners who are used to working with functions in algebraic form may find it 

difficult to understand that functions may be constructed arbitrarily.  

 

Sfard (1992) has also noted that learners find it difficult to accept that algorithms that look 

different yet produce the same values, are actually the same function. This has resulted in 
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learners giving independent solutions to basically equivalent problems when only slight 

changes in notation were introduced. For example, “when presented with the following 

algorithmically different functions:  IN to IN: g(x) = x2 and the recursively defined g(0) = 0, 

g(x + 1) = g(x) + 2x + 1, learners could not understand the equivalence between these 

functions though they produced the same values” (Sfard, 1992, p. 387). This misconception is 

a result of learners’ unfamiliarity with the ordered pair definition of function. Such learners 

cannot comprehend that two different algorithms that produce the same set of ordered pairs 

are in fact the same function because they are unable to modify their understanding of 

functions as rules.  

  

According to Vinner (1992) learners also show some degree of compartmentalization 

concerning the concept of function. He defined compartmentalization as the existence of 

incompatible pieces of knowledge in a learner’s mind without the learner being aware of it. 

For example, some learners defined a function as a correspondence between two sets, but 

they claimed that a graph does not represent a function because there was no rule to describe 

it. In line with the learner handicap described above, Monk (1992) noted learners’ tendency 

to trace back to each axis of a graph rather than look at its global characteristics. He 

differentiated between a point-wise analysis of a graph and an across-time analysis. A point-

wise question asks for values of a function for a specific input value. An across-time analysis 

involves asking learners to describe a pattern of change in the value of a function that results 

from a pattern of change in the input values. Monk (1992) maintains that one source of 

difficulty that learners have with across-time analysis is their incomplete understanding of 

relevant concepts. For example, learners may have difficulty with the related concepts of 

speed, distance, and time. Given a graph of speed versus time of three runners in a race, 

learners may be unable to completely integrate the three. They are able to use the concepts 

for some purposes (for example, identifying the winner by point reading) but unable to 

correctly differentiate change in position with change in speed. Thus, learners have difficulty 

in interpreting rate of change information within a situation and demonstrating an awareness 

of the impact of change that one variable has on another. 

 

An error mentioned frequently in research is the tendency of learners to treat a graph as a 

literal picture of the problem situation (Sierpinska, 1992). For example, in Clement’s (2001) 

study, learners applied the vertical line test directly to the path of the caterpillar as it crawled 

on a piece of graph paper to determine whether the caterpillar’s location was a function of 
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time. Goldenberg, Lewis, and O’Keefe (1992) added that learners do not have a sound 

understanding of graphs of functions because they do not really understand or even see the 

varying nature of the variables. For this reason, learners had difficulties in interpreting and 

graphically representing covariant aspects of a real world situation.  

 

Dubinsky and Harel (1992) discovered that some learners have difficulty in understanding the 

inverse of a function. They memorised the algorithm of switching x and y in an algebraic 

formula which made it difficult for them to find the inverse when the function was given in 

other different representations or without an algebraic formula. This is because “the algebraic 

expressions tend to shift the focus of attention from the notion of ‘undoing’ to the idea of an 

‘inverse operation’ entailing the inversion of a sequence of algorithms in the process of a 

function by going from the end to the beginning” (Bayazit & Gray, 2003, p. 104). The 

implication is that understanding the inverse function cannot be limited to ‘undoing’ and can 

only be used as an informal conception leading to more formal knowledge. 

 

In conclusion, as learners attempt to categorize and synthesize new knowledge about the 

function concept with their existing knowledge base, they have the tendency to develop 

incorrect assumptions and conceptions (Jones, 2006). The difficulties and misconceptions 

discussed above are the result of learners’ incomplete understanding of the function concept 

as they obscure learners’ perceptions of functions. Research in mathematics education has 

indicated the need to focus on the anticipation of learning problems and needed knowledge 

issues before they become impediments to learners’ progress (English, 2002). Thus teachers 

need to be aware of past obstacles in the teaching and learning of the function concept to be 

able to eliminate the kinds of problems that learners are currently experiencing. In this study I 

used the difficulties identified in previous research to plan my hypothetical learning 

trajectories and the instructional activities because my aim is to improve learners’ 

understanding of functions by overcoming these difficulties. I also referred to these 

difficulties when analyzing learners’ responses in Chapter 4 by checking whether they still 

existed after each teaching experiment. Figure 2 summarizes learners’ difficulties identified 

from different research discussed in this section. 
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Figure 2: Balloons summarizing learners’ difficulties with the function concept 

 

The difficulties in Figure 2 are indicators of the APOS (Action, Process, Object, Schema) 

theory conception levels. That means learners facing these difficulties can be classified into 

relevant APOS conception levels.  While misunderstanding is to be expected as learners learn 

function concepts, the goal of teachers is to choose teaching approaches that help learners to 

overcome their difficulties in order for them to attain the highest possible level of 

understanding or schema level, in the shortest amount of time.  
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2.12 Teaching approaches to the function concept 

There are many approaches that can be used to teach functions and help learners develop a 

deeper approach to understanding the function concept and to overcome known learner 

difficulties when learning this. What follows is a description of commonly used approaches. 

These approaches were chosen because they are widely used by teachers and they are the 

least understood by learners. As a result of their use there are often misconceptions regarding 

the function concept.  

 

2.12.1 The situation approach 

Most textbooks and teachers introduce the function concept using a situation with related 

quantities already identified (Ronda, 2009). In this approach teachers mainly require learners 

to set up and represent relationships in tables, graphs, and equations. Ronda emphasises that 

teachers should let learners identify and determine which of the quantities in the situation are 

related. This helps learners to get a sense of what a function really is and what it is for. In this 

study I used realistic situations to assist learners to realize that the function is not the graph, 

not the table of values, and not the equation but the relationship represented by these. This 

implies that understanding of the function concept is the understanding of these relationships 

and their properties. Ronda (2009) proposes that “it is useful to use a situation where learners 

themselves will identify the changing and unchanging quantities, determine the effect of the 

change of one quantity over the others, describe the properties of the relationship and think of 

ways of describing and representing these relationships” (p. 4). This approach would be 

helpful in introducing the key idea behind the function concept in the first stage of conceptual 

development. 

 

2.12.2 The example and non-example approach 

Bakar and Tall (1992) noted that, in many instances the function concept is taught through 

examples and non-examples which “lead to mental prototypes which sometimes give 

erroneous impressions of the general idea of a function by conflicting with the formal 

definition” (p. 13). On the other hand: 
the learner cannot construct the abstract concept of function in the absence examples of the 

function concept in action. Accordingly, they cannot study examples of the function concept in 

action without developing prototype examples having built-in limitations that do not apply to 

the abstract concept” (Bakar & Tall, 1992, p. 13). 
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 Van de Walle (2004) proposes that the teaching of functions should focus on studying 

change, relationships, rules, patterns and laws in contexts that are meaningful and interesting 

to learners. The teacher should help learners to construct the notion of function and provide 

learners with experiences of a function, as well as criteria by which to recognize a function 

and be able to respond appropriately to tasks involving functions (Pillay, 2006).  

 

2.12.3 The pattern approach 

Kwari (2007) describes the pattern approach as an approach to the development of the 

function concept that requires learners first understand the idea of a pattern. “Patterning 

activities have long been recommended as a means of supporting learners in developing an 

understanding of the relations among quantities that underlie mathematical functions” (Beatty 

& Bruce, 2004, p. 1). Patterns can “help learners to observe changes, especially what changes 

and how; that is: identify functional relationships between variables, obtain a rule or formula, 

algebraic expression or equation to describe the relationship and make predictions using a 

rule or formula” (Van de Walle, 2004, p. 441). The advantage of this approach is that it offers 

a visual representation of the function concept (Kwari, 2007). However, a problem that could 

arise from the pattern approach is that “most mathematical patterns generate numbers and 

learners might think that functions are sequences yet sequences are only a special type of 

function” (Sierpinska, 1992, p. 218). As a result: 
learners do not perceive the need to understand the mathematical structures and relationships 

underpinning pattern rules. This numeric approach to pattern learning diminishes the potential 

for learners to recognize commonalities in mathematical relationships across multiple 

representations, and obscures the underlying functional relationship of the pattern because the 

pattern rule becomes a sequence of arithmetic operations derived numerically in isolation from 

the context of the problem (Beatty & Bruce, 2004, p. 2).  

 

2.12.4 The function machine approach 

Selden and Selden (1992) suggest that using the idea of a function machine helps learners 

view a function as a process. The function machine accepts an input and produces an output. 

There is no need to know the contents of the machine. They note that it is useful in assisting 

learners to understand the function as a process, but does not provide a complete notion of 

function. Tall, McGowan, and DeMarois (2000, p. 255) recommend the “use of function 

machine as a cognitive root to the development of the function concept”. The approach 

emphasises both the co-variation and correspondence relationships and develops the aspect 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

40 

rule (Kwari, 2007). In addition, the various representations, verbal, tabular, arrow diagram 

can be easily connected through this approach. The shortcoming of this approach is that it 

gives rise to an erroneous belief that all functions are given by a formula (Sierpinska, 1992) 

and this calls for the need to use a variety of approaches when introducing functions. Despite 

this shortcoming, Tall et al. (2000) report that the use of a function machine representations 

can help learners form a rich, foundational concept of functions. The function machine can 

also be used to teach the inverse of a function by reversing the process that transforms the 

inputs to yield the outputs, for example multiplication would become division and addition 

would become subtraction. 

 

2.12.5 Covariational approach 

Covariation was introduced by Carlson, Jacobs, Coe, Larsen and Hsu (2002) as a more 

natural notion of functions. They thought of a function as defining how two variables vary 

with each other rather than a set theoretic construct. They proposed five levels of covariation 

reasoning, and five mental actions that characterize these levels. The five mental actions that 

characterized these levels are: 
Coordinating the value of one variable with changes in the other, coordinating the direction of 

change of one variable with changes in the other variable, coordinating the amount of change of 

one variable with changes in the other variable, coordinating the average rate-of-change of the 

function with uniform increments of change in the input variable, and coordinating 

instantaneous rate-of-change of the function with continuous changes in the independent 

variable for the entire domain of the function (Carlson et al., 2002, p. 357).  

Their ideas were propagated by Confrey and Smith (1994) who used a covariational approach 

to teach functions in which they built on learners' strong intuitive understandings of change to 

generate functional relationships. The focus was on rates of change in the variables rather 

than the more common approach that builds a correspondence between the variables. 

Covariation entails being able to move from ym to ym+1 and coordinate that move with 

movement from xm to xm+1. Confrey and Smith (1994) used the tabular and graphic modes of 

functions in a language rich environment to have even young children exploring functional 

thinking using rates of change. 

 

2.12.6 The word problem approach 

The use of word problems provides activities that relate to what learners experience in their 

daily lives (Kwari, 2007). Kwari (2007) believes that, word problems provide the opportunity 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

41 

to use functions as models of real world situations and these models can be represented in 

many forms and have the potential to allow learners to move through different 

representations, from words to diagrams or tables, graphs to symbolical representations. The 

major obstacle in this approach is the problem of language. In South Africa mathematics is 

taught in English which is a second language to most learners. Everyday experiences for most 

learners are usually expressed in their vernacular languages. Kwari (2007) also observes that, 

the problem of language in the learning of mathematics is likely to negatively affect the 

development of the function concept particularly in the interpretation of the word problem.  

So, there is need to ensure that learners understand the word problem before they answer it. 

There are different language issues. First, especially for learners who receive instruction in a 

language other than their mother tongue, it is the language of instruction. Secondly it is also 

the mathematical jargon. For example, the word volume has the meaning of length times 

width times height for a box in mathematics, but could also mean softer and louder on a 

phone or radio. The teacher may even combine the learners’ mother tongue and the language 

of instruction to help learners understand word problems. This move might cause learners to 

first think in their mother tongue and then translate to the language of instruction, an 

approach which may backfire later if they fail to translate some technical mathematical words 

to their home language. 

 

2.12.7 Property-oriented approach  

According to Nemirowsky and Rubin (1992) a function can be introduced and described with 

reference to its properties. Since this study is dealing with grade 11 learners I refer to 

properties of some functions they learn at that grade level namely linear and quadratic 

functions. A linear function whose general form is f(x) = mx + b can be taught by referring to 

the properties of its graph namely its slope (m) and y-intercept (b). The property of slope can 

be used to determine if the function is increasing, decreasing or constant. On the other hand, 

the quadratic function with equation f(x) = ax2 + bx + c, where a ≠ 0, has the following 

properties: vertex = (   , f (  )); axis of symmetry: the line x =   ; parabola opens up if     

a > 0 (the vertex is a minimum point); parabola opens down if a < 0 (the vertex is a maximum 

point). An understanding of these properties can assist learners in classifying different 

functions and in establishing connections between different representations (Monk & 

Nemirowsky, 1994). In this study these properties are important when translating from 

graphical to symbolic representations of functions and vice versa.  
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I have established links between each of the three stages of conceptual development of the 

function concept to particular definitions, representations and teaching approaches from the 

preceding sections. My intention for using definitions, representations and approaches 

appropriate for each stage is to help learners to develop a deeper conceptual understanding of 

the function concept and to encourage teachers to move away from the conventional 

approach of stating definitions followed by examples and then a few applications. Table 2 

shows each particular stage of conceptual development of the function concept with specific 

definitions, representations and teaching approaches that I used in my teaching experiments. 

 

Table 2: Stages of conceptual development of the function concept and their links with 

               definitions, representations and teaching approaches  

 
STAGE TYPE OF DEFINITION REPRESENTATION TEACHING APPROACH 

1 

Process 

(Sfard, 

1992) 

Genetical definitions (Insook, 1999, p. 

50) e.g. a function is a relationship 

between two variables such that 

changes in one variable result in 

changes in the other. 

Verbal statement 

Table of values (Van 

Dyke & Craine, 

1997) 

Situation approach (Ronda, 

2009) 

Pattern approach (Kwari, 2007) 

2 

Entity 

(Insook, 

1999) 

Analogical definitions 

(Insook, 1999, p. 50) e.g. a function is 

a machine with a little elf inside of it  

that changes what you input into the 

machine before he throws it back out 

of the machine. 

Equations 

Table of values (Van 

Dyke & Craine, 

1997) 

Function machine approach 

(Selden & Selden, 1992) 

Example and non-example 

approach (Bakar & Tall, 1992) 

3 

Structural 

(Sfard, 

1992) 

Logical definitions 

(Yang, 2011, p. 1) e.g. a function is a 

correspondence between two sets of 

elements such that to each element in 

the first set, there corresponds one and 

only one element in the second set. 

Table of values 

Graphs (Van Dyke & 

Craine, 1997) 

Covariational approach (Carlson 

et al., 2002) 

Word problem approach (Kwari, 

2007) 

Property-oriented approach 

(Nemirowsky & Rubin, 1992) 

 

 

My choice of definitions, representations and teaching approaches for each stage was 

influenced by the need to develop a conceptual understanding of the function concept that 

will enable learners to generate a working definition of it in order to switch flexibly from one 

representation to the other. From my review of the literature on learning and teaching of 
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functions I want to propose that, learners’ understanding of functions can be improved when 

learners are helped to connect all the dimensions of understanding functions following similar 

stages as described by Markovits, Eylon and Bruckheimer  (1986) and Sfard (1992) discussed 

in this section. These dimensions mainly include the key idea underlying the function 

concept, its definitions and representations. 

 

Chaiklin (2002) states that if you want to understand something you have to change it and if 

you want to change something you have to understand it. This approach has led to a 

realisation that if I am to understand how learners grasp concepts related to functions then I 

have to change my own understanding in the context of the literature review and learners’ 

situations. For me to change their understanding I also had to grasp their understanding of 

concepts related to functions by ‘seeing’ these concepts through their cognitive lenses. The 

choice of the teacher’s approach at each stage described above may also depend on the 

teacher’s framework. Similarly, the design of instruction in this study has been theoretically 

and practically guided by specific theories that formed my theoretical framework as 

extrapolated in the next chapter.  
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CHAPTER 3 

Theoretical Framework 

3.1 Introduction 

This chapter describes the literature that informed my theoretical framework. It discusses 

specific theories that helped me to establish a perspective and a set of lenses through which I 

viewed this study. Theories influence what one sees and what one does not see (Nkambule, 

2009) and “making progress in any scientific field is difficult without explicit theories” 

(National Research Council, 2002, p. 468). Theories are also useful because “they direct the 

researcher’s attention to particular relationships, provide meaning for the phenomena being 

studied, rate the relative importance of the research questions being asked, and place findings 

from individual studies within a larger context” (Hiebert & Grouws, 2007, p. 63). This study 

is immersed in the constructivist paradigm and guided by APOS theory which “can be 

thought of as an extension of the last stage of Piaget’s theory, the formal operation stage, 

which takes place at about age sixteen” (Weyer, 2010, p. 9). In addition, Realistic 

Mathematics Education (RME) theory (Gravemeijer, 1994) was used to guide the 

intervention stage because of its close links to constructivism. These theories are described 

separately and then brought together to justify their position in this study. Firstly, the 

constructivist paradigm in which this study is immersed is discussed together with APOS 

theory to provide a theoretical framework for investigating learners’ interpretations of the 

function concept. The Realistic Mathematics Education theory is also explored to provide 

guidance for the design of instructional sequences and activities to teach the function concept. 

 

3.2 Constructivist paradigm 

A paradigm may be viewed as a set of basic beliefs that represent a worldview that defines 

the nature of the ‘world’ (Guba & Lincoln, 1994). It is a framework within which theories are 

built, that fundamentally influence how one sees the world, determines one’s perspective, and 

shapes one’s understanding of how things are connected. This study is located  within a 

constructivist  paradigm (Mertens, 2005) which makes provision for the fact that each 

individual person interprets and makes sense of the world in his or her own way hence the 

notion that “no one true reality exists, only individual interpretations of the world” (Clements 

& Battista, 1990, p. 34). Thus, it should be understood that there are multiple realities through 

which one can make sense of the world, and construct reality from one’s own experiences. 

This worldview is embedded in the qualitative research approach that I chose for this study. 

In this paradigm we are able to explain how we know what we know and make sense of what 
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learners see, think, and do. Within a constructivist teaching and learning environment, the 

learners should be able to make sense of a real-world problem in their own way and their 

interpretations will depend on their experience and upon social interaction with other people. 

Learners acquire knowledge when they incorporate new experiences into existing mental 

structures and reorganize those structures to handle more problematic experiences 

(Kilpatrick, 1998). Constructivist views of learning posit that learners construct their own 

learning which may differ from formal mathematics taught by teachers in the classrooms. It is 

therefore crucial that constructivist aligned teachers assess learners’ conceptions formatively, 

and identify errors or difficulties associated with the process of learning.   

 

Gray (2007) regards constructivism as “a view of learning based on the belief that knowledge 

is not a thing that can be simply passed on” (p. 8) by the teacher in the front of the room to 

learners at their desks. Gray believes that, knowledge is constructed by learners through an 

active, mental process of development allowing learners to be the builders and creators of 

meaning and knowledge. Constructivism draws on the developmental work of Piaget and is 

guided by four principles:  
learning, in an important way, depends on what we already know; new ideas occur as we adapt 

and change our old ideas; learning involves inventing ideas rather than mechanically 

accumulating facts; meaningful learning occurs through rethinking old ideas and coming  to 

new conclusions about new ideas which may conflict with our old ideas (Gray, 2007, p. 13).  

The implication according to Cobb, Yackel and Wood (1992) is that, for a constructivist 

classroom to be productive, “instruction should be learner-centred in such a way that the 

teacher provides learners with experiences that allow them to hypothesize, predict, 

manipulate objects, pose questions, research, investigate, imagine, and invent” (p. 35). The 

teacher's role is to facilitate this process. 

 

Constructivism embraces the idea that learners come into the classroom, not as empty 

vessels, but at various stages of conceptual understanding (Von Glaserfeld, 1987). Individual 

learners will continue to build their mathematical frameworks from the point where they 

started; therefore, at the end of a particular lesson or topic, they will still be at different stages 

of understanding or knowing. From the constructivist perspective, Van Glaserfeld sees 

mathematical learning as a reorganization of ideas already held to incorporate new 

information, thereby adding to the framework and building conceptual knowledge. 
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The basic tenets of constructivism, according to Gray (2007) include the following: 

knowledge is actively constructed by individuals as they make sense of the world based on 

their experiences; knowledge is not passively received by the individual from others, or from 

authoritative sources. The function of cognition becomes that of adapting and serving the 

individual to organize the experiential world (Von Glaserfeld, 1987). Developing the 

learner’s personal mathematical ideas is very important to the constructivist teacher who 

encourages learners to use various methods for solving problems. One of the most essential 

skills for a constructivist educator to embrace is that of approaching “an unexpected response 

with a genuine interest in learning its character, its origins, its story and its implications” 

(Confrey, 1990, p. 108). Furthermore, attempting to see a situation as perceived by another 

human being should be imbued “with the assumption that the constructions of others … have 

integrity and sensibility within another’s framework” (Confrey, 1990, p. 108). According to 

Van de Walle (2007) a commonly accepted goal among mathematics educators is that 

learners should understand mathematics, and constructivism suggests that learners must be 

active participants in the development of their own understanding. He added that 

constructivism provides us with insights concerning how learners learn mathematics and 

guides us to use instructional strategies that begin with learners rather than with ourselves. He 

further points out that constructivism rejects the notion that learners are blank slates and that 

they do not absorb ideas as teachers present them, rather, he regarded learners as creators of 

their own knowledge. 

 

Within the constructivist paradigm, I will provide opportunities for learners to create new 

mathematical knowledge by reflecting on the things that they do, that is, their physical 

actions and the ways that they think, that is, their mental actions. Learners need to do more 

evaluating of their own ideas and teachers need to create opportunities where this evaluation 

can productively occur. This indicates that reflective ability is a major source of knowledge at 

all levels of mathematics as von Glasersfeld (1991) puts it: “To verbalize what one is doing 

ensures that one is examining it. And it is precisely during such examination of mental 

operations that insufficiencies, contradictions, or irrelevancies are likely to be spotted” (p. 

xviii). 

 

Constructivism mainly focuses on the mental processes that construct meaning. According to 

Van de Walle (2007) the general principles of constructivism are based largely on Piaget’s 

processes of assimilation and accommodation, where assimilation refers to the use of existing 
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schemas to give meaning to experiences while accommodation is the process of altering 

existing ways of viewing things or ideas that contradict or do not fit into existing schemas. 

Constructivism stresses the idea that “learning is an active process in which learners learn 

from previous knowledge as well as from information provided by teachers” (Weyer, 2010, p. 

9). Weyer (2010) considers knowledge as “a gradually built individual construction and 

described understanding in terms of building mental structures on previously built structures 

which also affected subsequent constructions. Mental activities of the learner such as 

constructing relationships, articulating what one knows, extending and applying 

mathematical knowledge and reflecting about experiences promote understanding (Hansson, 

2006).  

 

Dewey and Rousseau (as cited in Van de Walle, 2007) criticize the view of learning as 

stocking up of knowledge and of teaching as transferring such knowledge to learners who are 

empty vessels. The implication of their criticism in this study is that I needed to regard 

learning as an active process of constructing rather than receiving knowledge, and instruction 

as a process of supporting meaningful construction of knowledge rather than transmitting it. 

As such, I designed instructional sequences and activities to guide learners to construct 

knowledge about the definition of the function concept and to develop connections between 

different representations of the same function. Thus, within constructivism, I acted as a 

facilitator of knowledge and ensured that the learners construct knowledge through the 

process of discovery and problem-solving (Murphy, 1997). To this end there are certain 

preferred characteristics.  

 

3.3 Characteristics of teaching approaches that encourage a constructivist way of  

      learning 

In order to be considered a teacher who draws from constructivism Brooks and Brooks 

(1993) said that the teacher should “design instructional activities that will compel learners to 

construct the requisite knowledge and also to challenge previous conceptions of their existing 

knowledge” (p. 43). They added that the teacher should allow learner responses to drive 

lessons and seek elaboration of learners’ initial responses and also to allow learners some 

thinking time after posing questions. Brooks and Brooks (1993) believe that, “when learners 

can communicate their understanding, then they have truly learned” (p. 47). In this study I 

used learners’ responses in the June examination and difficulties noted from my literature 
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study to design instructional sequences and activities to help learners overcome the identified 

difficulties. 

  

Jonassen (1991) suggests that teachers can create constructivist learning environments for 

their learners “by creating real-world environments that employ the context in which learning 

is relevant and focuses on realist approaches in solving real-world problems” (p. 58). The 

teacher should act as a coach and analyzer of the strategies used to solve these problems. In 

line with his suggestions I drew attention to conceptual interrelatedness by providing multiple 

representations or perspectives on the content. Although Jonassen (1991) advocates that 

instructional goals and objectives should be determined by learners’ needs and not imposed 

by the teacher, and that evaluation should serve as a self-analysis tool, the reality in the last 

two years of schooling in South Africa is that learners need to be prepared to write an 

external examination. Bringing constructivism into the classroom means that “the teacher 

provides tools and environments that help learners interpret the multiple perspectives of the 

concepts and learning should be internally controlled and mediated by the learner” (Jonassen, 

1991, p. 60).  

 

The above principles and characteristics of constructivism were used in the teaching 

experiments for this study as they provide a framework for a conducive learning 

environment, productive learning process and its meaningful assessment. In such an 

environment learners can maximize their potential of learning any mathematical concept 

since the constructivist environment allows them to be involved in the production of 

knowledge and their understanding drives the constructivist teaching path followed by the 

teacher. 

 

3.4 Constructivist mathematics teaching 

White (1988) asserts that learners do not receive information from a teacher or textbook 

intact the way a radio receives transmitted radio signals, but, instead, all information received 

by learners must pass through the filter of their prior knowledge and experience. This implies 

that knowledge is not passively received from an external source but is actively constructed 

by the learner. In support of this belief, Muijs and Reynolds (2005) said that the truth is not 

out there, but is within each learner. The implication of this belief is that it is not possible to 

say something to someone and expect them to understand exactly what was intended to be 

conveyed. In classroom terms, just because a teacher has said something to a learner clearly 
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and precisely, the teacher cannot infer that the learner has received the message with the 

intended meaning. The learner’s focus might be quite different from the teacher’s. Learners 

might fit the teacher’s words into their own resulting in a meaning different from what the 

teacher tried to convey. This suggests that a teacher needs to find ways of knowing what 

sense learners make of mathematical concepts they teach, in order to plan further instruction. 

Task-based interviews conducted before and after the teaching experiments provided me 

opportunities to solicit learners’ reasoning which I used to revise my HLTs and to design 

further instruction.  

 

Constructivism describes how learners learn but cannot prescribe a method of teaching 

(Simon, 1995). Simon utilized the characteristics of effective teaching to formulate the 

Mathematical Teaching Cycle. This cycle consisted of four broad parts, namely, (1) assessing 

what learners know; (2) identifying the learning goal (mathematical concept); (3) 

hypothesizing a path by which learners will come to understand that goal (Hypothetical 

Learning Trajectory) and planning activities that are likely to bring concept formation; and 

(4) implementing them (planning and teaching). At the end of this step, the cycle reverts to 

step one.   

 

The Mathematical Teaching Cycle in Figure 3 compels teachers to be aware of the dynamics 

of knowledge construction by their learners before they change their current teaching 

practices which are teacher-centred. It provides an alternative practical framework for the 

teacher to understand and evaluate learner learning in the classroom in order to make learner-

based instructional decisions. Simon’s (1995) framework is in line with Wademan’s (2005) 

design research phases on which I modelled my teaching experiments for this study which are 

also cyclical in nature. 

 

 

 

 

 

 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

50 

                             

 
                                      

Figure 3: Mathematical Teaching Cycle (Simon, 1995, p. 123) 

 

According to Orton (2004), constructivism appears to suggest that the teacher needs to 

provide the ‘scaffolding’ which allows the learner to progress, and it requires great skill to 

provide the best scaffolding for each learner. Echoing similar sentiments, Murphy (1997) 

observes that an important concept of constructivism is that of “scaffolding which is a 

process of guiding the learner from what is presently known to what is to be known” (p. 

17). She points out that scaffolding allows learners to perform tasks that would ordinarily be 

slightly beyond their ability without the assistance and guidance from the teacher. I subscribe 

to the notions held by Doerr (2007) and Hansson (2006) that learners should be provided with 

mental activities to enable them to construct the required knowledge. 

  

Piaget (1977) notes that differences between the teacher’s intended meaning and the learner’s 

constructed meaning are: 
… not simply reducible to missing pieces or absent techniques or methods. He argues that 

learners’ ideas possess a different form of argument, are built from different materials, and are 
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based on different experiences. Their ideas can be qualitatively different, which can sometimes 

mean that they make sense only within the limited framework of the learner and can sometimes 

mean they are genuinely alternative, wonderfully viable and pleasing to the learner (p. 20). 

 As such, they will not be displaced by any simple provision of the ‘correct method’, for, by 

their existence for the learner, because they must have served some purpose. However, 

learners sometimes hold conceptions that are not mathematically sound which in turn affect 

their level of achievement in mathematics. Such unmathematical ideas must be identified and 

addressed. Before learners can change such beliefs, they must be persuaded that their ideas 

are no longer effective or that another alternative is preferable.  

 

Boaler (2009) asserts that our brains grow the most when we make mistakes. Scientists have 

found that when learners make a mistake in mathematics synapses spark, and there is activity 

in the brain that is absent when learners get work correct (Boaler, 2009). This means that 

when a learner gets a question right, nothing happens in his/her brain, but when he/she gets 

that question wrong, his/her brain grows. It is really important for learners to take risks, 

engage in ‘productive struggle,’ and make mistakes. Struggle is really important because it 

will make their brains grow. Teachers have long known that learners who experience 

‘cognitive conflict’ learn deeply and that struggling with a new idea or concept is very 

productive for learning (Piaget, 1977). Boaler (2009) argued that open mathematics tasks 

encourage the opportunity for important learning and for viewing mathematics as a learning 

subject. Tasks that are narrow and closed encourage learners to believe that mathematics is a 

performance subject that is, they are in mathematics class to show what they know. Many 

learners think that they come to mathematics classes to answer questions correctly, not to 

learn. If we are serious about encouraging learners to develop growth mindsets we need to 

provide open tasks that have the space within them for learning, not short tasks that students 

are meant to get right or wrong. Tasks are made more open when they have or encourage: 

• Multiple entry points 

• Multiple ways of seeing 

• Multiple pathways and strategies for solutions 

The importance of mistakes suggest that we need mathematics environments in which 

learners are given open tasks and challenging work that causes them to struggle, experience 

cognitive conflict and make mistakes. Teachers should support or even reward students for 

making mistakes so that they feel comfortable doing so. Mistakes are often a result of 

misconceptions or carelessness. 
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In addition, Olivier (1989) in his study on handling learners’ misconceptions, states that in 

the constructivist perspective ‘errors and misconceptions’ are seen as natural results of 

learners’ efforts to construct their own knowledge and those misconceptions are intelligent 

constructions based on incorrect or incomplete previous knowledge. As such, making errors 

or having misconceptions cannot be avoided since in itself it forms part of the learning 

process. Olivier (1989) suggests that learning is a process of replacing misconceptions with 

appropriate expert knowledge. In this study I viewed learning as a careful modification or 

restructuring of these misconceptions together with the learners, to become acceptable and 

meaningful knowledge. I firmly believe that learners easily embrace or accept knowledge 

they participate in creating or re-creating with their teacher and peers using their prior 

knowledge and interpretations. This is because their knowledge is what they construct not 

what they directly receive from the teacher. A study by Clement (1982) revealed that 

misconceptions are resistant to traditional forms of instruction which are currently in use in 

many of our classrooms. This points to the need to design and develop an alternative form of 

instruction that uses these misconceptions as a starting point. 

 

Dubinsky and McDonald (2001) built on the ideas of Piaget to develop a theory of learning 

mathematical concepts which claims that learners construct concepts through a standard set 

of steps namely action, process, object and schema hence the acronym APOS. Weyer (2010) 

regards this theory as an extension of the last stage of Piaget’s theory, the formal operation 

stage, which takes place when learners are about age sixteen. I chose APOS theory as being 

the most suitable theory on which to base my teaching experiments. 

 

3.5 APOS theory 

APOS theory proposes that an individual has to have appropriate mental structures to make 

sense of a given mathematical concept (Maharaj, 2010). As such, it describes a possible 

process by which a mathematical concept can be learned. APOS theory attempts to analyze 

the internal mental structures and mechanisms constructed and used by individuals as they 

are thinking about a mathematical concept (Dubinsky & Wilson, 2013). APOS theory has 

been used effectively to develop learners’ process conception of the function concept 

(Breidenbach, Dubinsky, Hawks & Nichols, 1992) and to evaluate learners’ understanding of 

the function concept (Nyikahadzoyi, 2006; Dubinsky & Wilson, 2013). APOS theory can 

also be used both to evaluate and develop learners’ understanding of the function concept 
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(Weller, Arnon & Dubinsky, 2011) an approach which I adopted for this study. In the present 

study APOS theory was used initially to predict the likely mental structures that are required 

to learn the function concept and to detect learners’ current understanding of the function 

concept or evaluation of learners’ understanding, which informed the design and 

implementation of suitable learning activities to support the construction of these mental 

structures or development of learners’ understanding. Though Dubinsky and Wilson (2013) 

worked with high school learners similar to mine in terms of age, their study paid very little 

attention to the object and schema conceptions of the function concept. They claimed that the 

action and process levels are the most important for studying functions at this school level. 

 

 Similarly, Brijlall and Ndlovu (2013) used APOS theory conception levels up to the object 

level to evaluate grade 12 learners’ understanding of linear programming a topic closely 

related to the function concept. In another instance, Weyer (2010) applied APOS theory to 

the function concept and characterised learners’ ways of understanding the function concept 

from the action level up to the schema level. This means that learners’ understanding of 

functions need not be limited to the action and process levels. Breiteig and Grevholm (2006) 

concurred when they asserted that it is possible to use APOS terminology in a slightly 

different way than that of Dubinsky and Wilson (2013) by characterising learners’ ways of 

explaining to span across all the conception levels but what matters is to improve learners’ 

understanding of the mathematical concept from their initial conception. The present study 

used all the four levels of APOS theory and an additional pre-function level to describe 

learners’ understandings of the function concept in terms of its definition, representations and 

inverse. The addition of the pre-function level to the four levels of APOS theory could result 

in a new (P)APOS theory used in this study. APOS theory and the pre-function level are 

discussed separately but used together. 

 

APOS theory and its application to the teaching of mathematics are based on two 

psychological assumptions listed below. 

• Learners’ mathematical knowledge is their “tendency to respond to perceived 

mathematical problem situations and their solutions by reflecting on them in a social 

context, and constructing or reconstructing mathematical actions, processes and 

objects and organising these in schemas to use in dealing with situations” (Dubinsky, 

2001, p. 11). 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

54 

•  Learners do not learn mathematical concepts directly. “They apply mental structures 

to make sense of a concept” (Piaget, 1977, p. 178).  

These assumptions imply that “the goal for teaching should consist of strategies to help 

learners build appropriate mental structures, and to guide them to apply these structures to 

construct their understanding of mathematical concepts” (Maharaj, 2010, p. 42).  

 

Learning is facilitated if learners possess mental structures appropriate for a given 

mathematical concept. If appropriate mental structures are not present, then learning the 

concept is almost impossible. In APOS theory, the mental structures are actions, processes, 

objects, and schemas. In this study I used the four levels of APOS theory together with an 

additional mental structure that precedes the action level called the pre-function level, hence 

(P)APOS theory. The following classification scheme details the method I used to determine 

if a learner was experiencing the conceptions according to APOS theory chosen for this 

study.  For each conception, I briefly describe the conception and then list the item responses 

that indicate the existence of the conception. In general, for learners to be considered as 

displaying a given concept, they must have more of these indicators for that concept. If a 

learner is a borderline case according to this coding procedure, then other responses may be 

taken into account as weak indicators and these are also specified below.  I also examined 

carefully the learners’ responses for other written indicators showing that they may or may 

not have had the concept.  Often this was the deciding factor in coding the conception of the 

learner. 

 

According to Cotrill, Nichols, Schwingendorf, Thomas and Vidakovic (1996) and Dubinsky 

and Wilson, (2013) learners have a pre-function conception of a function if they indicate little 

or no conception about the function concept. Moreover, whatever little understanding 

learners have, it is not very useful in performing the tasks that are called for in mathematical 

activities related to functions (Breidenbach, Dubinsky, Hawks & Nichols, 1992). Learners at 

this level display the following indicators: 

• give responses like “ I don’t know” (Breidenbach et al., 1992); 

•  regard a function as a social gathering (Breidenbach et al., 1992);  

•  give a mathematical statement that describes something or a mathematical equation 

with variables(Breidenbach et al., 1992); and 

• regard a function as an equation (in x) with no y values (Nyikahadzoyi, 2006).  
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As the learners had already encountered functions in their normal classroom I have chosen 

not to use the pre-function level. Where the level of pre-function occurs I will indicate this as 

(P)APOS. In other instances I use the APOS theory. I now explain these four conception 

levels and their indicators with particular reference to the function concept.  

 

3.5.1 Action level of a function 

An action conception is “a form of understanding of a concept that involves a mental or 

physical transformation of mental or physical objects in reaction to stimuli that the subject 

perceives as relatively external” (Dubinsky & Harel, 1992, p. 17). At the action level, the 

transformation of objects is thought of as external, and the learner only knows how to 

perform an operation from memory or from clearly given instructions (Dubinsky & 

McDonald, 2001). It requires specific teaching, and the need to perform each step of the 

transformation explicitly (Maharaj, 2010). The following are indicators of learners who are 

operating at the action level.  

• They typically understand the most basic ideas behind the function concept, for 

example, see a function as a relationship between two sets; domain; range (Dubinsky 

& Harel, 1992).  

• They are capable of substituting numbers into a function expressed algebraically, and 

then doing a calculation to obtain an answer (Dubinsky & Harel, 1992). 

•  They think about the problem in a step by step manner and look at one step at a time 

(Dubinsky & McDonald, 2001), for example, when given the function  f(x) = (x + 1)2 

and asked to solve the function for when x = 1, learners operating at this level would 

go through the following steps to get an answer: f(x) = (x + 1)2  then                            

 f (1) = (1+ 1)2 = 22 = 4. The learner would be able to understand that 1 is the input, 

the expression     (x + 1)2 represents the procedure and 4 is the output. 

• They exhibit strong tendencies to recall verbatim the definitions (Breidenbach, 

Dubinsky, Hawks & Nichols, 1992). 

• They regard a function as “some rule that relates the first number to the second” 

(Weyer, 2010:93) or an equation or expression that will evaluate something when 

either variables or numbers are plugged into the function (Breidenbach et al., 1992). 

• They can substitute numbers into a function expressed algebraically, and then 

calculate it to obtain an answer (Weyer, 2010). 
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• They can think about the problem in a step-by-step manner and look at one step at a 

time (Weyer, 2010). For example, when given the function f(x) = (x + 2)2 - 4 and 

asked to find the x and y intercepts learners in this level would go through the 

following work to get an answer: 

x-intercept y=0                                          y-intercept  x = 0 

0 =(x+2)2 – 4                                              y = (0+2)2 - 4 

4 = (x + 2)2                                                 y = 4 - 4 

2 = x + 2 or -2 = x + 2                              y = 0 

x = 0 or x = - 4 

The learners are able to understand that 0 is the input, the expression (x+2)2 - 4 

represents the procedure and x = 0, x = - 4 and y = 0 are outputs.  

• They respond to the table of values by trying to look for “some rule that relates the 

first number to the second” (Dubinsky & Harel, 1992, p. 93). 

 

3.5.2 Process level of a function 

A process conception is defined as “a form of understanding of a concept that involves 

imagining a transformation of mental or physical objects that the subject perceives as 

relatively internal and totally under her or his control” (Dubinsky & Harel, 1992, p. 19). At 

the process level, learners can perform the same action or transformation without external 

stimuli. Basically, they have internalized the procedure. Learners at this level can also “think 

of performing a process without actually doing it” and think about reversing the process as 

well as using it with other processes (Dubinsky & McDonald, 2001, p. 3). Breidenbach, 

Dubinsky, Hawks and Nichols (1992) added that a process conception is required for an 

individual to understand inverses of functions and other function properties. Learners 

operating at the process level can do the following listed below. 

• Think of the transformation as an entire activity and internalize the procedure that is 

going on (Dubinsky & Harel, 2001). 

• Look at the word ‘function’ as a verb and sees a function as doing something. For 

example, when considering equations, learners at this level can look at an equation 

and see the procedure as a whole without having to plug in all the specific values 

(Dubinsky & Harel, 2001).  

• Draw the graph the function f(x) = x2 by plotting only a few of the points and can also 

make general arguments about the function (Weyer, 2010). 
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• Able to describe and relate functions’ properties or behaviour in terms of comparing 

shapes or contours and looking at a number of graphs several times to compare 

coefficients or algebraic terms. This will enable the learners to investigate graphs and 

make predictions from previous graphs (Reed, 2007). 

• Begin to see how one variable changes while predicting changes in the other. An 

example of this concept is the relationship between the height of water in a bottle and 

its volume (Depaolo, 2009).  

• See a function as an operation that accepts a given value and returns a corresponding 

value (Breidenbach, Dubinsky, Hawks & Nichols, 1992). 

• Understand the difference between being a function, being one-to-one, being onto, 

and having a one-to-one correspondence (Reed, 2007). 

• Look at the ordered pairs and see the relationships without drawing arrow diagrams. 

• See a relationship when the relationship is not stated (Weyer, 2010). 

• See a function as some sort of input being processed, a way to give some sort of 

output (Breidenbach et al., 1992). 

• Talk about a general set of numbers going in resulting in numbers coming out 

(Weyer, 2010).  

• Give a definition of a function that looks at the procedure as a whole with inputs, a 

process, and outputs (Weyer, 2010). 

• Look at an equation and sees the procedure as a whole without having to plug in all 

the specific values (Dubinsky & Harel, 1992).  

 

3.5.3 Object level of a function 

An object conception is “a form of understanding of a concept that sees it as something to 

which actions and processes may be applied” (Dubinsky & Harel, 1992, p. 19). The learner at 

this level sees the procedure as a whole and understands that transformations can be 

performed on it (Dubinsky & McDonald, 2001). Encapsulation is the term used to describe 

“the mental construction of a process (transformed by some action) into a cognitive object 

that can be seen as a total entity (or coherent totality) and which can be acted upon (mentally) 

by actions or processes. The only way to mentally construct a mathematical object” 

(Dubinsky & Harel, 1992, p. 18). Learners operating at the object level can do the following: 

• regard the word “function” as a noun (Dubinsky & Harel, 1992) and see a function as 

something that is being acted on (Dubinsky & McDonald, 2001); 
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• when considering the graph of the function f(x) = x2 + 1, learners at the object level 

would see this representation of a function as taking the graph of the function           

f(x) = x2, as if it were an object, and shifting the whole graph up one unit to obtain  

f(x) = x2 + 1 (Weyer, 2010); and 

• carry out actions, resulting in some kind of transformation on a function (Dubinsky & 

Harel, 1992).  

 

3.5.4 Schema level of a function  

 At the schema level a learner has “a collection of actions, processes, objects and other 

schemas, together with their relationships, that the individual understands” in connection with 

functions (Dubinsky & Harel, 1992, p. 20). The learner at the schema level “is able to jump 

back and forth between the levels of action, process, object and schema in relation to the 

function concept” (Weyer, 2010, p. 10). The learner is able to link graphic and symbolic 

forms to construct a precise symbolisation for the information available in the given graph 

and to have the whole understanding of the concept of how all multiple representations of 

functions link together (Bennet, 2009). I also developed and compiled a list of other 

indicators for the action, process, object and schema of APOS theory that I used when 

analysing learners’ responses in this study (see Section 6.6).   

 

The four conception levels of APOS theory were used to investigate what learners understand 

of concepts related to functions and helped to determine the level at which a particular learner 

was operating. In this study, I used APOS theory to describe and analyze learners’ mental 

constructions that characterize their understanding of the concepts related to functions at 

different levels as observed in clinical interviews. These mental constructions guided the 

coding and analysis of the interview data. Learners’ responses were categorised into APOS 

levels. There are several reasons why, for most conceptions, not all of the indicators are 

required in order to assign attributes.  For instance, learners will often misread an item or two 

on an assessment task, and even the best item still leaves some ambiguity in learners’ 

thinking. Relying on multiple items to describe a concept diminishes the effects of 

assessment error. 

 

Since the initial part of my study was to investigate what learners understand of concepts 

related to functions, APOS theory as a theory of how learning a mathematical concept might 
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take place (Dubinsky & McDonald, 2001) together with the pre-function level indicators, 

provided a framework for understanding how learners understand the concepts related to 

functions. By subdividing the understanding of concepts related to functions into conception 

levels corresponding to specific mental constructions that a learner might make in order to 

develop their understanding of that concept, indicators of APOS theory conception levels 

helped to determine the level at which a particular learner was operating, depending on 

available evidence. The available evidence in the form of the learner’s responses to task 

questions and clinical interview questions also helped planning instructional strategies to 

move the learner from one conception level to the other. These conception levels were also 

used to design task questions and to analyse learners’ responses to task and clinical interview 

questions.  

 

While it is useful to think of the levels of APOS theory in this order, in reality these 

constructions are not made in a linear sequence. Instead, they are made in a partially ordered 

sequence (Dubinsky & McDonald, 2001). As such, these conception stages only served as the 

guiding framework. Dubinsky & McDonald state that, “APOS theory makes testable 

predictions that if a particular collection of actions, processes, objects and schemas are 

constructed in a certain manner by a learner, then this individual is likely to be successful in 

certain problem situations” (p. 2). However, 
Explanations offered by an APOS analysis are limited to descriptions of the thinking which an 

individual might be capable. It is not asserted that such analyses describe what ‘really’ happens 

in an individual’s mind, since this is probably unknowable. The main use of an APOS analysis 

is to point to possible pedagogical strategies. Data is collected to validate the analysis or to 

indicate that it must be reconsidered (Maharaj, 2010, p. 43).   

 

In the schema level of APOS theory, a learner has “a collection of actions, processes, objects, 

and other schemas, together with their relationships, that the individual understands” in 

connection with functions (Dubinsky & Harel, 1992, p. 20). Since the learner is able to jump 

back and forth between the levels of action, process, object, and schema in relation to the 

concept of function, if a learner is operating at the object level s/he can jump back and 

operate at both the process and action levels when the need arises. But a learner operating at 

the action level will not be able to jump forth and operate at a higher level without any form 

of intervention. Therefore, as a learner approaches the schema level the number of 
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connections among his/her conception levels also increases as shown in Figure 4. The more 

the connections a learner has, the deeper is his/her understanding. 

  

 

 Number of connections between APOS conception levels as a learner approaches the 

schema level  

 

                                                       A   1       P      2     0       3          S 

        

                                         SCHEMA    4         5         6         7 

                                                                A     1       P      2      O      

                                         OBJECT                    

                                                                         3               4 

   

       PROCESS              A   1      P 

                                                                                 0 

                                        ACTION             A 

 

 

Figure 4: Relationship between the number of APOS connections and understanding 

 

The implication of Figure 4 above is that learners should be helped to reach the schema level 

so that they are able to operate at any level of conception demanded by different questions on 

the function concept. 

 

3.6 Realistic Mathematics Education (RME) 

The RME theory was originally developed in the Netherlands and “it emphasises the idea that 

mathematics is a human activity which must be connected to the reality of the learner using 

real-world context as a source of concept development and as an area application, through the 

process of mathematisation both horizontal and vertical” (Gravemeijer, 1994, p. 17). In a 

constructivist approach learners direct the course of lessons and are no longer seen as 

receivers of knowledge but the makers of it, and the role of the teacher has shifted to that of a 

 facilitator.  
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3.6.1 Characteristics of Realistic Mathematics Education 

I discuss separately characteristics of RME that involve real life situations and those that are 

real or imaginable to the learners. According to Meyer (2001), RME involves the use of real 

life contexts as a starting point for learning that should appeal to learners’ real life, allowing 

them to immediately engage in the situation. RME also uses models as a bridge between 

abstract and real life to help learners learn mathematics at different levels of abstraction. 

Initially the model emulates a real life situation that is familiar to learners. This is in line with 

the theory of constructivism. “By a process of generalising and formalising, the model 

eventually becomes an entity on its own and is possible to be used as a model for 

mathematical reasoning” (Meyer, 2001, p. 19). 

 

Meyer (2001) also draws attention to the use of the learner’s own strategy as a result of doing 

a real life mathematical problem. By answering questions based on real life situations in their 

own way, “learners are guided to reflect on the path they themselves have taken in their 

learning process and, at the same time, to anticipate its continuation” (Meyer, 2001, p. 20). 

Moreover, RME provides interaction between the teacher and learners, and between learners 

themselves which is essential in learning mathematics. Meyer (2001) regards “explicit 

negotiation, intervention, discussion, cooperation, and evaluation as essential elements in a 

constructivist learning process where the learner’s informal methods are used to access the 

formal ones” (p. 20).  

 

According to Gravemeijer (2004), RME initially presents knowledge within a real life or 

concrete context that allows learners to first develop informal strategies and then gradually to 

progress to more formal, abstract and standard strategies through the process of guided 

mathematisation. Gravemeijer identifies two kinds of mathematisation, namely, horizontal 

and vertical which he defines as follows. “Horizontal mathematisation is when the learners 

discover mathematical tools which can help them to organise and solve a problem located in 

a real-life situation while vertical mathematisation refers to the process of reorganisation 

within the mathematical system itself” (Gravemeijer, 2004, p. 19). An example would be 

refining and adjusting models or generalising to create more challenging mathematics and 

hence a greater use of abstract strategies. 

 

Some of the views on the nature of mathematics as outlined in the South African National 

Curriculum Statement (DoE, 2003) are closely linked to the Realistic Mathematics Education 
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Theory. These views include the notion that mathematics is seen as a human activity and that 

mathematical problems should include real-life situations. According to Vaid (2004), 

“mathematics must be connected to reality, stay close to children’s experience and be 

relevant to society, in order to be of human value” (p. 34). Benson (2004) concurs by adding 

that RME involves putting mathematics into recognisable, real life contexts to allow the 

learners to engage with the mathematics and generate solutions in a variety of forms. This 

encourages discussion in a more informal atmosphere whilst moving towards a more formal 

solution. This model is based on the principle that learners see meaning in their schoolwork 

when they connect information with their own experience. It was appropriate to embody 

RME in my planning of the teaching experiments because learners were preparing to write 

the school-leaving examination based on the South African National Curriculum Statement 

(2003). 

 

Further justification for using RME comes from Treffers and Beishuizen (2000) who 

illustrate the applicability and relevance of mathematics in real-world situations. For them 

realistic mathematics involves taking realistic context situations as the starting point or as the 

source for learning mathematics. They point out that this RME viewpoint does not mean 

adding a few application problems to mathematics lessons, but rather to have a complete 

reversal of the teaching and learning process. Then, the emphasis is no longer on the teacher 

transmitting knowledge and concepts, but on learners finding mathematical patterns and 

structures in realistic situations, and becoming active participants in that teaching and 

learning process. At this point one can draw parallels with constructivism where ‘realistic’ 

also relates to mathematical activities which are experientially real to a child. Similarly 

Zulkardi (2003) notes that mathematics must be close to children and relevant to everyday 

life situations.  

 

Given the misconceptions and difficulties that learners face in learning the function concept, 

it is evident that teaching this function concept to learners is challenging.  Teachers need to 

use strategies that build learners’ understandings of the concept of a function through 

everyday experiences. They should start with concrete examples and gradually move to 

abstract ideas. Additionally, teachers need to continually challenge learners’ initial 

understandings of the function concept to help them progress from one lower cognitive level 

to the next. “Learners should be compelled to work with various functions in meaningful 

contexts and interpret important features of functions and their graphs for example, 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

63 

increasing, decreasing, maximum values, increasing and decreasing rates and working 

flexibly between various representations of functions” (Ojose, 2008, p. 7). 

 

On the other hand, Mudaly (2004) argues that realistic mathematics teachers place much 

emphasis on making a mathematical idea real in the mind of the learner. According to 

Zulkardi (2003) ‘realistic’ refers not just to the connection with the real world, but also refers 

to problem situations which are real in learners’ minds. In addition, Bottle (2005) points out 

that ‘realistic’ does not just mean real-life situations. She explains that the term ‘realistic’ is 

taken from the Dutch word ‘zich REALISEren’ which can mean ‘to realise’ or ‘to imagine’.  

Therefore it means including contexts that may be imaginary but that are realistic to children. 

RME as a teaching and learning theory represents a significant departure from traditional 

ideas about teaching and learning mathematics. According to Meyer (2001) “perhaps the 

most obvious difference between an instructional sequence based on RME and a more 

traditional sequence is their starting point. Instead of starting in an abstract realm and moving 

toward a concrete application, the mathematics starts in contexts and gradually progresses to 

formal symbolism” (p. 67). This shift allows learners to engage in meaningful pre-formal 

activities in lessons at an earlier stage than they traditionally have been doing. Through a 

structured instructional sequence, learners can explore and rediscover significant mathematics 

that anticipates the more formal representations. 

 

In addition to the above characteristics, Vaid (2004) asserts that the term 'realistic' refers to 

situations which can be imagined by the learners and draws attention to learners’ 

understanding of processes rather than learning and memorising algorithms. As a result, 

learners should be helped to 'discover' the mathematics for themselves by encouraging and 

valuing different solutions. Hence, the teacher should begin with a range of informal 

strategies provided by learners, and build on these to promote the conceptualisation of more 

sophisticated ways of symbolising and understanding. Vaid (2004) suggests “allowing the 

learners to begin at the basics, using informal strategies and constructing the mathematics for 

themselves, simulates the discovery of the mathematics and allows them to appreciate its 

complexity” (p. 37). RME incorporates the use of effective models like the function machine 

and graphs to provide a more visual process of learning functions. 

 

The present study was interventional in nature, its emphasis was on eliciting learners’ 

different ways of understanding concepts related to functions so that those understandings, if 
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not accurate, could be used as starting points in the design of interventions to identify and 

rectify the inaccurate understandings. To better guide the design of these interventions the 

instructional principles and associated design methods which are tenets of the theory of RME, 

were used. The theory of RME was selected as the vehicle to drive the design and 

implementation of the intervention for the following three reasons. Firstly, it provided a basis 

from which to work with the misconceptions (Gravemeijer, 1994) and difficulties elicited 

from the previous chapter in this research. Secondly, it placed learners’ mathematical 

reasoning at the centre of the design process while simultaneously proposing the specific 

means by which the development of their reasoning could be systematically supported (Cobb, 

Zhao & Visnovska, 2008). In this study learners created meaningful mathematical ideas as 

they engaged in challenging tasks on concepts related to functions. In this process, 

“mathematisation, symbols, algorithms, and definitions were built from the bottom up 

through a process of suitably guided reinventions” (Rasmussen, Zandieh, King & Teppo, 

2005, p. 26). Guided reinventions speak to the need to locate instructional starting points that 

are experientially real to learners and that take into account learners’ current mathematical 

ways of knowing. This calls for an examination of learners’ informal solution strategies and 

interpretations that might suggest pathways by which more formal mathematical practices 

might be developed. Thirdly, RME places emphasis on understanding processes, rather than 

merely learning algorithms so that the focus is on the growth of knowledge and 

understanding of mathematical concepts. Gravemeijer (1994) adds that “for mathematical 

concepts to be understood, they must be connected to reality, stay close to learners and be 

relevant to society” (p. 358). As such, teachers need to establish a link between learners’ own 

understandings and the correct mathematical ideas. The RME theory was applied in the 

design of the intervention, where the aim was to assist low attaining learners in a remedial 

programme conducted during school hours (Cobb, Zhao & Visnovska, 2008). 

 

3.6.2 RME's learning and teaching principles 

• Learning mathematics is a constructive activity: this principle contradicts the idea that 

learning involves absorbing knowledge which is presented or transmitted (Treffers, 

1991). Regarding teaching, “the instruction should start with a concrete orientation. In 

RME, the starting point of instructional experiences should be `real’ to the learners; 

allowing them to immediately become engaged in the situation” (Treffers, 1991, p. 79). 

This means that instruction should not start with the formal system. The phenomena by 

which the concepts appear in reality should be the source of concept formation. The 
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process of extracting the appropriate concept from a concrete situation is stated by De 

Lange (1996) as ‘conceptual mathematisation’. This process will compel learners to 

explore the situation, find and identify the relevant mathematics and develop a ‘model’ 

resulting in a mathematical concept.  

• Models develop learning through levels of abstraction: according to Treffers (1991), 

the term model “refers to situation models and mathematical models that are 

developed by the learners themselves” (p. 78). This means that learners develop 

models in solving problems. At first, the model is a model of a situation that is 

familiar to the learners. By a process of generalising and formalising, the model 

eventually becomes an entity on its own. It becomes possible that it is used as a model 

for mathematical reasoning. In this principle, the learning of a mathematical concept 

or skill is viewed as “a process often stretched out over the long term and which 

embodies various levels of abstraction, namely, from informal to formal and from the 

intuitive level to the level of subject-matter systematic” (Treffers, 1991, p. 80). 

Gravemeijer (1994) advocates paying attention to visual models, model situations, 

and schemata that arise from problem solving activities as these will help learners to 

move through these various levels. 

• The use of learners’ own productions and constructions: learners should be asked to 

‘produce’ more concrete things. De Lange(1996) stresses the fact that, “by making 

‘free production’, learners are compelled to reflect on the path they themselves have 

taken in their learning process” (p. 25). 

• Social context and interaction: learning is not a solo activity but it occurs in a society 

and is directed and stimulated by the socio-cultural context (Treffers, 1991). By 

working in groups, for example, learners have the opportunity to exchange ideas and 

arguments so that they can learn from each other.  

• Structuring and intertwining of learning strands: learning mathematics does not 

consist of absorbing a collection of unrelated knowledge and skill elements, but is the 

construction of knowledge and skills within a structured entity (Treffers, 1991). This 

brings in the idea of a holistic approach advocated for by Gravemeijer (1994) which 

places emphasis on applications and intertwining of learning strands. 
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3.6.3 Using RME principles in designing lessons about functions 

Streefland (1991) developed mathematics lessons based on the characteristics and principles  

of RME and focused on constructivism through horizontal mathematisation. First, he started  

by introducing open material into learning situations and provided opportunities for carrying 

out free productions, using own solution strategies. In applying the characteristics and 

principles of RME in his lesson, Streefland (1991) started from meaningful contexts which 

guided learners to construct the intended concepts. To help learners learn through 

constructivism “the teacher needs to arrange activities for learners, so they can interact with 

each other, discuss, negotiate, and collaborate. By this way, the learners’ contribution to their 

own learning path can be guaranteed” (Streefland, 1991, p. 32). The learners can be 

encouraged to follow this kind of constructivist activity by giving them an assignment which 

leads to free productions (the use of own creative strategies). 

 

In addition to the above, in order to design RME lessons, the components of a lesson plan are 

identified and connected to RME. These components are goals, content (materials), 

methodology (activities), and assessment. In RME intended goals are not always immediately 

clear for both the teacher and learners but emphasis is placed on the reasoning skills, 

communication and the development of a critical attitude. These are popularly called ‘higher 

order’ thinking skills (De Lange, 1996). Focus is on making connections between the 

different concepts and solving simple problems without unique strategies. To achieve the 

intended goals the teacher needs materials to manipulate and construct knowledge.  

 

The roles of the RME teacher in the classroom include being a facilitator, an organizer, a 

guide, and an evaluator (De Lange, 1996). As the starting point the teacher gives the learners 

a contextual problem that relates to the topic. During the interaction activity, the teacher gives 

learners a clue, for instance, by drawing a table on the board when teaching the function 

concept, guiding the learners individually or in small groups in case they need help and 

encouraging learners to compare their solutions in a class discussion. The discussion is based 

the contextual problem and the focus is on problem interpretation and production of 

individual solutions. As learners are allowed to find their own solutions, they are free to make 

discoveries at their own level, to build on their own experiential knowledge, and perform 

shortcuts at their own pace. They are given another problem in the same context.  
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According to De Lange (1996), the primary purpose of assessment is to improve learning and 

teaching by measuring learners during the teaching and learning process and at the end. 

Methods of assessment should enable the learners to demonstrate what they know rather than 

what they do not know. It can be conducted by having problems that have multiple solutions 

with multiple strategies. Learners should be assessed in order to see whether they really 

understand the problems.  

 

3.7 Merging the theories  

Pegg and Tall (2005) discuss the importance of theoretical triangulation, “the process of 

compiling relevant theoretical perspectives and practitioner explanations, assessing their 

strengths, weaknesses, and appropriateness, and using some subset of these as the focus of 

empirical investigation” (p. 43). This implies that similar characteristics of different 

psychological theories of learning mathematics can be merged to complement each other and 

still maintain their own identity.  As such, the theories of Piaget, APOS and RME were 

brought together within the constructivist paradigm in this study to take advantage of their 

complementary themes and characteristics as illustrated by an integrated theoretical 

framework in Figure 5. 
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Figure 5: An integrated theoretical framework 
 
 
 I focused on what I saw as their main agenda, namely their focus on building mathematical 

concepts over time and a fundamental cycle underlying the development of concepts that 

characterise different ways of thinking during learning mathematics.  

 

Regarding the theories of Piaget, APOS, and RME the overall processes that they describe 

are broadly similar, namely, to begin with actions on known or real physical or mental 

objects. According to Piaget (1977), “these actions are practised until they become routine 

step-by-step procedures that are seen as a whole process” (p. 257). Then they become 

embedded as independent entities on which the learner can operate at a higher level to 

generate a further cycle of construction. What these theories have in common is that they 

SCHEMA 
   LEVEL 

OBJECT 
  LEVEL 

PROCESS 
   LEVEL 

 ACTION 
   LEVEL 

 
 
H 
L 
T 
 S 

        APOS  
    THEORY  
 
 
 
Informed my analysis of 
learners’ responses 
 
Use indicators of APOS 
theory to categorize 
learners’ responses into 
conception levels 
 
Use of Piaget’s ideas 

RME                      
THEORY 

Informed my instruction 
to improve learners’ 
understanding 
 
Use principles of RME 
to design instructional 
sequences in a 
hypothetical learning 
trajectory and activities 
 
Use of social 
constructivism (more 
learner to learner  
interaction) 

                                                   CONSTRUCTIVISM 

                     

                                                                         

                                                       CONSTRUCTIVISM 

 

ULTIMATE 

       GOAL 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

69 

involve “a shift in focus from actions on already known objects to thinking of those actions 

as manipulatable mental objects” (Pegg & Tall, 2005, p. 47). For this study the initial action 

is at the concrete operational stage of Piaget where a learner needs concrete materials to 

manipulate in order to understand and use them to solve a particular functional problem. The 

concrete operational level uses alternative procedures that are not seen as interconnected and 

hence remain at the action level of APOS. 

 

 RME complements my study by initially presenting knowledge within a concrete context, 

allowing learners to develop informal strategies, but through the process of guided 

'mathematisation', gradually allows learners to progress to more formal, abstract, standard 

strategies. It involves taking realistic contexts as the starting point or source for learning the 

function concept. It also speaks to the need to locate instructional starting points that are 

experientially real to learners and that take into account the learners’ current mathematical 

ways of knowing. This calls for an examination of learners’ informal solution strategies and 

interpretations that might suggest pathways by which more formal mathematical practices 

might be developed. RME also stresses understanding processes, rather than learning Piaget’s 

routine step-by-step procedures and the focus is on the growth of the learners’ knowledge and 

understanding of mathematical concepts. Gravemeijer (1994) adds that if mathematical 

concepts are to be understood, they must be connected to reality, stay close to the learners 

and be relevant to society. As such, there is need to establish a link between the learners’ own 

understandings and mathematical ideas.  

 

The conception levels of APOS theory helped in determining at which stage a particular 

learner was operating, depending on the available evidence in the form of the learner’s 

responses to task questions and clinical interview questions. After classifying learners in 

these conception levels I used the principles of RME, in designing level appropriate and 

realistic activities that moved the learner from one conception level to another. As learners 

were working on these activities they interacted with each other, sharing ideas and comparing 

solutions. To move a learner from APOS theory’s action level to the process level I used the 

principles in Piaget’s concrete operational stage because I regarded the development as an 

effect of operations on concrete materials known to the learner. The theory of RME was 

selected as the vehicle to drive the design and implementation of the instructional activities.  
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Moreover, RME provided a firm basis from which to work with the misconceptions 

(Gravemeijer, 1994) and difficulties that were elicited in this research. It placed learners’ 

mathematical reasoning at the centre of the design process while simultaneously proposing 

specific means by which the development of their reasoning could be systematically 

supported (Cobb, Zhao & Visnovska, 2008). 

  

A combination of these theories was used as a sorting-tool to analyse a large amount of 

interview and observation data, and to design and implement teaching experiments that 

helped learners overcome their difficulties in understanding concepts related to functions. 

Learners in this study tended to refer to elements that were associated with these theories. 

This suggests the importance of determining where a learner is before presenting new 

information to fully address whether a learner is capable of understanding the new material 

based on their current developmental stage. So, understanding how a learner moves through 

this developmental process can enhance our understanding of how learners learn and 

therefore increase the chances of helping them to understand new complex ideas.  

 

It can be seen from the discussions in this chapter that APOS theory provided a broad 

description of concept images of the function concept possessed by learners and their 

functional reasoning. These concept images informed my analysis of learners’ interview 

responses. I used indicators of APOS conception levels to categorize learners’ responses. 

Learners’ APOS conception levels were used to design instructional strategies to help 

learners move up the APOS theory conception hierarchy. Complementing APOS theory were 

Piaget’s theory and Realistic Mathematics Education theory which guided the design and 

development of stage-appropriate and realistic instructional materials. The theoretical 

framework influenced my methodology and research design for this study. The next chapter 

describes in detail this methodology and research design.  
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Table 3 summarizes the links between the three theories examined in this chapter and used in 

this study and how they informed my analysis of learners’ responses and the development of 

instructional activities. 

 

    Table 3: Summary of three theories and their links to functions 

APOS  THEORY 

LEVELS 

PIAGET’S THEORY 

STAGES 

                          RME THEORY 

      

           ACTION 

student has internalized an 

action to form a process. Use 

a given equation to substitute 

values e.g. when finding 

intercepts 

           PROCESS 

 

Piaget spoke of three 

modes of abstraction: 

 

 Empirical abstraction 

from objects of the 

environment (concrete 

operational) 
 

  

emphasize the idea of making a mathematical 

concept real in the mind of the student. Help 

learners to understand why at the x-intercept 

y=0 and at the y-intercept x=0 

 

     

           PROCESS 

 student sees a function as an 

object that is being acted on.        

         

            OBJECT 

 

Pseudo-empirical 

abstraction from actions 

on objects in the 

environment for example 

transforming a graph of 

function. 

  

emphasizes the understanding of processes 

(transformations), rather than learning  

algorithms. 

       

  

              OBJECT 

student has a collection of 

actions and processes on 

functions (objects)       

 

             SCHEMA 

 

 

Reflective abstraction 

from mental objects 

(formal operational) 

processes are performed on 

already known objects 

moving to the formation of 

schemas. 

 

  

 

emphasizes understanding of the effects of 

actions and processes on known and 

unknown objects 

 

       Informed analysis         Informed instruction 
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CHAPTER 4 

Research Design  

4.1 Introduction 

This chapter describes the research design and methodology for answering the research 

questions for this study. Table 4 below summarizes the relationship between the research 

questions, design research phase, data collection instruments and techniques as well as the 

method of analysis for all the phases of design research in this study. 
 

Table 4: Relationship between research questions, design research phase, data collection 

instruments/ techniques and method of analysis  

 

 

Research 

Question 

         

Phase 

 

Data collection 

instruments/ 

techniques 

  

Purpose of 

phase before 

and after 

intervention 

     

Method of analysis 

1. How do 

     learners 

     understand 

     the function  

     concept? 

 

Sub-questions: 

 i) What are 

      grade 11 

       learners’  

       current     

understanding  

of functions? 

 ii) What are the 

      weaknesses  

      in the 

      learners’ 

 understanding? 

 

Phase1: Problem 

identification (for 

the definition, 

representations 

and inverse of the 

function concept 

separately) 

 

 

      

 

 

      

 

1. June 2011 

    mathematics 

    examination:  

    Question 7 &  8 

2. Learners’  

    answer 

    scripts 

3.Clinical task- 

    based 

    interview 

4. Learners’  

     transcribed  

     interview  

     responses 

5. Group 

     Interviews 

 6. Observation 

1. To determine 

    learners’ 

    understanding 

    of the 

    definition,  

    representation 

    and related 

    difficulties 

2. Learners’  

    responses  

    address both 

    sub-question 

    i and ii of the 

    first research 

    question 

 

 

 

1. APOS and thematic analysis of 

    learners’ written  responses, 

    explanations, justifications of 

    solutions and their strategies was 

    used to determine the APOS 

    level of each learner before and 

    after intervention and also to 

    allow patterns, themes and 

    categories to emerge from the 

    data. 

2. Constant comparative method of 

    data analysis was  used to 

    compare what students do on 

    paper and what they say they do 

    in oral interviews to identify 

    similarities, differences and 

    general patterns. 
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 2. How can 

      instruction 

      be designed 

      to improve 

      learners’               

understanding 

 of the function 

     concept? 

 

 

  

 Phase 2: 

 Development of  

 interventions (for 

 the definition, 

 representation  

 and inverse of the 

 function concept  

 separately)  

 

Phase 3: 

Tentative 

products and 

theories 

(development of 

 teaching  

 experiments for  

 the definition, 

 representations 

 and inverse of the 

 function concept 

 separately) 

 

Phase 4: Teaching 

experiment and 

theory refinement 

 

 

      

 

1. Hypothetical  

    Learning 

   Trajectories  

    (HLTs) 

 

2. Assessment 

    activities on the 

    definition, 

    representation  

    & inverse of 

    functions 

 

3. Task-based  

    clinical  

    interviews 

 

4. Researcher’s  

     own journal 

 

1. To design and 

     develop  

      interventions 

      informed by 

     the  theoretical  

      framework 

2. To identify 

     tentative  

     products and 

     design  

     principles 

3. To apply the 

    tentative 

    products and 

    theories  

    (HLTs, RME 

    activities and  

    APOS  

    conception 

    levels) 

4. To refine the 

    tentative   

    products (HLTs 

    & RME  

    activities) 

 

 

 

 

   

 

1. Retrospective analysis in 

    which the researcher 

    compares the HLT with 

    students’ actual  learning 

 

2.  Constant comparative analysis 

and retrospective analysis. The 

researcher will look back and 

reflect upon the whole research 

process and check whether what 

was intended by the study was 

achieved and to what extent 

 

The underlying philosophical assumptions (ontological and epistemological) that I brought 

into this study are discussed first.  A description of the study site and setting, the sample and 

sampling techniques follows. The research questions for the study favour design research 

because of the intervention strategies that had to be designed and refined to answer them. I 

give a brief summary of the phases of Wademan’s (2005) generic design research model and 

then explain in detail how I adapted Wademan’s (2005) model to suit the context of my 

research. The data collection procedures and methods used for the study are explained 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

74 

together with how the collected data was analyzed. Coding of learners’ responses and 

strategies as well as indicators of APOS conceptions are also described. Ethical issues, 

measures to ensure rigor, trustworthiness and limitations of the entire research process are 

explained in the last section of this chapter. 

 

4.2 Ontological and Epistemological assumptions 

“The deeper meaning behind research questions lies in the ontological and epistemological 

perspectives” (Trede & Higgs, 2009, p. 18). Trede and Higgs state that, ontology is 

concerned with the nature of knowledge and epistemology is concerned with the theory of 

knowledge. I believe that learners’ construction of reality lies in their sense-making of what 

they are taught and what they already know. This belief prompted me to select the qualitative 

research paradigm which “assumes and recognizes multiple constructed realities that are 

grounded in learners’ different attributions of meanings to taught concepts” (Trede & Higgs, 

2009, p. 21). In this study, I recognized and valued multiple interpretations by using rich 

descriptions (Bogdan & Biklen, 2003) of students’ interpretations of the concepts related to 

functions in the form of quotations from the transcribed interviews and field notes of 

observation data. 

 

I believe that knowledge is constructed by individuals in their mind when trying to make 

sense of information from teachers and textbooks in the light of their previous knowledge. 

This implies that learners do not passively receive knowledge from an outside source but they 

actively build it up (Trede & Higgs, 2008). Similarly, Hansson (2006) considered knowledge 

“as a gradually built individual construction and understanding as building of mental 

structures where previously built structures affect subsequent constructions” (p. 14). In this 

study the construction of knowledge was promoted by engaging learners in function-related 

tasks and activities and asking them to explain their solutions. This ensured that learning was 

“an active process involving learners constructing rather than acquiring knowledge, and 

instruction or teaching was a process of supporting that construction rather than 

communicating knowledge” (Clements & Ellerton, 1995, p. 4). The data in this study, which 

comprised mainly written solutions and transcribed explanations of learners, might not 

completely reflect how learners solved the problem. For example, some learners might fail to 

show or explain their solutions. To minimize this concern, before the commencement of tasks 

and interviews I explained to learners that answers without explanations would not help me 

understand how their minds worked in solving problems. Because of convenience I worked 
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with only 12 learners whereas a teacher generally has about 50 learners in class. The reason 

for my smaller sample was that I wanted to do an in-depth study of learners’ understanding of 

functions and to see if the use of design research made any difference in learners’ 

understanding. I was also able to ‘experiment’ with my teaching intervention as supplemental 

to the work being done by the teacher without disadvantaging the learners in any way. 

 

4.3 Context 

The research was conducted at a rural, day high school in the Ehlanzeni district located in 

Mpumalanga Province of South Africa. The school was chosen for convenience as I was a 

fulltime mathematics teacher at this school teaching grades 9 and 10 at the time of the data 

collection.  

 

 4.4 Sample and sampling techniques 

A sample of twelve grade 11 learners of mixed ability was purposively selected using their 

teacher’s record of marks and from those who were willing to participate in all the phases of 

design research for this study. Grade 11 learners were chosen for the study typically because 

they would have gone through many aspects of this topic from primary school up to grade 11 

and are expected to have developed more mental images about the selected aspects of the 

function concept. The learners’ average age was fifteen years. Gender balance was also 

purposively sought from the group of volunteers. Purposive sampling offered me “a degree of 

control rather than being at the mercy of any selection bias inherent in pre-existing groups” 

(Mays & Pope, 2000, p. 17). The sample may not be representative and their interpretations 

may not be generalisable, because this is not the primary concern of such sampling, rather the 

concern is to acquire in-depth information. Thus, with purposive sampling, I deliberately 

sought to include extreme or deviant cases conventionally discounted in quantitative 

approaches which focus on average or normal cases (Barbour, 2001).  

 

4.5 Research questions 

1 How do learners understand the function concept?  

    Sub-questions:  i) What are grade 11 learners’ current understanding of functions? 

                             ii) What are the weaknesses in the learners’ understanding? 

2 How can instruction be designed to improve learners’ understanding of the function 

    concept? 

To answer these questions I created situations in which learners would get the opportunity to 
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explain their understanding and share their ideas.  

 

4.6 The research design 

Since learners’ understanding varies, it means that, to explore such understanding requires an 

in-depth study of a few learners. As such, the case study research method was deemed 

appropriate for this study. According to Harling (2002) a case study: 
is a holistic inquiry that investigates a contemporary phenomenon within its natural setting. It 

involves a collection of in-depth and detailed data that was rich in content from multiple sources 

of information including direct observation, interviews and documents. The multiple sources of 

information provide the wide array of information needed to provide an in-depth picture (p. 29). 

 I was able to capture evidence of and synthesize dimensions of learners’ interpretations 

through inquiry into the origins of their interpretations and the meanings they seem to hold. 

In this study I used a case study of a particular high school located in rural Mpumalanga 

Province of South Africa. An important advantage of using a case study was that, it offered 

me a multi-perspective analysis in which I used the voices and perspectives of all the 

participants in the study (Nieuwenhuis, 2010).  

 

The purpose of this research was to understand grade 11 learners’ conceptual understanding 

of functions and to use design research to improve the teaching and learning of functions. To 

this end, I developed and administered instructional activities and tasks that were suitable for 

the current CAPS grade 11 curriculum and located in the South African context. This means 

that designing of instructional sequences and activities was crucial in the research and as a 

result my methodology falls under design research which is described in detail in the next 

section. 

 

4.7 Design research  

Plomp (2006) defines design research as: 
a systematic study of designing, developing and evaluating educational interventions (such as 

programs, teaching-learning strategies and materials, products and systems) as solutions for 

complex problems in educational practice, which also aims at advancing our knowledge about 

the characteristics of these interventions and the processes of designing and developing them. 

(p. 9)  

Reeves (2006) holds forth that design research “investigates the development of solutions to 

practical problems in learning environments with the identification of reusable design 
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principles. He argues that design research aims at developing optimal solutions for problems 

in context” (p. 52). Similarly, Wang and Hannafin (2005) view design research as a: 
systematic but flexible methodology aimed to improve educational practices through iterative 

analysis, design, development, and implementation, based on collaboration among researchers 

and practitioners in real-world settings, and leading to contextually-sensitive design principles 

and theories (p. 6).  

The definitions above indicate that design research is applicable to complex educational 

problems which require intervention at the classroom level. 

 

In line with this study and from the definitions, design research begins with “learners’ 

difficulties in understanding functions” namely, complex problems, which require a process 

of practical intervention or solutions which, according to Plomp (2006), is informed by 

review of relevant literature to provide design principles. I subscribe to Wang and Hannafin’s 

(2005) definition because it speaks of an iterative methodology that suits the nature of my 

study. My aim was to use design research to improve learners’ understanding of functions 

through iterative analysis, design, development, and implementation of interventions which I 

achieved by adapting design cycles of Wademan’s (2005) Generic Design Research model 

shown in Figure 6 that follows. 
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Figure 6: G
eneric D

esign M
odel (W

adem
an, 2005) 
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Wademan’s (2005) model in Figure 6 captures the main features and characteristics of design 

research which I adapted in this study.  I briefly explain the process and the phases of 

Wademan’s model first, to help the reader understand my adapted model for this study. 

Phase 1: Problem identification 

• Stakeholders: researchers, practitioners and other sources. 

• Process: in this phase the context is studied to identify the problem. The stakeholders 

interact with each other and arrive at a common conclusion.  

Phase 2: Identification of tentative products and design principles 

• Stakeholders: experts and practitioners in the specified domain. 

• Process: after the problem is identified, a preliminary investigation of the problem, 

context, and approaches is done in consultation with the experts and the practitioners. 

This is supported by conducting a focussed literature review, and analyzing the 

practical context. Promising examples, which represent the problem, are analyzed. 

This process helps to identify a tentative list of products and design principles, 

emanated from specific theories to be applied in the study. 

Phase 3: Applying tentative products and theories 

• Stakeholders: researchers, practitioners and end-users. 

• Process: tentative products are created using the tentative list of design principles or 

specific theories. These are introduced to the users and the results are captured. 

Phase 4: Prototyping and assessment of preliminary products and theories 

• Stakeholders: researchers, practitioners and end-users. 

• Process: Redesign and refinement of the problem, solutions (created in phase 3) and 

method are done based on the feedback received in phase 3, namely, the interplay 

between theory and practice. Formative evaluation is used along with the reflection of 

the feedback, to do the redesign and refinement. This is an iterative stage where, the 

refinement is done for achieving successive approximation of theory, and refinement 

of design theory. 

Phase 5: Problem resolution and advancing theory 

• Stakeholders: researchers and end-users 

• Process: practical products are created, after the iterations conducted in phase 4. 

     These products have certain aspects which contribute to the existing theory. 
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4.8 Adaptation of my research to the generic design research model 

Phases and the stakeholders mentioned in Wademan’s (2005) model coincide with the phases 

and stakeholders of my research. As the model cannot be adopted as it is, I adapted it to suit 

my context. Figure 7 below shows the adaptation of Wademan’s (2005) model to my 

research. 

 

                     Design research model for improving understanding of functions 
 
         PHASE 1                          PHASE 2                             PHASE 3   PHASE 4 
Problem identification           Identification of                           Using tentative products       Teaching  

                   theoretical                                   and theories to develop          experiment and 

                                         framework                                  teaching experiment                theory                       
                                                                                                                               refinement 

             
  

  

     

    
    
  

    

  

  

 

  

   

   

  

  Design and develop HLTs  

  & their instructional  

                                                         activities 

                                                        

                                                                                                                                         PHASE 5 

                                                                                                                         Final product and                                                  
                                                            contribution to theory 
 

Figure 7: Adaptation of Wademan’s (2005) model for my research 

     RESEARCHER  
Gathered information 
from teacher’s file &  
interviewed learners; 
conducted focused 
literature review 
 

        LEARNERS 
 wrote initial tasks and 
were interviewed 

Interaction of 
STAKEHOLDERS 
in context 

SCHEMA 

OBJECT 

PROCESS 

ACTION 

H 
L 
T 

TEACHING 
EXPERIMENT(S) 

ASSESS BY 
GIVING 
TASKS AND 
DOING 
CLINICAL 
INTERVIEWS 

APOS theory and 
Piaget’s theory 
informed my analysis of 
learners’ responses 
 
Use indicators of APOS 
theory to categorize 
learners’ responses into 
conception levels 

RME & Social 
Constructivism 
informed my instruction 
to improve learners’ 
understanding 

Elicit and 
categorize 
difficulties under 
function definition 
and representation. 

DESIGNING 
INSTRUCTIONAL 
SEQUENCES AND 
ACTIVITIES  

          TEACHER 
 Provided teaching file  
with information on the 
aspects that he had 
covered on functions with 
learners in the sample 
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The phases are the same but the details have been changed according to my context. A 

summary of phase-wise modification is presented here. The details of the actual 

implementation are given in the next chapter. 

 

4.8.1 Phase 1: Problem identification 

The role of different stakeholders 

Researcher: conducted focused literature review; interviewed learners and their teacher; 

analysed learners’ responses and used them to design HLTs; taught in all teaching 

experiments. 

Teacher: provided his teaching file with lesson plans on functions which helped me to 

identify the aspects that he taught, the objectives and teaching methods that he used. This 

gave me a clear background on how the function concept was developed. 

Grade 11 learners: wrote initial tasks and formative assessment tasks and were interviewed. 

 

Process 

Prior to this study learners in the sample had learned about functions. To elicit learners’ 

conceptual understanding of functions I used two instruments listed below. 

1. June 2011 mathematics examination: question 7 and 8. 

2. Formative assessment tasks on the definition and representation of functions. 

 

 Table 5: Relationship between instruments, data collection procedures and method of 

                analysis 

Instrument Data collection procedure Analysis 

June 2011 

mathematics 

examination 

Learners do questions 7 & 8 and 

are clinically interviewed 

Constant comparative and APOS 

analysis of transcribed interview 

responses 

Formative 

assessment tasks 

Learners write these tasks and their 

written responses give feedback to 

the researcher 

APOS analysis of learners’ 

written responses 

 

Learners had also written the June 2011 mathematics examination which had two questions 

that were testing concepts related to functions. Thus, learners were solving the same 

problems for the second time. Question 7 in Figure 8 was testing learners’ understanding of 
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the calculation of intercepts (action and process conceptions), determination of asymptotes 

from a given equation (process conception) and switching from the symbolic representation 

(equation) to the graphical representation (action and process conceptions). 

  

             

             QUESTION 7 

                         Given f(x) =  + 2 

             7.1       Calculate the co-ordinates of the x and y intercepts of f.              (4) 

             7.2       Determine the equations of the asymptotes of f(x).                      (2) 

             7.3       Sketch the graph of f(x) showing all the critical points.               (4) 

                                                                                                                               [10] 

 

 

        Figure 8: Taken from the Mathematics Paper 1 NSC June 2011 

 

On the other hand, the purpose of question 8 shown in Figure 9 was to elicit learners’ 

understanding of the coordinates of the intercept at Q, gradient of a straight line given two 

points on the line, the coordinates of a turning point from a given equation, in this case the 

action conception and being able to switch from the graphical representation of a function to 

the symbolic representation, namely, process, object and schema conceptions. 
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              QUESTION 8 

              The sketch below, not drawn to scale, shows the graphs of the functions  

               defined by: h(x) = -2(x-3) (x+1) and g(x) = mx+c. 

               where A is the turning point of h(x) and R(2;b) is a point on h(x) 

                                                                    

                                                              Y      A 

                                                             Q               . R (2; b) 

 

 

                                                                                         P (3; 0) 

                                                                   0                                       X 

 

              8.1  Calculate the coordinates of the turning point A.                            (3) 

              8.2  Calculate the coordinates of Q.                                                        (1) 

              8.3  Determine the numerical values of m and b.                                    (4) 

              8.4  Write down the equation of g(x).                                                      (1) 

                                                                                                                                [9] 

 

Figure 9: Taken from the Mathematics Paper 1 NSC June 2011 

 

Table 6: Content analysis of instrument 1 (June examination) 

 

Question What concepts are covered? APOS level 

    7.1 Calculation of the coordinates of the x and y intercepts      A & P 

    7.2 Determination  of equations of asymptotes      A & P 

    7.3 Sketching of graph      A, P & O 

    8.1 Calculation of coordinates of turning point      A & P 

    8.2 Determination of the coordinates of the y-intercept          A  

    8.3 Calculation of gradient of straight line          A 

    8.4 Determination of equation of line from drawn graph          P  

 

Key: A- Action, P- Process, O-Object, S-Schema 
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Table 7: Content analysis of instrument 2 (Task 1 and Task 2) 

 

Task  What concepts are covered APOS      

level 

   1 Determination of whether a given relation is a function or not 

Finding the domain and range 

     P & O 

   2 Use of vertical line test  

Explaining why a graph which passes the vertical line test represents   

a function 

     A & P  

         O 

   3 Sketching graphs of given equations 

Using given graphs to determine their equations 

     A & P  

     O & S 

   4 Inverse of a function 

Relationship between graphs of functions and their inverses 

     A & P 

     O & S 

 
 
The learners were under no time constraints to complete the tasks. I gave each learner a copy 

of the first question, namely, task and instructed them to answer the questions in their own 

way. I provided them with only pencil and paper. Once I had estimated that learners had 

finished their solutions, I interviewed them individually regarding the manner in which they 

approached the questions, namely, tasks. I also asked them to think about other ways to 

answer the same questions. The procedure for the first question was repeated for the second 

question in the June examination. 

 

These two questions, as initial tasks, provided opportunities for me to: 

(i)  analyse learners’ written work which gave me initial clues about their understanding of 

      intercepts, asymptotes, turning points and transformations of graphs of functions, how 

      they reason and which counted as evidence of what they understood; 

(ii) listen to learners explain and justify  their answers and their methods on the tasks which 

      revealed, how they reason as they solve a problem, which may not be apparent in their 

      written work; and 

(iii) decide on the instructional options based on the analysis of learners’ written work 

       and transcribed recordings of their interviews. 
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Data collection strategies and instruments 

The individual in-depth, open-ended, task-based qualitative clinical interviews with learners 

in the sample were my primary data collection method. My choice of clinical interviews was 

influenced by the nature of my research questions and the recent calls by various mathematics 

educators, professional organizations and curriculum reformers both local and international 

(Bansilal, 2009; NCTM, 2000; Ginsburg et al., 1998) for the use of clinical interviews by 

teachers in their classroom instruction. Ginsburg in Bishop (2010) defines a clinical interview 

as “a flexible method of questioning intended to explore the richness of learners’ thought, to 

capture its fundamental activities, and to establish the learner’s cognitive competence” (p. 

478). I believe that clinical interviewing would result in more thinking and reflection in the 

classroom. As a result, I conducted initial clinical interviews based on the two questions in 

the June 2011 examination paper using a prepared interview schedule (Appendix 1) to elicit 

learners’ understanding of concepts related to functions and encouraged their reflection. 
 

 These clinical interviews were used in each cycle of the design research phases and began 

with a task from which I then asked further questions, depending on the learner response, to 

elicit learner reflection. This enabled me to discover the cognitive activities, specifically the 

structures, processes, and thought patterns, and to evaluate the levels of competence of the 

learner. Thus, I aimed to discover and evaluate learners’ interpretations which were a result 

of their cognitive activities. Asking learners to interpret the questions, explain and justify 

their methods of answering the questions was a rich source of information regarding their 

reasoning and development of rational ideas. By listening to their interpretations, 

explanations, justifications as well as observing them answering the questions in this study, I 

was able to learn about learners’ mathematical understanding of functions, their concept 

images, difficulties and misconceptions. 

 

Clement (2000) noted the strengths of the clinical interview over other data collection 

techniques which include: 
The ability to collect and analyze data on mental processes at the level of the subject’s authentic 

ideas and meanings, and to expose hidden structures and processes in the subject’s thinking that 

could  not be detected by less open-ended techniques (p. 547). 

As such, clinical interviews enabled me to see the concepts related to functions through the 

‘eyes’ of understanding of the participants and to obtain rich descriptive data that also helped 

me understand the participant’s construction of knowledge and social reality (Nieuwenhuis, 
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2010). Hunting and Doig (1997) state that centering the dialogue on a task or problem gives 

the subject every opportunity to display behavior from which to infer which mental processes 

are being used when thinking about the task or solving that problem. I used a prepared 

interview guide to give structure to the interviews which made it easy for me to organize and 

analyze interview data. It will also help the readers of this research report to judge the quality 

of the interviewing methods and instruments that were used. Interview sessions were audio-

taped, transcribed and coded in Atlas.ti for use in the analysis. 

  

To augment and triangulate data from clinical interviews I conducted a follow-up group 

interview of all the six learners in the sample. Since learners in the sample were of mixed 

ability I ensured that the groups are balanced by having two above average, two average and 

two below average learners each. This was because group interviews can generate a wider 

range of responses than in individual interviews (Cohen, Manion & Morrison, 2007). Group 

interviewing enabled learners to challenge each other and participate in a way that may not 

happen in a one-to-one, teacher-learner interview and using language that the learners 

themselves use (Cohen et al., 2007). In such a situation participants interact with each other 

rather than with the interviewer, so that views of participants can emerge and participants are 

also empowered to speak out, and in their own words (Cohen et al., 2007). Group interviews 

were audio-taped and transcribed and were useful in triangulating data from my observations. 

 

Observation allowed me to hear, see and begin to experience reality from the view of 

participants in the research group (Nieuwenhuis, 2010). Using observation can also lead to 

deeper understandings compared to the sole use of interviews, because it provides knowledge 

of the context in which events occur. In this study it enabled me to see things that participants 

themselves were not aware of, or that they were unwilling to discuss (Patton, 2002). The 

other advantage of using observation in this research is, as Robson (2002, p. 27) puts it, 

“what learners do may differ from what they say they do, and observation provides a reality 

check”. This allowed me to triangulate the learners’ responses from the clinical interviews 

and what they discussed with their group members. I first observed individual learners as 

they worked on the given tasks, asking questions where necessary, a process referred to as 

participant observation. These observations were carried out during the period individual 

learners were working on tasks, learners were discussing issues in groups and also when they 

were being individually interviewed. I observed the amount of time each learner took to 

complete a task, the errors they made, how they interacted in their groups, how they asked 
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and answered each other’s questions and what they did when facing a difficulty. I noted these 

observations in my journal immediately after the sessions with the learners. My observations 

were supported by learners’ written work on the administered tasks which after marking 

revealed valuable information about their understanding of concepts related to functions. This 

is in line with Swanson et al’s (1981) view that learners’ reasoning and understanding of 

mathematical concepts can be effectively assessed by giving learners tasks to complete.  

 

Categorising learners’ understanding from initial interviews and literature 

As learners took me through their solutions to the two questions in the June 2011 

examination paper I asked them to explain to me the meanings of intercepts, asymptotes and 

turning points, and how they calculated them. I also asked them to explain how they switched 

from a sketched graph to an equation and vice versa. New or similar difficulties may emerge 

from learners’ explanations on these function-related concepts during individual and focus 

group interviews. These difficulties corresponded to those I found in the literature review. I 

grouped these difficulties into two categories namely function definition and representations 

of the function concept. It was my intention to include the inverse at this point but because I 

found that it had not been taught I left this to a later stage.  

 

Eliciting learners’ specific difficulties with concepts related to the definition and 

representations 

I then developed two tasks based on the definition and representations of the function concept 

to confirm difficulties and misconceptions from initial tasks and the literature review which 

provided further evidence for judging the strength of learners’ understanding of concepts 

related to functions that they would have already covered in class. Of the two tasks, one was 

on the definition of the function concept and the other on representations (Appendix 2). 

Questions on these two tasks included among others the recognition of functions, given in 

various types of representation, namely, verbal expressions, graphs and mapping diagrams or 

algebraic expressions. This was followed by clinical interviews. In order to maintain 

consistency among interviewees and to elicit rich information as much as possible about 

learners’ understanding of the concepts related to functions I used prepared task-based 

interview schedules (Appendices 3 & 4). Learners had learned about the definition and 

representations of the function concept with their teacher and in earlier grades before this 

study. I had to establish how they understood these definitions and the different 

representations of the function concept as well as difficulties and misconceptions they might 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

88 

be having. I analyzed learners’ solution strategies (both oral and written) using APOS theory 

to elicit the difficulties they faced when answering questions on concepts related to functions. 

In order to overcome these difficulties, I considered these when designing the instructional 

sequences and activities.  

 

4.8.2 Phase 2: Development of interventions informed by theoretical framework 

After eliciting, re-confirming and categorizing learners’ difficulties summarized in the 

“Balloon diagram” in Figure 2 (Chapter 2) under function definition and representation, I 

designed and developed interventions in the form of HLTs and their instructional activities 

which were informed by the principles of RME and constructivism. I began by transcribing 

all interviews and coding them using Atlas.ti in the context of the research questions and 

theoretical framework. A code in qualitative research is most often a word or a short phrase 

that symbolically assigns a summative, salient and evocative attribute for a portion of visual 

data (Saldana, 2008).  

 

Application of Atlas.ti 

Atlas.ti is powerful software program that allowed me to handle large amounts of data (28 

interview transcripts) in order to group learners’ interview responses into code families. This 

program made it easy for me then to use APOS theory indicators to classify learners’ 

responses under action level, process level, object level and schema level.  

 

 

 

 

 

 

 

 

 

  

 

Figure 10: Steps in the analysis of learners’ understanding of functions with Atlas.ti 

Interview transcripts typed in MS Word containing each learner’s thinking processes 
were collected and saved as rich text format (rtf) files  

Codes were defined, each with a particular meaning, and assigned to specific items of text 

Different codes were organized into code families from which themes were identified 
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In this thesis I worked with 28 interview transcripts, which are called primary documents 

(PD) in Atlas.ti. I highlighted some 308 text segments, referred to as quotations, which 

yielded 309 labels, which are called codes in the software. I then grouped the codes into 6 

code clusters, that is, code families.  

 

 

HU:  PhD MATHEMATICS EDUCATION 

File:  [C:\Users\user\Desktop\TINODA\CODING DATA FOR ANALYSIS.hpr6] 

Edited by: Super 

Date/Time: 12/04/20 09:20:57 AM 

-------------------- 

Codes-quotations list 

Code-Filter: All [29] 

-------------------- 

Code: Definition: as a correspondence relation {1-0} 

 

P 3: INTERVIEW 3 DEFINITION INTERVIEW TRANSCRIPTS c.doc - 3:10 [Like 

here, like, when you are  ...] (81:81)   (Super) 

Codes:  [Definition: as a correspondence relation] 

 

 

Figure 11: Section of an Atlas.ti data analysis 

 

Figure 11 illustrates a small section of the Atlas.ti data analysis from which I explain the 

following concepts. According to Smit (2002): 
The Hermeneutic Unit, (HU) in Atlas.ti refers to the complete project or research for example a 

thesis or a dissertation. The file reference indicates the location where the project is saved. The 

word Super refers to the researcher who actually does the analysis, and time and date are given 

for further reference. Codes-quotations list means that this particular information shows a 

particular code, with the relevant quotation, that is the verbatim evidence given   by the 

respondent. The code-filter: shows that this particular list was filtered by using all the primary 

text, also referred to primary documents, which simply means all the interviews. P3 would then 

represent the third interview. 3:10 stands for the third interview, 10th code. The {1-0} refers the 

number of codes, and how often this code has been linked to another (p. 71). 
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Code: Definition: as a correspondence relation {1-0} 
 
Code: Definition: as a rule {0-0} 
 
Code: Definition: as a symbolic expression or equation {1-0} 
 
Code: Definition: as relationship between variables {5-0} 
 
Code: Definition: as set-theoretical {0-0} 
 
Code: Definition: other {2-0} 
 
Code: Difference: between a function and non-function {6-0} 
 
Code: Difficulties: critical points and sketching {19-0} 
 
Code: Difficulties: inverse {7-0} 
 
Code: Example: ambiguous relation {3-0} 
 
Code: Example: equation in verbal or symbolic form {1-0} 
 
Code: Example: one-to-one function {3-0} 
 
Code: Example: outside mathematics {5-0} 
 
Code: Example: use discrete elements of sets {1-0} 
 
Code: Explanation: asymptotes {14-0} 
 
Code: Explanation: calculating asymptotes {17-0} 
 
Code: Explanation: calculating intercepts {16-0} 
 
Code: Explanation: calculating inverse {16-0} 
 
Code: Explanation: calculating turning points {49-0} 
 
Code: Explanation: domain and range {11-0} 
 
Code: Explanation: intercepts {14-0} 
 
Code: Explanation: inverse {15-0} 
 
Code: Explanation: non-example {6-0} 
 
Code: Explanation: relationship between function and its inverse {24-0} 
 
Code: Explanation: sketching graph {16-0} 
 
Code: Explanation: switching from graph to equation {26-0}  
 
Code: Explanation: turning point {10-0} 
 
Code: Representations: aware of {12-0} 
 

 
 
Figure 12: Codes used and their frequencies 
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Codes in the preceding Figure 12 were categorised in the following 6 code families that 

subsequently became themes: definition (6 codes), differences (1 code), difficulties (2 codes), 

examples (5 codes), explanation (14 codes) and representations (1 code). After learners’ 

responses were grouped into these code families I used the indicators of APOS theory 

conception levels described in section 3.5 to classify learners’ responses into these levels 

instead of using a focused code network. 

 

4.8.3 Phase 3: Using tentative products and theories  

I analysed learners’ difficulties and their APOS theory conception levels together with some 

promising examples I found in textbooks to identify possible starting points of hypothetical 

learning trajectories (HLTs). HLTs and instructional activities make up my tentative products 

which I used in the intervention(s). These tentative products were shaped by my theoretical 

framework and refined by the feedback from teaching experiments until they yielded an 

improved understanding of function related concepts. Bakker (2004) describes a hypothetical 

learning trajectory as a learning path imagined by the teacher and based on the actual 

situation in the classroom. For example, in this study where learners are having difficulty in 

understanding concepts related to functions, moving learners from a situation of difficulty to 

an ideal situation where they attain the desired goal. In this study it would be represented by 

where they meet the requirements prescribed by the work schedule. Figure 13 illustrates the 

HLT. 

 

                Actual Situation                                                    Ideal Situation 

 

                                                                   HLT 

                                                                    

 

                                                                                                                        

 

 

 

 

 Figure 13: Hypothetical learning trajectory 

Learners are having 
difficulties with 
functions in the 
classroom 

Work schedule 
requirements on 
functions 
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The HLT, according to Simon (1995) is “made up of three components: the learning goal that 

defines the direction; the learning activities; and the hypothetical learning process which is an 

evaluation of how the learners’ thinking and understanding evolved in the context of the 

learning activities” (p. 115). The HLT is the link between an instruction theory and a concrete 

teaching experiment. It is informed by general domain-specific and conjectured instruction 

theories (Gravemeijer, 1994), and it informs researchers and teachers on how to carry out a 

particular teaching experiment. After the teaching experiment, it would guide retrospective 

analysis. The interplay between the HLT and empirical results forms the basis for further 

planning and adjusting the HLT. This means that an HLT, after it has been mapped out, has 

different purposes depending on the phase of the design research. Also, it continually 

develops through the different phases and can even change during a teaching experiment. 

 

 In the teaching experiment, the HLT functioned as a guideline for what to focus on in 

teaching, interviewing, and observing. During the retrospective analysis, the HLT functioned 

as a guideline determining my focus in the analysis. As I made assumptions about learners’ 

learning, I also needed to compare those with the observations I had made during the teaching 

experiments. Such an analysis of the interplay between the evolving HLT and empirical 

observations formed the basis for developing instructional activities. After retrospective 

analysis, an HLT can be reformulated, in an often more drastic way than during the teaching 

experiment, and the new HLT can guide a next design phase. An HLT in this case can be 

seen as a concretization of an evolving instruction theory. Conversely, the instruction theory 

is informed by evolving HLTs. For example, if patterns of an HLT stabilize after a few 

macro-cycles, these generalized patterns in learning or instruction and the insights of how 

these patterns are supported by instructional means can represent new knowledge. 

 

The HLT is conjecture-driven and entails attempts to ensure equal opportunities for all 

learners to participate in and succeed at learning the concepts related to functions. A 

conjecture is an inference based on inconclusive or incomplete evidence (Confrey, 1995). It 

was a means to reconceptualise ways in which to approach concepts related to functions in 

terms of their content and the pedagogy. Thus, a conjecture has both a mathematical content 

dimension and a pedagogical dimension. The mathematical content of the conjecture answers 

the question: what should be taught? While the pedagogical dimension is linked to the 

content dimension and answers the question: how should this be taught? These two 
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dimensions guided me in organising my classroom for instruction and the kinds of tasks, 

activities, and resources that I needed to provide for the content.  

 

A conjecture is necessarily situated in a theory which serves to structure the activities and 

methodologies in the teaching experiment. The theory helps to weave together the content 

and pedagogical dimensions (Confrey, 1995). In this study, the pedagogy of the conjecture 

was embedded in a constructivist paradigm increasingly informed by a socio-cultural 

perspective and sensitivity to learners’ voices. The purpose of this study was to use design 

research to improve learners’ understanding of functions. I developed instructional activities 

for learning and understanding concepts related to functions. Such instructional activities 

specify patterns in learners’ learning of the concepts related to functions under the broad 

categories of the function concept, namely, its definition and representation as well as the 

means supporting that learning. This implies that the development of such instructional 

activities had to include both the design of instructional means and research of how these 

means support successive patterns in learners’ reasoning when engaged in tasks related to 

functions. In general, I had to create the conditions in which I could develop and test the 

instructional activities, but to create those conditions I also needed to do research. Design and 

research were deeply intertwined in developing the instructional activities. In this research I 

was especially interested in how learners can learn to reason about concepts related to 

functions in constructivist and RME-oriented learning. This implied the need to design an 

instructional environment that supports such learning and anticipating successive patterns in 

learners’ reasoning that could lead to the achievement of specified end goals thereby 

improving learners’ understanding of functions.  

 

I designed HLTs that had a dual purpose of helping learners move from their current 

conceptual level to the next in a constructivist environment while at the same time assisting 

them to overcome their difficulties. The HLTs I formulated guided the design of instructional 

activities that had to be developed (Drijvers, 2002).  I used the principles and characteristics 

of constructivism in the design and teaching experiments for this study as they provide a 

framework for a conducive learning environment, productive learning process and 

meaningful assessment of the learning process. This environment enabled learners to 

maximize their potential of learning the concepts related to functions since the constructivist 

environment allowed them to be involved in the production of knowledge and their 

understanding was driving the constructivist teaching path I followed in the teaching 
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experiment. I also applied characteristics of RME to the lessons by situating the intended 

instructional activities in reality, which served as source and as an area of application, starting 

from meaningful contexts having the potential to produce a better understanding of functions. 

 

I discovered that learners in the sample were not taught the inverse of the function concept. 

However, I had planned to use the inverse function to extend the learners’ understanding of 

representations because an inverse of a function can also be a function itself. Moreover, the 

process of reversing operations when finding the inverse can push learners from the action 

conception to a process conception of the function. Therefore, I had to use learners’ 

difficulties in understanding the inverse function found in the literature and my experience as 

a mathematics teacher in order to produce a hypothetical learning trajectory for learning the 

inverse of a function. From experience I discovered that learners are taught the inverse of a 

function using the rule, ‘interchange the positions of x and y and make y the subject of the 

formula’. The implication of this approach to learners is that the inverse does not exist if 

there is no formula connecting the variables. In most cases learners can easily follow this 

procedure correctly but without any understanding of why they are interchanging the 

positions of x and y. In addition, while many teachers use this approach because it is easy to 

use but in most cases they do not explain to learners why the positions of x and y were 

interchanged. This approach is also common in many textbooks without their providing a 

complete explanation (Buerman, 2007). Buerman also points out that, the property of ‘one-to-

one and onto’ is the basic criterion that a function must meet so that it may be reversed and is 

also often misunderstood by learners. 

 

Dubinsky and Harel (1992) discovered that some learners have difficulty in understanding the 

inverse of a function. They believed that this cognitively simple mathematical idea was made 

difficult for many learners by the peculiarity of the representations and the absence of an 

algebraic formula. In essence, “the algebraic expressions tend to shift the focus of attention 

from the notion of ‘undoing’ to the idea of an ‘inverse operation’ entailing the inversion of a 

sequence of algorithms in the process of a function by going from the end to the beginning” 

(Bayazit & Gray, 2003, p. 2). However, understanding the inverse function as "undoing" has 

insufficient information. So, “a solid understanding of the concept of inverse function cannot 

be limited to ‘undoing’. Teachers need to have an informal conception as well as more formal 

knowledge” (Buerman, 2007, p. 32). I used a prepared interview guide (Appendix 5) to 

determine learners’ understanding of the inverse function after the teaching experiment. 
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I then designed instruction using the HLTs I had developed, RME activities and three 

separate tasks on the definition, representation and inverse as a form of intervention to help 

learners move up from their initial conception levels to the next and to overcome their 

difficulties. After each design cycle I interviewed learners based on the task for a particular 

concept. Learners’ responses were analysed using APOS theory and then used to design 

further instruction to help learners approximate the schema level of understanding concepts 

related to functions.  

 

Analysis determined both the starting points and learning goals of the teaching experiments 

in which I taught the learners and then used the designed tasks to test the effectiveness of the 

intervention. The last stage involved designing and using the instructional activities to help 

learners improve their understanding of concepts related to functions and to progress to the 

next level of APOS theory. 

  

In this study I conducted conjecture-driven teaching experiments with grade 11 learners and I 

taught all the sessions. During the course of the experiments, the learners passed through 

stages of learning and understanding concepts related to functions, that is, definition stage, 

representation stage and the inverse stage. These stages are a result of my analysis of the 

conceptual development of the function concept and the identified difficulties in Chapter 2 as 

well as from clinical interviews. The reason for these stages is that learners should understand 

the basic idea of the function concept first before representing it in its various forms. That 

ability to manipulate representations back and forth is a sign of a robust understanding of the 

function concept. In the first stage, the learners were introduced to the function concept 

through a variety of activities linked to RME (see next Chapter) that were aimed at helping 

learners to grasp the key idea, as explained in Chapter 2,  behind this concept. The activity 

helped them to understand and to evaluate different definitions of the function concept. 

 

In the second stage, instruction focused on the representation of the function concept in order 

to strengthen learners’ construct of its meaning. While studying representations, the learners 

worked in such contexts as translating real world problems to mathematical problems and 

also translating from one representation another. After having developed a rich network of 

connections among different representations, learners were introduced to the inverse of the 

function concept during the third stage. 
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Observations in one lesson and theoretical arguments from multiple sources can influence 

what is done in the next lesson. In this study the focus was on designing and developing 

instructional activities that could be tested and revised by teachers and researchers. For a 

careful retrospective analysis, it was necessary to keep track of changes in the HLT and of 

learners’ learning in my journal. After teaching the learners I had to assess them to check 

whether they had made the requisite constructions to move up the conceptual ladders and 

whether instructional activities had helped learners overcome their difficulties. Figure 14 

illustrates how learners’ understanding was scaffolded through APOS theory conception 

levels. Scaffolding of learners’ understanding consist of three steps labelled A, B and C in 

Figure 14. In step A I carried out an APOS analysis of learners’ understanding of functions 

based on given tasks and the literature review to elicit difficulties and APOS conception 

level. In step B I designed HLTs and used RME instructional activities to assist learners to 

overcome their difficulties and move to the next conception level. Then testing, reflecting and 

refining the instructional activities to check whether the learner had moved to the next 

conception level in step C. The cycle was repeated until the desired goals were approximated 

and learners had made progress.  
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Figure 14: Scaffolding learners’ understanding through APOS theory levels of conception 

 

4.8.4 Phase 4: Product and theory refinement 

According to Wademan (2005) reflection after the first teaching experiment leads to   

adaptation of HLTs and the teaching sequences, which becomes the starting point for a 

second teaching experiment. This iterative process follows specified HLTs and uses the 

designed instructional activities to provide empirically grounded answers to the research 

questions. The sequence, therefore, should be tried out and analysed in various situations, as 

 SCHEMA 

 

    OBJECT 

    PROCESS 

ACTION 

  HLT 3 

HLT 2 

HLT 1         

A 

B 

C 

A 

B 

  C 

A 

B 

C 

Oscillation between levels 

Oscillation between levels 

   

Oscillation between levels Oscillation between levels 
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well as be discussed with other parties who play a role in educational innovation, such as 

teacher training institutes and educational publishers. In this phase it was important to specify 

my role, the nature of classroom interactions, assessment, and method of data collection 

which are explained below.  

 

Role of the teacher: major responsibility is listening and creating an environment where 

learners can construct knowledge. The teacher also acts as an expert resource, a facilitator, a 

discussion leader, coach and an evaluator. 

 

Classroom interactions: instruction was structured in a way that allowed learners to 

construct knowledge from real contexts sequenced from simple to complex. Learners first 

worked individually on worksheets, then in two small groups of three. First I explained 

important aspects of the function concept then I gave the learners some assessment activities 

on which I based my clinical interviews. 

 

Assessment: the assessment activities used to evaluate learners’ learning and progress were 

informed by and consistent with the content, namely, the definition, representation and 

inverse of the function concept, pedagogy, and the theoretical framework that was a merger 

of constructivism, Piaget’s theory, APOS theory and RME of the conjectures along with the 

other components of the intervention. The results of these assessments provided outcome data 

related to the impact of the intervention and allowed an ongoing formative evaluation of the 

intervention process. The formative assessment continuously guided the evolution of several 

conjectures (HLTs) for this study and the related instructional activities. These assessment 

tasks (see Appendix 6) were varied both in terms of their form, that ranged from fill-in, short 

questions, open-ended questions, homework, in-class, non-routine, and their skills 

development. From these assessment tasks learners were allowed to present and defend their 

solutions to problems. 

 

Data collection: I collected data about my thinking and actions during the intervention 

because much of the teaching experiment depends on what emerges from the classroom 

interactions. As a result I made careful notes of classroom observations in my journal which I 

referred to at the analysis stage. The assessment activities provided data on what learners had 

learned but an in-depth understanding of learners’ learning and development was obtained 

through the task-based clinical interviews. The number and form of these interviews was 
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determined by the content and theoretical framework of conjectures. My following the groups 

was also a valuable source of information because it allowed for articulation of learners’ 

voices which was rich and revealed their conceptions. I kept field notes of my thoughts and 

reflections of the interventions as they progressed. On some occasions, learners in the sample 

shared their concerns about the difficulties they faced in accomplishing a task. This was a 

source of significant data. Other sources of information included the learners’ written 

assessment activities and the verbal responses gathered during intermittent interviews. 

Written work was given, collected, and corrected each week for three weeks in order to 

maintain a continuous record of learners’ conceptual development. Written work was used to 

gauge the depth and breadth of learners’ understanding. 

 

Gravemeijer and Cobb (2001) define the word ‘experiment’ in ‘teaching experiment’ as “an 

experimental classroom setting created as a result of the innovative teaching materials 

provided. The main goal for the experiment is to understand and improve the initial design on 

the basis of learners’ reasoning with respect to the newly created classroom setting” (p. 4). 

My HLTs and instructional activities for the learning of concepts related to functions were 

implemented in classroom situations. I was interested in the development of learners’ 

conceptions in relation to the teaching processes. Did learners notice the relation between the 

function concept and the rule representing it? Did they see the relation between these 

representations and the need for translating among them? Did this evoke the need for two-

dimensional graphs? Was I, as teacher capable of guiding the discussion without suggesting 

intended directions? These questions were answered by the teaching experiments. To gain 

insight into major shifts in learners’ reasoning, I collected data that reflected their thinking 

and the role of the teacher. I audio recorded all individual task-based interviews and also 

copied all written materials during activities and the learners’ final test (Appendix 7). 

 

4.8.5 Phase 5: Final product and contribution to theory 

After multiple iterations of the intervention, the refined HLTs and their instructional activities 

become the product of the intervention, and therefore could be used by teachers to help their 

learners understand the function related concepts. The theories which have been 

operationalized in the teaching experiments are redefined and guidelines prepared. In Chapter 

5 on actual implementation of the interventions, details of the model presented in this chapter 

are discussed in detail. 
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It is apparent that different learners might have quite different schemas for the function 

concept. This study attempts to describe learners’ different ways of understanding which 

include individual cognitive constructs, their origins, and their connections to one another. 

According to APOS theory, a learner’s cognitive development of the function concept 

follows the order in the acronym APOS (Weyer, 2010). “Initially, learners have little or no 

knowledge about functions, and then first, they must perform actions implementing a 

concept. Next, these actions are internalised into processes” (Dubinsky & Wilson, 2013, p. 

96). The resulting processes are, in turn, encapsulated into objects (Dubinsky, 1991). Finally, 

the individuals coordinate these mental constructs into schema for a concept. In practice, 

mental constructions rarely-if ever-occur in a simple logical sequence. The individuals’ early 

schema may be disorganized, incomplete, and contain inconsistencies. As they experience 

disequillibration resulting from conflict between expectations and results and they then 

engage in serious reflection, maturation as described by the APOS framework may take place 

(Weyer, 2010). 

  

It follows from the constructivist point of view in general and the APOS theoretical view in 

particular, that the role of teachers is not to transfer their understanding of the concepts 

related to functions to their learners. Instead, “the role of teachers is to create situations in 

which learners are likely to construct these actions, processes, objects and schemas for 

themselves” (Weyer, 2010, p. 10). This is not to say that the students are expected to discover 

all, or even most, of the mathematics for themselves. Rather, a teacher implementing a 

pedagogical approach based on APOS theory would structure activities intended to provide 

learners with a base of experience working at the action, process, and object levels of the 

concepts related to functions. This would be an attempt to help learners build elementary 

mental constructs and organize these into a coherent schema. Thus from the point of view of 

APOS theory, my role in this study begins with an attempt to identify the relevant cognitive 

structures which must be constructed in order to learn the chosen aspects of the function 

concept. 

 

4.9 Limitations of the design research model 

Collins, Joseph and Bielaczyc (2004) note the following fundamental limitations of design 

experiments. Because they are carried out in the fuzziness of actual learning environments, 

such as classrooms or afterschool settings, there are many variables that affect the success of 

the design, many of which cannot be controlled. “Design researchers usually collect large 
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amounts of data, such as video and audio records of the intervention and outputs of the 

learners’ work, in order to understand events in detail. Hence, they are swamped with data, 

and given the data reduction problems; there is usually not enough time or resources to 

analyze all data collected” (Collins et al., 2004, p. 67). It also requires adequate resources to 

collect so much data, so design experiments tend to be large endeavours with many different 

participants, all of whose work needs to be coordinated. All these factors make design 

experiments difficult to conduct and conclusions sometimes uncertain (Collins et al., 2004). 

 

However, the main result: 
is not merely a design that works, but the reasons how, why and to what extent it works. Firstly, 

an initial instructional design is developed, and educational settings are created for investigating 

and generating theoretical conjectures. Secondly, depending on questions to be considered, the 

analysis of the teaching experiments focused on various elements of the design, such as learners 

reasoning with the tools provided, classroom discussions, collaborative work, or the 

development of specific classroom norms (Cobb, Confrey, diSessa, Lehrer & Schauble, 2003, p. 

8).  

The initial instructional design for the teaching experiment aims at a conjectured learning 

process based on prior research and theory. However, during the design research, initial 

conjectures may be refuted or adapted, and new conjectures can be generated and tested. 

Design research in this sense “has both a hypothetical and a reflective side, which leads to a 

delicate and iterative process of testing, reflection, and redesign. The testing takes place in 

teaching experiments, and the reflection in most cases is based upon qualitative data 

analyses” (Cobb et al., 2003, p. 10).  

 

4.10 Rigor and trustworthiness 

In the research process it is important to “provide checks and balances to maintain acceptable 

standards of scientific inquiry by addressing the need for rigorous data collection and 

methods of analysis” (Bowen, 2005, p. 214). In this study, I enhanced rigor and 

trustworthiness by using triangulation in which I employed three methods in collecting data: 

task-based clinical interviews, participant observation and document reviews in the form of 

learners’ written work.  
Producing similar findings from different methods provides corroboration or reassurance. The 

absence of similar findings will not, however, provide grounds for refutation. This is because 

different methods used in qualitative research furnish parallel datasets, each affording only a 

partial view of the whole picture. Triangulation relies on the notion of superior explanation, 
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against which other interpretations can be measured (Barbour, 2001, p. 1117).  

Qualitative research, however, is usually carried out from a relativist perspective, which 

acknowledges the existence of multiple views of equal validity (Mays & Pope, 2000). 

Although the interviews were time-consuming, they were my main data-gathering method. 

Observations were done while learners were working on tasks and during group discussions. 

Document reviews were done at the end when comparing learners’ interview responses, what 

I had observed and what I had seen in learners’ written work. 

 

The validity (both internal and external) of data collection methods and procedures, methods 

of analysis and conclusions are important for this study. Internal validity refers to the quality 

of data collections and soundness of reasoning leading to the conclusions (Gravemeijer & 

Cobb, 2001). I used the following methods to improve the internal validity of this study. 

During the retrospective analysis, I tested conjectures that I generated at specific episodes 

using my field notes, tasks, and other learner work. During this testing stage I searched for 

counterexamples of my conjectures. The succession of different teaching experiments made it 

possible to test these conjectures developed in earlier experiments, in later experiments. I 

analyzed important episodes with multiple theoretical instruments of analysis in other words, 

theoretical triangulation.  Theoretical claims are substantiated where possible with transcripts 

to provide rich and meaningful context.  

 

External validity is mostly interpreted as the transferability of results (Confrey, 2003). The 

question is how we can transfer the results from specific contexts so as to be useful for other 

contexts. The challenge is to present the results, particularly the HLT and instructional 

activities, in such a way that others can adjust them to their local contexts (Barab & Kirshner, 

2002). If lessons learned in one experiment are successfully applied in other experiments, this 

is a sign of successful transferability. This implies that the transferability and viability of the 

results of this study can better be judged in the future if applied in other situations. 

 

4.11 Ethical issues 

I first obtained permission from the District office of the Department of Education and the 

principal of the school. I then arranged with the grade 11 teacher involved to meet with the 

grade 11 learners from which the participants were selected. Before learners volunteered to 

participate in the study, I briefed them on the purpose of the study, benefits of the study to 

them and education as well as the fact that this was part of my PhD study, the duration of 
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their involvement in the study, general procedures of the study, possible risks such as loss of 

study time and discomfort of answering task and interview questions, the use of pseudonyms 

to guarantee their anonymity and their rights to volunteer to participate or to withdraw their 

participation from the study at any given time without being penalized. I also informed 

learners that they would first work on the tasks as individuals and then as groups. Thus, 

learners volunteered to participate from an informed position. The written parental 

permission and informed assent letters were signed by parents/ guardians and learners 

respectively (Appendix 7). 

 

4.12 Summary of chapter 

In this chapter the research design and methodology for answering the research questions for 

this study were described together with the underlying philosophical assumptions, both 

ontological and epistemological that I brought into this study as well as its limitations.  The 

study site and setting, the sample and sampling techniques and ethical issues were explained 

and justified. The research questions for the present study were stated and I used the design 

research method in which I adapted Wademan’s (2005) generic design research model which 

was described together with its five phases. The hypothetical learning trajectory was also 

examined because of its important role in all the five phases. The data collection and analysis 

methods used for the present study were also described and justified. Measures to ensure 

rigor and trustworthiness of the entire research process were explained in the last section of 

this chapter. 

 

The next chapter summarizes the findings that came from analyzing learners’ responses to 

questions asked in the interviews with respect to the learner’s response rather than the 

intended effect.  I needed to determine that learners could understand these concepts related 

functions at many levels and I expected them to respond at various levels and at various 

points throughout the interviews. I began with a theoretical analysis of the elements perceived 

as necessary for development of conceptual understanding. I then designed instructional 

activities to compel learners to make the requisite constructions or that would help learners to 

progress from one conception level of APOS theory to the next.  
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CHAPTER 5 

Presentation and Analysis of Data 

5.1 Introduction 

This chapter presents and analyzes data from the five design research phases I adapted for 

this study. The first phase (Problem Identification) addresses my first research question:  

• How do learners understand the function concept?  

and its two sub-questions: 

 1) What are grade 11 learners’ current understandings of functions? 

 2) What are the weaknesses in learners’ understanding?  

Phases 2, 3 and 4 address my second question: 

• How can instruction be designed to improve learners’ understanding of functions? 

Each phase presents a teaching experiment based on the design principles of RME. Phase 1 

focused on learners’ understanding of functions and the literature reviewed in chapter 2. In 

this phase I transcribed all interviews and coded them using ATLAS.ti in the light of my 

research questions and theoretical framework as described in Section 4.8.2. Phase 2 

(Development of interventions) provided design guidelines for the development of specific 

interventions. Phase 3 (Using tentative products and theories) is a progression from phase 2 

and examines how I used the feedback from phases 1 and 2 to design and develop specific 

HLTs and instructional activities which I used in each intervention in the form of teaching 

experiments. This leads to phase 4 (Product and theory refinement) where the HLTs and 

instructional activities are refined based on the results of the feedback from formative 

retrospective analyses of their use and adjustment in the teaching experiments which leads to 

the final products in phase 5 (Final product and contribution to theory). 

 

The purpose of this study was to use design research to improve the teaching and learning of 

functions which I purposefully split into the definition, representations and inverse of the 

function concept to ensure a thorough coverage of these aspects without separating them 

conceptually. I designed and developed empirically grounded instructional sequences and 

activities to optimise learning of these selected aspects of the function concept. The focal 

point of this chapter is where the collected data is presented and analyzed in the light of the 

research questions for this study in order to forge ways of improving learners’ understanding 

of functions. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

105 

5.2 Data analysis for all phases 

The basic techniques I used in analyzing the qualitative data in this study are thematic 

analysis combined with constant comparative narratives and dialogic reporting. Thematic 

analysis is “a process for encoding qualitative information” (Boyatzis, 1998, p. vi), which 

was the mode of data treatment I employed in identifying the emerging themes related to the 

primary code of interest. In the context of thematic analysis, the advantage of the present 

research is that the analysis was centered on the APOS theory which guided the analysis 

process. This centrality of examination provided a more meaningful assessment of the 

interacting and related codes, in identifying the themes that constituted the learners’ 

understanding of the function concept.  

 

Guided by themes, I present in this chapter more detailed, fluid descriptions to help the reader 

see and possibly, feel, how learners understand the function concept in terms of its definition, 

representation and inverse. An important qualitative analytical technique utilized in this 

research was the dialogic style of data reporting. Key to this technique was the use of 

research dialogue between the researcher and the learners in the sample in data presentation 

and analysis. This technique was extensively used by Bourdieu, Chamboredon, & Passeron 

(2000) in their qualitative work. In this work, learners’ written work and their interview 

transcripts were reported illustrating how research information was shaped and influenced by 

both the researcher and respondents. In the same manner, conscious of my power as a 

researcher, particularly in interviewing learners, I chose to show selected portions of actual 

transcripts to illustrate the research dialogue between myself and the learners. In a self-

reflexive manner, this allowed the presentation of multiple voices from learners. In so doing, 

data interpretation was not centered on my relatively powerful views as a researcher but 

rather, through research dialogue, I was able to diffuse the power of interpretation by 

allowing the data to speak as they were gathered, thereby preserving the naturalness of 

conversation. I considered this type of research reporting as enabling better discourse of 

research insights reflecting my intention to let the voices of learners be heard and felt in the 

text of this thesis. 

 

5.3 Phase 1: Problem identification 

5.3.1 The analyses of learners’ initial individual tasks and task-based interviews  

These interviews were done in two sessions to allow learners to prepare themselves for the 

next session. Session 1 was based on question 7 and session 2 on question 8 of the grade 11 
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mathematics examination paper 1 of 2011 (see Figures 8 and 9). These two questions focused 

on understanding the transformation of graphs by translating from the equation to the graph 

and from the graph to the equation respectively. As learners took me through their solutions 

to these two questions I asked them to explain to me the meanings of function-related 

concepts involved in the translation process namely the intercepts, asymptotes and turning 

points, and how they calculated them. The following section presents a case analysis of each 

student supported by actual examination item answers and interview excerpts data to provide 

evidence of the APOS level at which the learner is operating in terms of understanding the 

function-related concepts (intercepts asymptotes, turning points and sketching of graphs). 

This analysis is based on my theoretical framework and reviewed literature to enable me to 

classify each learner according to APOS theory conception levels. 

 

Case 1: Diva’s understanding of the function-related concepts  

Question 7 asked learners to calculate the intercepts and asymptotes from a given equation 

and to sketch the graph of the given function. To answer this question correctly learners 

should be operating at the action, process and object levels of APOS theory. This question 

allowed me to analyse learners’ understanding of representations of functions in terms of the 

APOS levels of conception. 
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Figure 15: Diva’s written examination answers for question 7  
 

In my analysis of Diva’s written responses in Figure 15 above I refer to APOS theory 

indicators described in Section 3.5 and 6.6. Calculation of critical points is an important skill 

that learners should acquire to be able to translate from one representation to the other. Diva 

was able to substitute x = 0 and y = 0 into the given equation to calculate the y and x-

intercepts respectively (action level). She could also determine the asymptotes. Though Diva 

made a mistake in cross-multiplying when finding the x-intercept she could follow 

procedures of finding the asymptotes and intercepts step-by-step but could not explain her 
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procedures which are indicators of the action level described in Chapter 3. In addition the 

learner was able to sketch the graph correctly using the critical points which is an indicator of 

APOS theory’s action level. My analysis of Diva’s written responses to question 7 was also 

supported by her responses to interview questions where she explained her solution strategies 

as shown in the interview excerpts that follow: 

 

Interviewer: How do you explain an intercept? 

Diva:             Intercepts are the points you are supposed to plot so you can get your graph. 

Interviewer: How do you calculate these intercepts? 

Diva:             I want to find the y-intercept first by putting x = 0 and then I’m going to 

                      find the x-intercept by putting y = 0 and calculate. 

Interviewer: Why put x = 0 on y-intercept and y = 0 on x-intercept?  

Diva :            Sir because our teacher said when you calculate intercepts you must always let 

                      y or x be equal to zero. 

Interviewer: You managed to find the asymptotes; can you explain to me what these are? 

Diva:             An asymptote, I think is the line where …, which shows us that the graph can 

                      only approach, not mean to touch or cross. 

Interviewer: Can you explain how you obtained these asymptotes? 

Diva:             I don’t know how to explain to someone how to find it. I say zero is equated to 

                      the denominator umm..., I forgot how I calculate like that....f (x) =  , ok,  

                      for x, I will take this one, and  I say x - 4 = 0. 

Interviewer: Why do you equate x - 4 to 0? 

Diva:             This is what we were told! 

Interviewer: Tell me, how did you sketch this graph? 

Diva:             I want to show you my axis before writing a …, is like this as I have plotted,  

                      and then it will be q, this is  y-asymptote. Here I put x, x - axis and the y - axis,  

                      then I look for y = 0 is here, and x = 1.75, I’m going to put it here and for x = 0,  

                      y = 3.5, I think is here, so I check my asymptote, for y is 2, I write a dotted line,  

                      for x = 4, and for y, so then I join my points. 

 

Analysis of the above dialogue reveals that Diva cannot explain what an intercept is, but she 

could explain the procedure of calculating the intercepts indicating procedural understanding.  

However, she failed to explain why x = 0 on the y-axis and y = 0 on the x-axis indicating that 
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she had an incomplete understanding of the procedure of calculating the intercepts which 

might cause problems later when obtaining these intercepts from a drawn graph. Similarly, 

Diva determined the asymptotes correctly but could not explain the procedure indicating that 

she has insufficient knowledge related to the concept of asymptote. Diva could explain how 

to sketch the graph using the critical points she had calculated. Diva’s inability to explain 

concepts and why particular procedures work indicates that she is operating at the action level 

where she can just follow a procedure without understanding it as also documented in 

literature (Polaki, 2005). 
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Question 8 was testing learners’ ability to use a graphical representation and to translate from 

the graphical to the symbolic representation. 

 

 

  
 

Figure 16: Diva’s written examination answers for question 8  

 

Diva correctly calculated the coordinates of the turning point A, the coordinates of Q, the 

numerical value of m (gradient) and the value of b. However, she did not realise that 6, the 
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 y-coordinate of Q (y-intercept) was the value of c which resulted in her giving an incorrect 

equation of g(x). Diva’s written solutions show her ability to use procedural knowledge as 

shown by her use of x =   and m = . This substitution of numerical values in known 

formulas according to the indicators for function representations indicates that the learner is 

operating at the action level of APOS theory (Dubinsky & Harel, 1992). To further 

authenticate my claim that Diva was operating at the action level, I interviewed her on the 

solution strategies that she gave above and her responses are shown in the following 

interview excerpts:   

 

Interviewer: Looking at your solutions to question 8, I can see that you calculated the 

                      coordinates of the turning point correctly. What is your meaning of a 

                      turning point of a graph? 

Diva:             Turning point is where my graph turns, goes back where it comes from or same 

                      direction where it originates. 

Interviewer: Explain to me how you calculated the coordinates of a turning point. 

Diva:             To calculate the turning point, I used the formula x =  . 

Interviewer: Where does this formula come from and what does it say? 

Diva:             Yes, from the quadratic formula but I’m not sure but this is the x-coordinate. 

Interviewer: What is Q on the diagram and how did you calculate its coordinates? 

Diva:             Q is a point on the x-axis, we know that on the y-axis, the value of x is 0 ‘umm’ 

                      so we substitute this value into one of these equations, on this, on coordinates 

                      of x to find the value of y, so the coordinate of Q is (0; 6). 

Interviewer: Correct. In 8.3 what is this m and b? How did you find them? 

Diva:             8.3 numerical value of m and b....m is the gradient of this line b is on this point 

                      and then  … the formula of the gradient  m =  , the value of b which is 6,  

                      the value of m is -2.  

Interviewer: Now how do you find the equation of g(x)? 

Diva:             I already calculated the gradient which is -2, so, usually this  

                      point b for y, it will be 2 for x, to find the value of c is 4, which means 

                      g (x)  = -2x + 4. 

 

Based on the above responses I can conclude that Diva has an idea of what a turning point is, 
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she just memorized that the x-coordinate of the turning point is . However, Diva’s 

explanation of Q as a y-intercept shows the positive effects of the first interview session on 

question 7. Diva could calculate the turning point by substituting numbers into a formula but 

could not explain why x =    works and how it came about which are indicators of the 

action level of APOS theory (Dubinsky & Harel, 1992). The discussions on Diva’s written 

and oral responses to questions 7 and 8 and the indicators of APOS theory conception levels 

for function representations, lead to the conclusion that she is operating at the action level. 

Her difficulties are not unique as they were also documented in the literature (Gagatsis & 

Shiakalli, 2004;  Cunningham, 2005). 

 

Case 2: Coco’s understanding of the function-related concepts  

Question 7 was testing learners’ ability to calculate intercepts and asymptotes from a given 

equation and to use them to sketch the graph of a given function. 

 

 

 
 

Figure 17: Coco’s written examination answers for question 7 
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Coco correctly calculated the intercepts and asymptotes but wrongly took the x and y-

intercepts as coordinates of an unspecified point. The learner also correctly sketched the 

graph showing all the critical points. This ability to carry out procedures has been placed at 

the action level of APOS theory (Dubinsky & McDonald, 2001). To verify my claim I 

interviewed the learner to triangulate her written and oral responses: 

 

Interviewer: Question 7.1 asks you to calculate the intercepts, what is your understanding of 

                      an intercept? 

Coco:            The point at which the graph will cut the axes. 

Interviewer: How do you calculate the coordinates of the intercepts? 

Coco:             I’ll change the x into zero for the y-intercept and y into zero for the x-intercept. 

                      That is what I will do. 

Interviewer: Why change x and y into zero at the intercepts? 

Coco:             This is what we were told. I don’t know why. 

Interviewer: You also calculated the asymptotes correctly. Can you explain to me what an 

                       asymptote is? 

Coco:             Is the point in the graph that does not have to touch the line of the asymptote. 

Interviewer: How do you calculate the asymptotes? 

Coco:            The constant 2 is my y-asymptote and I equate the denominator x-4 to zero to 

                      get the x-asymptote 

Interviewer: Can you explain to me why your procedure works? 

Coco:             I am not sure but this is what we were told by our teacher. 

Interviewer:  How did you sketch the graph? 

Coco:              Okay for y, okay I am going to use 4 for y because 3.5 is where, I am looking 

                        for the asymptote, it is the point where it can’t touch or pass or go beyond. So 

                        3.5 cannot go beyond 4. So I don’t know what happened here. This y is  

                        supposed to be 4 and then x is supposed to be 3 on this one. Then I am going 

                        to plot 3.5, then the 2.25 and then I was told if you have this graph on this  

                        third quadrant you have to have the same graph on the first quadrant and when 

                        you have it on the second you have to have the same graph on the fourth  

                        quadrant. So this means I will have another one here. ‘Ah’ I’m not sure 

                        whether I use the asymptote where the graph that is to cut and then the  

                        intercept. 
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Just like Diva, Coco could carry out all the procedures correctly but failed to explain why 

those procedures work which confirmed my claim from her written responses that she was 

operating at the action level. Her ability to use rules without reasons is an indicator of  

operating at the action level and limits the learner’s ability to manipulate concepts and justify 

their answers.  

 

Question 8 was testing learners’ ability to use a graphical representation and to translate from 

the graphical to the symbolic representation. 

 

 

 

Figure 18: Coco’s written examination answers for question 8  

 

Coco managed to determine all the critical points through the use of procedures which she 

successfully carried out. To verify Coco’s understanding of these procedures and confirm  
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whether she was still operating at the action level I interviewed her and the following 

interview excerpts reveal her understanding of function-related concepts embedded in this 

question: 

 

Interviewer: In your own words how do you explain a turning point? 

Coco:            A turning point is where the graph is cutting, like in a parabola graph. 

Interviewer: How do you calculate its coordinates? 

Coco:            So, before I get the value of b and the value a, I have to simplify this equation. 

                      Let’s say I should calculate the turning point of A, I’m going to use this 

                      equation, h(x) = - 2  + 4x + 6, because, minus and minus is positive, this is  

                      the new equation, for the turning point, I have to use this formula x = , y, then 

                      -2, this one is our a and this 4 is our b, it will be, ‘ja’ it will be 4, is , all 

                      this, is equal to , which gives me 1, x = 1, then from there, I have to get the y 

                      equation, substitute all the x values to get y. Because I want the y values. It will 

                      be y = -2  + 4x + 6, this is equal to -2(1)2 + 4(1) + 6, and this will give me  

                      -2 + 4 + 6 = 8 and then this gives me +8, then my turning point is (1; 8)  

Interviewer: Correct. But tell me, how does this formula x =  work? 

Coco:            We were just told that this is the x-coordinate of the turning point. 

Interviewer: How did you calculate the coordinates of Q? 

Coco:             I will say at Q, let x = 0 ...I’m not quite sure why x = 0. I want the value of y, 

                       and if you check the point at Q, x is already there, which is 0, so you need to  

                       calculate the y-value, so it will be like, y = -2(0)2 + 4(0) + 6 then -2×0 it will  

                       give me 0 because any number ×0 is 0, then q = (0;6) then, the other point you 

                       determine the numerical value of m and b, which is, If I want to determine the  

                       numerical value, we use the point Q, because they are given and they are on 

                       the straight line, which means m is the gradient, so I need to calculate x, so 

                       m =  ; and then, Q (0; 6), then P(3; 0), it will be …, I substituted x from 

                       the given coordinates will be y2 is 0, y1 is 6, x2 is 3, then  x1 which is equal to 

                       0, then , because we cannot say this minus the total of this, so m will be 2,  

                       will be -2, then the value of b,  ‘eish’ this one is tough, I’m not quite sure how 

                       to calculate this, because there is this thing that r is the coordinate of (2; b), so 
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                       b is the y -axis? 

The learner failed to explain a turning point and why the procedures that she used work. 

However, Coco could describe the steps followed in each procedure precisely. Her 

understanding is limited to blindly following the procedures without any slightest 

understanding of why they work. These are indicators that Coco is operating at the action 

level of APOS theory. 

 

Case 3: Monga’s understanding of the function-related concepts 

Question 7 was testing learners’ ability to calculate intercepts and asymptotes from a given 

equation and used them to sketch the graph of a given function. 

 

 
 

Figure 19: Monga’s written examination answers for question 7 
 

Monga managed to calculate the x-intercept but failed to calculate the y-intercept because he 

made an arithmetic mistake and also substituted y with x. The learner could not determine 

both asymptotes and as a result he drew a wrong sketch. Monga used the procedures 
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unsuccessfully maybe because he did not understand them. When referring to the indicators 

of (P)APOS theory I place him at the pre-function level. To verify my claim I then 

interviewed him to explain his solutions and strategies. The interview excerpts that follow 

capture our dialogue: 

Interviewer: What does an intercept mean to you? 

Monga:         The y and the x-axis. 

Interviewer: Tell me about your calculations here (pointing at his written solutions). 

Monga:         I just remember that at first I substitute x with 0 and then y with 0 in the 

                      equation but I don’t know exactly what will be happening here I just 

                      substituted. 

Interviewer: Ok. How do you explain an asymptote? 

Monga:         I don’t know! 

Interviewer: How did you find these values you wrote?  

Monga:         Ok! The y-asymptote is this 2 standing on its own. I made a mistake to write 4 

                      here, now I remember. This is what we were taught. For an x-asymptote I’m not 

                      sure but we were taught in class. For the x-asymptote you have to look for the  

                      number below, Ok! Like here (pointing at   ), the first fraction, we have the 

                      number below, for a denominator , we look at the denominator... make it  

                      become 0, that is 4, this is my x asymptote. I confused my x and y here but I 

                      was told like that. Even my graph is wrong I was using wrong things, eish I  

                      made a mistake! 

 

Monga failed to explain intercepts and asymptotes. He could not explain clearly how to 

calculate intercepts indicating a lack of the basic knowledge about the function-related 

concepts. He admits making mistakes and also confesses that he does not know these 

concepts which indicate that Monga is operating at the pre-function level (Breidenbach et al., 

1992). At last Monga remembers the procedure of calculating the asymptotes which he 

explained well but without understanding why it works. This is enough evidence to place 

Monga somewhere between the pre-function and the action level of (P)APOS theory 

(Dubinsky & Harel, 1992).  
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Question 8 was testing learners’ ability to use a graphical representation and to translate from 

the graphical to the symbolic representation. 

 

 

 

 

Figure 20: Monga’s written examination answers for question 8  

 

Monga’s written work was correct and well done. He followed the procedures correctly 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

119 

 obtaining correct answers showing that he had mastered these calculations. There is evidence 

that the learner can refer to a graph to answer questions, though the learner could have 

memorized these procedures. What the learner wrote on paper and according to the indicators 

of APOS theory it is understandable to place him at the action level (Dubinsky & McDonald, 

2001). However, to confirm the learner’s understanding of these concepts and my claim that 

he is at the action level I interviewed him as shown in the interview excerpts that follow: 

 

Interviewer: How do you explain a turning point? 

Monga:         A turning point of a parabola is a point whereby your graph turns, whether 

                      negative or positive. 

Interviewer: Tell me how you calculated the coordinates of the turning point. 

Monga:         I will be using the turning point formula which is: x = , first of all …, It  

                      originates from the quadratic formula. First of all before I go any further, I 

                      collect my data, where I have my a; b; and my c, but here I will be using my b 

                      and my a. My b is 4,then I will write the 4,all over the 2 from an original  

                      formula multiply by a, my a is -2, then -4 all over -4, then, this will cancel out,  

                      I will remain with 1. Using my x, where x = 1, I will use my original formula to 

                      find my y, y =-2  + 4x+ 6 where there is x, I will replace x by 1, 

                      -2 (1)2 + 4(2) + 6, then I will multiply out, I mean I add … because here, they 

                      stated they will allocate me 3 marks, no need to go step by step when 

                      calculating this, because my marks will be 3marks, unless if it was 5 marks, I 

                      will go step by step, therefore the turning point is (1;8), this 1 is for 

                      x, this 8 for y-axis. 

Interviewer: How did you calculate the coordinates of Q? 

Monga:         These last questions I was just writing what I had memorized I cannot actually 

                      explain how I got them. 

 

Putting together Monga’s written and verbal responses brings a similar pattern among 

learners in my sample that they can carry out a procedure without understanding it as 

evidenced by his failure to explain how and why the procedures work. The learner failed to 

explain basic concepts of intercept, asymptote and turning point. My claim was right that the 

learner could have memorized the solutions to these questions which indicate that he is still 

operating at the action level of APOS theory. Learners’ ability to carry out procedures  
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without understanding them was also reported in a study by Polaki (2005). 

 

Case 4: Teko’s understanding of the function-related concepts 

Question 7 was testing learners’ ability to calculate intercepts and asymptotes from a given 

equation and used them to sketch the graph of a given function. 

 

 

 
 

Figure 21: Teko’s written examination answers for question 7 
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Teko could not make a single correct calculation. All his calculations were incorrect, he even 

failed to use a calculator to add or subtract fractions. The learner did not understand these 

concepts at all. He has incomplete ideas about intercepts and asymptotes. These are indicators 

of the pre-function level of (P)APOS theory (Breidenbach et al., 1992). Teko really needs 

assistance with these concepts for it seems as if he did not understand them when they were 

taught. I interviewed Teko to further check how he understood these concepts and the 

difficulties that he was facing. The interview excerpts below were a dialogue I had with him: 

 

Interviewer: Can you explain to me the meaning of an intercept? 

Teko:            I know it as I calculate it here, but I don’t know the meaning of it? I think the 

                      intercepts are the points of y. 

Interviewer: What is an asymptote? 

Teko:            The asymptote I should find a point where the intercept cannot touch or go 

                      beyond. 

Interviewer: How do you calculate an asymptote? 

Teko:             It’s going to be 4 ..... (pause) because..... (pause) I don’t know. 

Interviewer: I can see three graphs here, how did you draw these graphs? 

Teko:             I will start by drawing the asymptote of y, the dotted line y = 4. I was told to 

                       use a dotted line, so I can easily plot the graph. 

 

Teko’s responses above confirm that he did not understand the critical points as they were 

taught. He has no idea of the meanings and procedures of calculating these critical points. 

Teko confesses that he does not know them. His explanation of drawing the graph shows that 

he remembers only a little of what was taught in class. All these are indicators that Teko is 

operating at the pre-function level of (P)APOS theory (Breidenbach et al., 1992).  
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Question 8 was testing learners’ ability to use a graphical representation and to translate from 

the graphical to the symbolic representation. 

 

 

 
 

Figure 22: Teko’s written examination answers for question 8  

 

Teko managed to answer all the questions successfully except for the value of b which he did 
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not even attempt. He miscopied the formula for the x-coordinate of the turning point, he 

wrote x2 instead of x but went on to use x correctly and his work looks a bit organized. The 

first interview could have impacted on him positively. Teko’s ability to follow known 

procedures is an indication that the learner is operating at the action level of APOS theory 

(Dubinsky & McDonald, 2001). I interviewed him to check his understanding of the 

procedures that he followed correctly in his written solutions. My dialogue with him is shown 

in the interview excerpts that follow: 

 

Interviewer: Well done for getting most of the solutions correct this time. Ok, how do you 

                      explain a turning point? 

Teko:            The turning point is the maximum point that the graph can reach. It is the 

                      maximum and the minimum points that the graph can reach. 

Interviewer: How did you calculate the coordinates of this turning point? 

Teko:             Ok! Then I say this -2 is a, from the original formula. This -2 will be my a and 

                       the 4 my b and the 6 will be my c. Ok!  is  = -2, this is equal to    then  

                       x = 1, ok! Now I’m calculating the y. Ok! I must calculate here, 

                       -2 (1)2 + 4(1) + 6 = 8, therefore, ok!  the turning point of A (1;8). 

Interviewer: Good! Take me through your solution of 8.2. 

Teko:             Ok! 8.2 is saying calculate the coordinate of Q. Before I calculate, I’m given 

                       x = 0, so I used the original formula again, then say -2x2 +4x+6, ok! I will say  

                       where there is x I will put 0, ok!  

                       -2 (0)2 + 4(0) + 6, then I punch this on the calculator, ok! I don’t have to use 

                       the calculator because anything times by 0 is 0, so, I will say ‘eh’ Q(0;6). ‘Q’ 

                       is on the y -axis. 

Interviewer: Why is x = 0 at Q? 

Teko:            We were told it’s always zero there! 

Interviewer: Ok. How did you determine the values of m and b? 

Teko:            This was simple! I used the coordinates of Q I got in 8.2 and coordinates P 

                       given and I used the formula for the gradient. For b, eish this one, I don’t  

                       know. But for the equation of g(x) I used m above and for c I used the y-value 

                       for Q since it is the y-intercept. 

 

Teko was beginning to show some indications of understanding the function-related concepts  
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as he showed conceptual understanding of these concepts as evidenced by his explanations of 

procedures involved in calculating the coordinates of the turning point, gradient and 

extracting information from the graph and using it in his calculations. He admits that he 

cannot find b and could not explain why, on the y-axis x = 0. These are indicators that he is 

now operating at the pre-function level and the action level. 

 

Case 5: Mat’s understanding of the function-related concepts 

Question 7 was testing learners’ ability to calculate intercepts and asymptotes from a given 

equation and to use them to sketch the graph of a given function. 

 

 

 

 

Figure 23: Mat’s written examination answers for question 7 
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Mat wrongly calculated the x-intercept using the correct procedure. He also got confused 

when calculating the y-asymptote but on the graph the learner used the correct value of the    

y - asymptote. It seems Mat was remembering his previous solutions from the examination 

but had forgotten the precise details maybe that is why his graph is correct but some critical 

points were wrongly calculated. This is an indicator of the person operating at the pre-

function level (Breidenbach, Dubinsky, Hawks & Nichols, 1992). I interviewed Mat to 

confirm my claims and the excerpts below captured our dialogue: 

 

Interviewer: How do you explain an intercept? 

Mat:              Is a line in a Cartesian plane where there are x-axis and y-axis, as we are told. 

Interviewer: How do you calculate the coordinates of these intercepts? 

Mat:              Where there is x, you have to put 0 to calculate for a y-intercept, x has to be 

                      equal to 0. 

Interviewer: Why put x = 0 at y-intercept? 

Mat:              I think it is because I didn’t try to understand, but then I cram. 

Interviewer: What do you understand by an asymptote? 

Mat:              That is when there is x, when I meet the intercept, asymptote of y, I can close  

                      this one  →  +2 

                                                   ↑ 

                      and that one is the asymptote of y (pointing at +2), when I need the asymptote 

                      for x, I close this one in box    +2 and take the denominator of    which 

                      x-4 and equate it to zero then I solve for x. 

Interviewer: Can you explain to me why you equated x - 4 to zero? 

Mat:              I just know how to write them down from the equation. 

Interviewer: Show me how did you draw your graph? 

Mat:              I make sure that I always put the asymptotes first and make sure the  

                      asymptotes and the intercepts don’t touch each other....Cartesian plane, they 

                      only need x and y, then when x is 4, y is here, ‘oh’, I first have to show  the 

                      asymptote, y is 2, y = 0, then x = 4.  

 

Mat also failed to explain and justify the procedures that he used claiming that it was how 

they were taught and that he just crammed. His explanations were quite limited and seemed 
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to have been rehearsed with little understanding. According to the indicators of APOS theory 

Mat is operating at the action level (Dubinsky & McDonald, 2001). 

 

Question 8 was testing learners’ ability to use a graphical representation and to translate from 

the graphical to the symbolic representation. 

 

 

 
 

Figure 24: Mat’s written examination answers for question 8  

 

Mat only did 8.1 on finding the coordinates of the turning point and just could not continue. 

He could not read and use the graph to extract information to use in answering 8.2, 8.3 and 

8.4. I interviewed him to find out how he reasoned as he solved 8.1 and why he did not 
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attempt the other parts of the question. This is an indication that the learner lacks the basic 

concepts of gradient and intercept which are used when determining the equation of a straight 

line which is an indicator that the learner is operating at the pre-function level (Breidenbach, 

Dubinsky, Hawks & Nichols, 1992). I interviewed the learner to confirm my claim that he is 

operating at the pre-function level of (P)APOS theory as shown in the interview excerpts 

below:  

Interviewer: What is your meaning of a turning point? 

Mat:              The turning point is where the graph curves, that means where it changes 

                      directions. 

Interviewer: How do you calculate the coordinates of the turning point? 

Mat:              What are we going to do here is that we ‘gonna’ multiply the things in brackets 

                      and then, ‘ja’, let’s do it! We ‘gonna’ take the -2 as it is and put it down here, 

                      then open brackets, then I will say x times x is , then I will say, ok! This is 

                      positive, then I will say x times 1 is x, then -3 times x is-3x, then -3 times 1 is 

                      -3 close [brackets], then next step, the -2 will remain as it is, I will put it down 

                      here, oh! Here there are like terms, the  then, x - 3x is -2x, then the -3 close 

                      [brackets]. Now we ‘gonna’ multiply, ok! The -2, (-2x times x is -2 ), 

                      (-2 times -2x is +4x), (-2 times -3 is +6), so, this will be our original formula,  

                      ok! We ‘gonna’ calculate the turning point, we ‘gonna’say x =  

Interviewer: Where is this formula coming from? 

Mat:              I just memorized it! 

Interviewer: You did not attempt the other questions, why? 

Mat:              …eeh I can’t proceed. 

 

Mat had a vague idea of what a turning point is. His explanation of calculating its coordinates 

was pleasing though at the end he talked of memorizing this procedure and the use of a 

formula x = . The learner failed to do the other questions saying that he cannot proceed. 

The implication of this is that maybe he forgot what he had memorized because at least he 

was supposed to show some reasoning and attempt something even though it would be 

wrong. This memorization of procedures by Mat places him at the pre-function level of 

(P)APOS theory (Breidenbach et al., 1992). 
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Case 6: Edy’s understanding of the function-related concepts 

Question 7 was testing learners’ ability to calculate intercepts and asymptotes from a given 

equation and used them to sketch the graph of a given function. 

 

 
 

Figure 25: Edy’s written examination answers for question 7 
 

Edy failed to calculate the y-intercept and both asymptotes showing little understanding of 

these concepts. The asymptotes that he drew were different to what he had calculated 

showing that the learner had memorized these solutions preparing for this interview session. 

This memorization of procedures without understanding them by Edy makes him to be placed 

at the pre-function level of (P)APOS theory (Breidenbach et al., 1992). To elicit the learner’s 
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understanding of procedures and concepts involved in this question I interviewed him and our 

dialogue was captured in the following interview excerpts: 

 

Interviewer: In your own words how do you describe an intercept? 

Edy:             The point where the y or the x is, that is the intercept. In the y-intercept, I  

                      think is the point y and in the x-intercept, I think is the point x. 

Interviewer: How do you calculate the coordinates of the intercepts in 7.1? 

Edy:              I will put y = , so y-intercept, x = 0, then y =   

Interviewer: Why is x = 0 at the y-intercept? 

Edy:              ‘Oh’ I don’t know, the only thing I know is that, when you are calculating the 

                      y -intercept, x = 0, and for the x-intercept, y = 0. 

Interviewer: Ok. Explain to me what an asymptote is, as you understand it? 

Edy:              The asymptote is the marginal line where the graph will be, as are those ones 

                      we have drawn, usually plotted with dotted lines. 

Interviewer: How do you calculate the asymptotes? 

Edy:              I don’t know how to find the asymptote but I just think of cramming. 

Interviewer: Tell me what did you cram? 

Edy:              I forgot sir! 

Interviewer: Ok. How did you draw the sketch then? 

Edy:              When I plot my graph, it must not touch the asymptote points. ‘Oh’ the critical  

                      points, ok! we ‘gonna’ label the graph, here is the x -axis and here is the 

                      y -axis, ok! first I ‘gonna’ put my asymptote before plotting the other points on 

                      the y -axis, my asymptote is +2 and then, plot a broken line and then on the  

                      x -axis, my asymptote is 4, which I plot a broken line and then, already this one 

                      say: y = 3 and here x = 4. 

Interviewer: But you wrote x = 3 and y =4. Are you changing it now? 

Edy:              I made a mistake when I was writing. 

 

From Edy’s responses above it shows that the learner does not know the meaning of an 

intercept and asymptote. He only remembers that at the y-intercept x = 0 and at the x-

intercept y = 0 without understanding why it is so. The asymptotes that he wrote are now 

different to the ones he put on his sketch graph and admitted to having made a mistake. Edy’s 

description of sketching the graph is not based on understanding where to put the critical 
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points first and then drawing. His ideas are still vague indicating that he is operating at the 

pre-function level of (P)APOS theory (Breidenbach et al., 1992).  

 

Question 8 was testing learners’ ability to use a graphical representation and to translate from 

the graphical to the symbolic representation. 

 

 
 

Figure 26: Edy’s written examination answers for question 8  

 

Edy’s written answers for question 8 were correct though he did not find the value of b in 8.3. 

The presentation of the work shows that he can follow accurately the procedures involved in  

solving these questions. The ability to follow procedures is an indicator that a learner is 

operating at the action level of APOS theory (Breidenbach et al., 1992). To confirm this 
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claim and whether the learner understood these procedures I interviewed him as shown the 

interview excerpts that follow: 

 

Interviewer: Please go through your solution to 8.1 with me I want to understand how you 

                      calculated the coordinates of the turning point. 

Edy:              I will use the formula x =  where b = 4 and a = -2 from h(x) = -2x2 + 4x + 6,  

                      we were told that x is the x-coordinate of the turning point then we substitute  

                      this value in the original equation to find the corresponding value of y. 

Interviewer: How did you calculate the coordinates of Q? 

Edy:              I will replace the x by 0. This is obvious that this will be equal to 0 because we 

                      are on the y-axis and then my answer is 6, therefore I will answer the question, 

                      therefore Q is equal to (0;6). So my c the y-intercept is 6 already I will write the  

                      original formula g(x) = mx + c, then I will choose one point , is either P or Q,  

                      then, I have decided to take Q, whereby (0;6) and I will write x and write y  

                      there, and where there is y, ‘oh’ where there is g(x) I will put 6 =, my m, is -2, 

                      my x is 0, now I want the value of c, 6 = c, which means c = 6, then write  

                      g(x) = -2x + 6, then, this has been proven. 

Interviewer: But you did not find the value of b. Why? 

Edy:              That one I don’t even know where to start sir. I thought b was c at first but  

                      eh its not. 

 

Edy’s responses in this interview showed an understanding of the procedures as he could 

explain clearly what he had done and why he was doing it in that way. Though he did not 

answer all the questions, Edy’s ability to use and explain procedures that he used places him 

at the action level (Breidenbach et al., 1992).  

 

5.3.2 Cross case analyses of learners’ calculations and explanations of the critical points  

The examination question 7 had asked learners to calculate the x and y intercepts. My 

interview questions were meant to compel learners to reveal their conceptual understanding 

of the x-intercepts and y-intercepts and the procedure of calculating them. The intention was 

to determine the conception levels learners were operating at and then help them to move up 

towards the schema level. Discussions in Section 5.3.1 indicate that on question 7 two 

learners were operating at the action level, two learners were operating between the pre-
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function and the action level and the other two learners were entirely at the pre-function level. 

Two out of the six learners did not calculate the coordinates of the intercepts correctly. One 

out of the six learners gave the correct explanation of an intercept while the other five 

learners could not give a precise and complete explanation of intercepts. Based on both 

learners’ written and verbal responses from cases 1 to case 6, I can conclude that learners can 

calculate the intercepts but do not understand the procedure. They cannot explain why x = 0 

on y-intercept and y = 0 on the x-intercept. They can carry out the procedure without an idea 

of why and how the procedure works. This is also documented in literature (Polaki, 2005).  

 

After finding the critical points in question 7, learners were required to sketch the graph. To 

sketch the graph they needed to know where to plot each critical point and how to join the 

plotted critical points. As a result I asked them to explain this procedure and their responses 

revealed that 4 out of the 6 learners could explain how they sketched the graph using the 

critical points they had calculated. Coco and Monga were not sure as to how to start to sketch 

the graph. I discovered that the other four learners can correctly sketch the graph but could 

not explain precisely what they did. This indicates that they were operating at the action level 

while Coco and Monga were operating between Dubinsky and Wilson’s (2013) pre-function 

level and the action level. 

 
In question 8 learners were asked to determine the equations of the asymptotes of the given 

equation of a function. During the interviews I asked the learners to explain the meaning of 

an asymptote before determining the equations. From their responses, discussed in cases 1 to 

6, no learner managed to correctly explain an asymptote leading to the conclusion that 

learners do not have a clear understanding of an asymptote. In addition, responses of all the 

six learners show that learners are not aware of the conditions of a line being an asymptote. 

They just memorized the procedure of finding the asymptote. This indicates that learners 

have insufficient knowledge related to the concept of asymptote and are still operating at the 

action level. 

 

Question 8 had also asked learners to sketch the graph showing all the critical points. The 

other critical points had been found in the earlier questions and only the turning point was 

remaining. I asked the learners to reveal their conceptual understanding of the turning point 

and the calculation of its coordinates which helped me to determine their conception levels. 

Based on their responses I can conclude that all six learners had a vague idea of what a 
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turning point is, and their ideas were not complete, and needed to be refined. Their responses 

also indicated that they just memorized that the x-coordinate of the turning point is  without 

understanding where this formula comes from and how it works. Although all six learners 

could calculate to some extent the coordinates of the turning point they failed to explain 

clearly how they were calculating them and why they were calculating them in the way that 

they were doing indicating that they were operating at the action level. 

 

The two questions on functions in the June 2011 mathematics examination tested learners’ 

understanding of the process of translating from equation to graph and from graph to equation 

respectively. Thus, for learners to succeed in this two-way translation they needed to 

understand the critical points because they connect these two representations of the function 

concept. Analyses of learners’ individual written and verbal responses have revealed that all 

six learners had difficulties in answering questions that refer to the drawn graph as they could 

not deduce the critical points from the sketched graph and use them to determine the required 

equations. This indicates that learners have insufficient knowledge on the connection between 

the graph and the equation as different representations of the same function. This is also 

documented in literature (Sfard, 1992; Sierpinska, 1992; Knuth, 2000; Gagatsis & Shiakalli, 

2004; Abdullah & Saleh, 2005; Akkoc & Tall, 2005; Cunningham, 2005). 

  

5.3.3 Focus group interviews 

I had planned to group learners in the sample into two groups of six each to take advantage of 

learner to learner interaction, but since some learners had dropped out and others were not 

consistent in their attendance I was left with one group of six learners. However, on the day 

of focus group interviews again one of the six learners in the sample was absent. I allowed 

the five learners who were present to share their difficulties, to triangulate data from the 

initial individual interviews. I initiated group discussions as follows: 

 

Interviewer: Discuss as a group the difficulties that you faced when you were  

                      answering the two questions in the June examination. Tell others about the 

                      difficulties that you faced and the kind of assistance that you need.  

Edy:  Guys I get confused when asked to sketch the graph, I don’t know whether to use the  

          asymptote or intercept for this one (question 7). When exchanging this, when you are  

          finding the intercept, usually is difficult for me because in 7.3, it is easy for you is to 
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           just take the points and allocate them. 

Teko:  Ya I have the same problem on finding the intercepts. Because, sometimes I think I  

            know what I’m doing, but I got lost, like here, I got lost from the beginning, so which 

            means the whole answers there went very wrong. 

Mat: ‘Ja’ like this point here, when they say: calculate the value of b, already they have given 

         you the other points, I don’t know where should I substitute from? Or should I use 

         g(x) = mx + c, I think …which is x, and b is suppose to be the y-value, what gives me 

         the problem is that, why did they give me the 2, maybe if they gave me , there  may be 

         the m, the m must be maybe here. 

Coco: Maybe 8.3, 8.3 is a bit tricky because, here, you cannot find m on your sketch, 

           because, here it says that the sketch below, not drawn to scale, then you will now 

           understand that you will be using your sketch to answer the questions that follow. 

          ‘Oh’ here is because, can’t write … I’m not sure if I can write the graph for the  

           equation. 

Monga: I don’t know whether to use the asymptote for the dotted lines or for the graph. It is 

             difficult to find the coordinates of Q and to find the values of m, because we don’t  

             have the coordinates of Q …I have a problem with mixing graphs. I have problems 

             with these drawn graphs I don’t even know where to start. 

 

Learners’ responses presented in the interview excerpts above confirm that the five learners 

had difficulties in extracting information from a drawn graph; sketching the graph showing 

all intercepts, asymptotes, turning points, and to translate from graph to equation. These 

difficulties support findings in the studies carried out by Sierpinka (1992) and Knuth (2000). 

The following major theme emerged when I matched the difficulties from these initial 

interviews and group interviews with the ones from my literature review: Learners cannot 

flexibly translate from the graphical to the symbolic (equation) representation of the function 

concept. Moreover, the interviews I carried out with grade 11 learners in my sample also 

revealed that the learners had a limited understanding of the critical points which made it 

difficult for them to translate from graphical to symbolic representation and vice versa. 

Making these links have however become associated with a foundational understanding of 

the function concept (Eisenberg & Dreyfus, 1991) which includes its key idea and 

characteristics. This means that learners cannot manipulate representations of the function 

concept without first understanding its key idea and characteristics which are closely linked 

to the definition of the function concept (Polaki, 2005). As a result I divided the major theme 
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into two problem areas: Problem Area 1: Learners did not understand the key idea (that of a 

dependence relationship) of the function concept. Problem Area 2: Learners cannot flexibly 

translate from the graphical to the symbolic (equation) representation of the function concept. 

According to Even (1988) a situation which enables the transition between multiple 

representations of functions geometric, numeric, and symbolic may lead to conceptual 

understanding. The nature of problem area 1 and problem area 2 compelled me to classify 

learners’ difficulties under the definition of the function concept and representations. The 

classification of learners’ difficulties was not meant to separate them conceptually but to 

allow an in-depth study of these difficulties with the intention of forging strategies of 

overcoming them and improving learners’ understanding of the function-related concepts in 

the classroom. As a result I dealt with, and presented these two problem areas separately 

starting with the key idea of the function concept and then its representation.  

 

5.4 Problem Area 1:  Understanding of the function concept  

5.4.1 Phase 1: Problem identification 

The following section presents problem area 1 which is closely related to the key idea of the 

function concept. Learners in the sample had been taught about the function concept by their 

teacher prior to the initial interviews which indicated that learners had difficulties with the 

aspects related to the function concept. This prompted me to conduct individual interview 

session 3 to determine: what learners understand by the function concept, reasoning, and 

weaknesses in learners’ understanding. Based on this I looked at how instruction can be 

designed to improve learners’ understanding of the function concept. 

 

Individual interviews (session 3) on the definition of the function concept 

Core interview questions related to the definition of the function concept were as follows:  

• What do you think of when you hear the word function in mathematics? 

• Using your own words and any diagrams you need to express your ideas, explain the 

meaning of the word function. 

• List and explain any special properties of a function that you can recall and explain 

how you would illustrate them. 

•  Give me two examples of a function and two examples of non-functions. 

• How do you distinguish a function from a non-function? 
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• Explain in your own words what you understand by an independent variable and a 

dependent variable? 

• How do you identify the independent and dependent variables in a given functional 

relationship? 

• A function has a domain and a range (co-domain). Explain in your own words the 

meaning of a domain and range. 

•  Where do you use functions in real life? You can use an example to explain the 

application of functions in real life. 

 

Note: These questions were guided by Markovits, Eylon and Bruckheimer (1986) and Sajka’s 

(2005) knowledge and skills that a learner ought to have to be considered as understanding 

the definition of function. I had also confirmed with the mathematics teacher that learners 

were taught these function definition related concepts in class.  

 

Research question 1: How do learners understand the function concept?  

This research question was answered by analyzing learners’ responses with respect to what 

they said a function was, the examples and non-examples that they formulated, the ways they 

used to identify the dependent and independent variables of a function. Examples of functions 

and non-functions that learners gave could indicate the extent to which they understood the 

function concept. If they are able to formulate examples of functions and non-functions it 

implies that they can recognize a function using its properties. This ability can in turn help 

identify the dependent and independent variables in a given function and then distinguish a 

function from a non-function. The following excerpts provide the evidence of learners’ level 

of understanding of the definition of the function concept. When I asked learners to tell me 

what comes to their mind when they hear the word function or to explain the meaning of the 

word function in mathematics, they gave me the following responses: 

 

Coco:    ...something having an input, the output must have a relationship, maybe - when you, 

              like, when you are working somewhere, when you get paid, it must have a 

             corresponding, this two must correspond the hours, the hours and the money that you  

             get paid. 

Diva:    Function is a relationship between two things or variables, for an example a stove  

             and a pot there  is a relationship between them. 
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Edy:     If I hear the word function it is a relationship between two points. 

Mat:     Oh as I have said earlier it actually means the relationship between two variables, ja 

              relationship. 

Monga: I think it is a relationship between two friends or intercepts. 

Teko:    I think function is a number which represents the range and domain. Function is 

              something that tells us about range and domain. 

 

Learners gave the following examples of functions and non-functions: 

Coco:    when you are working somewhere, when you get paid, it must have a corresponding, 

              this two must correspond the hours, the hours and the money that you  get paid. 

Diva:     Okay a cell phone has one number. One cell phone has one number. You can’t share 

              one number with two phones... you can’t use one number for the two cell phones. 

Edy:      I remember we were told that area of a rectangle is a function of its length and  

              breadth. 

Mat:     Oh a number that is depending on two numbers like 6 = 2 × 3 

Monga: The birth of a child is a function. 

Teko:    Two examples of a function. A shop owner depends on the customers for buying. 

 

How learners distinguished a function from a non-function: 

Coco:   You can distinguish a non function from a function; a function like a domain can 

              only sometimes correspond to the other element or two, both domain can correspond 

              to one, they can share the element but two of the …, ok! 1-1, and then …, but …, 

              one domain cannot have other two elements. 

Diva:     I will say here is a graph, then if it is a true function it has to cut in one, but if it is a  

              non-function this would be like maybe into the circle, then it will cut in two points 

              like this. 

Edy:     I am not sure but we were taught in class. 

Mat:      A function takes one, and then non function takes many. 

Monga: For a non-function one component open an event and appear maybe like more than 

              once, then for the other one appear only once for a function, the first component to 

              appear once. 

Teko:    A function has one domain but can share ranges. A non-function it can have  

              a domain and 2 ranges. 
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Learners’ explanations of dependent and independent variables 

Coco:   An independent variable, I think is the variable that, even if you can change  

              something, it does not affect it, but the dependant variable, if you affect the 

              independent, also get affected because the dependent  depend on the independent 

              variables. 

Diva:     I think the …, dependent variable is the one that changes and the independent  

              variable do not change. An independent I think it is something that   stand alone, it 

              doesn’t depend on anything. 

Edy:      Independent variable, okay ja let me talk of a tree, the independents in a tree are the 

             water and the soil. The tree depends on the soil. That is why it is independent. Okay 

              that is the independent. The tree cannot live without the water. 

Mat:     A dependent is something that cannot really work without maybe the help of 

              something. It depends on something else in order for it to work. Okay on the 

              independent I think it is - okay maybe this thing doesn’t need anything else; it is 

              just okay, when it doesn’t want any help, and a dependent … 

Monga: I think an, okay an example will be like plants needed sunlight for growing so I will  

              take plants as the independent value, it rely on the sun and the sun is the dependent 

              because it rely on itself. 

Teko:    The first one that the student depends on his parents for money. The other one is 

               independent or a wife does not depend on her husband for money. 

 

Learners’ identification of dependent and independent variables in a function 

Coco:     Because both of us we are dependent on the name, maybe someone want to say…  

               maybe that is property, like you can refer, someone is looking for me -by my name. 

               Maybe we will have different surnames but we can share my name … Ok! I will be 

                like a function, someone like me, I only have the Identity number, I am dependant 

                on the Identity number, which is how you can find me, with the identity number or 

                a car and the engine, the car is dependent on the engine. 

Edy:        I think it is based on the independent and dependent variables like one for example, 

                we as people we depend on water because you can’t live without it and water can’t 

                depend on us as people. 

Mat:       Another example can be a tree. It can also depend on water or soil. 

Monga: The apples are dependent on the tree because they can’t live on their own but they  

               need a tree. 
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Teko:     A shop owner depends on the customers for buying. 

 

The learners’ responses address both sub-questions i and ii of the first research question: 

i) What are grade 11 learners’ current understanding (concept images and reasoning) of the 

function concept?  

Learners’ concept images of a function that emanated from the above excerpts include: 

• A relationship between things, points, friends or variables, 

• A correspondence between input and output, 

• A connection between input and output, 

• Something that tells us about domain and range and 

• A graph cut in one place by a vertical line. 

 

Learners’ reasoning about the definition was depicted in the examples and non-examples that 

they gave and in their inability to identify dependent and independent variables in a function. 

The above interview excerpts indicate that: 

• Learners could only give examples of functions that are narrow, vague or inaccurate, 

• Learners could not give examples of non-functions and 

• Learners had a narrow view of dependent and independent variables and could not 

differentiate the two in their examples. 

 

These concept images and reasoning of learners are also reported in literature (Dubinsky & 

Harel, 1992; Breidenbach et al., 1992; Hitt, 1998; Polaki, 2005). They indicate that learners 

do not understand the key idea (that of dependence relationship) of the function concept.  

 

Learners’ responses were categorised into (P)APOS levels depending on the indicators they 

displayed in their oral and written responses and in terms of what they could do and what 

they could not do. These indicators were explained in detail in Chapter 3 Section 3.5. The 

table below shows that, for questions 7 and 8, 1 out of 6 of the learners in the sample was 

operating at the pre-function level, three learners were between the pre-function and the 

action level while two learners were at the action level because of the indicators they 

exhibited in their responses. 
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Table 8: Learners’ initial (P)APOS theory conception levels on the function concept  

 

LEARNER (P) A P O S INDICATORS OF PAPOS THEORY CONCEPTION 

LEVELS 

Monga  

 

X 

   Has the basic idea of a relationship 

Cannot formulate example and a non-example 

Cannot explain and identify dependent and independent 

variables in his own example 

Coco   

 

X 

   Can use the one-to-one correspondence property 

Formulated reasonable examples of functions and non-

functions 

Can explain and identify dependent and independent variables 

Mat X     Basic idea of a relationship 

Cannot formulate examples of functions and non-functions 

Cannot explain and identify dependent and independent 

variables 

Diva  X    Basic idea of a relationship 

Gave vague example of a function but used vertical line test to 

give an example on a non-function 

Shallow explanations of dependent and independent variables 

Edy      

 

    X 

   Basic idea of a relationship 

Recall verbatim examples of functions and non-functions 

Cannot clearly explain and identify dependent and independent 

variables 

Teko     

     X 

   Recall some basic definition aspects 

Gave vague examples and non-examples of functions 

Vague explanations of dependent and independent variables 

 

 

What are the weaknesses in learners’ understanding of the function concept? 

I was able to detect that there are weaknesses in learners’ understanding because their 

answers showed that they do not have indicators to show the schema level. Analysis of 
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learners’ interview responses above revealed the following weaknesses, difficulties and 

misconceptions: 

• 4 out 6 learners can only mention that a function is a relationship without explaining 

the nature of the relationship indicating that they were operating at the action level 

for that particular question;  

• Their explanations are based on examples of which some of the examples are vague 

like the one of a stove and pot indicating conceptions at the action level;  

• 5 out of the 6 learners could not identify the variables (dependent and independent) in 

their examples of a function; 

• All the six learners could not use their definition of the function concept to formulate 

examples and non-examples of functions; 

• They cannot use their function definition to determine whether given relationships are 

functions or non-functions; and 

• They confuse the uniqueness condition of the function definition with the notion of 

one-to-one correspondence. 

 

The literature also revealed that it is common for learners to have the weaknesses, difficulties 

and misconceptions listed above (Sfard, 1991; Dubinsky & Harel, 1992; Breidenbach et al., 

1992; Hitt, 1998) which indicate that there is need for intervention to help learners overcome 

these obstacles to their understanding. Intervention was done in phase 3 of my adapted model  

(Figure 7) through the use of tentative products and theories. 

 

5.4.2 Phase 2: Development of interventions 

Phase 2 addresses research question 2: 

How can instruction be designed to improve learners’ understanding of the function concept? 

According to the theoretical framework for this study I brought in and used the following 

RME’s learning and teaching principles as propounded by Treffers (1991): 

• learning mathematics is a constructive activity and instruction should start with  

concrete or everyday activities that are experientially real to learners;  

• learning of a mathematical concept or skill is viewed as a process which is often 

stretched out over the long term and which moves at various levels of abstraction and 

problem solving activities help learners to move through these various levels; 
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• serious attention has to be paid to a learner's own constructions and productions and 

the learners must constantly have the opportunity to reflect on learning strands that 

have already been encountered; 

•  working in groups is important as learners have the opportunity for the exchange of 

ideas and arguments so that they can learn from others; 

• learning strands should be intertwined and cannot be dealt with as separate entities 

and intertwining of learning strands is exploited in problem solving; and  

• learning should focus on understanding of processes (procedures) rather than 

memorizing them. 

 

A central construct in RME is progressive mathematisation. Mathematicians take subject 

matter from reality and organise it according to mathematical patterns in order to solve 

problems from reality (Gravemeijer, 1994). “There is no mathematics without 

mathematising” (Freudenthal, 1973, p. 134). There are two types of mathematisation: 

“horizontal mathematisation, which refers to modelling a problem situation into mathematics 

and vice versa, and vertical mathematisation, which refers to the process of reaching a higher 

level of mathematical abstraction” (Drijvers, 2002, p. 192). The idea that moving from the 

world of life to the world of symbols was horizontal mathematisation while operating within 

the world of symbols is vertical mathematisation was emphasised by Freudenthal (1991). I 

then related actual examples in my lessons to the learners’ needs which I identified above in 

the form of weaknesses, difficulties and misconceptions and their various conception levels. 

These weaknesses, difficulties, misconceptions and their conception level indicated that there 

was need for intervention in order to help learners reduce their identified difficulties and 

misconceptions and help them to progress up the conceptual ladders of (P)APOS theory from 

the current pre-function and action levels to the schema level. To improve learners’ 

understanding of these concepts I developed my teaching experiments following the stages of 

conceptual development suggested by Markovits et al (1988). Learners’ concept images and 

reasoning indicate that they do not understand the basic idea (that of dependence relationship) 

of the function concept, they could not identify dependent and independent variables in a 

given functional relationship and they could not formulate their own examples of functions 

and non-functions. I formulated the following HLT for the first teaching experiment of a 

series of teaching experiments to help learners understand the function concept: 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

143 

5.4.2.1 Teaching experiment 1 

 

 

 

 

 

  
 
 

 

Figure 27: HLT for developing an understanding of the function concept 

 

Evidence from excerpts above suggests that five of the six learners in the sample were 

operating at the action level of APOS theory. I designed activities (instructional material) 

based on the principles of RME to help shift learners from the action level to the schema 

level which is the main aim of this study.   

 

At the end of the intervention learners should be able to: 

    i)  explain the basic idea behind the function concept; 

    ii) state and explain examples of variable quantities; 

   iii) identify the dependent and independent variables from given functions; and 

   iv) explain in their own words, what a function is. 

 

My aim was to assist learners to understand how the concept of a function exists in real life 

outside of the mathematics classroom. I used some real world examples of functions and 

some examples with numbers using those functions. It was important to make the examples 

as applicable and understandable as possible as this was the introduction. Since this was a 

form of intervention I was aware of learners’ current understanding of the definition of the 

function concept and I was aware of their weaknesses (difficulties) and misconceptions. This 

gave me the opportunity to formulate and choose activities that could help learners to 

overcome their weaknesses and misconceptions referred by Sowder (2007) as scaffolding of 

knowledge. To develop learners’ understanding of the basic idea of the function concept I 

designed the activities 1 and 2 which took us into Phase 3. 

 

Identification of 
variables in given 
functional 
relationships 

Formulate 
own example 
and specify 
variables 

Determine the nature of the 
relationship in their own 
example by experimenting 
(manipulating variables) 
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5.4.3 Phase 3: Prototype 1 

In this activity I gave learners functional relationships and asked them to work in pairs and 

identify and explain the dependent and independent variables, and to formulate an expression 

connecting these variables. RME is embedded in these examples to help learners connect 

functions to real life. This means that learners need real life examples to enable them to 

mathematise and understand the concepts embedded in real life situations. This activity 

assists learners to construct a process conception of the function concept. As such I used the 

example approach advocated for by Van de Walle (2004): 

 

Activity 1: Identifying and explaining variables  

Work in pairs and identify the variables 

i.   The amount of hours someone works to the amount they get paid. 

ii.  The amount of petrol put in the tank and the amount of money paid by the motorist. 

iii. The number of loaves of bread and the amount paid by the customer. 

iv. The number of nights spent at a hotel and the amount of money the guest has to pay.. 

v.  The   number of patients admitted in a hospital and the number of beds in the hospital. 

At the end of this activity I interviewed learners in pairs and asked them to explain to me how 

they identified the variables in the given relationships. The following are excerpts from these 

interviews:  

Monga & Edy:  We have seen that there is a fixed variable and a variable that changes 

                           because of a change in the fixed variable (Monga reporting). 

Interviewer:      Of these two, which one is the dependent and which one is the independent 

                           variable? 

Monga & Edy: The fixed variable is the independent and the one changed by the fixed  

                           variable is the dependent variable (Edy reporting). 

 

I asked the same questions to (Teko & Diva) and (Mat & Coco) and they gave the following 

responses: 

Teko & Diva: The variable which can affect the other is the independent variable and the 

                        affected variable is the dependent variable (Diva reporting). 

Mat & Coco:  A variable which depends on another variable for its value is the dependent  

                        variable and the one which is depended on is the independent variable (Coco 

                         reporting). 
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The use of real life relationships helped the learners to correctly identify the variables in the 

given relationships. They could imagine how the independent variable affects the dependent 

variable. This indicates that learners were now operating between the process level and the 

object level which was an improvement from the initial interviews. To consolidate learners’ 

knowledge on the identification of variables in a given relation I designed another open-

ended activity (Gravemeijer, 2004) in which learners could formulate their own relationship 

which they could manipulate to see how a change in one variable would affect the other. This 

is similar to Confrey and Smith’s (1994) covariational approach. It helped learners to 

understand the dependence relationship between the dependent and independent variables. 

 

Activity 2: Applying the knowledge 

This activity was meant to allow learners to work in pairs to formulate their own relationships 

and manipulate the variables in those relationships for them to see how one variable changes 

while imagining changes in the other. I gave them an example of the relationship between the 

height of water in a bottle and the volume of the water. Charles (1990) contends that learners 

 must be able to recognize change in order to understand functions. This activity was meant 

to help learners to construct the object and schema conceptions of the function concept. 

 

Procedure for activity 2: 

1. Learners formulate their own relationship which they will be able to manipulate in an 

    activity by varying the quantities. 

2. Identify quantities that vary in the course of the activity and focus on the  

    relationship between those variables. 

3. Create a record of the corresponding values of the varying quantities by using a table or  

    graph. 

4. Identify patterns in the records created. 

5. Create a representation of the identified pattern in the relationship. 

6. What can you say about the representation you created in 5? 
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5.4.3.1 Discussion of learners’ responses on activity 2 

 

 

 

 

Figure 28: Monga and Edy’s responses on activity 2 

 

Monga and Edy could formulate a relationship and identify the dependent and independent 

variable. They were able to identify and explain the connection between the variables and use 

that connection to derive a formula connecting the variables. This indicates that the two 

learners had moved from the process level to the object level (Dubinsky & Harel, 1992) 

which was an improvement from where they started. 
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Figure 29: Mat and Coco’s responses on activity 2 

 

Mat and Coco applied their experience on phoning to come out with a practical example of a 

relationship in which the amount of phoning time depends on the available amount of money 

recharged. They could identify the pattern in the relationship and give a formula for the 

relationship. Their ability to formulate own examples of functional relationships which they 

failed to do in previous tasks indicate that they had progressed from the action level to the 

process and object levels (Dubinsky & Harel, 1992). 
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Figure 30: Teko and Diva’s responses to activity 2 

 

Teko and Diva’s example though superficial shows their understanding of relationships and 

the variables involved. They showed an improvement in their understanding of the 

connection between the dependent and independent variables in a relationship. This indicates 

they were operating at the action level (Dubinsky & Harel, 1992). 
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5.4.3.2 Retrospective analysis 

Activity 1 worked well in developing all the six learners’ ability to identify and explain the 

dependent and independent variables which was an indication that they were operating 

between the process and the object level (Dubinsky & Harel, 1992). For example, Monga and 

Edy explained the independent variable as the fixed variable and the one being changed by 

the fixed variable as the dependent variable. Teko and Diva regarded the independent 

variable as a variable which can affect the other variable, and the affected variable as the 

dependent variable. Similarly, Mat and Coco talked of a variable which depends on another 

variable as the dependent variable and the one which is depended on as the independent 

variable. Activity 2 worked well for four learners except for Teko and Diva who formulated a 

superficial relationship of classrooms and number of learners (action level). Although it may 

sound obvious that the number of learners at a school depend on the number of available 

classrooms, it can be argued that the classrooms can be overcrowded to accommodate all the 

available learners and if learners are few, they can still be distributed into all the classes. The 

two activities above enabled learners to take subject matter from reality and organize it 

according to mathematical patterns in order to solve problems from reality (Gravemeijer, 

1994). As a result, learners were able to recognize mutual dependence between variables or 

varying quantities, determine the nature of the dependence relationship between variable 

quantities and to express and interpret quantitative relationships. These results indicate that 

learners had managed to move from the action to the process and the object level. However, 

learners could not use the key idea of the function concept to determine whether a given 

relation is a function or non-function. They could not use the proper functional language of 

domain and range in defining the function concept and in formulating examples and non-

examples (Hitt, 1998). These results led to the developing of the HLT in the next phase. 

 

5.4.4 Phase 4: Product and theory refinement 

Product and theory refinement entails redesign and refinement of the problem, solutions 

(created in phase 3) and method are done based on the feedback received in phase 3 

(interplay between theory and practice). Formative evaluation is used along with the 

reflection of the feedback, to do the redesign and refinement. This is an iterative stage where, 

the refinement is done for achieving successive approximation of theory, and refinement of 

design theory. 
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5.4.4.1 Teaching experiment 2 (Prototype 2) 
 
 

 

 

 
 
 
 
Figure 31: HLT for developing an understanding of the function concept 

 

I designed the above HLT and the activities (instructional material) based on the principles of 

Realistic Mathematics Education (RME) to help shift learners from the process level to the 

object level and then to the schema level which is the main thrust of this study.  

 
Learners should be able to: 

  i.   distinguish a function  from a non-function; 

  ii.  identify the domain and range sets for a given function; and 

  iii. state and explain properties of a function. 

 

In this lesson I wanted to help learners define the function concept in an informal way and at 

the same time introduce new terms, domain and range. To do so I made use of the principles 

of RME by taking subject matter from reality and organizing it according to mathematical 

patterns in order to solve problems from reality (Gravemeijer, 1994). I did this by allowing 

learners to act out the function concept and link the dependent and independent variables to 

the domain and range through acting. To achieve this I designed the following activity.  

 
Activity 3: Table allocation game (determining whether a given relation is a function) 

The purpose of this activity was to help learners understand the genetical and logical 

definitions of the function concept by having them act it out. My aim was to apply the RME 

principle of situating the function definition in reality by using an activity that is 

experientially real to learners. Acting out a function and a non-function would help learners 

understand how to determine whether a given relation is a function or not. This is linked to 

the definition of a function as a set of ordered pairs which Insook (1999) described as a 

logical definition. This will move learners from the process level to the object level 

(Dubinsky & McDonald, 2001). 

Determining whether a 
given relation is a 
function or non-function 

Domain 
and range 

Derive the 
properties of a 
function 
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Materials: Tables labelled with numbers on them for learners to move to. Learners are also 

labelled with letters A, B, C, D, E, and F. 

Step 1: I wrote a relation that is a function in that every learner moves to a different table. 

Define the learners as the x-coordinates and the tables as the y-coordinates, for example, {(A, 

1), (B, 2), (C, 3), (D, 4), (E, 5), (F, 6)}. 

Step 2: I let learners act out the function by moving to the allocated table, for example, A 

moves to table 1, B moves to table 2, C moves to table 3 and so on. I told the learners that 

this relation is a function (I asked them to explain why) - answer: one learner is linked to a 

unique table. 

Step 3: I wrote another relation that is a function. This time I wrote the relation so that more 

than one learner moves to one table, for example, (A, 1), (B, 2), (C, 1), (D, 3), (E, 4) and ((F, 

5). I told the learners that this is a function as well. I checked to see if any of their guesses 

change. At this stage I introduced the aspects of domain (the learners) and range (where the 

learners are going to). 

Step 4: I wrote a relation that is not a function, for example, (A, 1), (B, 2), (A, 3), (C, 4), (D, 

5) and (E, 6). I asked them to explain why this relation was not a function. Answer: This is 

not a function because A will not be able to move to table 1 and table 3 at the same time. This 

helped learners to understand that “each element in the domain set is paired to only one 

element in the image set” (Dede & Soybas, 2011, p. 95). 

Step 5: I then asked learners to derive the properties of the function concept from what they 

were acting out. 

 

To assess learners’ understanding of the aspects covered in teaching experiment 2, I gave 

them a worksheet (Task 1) in which they worked in pairs to determine which ones are 

functions and which ones are not. In developing questions for Task 1, I used the RME 

principle of using everyday experiences for items 1a, 1b and 1c. For question 2, I wanted 

learners to derive the meanings of domain and range from activity 3 a situation though 

imaginary allowed learners to imagine the meanings of these terms. In question 3 my use of 

set notation and arrow diagrams was meant to employ the RME principle of making the 

definition of the function concept real in the mind of the learner. This task intended to compel 

learners to use the properties of the function concept they had derived in step 5 above to 

identify a function and a non-function. The following are learners’ written responses to the 

task:  
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Figure 32: Monga and Edy’s written work on Task 1 

 

Monga and Edy to a larger extent could identify functions and non-functions but could not 

explain why, indicating some signs of operating at the process level. 
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Figure 33: Teko and Diva’s written work on Task 1 

 

Teko and Diva showed that they had progressed from the action level to the process level 

though they could not explain why a given relation was a function or a non-function. 
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Figure 34: Mat and Coco’s written work on Task 1 

 

Mat and Coco could identify functions and non-functions but could not explain why, 

indicating some signs of operating at the process level. 
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5.4.4.2 Retrospective analysis 

The purpose of Task 1 was to develop learners’ ability to identify a function in its different 

representations. Evidence from learners’ written work above indicates that Teko and Diva 

could identify a function and explain why the relationship is a function using the properties of 

a function for the first question on Task 1. They used the idea that every element of the 

domain set must have its own corresponding element in the range set. However, they could 

not give reasons for the second question indicating that they had progressed to the process 

level. However, Monga, Edy, Mat and Coco could not explain why a given relationship was a 

function or a non-function indicating that they were operating at the process level. They also 

showed a limited understanding of the concepts of domain and range. The one-to-one 

property was loosely used without an explanation of how it works and its limitations 

indicating that learners had a limited understanding of this property of the function concept. 

This was also documented in a study by Breidenbach et al. (1992). This led to the formulation 

of the following HLT:  

 

5.4.4.3 Teaching experiment 3 (Prototype 3) 

 

 

 

 

 

 

 

 

Figure 35: HLT for the working definition of the function concept 

 

This HLT was intended to help learners understand the one-to-one property of the function 

concept and its limitations, that is, not every function is one-to-one, for example y = x2 is not 

one-to-one on the domain of real numbers; and to identify relations that are functions and 

those that are non-functions. I referred learners back to the activity where they were acting 

out functions and non-functions in-order for them to understand the one-to-one property and 

its limitations. I then designed Task 2 to assess their ability to use the vertical line test. I then 

designed activity 4 to assess learners’ ability to use the knowledge they had gained up to this 

point to evaluate different definitions that I took from various textbooks used locally and 

Connect the one-to-
one property of the 
function concept with 
the vertical line test 

Use the connection 
to analyze different 
definitions of the 
function concept 

Derive a working 
definition of the 
function concept 
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internationally. Discussions from this task were meant to lead learners to derive a working 

definition for the function concept. A definition that brings out the key idea of the function 

concept, helps learners to formulate examples of functions and non-functions, and enables 

learners to determine whether a given relation is a function or not. 

 

By the end of this lesson learners should be able to: 

  i. explain the one-to-one property, its limitations and the use of  the vertical line test; 

 ii. analyze the different definitions of the function concept; and    

iii. derive a working definition of the function concept. 

 

I revisited the activity where learners were acting out functions and non-functions and 

derived the one-to-one property. However, I explained to learners that not all functions are 

one-to-one using the example of y = x2. I found it appropriate to analyze different definitions 

in learners’ textbooks together with the learners using their knowledge from the previous 

activities to derive a working definition of the function concept. I used the definitions by 

Insook (1999); Laridon et al. (1987 & 2007); Foerster (1984) and Young (2011) discussed in 

Section 2.5 of Chapter 2 and the vertical line test to help learners identify functions and non-

functions in graphical representations. 

 

Task 2 assessed learners’ conceptual understanding and ability to use the vertical line test to 

determine whether a drawn graph represents a function. Explaining how and why the vertical 

line test works requires learners to be operating at the object level while using the vertical 

line test is at the action level. This approach was supported by earlier studies reviewed in my 

literature (see Akkoc, 2006). Learners’ responses to this task are shown in what follows: 
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Figure 36: Monga and Teko’s responses on Task 2 

 

Monga and Teko could use the vertical line test to determine whether the drawn graphs 

represent functions. Item c) was wrongly ringed but is correct and I informed the learners 

about the mistake. However, they could not determine the domain and range from the drawn 

graphs. This problem was also reported in a recent study (Dede & Soybas, 2011). Their 

ability to explain how and why the vertical line test works indicates that they are operating at 

the object level of APOS theory but its use only places them at the process level. 
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Figure 37: Mat and Diva’s responses on Task 2 

 

Mat and Diva were also able use the vertical line test and explain how it works but failed to 

find the domain and range for each graph. This indicate that they oscillating between the 

process and object levels of APOS theory. 
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Figure 38: Coco and Edy’s responses on Task 2 

 

Again Coco and Edy could explain the use of the vertical line test but also failed to determine 

the domain and range of these graphs. Their failure to link a graph to its domain and range 

indicates that they are still operating at the process level. 

 

After task 2 I asked learners to explain why the vertical line test works and how is it 

connected to the definition of the function concept. The following are the responses that I got 

from the learners: 
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Monga: If the vertical line crosses the graph once it means I will have one x-value  

              corresponding to one y-value which is what the definition of a function wants. But if  

              it cuts twice or more then one x-value will correspond to two or more y-values. It 

              cannot be a function.  

Mat:      To me for a function it crosses once and for a non-function it crosses twice. 

Edy:      Where the vertical line crosses the graph is a point where a value of x corresponds 

              with a y value. If the vertical line crosses the graph twice it won’t be a function 

              because one value of x will be having two values of y. A car cannot have two 

              registration numbers. 

Coco:   What I know is that for a function the line crosses once and if it crosses twice or  

             more it’s not a function because one value of x will be having two values of y. A 

             learner cannot go to tables at the same time 

Diva:    The vertical line works because it makes sure that one value of x is matched with one 

             y-value. 

Teko:   It helps us to check that all the points on the graph have one value for x  

             corresponding to one value of y for a graph to represent a function. 

 

Learners’ responses lead to the conclusion that a function is a “single valued relation in 

which the first value (x) should not be repeated”. They added that each value of x has only 

one corresponding value of y saying “A child can only have one mother but a mother may 

have more than one child.”  

 

5.4.4.4 Retrospective analysis 

Task 2 was intended to develop learners’ understanding of the use of the vertical line test. 

From the learners’ responses above I can conclude that they now understand why the vertical 

line test works and that learners can now use the vertical line test with understanding. Though 

learners’ responses do not show indicators of the schema level, learners are operating above 

the process level towards the object level. 

 

5.4.5 Phase 5: Final product and contribution to theory 

5.4.5.1 Activity 4: Deriving the working definition of the function concept 

A working definition of the function concept is a definition that captures most of the 

attributes (characteristics and aspects) of the function concept. I chose to use a working 

definition because learners had provided evidence that they cannot use the different 
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definitions found in their textbooks. As such, a working definition will enable learners to 

appreciate the nature and origin of the function concept, identify functions and non-functions, 

formulate own examples of the function concept and identify dependent and independent 

variables in a given relationship. These attributes are found in the different definitions that 

span across most mathematics textbooks. I asked learners in pairs to come up with their own 

working definitions of the function concept. The discussion starts when learners were asked 

to compare the different working definitions they had formulated: 

 

Monga: We must come up with a definition that will help us in answering questions like 

              checking whether a given relation is a function or not. Edy can you read out our 

              definition. 

 Edy:   (reading) “A function is a relation associating the elements of one set with elements 

            of another set.” 

Diva:   According to me Monga and Edy’s definition lacks the dependency of the elements; 

            elements can be associated without necessarily depending on each other like my 

            marks in maths and physical science. 

Coco:  I agree with Diva, let me read our definition (she reads) “A function is a relationship 

            in which quantities depend on other quantities in such a way that if the latter are  

            changed the former undergoes change.” 

Mat:    Coco is right because the nature of the relationship must be clear that it is 

            a dependency relationship between variable quantities. But we agreed with Teko that 

            there must be a correspondence between the varying quantities in the relationship. Let 

            Teko read our definition. 

 Teko: (reading): “A function is a dependence relationship between two sets of variable 

            quantities in which each element from the first variable (domain set) has only one  

            corresponding element in the second variable (range or image set).” 

 

I gave learners the opportunity to comment and improve each pairs’ working definition 

together as a group. Learners could identify weaknesses in each definition and they debated 

trying to convince one another to accept a particular definition. In the end learners in the 

sample seem to have agreed with Teko and Mat’s definition. This definition is similar to the 

set-theoretic definition though expressed in simple terms but differs in that it captures the key 

idea of the function concept. However, it is a misconception to think that every function 

should be one-to-one or onto. Learners forgot that they had previously formulated 
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multivariable functions like the area of a rectangle which is expressed in terms of two 

variables (length and breadth). 

 

5.4.5.2 Retrospective analysis 

Learners managed to identify the differences among their definitions and weaknesses in each 

definition. It became easy for the learners to use these definitions to formulate examples of 

functions and non-functions. Their working definitions included the core idea, the one-to-one 

onto properties. It was pleasing to note that learners could use their working definitions to 

formulate functions and non-functions and to determine whether given relations were 

functions or non-functions. I discovered that though learners had followed the HLTs as I had 

intended, only two learners were exhibiting some indicators of the schema level while the rest 

were oscillating between the process and object levels. 

 

5.5 Summary of results on problem area 1 

Learners were able to: 

• explain and use the basic idea (that of a dependence relationship) behind the function 

concept in formulating function examples; 

• use the uniqueness, the one-to-one correspondence and onto properties of the function 

concept to determine whether a given relation is a function or not; 

• identify dependent and independent variables in a given function; and 

• derive their own definition of the function concept which they used to formulate 

examples of functions and non-functions. 

 

From the activities carried out during the teaching experiments, individual and group 

interviews and written work, learners seemed to have progressed from their initial action 

level to the current object and schema levels summarized in Table 9. 
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Table 9: Results of prototype 3 
 
LEARNER A P O S INDICATORS OF APOS THEORY CONCEPTION LEVELS 

Monga   X  • see a function as something that’s being acted on. 

•  look at the graphical representation of a function and see 

that it is not a function because it does not pass the 

vertical line test. 

Coco   X  • Can derive own definition of a function and use it to 

distinguish a function from a non-function. 

• can create own example of a function or non-function. 

• can link the vertical line test with the one-to-one property 

of the function concept  

Mat    X • can derive own and use own definition of the function 

concept in formulating examples and non-examples. 

• can use own definition to determine whether a given 

relation is a function or non-function. 

Diva   X  • see a function as something that’s being acted on. 

•  look at the graphical representation of a function and see 

that it is not a function because it does not pass the 

vertical line test. 

Edy   X  • see a function as something that’s being acted on. 

•  look at the graphical representation of a function and see 

that it is not a function because it does not pass the 

vertical line test. 

Teko    X • can use own definition of the function concept in 

formulating examples and non-examples. 

• can use own definition and vertical line test to determine 

whether a given relation is a function or non-function. 

 

The next section focuses on learners’ understanding of the representations of the function 

concept and how learners’ understanding was used to design instructional sequences and 

activities to help them overcome their weaknesses and difficulties in translating from one 

representation to the other and move up the conceptual ladders of APOS theory. 
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5.6 Problem area 2: Representations of the function concept 

5.6.1 Phase 1: Problem identification 

Eisenberg (1992) stresses that an ability to make connections between graphical and 

analytical representations of the function concept is the main component of a robust 

understanding of the function concept. In the South African National Senior Certificate/ 

CAPS Mathematics paper 1 examination questions on functions learners are either asked to 

sketch the graph of a given function and other sub-questions relate to that sketch or to answer 

questions using a sketched graph. As such, learners need to understand the different types of 

representations in order for them to successfully answer questions involving these 

representations. Knuth (2000) added that since different representations emphasize different 

features of the function concept, the ability to move flexibly among representations is critical 

for learners to be able to choose the representation that will facilitate their ability to most 

efficiently solve a functional problem. According to Goldenberg (1988) many of the learners’ 

misconceptions and difficulties may be traceable to the use of one or another representational 

setting of a function in isolation. He added that in most cases learners experience difficulties 

translating among these parallel representations because the translation process is overlooked, 

as a consequence, learners exhibit almost no flexibility whatsoever.  

 

Recognizing the important role that multiple representations of the function concept play in 

learners’ mathematical development, the National Council of Teachers of Mathematics 

emphasizes that learners should be able to “translate among tabular, symbolic, and graphical 

representations of functions” (NCTM 1989, p. 154). However, many learners leave high 

school without understanding the connections among these representations (Blume & 

Heckman, 1997). Flexibility to move between representations is an important mathematical 

development, however, the connectivity between these multiple representations is often 

absent (Knuth, 2000). This is because learners often fail to recognise the underlying 

equivalence between the graph, the equation of the graph, the verbal context or application 

and the table of values that the equation and graph represent.  Knuth (2000) believes one 

must see these representations as ‘informationally equivalent’. When this equivalence is 

evident it demonstrates a deeper understanding of the relationship between these 

representations. 
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Research question 1: What do learners understand by the representation of the function 

concept? 

This research question was answered by analysing learners’ responses with respect to what 

they said a representation of a function was, how they explained and calculated the aspects of 

a function representation (intercepts, asymptotes, turning points) and how they switched from 

one representation to the other. The interview excerpts in Sections 5.3.1 to 5.3.3 and the 

interview excerpts in this section provide the evidence of learners’ level of understanding of 

the representation of the function concept. During session 4 (sessions 1 and 2 were interviews 

on questions 7 and 8 of the June 2011 examination while session 3 was the focus group 

interview) of the individual interviews I asked learners in the sample to explain how they 

represent a function and they gave me the following responses: 

 

Diva:    Representing a function. I can do it by an expression. 

Edy:     Sort of an equation. 

Mat:     From what I know a function can be represented as an equation, as you can use the 

              table to get the function, and then ‘mina’ (myself) I favour the one which we use 

              equation, because when you use equation, it becomes more easier and then straight 

              forward. 

Teko:    Draw a graph by using an equation of a function. You can also write a table to 

              represent your values.  

Monga: You can write an equation. 

Coco:     Okay when you are given a function you represent it in a table and on a graph by 

               using an equation and it’s easy to get these using an equation. There 

               are also other ways in which you could represent it but I usually do because 

               sometimes you are asked to refer to the table and the graph. 

 

Similar to Eisenberg’s (1991) findings, learners in my sample also prefer the equation as a 

representation of the function concept. This may be because their teacher had taught this 

representation in isolation without linking it to other representations. This ability to repeat 

what was done in class verbatim indicates that the learners were operating at the action level 

of APOS theory. 

 

Representation of the function concept included types of representations that learners were 

aware of; representations prescribed by the CAPS curriculum; concepts related to the 
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graphical and symbolic representations (intercepts, asymptotes, turning points) and the 

process of translating from the graphical to symbolic representation and vice-versa. Learners’ 

concept images of the representation of the function concept that emanated from the above 

excerpts and those in Section 5.3.1 were the graph, equation and table of values. Their 

reasoning about the representation was limited to seeing these representations as separate 

entities as indicated by their inability to translate from graph to the equation. Learners could 

not realise that these representations can actually represent the same function. In addition, 

learners’ understanding of the important aspects of these representations (intercepts, turning 

points and asymptotes) was also weak. I repeat excerpts in Section 5.3.1 here for the reader’s 

convenience. 

 

Learners’ understanding of the intercept  

Interviewer: How do you explain an intercept? 

Diva:             Intercepts are the points you are supposed to plot so you can get your graph. 

Interviewer: How do you calculate these intercepts? 

Diva:             I want to find the y-intercept first by putting x = 0 and then I’m going to 

                      find the x-intercept by putting y = 0 and calculate. 

Interviewer: Why put x = 0 on y-intercept and y = 0 on x-intercept?  

Diva :            Sir because our teacher said when you calculate intercepts you must always let 

                      y or x be equal to zero. 

Interviewer: Question 7.1 asks you to calculate the intercepts, what is your understanding of 

                      an intercept? 

Coco:            The point at which the graph will cut the axes. 

Interviewer: How do you calculate the coordinates of the intercepts? 

Coco:             I’ll change the x into zero for the y-intercept and y into zero for the x-intercept. 

                      That is what I will do. 

Interviewer: Why change x and y into zero at the intercepts? 

Coco:             This is what we were told. I don’t know why. 

Interviewer: What does an intercept mean to you? 

Monga:         The y and the x-axis. 

Interviewer: Tell me about your calculations here (pointing at his written solutions). 

Monga:         I just remember that at first I substitute x with 0 and then y with 0 in the 

                      equation but I don’t know exactly what will be happening here I just 

                      substituted. 
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Interviewer: Can you explain to me the meaning of an intercept? 

Teko:            I know it as I calculate it here, but I don’t know the meaning of it? I think the 

                      intercepts are the points of y. 

Interviewer: How do you explain an intercept? 

Mat:              Is a line in a Cartesian plane where there are x-axis and y-axis, as we are told. 

Interviewer: How do you calculate the coordinates of these intercepts? 

Mat:              Where there is x, you have to put 0 to calculate for a y-intercept, x has to be 

                      equal to 0. 

Interviewer: Why put x = 0 at y-intercept? 

Mat:              I think it is because I didn’t try to understand, but then I cram. 

Interviewer: In your own words how do you describe an intercept? 

Edy:             The point where the y or the x is, that is the intercept. In the y-intercept, I  

                      think is the point y and in the x-intercept, I think is the point x. 

Interviewer: How do you calculate the coordinates of the intercepts in 7.1? 

Edy:              I will put y = , so y-intercept, x = 0, then y =   

Interviewer: Why is x = 0 at the y-intercept? 

Edy:              ‘Oh’ I don’t know, the only thing I know is that, when you are calculating the 

                      y -intercept, x = 0, and for the x-intercept, y = 0. 

Learners’ responses in the excerpts above indicate that learners cannot give a precise and 

complete explanation of intercepts. This shows that learners had an incomplete conception of 

the concept of intercept and were operating at the action level. On the other hand, learners 

could calculate the intercepts but did not understand the procedure as evidenced by their 

inability to explain why x = 0 on y-intercept and y = 0 on the x-intercept indicating that they 

were at the process level. 

 

Learners’ understanding of an asymptote 

Interviewer: You managed to find the asymptotes; can you explain to me what these are? 

Diva:             An asymptote, I think is the line where …, which shows us that the graph can 

                      only approach, not mean to touch or cross. 

Interviewer: Can you explain how you obtained these asymptotes? 

Diva:             I don’t know how to explain to someone how to find it. I say zero is equated to 

                      the denominator umm..., I forgot how I calculate like that....f (x) =  , ok,  

                      for x, I will take this one, and  I say x - 4 = 0. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

168 

Interviewer: Why do you equate x - 4 to 0? 

Diva:             This is what we were told! 

Interviewer: Tell me, how did you sketch this graph? 

Diva:             I want to show you my axis before writing a …, is like this as I have plotted,  

                      and then it will be q, this is  y-asymptote. Here I put x, x - axis and the y - axis,  

                      then I look for y = 0 is here, and x = 1.75, I’m going to put it here and for x = 0,  

                      y = 3.5, I think is here, so I check my asymptote, for y is 2, I write a dotted line,  

                      for x = 4, and for y, so then I join my points. 

Interviewer: You also calculated the asymptotes correctly. Can you explain to me what an 

                       asymptote is? 

Coco:             Is the point in the graph that does not have to touch the line of the asymptote. 

Interviewer: How do you calculate the asymptotes? 

Coco:            The constant 2 is my y-asymptote and I equate the denominator x-4 to zero to 

                      get the x-asymptote 

Interviewer: Can you explain to me why your procedure works? 

Coco:             I am not sure but this is what we were told by our teacher. 

Interviewer:  How did you sketch the graph? 

Coco:              Okay for y, okay I am going to use 4 for y because 3.5 is where, I am looking 

                        for the asymptote, it is the point where it can’t touch or pass or go beyond. So 

                        3.5 cannot go beyond 4. So I don’t know what happened here. This y is  

                        supposed to be 4 and then x is supposed to be 3 on this one. Then I am going 

                        to plot 3.5, then the 2.25 and then I was told if you have this graph on this  

                        third quadrant you have to have the same graph on the first quadrant and when 

                        you have it on the second you have to have the same graph on the fourth  

                        quadrant. So this means I will have another one here. ‘Ah’ I’m not sure 

                        whether I use the asymptote where the graph that is to cut and then the  

                        intercept. 

Interviewer: Ok. How do you explain an asymptote? 

Monga:         I don’t know! 

Interviewer: How did you find these values you wrote?  

Monga:         Ok! The y-asymptote is this 2 standing on its own. I made a mistake to write 4 

                      here, now I remember. This is what we were taught. For an x-asymptote I’m not 

                      sure but we were taught in class. For the x-asymptote you have to look for the  
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                      number below, Ok! Like here (pointing at   ), the first fraction, we have the 

                      number below, for a denominator , we look at the denominator... make it  

                      become 0, that is 4, this is my x asymptote. I confused my x and y here but I 

                      was told like that. Even my graph is wrong I was using wrong things, eish I  

                      made a mistake! 

Interviewer: What is an asymptote? 

Teko:            The asymptote I should find a point where the intercept cannot touch or go 

                      beyond. 

Interviewer: How do you calculate an asymptote? 

Teko:             It’s going to be 4 ..... (pause) because..... (pause) I don’t know. 

Interviewer: I can see three graphs here, how did you draw these graphs? 

Teko:             I will start by drawing the asymptote of y, the dotted line y = 4. I was told to 

                       use a dotted line, so I can easily plot the graph. 

Interviewer: What do you understand by an asymptote? 

Mat:              That is when there is x, when I meet the intercept, asymptote of y, I can close  

                      this one  →  +2 

                                                   ↑ 

                      and that one is the asymptote of y (pointing at +2), when I need the asymptote 

                      for x, I close this one in box    +2 and take the denominator of    which 

                      x-4 and equate it to zero then I solve for x. 

Interviewer: Can you explain to me why you equated x - 4 to zero? 

Mat:              I just know how to write them down from the equation. 

Interviewer: Show me how did you draw your graph? 

Mat:              I make sure that I always put the asymptotes first and make sure the  

                      asymptotes and the intercepts don’t touch each other....Cartesian plane, they 

                      only need x and y, then when x is 4, y is here, ‘oh’, I first have to show  the 

                      asymptote, y is 2, y = 0, then x = 4.  

Interviewer: Ok. Explain to me what an asymptote is, as you understand it? 

Edy:              The asymptote is the marginal line where the graph will be, as are those ones 

                      we have drawn, usually plotted with dotted lines. 

Interviewer: How do you calculate the asymptotes? 

Edy:              I don’t know how to find the asymptote but I just think of cramming. 
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Interviewer: Tell me what did you cram? 

Edy:              I forgot sir! 

Interviewer: Ok. How did you draw the sketch then? 

Edy:              When I plot my graph, it must not touch the asymptote points. ‘Oh’ the critical  

                      points, ok! we ‘gonna’ label the graph, here is the x -axis and here is the 

                      y -axis, ok! first I ‘gonna’ put my asymptote before plotting the other points on 

                      the y -axis, my asymptote is +2 and then, plot a broken line and then on the  

                      x -axis, my asymptote is 4, which I plot a broken line and then, already this one 

                      say: y = 3 and here x = 4. 

Interviewer: But you wrote x = 3 and y =4. Are you changing it now? 

Edy:              I made a mistake when I was writing. 

The responses on the asymptotes in above excerpts showed that learners did not have a clear 

understanding of what an asymptote is. Their explanations were limited to “a line that a graph 

does not touch or can only approach” without understanding why the graph does not touch 

the asymptote. Learners pointed out that they just memorised the procedure of finding the 

asymptote indicating little understanding of both the concept and the procedure, thus showing 

that they were operating at the action level. 

 

Learners’ understanding of a turning point 

Interviewer: Looking at your solutions to question 8, I can see that you calculated the 

                      coordinates of the turning point correctly. What is your meaning of a 

                      turning point of a graph? 

Diva:             Turning point is where my graph turns, goes back where it comes from or same 

                      direction where it originates. 

Interviewer: Explain to me how you calculated the coordinates of a turning point. 

Diva:             To calculate the turning point, I used the formula x =  . 

Interviewer: Where does this formula come from and what does it say? 

Diva:             Yes, from the quadratic formula but I’m not sure but this is the x-coordinate. 

Interviewer: In your own words how do you explain a turning point? 

Coco:            A turning point is where the graph is cutting, like in a parabola graph. 

Interviewer: How do you calculate its coordinates? 

Coco:            So, before I get the value of b and the value a, I have to simplify this equation. 

                      Let’s say I should calculate the turning point of A, I’m going to use this 
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                      equation, h(x) = - 2  + 4x + 6, because, minus and minus is positive, this is  

                      the new equation, for the turning point, I have to use this formula x = , y, then 

                      -2, this one is our a and this 4 is our b, it will be, ‘ja’ it will be 4, is , all 

                      this, is equal to , which gives me 1, x = 1, then from there, I have to get the y 

                      equation, substitute all the x values to get y. Because I want the y values. It will 

                      be y = -2  + 4x + 6, this is equal to -2(1)2 + 4(1) + 6, and this will give me  

                      -2 + 4 + 6 = 8 and then this gives me +8, then my turning point is (1; 8)  

Interviewer: Correct. But tell me, how does this formula x =  work? 

Coco:            We were just told that this is the x-coordinate of the turning point. 

Interviewer: How do you explain a turning point? 

Monga:         A turning point of a parabola is a point whereby your graph turns, whether 

                      negative or positive. 

Interviewer: Tell me how you calculated the coordinates of the turning point. 

Monga:         I will be using the turning point formula which is: x = , first of all …, It  

                      originates from the quadratic formula. First of all before I go any further, I 

                      collect my data, where I have my a; b; and my c, but here I will be using my b 

                      and my a. My b is 4,then I will write the 4,all over the 2 from an original  

                      formula multiply by a, my a is -2, then -4 all over -4, then, this will cancel out,  

                      I will remain with 1. Using my x, where x = 1, I will use my original formula to 

                      find my y, y =-2  + 4x+ 6 where there is x, I will replace x by 1, 

                      -2 (1)2 + 4(2) + 6, then I will multiply out, I mean I add … because here, they 

                      stated they will allocate me 3 marks, no need to go step by step when 

                      calculating this, because my marks will be 3marks, unless if it was 5 marks, I 

                      will go step by step, therefore the turning point is (1;8), this 1 is for 

                      x, this 8 for y-axis. 

Interviewer: Well done for getting most of the solutions correct this time. Ok, how do you 

                      explain a turning point? 

Teko:            The turning point is the maximum point that the graph can reach. It is the 

                      maximum and the minimum points that the graph can reach. 

Interviewer: How did you calculate the coordinates of this turning point? 

Teko:             Ok! Then I say this -2 is a, from the original formula. This -2 will be my a and 

                       the 4 my b and the 6 will be my c. Ok!  is  = -2, this is equal to    then  
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                       x = 1, ok! Now I’m calculating the y. Ok! I must calculate here, 

                       -2 (1)2 + 4(1) + 6 = 8, therefore, ok!  the turning point of A (1;8). 

Interviewer: What is your meaning of a turning point? 

Mat:              The turning point is where the graph curves, that means where it changes 

                      directions. 

Interviewer: How do you calculate the coordinates of the turning point? 

Mat:              What are we going to do here is that we ‘gonna’ multiply the things in brackets 

                      and then, ‘ja’, let’s do it! We ‘gonna’ take the -2 as it is and put it down here, 

                      then open brackets, then I will say x times x is , then I will say, ok! This is 

                      positive, then I will say x times 1 is x, then -3 times x is-3x, then -3 times 1 is 

                      -3 close [brackets], then next step, the -2 will remain as it is, I will put it down 

                      here, oh! Here there are like terms, the  then, x - 3x is -2x, then the -3 close 

                      [brackets]. Now we ‘gonna’ multiply, ok! The -2, (-2x times x is -2 ), 

                      (-2 times -2x is +4x), (-2 times -3 is +6), so, this will be our original formula,  

                      ok! We ‘gonna’ calculate the turning point, we ‘gonna’say x =  

Interviewer: Where is this formula coming from? 

Mat:              I just memorized it! 

Interviewer: You did not attempt the other questions, why? 

Mat:              …eeh I can’t proceed. 

Interviewer: Please go through your solution to 8.1 with me I want to understand how you 

                      calculated the coordinates of the turning point. 

Edy:              I will use the formula x =  where b = 4 and a = -2 from h(x) = -2x2 + 4x + 6,  

                      we were told that x is the x-coordinate of the turning point then we substitute  

                      this value in the original equation to find the corresponding value of y. 

 

Based on the responses on the turning point in the excerpts above, learners had an idea of 

what a turning point is, though their ideas are not complete which thus needed to be refined. 

Their responses indicate that learners just memorised that the x-coordinate of the turning 

point is  without understanding where this formula is coming from and how it works 

indicating that they were operating at the action level. Though the learners could calculate to 

some extent the coordinates of the turning point they could not clearly explain how they were 

calculating and why they were calculating it in the way that they did. 
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Learners could explain how they sketched the graph using the asymptotes they had calculated 

though some of them were not sure as to where to start as indicated by their responses in the 

excerpts above. Most of the learners wanted to do a point by point plotting of the graph 

instead of only a few points (critical points) resulting in them taking longer to decide on the 

horizontal and vertical scales. They did not know what determines these scales as a result it 

took them long to draw the sketch (from my observation). 

 

 Learners’ responses in the excerpts below revealed that learners had difficulties in answering 

questions that refer to the drawn graph. 

Interviewer: What is Q on the diagram and how did you calculate its coordinates? 

Diva:             Q is a point on the x-axis, we know that on the y-axis, the value of x is 0 ‘umm’ 

                      so we substitute this value into one of these equations, on this, on coordinates 

                      of x to find the value of y, so the coordinate of Q is (0; 6). 

Interviewer: Correct. In 8.3 what is this m and b? How did you find them? 

Diva:             8.3 numerical value of m and b....m is the gradient of this line b is on this point 

                      and then  … the formula of the gradient  m =  , the value of b which is 6,  

                      the value of m is -2.  

Interviewer: Now how do you find the equation of g(x)? 

Diva:             I already calculated the gradient which is -2, so, usually this  

                      point b for y, it will be 2 for x, to find the value of c is 4, which means 

                      g (x)  = -2x + 4. 

Interviewer: How did you calculate the coordinates of Q? 

Coco:             I will say at Q, let x = 0 ...I’m not quite sure why x = 0. I want the value of y, 

                       and if you check the point at Q, x is already there, which is 0, so you need to  

                       calculate the y-value, so it will be like, y = -2(0)2 + 4(0) + 6 then -2×0 it will  

                       give me 0 because any number ×0 is 0, then q = (0;6) then, the other point you 

                       determine the numerical value of m and b, which is, If I want to determine the  

                       numerical value, we use the point Q, because they are given and they are on 

                       the straight line, which means m is the gradient, so I need to calculate x, so 

                       m =  ; and then, Q (0; 6), then P(3; 0), it will be …, I substituted x from 

                       the given coordinates will be y2 is 0, y1 is 6, x2 is 3, then  x1 which is equal to 

                       0, then , because we cannot say this minus the total of this, so m will be 2,  
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                       will be -2, then the value of b,  ‘eish’ this one is tough, I’m not quite sure how 

                       to calculate this, because there is this thing that r is the coordinate of (2; b), so 

                       b is the y -axis? 

Interviewer: How did you calculate the coordinates of Q? 

Monga:         These last questions I was just writing what I had memorized I cannot actually 

                      explain how I got them. 

Interviewer: Good! Take me through your solution of 8.2. 

Teko:             Ok! 8.2 is saying calculate the coordinate of Q. Before I calculate, I’m given 

                       x = 0, so I used the original formula again, then say -2x2 +4x+6, ok! I will say  

                       where there is x I will put 0, ok!  

                       -2 (0)2 + 4(0) + 6, then I punch this on the calculator, ok! I don’t have to use 

                       the calculator because anything times by 0 is 0, so, I will say ‘eh’ Q(0;6). ‘Q’ 

                       is on the y -axis. 

Interviewer: Why is x = 0 at Q? 

Teko:            We were told it’s always zero there! 

Interviewer: Ok. How did you determine the values of m and b? 

Teko:            This was simple! I used the coordinates of Q I got in 8.2 and coordinates P 

                       given and I used the formula for the gradient. For b, eish this one, I don’t  

                       know. But for the equation of g(x) I used m above and for c I used the y-value 

                       for Q since it is the y-intercept. 

Interviewer: How did you calculate the coordinates of Q? 

Edy:              I will replace the x by 0. This is obvious that this will be equal to 0 because we 

                      are on the y-axis and then my answer is 6, therefore I will answer the question, 

                      therefore Q is equal to (0;6). So my c the y-intercept is 6 already I will write the  

                      original formula g(x) = mx + c, then I will choose one point , is either P or Q,  

                      then, I have decided to take Q, whereby (0;6) and I will write x and write y  

                      there, and where there is y, ‘oh’ where there is g(x) I will put 6 =, my m, is -2, 

                      my x is 0, now I want the value of c, 6 = c, which means c = 6, then write  

                      g(x) = -2x + 6, then, this has been proven. 

Interviewer: But you did not find the value of b. Why? 

Edy:              That one I don’t even know where to start sir. I thought b was c at first but  

                      eh its not. 
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 This was also documented in literature (Sierpinska, 1992). It was the most difficult part for 

most of the learners as they could not deduce the critical points from the sketched graph and 

use them to determine the required equations. Learners also had difficulties in determining 

the equation of the function represented by the drawn graph using the indicated critical 

points. This indicated that learners were not aware that the graph and the equation are just 

different representations of the same function that are well connected by critical points. These 

difficulties support findings in a study carried out by Knuth (2000). 

 

Learners’ responses both written and oral in the initial tasks and interviews on the 

representation of the function concept indicate that on the average, 5 learners were operating 

at the action level and Coco was operating at the process level as indicated by their 

explanations of meanings and procedures in calculating the critical points which are shown in 

the next table. 

 

Table 10: Summary of learners’ initial APOS theory conception levels on the  

                 representation of the function concept before teaching experiment  
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Mat Equation A A A P A P P A ACTION 

Teko Table A A A A A P A A ACTION 

Coco Table P P A P A P P A PROCESS 

Diva Expression A P A P A P A A ACTION 

Monga Equation A A A A A P A A ACTION 

Edy Equation A A A A A P A A ACTION 

 

Key: A- Action, P- Process, O- Object and S- Schema 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

176 

What are the weaknesses in learners’ understanding of the representation of the function 

concept? 

Learners’ concept images, reasoning and difficulties indicate that they do not understand the 

meanings, procedures of calculating the critical points of a graph and the process of 

translating from the graphical representation to the symbolic representation. These critical 

points which I termed “connectors” in later sections are important to learners’ ability to 

translate from one representation to another form. I was also able to detect that there are 

weaknesses in learners’ understanding because their answers showed that they do not have 

indicators to show the schema level. Analysis of learners’ interview responses in Sections 

5.3.1 to 5.3.3 enabled me to find problem situations (difficulties), misconceptions and 

weaknesses in translating from one representation to the other. Learners’ problem situations 

are summarised below: 

• Learners had difficulties in answering questions that refer to a drawn graph. They  

could not deduce the critical points from the sketched graph and use them to 

determine the required equations. 

•  Learners also had difficulties in determining the equation of the function represented 

by the drawn graph using the indicated critical points. This indicated that learners did 

not understand the equivalence between the algebraic and graphical representation of 

the function concept. 

•  Learners could calculate the intercepts but did not know why, at the x-intercept, y = 0 

and at the y-intercept, x = 0. They could just follow the procedure without 

understanding it. 

• They memorised x =  for the turning point without knowing what it means and 

where this formula came from. 

• They could not tell when a function had an asymptote and what an asymptote means. 

• Learners could easily move from equation to graph but could not use a drawn graph to 

find the critical points and to determine the equation. I think this was because to 

move from an equation to a graph needs more of procedural understanding while to 

move from graph to equation requires more of conceptual understanding. 

 

Markovits et al. (1986) and Zaslavsky (1997) each indicated that translation of functions from 

graphical to algebraic was more difficult than vice versa for learners. That was the case for 

participants in this study. They could not use the definitions of the critical points to identify 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

177 

and extract them from the drawn graph. Similarly, the data concurred with Eisenberg and 

Dreyfus (1994) who reported that the translation of functions from algebraic to graphical 

representation was easier for learners than the translation from graph to equation. Participants 

demonstrated difficulty translating from graph to equation. A question was raised by this 

finding: Why did grade 11 learners have difficulty with translation from graphical to 

algebraic representations? Analysis of the data led me to believe that the learners did not see 

the role of the critical points and their definitions in the translation process. 

 

Learners indicated that they prefer to translate from equation to graph and that they find it 

difficult to know what to do when the graph is given for them to refer to (Eisenberg, 1991). 

This indicated that learners were taught these representations separately without highlighting 

the connections between them. The nature and prevalence of learners’ difficulties and 

misconceptions indicated that there was a need for an intervention to help learners to 

appreciate that representations of the function concept (equation and graph in this particular 

case) are equivalent and well connected by the critical points. 

 

Learners’ difficulties with the connections among the different representations of the function 

concept were also prevalent in the literature review. Similar to the above difficulties, Knuth 

(2000) reported that “learners experienced difficulties in translating between the symbolic 

and the graph and as a result failed to identify the link or connection between these 

representations in a given problem situation” (p. 34). Ainsworth (1999) adds that “learners 

are faced with the complex task of not only understanding how each representation encodes 

and present information but also of understanding how these representations relate to the 

function concept” (p. 12). 

 

5.6.2 Phase 2: Development of interventions 

In this phase I referred to the RME’s learning and teaching principles summarized in Section 

5.4.2 in developing instructional activities that helped learners to improve their understanding 

of the representation of the function concept. Phase 2 addresses research question 2: 

 

How can instruction be designed to improve learners’ understanding of the representation of 

the function concept? 

According to the theoretical framework for this study I brought in RME and related actual 

examples in my lessons to the learners’ needs which I identified above in the form of 
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weaknesses, difficulties, misconceptions and their APOS conception level. These 

weaknesses, difficulties, misconceptions and their APOS level indicated that there was need 

for intervention in order to help learners reduce their identified difficulties and 

misconceptions and help them to move up the conceptual ladders of APOS theory from the 

current process level to the object level then to the schema level. The inability of learners to 

translate flexibly from the graph to the equation indicated a conceptual gap that kept learners 

from understanding the equivalence between these representations. To bridge this gap I had 

to identify the HLT for overcoming this conceptual gap and plan activities that were likely to 

reduce this conceptual gap.  

 

Being aware of learners’ current understanding of translating from the equation to the graph 

and vice-versa; their weaknesses (difficulties), misconceptions and the APOS conception 

level which they were operating at, gave me the opportunity to formulate and choose 

activities that could help the learners to overcome their weaknesses and misconceptions. I 

designed instructional activities appealing to the principles of Realistic Mathematics 

Education (RME) and constructivism to help learners appreciate the connections between the 

equation and its graph as representations of the function concept and to enhance their ability 

to translate from one representation to the other. These activities were also intended to help 

shift learners from the process conception level to the object and then to the schema. 
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5.6.3 Phase 3: Tentative products 

5.6.3.1 Teaching experiment 4 

 

 

Equation Graph                  Graph       Equation            Critical points    Equation 

 

                                               

 

 

 

 

 

  

 

 

 

 

  

 

 

Figure 39: HLT for developing an understanding of the representation of the function 

 

This HLT was intended to help learners realise that the critical points (intercepts, turning 

points and asymptotes) connect the equation and the graph. As such I hoped that if learners 

understand these critical points they will be in a better position to understand the connection 

between the equation and the graph, even with other representations like the table of values, 

verbal and the ordered pairs. The implication was that for learners’ thinking to be adaptable, 

they need to readily move from one representation to the other and vice versa, requiring fluid 

translation among the representations and to view its representations as different views of the 

same construct.  The term ‘realistic’ in this case refers not just to the connection with the real 

world, but also refers to problem situations which are real in learners’ minds. Bottle (2005) 

also points out that ‘realistic’ does not just mean real-life situations but can also mean ‘to 

Activity 5 

Learners sketch graphs 

of: 

• f(x) = ax2+bx+c 

• f(x)  =  + q 

• f(x) =  abx+p, b>0  

I took this opportunity to 

clarify the meanings of 

intercepts, turning points 

(  ) asymptotes, a, 

b, c, p and q in formulas 

 

Activity 6 

Learners learn to: 

-  locate intercepts, turning points 

and asymptotes from the drawn 

graphs (these were graphs of 

equations in the first activity but I 

did not tell the learners) 

-determine intercepts, turning 

points and asymptotes using their 

knowledge from the first activity 

Activity 7 

Learners learn to: 

 -formulate the 

equations using 

the intercepts, 

turning points and 

asymptotes. 
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realise’ or ‘to imagine’. It therefore means that contexts that are realistic to learners (although 

imaginary) are included. 

 

Teaching experiment 4 was designed to help learners appreciate the connections between the 

equation and its graph as representations of the function concept and enhance their ability to 

translate from one representation to the other. This will help learners to construct the process 

and object conceptions of the function concept as they could be able to imagine the process of 

translating from one representation to the other. 

  

By the end of this teaching experiment learners should be able to:  

  i. sketch graphs of f(x) = ax2 + bx + c,   f(x) =   + q and f(x) = a  ; b > 0; 

 ii. use drawn graph to explain the location of the intercepts, asymptotes and turning points; and 

iii. use the intercepts, asymptotes and turning points to formulate the equations. 

    

The CAPS objectives require learners to be able to convert flexibly between these 

representations (tables, graphs, words and formulae). Types of functions included are linear 

and quadratic polynomial functions, exponential functions, and some rational functions. 

 

The teaching experiment comprised three lessons. 

Lesson 1 

Learners should be able to: 

Sketch graphs of f(x) = ax2 + bx + c,  f(x) =   + q and f(x) = a  ; b > 0. 

The lesson was structured along the HLT. First I explained what it means to draw a sketch of 

a graph  with point-by-point plotting. I then took this opportunity to clarify the meanings of 

intercepts, turning points and the use of , asymptotes, and a, b, c, p and q. These 

clarifications also included the calculations of these critical points and the process of plotting 

them on the Cartesian plane and sketching the graphs. These explanations were meant to 

make these concepts imaginable to a learner which is a characteristic of RME. At the end of 

this lesson learners were expected to sketch the graphs of the above functions using the 

following characteristics: domain and range; intercepts with the axes; turning points; 

asymptotes; shape and symmetry. To assess learners’ progress I designed the activities that 

follow, which they did in pairs taking advantage of social constructivism. 
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Activity 5: From equation to graph  

Sketch the graphs of the following functions indicating all asymptotes, turning points and    

intercepts with the axes. 

 

   1.      f (x) = x2 – 6x + 8    

                                                         

    2.     f (x)  =  - x2 - 5x – 6 
 

   3.     g (x) =      

          

   4.    g (x) =  + 1 

 

Activity 5 aimed to develop learners’ ability to determine the critical points from the given 

equation of the function concept and to plot these points before joining them to draw the 

graph. Learners’ written responses are shown and their analysis follows at the end. 
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Figure 40: Monga and Teko’s responses on activity 5 

 

Monga and Teko showed that they had understood the process of translating from an equation 

to the graph by first calculating the critical points and plotting them. This indicates that they 

are now operating at the process level.  
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Figure 41: Mat and Coco’s responses on activity 5 

 

Mat and Coco showed that they had understood the process of translating from an equation to 

the graph by first calculating the critical points and plotting them. This indicates that they are 

now operating at the process level.   
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Figure 42: Diva and Edy’s responses on activity 5 

 

Diva and Edy could determine all the critical points from the given equation showing that 

they had understood this critical process though they failed to produce the required sketches. 

This indicates that they were operating between the action and process levels. 
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Lesson 2 

By the end of this lesson learners should be able to: 

i.  identify the intercepts, asymptotes and turning points from drawn graphs; and 

ii. calculate the intercepts, asymptotes and turning points using the methods they used in  

    activity 5. 

  

I provided learners with sheets of papers with drawn graphs. These were the graphs learners 

had drawn in activity 5 but I did not inform them of this. The intercepts, asymptotes and 

turning points for each graph were clearly shown and learners were asked to identify them. 

After identifying them learners would then calculate these critical points using the methods 

they used in activity 5. Since this activity was a bit challenging learners also worked in two 

groups of three members each. 

 

Activity 6: From graph to equation 

  

1.                                                        
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 2.                                                                

                                                                                                                                                                                                         
                                

                                                                                                          

The graphs above represents the functions in the form of f (x) = ax2 + bx + c. For each graph 

above: 

a) Determine the values of a, b and c. 

b) Determine the values of x for f (x) = 0. 

c) Determine the coordinates of P, the turning point of f (x). 

d) Hence, determine the range of f (x). 
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3. Given f (x) =  . The point A (2; 3) is the point of intersection of the asymptotes of  

     f. 

     The graph of f intersects the x-axis at (1; 0). D is the y-intercept of f. 

 

                                                     
 

 

a) Write down the equations of the asymptotes of f. 

b) Determine the equation of f. 

c) Write down the coordinates of D. 
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4. The diagram below shows the graph of: g(x) =  + q. A (1;-1) is a point on g and y = 1 

    is the asymptote of g.  

   

                                                                       
                                                                                                                                                                                                                

                                                                                                            

a) Determine the values of a, b and q. 

b) Determine the y-intercept of g.                             

c) Write down the range of g. 
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Figure 43: Coco, Mat and Teko’s responses on activity 6 

 

Though learners in this group got the correct answers they were still struggling with this 

process of translating from the graph to the equation. They could not agree on their 

understanding which was at the process level. 
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Figure 44: Monga, Edy and Diva’s responses on activity 6 

 

Learners in this group had similar challenges as the other group in that they also failed to 

agree on their understanding of translating from a graph to an equation. They could follow 

procedures and obtain correct answers without understanding them. This shows that they 

were operating at the process level. 
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Lesson 3 

By the end of the lesson learners should be able to: 

Use the intercepts, asymptotes and turning points to formulate the equations. 

 

In this lesson the connection between the equation and the graph is unpacked by demonstrating 

that the critical points link these two representations of the function concept. The first two 

activities are revisited and learners were asked to make some observations from these two 

activities. A few learners realised that the graphs they had drawn in activity 5 were the same as 

the ones I provided them in activity 6. I showed and explained how the critical points connect 

the equation and the graph. After developing the links I explained the process of formulating 

equations using the identified critical points. This process was challenging to learners as it took 

long for them to realise and understand the formulation of equations. I was not surprised 

because this was their original difficulty which prohibited them from translating from the graph 

to the equation.  

 

Activity 7: Identifying and using critical points from graphs to formulate equations  

 

        1.        
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 2.                                                                                                                       

 
                                              

3.                    
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4.             

                                                                                                        
 

 i. For each of the graphs above identify their respective critical points and use these critical 

    points to formulate their equations. 

ii. How do you know whether the equation is correct or not?  
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Figure 45: Learners’ responses (they worked as a group of 6)   

 

5.6.3.2 Retrospective analysis  

The purpose of activity 5 was to develop learners’ understanding of the process of translating 

from the symbolic to the graphical representation. Translation from an equation to the graph 

proved to be within the learners’ comprehension as indicated by their written responses 
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above. They were able to calculate the intercepts, asymptotes and turning points of different 

functions prescribed in the South African CAPS curriculum. As such, the first objective of 

my HLT was attained as intended. 

 

Translation from graph to equation in activity 6 was still difficult for learners as I observed 

them arguing and at times agreeing to disagree in their groups. It seemed that previously 

learners were routinely given tasks that require translations in the equation-to-graph direction. 

As a consequence, learners were now having difficulties with tasks in which they had to 

proceed in the graph-to-equation direction. Learners’ actual understanding of the translation 

process from graph to equation was superficial at best and mechanical in some instances. 

They also seemed to perceive that the graph is only the culmination of their ritualistic 

equation-to-graph procedure. 

 

Activity 7 was well done maybe because learners were working as a whole group. The 

learners showed indicators of the object level though they were still not comfortable with the 

way critical points connect the graph and its equation. As a result I had to refine my previous 

HLT. 

 

5.6.4 Phase 4: Product and theory refinement 

5.6.4.1 Teaching experiment 5 (Prototype 5) 

I had to adjust the previous HLT by putting more emphasis on basing the procedure on the 

definitions of the connection factors (critical points) as the bridge between procedural and 

conceptual understanding of the translation process between the equation and the graph. As a 

result, each step of the procedure begins with the definition of the critical point involved as 

follows:   
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                 PROCEDURE 1 PROCEDURE 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46: HLT for using a definition-based procedure 

 

This was a consolidation lesson. The goal was to help learners to grasp the importance of the 

definitions of the critical points when translating from the graph to the equation. By the end 

of this lesson learners should be able to: 

     i.  locate the intercepts, asymptotes and turning points on a drawn graph using their 

         definitions; 

    ii.  use the intercepts, asymptotes and turning points to formulate the equation; and 

    iii. translate from a graph to an equation. 

 

It was assumed that the learners already knew how to calculate the intercepts, asymptotes and 

turning points. First I explained the adjusted HLT and illustrated it with examples for each 

type of graph. 

 

 

 

 

 

Equation  Critical points 

-identify and 

define the 

critical points 

involved in the 

procedure 

 and use them 

at every step.  

Graph 

 

Critical points 

-use the definitions of 

critical points to 

extract them from the 

graph and use them 

in all the steps of the 

procedure 

Equation 

Connecting factor 
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5.6.4.2 Illustrative example for using the definition-based procedure 

 

 

1. Equation y = x2 – 6x + 8                                                      EQUATION 

 

 

 

 

 

2. Critical points: i. Intercepts: x-intercept: y = 0                    CRITICAL POINTS 

                                                                     x2 - 6x + 8 = 0 

                                                                     (x – 2)(x – 4) = 0 

                                                                      x = 2 or x = 4  

                                                                     (2; 0); (4; 0) 

                                                    y –intercept: x = 0 ...... y = 8 

                                                                         (0; 8) 

 

                              ii. Turning point:       from y = ax2 + bx + c  

                                                          2ax + b = 0 

                                                                   x =  

                                   From y = x2 – 6x + 8        a = 1 and b = - 6 

                                                                   x =  =  = 3 

                                    Corresponding y-value = 32 – 6(3) + 8 = - 1 

                                                                            (3; - 1) 
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3. Plot all the critical points on the Cartesian plane and sketch the graph       GRAPH 

                                                                              

                                                                                                                                                                                                                                                                                

 

 

 

 

4. Critical points: x- intercepts: (2 ; 0) and (4 ; 0)                CRITICAL POINTS 

                             y – intercept (0 ; 8) 

                             Turning point (3 ; -1) 
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5. Equation : general equation of a quadratic function: f(x) = ax2 + bx + c      EQUATION 

                      C is the y- intercept, so c = 8, so we have y = ax2 + bx + 8 

                       Since the intercepts lie on the curve they satisfy the equation 

                       At (2 ;0)    4a + 2b + 8 = 0.............1 

                       At (4 ; 0)   16a + 4b + 8 = 0...........2 

Multiplying .....1 by 2        8a + 4b + 16 = 0 ........3 in order to solve the equations 

Subtracting .....3 from ....2 we get 8a – 8 = 0 

                                                         a = 1 

Substituting the value of a in ....1 we get the value of b = - 6 

Then we substitute the values of a, b and c in the general equation f(x) = ax2 + bx + c to get 

f(x) = x2 – 6x + 8 which is what we started with. 

 

 

 

5.6.5 Phase 5: Final product and contribution to theory 

5.6.5.1 Activity 8: Using definition-based procedures (DBPs) in the translation process  

A definition-based procedure is one in which every step in it is based on the definitions of 

key concepts (intercepts, asymptotes and turning point) that are involved. This was to allow 

learners to develop a conceptual understanding of the procedures involved in translating from 

equation to graph and vice versa. This compelled learners to understand the meanings of all 

the critical points before they could calculate them or extract them from a drawn graph. 

Critical points are key concepts in the translation process and once they are understood it is 

easier for learners to translate from equation to graph and from graph to equation. The 

activities in which I engaged learners, were meant to compel learners to understand the 

importance of these key concepts in the procedure of calculating these critical points which 

they have been doing with little or no understanding. In this study I introduced the concept of 

Definition-Based Procedures (DBPs) to reduce this gap. 
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In activity 8 I asked learners to repeat question 7 of the June 2011 examination which 

learners had done for illustration purposes. 

 

 

QUESTION 7 

                     Given f(x) =  + 2 

7.1     Calculate the coordinates of the x and y intercepts of f.         (4) 

7.2     Determine the equations of the asymptotes of f(x).                (2) 

7.3     Sketch the graph of f(x) showing all the critical points.         (4) 

                                                                                                         [10] 

 

This activity was done in pairs following the steps in the illustrative example in Section 

5.6.4.2 but basing these steps on the definitions of the critical points. From my theoretical 

framework the term ‘realistic’ in RME also means to realise or imagine. This means that 

imaginary situations are also included. In this activity I first discussed the definitions of 

intercepts, turning point and asymptotes to make the definition-based procedure imaginable 

to learners. Together with learners we agreed on the following definitions of critical points 

that they were going to use: 

Intercepts:      x-intercept is the point where the graph crosses the x-axis and on the x-axis 

                          y = 0. 

                          y-intercept is the point where the graph crosses the y-axis and on the y-axis 

                          x = 0. 

Turning point: Is a point on a graph where the graph has just stopped increasing or 

                          decreasing and is about to change direction and start decreasing or 

                          increasing. A turning point is a minimum if the graph stops decreasing and is 

                          about to start increasing and is a maximum if it stops increasing and is about 

                          to start decreasing. At a turning point the graph is neither increasing nor 

                          decreasing resulting in the rate of change being zero (  = 0). This fact is 

                          used in deriving the x-coordinate of the turning point from the quadratic 

                          function  y = ax2 + bx + c  

                                         = 2ax + b = 0  

                                          x =  
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Asymptotes:     For the hyperbola y  =  . 

                          x-asymptote (vertical asymptote) is the value of p which makes the function  

                          undefined. And for the function to be undefined x – p = 0 because  is 

                          undefined. This means the graph of the function can only approach this line 

                          but not touch it because once it touches this line it becomes undefined. p is 

                          not in the domain of the function and the graph is discontinuous at x - p = 0. 

                          y-asymptote (horizontal asymptote): we first make x the subject in  

                          y  =    to obtain x  =  . In this case, the y-asymptote is the  

                          value of q which makes the function undefined. And for the function to be 

                          undefined y – q = 0 because   is undefined. Thus, from y  =   it is 

                          shown that p is the x-asymptote and q is the y-asymptote 

Effects of a: It should also be noted that a in the equation y = , positions the two 

graphs in their respective quadrants. We start from y =  , the basic equation of the 

hyperbolic function which can be simplified to xy = a.  

 

                                                              +y 

                                                   a < 0                                a > 0 

                                 (+y) . (- x) =  - xy             (+x) . (+y) = +xy 

                             -x                                                                          +x 

                                                   a > 0                              a < 0                                       

                                  (- x) . (-y) = +xy             (-y) . (+x) = -xy 

                                                               -y 

 

 

If a > 0 it means the product xy is positive. This is the case in the first and third quadrant. So, 

if a > 0, the graph lies in the first and third quadrants. If a < 0 it means the product xy is 

negative. This is the case in the second and fourth quadrants. So, if a < 0, the graph lies in the 

second and fourth quadrants. 
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Learners’ responses on using the definition-based procedure 

Each pair was tasked to do and present one part of question 7 and their responses are shown 

in the figures below:  

 

 

7.1  x-intercept is the point where the graph crosses the x-axis and on the x-axis y = 0  

       f(x) = y =  + 2 

                 0  =  + 2, substitute y by 0 

                 -2 =   

                  -2(x – 4) = 1, cross multiplying 

                  -2x + 8 = 1, removing brackets 

                  -2x  = -7 

                    x = 3.5. The coordinates of the x-intercept (3.5; 0) 

        y-intercept is the point where the graph crosses the y-axis and on the y-axis x = 0 

        f(x) = y =  + 2 

                  y =  + 2, substitute x by 0 and simplify 

                  y = 1.75. The coordinates of the y-intercept (0; 1.75) 

 

 

Figure 47: Monga and Diva’s response 

 

Monga and Diva managed to use the definition of intercepts in the procedure of calculating 

the coordinates of the x and y intercepts. This indicates that they are operating at the process 

level of APOS theory. 

 

 

7.2   x-asymptote: f(x) is undefined if x – 4 = 0  x = 4 (vertical asymptote) 

        y-asymptote: f(y) is undefined if y – 2 = 0 y = 2 (horizontal asymptote), after 

        making x the subject of the formula. 

 

Figure 48: Coco and Edy’s response 
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Coco and Edy demonstrated that they understood the concepts of horizontal and vertical 

asymptotes which made it easier for them to calculate these. This indicates that they are 

operating at the process level. 

 

 

7.3. We first draw the two asymptotes which also form four quadrants. In this case a = +1 so 

       our graphs lie in the first and third quadrants. When drawing the graphs we make sure 

       that they do not touch the asymptotes. 

 

                  

 
 

Figure 49: Mat and Teko’s response 

 

Mat and Teko managed to draw the asymptotes first and identify the quadrants in which the 

graphs lie. This ability to calculate the asymptote and to draw the graphs in their correct 

quadrants indicates that they are now operating at the object and schema levels. 

 

5.6.5.2 Retrospective analysis 

After the pair work I interviewed the learners again and their responses indicated that they 

had to a large extent overcome their difficulties and could now incorporate the definitions of  
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the critical points into their procedures to make them meaningful instead of rote 

memorization of the steps involved in the procedures. In some instances it was not clear 

whether they had reached the schema level or not because they were showing more indicators 

of the object level and some were still at the process level. The table below summarizes 

learners’ conception levels after the teaching experiment on the representation of the function 

concept: 

 

5.6.5.3 Summary of results on problem area 2 

Learners were able to:  

• define the critical points and use these definitions in calculating intercepts, 

asymptotes and turning points; 

• use the definitions of critical points to identify and extract critical points from 

a drawn graph; and 

• use definition-based procedures in translating from a graph to an equation and 

vice versa. 

 

Table 11: Summary of learners’ APOS theory conception levels after the teaching 

                 experiment  
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Reflections on the two problem areas and their teaching experiments above indicate that 

learners had not reached the schema level though some indicators of the schema level were 

beginning to show. It seemed as if learners were more comfortable operating at the process 

level than the object level. To ensure that learners’ understanding of the function concept is 

extended to reach the schema level I included the inverse of a function which learners had not 

been taught in class because it is part of the grade 12 work and requires an understanding of 

the procedures and processes. 

 

5.7 Problem area 3: The inverse of a function 

5.7.1 Phase 1: Problem identification 

What are the weaknesses in learners’ understanding of the inverse of a function? 

Since learners in the sample were not taught the inverse of a function no initial interviews 

were conducted and learners were working as a group so there were no individual activities, 

interviews and analysis of responses. I had to use learners’ difficulties in understanding of 

the inverse of a function found in the literature and my experience as a mathematics teacher 

to come up with a hypothetical learning trajectory for learning the inverse of a function. 

Many learners in high school have difficulties with the concept of the inverse of a function: 

what it is, when it exists, how it is used, how to calculate it, and how to graph it (Marcus, 

1999). In addition, Dubinsky and Harel (1992) believed that the inverse of a function was 

made difficult for many learners by the peculiarity of the representations and the absence of 

an algebraic formula. Ronda (2009) says that the most difficult part in teaching the concept 

of the inverse of a function is to make it make sense to learners and not so much in making 

the learners understand its definition or teaching them the process of finding the inverse 

function of a given function (by a graph or by a formula) or to “verify algebraically” that the 

functions are inverses. 

 

From my personal experience I discovered that learners are normally taught the inverse of a 

function using the rule, ‘interchange the positions of x and y and make y the subject of the 

formula’. The implication of this approach is that, to learners the inverse does not exist if 

there is no formula connecting variables. In most cases learners can easily follow this 

procedure correctly but without the slightest understanding of why they interchange the 

positions of x and y. Moreover, many teachers use this approach because it is easy for them to 

use but in most cases they do not explain to learners why they interchange the positions of x 

and y. This approach is also common in most of our textbooks and without the complete 
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explanation it does not make any sense to the learners. The properties of ‘one-to-one, onto 

and many-to-one’ are the basic criterion that a function must meet to be reversed is also often 

misunderstood by learners. Teachers need to have an informal conception as well as more 

formal knowledge. It is important that learners understand what an inverse is (definition); 

conditions for its existence; how it is used (application); how it is calculated; relationship 

between the graph of a function and its inverse. My intention is to help grade 11 learners to 

make sense of the procedure of finding the inverse of a function by interchanging x and y and 

of the relationship between the graphs of a function and of its inverse.  

 

5.7.2 Phase 2: Development of interventions 

Phase 2 addresses research question 2: 

How can instruction be designed to improve learners’ understanding of the inverse of a 

function? 

I used the RME’s learning and teaching principles in Section 5.4.2 when I was designing 

HLTs and activities to assist learners to understand the concept of inverse of a function both 

procedurally and conceptually. Bayazit and Gray (2003) investigated learner learning of 

function inverses from two teachers, Ahmet and Mehmet. Ahmet focused his instruction on 

the idea of inverse “undoing” operations, whereas Mehmet on algorithmic and procedural 

skills (Bayazit & Gray, 2003). Learners were given a pre test and post test to evaluate their 

understanding of the inverse of a function before and after the classroom instruction. The 

authors concluded that in order to grasp the concept of the inverse of a function, learners 

should be given the opportunities to experience conceptually focused tasks (Bayazit & Gray, 

2003, p. 109). This gave me an insight to introduce the inverse in this study by using real-

life contexts modelling the inverse of a function. This could help learners to realise the 

existence of the inverse in their daily life and the conditions under which it exists, which 

will necessitate the construction of the definition of the inverse. Though learners might not 

have problems in calculating the inverse there was need to explain the procedure that they 

were using. I designed an activity of ‘undoing’ operations for learners before they could 

algebraically find the inverse. Lastly, I had to assist learners to discover the relationship 

between a function and its inverse. 
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5.7.2.1 Teaching experiment 6 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

Figure 50: HLT for developing an understanding of the inverse of a function 

 

The intention of the HLT was to enable learners to move more easily to the schema level. 

The teaching experiment comprised four lessons. Lesson 1 was on the introduction of the 

inverse in context, lesson 2 was on the conditions for the existence of an inverse, lesson 3 

was on ‘undoing’ operations and calculating the inverse, and finally lesson 4 was on 

determining the relationship between the graph of a function and its inverse. 

 

By the end of the teaching experiment learners should be able to: 

    i. define an inverse function; 

   ii. determine the inverse of a given function algebraically; and 

  iii. use the relationship between the graphs of a function and its inverse. 

I designed two daily life situations modelling a function and how the idea of inverse is 

derived and discussed them with learners in my sample. This discussion enabled learners to 

formulate a function and then derive the inverse of that function without knowing that they 

                                                         LESSON 1 

 Use real life contexts to develop an understanding of the definition of an inverse of a function 

                       LESSON 2  
 -One-to-one and onto conditions 
-Vertical line test 
 

                      LESSON 3 
 
  - “Undoing” operations 
- Algebraically finding the inverse 

 
 
 
                           LESSON 4 

Determining the relationship between the 
graphs of a function and its inverse 
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were dealing with the inverse function. These two daily life situations were meant to 

demonstrate the idea of the inverse of a function at the layman/general and the mathematical 

levels. 

a) At a layman or general level: 

• If I need to call someone I am asking for her/his name on the list of my phone 

contacts. 

•  If someone of my contacts is calling me “my phone shows who is calling”. This is 

the job of an inverse function: “finding the name corresponding to the number” 

b) At a mathematical level: 

• If Bheki makes R100/day. I know how to answer the question “After 7 days, how 

      much money has he made?” I use the function W(t) = 100t. 

But suppose I want to ask the reverse question: 

• “If Bheki has made R700, how many days has he worked?” I use the reverse 

function t(W)=W/100. Given any amount of money, I divide it by 100 to find how 

many days he has worked. This is the job of an inverse function. It gives the same 

relationship, but reverses the dependent and independent variables. 

 

5.7.3 Phase 3: Using tentative products and theories 

Using daily life situations to teach the inverse of a function (Prototype 6) 

Lesson 1 

Activity 9: Using contexts to understand the definition and the purpose of inverses  

On the market day Nonjabulo and friends are selling ice cream and yoghurt. Towards the end 

of the day they put their yoghurt on sale. They reduced the price of the yoghurt to R1,80 from 

R2,40. Use the new price for all the calculations that follow. 

a. Copy and complete the table below:  

   

Number of yoghurt cans         2        3       4        8         10 

Price in rands (R)            

 

b. Determine the formula which they were using to find the price of any number of yoghurt 

    cans. 

c. There were 6 cans in each tray. How much will it cost to buy 3 trays? Is the cost of 18 cans  

     three times the price of one tray? 
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d. You will notice that with each number of yoghurt cans there is an associated price. We can 

     write these numbers as an ordered pair ( number of yoghurt cans; price). Use the values in 

      the table and write the values as a set of ordered pairs. 

e. In the above relationship, identify the dependent variable and the independent variable and 

    give reasons for you answer. 

g. Thus, for every number of yoghurt cans bought, there is an associated price. This  

     association resembles a function in which the number of yoghurt cans forms the domain  

     while the price forms the range. Using this understanding, explain in your own words the 

      meaning of the terms domain and range 

2. Some customers who were coming to Nonjabulo and friends’ table were saying that they 

    want yoghurt for a specified amount of money e.g for R20  . This implies that at times 

     Nonjabulo had to find out the number of yoghurt cans that can be bought with a specified 

     amount of money. 

a. Complete the following table: 
 
Price in rands (R)    3, 60      5, 40     7, 20   14, 40     18, 00 

Number of yoghurt cans      

 

b. Determine the formula which Nonjabulo and friends will use to find out the number of 

    yoghurt cans that can be bought by any given amount of money.  How do you it? 

c. Would you consider this new relationship to be a function? 

d. What is the domain and range of this new relationship? 

e. In this new relationship, which is the dependent variable and which is the independent 

    variable? Give reasons to support your answer. 

f. Use the above table to write down the ordered pairs for this relationship and compare them 

    with the ordered pairs in 1d. What do you notice? Explain in your own words. 
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Figure 51: Learners’ group responses  

 

Learners’ written work was fairly well done though they confused the dependent (range) and 

independent (domain). Learners managed to follow the procedures of the activity but failed to 

answer the questions that required them to make sense from the activity for example 2e and 

2f were partially answered indicating that learners were operating at the process level of 

APOS theory. After their written work I interviewed learners as a group to elicit further 

information that I did not obtain from their written work: 
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Interviewer: What did you notice when you compared the ordered pairs in 1d and 2f? 

Coco:            The domain of 1d is the range of 2f and the domain of 2f is the range of 1d. 

Monga:         The domains and ranges interchange positions. 

Diva:             x and y coordinates swap positions 

Teko:            Domain of 1d becomes range of 2f. 

Edy:              x’s take the positions of y’s. 

Mat:             The x-axis becomes the y-axis. 

Interviewer: Explain to me the connection between the two formulas in 1b and 2b? 

Edy:              In 1b we were multiplying the number of cans by R1.80 to get the total price 

                      while in 2b we were dividing the price by R1.80 to get the number of cans. 

Coco:            In 2b we were opposing what we did in 1b. 

Diva:             In 1b we multiplied by R1.80 and in 2b we divided by R1.80. 

Monga:         In 2b we reversed what we did in 1b. 

Mat:              In 1b we were given number of cans and unit price to find the price of a given 

                      number of cans. In 2b we were given the price of a certain number of cans to 

                      find that number. 

Teko:            The price and number of cans are connected by R1.80 the price of one can. 

 

I then asked the learners to generate a definition of an inverse of a function as a group from 

what they had done in activity 9. In the end of their discussion they agreed on the following 

definition of the inverse of a function: ‘The inverse of a function is a function which does the 

reverse of the original function and contains the same domain and range elements as the 

original function’. Learners highlighted that the domain and range are switched in such a way 

that the domain of the function is the range of the inverse of a function, and vice versa. From 

their completion of the two tables in activity 9, learners emphasized that for every ordered 

pair (x; y) belonging to the original function, there is a corresponding ordered pair (y; x) that 

belongs to the inverse of a function. It was from this understanding that learners were able to 

demonstrate how to derive an inverse of the following function, f: } 

by swapping x and y to obtain its inverse f -1: }. This shows that 

learners were operating at the process level for the definition of the inverse of a function. 

Activity 9 prepared learners for understanding the one-to-one property as a condition that 

functions should possess for them to have inverses in lesson 2. 
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Lesson 2  

I first reminded learners about ‘one-to-one’ functions using the previous real life examples: 

‘the set of all cars in Mpumalanga province is one-to-one with their registration numbers’ and 

‘the set of South African provinces is one-to-one with their provincial cities’. These examples 

helped learners to derive their own definition of a one-to-one function as ‘a function in which 

every element of the range of the function corresponds to exactly one element of the domain’. 

However, I reminded them that not all functions are one-to-one for example f(x) = x2. 

 

Activity 10 

 i. Show why the inverse of f(x) = x2 is not a function. 

ii. Draw the graph of f(x) = x2 and its inverse. 

 

The activity was done on the chalkboard. The learners directed the discussion as they 

indicated what should be written. For f (x) = x2 there are two values of x that give the same  

f (x). This is because both f (x) = x2 and also f (-x) = x2. There are two numbers that f takes to 

4,  f (2) = 4 and f (-2) = 4. If f had an inverse, then the fact that f (2) = 4 would imply that the 

inverse of f takes 4 back to 2. On the other hand, since f (-2) = 4, the inverse of f would have 

to take 4 to -2, hence the inverse is not a function. We cannot define f−1 of something to be 

two different things.  

 

Looking at the same problem in terms of graphs. If f  had an inverse, then its graph would be 

the reflection of the graph of f about the line y = x. The graph of f and its reflection about 

 y = x are drawn below. 
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Note that the reflected graph does not pass the vertical line test, so it is not the graph of a 

function. In the case of the inverse function, a display of conceptual knowledge would be 

the capacity of defining the inverse function, accompanied in the process of calculating the 

inverse by the questioning or testing of the existence of the inverse function. Lesson 2 

helped learners to understand the conditions for an inverse function to exist and this led us 

to lesson 3 in which I taught learners how to use the inversion of operations that make up 

the function to find its inverse. 

 

Lesson 3 

I made use of the learners’ knowledge of ‘inverse operations’ and attempted to expand their 

understanding of the inverse of a function as ‘undoing’ what a function does through 

conceptually focused tasks. The Mathematics Modlin Dictionary (2006) agrees with the 

learners’ definition of an inverse of a function they derived in Lesson 2 and defines an 

inverse of a function as a function which ‘does the reverse’ of a given function, for example, 

if we have the function  f: x →  2x + 1, its inverse is found by reversing the operations that 

constructed it (reverse of multiplication is division and reverse of addition is subtraction) and 

the rules of precedence (BODMAS) are also reversed. The reversal of operations and rules of 

precedence gives the inverse denoted by  f -1: x →
2

)1( −x  

On the other hand if we consider again the function f (x) = 2x + 1: 

We can evaluate f at 1 by substituting x by 1 in the function: f (1) = 2(1) + 1= 3 and it helps to 

think of f as transforming a 1 into 3. So if we think of f as ‘acting on’ numbers and 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://dl.uncw.edu/digilib/mathematics/algebra/mat111hb/functions/graphs/graphs.html#sec2


              Design research towards improving understanding of functions:  a South African case study 
 

214 

transforming them, we define the inverse of f as the function that ‘undoes’ what f did. In other 

words, the inverse of f needs to take 3 back to 1. This was also demonstrated using the 

function machine. According to Benson and Buerman (2007) the inverse function should be 

understood as a way of breaking something down by reversing the operations performed in 

the relationship. They claim, for example, that students will have a greater understanding of 

inverse if they discuss reciprocals as multiplicative inverses and negatives as additive 

inverses.  

 

Activity 11 (Oral): Reciprocals as additive and multiplicative inverses 

                      Complete the following table 

Function Rule Inverse Rule 

x + 3 x – 3 

 
 

 4x 

 
 

  

 

 

Activity 12: Algebraically finding the inverse of a given function 

The purpose of this activity was to help learners to understand the algorithmic steps of 

switching x and y in the process of finding the inverse. Learners carried out the procedures 

internally showing that they were operating at the process level. 

 

Find the inverses of the following functions 

1.   a)    f (x) = x + 3        b)   f (x) = x – 3                   2.   a)   f (x) = 2x          b)   f(x) =   

3.   a)  f(x) =                     b)  f(x) =  
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What did you notice about these inverses? 

 

 
 

Figure 52: Learners’ group responses on activity 12 

 

Lesson 4:  

Activity 13: Understanding what it means to have an inverse graphically 

The purpose of this activity was to develop learners’ understanding of the relationship 

between the graphs of a function and its inverse and its links to the switching of the domain 

and range. 
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Sketch the graphs of the following functions on the same axes: 

 1. f(x) = x + 3  and  f(x) = x – 3  

 2. f(x) = 2x   and  f(x) =    

 3. f(x) =    and  f(x) =  

This activity was again done in one group to enable learners to interact and share their ideas 

and learn from each other. I wanted to avoid teaching by telling but to employ the principles 

of constructivism in which learners are guided to construct their own knowledge. 
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Figure 53: Learners’ group responses on activity 13 
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Learners drew the first and second pairs of graphs correctly but the last pair was wrong and 

could not bring out the picture which I wanted them to discover. As a result they could not 

establish the relationship between the graphs of a function and its inverse as indicated by 

their interview responses below: 

Interviewer: What did you notice about each pair of graphs you have drawn? 

Monga:          They are parallel to each other. 

Edy:                I don’t agree what of the other two pairs they are not parallel. 

Coco:              They oppose each other like in a mirror. 

Diva:               I agree with Coco there is some reflection between these graphs. 

Teko:              The last two graphs confused me because they are crossing each other. 

Mat:                I can see that there is a relationship between our graphs but I can’t explain it. 

 

5.7.3.1 Retrospective analysis 

Learners did activity 9 as a single group and their written and oral responses indicate that 

they understood what was happening in the activity. They realised the swapping of positions 

between the domain and range and that the second formula opposes what was done by the 

first formula. Even (1993) also found that many students conceptualized a function inverse 

using the notion of ‘undoing’. “Undoing’ is an informal meaning of inverse function which 

captures the essence of the definition” (Even, 1993, p. 557). The RME activities allowed the 

learners to experience this informal meaning and develop an understanding of the inverse. 

Using indicators of APOS theory for the inverse I can conclude from their responses that they 

are operating between the object level and the schema level. 

 

Activity 10 showed that learners understood the one-to-one property of a function and used it 

to determine whether the inverse of f(x) = x2 is a function or not. Activity 10 also helped 

learners to understand and use the vertical line test to determine whether a drawn graph is a 

function or not. Activity 11 was easily done by the learners as they used opposites of 

algebraic operations. Learners demonstrated their understanding of using the inverse of the 

function operations. When given the function equation, they knew how to reverse the 

calculations to arrive at the inverse equation. Their understanding of inverse operations 

progressed from the action to the process conception. These results confirmed the claims of 

Breidenbach et al. (1992) that learners built and then transformed mental representations. The 

procedural knowledge implies the mechanical computation of the inverse, following the 

algorithmic steps of switching x and y, and then solving for y. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

219 

Learners could easily follow the procedure of switching the variables in activity 11 with an 

understanding that the domain becomes the range of an inverse function and the range 

becomes the domain. Learners also could realise that a function and its inverse oppose each 

other in terms of the rules of precedence (BODMAS). This indicates that learners are 

operating at the process level of APOS theory. However, activity 12 was not well done as 

learners failed to establish the relationship between the graphs of a function and its inverse. 

As a result I modified the HLT for the relationship between the graphs of a function and its 

inverse which led to phase 4. 

 

5.7.3.2 Phase 4: Product and theory refinement 

 

 

Take a function and its inverse from activity 12 and draw a table of values for each using the 

same domain and range. Then reflect the points in the table of values for the function in the 

line y = x and compare your answers with the corresponding points in the table of values for 

the inverse.  

 

Figure 54: HLT for improving learners’ understanding the relationship between the 

graphs of a function and its inverse 

 

The reflection of the point (a,b) about the line y = x is the point (b,a). 

 

                                   
 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

220 

Taking for example question 3 in activity 12: The first function is f (x) = . Then its table 

of values is:  

X 2 3 4 

f(x) =  8 
  

  

The second function is f(x) =   and its table of values is as follows: 

X 8 
  

f(x) =   2 3 4 

 

From the two tables above f (2) = 8 and the point (2; 8) is on the graph of f. The inverse of f 

must take 8 back to 2, that is f -1(8) = 2, so the point (8; 2) is on the graph of f -1. This means 

that f(x) =    is the inverse of f (x) = . The point (8; 2) is the reflection in the line  

y = x of the point (2; 8). The same argument can be made for all points on the graphs of f 

and f -1. 

 

5.7.4 Interview questions on the inverse of a function (group interview) 

1. In your own words explain what an inverse function is? 

2. What symbol is used to represent an inverse of a function and what does that symbol  

    mean to you? 

3. If you are given the equation of a function explain how you find the inverse of that 

    function? 

4. What is the relationship between the domain and range (co-domain) of a function and that 

    of its inverse? 

5. What is the relationship between a function and its inverse?  

 

The following is only a part of some of the responses from these interviews that I thought I 

could share with readers of this thesis: 

Edy:      The domain of the function will change to be the range of the inverse because the 

              two interchange. 

Coco:    the domain changes to be the range and the range changes to be the domain.  
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Monga: I think the relationship between the function and the inverse is that they oppose each 

              other. 

 Mat:    An inverse undo a function, they are opposing each other. 

Teko:    The inverse oppose the function. A function ‘undoes’ what an inverse 

              does. 

Diva:    To get the graph of the inverse I reflect the graph of the original function in the line 

              y = x. 

 

The inverse of a function is a reflection of the original function about the line y = x. The 

function and the inverse function are mirror images with the line y = x acting as the mirror. 

The standard notation is f (x) for the function and f -1 (x) for the inverse function.  

 

Retrospective analyses of learners’ responses indicated that the use of real life contexts and 

situations imaginable in learners’ minds were effective in developing learners’ conceptual 

understanding of the concept of inverse of a function which culminated into phase 5. 

  

5.7.5 Phase 5: Final product and contribution to theory 

Real life context-based development of the inverse of a function  

This approach was supported by the following principles of RME: 

• use of everyday activities that are experientially real to learners; 

• making the idea of inverse real in the mind of the learner by enabling the learner to 

imagine the concept in his/her mind; and 

• stressing understanding of processes (procedures) rather than memorizing that to find 

the inverse interchange x and y and make y the subject without understanding why x 

and y are swapped. 

 

First I reviewed learners’ working definition of a function “A function is a dependence 

relationship between two sets of variable quantities in which each element from the first 

variable (domain set) has only one corresponding element in the second variable (range or 

image set).”  

 

I asked learners to identify their own example of a function with restrictions and they gave 

me the following: 
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 Diva (reporting): A taxi company charges R5 per kilometre within the 40 km radius. So our 

                               formula for calculating how much a passenger pays is: Fare = R5 times 

                               the number of kilometres travelled. In this situation distance is restricted 

                               to 0  distance 40km and the fare is also restricted to 0 fare R200 

 

Learners’ example indicates that they can formulate a function with some restrictions which 

is a sign that they are now operating between the object and the schema level of APOS 

theory. Since learners were able to formulate a real life example of a function it made it easier 

for me to develop the concept of inverse of a function using their example.  

 

Developing the inverse of a function using the learners’ real life example of a function  

The inverse function is a kind of undoing function. Suppose you we are told that a passenger 

paid R150 on taxi fare, could we work backwards and find the number of kilometres the 

passenger travelled? The inverse relationship would be Fare / 5. If we divide the fare of R150 

by 5, we would know that the passenger travelled 30km. The first relationship of Fare = R5 

×Number of kilometres travelled is a function. The undo rule of Number of km travelled = 

Fare / 5 is the inverse function. This led us to the graphs of the function and its inverse. 

 

5.7.6 Summary of problem area 3 

Learners were able to: 

• derive own definition of an inverse of a function from real life contexts with which 

they were presented; 

•  derive the meaning of the one-to-one property of functions of having one domain 

element corresponding to exactly one element in the range set ‘the domain of the 

function is equal to the range of the inverse and the range of the function is equal to 

the domain of the inverse’ from previous real life examples of functions;  

• formulate own example of a function with a restricted domain; 

• use the inversion of operations that constructed a function in finding its inverse; and 

• use the relationship between the graphs of a function and its inverse ‘the inverse of a 

function is a reflection of the original function about the line y = x’ to understand why 

they swap x and y in the procedure of finding the inverse algebraically. 
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Table 12: Summary of activities, tasks and interview sessions and when they happened 
What happened When it happened 

1. Learners were asked to attempt question7 and 8 from the June 2011 

    examination paper as initial tasks 

Starting point 

2. Learners were interviewed individually on the initial tasks and  

    their oral responses were taped 

Interview session 1 on question 7 

Interview session 2 on question 8 

3. APOS analysis of learners’ written and oral responses on the  

    initial tasks revealed their difficulties and weaknesses 

After transcribing learners’ 

oral responses 

4. Classification of learners’ difficulties and weaknesses into problem  

    area 1 and problem area 2  

After identifying and listing 

learners’ identified 

difficulties and weaknesses  

Intervention for problem area 1 

5. Learners worked in pairs on Activity 1 and were interviewed (APOS 

   analysis of learners’ responses) 

6. Learners worked in pairs on Activity 2 and were interviewed (APOS 

   analysis of learners’ responses) 

 

Teaching experiment 1 

 

Interview session 3 on 

Activity 1 

7. Learners were involved engaged in the Table allocation game in 

   Activity 3 

8. Learners wrote Task 1 

 

Teaching experiment 2 

9. Learners did Task 2 in pairs and were interviewed (APOS analysis 

    of learners’ responses) 

10. Learners did Activity 4 as a group 

Teaching experiment 3 

Intervention for problem area 2 

11. Learners did the following activities 

      Activity 5: Translating from equation to graph 

      Activity 6: Translating from graph to equation 

      Activity 7: Critical points as connection factor 

 

 

Teaching experiment 4 

12. Learners did Activity 8 on using definition-based procedures Teaching experiment 5 

Intervention for problem area 3 

13. Learners did the following activities: 

      Activity 9: using real-life contexts to develop learners’  

                      understanding of the inverse 

      Activity 10: relationship between function and its inverse 

      Activity 11: reciprocals as additive and multiplicative inverses  

      Activity 12: finding the inverse algebraically 

      Activity 13: relationship between graphs of a function and its 

                        Inverse 

 

 

 

 

Teaching experiment 6 
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5.8 Summary of chapter 

In this Chapter I used APOS and Piaget’s developmental theory levels to determine where 

learners were and developed HLTs that moved them towards the schema level. The tools to 

implement the HLTs were embedded in RME activities and based on constructivism. 

Research (Dubinsky & McDonald, 2001; Gray, 2007; Van de Walle, 2007) indicates that 

Piaget’s levels may be age related but this differs for different cultures and for learners like 

the ones in my sample who have to engage in a second language. This could be the reason 

why my learners did not all reach the schema level. Though I wanted them to be at the formal 

operational level two out of the six learners were at the concrete operational level in some of 

the activities. The sequences of lessons and their activities for the definition, representation 

and inverse of the function concept which are the products of this study can be used in 

classroom situations to improve grade 11 learners’ understanding of functions. Because 

timetables and scheduling vary from school to school, the amount of material per lesson will 

also vary depending on the available class time. I recommend that it be taught as a whole and 

in the sequence suggested. The next chapter presents a synthesis of the foregoing chapters 

from which I draw conclusions and recommendations for this study. 
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Chapter 6 

Summary, conclusions and recommendations 

6.1 Introduction 

This chapter gives a summary of the study and conclusions based on the qualitative results 

presented in Chapter 5 to provide answers to the following research questions:  

1. How do learners understand the function concept? 

2. How can instruction be designed to improve learners’ understanding of the function 

    concept? 

The structure of this chapter is guided by these research questions. I begin by summarizing 

the different perspectives on the understanding of functions including the one emanating from 

the current study. This is followed by a discussion of how the material improved learners’ 

understanding of functions and a graphical display of trends of improvement in individual 

learners’ understanding of the functions. A description of the final products and their 

contribution to theory and reflections on my theoretical framework and methodology follows. 

Conclusions drawn from this study are then summarized, followed by a discussion of the 

recommendations that can be adopted and implemented. Finally, a discussion of the 

limitations of this study and suggestions for further research make up the last section of this 

chapter. 

 

6.2 What is an understanding of functions? 

According to the CAPS grades 10-12 curriculum, learners have a full understanding of 

functions if they “demonstrate knowledge of the formal definition of the function concept and 

the ability to work with various types of representations by converting flexibly between 

numerical, graphical, verbal and symbolic representations” (DoBE, 2011, p. 12). As a teacher 

my initial interpretation of the statement was that learners are expected to understand the 

formal definition of the function concept first before understanding the different 

representations and the process of converting from one representation to the other. The 

teachers of participants in the study also believed the CAPS statement means that we should 

start with the formal definition. This is in contrast with the development of understanding of 

the function concept illustrated in this study. Literature has also shown that starting with the 

definition of the function concept does not guarantee understanding of the concept (Kwari, 

2007). Literature further shows that while some believe that understanding of the function 

concept entails having knowledge of the function concept (Sajka, 2005) others see it as a 

learner’s ability to use or demonstrate knowledge acquired about the function concept 
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(Markovits, Eylon & Bruckheimer, 1986). However, the findings from the current study 

contradict these two perspectives and regard understanding of the function concept as 

enabling the learners to:  

• explain the key idea or core concept of the function concept which is a dependent 

relationship in which the value of one variable is dependent on the value of another; 

• derive a working definition of the function concept based on the key idea; 

•  explain and use the basic properties of the function concept which are univalence and 

arbitrariness; 

• classify relations into functions and non-functions; 

• give examples which are functions, and relations which are not; 

• translate from one representation to another; 

• identify key features in graphs and tables including intercepts, asymptotes, 

symmetries, maximum and minimum, intervals where the function is increasing, 

decreasing, positive or negative; 

• calculate or determine key features from given equations; 

• sketch the graph using the given key features;  

• derive the definition of an inverse of a function;  

• use the property of one-to-one in determining whether a function has an inverse or not 

and to connect the graphs of a function and its inverse; and 

• use the procedure of determining an inverse with an understanding of why x and y are 

swapped. 

 

6.2.1 Grade 11 learners’ understanding of the function definition and their weaknesses 

Task-based clinical interviews were used to determine learners’ understanding of functions in 

terms of its definition and representation which revealed their difficulties, misconceptions 

and weaknesses about the function concept. Findings from this study indicate that learners 

initially understood a function as any relationship (Diva, Edy, Mat and Monga), 

correspondence (Coco) or connection between inputs and outputs (Teko). The weakness in 

learners’ understanding was that there was no mention of a dependence relationship between 

two sets of dependent and independent variables. This incomplete understanding of a 

function resulted in four of the learners (Teko, Monga, Mat and Diva) failing to formulate 

correct examples of functions and non-functions.  Only two learners (Coco and Edy) 

managed to formulate correct examples of functions but also failed to give examples of non-
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functions. Learners’ concept images of a function could not enable them to explain and 

identify the dependent and independent variables when given a function. I then used APOS 

theory indicators to inform my analysis of learners’ responses to determine the level at which 

each learner was operating in terms of understanding the function definition.  Five out of the 

six learners were found to be operating at the action level while only Coco was operating at 

the process level for the function definition. 

 

6.2.2 Grade 11 learners’ understanding of the function representation and their 

         weaknesses 

Learners in this study were more familiar with two representations of the function concept 

namely the graph (Teko, Coco) and the equation or expression (Diva, Edy, Mat and Monga). 

However, from the initial task-based clinical interviews all six learners could use a given 

equation to calculate the intercepts, asymptotes and turning points and to draw the graph but 

found it difficult to use a drawn graph to determine its equation.  The main reason why 

learners had difficulties in translating from a graph to an equation was that they were 

calculating the critical points following memorized procedures without understanding how 

and why these procedures work. Moreover, learners did not understand the meanings of 

intercepts, asymptotes and turning points which are the important connectors of the graph and 

equation. The use of procedures by learners without understanding how and why they work 

indicates that they were operating at the process level of APOS theory.  

 

6.3 Improving understanding of functions 

Improving learners’ understanding of functions entails helping them to overcome their 

conceptual difficulties and to move from their initial conception level to the next higher level. 

In the current study I used design research to improve the teaching and learning of functions. 

My focus was to enhance knowledge in the field of teaching and learning of functions and to 

enhance practice in the field by enabling better teaching and learning of functions. This was 

achieved by developing empirically grounded instructional sequences (HLTs) and activities 

for learning and understanding the function concept in terms of its definition, representation 

and inverse. This answers research question 2: How can instruction be designed to improve 

learners’ understanding of the function concept? 
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6.3.1 Using design research in the classroom to improve learners’ understanding of  

        functions 

This was achieved in two stages: firstly, by determining what to teach and secondly how to 

teach it. Firstly, what to teach can only be determined if the teacher knows what the learner 

already knows, which allowed me to apply the theory of constructivism which starts at the 

level of the learner. To determine what the learners in my sample already knew I conducted 

task-based clinical interviews before and after each intervention. I compared what learners 

knew and what they should understand at their grade level regarding the function-related 

concepts from the CAPS curriculum document. This helped me to establish conceptual and 

pedagogical gaps in learners’ understanding of functions.  

 

Secondly, after determining what to teach I had to find ways of teaching it which were 

determined by the following: the structure of the function-related concepts to be covered; 

forms or ways of understanding that exist for each concept; how learners should understand 

these function-related concepts; how these function-related concepts are developed; and 

approaches that help learners to understand these concepts. I used this knowledge to develop 

HLTs and activities that are imaginable and real to learners to be implemented in actual 

lessons in the classroom. In the current study I used the RME’s teaching and learning 

principles to make the content real and to scaffold the learning to allow learners to “climb the 

ladder” of APOS theory conception levels of understanding functions. I also brought in 

Piaget’s theory because I needed to work from what teachers know. Teachers are familiar 

with Piaget’s theory which I related to APOS theory which is a more refined theory because 

of its four levels. APOS theory points to possible pedagogical strategies. After the teaching 

and learning activities I then designed and administered formative assessment tasks 

structured to enable learners to present and defend their solutions to task problems. These 

assessment tasks led to phase 1 of the five phases of design research explained in this study. 

 

6.3.2 A qualitative summary of how learners improved their understanding of 

         functions 

Learners improved their understanding of the function concept in two stages corresponding to 

the definition and representation respectively. Learners’ understanding of the function 

concept was extended by learning the inverse. In the first stage learners’ initial understanding 

of the definition of the function concept was weak because they viewed a function as any 

relationship, correspondence or connection between things. This understanding of the 
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definition of the function concept limited learners’ ability to achieve the following: to 

formulate examples and non-examples of functions; to identify the dependent and 

independent variables in a given example of a function; and to determine whether a given 

relation is a function or not. This indicated that learners were operating at the action 

conception level of APOS theory. Learners improved from the action level to approximate 

the schema level when they were engaged in RME based activities which helped them to 

grasp the key idea of the function concept. Learners used the core idea of the function 

concept to derive a working definition which they were able to use to formulate examples and 

non-examples of functions and to determine whether a given relation is a function or not.    

 

In the second stage involving representations of the function concept learners in the sample 

initially carried out calculations to determine intercepts, asymptotes and turning points 

without any understanding of the concepts indicating that they were operating at the process 

level of APOS theory. This caused learners to have difficulties in translating from a graph to 

an equation. Learners improved their ability to translate from a graph to an equation when 

they understood the key concepts which they used in every step of the procedure in 

translating from a graph to an equation. The use of a definition-based procedure helped 

learners to develop a conceptual understanding of the procedures involved in translating from 

equation to graph and vice versa. Though learners did not fully reach the schema level there 

was evidence of some indicators of the schema level.  

 

Learners in this study extended their knowledge of deriving a working definition and using 

procedures with understanding when they learnt about the inverse of a function which they 

had not been taught. Learners were able to formulate a function and then derive its inverse 

through their engagement with activities based on daily life situations about selling ice 

cream cups which were modeling a function and how the idea of inverse is derived. 

Learners’ engagement in these activities helped them to discover that for every ordered pair 

(x; y) belonging to the original function, there is a corresponding ordered pair (y; x) that 

belongs to the inverse of a function. It was from this understanding that learners were able to 

demonstrate how to derive an inverse of a given function by swapping the domain (x) and 

range (y) to obtain its inverse. Indications were that in the end, learners were operating at the 

schema level for the inverse of a function. 
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6.4 How the material improved learners’ understanding of functions 

To improve learners’ understanding of the function concept which was initially at the action 

level I engaged them in constructive activities that, for them, were experientially real and 

imaginable. After the constructivist activities I administered problem solving tasks to help 

learners to move through various levels of abstraction. I paid attention to each learner's own 

written and interview responses and gave each the opportunity to reflect on their written and 

oral responses by explaining their solutions and their methods. Learners were given the 

opportunity to work in groups where they could exchange ideas and arguments and learn 

from each other. I used real world examples of functions to make the concept as applicable 

and understandable as possible. The use of real life relationships helped the learners to 

correctly identify the variables in the given relationships and to formulate their own 

relationships which they could manipulate to see how change in one variable would affect the 

other. For example, the table allocation activity in which learners acted out a function and a 

non-function helped them to understand how to determine whether a given relation is a 

function or not. This helped learners to derive a working definition of a function which they 

could use to formulate their own examples of both functions and non-functions. They could 

also determine whether a given relation was a function or not, an exercise which took them to 

the schema level for the definition of the function concept. 

 

Activities 1 and 2 enabled learners to take subject matter from the real world and to organize 

it according to mathematical patterns. As a result, learners were able to recognize mutual 

dependence between variables or varying quantities, determine the nature of the dependence 

relationship between variable quantities and to express and interpret quantitative 

relationships. These two activities also developed the learners’ ability to identify and explain 

the dependent and independent variables and to formulate examples and non-examples of 

functions. The learners managed to move from the action and process level to the object 

level. Initially, learners could not use the key idea of the function concept to determine 

whether a given relation is a function or non-function and could also not use the proper 

functional language of domain and range in defining the function concept and in formulating 

examples and non-examples. As a result I designed task 1 to develop learners’ ability to 

identify a function in its different representations. Evidence from learners’ written work 

indicated that this task helped them to identify a function and to explain why the relationship 

is a function using the properties of a function. Learners could use the idea that every element 
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of the domain set must have its own corresponding element in the range set which indicated 

that they had progressed to the schema level.  

 

I designed task 2 to develop learners’ understanding of the link between the one-to-one 

property of the function concept and the use of the vertical line test. From the learners’ 

responses I was able to conclude that they had understood why the vertical line test worked 

and they could use it intelligently. Though learners’ responses could not show indicators of 

the schema level, learners were operating above the object level towards the schema level. I 

stopped at the object level because learners were now comfortable with working with these 

function-related concepts. Their written work also showed that they had overcome their 

difficulties. 

 

I then asked learners to compare their definitions in order to come up with a working 

definition built on the key idea and the one-to-one property of the function concept. Learners 

examined their individual definitions as a group and had consensus on a working definition 

which they used easily to formulate examples of functions and non-functions and to 

determine whether given relations were functions or non-functions. Though learners had 

followed the HLTs as I had intended, only two learners were exhibiting some indicators of 

the schema level while the other four were oscillating between the process and object levels 

of APOS theory. However, their written work showed that they had overcome major 

difficulties that hinder such learners from reaching the schema level. 

 

I designed activity 5 to develop learners’ understanding of the process of translating from the 

symbolic to the graphical representation. Learners were able to calculate the intercepts, 

asymptotes and turning points of different functions. However, translation from graph to 

equation in activity 6 was difficult for learners. To help learners translate easily from graph to 

equation I designed activity 7 in which they worked as a group. This activity helped learners 

to appreciate the use of definition-based procedures which made the previously memorized 

procedures meaningful. Learners did not reach the schema level but they were exhibiting a 

greater number of indicators of the object level and the process level. Considering learners’ 

initial low levels of conception, reaching the process and object level was an achievement. It 

appeared to be also easier for learners to move from the object level to the desired schema 

level. 
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I engaged learners with activity 9 to help them realise why the domain and the range swap 

their positions in the process of finding the inverse. Activity 10 was done to help learners 

establish the relationship between a function and its inverse, and also to use the vertical line 

test with an understanding. Activity 11 was done to help the learners to understand the 

opposites of algebraic operations which shifted their focus of attention from the notion of 

swapping x and y to the idea of an ‘inverse operation’. This entailed the inversion of a 

sequence of algorithms in the process of a function by going from the end to the beginning. 

Learners demonstrated their understanding of using the inverse of the function operations and 

how to reverse the calculations to arrive at the inverse equation. The RME activities allowed 

the learners to experience this informal meaning and to develop an understanding of the 

inverse. Learners could easily follow the procedure of switching the variables in activity 11 

with an understanding that the domain becomes the range of an inverse function and the 

range becomes the domain. Learners also could realise that a function and its inverse oppose 

each other in terms of the rules of precedence (BODMAS). This indicated that learners were 

operating at the schema level of APOS theory as I intended. 

 

The findings of the study:  

• Learners initially carried out procedures to calculate intercepts, asymptotes and 

turning points without any understanding of the concepts. This tendency limits 

learners’ use of these procedures since they can only perform them in one direction. 

For example, learners in the current study were able to successfully use the 

procedures of determining the intercepts, asymptotes and turning points from a given 

equation but found it difficult to extract the same critical points from a drawn graph 

representing the same equation and then to formulate the equation. To assist learners 

in the current study to develop a conceptual understanding of the procedures of 

calculating the intercepts, asymptotes and turning points I introduced the concept of 

definition-based procedures (DBPs). The use of DBPs made it easier for learners to 

translate from equation to graph and vice versa and also compelled learners to 

understand the meanings of all the key concepts involved in carrying out these 

procedures. Once these key concepts are understood it is easier for learners to 

translate from equation to graph and from graph to equation.  

• Learners find it difficult to understand and use a prescribed definition of the function 

concept. To help overcome this challenge I provided learners with opportunities to 
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develop a working definition of the function concept which they could easily use to 

identify functions and non-functions, formulate their own examples of the function 

concept, and identify dependent and independent variables in a given relationship. 

This definition also helped learners to appreciate the nature and origin of the function 

concept, distinguish a function from a non-function and apply it in problem solving.  

• The use of real life contexts formed the basis for learners’ understanding of the 

inverse of a function. In this study I introduced the inverse of a function by using real-

life contexts and activities modelling the inverse of a function. This helped learners to 

realise the existence of the inverse in their daily life, the conditions under which it 

exists, and the relationship between a function and its inverse which necessitated the 

construction of the definition of the inverse. Real life activities also focussed learners’ 

attention on understanding procedures and the reasons why procedures work rather 

than merely memorising them. 

• Design research improved learners’ understanding of the function concept in terms of 

its definition, representation and inverse. Design research together with APOS theory, 

RME and constructivism to a large extent succeeded in improving learners’ 

conceptual understanding of the function concept through iterative design and 

development of instructional sequences (HLTs) and level appropriate RME based 

activities. In addition I provided for an enabling environment where learners shared 

their ideas and worked in groups which improved their understanding of the function 

concepts. Though not all the learners managed to reach the schema level, design 

research assisted learners to overcome their identified difficulties on functions and to 

move from their initial lower levels of APOS theory to the process and object levels 

and two learners reached the schema level as intended.  
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6.5 Trends of improvement in individual learners’ understanding of the functions 

LEARNER CONCEPTION LEVEL INITIAL LEVEL 1 2 TASK 1 TASK 2 AVERAGE LEVEL

Schema

Object * *
Process *

Action *
Pre-function

EFFECTS OF EACH INTERVENTION ON LEARNER'S UNDERSTANDING OF DEFINITION
          AFTER ACTIVITY

* *
Monga

 

LEARNER CONCEPTION LEVEL INITIAL LEVEL 5 6 7 AVERAGE LEVEL

Schema

Object *
Process * *

Action *

Pre-function

EFFECTS OF EACH INTERVENTION ON LEARNER'S UNDERSTANDING OF REPRESENTATION
          AFTER ACTIVITY

*
Monga

 

LEARNER CONCEPTION LEVEL 8 9 10 11 12   AVERAGE

Schema

Object

Process * *

Action

Pre-function

 LEARNER'S UNDERSTANDING OF INVERSE
          AFTER ACTIVITY

*

* *         *

Monga

 

 

Figure 55: Monga’s trends of improvement in understanding of the function concept 

 

Initially Monga was operating at the action level but improved his understanding with each 

intervention. On average he was finally operating at the object-schema level, which means 

that the interventions had a positive effect on his understanding of functions. This also 

indicates that the instructional material can improve learners’ understanding of functions. 
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LEARNER CONCEPTION LEVEL INITIAL LEVEL 1 2 TASK 1 TASK 2 AVERAGE LEVEL

Schema

Object *
Process * *

Action

Pre-function

EFFECTS OF EACH INTERVENTION ON LEARNER'S UNDERSTANDING OF DEFINITION
          AFTER ACTIVITY

* * *
Coco

 

LEARNER CONCEPTION LEVEL INITIAL LEVEL 5 6 7 AVERAGE LEVEL

Schema

Object *
Process * * *

Action

Pre-function

EFFECTS OF EACH INTERVENTION ON LEARNER'S UNDERSTANDING OF REPRESENTATION
          AFTER ACTIVITY

*
Coco

 

LEARNER CONCEPTION LEVEL 8 9 10 11    12     AVERAGE 

Schema

Object

Process * *     *

Action

Pre-function

LEARNER'S UNDERSTANDING OF INVERSE
          AFTER ACTIVITY

*
*          *

Coco

 

 Figure 56: Coco’s trends of improvement in understanding of the function concept 

 

Initially Coco was operating at the process level but improved her understanding with each 

intervention. On average she was finally operating at the object-schema level, which means 

that the interventions had a positive effect on her understanding of functions. This also 

indicates that the instructional material can improve learners’ understanding of functions. 
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LEARNER CONCEPTION LEVEL INITIAL LEVEL 1 2 TASK 1 TASK 2 AVERAGE LEVEL

Schema

Object *
Process *

Action *

Pre-function

EFFECTS OF EACH INTERVENTION ON LEARNER'S UNDERSTANDING OF DEFINITION
          AFTER ACTIVITY

* * *
Mat

 

LEARNER CONCEPTION LEVEL INITIAL LEVEL 5 6 7 AVERAGE LEVEL

Schema

Object *
Process * *

Action *

Pre-function

EFFECTS OF EACH INTERVENTION ON LEARNER'S UNDERSTANDING OF REPRESENTATION
          AFTER ACTIVITY

*
Mat

 

LEARNER CONCEPTION LEVEL 8 9 10 11 AVERAGE LEVEL

Schema * * * *
Object

Process

Action

Pre-function

LEARNER'S UNDERSTANDING OF INVERSE
          AFTER ACTIVITY

*

Mat

 

 Figure 57: Mat’s trends of improvement in understanding of the function concept 

 

Initially Mat was operating at the action level but improved his understanding with each 

intervention. On average he was finally operating between the object and schema level, 

which means that the interventions had a positive effect on his understanding of functions. 

This also indicates that the instructional material can improve learners’ understanding of 

functions. 
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LEARNER CONCEPTION LEVEL INITIAL LEVEL 1 2 TASK 1 TASK 2 AVERAGE LEVEL

Schema *
Object * *
Process

Action *

Pre-function

EFFECTS OF EACH INTERVENTION ON LEARNER'S UNDERSTANDING OF DEFINITION
          AFTER ACTIVITY

* *
Diva

 

LEARNER CONCEPTION LEVEL INITIAL LEVEL 5 6 7 AVERAGE LEVEL

Schema

Object *
Process *

Action *

Pre-function

EFFECTS OF EACH INTERVENTION ON LEARNER'S UNDERSTANDING OF REPRESENTATION
          AFTER ACTIVITY

*
*

Diva

 

LEARNER CONCEPTION LEVEL 8 9 10 11    12     AVERAGE 

Schema

Object *        *
Process *     *

Action

Pre-function

LEARNER'S UNDERSTANDING OF INVERSE
          AFTER ACTIVITY

*

*

Diva

 

 Figure 58: Diva’s trends of improvement in understanding of the function concept 

 

 Initially Diva was operating at the action level but improved his understanding with each 

intervention. On average he was finally operating at the object level, which means that the 

interventions had a positive effect on his understanding of functions. This also indicates that 

the instructional material can improve learners’ understanding of functions. 
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LEARNER CONCEPTION LEVEL INITIAL LEVEL 1 2 TASK 1 TASK 2 AVERAGE LEVEL

Schema

Object *
Process *    *

Action *

Pre-function

EFFECTS OF EACH INTERVENTION ON LEARNER'S UNDERSTANDING OF DEFINITION
          AFTER ACTIVITY

* *
Edy

 

LEARNER CONCEPTION LEVEL INITIAL LEVEL 5 6 7 AVERAGE LEVEL

Schema

Object *
Process *

Action *

Pre-function

EFFECTS OF EACH INTERVENTION ON LEARNER'S UNDERSTANDING OF REPRESENTATION
          AFTER ACTIVITY

*
*

Edy

 

LEARNER CONCEPTION LEVEL 8 9 10 11 12  AVERAGE 

Schema

Object *
Process * *     *
Action
Pre-function

LEARNER'S UNDERSTANDING OF INVERSE
          AFTER ACTIVITY

* *
Edy

 

 Figure 59: Edy’s trends of improvement in understanding of the function concept 

 

Initially Edy was operating at the action level but improved his understanding with each 

intervention. On average he was finally operating at the object level, which means that the 

interventions had a positive effect on his understanding of functions. This also indicates that 

the instructional material can improve learners’ understanding of functions. 
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LEARNER CONCEPTION LEVEL INITIAL LEVEL 1 2 TASK 1 TASK 2 AVERAGE LEVEL

Schema

Object

Process *

Action * *

Pre-function

EFFECTS OF EACH INTERVENTION ON LEARNER'S UNDERSTANDING OF DEFINITION
          AFTER ACTIVITY

* **
Teko

 

LEARNER CONCEPTION LEVEL INITIAL LEVEL 5 6 7 AVERAGE LEVEL

Schema

Object *
Process * *

Action *

Pre-function

EFFECTS OF EACH INTERVENTION ON LEARNER'S UNDERSTANDING OF REPRESENTATION
          AFTER ACTIVITY

*
Teko

 

LEARNER CONCEPTION LEVEL 8 9 10 11 12  AVERAGE 

Schema

Object * *
Process *     *
Action
Pre-function

LEARNER'S UNDERSTANDING OF INVERSE
          AFTER ACTIVITY

* *
Teko

 

 Figure 60: Teko’s trends of improvement in understanding of the function concept 

  

Initially Teko was operating at the action level but improved his understanding with each 

intervention. On average he was finally operating at the object level, which means that the 

interventions had a positive effect on his understanding of functions. This also indicates that 

the instructional material can improve learners’ understanding of functions. 
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The learners displayed varying conception levels for the different function-related concepts. 

A learner could operate at the schema level for one concept but be on a lower level in 

another. The implication is that, the teacher may need to determine the learner’s APOS 

conception level before teaching these function-related concepts in order to develop activities 

that help the learner to maintain the schema level or if operating at a lower level, to provide 

scaffolding to allow the learner to progress to a higher conception level.  

 

6.6 Discussion of the final products and their contribution to theory 

Teaching experiments conducted in the current study followed the five phases of design 

research and culminated in final products in their fifth phase which improved learners’ 

understanding of the function concept. Phase 5 of the first problem area on the definition of 

the function concept resulted in learners deriving a ‘working definition of the function 

concept’. This working definition proved to be useful to the learners in this study as they 

could use it to formulate functions and non-functions and to determine whether given 

relations were functions or non-functions. The working definition is a contribution to theory 

because in the current mathematics textbooks for example, Laridon et al., (2007) definitions 

of a function are prescribed and teachers rely on them to develop an understanding of the 

function concept, an approach which does not guarantee an understanding of the function 

concept (Kwari, 2007). This study demonstrates that teachers should not rely on textbook 

definitions of a function but should develop a progression to allow learners to come up with a 

“working definition” of the function concept. Deriving a “working definition” adds to the 

dimensions of understanding (Usiskin, 2012) the function concept. The ability to use the 

“working definition” as a component of understanding the function concept concurs with 

Markovits, Eylon and Bruckheimer’s (1986) view of learning and teaching the function 

concept. Results from this study suggest that the teacher should create an enabling 

environment in which learners are provided with real life situations modelling the function 

concept and activities to enable them to derive their own working definitions and to grasp the 

core idea of the function concept. 

  

The concept of a ‘definition-based procedure’ (DBP) was also introduced in phase 5 for the 

second problem area on representations of the function concept. In a definition-based 

procedure every step is based on the definitions of key concepts (intercepts, asymptotes, and 

turning points) that are involved. It was a different way of handling the application of these 

concepts integral to the use of functions. It compelled learners to understand the meanings of 
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all the critical points before they could calculate them or extract them from a drawn graph. 

This is a contribution to the pedagogy of functions which previously focused on following 

procedures without understanding them which forced learners to memorize them. Learners 

should be assisted to understand the procedures of calculating intercepts, asymptotes, turning 

points and inverses instead of encouraging them to memorize them without any 

understanding. 

  

From the literature reviewed in this study and my personal experiences with the teaching and 

learning of the inverse I have observed that teachers theorize this concept and do not show 

and explain to their learners the existence and use of an inverse in real life and why x and y 

are swapped in the procedure of determining the inverse. In the current study I developed the 

concept of inverse of a function using ‘real life contexts’. This practical approach is a 

contribution to the literature on the teaching and learning of the inverse of a function because 

it helped learners to realise the existence of the inverse in their daily lives and the conditions 

under which it exists which necessitated the construction of the definition of the inverse. Real 

life activities also focussed learners’ attention on understanding procedures and the reasons 

why the procedures work in the way that they do rather than memorizing them. Engaging 

learners in real life activities modelling the inverse of a function helped them to understand 

the procedure of algebraically finding the inverse by swapping x and y and the relationship 

between the graphs of a function and its inverse. This also helped learners to make sense of 

the condition of one-to-one property of a function and a condition for a function to have an 

inverse. 

 

The nature of questions in the June examination paper, namely, questions 7 and 8 compelled 

me to generate specific indicators for the action, process, object and schema level of APOS 

theory to complement the ones in Section 3.5. These indicators were also used in this study to 

determine the conception levels at which each learner was operating.  They are outlined as 

follows: 

 

Action level of a function 

The following are indicators of a learner who is operating at the action level that I created:  

• ties a function to a specific rule or formula; 

• can only identify changes in a pattern but may fail to come up with a formula or rule 
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generating the pattern; 

• gives only examples of functions done in the classroom; 

• sees a function as a machine and understands that some value is put into the machine 

and the machine churns out a value; 

• draws arrow diagrams and uses arrows to show relationships; 

• can repeat the explanation of critical points just as they were given in class; 

• uses rules without reason, for instance, they say “this is what we do or what we were 

told”; and 

• can repeat the explanation of the procedures just as they were given in class. 

A learner at the action level cannot do the following: 

• create or formulate own example of a function or non-function; 

• distinguish a function from a non-function;  

• explain how and why the procedure they use works; 

• explain why at the x-intercept y = 0 and at the y-intercept x = 0;  

• explain why at the turning point the x-coordinate =   and do not know how this 

formula came about; 

• explain how and why the procedure they use works; 

• explain why they interchange x and y in inverses; and 

• understand the conditions that must be satisfied by a function to have an inverse.  

 

Process level of a function 

A learner operating at the process level can do the following: 

• explains the meaning of the intercepts, turning points and asymptotes; 

• easily calculates the critical points; 

• gives partial explanations of their procedures;   

• sketches the graph of a given equation by first calculating the critical points and 

plotting them; 

• thinks of graph or curve sketching as an entire activity and internalizes the procedure;  

• looks at the word “inverse function” as a verb and sees an inverse function as undoing 

something; 

• gives a definition of inverse function that looks at the procedure as a whole with 

inputs, a process, and outputs; 
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• explains correctly the meaning of the inverse function; 

• easily calculates the inverse function; and  

• looks at an equation of a function and sees the procedure of finding its inverse as a 

whole without having to calculate it. 

 

A learner at the process level cannot do the following: 

• use the set-theoretical definition of a function to distinguish a function from a non-

function; 

• create own example of a function or non-function; 

• link the vertical line test with the one-to-one property of the function concept; 

•  explain why they take the steps of the procedures that they use, such as finding the 

intercepts, turning points and asymptotes; 

• attempt questions which require the use of a sketched graph; 

• use the critical points they identify on a sketched graph to determine the equation of 

that graph; 

• see that critical points connect the graph and its equation; 

• explain why they take the steps of the procedures that they use like interchanging x 

and y; 

• see the relationship between a function and its inverse; 

• use the conditions for an inverse to exist; and 

• link the vertical line test with the one-to-one property of the function concept  

and the condition that is required for an inverse function to exist.    

 

Object level of a function 

A learner operating at the object level can do the following: 

• looks at the graphical representation of a function and verify whether it is a function 

or not by using the vertical line test;  

• can explain why a graph which passes the vertical line test represents a function; 

• is able to interpret and relate parts of algebraic expressions or equations representing 

functions;  

• has knowledge of the rules and properties that enables the learner to describe how s/he 

transforms functions and predicts how functions are transformed by looking at the 
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graphs of transformed functions and to arrive at conclusions of the properties of 

graphs relating to different equations; 

• can identify critical points on a drawn graph and write down their coordinates; 

•  is aware of the reasons why they follow the steps of procedures that they use, such as 

 interchanging x and y in calculating the inverse; 

• can see the relationship between a function and its inverse only in terms of the domain 

and range; 

• is partially aware of the conditions for an inverse to exist; and 

• is aware of the graphical relationship between a function and its inverse. 

 

A learner at the object level cannot do the following: 

• use the logical definition of the function concept in formulating examples and non- 

examples; 

• use the logical definition to determine whether a given relation is a function or non-

function; 

• easily switch from graph to equation; 

• link the critical points located on the drawn graph and the ones they calculated using 

the equation; 

• see that the critical points connect the graph and its equation; 

• link the vertical line test with the one-to-one property of the function concept  

and the condition that is required for an inverse function to exist; and 

• explain the graphical relationship between a function and its inverse. 

 

Schema level of a function  

A learner at the schema level can do the following: 

• use the logical definition of the function concept in formulating examples and non- 

examples; 

• use the logical definition to determine whether a given relation is a function or non-

function; 

• switch from graph to equation and from equation back to graph; 

• link the critical points located on the drawn graph and the ones calculated using the 

equation; 

• see that the critical points connect the graph and its equation; 
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• link the vertical line test with the one-to-one property of the function concept and the 

condition that is required for an inverse function to exist; and 

• explain the graphical relationship between a function and its inverse. 

These indicators are a contribution to the literature on functions since they worked well in 

this study and they can be improved through their use in classrooms to teach the function 

concept. 

 

6.7 Reflections on the theoretical framework   

The theoretical framework was compiled by bringing together the theories of Piaget, APOS 

and RME within the constructivist paradigm in order to take advantage of their 

complementary themes and characteristics. The RME teaching and learning principles helped 

me to design the HLTs and activities that helped learners to move faster through APOS 

theory conception levels. APOS and Piaget’s theory complemented RME by informing the 

analysis. I used APOS theory conception levels to determine the level at which a particular 

learner was operating using the learner’s responses to task questions and clinical interview 

questions. APOS theory was also used as a tool to explain objectively learners’ difficulties 

with a broad range of function-related concepts and to suggest ways that learners can learn 

these concepts. APOS theory pointed me towards pedagogical strategies that led to marked 

improvements in learners’ understanding of the function concept. However, the explanations 

offered by a APOS analysis were limited to descriptions of the thinking processes of which a 

learner was capable, rather than what “really” happened in a learner’s mind, since this is 

probably unknowable. In practice, the mental constructions specified by APOS theory rarely 

occur in such a simple logical sequence. Moreover, transitions between levels were not 

always clear especially at the schema level which is not well defined.  

 

I believe that the framework I used in this study served its purpose well as it allowed me to 

classify learners in APOS theory conception levels and to use the RME’s teaching and 

learning principles to design stage appropriate and realistic activities that moved the learners 

from one conception level to the next. For my teaching, understanding how a learner moves 

through this developmental process enhanced my notion of how learners learn and therefore 

provided me with opportunities to help them to understand the function concept. As such, 

teachers need to determine the various stages at which their learners are and plan stage-

appropriate activities relative to learners in a particular stage.  
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However, my reflections on the theoretical framework indicated that more time needs to be 

devoted to helping learners develop the mental structures at the process, object and schema 

levels. Deriving and using a working definition should facilitate the development of mental 

structures at the process and object levels, while using definition-based procedures in 

translating from a graph to an equation should aid object conceptions. Organising and linking 

the working definitions and definition-based procedures could also link the relevant actions, 

processes and objects to form organised schemas. 

 

6.8 Reflections on my research methodology   

The aim of this study was to use design research to develop instructional material that could 

improve the learning of functions. In order for me to achieve this aim I followed a qualitative 

paradigm through a case study which enabled me to use task-based clinical interviews, 

follow-up group interviews and observation. It was important for me to conduct both 

individual and group interviews because they enabled me to discover learners’ thinking, 

processes and patterns which allowed me to evaluate their level of understanding in terms of 

APOS theory conception levels. By listening to learners’ interpretations, explanations, 

justifications and observing them interacting and responding to each other’s thought 

processes I was able to learn about their understanding of the function concept, concept 

images, difficulties and misconceptions. Group interviews generated a wider range of 

responses from learners and enabled them to challenge each other. 

 

The use of a case study provided me with a wealth of detail on learners’ understanding of 

functions which gave credibility to classroom situations and problems concerning their 

learning of functions. The actual results from this case study also furnished me with real or 

concrete solutions to the problems being experienced in the teaching and learning of 

functions. In general, findings from a case study may only be applicable to similar cases but 

in this study I was not seeking to generalize my findings but interested in discovering 

“learners’ understanding of functions” so that I could use that to design instruction. 

 

There were times when I felt the need to adjust the HLT or instructional activity for the next 

lesson. I made minor changes in the HLT because of incidents in the classroom such as my 

anticipations of failure, strategies I had not foreseen, activities that were too difficult, and so 

on. In such cases, I had a micro-cycle of design, experiment, and analysis within a macro-

cycle of design research. Such micro-cycles in the HLT created optimal conditions and I 
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regarded them as elements of the data corpus. Hence, I had to reflect well on these changes. 

In addition, the information gained strength when I supported changes with theoretical 

considerations. It is a result of the methodology used in this study that I was able to elicit 

learners’ interpretations, difficulties and misconceptions about the function concept and then 

to use these to design HLTs and RME-based activities that improved learners’ understanding 

of function-related concepts. 

 

6.9 Conclusions 

In drawing conclusions from the results presented in chapter 5, I was mainly interested in 

learners’ overall improvement in their understanding of functions spelt out in Section 2.4 of 

Chapter 2. The following conclusions were made from this study.  

• Learners find it difficult to understand and use a prescribed definition of the function 

concept.  

To help overcome this challenge I provided learners with opportunities to develop the 

following working definition of the function concept: 
“A function is a dependence relationship between two sets of variable quantities in which each 

element from the first variable (where we are coming from/source) has only one corresponding 

element in the second variable (where we are going to/destination).” 

 

This definition captures important attributes of the function concept, that is, the key concept 

or dependence relationship and the domain and range. Learners in this study could easily use 

it to identify functions and non-functions, formulate their own examples of the function 

concept, and identify dependent and independent variables in a given relationship. This 

definition also helped learners to appreciate the nature and origin of the function concept, 

distinguish a function from a non-function and apply it in problem solving. However, this 

working definition did not cater for constant functions. I was satisfied by their use of this 

working definition at their level of cognitive development. Figure 61 summarizes the HLTs 

that I designed and implemented which resulted in improvements in learners’ conceptual 

understanding of the definition of the function concept. 
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Figure 61: Summary of HLTs for the definition of the function concept 

 

• Learners’ have a tendency of memorising and carrying out procedures/algorithms 

without understanding them.  

This tendency limits learners’ use of these procedures since they can only perform them in 

one direction. For example, learners in the current study were able to successfully use the 

procedures of determining the intercepts, asymptotes and turning points from a given 

equation but found it difficult to extract the same critical points from a drawn graph 

representing the same equation and then to formulate the equation. Schwarz and Hershkowitz 

(1999) attribute the difficulties in translating from one representational form to another to the 

fact that different representations of a function have different properties for mathematical 

work with functions. For example, the critical points can be read from a graph but can only 

be calculated from a given equation. As such learners should be helped to read or extract 

these critical points from graphs and calculate them with understanding. Moreover, it is 

important for teachers to help learners understand the mathematical procedures before 

applying them in problem solving. To assist learners in the current study to develop a 

conceptual understanding of the procedures of calculating the intercepts, asymptotes and 

turning points I introduced the concept of definition-based procedures (DBPs). The use of 

Identification of 
variables in given 
functional relationships 

Formulate own 
examples and 
specify variables 

Determine the nature of the 
relationship in their own examples by 
experimenting (manipulating 
variables) 

Determine whether a given 
relation is a function or 
non-function 

Domain 
and range 

Derive the 
properties of a 
function 

Connect the one-to-one 
property of the function 
concept with the vertical 
line test 

Use the connection 
to analyze different 
definitions of the 
function concept 

Derive a working 
definition of the 
function concept 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

249 

DBPs made it easier for learners to translate from equation to graph and vice versa and also 

compelled learners to understand the meanings of all the key concepts involved in carrying 

out these procedures. Once these key concepts are understood it is easier for learners to 

translate from equation to graph and from graph to equation. Figure 62 gives a summary of 

the HLTs I designed to help learners understand the procedures of translating from an 

equation to a graph and vice versa. 
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Figure 62: Summary of HLTs for DBPs for translating from equation to graph and 

                   vice versa 

 

• The use of real life contexts formed the basis for their understanding of the inverse of 

a function. 
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In this study I introduced the inverse of a function by using real-life contexts and activities 

modelling the inverse of a function. This helped learners to realise the existence of the 

inverse in their daily life, the conditions under which it exists, and the relationship between a 

function and its inverse which necessitated the construction of the definition of the inverse. 

Though learners did not have difficulty in calculating the inverse there was need to explain 

the procedure they were using. Real life activities also focussed learners’ attention on 

understanding procedures and the reasons why procedures work rather than merely 

memorising them.  Figure 63 summarizes the HLTs that were designed with the intention of 

enabling learners to move more quickly to the schema level.  

 

 

 

 

 

       

 

 

 

 

 

 

 

 

 

                         Figure 63: Summary of HLTs for the inverse of a function 

                      

• Design research improved learners’ understanding of the function concept in terms of 

its definition, representation and inverse. 

Design research together with APOS theory, RME and constructivism to a large extent 

succeeded in improving learners’ conceptual understanding of the function concept through 

iterative design and development of instructional sequences (HLTs) and level appropriate 

 RME based activities.   
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Though not all the learners managed to reach the schema level, the research assisted learners 

to overcome their identified difficulties on functions. Learners also managed to move from 

their initial lower levels of APOS theory to the process and object levels and two learners 

reached the schema level as intended.  

 

6.10 Recommendations 

• Use of a design research model in designing, developing and implementing 

instruction on functions 

A design research model in teaching the function concept is recommended as planning of 

lessons starts with the learner unlike the traditional lesson planning which focuses on the 

content to be taught and how it can be taught. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 64: Simplified illustration of Wademan’s (2005) adapted Generic Model 
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• Combining constructivist theories of APOS, Piaget, and RME in design research 

Teachers can use APOS and Piaget’s theory to inform the analysis of their learners’ written 

or verbal responses which point to possible pedagogical strategies. On the other hand the 

RME’s learning and teaching principles can be used by teachers to inform their instruction, 

that is, the planning and implementation. In this study design research together with APOS, 

Piaget’s theory, RME and constructivism to a large extent succeeded in improving learners’ 

conceptual understanding of the function concept in terms of its definition, representations 

and inverse. This occurred through iterative design and development of instructional 

sequences (HLTs) and level appropriate RME based activities. In this study I also used 

constructivism, RME and APOS theory conception levels on the recommendation of the 

literature I reviewed. However, in South African schools, for different reasons these ideas of 

teaching the function concept are presently not being used. The results of this study suggest 

the use of these approaches facilitated meaningful learning. Teachers should use 

constructivism as their theoretical framework in teaching mathematics. A constructivist 

classroom environment enables learners to actively participate in the construction and 

development of their own understanding. It also promotes more learner to learner interaction 

which helps learners to compare their solution strategies and learn from each other unlike the 

teacher-centred approach which is commonly being used in our classrooms. 

 

• Use of APOS theory conception levels as a diagnostic tool for learners’ 

understanding of the function concept and as a pointer to possible pedagogical 

strategies 

I recommend the use of APOS theory conception levels as a diagnostic tool for learners’ 

understanding of the function concept and as a pointer to possible pedagogical strategies. 

Teachers can use conception levels of APOS theory in determining the level at which learners 

are operating, using the available evidence in the form of the learners’ responses to task 

questions and clinical interview questions. This will help teachers design instructional 

materials to move their learners from one conception level to the other. The ultimate aim is to 

reach the schema level. 

 

The theory of RME which proved to be very effective in this study is also recommended to 

drive the design and implementation of the instructional sequences and activities for teaching 

and learning the function concept. RME places learners’ mathematical reasoning at the centre 
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of the design process while simultaneously proposing the specific means by which the 

development of their reasoning could be systematically supported (Cobb, Zhao & Visnovska, 

2008). RME allows the teacher to initially present the definition, representation and inverse 

of the function concept within a concrete context allowing learners to develop informal 

strategies, but gradually through the process of guided 'mathematisation', allow learners to 

progress to more formal, abstract, standard strategies. It compels the teacher to use realistic 

context situations as the starting point or as the source for learning the function concept and 

speaks to the need to locate instructional starting points that are experientially real to learners 

and that take into account learners’ current mathematical ways of knowing. Teachers need to 

examine their learners’ informal solution strategies and interpretations that might suggest 

pathways by which more formal mathematical practices might be developed. RME also 

places emphasis on understanding processes, rather than learning algorithms and the focus is 

on the growth of the learners’ knowledge and understanding of mathematical concepts. There 

is a need to establish a link between learners’ own understandings and the correct 

mathematical ideas.  

 

In order to combine these theories into a workable plan for the practicing teacher, workshops  

are required. Teachers who trained in the seventies are familiar with Piaget’s theories while 

those who trained in the eighties onwards are more familiar with constructivism. There needs 

to be a focus on connecting Piaget’s theories with the APOS theory. The ideas surrounding 

constructivism should be considered in the context of RME. 

 

6.11 Limitations of the study 

A teaching experiment required clinical interviews to probe further and deeper into each of 

the learners’ thinking. My sample was reduced from twelve to six because of two learners 

who just dropped out after the first round of interviews and four others whose attendance at 

the sessions was erratic making the size of the sample smaller than what I had planned. A 

larger sample could have yielded more concept images about the function concept. To begin 

with, the learners were not free to express themselves after I had told them that I was tape 

recording our conversations. I tried to reduce the effect of this reluctance by being more 

informal in our discussions and diverting the learner’s attention from the tape recorder. Since 

I was observing learners alone I might also have missed some important points learners were 

making in their group discussions. Constraints of time did not allow me to take each learner 

to the schema level but I noted that they escalated from the level where they originally were 
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located. In addition I had assumed that since learners had been taught this topic they would 

begin at the process level of APOS theory, but I found that some of them were at a lower 

level. So I had to design more RME activities which required more time to accomplish. This 

could be the reason that some of the learners were operating below the schema level. 

 

As a result of the above limitations I suggest further longitudinal research that involves more 

types of functions and a larger sample of learners, more researchers and possibly video-

recording even the facial expressions of learners when they start a problem. In a normal class 

of 30-35 learners I would advise teachers to allow their learners to conduct these activities in 

groups and then to present their solutions to the whole class. This should then be followed by 

a whole class discussion where learners explain and justify their solutions which will enable 

learners to share ideas and learn from each other.  

 

6.12 Closing remarks 

This study sought to answer the following research questions in terms of the definition, 

representation and inverse of the function concept 

1 How do learners understand the function concept?  

2 How can instruction be designed to improve learners’ understanding of the function 

    concept? 

 

Learners regarded a function as any relationship. This narrow view of a function resulted in 

learners failing to formulate examples and non-examples of functions. To help overcome this 

challenge I provided learners with opportunities to develop a working definition of the 

function concept.  Learners in the current study were able to use the procedures of 

determining the intercepts, asymptotes and turning points from a given equation without any 

understanding of the concepts. As a result they found it difficult to extract the same critical 

points from a drawn graph representing the same equation and then to formulate the equation. 

To assist learners develop a conceptual understanding of the procedures of calculating the 

intercepts, asymptotes and turning points I introduced the concept of definition-based 

procedures (DBPs) which made it easier for learners to translate from equation to graph and 

vice versa. In this study I introduced the inverse of a function by using real-life contexts and 

activities modelling the inverse of a function. This helped learners to realise the existence of 

the inverse in their daily life, the conditions under which it exists, and the relationship 

between a function and its inverse which necessitated the construction of the definition of the 
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inverse. Real life activities also focussed learners’ attention on understanding procedures and 

the reasons why procedures work rather than merely memorising them. 

 

 The context of the classroom informed the instructional sequences to teach grade 11 

functions which are the product of this study. Seeing that timetables and scheduling vary 

from school to school, the amount of material per lesson will also vary depending on the 

available class time. I recommend that the lessons be taught in the sequence of this study. 
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Appendices 

Appendix 1: Interview Schedule for the June 2011 Examination 

Introduction  

“My name is Tinoda Chimhande and I am doing a research study to determine how grade 11 

learners understand the function concept in terms of its definition, representation and inverse. 

I also want to understand and develop the connections that learners make between the 

definition, representation and inverse of the function concept. Are you aware that this 

interview will be audio taped and I will make a transcript, but that your identity will be kept 

confidential? 

 

Questions 

1. You wrote the June mathematics examination Paper 1 that had questions on the function 

     concept. Can you explain what thoughts came to your mind when you read the problems 

     on the function concept in the examination? 

2. Did the problems look familiar to you in any way? 

3. Did you attempt to solve such problems previously? If so, when? 

4. Could you please take me, step by step through your solutions? You are going to solve 

    each part of the questions on functions on a separate page and while you are solving it I  

    want you to tell me  what you are doing. I want to get a better idea of your thinking behind 

    each solution strategy on all parts of the questions on the function concept. There is no 

    right or wrong solution and you are free to refer to your marked script; I just want to get a  

    better understanding of your thinking as you solve the problems on functions. I am also  

    going to ask you questions as we go along to help clarify things that I may not  

    understand”.  

5. Do you think that there are other strategies to solve the same problems? 

6. If you were given similar problems, would you be able to answer them? 

7. How would you explain such solutions to your colleagues? 

8. Was it difficult to determine the answers? 

9. Why did you choose these particular solutions? 

10. Did you check your answers to see if they were correct? 
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Appendix 2 

Task 1: Definition of the function concept 

1. For each the relationships described below explain whether they are functions or not: 

 a) The set of all cars in Mpumalanga province in relation with their registration numbers. 

…………………………………………………………………………………………………

………………………………………........................................................................................    

…………………………………………………………………………………………………

……………………………………............................................................................................ 

 b) The set of South African provinces related with their provincial cities.      

……………………………………............................................................................................        

…………………………………………………………………………………………………

……………………………………............................................................................................ 

………………………………………………………………………………………………… 

c) The set of fathers related to their sons 

…………………………………………………........................................................................

…………………………………………………………………………………………………

………………………………………………............................................................................ 

………………………………………………………………………………………………… 

2. Explain the meaning of the words domain and range. 

………………………………………………………………………………………………....  

…………………....................................................................…………………………………

…………………………………………………………………………………………………

………………….......................................................................................................................     

3. Which of the following relations are functions? Explain. 

    a) {(1; 2) ;( 2; 2) ;( 3; 2)} 

…………………………………………………………………………………………………. 

…………………………………………………………………………………………………

…………………….................................................................................................................... 

    b) {(2; 1) ;( 1; 2) ;( 2; 2)} 

…………………………………………………………………………………………………  

…………………………………………………………………………………………………

…………………........................................................................................................................ 
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   c) {(-1; 2) ;( 1; 2) ;(-1; 3) ;( 1; 3)}  

………………………………………………………………………………………………… 

…………………………………………………………………………………………………

………........................................................................................................................................ 

4. For each of the following 

    (i)  state, with reasons, which are functions 

    (ii) give the domain and range in each case 

    (iii) represent the relation as a set of ordered pairs. 

      a)                                                        b)                                                               c) 

 

 

 

 

 

a)………………………………………………………………………………………………      

……………………………………………................................................................................ 

…………………………………………………………………………………………………

……………………………………………................................................................................ 

…………………………………………………………………………………………………

……………………………………………............................................................................... 

b)………………………………………………………………………………………………

………………………………………………..............................................................................

..…………………………………………………………………………………………………

………………………………………….................................................................................... 

…………………………………………………………………………………………………

………………………………………….................................................................................... 

c)………………………………………………………………………………………………

………………………………………….................................................................................... 

…………………………………………………………………………………………………

………………………………………….................................................................................... 

…………………………………………………………………………………………………

………………………………………….................................................................................... 

 

 

1 

2 

3
 

2 

4 

6 

 

3 

1 

2 

3 

1 

2 

3 

4 

5 
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Task 2: Definition of the function concept 

1. Explain how the vertical line test is used to determine whether a drawn graph represents a  

     function or not. 

………………………………………………………………………………………………… 

…………………………………………………………………………………………………

…………………………………………………………………………………………………

………………………………………………………………………………………………… 

2. The following are graphs of various relations. For each graph (i) state whether it represents  

     a function or not.  (ii) give the domain and range. 

 

    a)  y                         b)                   y                              c)            y                     d)   y                           

                           2                

         2                                           0         2    x                   

     -1   -1    1    x                                                                 -2               2     x                           x                                                                       

                                                                                                  -2 

 

a)………………………………………………………………………………………………

…………………………………………………………………………………………………

…………………………………………………………………………………………………

………………………………………..………………………………………………………. 

b)………………………………………………………………………………………………

…………………………………………………………………………………………………

…………………………………………………………………………………………………

………………………………………………………………………………………………… 

c)………………………………………………………………………………………………

…………………………………………………………………………………………………

…………………………………………………………………………………………………

………………………………………………………………………………………………… 

d)………………………………………………………………………………………………

…………………………………………………………………………………………………

…………………………………………………………………………………………………

………………………………………………………………………………………………… 
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 Appendix 3: Interview Schedule for the definition of the function concept  

1. What do you think of when you hear the word function in mathematics? 

2.  Using your own words and any diagrams you need to express your ideas, explain the 

      meaning of the word function. 

3. List and explain any special properties of a function that you can recall and explain how 

    you would  illustrate them. 

4. Give me two examples of a function and two examples of non-functions. 

5. How do you distinguish a function from a non-function? 

6. A function represents a relationship between an independent and a dependent variable.  

    Explain in your own words what you understand by an independent variable and a 

   dependent variable? 

7. How do you identify the independent and dependent variables in a given functional 

    relationship? 

8. A function has a domain and a range (co-domain). Explain in your own words the meaning  

    of a domain and range. 

9. Where do you use functions in real life? You can use an example to explain the application 

     of functions in real life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

277 

Appendix 4: Interview Schedule for the representation of the function concept 

  1.  Explain how you might represent the function and of these representations which one do 

       you favour most and why? 

      (a) Equations 

            (i). When you are given the equation of a function how do you draw the graph of the 

                  function? 

            (ii). What are the main features (critical points) of the graph? 

                  a. What are the intercepts of a graph and how do you calculate them? 

                  b. What is an asymptote of a graph? How do you know from a given equation that 

                     there is an asymptote and how do you determine the equation of that asymptote? 

                  c. Some graphs have turning points. What do you understand by a turning point of 

                      a graph and how do you determine this turning point?  

     (b). Graphs 

            (i). What are the critical points of a graph? 

            (ii). How do you determine the equation of a function from a drawn graph? 

           (c). Tables. 

                  (i). When given a table of values how do you draw the graph represented by that 

                         table of values? 

                 (ii). When is it possible to determine the equation of the function from the table?  

                        How do you determine the equation of a function from the table of values? 

                 (iii). What other critical points of the function can be determined from the table of  

                         values? 

                  (iv). If the table is not given but you want to use it, what information will you  

                         need to complete the table?. Which other representations can you use to  

                         fill in the table? 
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Appendix 5: Interview Schedule for inverse of a function 

1. In your own words explain what an inverse function is? 

2. What symbol is used to represent an inverse of a function and what does that symbol  

    mean to you? 

3. If you are given the equation of a function explain how you find the inverse of that 

    function? 

4. What is the relationship between the domain and range (co-domain) of a function and that 

    of its inverse? 

5. What is the relationship between a function and its inverse? The form of these interviews 

     will change from student to student, depending on the answers the students will give. The  

     changes will occur only in the shape of the interview and the order of the questions, not in 

     the substance of the tasks. 
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Appendix 6: Initial tasks and activities used in this study 

 

 

      Initial Tasks: From the June 2011 Examination 

       

             QUESTION 7 

                         Given f(x) =  + 2 

             7.1       Calculate the co-ordinates of the x and y intercepts of f.              (4) 

             7.2       Determine the equations of the asymptotes of f(x).                      (2) 

             7.3       Sketch the graph of f(x) showing all the critical points.               (4) 

                                                                                                                               [10] 

              QUESTION 8 

              The sketch below, not drawn to scale, shows the graphs of the functions  

               defined by: h(x) = -2(x-3) (x+1) and g(x) = mx+c. 

               where A is the turning point of h(x) and R(2;b) is a point on h(x) 

                                                                    

                                                              Y      A 

                                                             Q               . R (2; b) 

 

 

                                                                                         P (3; 0) 

                                                                   0                                       X 

 

              8.1  Calculate the coordinates of the turning point A.                            (3) 

              8.2  Calculate the coordinates of Q.                                                        (1) 

              8.3  Determine the numerical values of m and b.                                    (4) 

              8.4  Write down the equation of g(x).                                                      (1) 

                                                                                                                                [9] 
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Activity 1: Identifying and explaining variables  

Work in pairs and identify the variables 

i.   The amount of hours someone works to the amount they get paid. 

ii.  The amount of petrol put in the tank and the amount of money paid by the motorist. 

iii. The number of loaves of bread and the amount paid by the customer. 

iv. The number of nights spent at a hotel and the amount of money the guest has to pay.. 

v.  The   number of patients admitted in a hospital and the number of beds in the hospital. 

 

 

 

Activity 2: Applying the knowledge 

Procedure for activity 2: 

1. Learners formulate their own relationship which they will be able to manipulate in an 

    activity by varying the quantities. 

2. Identify quantities that vary in the course of the activity and focus on the  

    relationship between those variables. 

3. Create a record of the corresponding values of the varying quantities by using a table or  

    graph. 

4. Identify patterns in the records created. 

5. Create a representation of the identified pattern in the relationship. 

6. What can you say about the representation you created in 5? 
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Activity 3: Table allocation game (determining whether a given relation is a function) 

Materials: Tables labelled with numbers on them for learners to move to. Learners are also 

labelled with letters A, B, C, D, E, and F. 

Step 1: I wrote a relation that is a function in that every learner moves to a different table. 

Define the learners as the x-coordinates and the tables as the y-coordinates, for example, {(A, 

1), (B, 2), (C, 3), (D, 4), (E, 5), (F, 6)}. 

Step 2: I let learners act out the function by moving to the allocated table, for example, A 

moves to table 1, B moves to table 2, C moves to table 3 and so on. I told the learners that 

this relation is a function (I asked them to explain why) - answer: one learner is linked to a 

unique table. 

Step 3: I wrote another relation that is a function. This time I wrote the relation so that more 

than one learner moves to one table, for example, (A, 1), (B, 2), (C, 1), (D, 3), (E, 4) and ((F, 

5). I told the learners that this is a function as well. I checked to see if any of their guesses 

change. At this stage I introduced the aspects of domain (the learners) and range (where the 

learners are going to). 

Step 4: I wrote a relation that is not a function, for example, (A, 1), (B, 2), (A, 3), (C, 4), (D, 

5) and (E, 6). I asked them to explain why this relation was not a function. Answer: This is 

not a function because A will not be able to move to table 1 and table 3 at the same time.  

Step 5: I then asked learners to derive the properties of the function concept from what they 

were acting out. 

 

 

 

 

Activity 4: Deriving the working definition of the function concept 

I asked learners in pairs to come up with their own working definitions of the function 

concept. The discussion starts when learners were asked to compare the different working 

definitions they had formulated 
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Activity 5: From equation to graph  

Sketch the graphs of the following functions indicating all asymptotes, turning points and    

intercepts with the axes. 

 

   1.      f (x) = x2 – 6x + 8                                                      

    2.     f (x)  =  - x2 - 5x – 6 

   3.     g (x) =            

   4.    g (x) =  + 1 

 

 

 

Activity 6: From graph to equation 

 

1.                                                        
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Activity 6: From graph to equation continued 

 

 2.                                                                

                                                                                                                                                                                                         
                                

                                                                                                          

The graphs above represents the functions in the form of f (x) = ax2 + bx + c. For each graph 

above: 

a) Determine the values of a, b and c. 

b) Determine the values of x for f (x) = 0. 

c) Determine the coordinates of P, the turning point of f (x). 

d) Hence, determine the range of f (x). 
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Activity 6: From graph to equation continued 

 

3. Given f (x) =  . The point A (2; 3) is the point of intersection of the asymptotes of  

     f.  The graph of f intersects the x-axis at (1; 0). D is the y-intercept of f. 

 

                                                     
 

 

a) Write down the equations of the asymptotes of f. 

b) Determine the equation of f. 

c) Write down the coordinates of D. 
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Activity 6: From graph to equation continued 

 

4. The diagram below shows the graph of: g(x) =  + q. A (1;-1) is a point on g and y = 1 

    is the asymptote of g.  

   

                                                                       
                                                                                                                                                                                                                

                                                                                                            

a) Determine the values of a, b and q. 

b) Determine the y-intercept of g.                             

c) Write down the range of g. 
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Activity 7: Identifying and using critical points from graphs to formulate equations  

 

        1.        

                                                                                                                                                                                                   
 

 2.                                                                                                                       
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Activity 7: Identifying and using critical points from graphs to formulate equations (contd)  

3.                    
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Activity 7: Identifying and using critical points from graphs to formulate equations 

                 (continued)  

4.             

                                                                                                        
 i. For each of the graphs above identify their respective critical points and use these critical 

    points to formulate their equations. 

ii. How do you know whether the equation is correct or not?  

 

 

 

Activity 8: Using definition-based procedures (DBPs) in the translation process  

 

                     Given f(x) =  + 2 

7.1     Calculate the coordinates of the x and y intercepts of f.         (4) 

7.2     Determine the equations of the asymptotes of f(x).                (2) 

7.3     Sketch the graph of f(x) showing all the critical points.         (4) 

                                                                                                         [10] 
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Activity 9: Using contexts to understand the definition and the purpose of inverses  

On the market day Nonjabulo and friends are selling ice cream and yoghurt. Towards the end 

of the day they put their yoghurt on sale. They reduced the price of the yoghurt to R1,80 from 

R2,40. Use the new price for all the calculations that follow. 

a. Copy and complete the table below:  

   

Number of yoghurt cans         2        3       4        8     10 

Price in rands (R)            

 

b. Determine the formula which they were using to find the price of any number of yoghurt 

    cans. 

c. There were 6 cans in each tray. How much will it cost to buy 3 trays? Is the cost of 18 cans  

     three times the price of one tray? 

d. You will notice that with each number of yoghurt cans there is an associated price. We can 

     write these numbers as an ordered pair ( number of yoghurt cans; price). Use the values in 

      the table and write the values as a set of ordered pairs. 

e. In the above relationship, identify the dependent variable and the independent variable and 

    give reasons for you answer. 

g. Thus, for every number of yoghurt cans bought, there is an associated price. This  

     association resembles a function in which the number of yoghurt cans forms the domain  

     while the price forms the range. Using this understanding, explain in your own words the 

      meaning of the terms domain and range 
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Activity 9: Using contexts to understand the definition and the purpose of inverses  

                  (continued) 

 

2. Some customers who were coming to Nonjabulo and friends’ table were saying that they 

    want yoghurt for a specified amount of money e.g for R20  . This implies that at times 

     Nonjabulo had to find out the number of yoghurt cans that can be bought with a specified 

     amount of money. 

a. Complete the following table: 
 
Price in rands (R)    3, 60      5, 40     7, 20   14, 40     18, 00 

Number of yoghurt cans      

 

b. Determine the formula which Nonjabulo and friends will use to find out the number of 

    yoghurt cans that can be bought by any given amount of money.  How do you it? 

c. Would you consider this new relationship to be a function? 

d. What is the domain and range of this new relationship? 

e. In this new relationship, which is the dependent variable and which is the independent 

    variable? Give reasons to support your answer. 

f. Use the above table to write down the ordered pairs for this relationship and compare them 

    with the ordered pairs in 1d. What do you notice? Explain in your own words. 

 

 

 

 

Activity 10 

 i. Show why the inverse of f(x) = x2 is not a function. 

ii. Draw the graph of f(x) = x2 and its inverse. 
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Activity 11 (Oral): Reciprocals as additive and multiplicative inverses 

                      Complete the following table 

Function Rule Inverse Rule 

x + 3 x – 3 

 
 

 4x 

 
 

  

 

 

 

Activity 12: Algebraically finding the inverse of a given function 

Find the inverses of the following functions 

1.   a)    f (x) = x + 3        b)   f (x) = x – 3                   2.   a)   f (x) = 2x          b)   f(x) =   

3.   a)  f(x) =                     b)  f(x) =  

What did you notice about these inverses? 

 

 

Activity 13: Understanding what it means to have an inverse graphically 

Sketch the graphs of the following functions on the same axes: 

 1. f(x) = x + 3  and  f(x) = x – 3  

 2. f(x) = 2x   and  f(x) =                3. f(x) =    and  f(x) =  
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Appendix 7: Ethical clearance certificate 
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Appendix 8: Permission letters 

 
Principal’s letter 
 
TO: THE PRINCIPAL 
       XXX HIGH SCHOOL 
       PRIVATE BAG X4036 
       KWALUGEDLANE 
       1341 
  
RE: REQUEST FOR PERMISSION TO CONDUCT RESEARCH AT XXX HIGH 
       SCHOOL 
 
Dear Sir/ Madam 

My name is Tinoda Chimhande and I am presently studying for my PhD degree in 

Mathematics Education through the University of Pretoria, and as such I am required to carry 

out research to write up a thesis. The title of my research is, “Design research towards 

improving understanding of functions: a South African case study”. The aim of this 

study is to use learners’ cognition when learning the function concept to design and develop 

instructional material to improve learners’ understanding of the function concept. The second 

aim is to reduce the difficulties that characterise the teaching and learning of functions at high 

school. 

 

I hereby request permission to carry out my research at XXX high school. The study will be 

carried out when the school is in session but all research activities will be done outside school 

hours and during weekends. Research activities will be done within and around the school 

environment but with the knowledge and permission of the H.O.D and class teachers. Initially 

learners in the sample will write the 2011 June Mathematics examination paper and I will 

analyse their solution strategies and then interview them on how and why they answered the 

questions in the way they will do. This will assist me to understand learners’ cognitive 

processes when solving functional problems which will enable me to design and develop 

instructional material to observe where the students are in their thinking and assist them 

accordingly. 

 

Criteria for participation include: willingness to participate voluntarily, ability to express 

oneself clearly and being grade 11 at that particular high school. Since participation is purely 

voluntary, participants are at liberty to withdraw from the study at any time if they so wish 
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without being penalized. Participants’ anonymity and confidentiality throughout the project, 

as well as in the reporting of the findings, is assured by the use of pseudonyms. I will not 

name the school at any stage. All the information gathered from a learner will be used solely 

for research purposes. For further information you can contact my supervisor (Professor Ana 

Naidoo at 0124205686 or ana.naidoo@up.ac.za). I trust that my request is acceptable. 

Yours in Education 

Tinoda Chimhande (Student Number: 10573462)  

...................................................................................................................................................... 
 
The Director’s letter 
 
TO: THE DIRECTOR 
       MPUMALANGA DEPARTMENT OF EDUCATION 
       PRIVATE BAG X 1014 
       KANYAMAZANE 1214 
 
RE: REQUEST FOR PERMISSION TO CONDUCT RESEARCH AT XXX HIGH 
       SCHOOL IN YYY DISTRICT 
  
Dear Sir/Madam 
 
My name is Tinoda Chimhande and I am presently studying for my PhD degree in 

Mathematics Education through the University of Pretoria, and as such I am required to carry 

out research to write up a thesis. The title of my research is, “Design research towards 

improving understanding of functions: a South African case study”. The aim of this 

study is to use learners’ cognition when learning the function concept to design and develop 

instructional material to improve learners’ understanding of the function concept. The second 

aim is to reduce the difficulties that characterise the teaching and learning of functions at high 

school. 

 

I hereby request permission to carry out my research at XXX high school in YYY district. 

The study will be carried out when the school is in session but all research activities will be 

done outside school hours and during weekends. Research activities will be done within and 

around the school environment but with the knowledge and permission of the principal, 

H.O.D and class teachers. Initially learners in the sample will write the 2011 June 

Mathematics examination paper and I will analyse their solution strategies and then interview 

them on how and why they answered the questions in the way they will do. This will assist 
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me to understand learners’ cognitive processes when solving functional problems which will 

enable me to design and develop instructional material to observe where the students are in 

their thinking and assist them accordingly. 

 

Criteria for participation include: willingness to participate voluntarily, ability to express 

oneself clearly and being grade 11 at that particular high school. Since participation is purely 

voluntary, participants are at liberty to withdraw from the study at any time if they so wish 

without being penalized. Participants’ anonymity and confidentiality throughout the project, 

as well as in the reporting of the findings, is assured by the use of pseudonyms. I will not 

name the school at any stage. All the information gathered from a learner will be used solely 

for research purposes. For further information you can contact my supervisor (Professor Ana 

Naidoo at 0124205686 or ana.naidoo@up.ac.za). I trust that my request is acceptable. 

Yours in Education 

Tinoda Chimhande (Student Number: 10573462)  
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Informed Assent Letter 

Dear Student 

My name is Tinoda Chimhande and I am presently studying for my PhD degree in 

Mathematics Education through the University of Pretoria, and as such I am required to carry 

out research to write up a thesis. The title of my research is, “Design research towards 

improving understanding of functions: a South African case study”. The aim of this 

study is to use learners’ cognition when learning the function concept to design and develop 

instructional material to improve learners’ understanding of the function concept. The second 

aim is to reduce the difficulties that characterise the teaching and learning of functions at high 

school. 

 

I hereby invite you to participate in the research. The study will be carried out when the 

school is in session but all research activities will be done outside school hours and during 

weekends. I will make transport arrangements and refreshments for you during weekend 

sessions. Research activities will be done within and around the school environment but with 

the knowledge and permission of the principal, H.O.D and class teachers. Initially you will 

write the 2011 June Mathematics examination paper and I will analyse your solution 

strategies on the questions on the function concept and then interview you on how and why 

you answered the questions in the way you will do. This will assist me to understand your 

thinking processes when solving functional problems which will enable me to design and 

develop instructional material to observe where you are in your thinking and assist you 

accordingly. 

 

Participation in this study is voluntary, you have the right to withdraw or discontinue your 

participation at any point during the course of the study with no negative consequences. 

Participants’ anonymity and confidentiality throughout the project, as well as in the reporting 

of the findings, is assured by the use of pseudonyms. All the information gathered from you 

will be used solely for research purposes. 

 

The interviews will be audio taped.  Access to the tapes will be restricted to the researcher.  

The tape will be stored in a secure area (e.g., locked filing cabinet) and the tapes will be 

destroyed one year after the completion of the study.  The tapes will be transcribed, and your 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



              Design research towards improving understanding of functions:  a South African case study 
 

297 

words may be quoted.  If so, a pseudonym will be used to ensure that you cannot be identified 

in any way. 

 

If you agree to participate in this study, please sign and return the attached consent slip to 

your teacher as soon as possible.  If you have any questions about any aspect of the study, 

please do not hesitate to contact me for further information or clarification at 0794874936.  

Yours sincerely 

Tinoda Chimhande 

---------------------------------------------------------------------------------------------------------------- 

Student Consent Slip 

 

I ----------------------------------------- agree to participate in the research and  I understand that 

this participation is entirely voluntary; I can withdraw consent at any time without penalty 

and have the results of this participation (up to the date of withdrawing), to the extent that it 

can be identified as mine, returned to me, removed from the research records, or destroyed. 

The results of this participation will be confidential, and will not be released in any 

individually identifiable form without the prior consent of myself and my parent/guardian, 

unless otherwise required by law.  The interviews will be audio taped.  The tapes will be 

transcribed, and my words may be quoted.  If so, a pseudonym will be used to ensure that I 

cannot be identified in any way. 

Signature of Researcher                                            Signature of Student 

-----------------------------                                           -------------------------- 

Date: ----------------------                                             Date: ------------------ 

...................................................................................................................................................... 
 

Parental Permission Letter  

Dear Parent   

My name is Tinoda Chimhande and I am presently studying for my PhD degree in 

Mathematics Education through the University of Pretoria, and as such I am required to carry 

out research to write up a thesis. The title of my research is, “Design research towards 
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improving understanding of functions: a South African case study”. The aim of this 

study is to use learners’ cognition when learning the function concept to design and develop 

instructional sequences and activities to improve learners’ understanding of the function 

concept. The second aim is to reduce the difficulties that characterise the teaching and 

learning of functions at high school. 

 

I hereby request your permission to allow your child to participate in the research. The study 

will be carried out when the school is in session but all research activities will be done 

outside school hours and during weekends. I will make transport arrangements and 

refreshments for the students during weekend sessions. Research activities will be done 

within and around the school environment but with the knowledge and permission of the 

principal, H.O.D and class teachers. Initially learners in the sample will write the 2011 June 

Mathematics examination paper and I will analyse their solution strategies and then interview 

them on how and why they answered the questions in the way they will do. This will assist 

me to understand learners’ cognitive processes when solving functional problems which will 

enable me to design and develop instructional material to observe where the students are in 

their thinking and assist them accordingly. 

 

Participation in this study is voluntary, you have the right to withdraw your consent at any 

time without consequences, and your child can discontinue his or her participation at any 

point during the course of the study with no negative consequences.  Your permission in no 

way obligates your child to participate in the study if s/he is unwilling. Participants’ 

anonymity and confidentiality throughout the project, as well as in the reporting of the 

findings, is assured by the use of pseudonyms. All the information gathered from your child 

will be used solely for research purposes. 

 

The interviews will be audio taped.  Access to the tapes will be restricted to the researcher.  

The tape will be stored in a secure area (e.g., locked filing cabinet) and the tapes will be 

destroyed one year after the completion of the study.  The tapes will be transcribed, and the 

words of your child may be quoted.  If so, a pseudonym will be used to ensure that your child 

cannot be identified in any way. 

 

If you agree to allow your child to participate in this study, please sign and have your child 
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 return the attached permission slip to his or her teacher as soon as possible.  If you have any 

questions about any aspect of the study, please do not hesitate to contact me for further 

information or clarification at 0794874936.  I would be happy to talk with you!  You may 

also contact my supervisor Professor Ana Naidoo, ana.naidoo@up.ac.za), 0124205686.  

Thank you for your time and consideration. 

Yours sincerely 

Tinoda Chimhande 

---------------------------------------------------------------------------------------------------------------- 

Parental Permission slip 

I give my consent for my child ___________________________ to participate in the 

research and I understand that this participation is entirely voluntary; I or my child can 

withdraw consent at any time without penalty and have the results of the participation, to the 

extent that it can be identified as my child's, returned to me, removed from the research 

records, or destroyed.  The results of this participation will be confidential, and will not be 

released in any individually identifiable form without the prior consent of myself and my 

child, unless otherwise required by law.   

Name of Student: -----------------------------------------------------------------------  

Printed Name of Parent/Guardian: ----------------------------------------------------   

 Signature of Parent /Guardian: -------------------------------------------------------                            

Date: -------------------------------------- 

Signature of Researcher: -------------------------------------------------------------                                        

 Date: ----------------------- 
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	FINAL THESIS FOR BINDING AND SUBMISSION BY DR. T. CHIMHANDE
	CHAPTER 1
	According to Cotrill, Nichols, Schwingendorf, Thomas and Vidakovic (1996) and Dubinsky and Wilson, (2013) learners have a pre-function conception of a function if they indicate little or no conception about the function concept. Moreover, whatever lit...
	 give responses like “ I don’t know” (Breidenbach et al., 1992);
	  regard a function as a social gathering (Breidenbach et al., 1992);
	  give a mathematical statement that describes something or a mathematical equation with variables(Breidenbach et al., 1992); and
	 regard a function as an equation (in x) with no y values (Nyikahadzoyi, 2006).
	QUESTION 7
	Figure 8: Taken from the Mathematics Paper 1 NSC June 2011
	On the other hand, the purpose of question 8 shown in Figure 9 was to elicit learners’ understanding of the coordinates of the intercept at Q, gradient of a straight line given two points on the line, the coordinates of a turning point from a given eq...
	QUESTION 8
	The sketch below, not drawn to scale, shows the graphs of the functions
	defined by: h(x) = -2(x-3) (x+1) and g(x) = mx+c.
	where A is the turning point of h(x) and R(2;b) is a point on h(x)
	Y      A
	Q               . R (2; b)
	P (3; 0)
	0                                       X
	8.1  Calculate the coordinates of the turning point A.                            (3)
	8.2  Calculate the coordinates of Q.                                                        (1)
	8.3  Determine the numerical values of m and b.                                    (4)
	8.4  Write down the equation of g(x).                                                      (1)
	[9]
	Figure 9: Taken from the Mathematics Paper 1 NSC June 2011
	Data collection strategies and instruments
	4.8.2 Phase 2: Development of interventions informed by theoretical framework
	I discovered that learners in the sample were not taught the inverse of the function concept. However, I had planned to use the inverse function to extend the learners’ understanding of representations because an inverse of a function can also be a fu...
	This chapter presents and analyzes data from the five design research phases I adapted for this study. The first phase (Problem Identification) addresses my first research question:
	 How do learners understand the function concept?
	and its two sub-questions:
	1) What are grade 11 learners’ current understandings of functions?
	2) What are the weaknesses in learners’ understanding?
	Phases 2, 3 and 4 address my second question:
	 How can instruction be designed to improve learners’ understanding of functions?
	Each phase presents a teaching experiment based on the design principles of RME. Phase 1 focused on learners’ understanding of functions and the literature reviewed in chapter 2. In this phase I transcribed all interviews and coded them using ATLAS.ti...
	5.3 Phase 1: Problem identification
	5.3.1 The analyses of learners’ initial individual tasks and task-based interviews
	These interviews were done in two sessions to allow learners to prepare themselves for the next session. Session 1 was based on question 7 and session 2 on question 8 of the grade 11 mathematics examination paper 1 of 2011 (see Figures 8 and 9). These...
	Case 1: Diva’s understanding of the function-related concepts
	Question 7 asked learners to calculate the intercepts and asymptotes from a given equation and to sketch the graph of the given function. To answer this question correctly learners should be operating at the action, process and object levels of APOS t...
	Figure 15: Diva’s written examination answers for question 7
	In my analysis of Diva’s written responses in Figure 15 above I refer to APOS theory indicators described in Section 3.5 and 6.6. Calculation of critical points is an important skill that learners should acquire to be able to translate from one repres...
	Interviewer: How do you explain an intercept?
	Case 2: Coco’s understanding of the function-related concepts
	Question 7 was testing learners’ ability to calculate intercepts and asymptotes from a given equation and to use them to sketch the graph of a given function.
	Figure 17: Coco’s written examination answers for question 7
	Case 3: Monga’s understanding of the function-related concepts
	Question 7 was testing learners’ ability to calculate intercepts and asymptotes from a given equation and used them to sketch the graph of a given function.
	Figure 19: Monga’s written examination answers for question 7
	Monga failed to explain intercepts and asymptotes. He could not explain clearly how to calculate intercepts indicating a lack of the basic knowledge about the function-related concepts. He admits making mistakes and also confesses that he does not kno...
	Case 4: Teko’s understanding of the function-related concepts
	Question 7 was testing learners’ ability to calculate intercepts and asymptotes from a given equation and used them to sketch the graph of a given function.
	Figure 21: Teko’s written examination answers for question 7
	Teko managed to answer all the questions successfully except for the value of b which he did
	not even attempt. He miscopied the formula for the x-coordinate of the turning point, he wrote x2 instead of x but went on to use x correctly and his work looks a bit organized. The first interview could have impacted on him positively. Teko’s ability...
	Interviewer: Well done for getting most of the solutions correct this time. Ok, how do you
	explain a turning point?
	Case 5: Mat’s understanding of the function-related concepts
	Question 7 was testing learners’ ability to calculate intercepts and asymptotes from a given equation and to use them to sketch the graph of a given function.
	Figure 23: Mat’s written examination answers for question 7
	Mat only did 8.1 on finding the coordinates of the turning point and just could not continue. He could not read and use the graph to extract information to use in answering 8.2, 8.3 and 8.4. I interviewed him to find out how he reasoned as he solved 8...
	Interviewer: What is your meaning of a turning point?
	Case 6: Edy’s understanding of the function-related concepts
	Question 7 was testing learners’ ability to calculate intercepts and asymptotes from a given equation and used them to sketch the graph of a given function.
	Figure 25: Edy’s written examination answers for question 7
	From Edy’s responses above it shows that the learner does not know the meaning of an intercept and asymptote. He only remembers that at the y-intercept x = 0 and at the x-intercept y = 0 without understanding why it is so. The asymptotes that he wrote...
	Edy’s responses in this interview showed an understanding of the procedures as he could explain clearly what he had done and why he was doing it in that way. Though he did not answer all the questions, Edy’s ability to use and explain procedures that ...
	5.3.2 Cross case analyses of learners’ calculations and explanations of the critical points
	The examination question 7 had asked learners to calculate the x and y intercepts. My interview questions were meant to compel learners to reveal their conceptual understanding of the x-intercepts and y-intercepts and the procedure of calculating them...
	I had planned to group learners in the sample into two groups of six each to take advantage of learner to learner interaction, but since some learners had dropped out and others were not consistent in their attendance I was left with one group of six ...
	Interviewer: Discuss as a group the difficulties that you faced when you were
	answering the two questions in the June examination. Tell others about the
	difficulties that you faced and the kind of assistance that you need.
	Learners’ responses presented in the interview excerpts above confirm that the five learners had difficulties in extracting information from a drawn graph; sketching the graph showing all intercepts, asymptotes, turning points, and to translate from g...
	5.4 Problem Area 1:  Understanding of the function concept
	5.4.1 Phase 1: Problem identification
	The following section presents problem area 1 which is closely related to the key idea of the function concept. Learners in the sample had been taught about the function concept by their teacher prior to the initial interviews which indicated that lea...
	Individual interviews (session 3) on the definition of the function concept
	Research question 1: How do learners understand the function concept?
	The learners’ responses address both sub-questions i and ii of the first research question:
	i) What are grade 11 learners’ current understanding (concept images and reasoning) of the function concept?
	Learners’ concept images of a function that emanated from the above excerpts include:
	 A relationship between things, points, friends or variables,
	 A correspondence between input and output,
	 A connection between input and output,
	 Something that tells us about domain and range and
	 A graph cut in one place by a vertical line.
	Learners’ reasoning about the definition was depicted in the examples and non-examples that they gave and in their inability to identify dependent and independent variables in a function. The above interview excerpts indicate that:
	 Learners could only give examples of functions that are narrow, vague or inaccurate,
	 Learners could not give examples of non-functions and
	 Learners had a narrow view of dependent and independent variables and could not differentiate the two in their examples.
	These concept images and reasoning of learners are also reported in literature (Dubinsky & Harel, 1992; Breidenbach et al., 1992; Hitt, 1998; Polaki, 2005). They indicate that learners do not understand the key idea (that of dependence relationship) o...
	What are the weaknesses in learners’ understanding of the function concept?
	I was able to detect that there are weaknesses in learners’ understanding because their answers showed that they do not have indicators to show the schema level. Analysis of learners’ interview responses above revealed the following weaknesses, diffic...
	 All the six learners could not use their definition of the function concept to formulate examples and non-examples of functions;
	 They cannot use their function definition to determine whether given relationships are functions or non-functions; and
	 They confuse the uniqueness condition of the function definition with the notion of one-to-one correspondence.
	The literature also revealed that it is common for learners to have the weaknesses, difficulties and misconceptions listed above (Sfard, 1991; Dubinsky & Harel, 1992; Breidenbach et al., 1992; Hitt, 1998) which indicate that there is need for interven...
	5.4.2 Phase 2: Development of interventions
	Phase 2 addresses research question 2:
	How can instruction be designed to improve learners’ understanding of the function concept?
	5.4.2.1 Teaching experiment 1
	Figure 27: HLT for developing an understanding of the function concept
	Table 9: Results of prototype 3
	Research question 1: What do learners understand by the representation of the function concept?
	This research question was answered by analysing learners’ responses with respect to what they said a representation of a function was, how they explained and calculated the aspects of a function representation (intercepts, asymptotes, turning points)...
	Representation of the function concept included types of representations that learners were aware of; representations prescribed by the CAPS curriculum; concepts related to the graphical and symbolic representations (intercepts, asymptotes, turning po...
	Learners’ understanding of the intercept
	Interviewer: How do you explain an intercept?
	Learners’ responses in the excerpts above indicate that learners cannot give a precise and complete explanation of intercepts. This shows that learners had an incomplete conception of the concept of intercept and were operating at the action level. On...
	Interviewer: Well done for getting most of the solutions correct this time. Ok, how do you
	explain a turning point?
	Interviewer: What is your meaning of a turning point?
	Learners’ responses both written and oral in the initial tasks and interviews on the representation of the function concept indicate that on the average, 5 learners were operating at the action level and Coco was operating at the process level as indi...
	Key: A- Action, P- Process, O- Object and S- Schema
	What are the weaknesses in learners’ understanding of the representation of the function concept?
	Learners’ concept images, reasoning and difficulties indicate that they do not understand the meanings, procedures of calculating the critical points of a graph and the process of translating from the graphical representation to the symbolic represent...
	 They memorised x =  for the turning point without knowing what it means and where this formula came from.
	 They could not tell when a function had an asymptote and what an asymptote means.
	 Learners could easily move from equation to graph but could not use a drawn graph to find the critical points and to determine the equation. I think this was because to move from an equation to a graph needs more of procedural understanding while to move¯
	Learners indicated that they prefer to translate from equation to graph and that they find it difficult to know what to do when the graph is given for them to refer to (Eisenberg, 1991). This indicated that learners were taught these representations s...
	Learners’ difficulties with the connections among the different representations of the function concept were also prevalent in the literature review. Similar to the above difficulties, Knuth (2000) reported that “learners experienced difficulties in t...
	5.6.2 Phase 2: Development of interventions
	According to the theoretical framework for this study I brought in RME and related actual examples in my lessons to the learners’ needs which I identified above in the form of weaknesses, difficulties, misconceptions and their APOS conception level. T...
	5.6.3 Phase 3: Tentative products
	5.6.3.1 Teaching experiment 4
	Equation Graph                  Graph       Equation            Critical points    Equation
	Figure 39: HLT for developing an understanding of the representation of the function
	Teaching experiment 4 was designed to help learners appreciate the connections between the equation and its graph as representations of the function concept and enhance their ability to translate from one representation to the other. This will help le...
	The teaching experiment comprised three lessons.
	From my personal experience I discovered that learners are normally taught the inverse of a function using the rule, ‘interchange the positions of x and y and make y the subject of the formula’. The implication of this approach is that, to learners th...
	5.7.2.1 Teaching experiment 6
	By the end of the teaching experiment learners should be able to:
	i. define an inverse function;
	ii. determine the inverse of a given function algebraically; and
	iii. use the relationship between the graphs of a function and its inverse.
	Take a function and its inverse from activity 12 and draw a table of values for each using the same domain and range. Then reflect the points in the table of values for the function in the line y = x and compare your answers with the corresponding poi...
	Figure 54: HLT for improving learners’ understanding the relationship between the graphs of a function and its inverse

	 Design research improved learners’ understanding of the function concept in terms of its definition, representation and inverse. Design research together with APOS theory, RME and constructivism to a large extent succeeded in improving learners’ conceptuè
	This definition captures important attributes of the function concept, that is, the key concept or dependence relationship and the domain and range. Learners in this study could easily use it to identify functions and non-functions, formulate their ow...
	Figure 61: Summary of HLTs for the definition of the function concept
	Definition Based Procedure 1
	Definition Based  Procedure 2
	Figure 63: Summary of HLTs for the inverse of a function
	 Design research improved learners’ understanding of the function concept in terms of its definition, representation and inverse.
	Design research together with APOS theory, RME and constructivism to a large extent succeeded in improving learners’ conceptual understanding of the function concept through iterative design and development of instructional sequences (HLTs) and level ...
	RME based activities.
	Though not all the learners managed to reach the schema level, the research assisted learners to overcome their identified difficulties on functions. Learners also managed to move from their initial lower levels of APOS theory to the process and objec...
	 Combining constructivist theories of APOS, Piaget, and RME in design research
	In order to combine these theories into a workable plan for the practicing teacher, workshops
	are required. Teachers who trained in the seventies are familiar with Piaget’s theories while those who trained in the eighties onwards are more familiar with constructivism. There needs to be a focus on connecting Piaget’s theories with the APOS theo...
	Cotrill, J., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996).
	Understanding the limit concept: Beginning with a coordinated process schema.
	Journal of Mathematical Behaviour, 15(2), 167-192.
	Initial Tasks: From the June 2011 Examination
	QUESTION 7
	QUESTION 8
	The sketch below, not drawn to scale, shows the graphs of the functions
	defined by: h(x) = -2(x-3) (x+1) and g(x) = mx+c.
	where A is the turning point of h(x) and R(2;b) is a point on h(x)
	Y      A
	Q               . R (2; b)
	P (3; 0)
	0                                       X
	8.1  Calculate the coordinates of the turning point A.                            (3)
	8.2  Calculate the coordinates of Q.                                                        (1)
	8.3  Determine the numerical values of m and b.                                    (4)
	8.4  Write down the equation of g(x).                                                      (1)
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