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Abstract 

  A 3-D network of voids (NoV) model was developed to 

study the discrete flow and heat transfer phenomena in 

multi-tubular packed-bed reactors. The model utilised does 

not place severe demands on computational resources. 

Hence, the model can probably easily be developed to 

simulate a fully packed tube and also a large number of 

tubes in the case of multi-tube reactors. Illustrative studies 

of the NoV model on a packed bed of spheres predict 

phenomenal variations of discrete angular velocities and 

consequently wall heat transfer coefficients within a single 

tube. The phenomenal variations of discrete wall heat 

transfer coefficients within a single tube imply that the 

different angular sections of the tube will transfer heat at 

radically different rates resulting in potentially large 

temperature differences in different segments of the tube. 

This may possibly result in temperature runaway and/ or 

hot spots development leading to several potentially 

unanticipated consequences for safety and integrity of the 

reactor. 

 

Nomenclature 

AH [m
2
] flow cross-sectional area    

cp [Jkg
-1
K
-1
] specific heat of fluid   

di [m] void diameter 

dp [m]  particle diameter 

dt [m]  tube diameter 

H [m]  head loss 

Hi [m]  head loss in void i 

∆H [m]  head correction 

hwu [Wm
-2
K
-1
] base case heat transfer coefficient 

Ki  flow resistance constant in void i 

kf [Wm
-1
K
-1
] fluid conductivity 

Lv   [m]  void length 

Np  number of axial planes 
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Nw  number of radial wedge segments 

Pm [m] perimeter of a cross section 

Qi [m
3
s
-1
] flow rate in void i 

Qu [m
3
s
-1
] base case flow 

rc [m] radius of cylinder 

rH [m] hydraulic radius 

u   [ms
-1
]  void velocity 

z [m] axial position in packed bed 

   

Special Characters 

µ [kgm
-1
s
-1
] fluid viscosity, kg/m-s 

ρf     [kgm
-3
] density of fluid 

θ [radians] angle of a radial wedge segment 

   

Subscripts 

c  cylinder 

f  fluid 

i  void number 

j  plane number 

w  wall voids 

 

 

Introduction 

  Modelling of flow and heat transfer patterns in low aspect 

ratio packed bed reactors has so far been limited mostly to 

the use of global and mean quantities of voidage, velocity 

and heat transfer coefficients. Most of these models have 

been homogeneous or pseudo homogeneous in nature, 

whereas few models have considered the discrete fluid 

flow in the bed structure [1-3]. In low tube-to-particle 

diameter aspect ratio, wall effects are present across the 

entire bed and a more accurate description of flow 

behaviour can be obtained by discrete accounting for the 

invariably random variation of local bed geometry. This 

study shows that flow structure and heat transfer in low 

aspect ratio fixed bed reactors is better modelled by 

properly accounting for the discrete void fraction 

variations. 

  In order to understand the contribution of discrete 
random variation of voidage to issues such as parametric 

sensitivity and hot spots development different 

investigators have used different numerical methods such 

as computational fluid dynamics (CFD) and lattice-

Boltzmann simulations. However, these approaches have 

been applied as yet to very small model systems due to the 

very severe computational resources demanded by such 

models [4-6]. Where attempt is made to model a fully 

packed tube, 2-D approaches have been utilised [7].  

  In this study, a representative typical sphere packing 

assembly is used to develop a three dimensional network 

of voids (NoV) model to investigate the contribution of 

discrete voidage variations to flow and heat transfer 

phenomena in packed-bed reactors. In principle, the 

network of voids model replicates both the geometry and 
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structure of the voids space, so that flow through the 

network is equivalent to flow through the voids in the 

packed bed of spheres. 

 

Void size determination 

  To characterise the flow behaviour in the void spaces it is 

necessary to define the void structure and size. The void 

structure is of arbitrary shape and has to be approximated 

by suitable void structure models. The packed bed of 

spheres in a cylindrical container is initially divided into a 

large number of wedge-shaped segments (Nw). The 

cylindrical wedge segments have identical width, rcθ, and 

equal height (Lv). If Nw is very high then a more detailed 

discrete distribution of angular porosity is obtained. On the 

other hand using small values of Nw has an averaging 

effect on the distribution of angular porosity. For clarity 

purposes the illustrated sphere packing assembly void 

structure and size used in this study is characterised by 

dividing by eight equally spaced planes in the axial 

direction as shown in Figure 1. Four planes are then used 

to discretise the packing radially and this results in eight 

segments. A typical plan view developed by radial 

discretisation at P1 will be as in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  The most common approach is to approximate the void 

structure as a set of cylindrical tubes. The voids equivalent 

radius can then be considered to be equal to the hydraulic 

radius of the void space available for flow [8, 9]. To 

account for any cross section presented to flow by a 

packed bed of spheres the hydraulic radius is defined as the 

ratio of the area of a cross-section to length of the 

perimeter of the cross-section, that is 
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Where, Pm is the perimeter of the cross section for flow 

and AH is the cross sectional area available for flow in a 

radial wedge segment. 

  The length of a void, Lv, is taken to be the distance 

between two horizontally adjacent planes used to axially 

discretise the packing. It is found by subtracting the z 

coordinate of the (j-1) plane from the z coordinates of the 

j
th
 horizontal planes. The axial discretisation of the packing 

by eight planes implies that the distance from plane to 

plane will be 2.09x10
-2
m and this is taken to be length of 

the voids (Lv) created. In essence, this length is an 

approximation of the true length travelled by a fluid 

element in the packed bed as the actual path of a given 

fluid element may be somewhat tortuous.  

  The resultant void size distribution after 8x8 

discretisation of the illustrated sphere packing assembly is 

as shown in Figure 3. The dimensionless void sizes are 

obtained by dividing the diameter of the equivalent 

cylindrical conduits by the void length (Lv). The individual 

voids which form the network of voids show a wide 

variability. The maximum void size is about six times 

greater than the minimum void size. As void size 

influences the resistance a particular void offers to flow, 

the distribution of flow within the discrete voids will be 

expected to exhibit a similarly wide variation due to the 

wide variability in discrete void sizes. 

 

Voids interconnection 

  The necessity of incorporating more detail in studying the 

influence of bed structure on fluid dynamics in fixed bed 

reactors without excessive computational requirements, 

precipitated the development of the network of voids 

analysis for a sphere packing assembly. The network of 

voids analysis offers simplicity in studying the influence of 

discrete angular voidage variations on fluid flow and heat 

transfer in fixed bed reactors. The discrete structure of the 

void space in which the fluid is transported can be 

completely defined once the sphere radius and positions 

are known. However, the void space is a continuous, 

interconnected region with a complex geometry. In the 

network-of-voids approach the packed bed is axially and 

radially discretised as described above and this results in a  
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Figure 1 Eight equally spaced planes axially discretising 

the illustrated sphere packing assembly 

Figure 2 Eight radial segments at P1 developed by 

radial discretisation of the packing with four vertical 

planes (eight radial segments)  
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packed bed with cylindrical wedge segments. The 

cylindrical wedge segments encompass the solids 

contribution of the spheres. Fluid flow within the packing 

will be in the void sections, that is the space not occupied 

by the solids. If the voids of the different axial and radial 

wedges are interconnected this results in a network-of-

voids.  The challenge is to obtain a network structure that 

can realistically approximate the fluid mechanics within 

the geometry of the sphere packing assembly. 

  The network-of-voids is developed by considering that 

axially and radially adjacent voids are in constant 

communication with each other. If flow through the packed 

bed is visualised to be from the bottom    (j = 1) to the top 

(j = Np) of the packing, then the voids in the first plane 

(bottom most) communicate with two radially adjacent 

voids and the void that is immediately above it in the axial 

direction. Voids between the bottom most and top most 

planes are interlinked to four adjacent void spaces and flow 

through the voids can be in any of these directions. The 

voids in the top most plane have a single upward out flow 

while voids radially adjacent to the node point void have 

flow in or out in either direction. At a given axial location, 

the fluid is taken to “virtually” transfer into or out of 

adjacent angular voids and this results in radial 

redistribution of flow creating the cross flows shown in 

Figure 4 (a). By taking the transfer of fluid between 

adjacent angular voids as virtual, it implies that all cross 

flow voids offer little or no resistance to flow. Considering 

the fluid to flow from the bottom to the top of a packed bed 

the angular and axial voids can be taken to communicate as 

depicted in Figure 4 (b). 

 

Flow modelling using network analysis 
Flow though the packed bed of sphere assembly could then 

be simulated using the established void size and the 

described void interconnections. The numerical 

computation of flow is governed by the fundamentals of 

network analysis of conserving mass and energy. Analysis 

of fluid flow in networks of conduits is mainly based on 

the analogy from Kirchoff’s law applicable to electrical 

networks. If fluid flow in a network of conduits is made 

analogous to flow of electricity in networks then the 

following analogies become applicable: 

I. The algebraic sum of the fluid flow into or out of 
any node should be zero. 

II. The algebraic sum of the pressure head losses 
around any closed loop should be zero. 

The first analogy is based on the continuity principle and 

the second analogy is the energy law. If volumetric flow 

rate is used with the continuity principle, the first analogy 

can be expressed mathematically as conservation, so that at 

a given junction 

( ) ( )
iniouti QQ ∑∑ =     (2) 

Where, Qi is the volumetric flow rate, and i denotes the 

conduit number.  If a network of conduits contains J nodes 

and all external flows are known then (J-1) independent 

equations can be written using equation (2).  The energy 

principle is satisfied by noting that if one adds the head 

losses around a closed loop, taking into account whether 

the head loss is positive or negative, the net head losses 

equal to zero. Mathematically, the energy principle gives L 

equations of the form 

∑ =
L

iH 0      (3) 

Neglecting losses other than friction, the characteristic 

equation for flow in conduits will be 
n
iii QKH =      (4) 

Where, Ki denotes a resistance constant of the specific i
th
 

conduit and n is a constant whose value is dependent on 

the method used to evaluate the flow friction factor. 
Substitution of equation (4) into equation (3) gives 

∑ =
L

n

n
iiQK 0      (5) 

A network of conduits consisting of J nodes and L non-

overlapping loops and M conduits will then satisfy the 

equation 

( ) LJM +−= 1      (6) 

The ( J-1) equations are linear although the associated L 

energy equations are non linear.  

  There are several commonly used numerical problem-

solving methods applied to iteratively solve the flow or 

pressure distribution in networks of conduits. The nature of 

the flow problem in multi-tubular fixed beds 

configurations is such that the external flows into any 

given tube are not known before hand, necessitating the 

use of the Hardy Cross method also known as the single 

path adjustment method. There are two alternative 

procedures to the Hardy Cross relaxation method, which 

are the loop method, based on identity of head at a point, 

and the node method, based on continuity at a junction 

[10]. 

  Multi-tubular fixed beds configuration favours the node 

approach as a fixed pressure drop can be set for each tube 

and the resultant discrete flow distribution analysed. The 

node method is an iterative procedure where initial head 

values at different nodes in the network are assumed. In 

this approach, the principal relationship used is the 

continuity equation. For each node in turn, the net total 

flow into the node is then calculated. If this is not zero, its 

head is corrected by an amount ∆H. 

Figure 3 Dimensionless void size distribution for the 

illustrated sphere packing assembly for dt/dp = 1.93 
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Discrete modelling of wall heat transfer  

  For reactions with strong heat effects, low aspect ratio 

fixed bed reactors are normally employed to facilitate 

supply or removal of reaction heat. Due to the presence of 

close confining wall across the entire bed, it will be 

expected that the wall heat transfer process will greatly 

influence the behaviour of such reactors. Hence the need of 

discrete approaches that may give a better comprehension 

of operational issues such as hot spot development and 

parametric sensitivity associated with low aspect ratio 

fixed bed reactors. 

  In general, heat transfer inside packed beds can be 

through combinations of conduction, convection and 

radiation. These mechanisms combine and interact in a 

complex fashion within the complex geometry to produce 

the overall heat transfer behaviour in a packed bed reactor. 

The various near wall heat transfer mechanism can be 

classified into three groups[11]. The first group is made up 

of mechanisms that are based on the solid phase while the 

second and third group consists of mechanism through the 

voids that are either dependent or independent of fluid 

flow. 

  By transforming the illustrated sphere packing assembly 

to a NoV model, approximate discrete wall heat transfer 

coefficients could be evaluated using a simplified approach 

similar to that of analysing convective heat transfer inside 

conduits. This initial approach analysis focuses on heat 

transfer in discrete void spaces that is dependent on fluid 

flow and assumes that it is the major contributing heat 

transfer mechanism. When the flow Reynolds number in 

the discreet voids is laminar (NRe < 2100), the discrete 

Nusselt numbers, NNu, are estimated using the classic 

correlation [12]. In the transition zone, NNu is evaluated 

using the recommended empirical correlation [13]. When 

the flow in the discrete voids becomes turbulent (NRe > 

10000), the discrete wall heat transfer coefficients could 

then be estimated using the appropriate modified equation 

[14]. 

 

Results and Discussions 

  The NoV model was used to investigate the contribution 

of variations of discrete voidage to flow and heat transfer 

patterns for a low aspect ratio packed bed with dt/dp=1.93 

by applying a pressure drop of 1.0 Pa across the bed 

length. The simulations are based on the data for the 

catalytic oxidation of o-xylene [15]. Table 1.0 shows the 

values of the different modelling parameters used for 

approximating the discrete flow and heat transfer 

coefficients in the reactor using the NoV model.  

   Table 1.0 Modelling parameters 

Symbol Value Units 

ρf 0.935 Fluid density, kg/m
3
 

µ 3.11x10
-5
 Fluid viscosity, kg/m-s 

 cp 1047 Specific heat of fluid,  J/ Kg-K 

kf 4.35x10
-2
 Fluid  conductivity, W/m

 
-K 

 

  Initially flow is simulated for the “base” case which 

assumes that all the discrete angular voids are equal to the 

packed bed overall mean voidage of 65.71%. In this case 

all the cross flows will have a zero magnitude due to the 

absence of a pressure gradient and the values of flow rates 

in the wall voids will be equal, this procedure is to some 

extent a validation procedure as well. The base case values 

of flow rates, velocity and heat transfer coefficients could 

then be used to make the different simulation results 

dimensionless. 

  To evaluate the influence of discrete voidage on the 

discrete flow a scatter plot of dimensionless flow rates and 

dimensionless void size is plotted in Figure 5. The discrete 

flow rates are made dimensionless by dividing the NoV 

model predictions flow rates by the base case flow rate (Qu 

= 2.29x10
-7
m
3
/s). From the plot, discrete voids with high 

values exhibit both high and low flow rates. On the other 

hand, discrete voids with low size values also show both 

high and low flow rates as well. Hence, no clear 

relationship between the void size and the discrete void 

flow rate could be established. The absence of any 

meaningful trends between discrete void size and the 

discrete flow rates is indicative that at any node flow may 

be distributed in any of the interconnecting voids on the 

Figure 4 (a) Angular (tangential) voids communication 

(b) axial direction interaction of voids 

Tube wall

Node

Inlet

(a)

(b)

Axial flow

Cross flow



basis of the resistance the voids at that particular node 

offer to flow. 

  The overall fluid flow behaviour within the network is 

illustrated in the form of a discrete dimensionless voids 

velocity quiver plot in Figure 6. In the plot the arrow 

length and direction is indicative of increasing values of 

discrete dimensionless void velocity in particular regions 

bounded by the radial and axial planes. The discrete 

velocity structure has a complex pattern which shows cross 

voids velocities to have smaller magnitudes as compared to 

the discrete wall values. High axial velocities dominate 

with some isolated cases of high velocities in the cross 

flows voids being encountered within the network.  
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  The distribution of dimensionless discrete wall heat 

transfer coefficients is plotted as a histogram in Figure 7. 

The dimensionless discrete wall heat transfer coefficients 

are obtained by dividing the NoV model predictions wall 

heat transfer coefficients by the wall heat transfer 

coefficient (hwu = 11.70 W/m
2
-K) predicted by the model 

for the base case. About 64.0% of the dimensionless 

discrete wall heat transfer coefficient values are close to 

hwu. However, there are isolated incidences when the 

discrete wall heat transfer coefficients are either extremely 

low or high. For instance the maximum dimensionless 

discrete wall heat transfer coefficient is almost five times 

greater than the minimum dimensionless discrete wall heat 

transfer coefficient.   

 

A qualitative comparison of the dimensionless discrete 

wall heat transfer coefficient values in the different regions 

bounded by radial and axial planes is visualised in Figure 

8. The visual variation of dimensionless discrete wall heat 

transfer coefficients is from two opposite viewpoints which 

are 0
o
 and 180

o
. The figure is a filled contour map wrap-

around of the dimensionless discrete wall heat transfer 

coefficients on the wall of the containing vessel. Values 

represented by white are close or equal to hwu, while values 

in the blue region are the discrete wall heat transfer 

coefficients that are below hwu with deep blue indicating 

the lowest heat transfer coefficient. Values represented by 

shades of red are for discrete voids heat transfer 

coefficients higher than hwu. 
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Maximum = 1.37

Mean  = 0.91
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  The occurence of radically different values of discrete 

wall heat transfer coefficients within a single tube imply 

that the different sections of the tube will transfer heat at 

radically different rates, resulting in potentially large 

temperature differences in different segments of the tube. It 

will be expected that segments with low heat transfer will 

have a high chance of developing hot spots due to poor 

heat transfer rates in the case of highly exothermic 

reactions. Whereas the opposite cases when the wall heat 

transfer coefficients are relatively high imply better heat 

flux in that region and probably better conversion in such 

regions in the case of endothermic reactions.  

 

Conclusions 

  A network of voids model that offers simplicity in 

incorporating the discrete variations of voidage for discrete 

fluid flow structure characterisation and does not require a 

massive computational effort has been developed. The 

NoV model predicts wide distributions of discrete flow 

rates within a single packed bed tube. The magnitude of 

the discrete flow rates in the voids has been established to 

be independent of the discrete void size. This is because 

the discrete flow behaviour of a given void is 

interdependent on the behaviour of voids interconnecting it 

and cannot be characterised in isolation.  The distribution 

of discrete voids velocities shows a wide variability and  
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Figure 5 Scatter plot of discrete dimensionless flow 

rates against dimensionless void size of voids 

Figure 6 Dimensionless velocities in the different sections 

bounded by the radial and axial planes of voids 

Figure 7 Distribution of dimensionless discrete wall 

heat transfer coefficients 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

existence of low and high velocity gradients. Phenomenal 

variations of discrete wall heat transfer coefficients within 

a single tube are encountered and imply that the different 

discrete sections of the tube will transfer heat at radically 

different rates. This can potentially result in localised hot 

spots, with several potentially unanticipated consequences 

for safety and integrity of the reactor. 
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Figure 8 Variation of dimensionless discrete wall heat 
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