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ABSTRACT 
The research field of the study is related with turbulence 

modeling. The general objective is the implementation in a 
commercial code, of two equations Non Linear Eddy Viscosity 
Model (NLEVM) which removes Boussinesq linear 
approximation for the Reynolds stress tensor. The work 
described in the paper implements a second order k-ε model 
based over Shih, Zhu and Lumley (1993) [1] and Craft, 
Launder and Suga (1996) [2] in the finite volume commercial 
code ANSYS-FLUENT v. 6.3.26, by writing additional 
subroutines. The model has been validated through 
experimental and DNS data available in the literature. The 
benchmarks shown in this paper are the straight Square Duct 
[8] and the Backward-Facing Step [9, 10]. After the validation, 
the model has been used for predicting the flow behavior for 
complex industrial applications. The geometry used is similar 
to the bowl-shape downcomer of nuclear reactor. This is an 
application field of interest still under study by the same 
research group and an international consortium. 
 
INTRODUCTION 

Turbulence modelling still today represents one of the key 
bottlenecks for increasing the potential of CFD to accurately 
reproduce complex flow fields. Many are the approaches 
followed to try overcoming the issue. Looking at the literature 
while DNS seems to raise a great interest in the academic field, 
LES starts being used with a certain frequency for research 
applied to industrial problem. In this study, due to the 
complexity of the geometry and physic with high Reynolds 
regime involved, a two equation models approach, with a non 
linear relationship between stress and strain has been 
considered. 

In particular, the models based on the hypothesis of 
Boussinesq are not adequate for capturing the effects of the 

inequality of the normal stresses of the Reynolds stress tensor, 
and therefore, can not predict, for instance, any secondary 
motions observed in the flow field of a square duct. Being able 
to predict such secondary motions in turbulent flows may 
increase the reliability of CFD results and their capability to 
reproduce the flow field behaviour associated with many 
engineering applications and increase the range of applicability 
for two equations turbulent models. These mentioned models 
are based on time averaged Navier-Stokes equations proposed, 
in 1895, by Reynolds. In the Reynolds averaging of the Navier-
Stokes equations (RANS) a statistical average in time is done 
before solving them. To remove some of the limitation included 
in these models may contribute to improve their capability in 
predicting complex flow without increasing the computational 
costs, as it will happen with the other RANS closure models 
(e.g. Reynolds Stress Model) or with the LES approach.  
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Turbulent Reynolds number 

Ui [m/s] Time averaged velocity component 
ui [m/s] Fluctuating velocity component 
Special character  
δij  Kronecker delta 
k [m2/s2] Turbulent kinetic energy 
ε [m2/s3] Turbulent kinetic energy dissipation rate 
σκ  Turbulent Prandtl number 
σε  Closure coefficient  of the transport equation of ε 
 
THEORETHICAL BASIS 
 
Governing Equations 

Engineering calculations and approximations, generally 
require a level of accuracy that need to be at least adequate for 
predicting the mean effect of the turbulent quantities.  



    

Instantaneous fluctuations are not required to be solved since 
their influence on the mean quantities may be negligible in 
many situations. Therefore, for practical approach modelling 
the averaged turbulent transport quantities are accurate enough 
for knowing the mean distribution of the main flow 
characteristics and how turbulence influences them. In the 
RANS approach a statistical average in time is computed 
before solving them. 

For an incompressible Newtonian fluid the governing 
equations for a turbulent flow (without body force) can be 
written in Cartesian tensor notation as: 
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The averaging process produces a set of equations for the 
mean flow that is not closed and the problem of solving it is 
known as the turbulence closure problem. 

Reynolds average approach to turbulence requires 
Reynolds stresses to be modelled in an appropriate way. 
Common methods based on eddy viscosity model, employ 
Boussinesq hypothesis that correlate linearly the deviatoric part 
of the Reynolds stress tensor to the strain rate of the mean flow. 
Moreover the trace of the tensor is, for incompressible flow, 
proportional only to scalar quantity, known as the mean 
turbulent kinetic energy: 
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This simple hypothesis, used in many of the current 
implemented eddy viscosity models, moreover, implies the 
disadvantage of considering turbulence viscosity as a scalar 
quantity (implying an “isotropic” behaviour). Any models 
including this figure can not work properly where flow 
turbulence is dominated by high swirled flows or high bended 
geometry with secondary flows that can not be solved 
accurately with a linear relationship between strain and stress. 
 
Two equation models: the k-ε family  

Two-equation models allow resolving the closure by 
solving differential transport equations: one for k, the turbulent 
kinetic energy, and a second one for another scalar. This second 
transported quantity may be selected to be the spatial length of 
turbulence L or any combination of the type m nk L  is 
appropriate for such implementation. Turbulent kinetic energy 
transport equation is:   
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where kP  is the turbulent kinetic energy production: 
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In the model developed by Jones and Launder in 1972 [3], 
the k-ε model, the second equation is defined for the turbulent 

dissipation rate, defined as 
3 / 2k
L

ε ∝ .  

The transport equation can be written as: 
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In these equations, turbulent viscosity is defined by the 

Prandtl-Kolmogorov relation 
2

t
kCµµ ρ
ε

= . The closure 

coefficients used for closing the model are taken from Launder 
and Sharma (1974) [4] and below reported: 

 

Cµ  kσ  εσ  1cε  2cε  

0.09 1.0 1.22 1.44 1.92 

 
Table 1 Closure coefficients for k-ε model 

 
Non-Linear Eddy-Viscosity Model 

The Boussinesq hypothesis limitations have motivated the 
researchers’ effort to find a more accurate form for defining the 
relation between the Reynolds-stress tensor and the mean flow 
quantities (mainly the strain rate tensor). 

Such relation, adopted together with a two-equation model 
based on the k-ε formulation, constitutes a Non linear Eddy 
Viscosity Model (NLEVM). This approach is sometimes 
referred to as algebraic since it uses the Boussinesq hypothesis 
to compute directly the Reynolds stress tensor [5] as the product 
of an eddy viscosity and the mean strain-rate tensor without 
solving differential transport equation for the six independent 
components of the tensor. 

In such a formulation, explicit definition of Reynolds stress 
components is given, preventing either the increase of 
computation costs associated with the additional transport 
equations that need to be solved either the usage of empiric 
algebraic correlation for each stress component. 

The idea associated with EARSM models, was first 
introduced in 1975 by Pope [6], who mathematically derived a 
general non-linear constitutive relation starting from the 
generalized Cayley-Hamilton theorem and applying the 
invariant principles. A second order formulation for the stress-
strain relationship is more adequate that a linear relationship to 
capture some important characteristic of complex flow [5].  

 The following equation shows a quadratic formulation for 
the stress-strain relationship common to all EARSMs: 
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where the strain rate and the vorticity tensor are defined as 
follows: 
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In the last decade many correlations have been studied and 
various authors contributed to a second order expansion of the 
k-ε model. In this work, the implementation by Shih-Zhu-
Lumley model is used. This second order model is 
characterized by an explicit relationship linking Cµ  to the 
invariant S and Ω of the strain rate and the vorticity: 
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In particular, in the current study, A1 and α value are set 
according to an experimental campaign [7] done at the 
THTLab of the University of Tokyo (A1 =3.9, α =0). 

It is interesting to note that all the three coefficients 
multiplying the second order factors in the quadratic 
formulation (C1, C2, C3), as reported in Tab. 2, present the same 
structure: they are proportional to the inverse of  Cµ  and to the 
inverse of a cubic function of S. This structure, together with a 
non constant definition of Cµ , derives from respecting 
realizability in the second order formulation of the stress-strain 
relationship. 
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Table 2 Closure coefficients for linear and non-linear terms 

 
Realizability is provided when the non-negativity of the 

turbulent normal stresses is granted and Schwarz inequality is 
respected. Despite this is a physical and mathematical principle 
to be granted for avoiding unphysical results, many of the 
current implemented turbulence models do not contain it. 

The damping function for the turbulent viscosity µt, 
proposed by Wilcox [5] as function of the turbulent Reynolds 
number Ret, is defined as:  
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MODEL VALIDATION 

The validation of a numerical model is a required step that 
allows the testing of the implementation over a number of 
experimental data available in the literature, in order to assure 
the reliability of the model. 

The present model has been validated by using two test 
cases: the Square Duct and the Backward-Facing Step. The 
numerical results are compared at two different levels: 

1. with experimental data available for evaluating accuracy. 
2. with the numerical results obtained with some of the 

turbulence models already implemented in the commercial code 
used in order to understand the innovative contribution added 
by the present model. For this purpose the “realisable” 
formulation of the k-ε due to T. H. Shih et al. (and referred to as 
“rke”) and the RNG formulation due to V. Yakhot and  S.A. 
Orszag (referred to as “RNGke”) natively implemented in the 
code have been used as comparison. 

The Square Duct presents the interesting feature of the 
secondary motions, that can be predicted only removing 
Boussinesq hypothesis.  

The Backward Facing Step represents a severe test for a 
turbulence model. The phenomena induced by the presence of 
the step, generating a vortex and perturbing the boundary 
layers, involves high adverse pressure gradients and high 
deformation of the path line in more than one direction as well 
as high strain rate.  

Many experimental and numerical data are present in 
literature showing that the turbulence models of the k-ε family 
do not predict accurately the reattachment length.  

 
Experimental set-up  

The validation with the Square Duct is referred to 
experimental data of Cheesewright et al. [8]. The Reynolds 
number based on the mean velocity flow Ub (centreline 

velocity) is  
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of the duct. The domain is characterized by periodic boundary 
conditions. For the Backward Facing Step experimental data are 
taken from Jovic and Driver [9] already used by Moin et al. in 
order to validate their DNS simulation [10]. Jovic and Driver 
have measured the profiles of velocity in a double expansion 
duct, with an expansion ratio equal to 1.2. The step is 0.96 cm 
high and is positioned at 40 h from the entrance of the duct and 
followed from a section of length 140 h. The Reynolds number, 
based on the height of the step and the free stream velocity 
U0=7.72 m/s which gives Reh=5100. The profiles of velocity are 
carried out with a Laser Doppler Velocimeter (LDV).  

 
Numerical settings 

In the straight Square Duct, a 3D model with a double axis 
of symmetry has been used, in order to simulate 1/4 of the full 
domain. The boundary conditions used are reported in Table 3. 

 

In/Out Periodic Condition 
Wall  No Slip wall 

Bounding Plane Symmetry 

 
Table 3 Square duct boundary conditions 

 
In the Backward Facing Step, the numerical simulation has 

been performed over a 2D model, applying a symmetry 
condition in the middle of the duct, with boundary conditions 
reported in Table 4. 



    

 

In Flat velocity profile of 7.72 m/s 
Out Pressure outlet  
Wall No Slip wall 

Bounding line Symmetry 

 
Table 4 Backward facing step boundary conditions 

 
In both case the grid was generated by using squared cells 

and an adaption to the wall has been applied.  
In order to acquire the independency of the results from 

the grid, the domain has been refined in the critical areas. Grid-
results independency has been verified looking at the 
reattachment length xr defined as the abscissa where the wall 
shear-stress goes to zero. The segregated approach has been 
used for solving Navier Stokes equations with a Second Order 
Upwind spatial discretization for both cases. The turbulence 
models implemented by the authors are: 1) a k-ε models with 
new realizability and second order terms: (“2ordke”) and 2) a 
version of the previous with damping function on turbulent 
viscosity (“2ordke-lr”) 

The wall region has been resolved using the Enhanced 
Wall Treatment approach, natively implemented in the code 
[11]. The convergence of the numerical solution was checked 
and considered appropriate when:  
• the residuals are reduced at least of three orders of 

magnitude;  
• the local values of selected quantities do not vary any more 

with the going on of the iterations;  
• the total balance of mass is verified. 
 
VALIDATION RESULTS 
 
Square Duct 

The flow in the Square Duct is characterised by the 
presence of the secondary motion developing in a plane 
orthogonal to the streamwise velocity. In a straight Square Duct 
the presence of  the secondary motions of Prandlt are caused by 
turbulence and may be found in non circular section, and its 
magnitude is of the order of percentage of the main stream 
value. Such a motion, although of modest magnitude, can have 
important consequences in transporting towards the corner the 
fluid with high momentum, affecting the velocity profile of the 
flow. 

Figure 1 shows that the flow, in a plane orthogonal to the 
direction of the motion, is characterized by the appearance of 
secondary flows with a magnitude roughly about 1% of the 
streamwise velocity (Ub). Data from Gavrilakis DNS 
simulation shows a maximum magnitude of roughly 1.9% [12]. 
Despite a underestimation of the absolute value probably due to 
the low Reynolds number involved, the model is able to 
capture the location of the maximum.  

 

 
 

Figure 1 Contours of the adimensional velocity (x component)  
orthogonal to the flow field direction (z direction) 

 
In figure 2 the adimensional span velocity profile in the 

cross section plane along a line close to the center (x/h=0.8) is 
shown for comparing the implemented turbulence model with 
experimental data. It is evident, as it is well know, that the 
models based on the linear Boussinesq hypothesis (RNGke and 
rke) can not correctly predict such secondary flow (span 
velocity is zero along all the line), while a quadratic formulation 
proves to be adequate for capturing this feature. 
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Figure 2 Adimensional velocity profile along a line (x/h=0.8) 

 
The Backward facing step 

The step causes the separation of the boundary layer and its 
reattachment downstream. The separation point is fixed in 
correspondence of the abrupt expansion at the top of the step. In 
the flow field the following regions can be identified. 
• a zone of development of the boundary layer along the duct 

up to the step;  

x/h= 0.8 



    

• a shear layer, just downward the step, where viscous 
effects dominate;  

• a zone of recirculation in which two counter rotating 
vortices are observed;  

• a zone of reattachment of the flow induced by the adverse 
pressure gradient downstream the abrupt expansion;  

• a recompression zone in which the boundary layer start 
again to develop over the wall. 

 

Models Reattachment  Error (%) 
Rke 5.6 h -8.2 

RNGke 5.8 h -4.9 
2ordke 5.6 h -8.2 

2ordkelr 5.9 h -3.3 
Exp. data 6.1 h  

Table 5 Reattachment lengths 

The reattachment length, measured as the distance from 
the step where the wall shear stresses go to zero, has been used 
for validating the model (Table 6). All the models 
underestimate the experimental value, but the error is within 
the 10% . 

In figure 3 the comparison between the numerical data and 
the experimental data for the Static Pressure Coefficient is 

given. Such coefficient is defined as 
( )0
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= where p 

is the static pressure at the wall while p0 is a static reference 
pressure located at x/h=-5.1 upstream the step. 

The coefficient is plotted up to 10 h downstream the step 
where the recompression is nearly completed. It is interesting 
to note how the second order models show a better agreement 
with the experimental data in the zone of recirculation and in 
the area of recompression.  
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Figure 3. Static Pressure Coefficient along the bottom wall 

 
 

FURTHER APPLICATION 
After the validation, the model has been applied to a more 

complex flow field and geometry in order to test its 
applicability to industrial problem. 

No experimental data are here available and therefore this 
step may be done only after the validation phase. The results are 
given in terms of comparisons between the second order 
implemented model and the standard linear model of the same 
k-ε family.  
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Figure 4. Domain geometry of IRIS downcomer and model 

The geometry (figure 4) is similar to that of the downcomer 
lower plenum of the third generation (plus) nuclear reactor 
based on water technology (a tube bend with contraction and 
expansion area) and therefore presents characteristics which a 
linear relationship between strain and stress can not correctly 
simulate [13]. The Reynolds number based on internal flow 
model diameter Do is equal to 5·105. 
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Figure 5. Axial Velocity along line “S1”. Line S1 is located 

1.5Ro from the downcomer lower apex 
 

This assumption may be confirmed from the below figures 
where the difference in the obtained results between the model 
is relevant where results are sensitive to curvature effects. 
Indeed, Figure 5 shows the axial velocity before the bend and 
no significative differences may be underlined between linear 



    

and second order models while figure 6, taken just after the 
bend as well as figure 7, taken in the region where the flow is 
still developing, show relevant differences. 
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Figure 6. Axial Velocity along line “S2”. Line S2 is located 

1.2Ro from the downcomer lower apex 
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Figure 7. Axial Velocity along line “S3”. Line S1 is located 

4Ro from the downcomer lower apex 
 

Anyhow for a fully evaluation of the accuracy of the 
second order model, experimental data on the downcomer 
geometry would be required. Indeed, it is worthy to note that 
the consortium is nowadays working for preparing an 
experimental facility in order to set up a numerical and 
experimental system that can support the design and the 
licensing of the reactor. 

CONCLUSION  
 
The model presented is a second order k-ε model based 

over Shih, Zhu and Lumley (1993) and Craft, Launder and 
Suga (1996) models. The model has been validated by using 
two different test cases: the Backward Facing Step 
characterised by the boundary layer separation and the Square 
Duct where secondary flows develop in a plane orthogonal to 
the streamwise direction. The implemented model with a 

quadratic proposal for the stress-strain relationship is able to 
predict the secondary flow in a Square Duct and also to improve 
the prediction of the velocity profile in the zone of recirculation 
downstream the step. The introduction of the Wilcox damping 
function, add an additional benefit to the quadratic formulation 
of the stress-strain relationship, as shown in the results’ section.  
By means of a comparisons with the RNG-k-ε and the  
Realizable-k-ε, natively implemented in the commercial CFD 
code used, it is possible to capture the distinguished figures 
associated with the non linear dependency of the stress-strain 
relationship compared to the linear hypothesis proposed by 
Boussinesq and this is also evident in the case study studied 
after validation which open further opportunity of application 
for the implemented model. 
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