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Abstract

We study the connection between the long-time dynamics of the 3D magnetohydrodynamic-
α model and the exact 3D magnetohydrodynamic system. We prove that the trajectory
attractor Uα of the 3D magnetohydrodynamic-α model converges to the trajectory attractor
U0 of the 3D magnetohydrodynamic system (in an appropriate topology) when α approaches
zero.
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1 Introduction

In this paper, we study the relations between the global dynamics of the 3D magnetohydrodynamic-
α model (MHD-α model) and the 3D magnetohydrodynamic system (MHD system) with peri-
odic boundary conditions. The MHD-α model was introduced in [21] and was inspired by the
Navier-Stokes-α model (also known as the viscous Camassa-Holm system or Lagrangien averaged
Navier-Stokes-α equations) of turbulence (see [4, 5, 6, 7, 18, 19]). It was demonstrated analyti-
cally and computationally in many works that the Navier-Stokes-α model is a powerful tool in the
study of turbulence (see [4, 5, 6, 7, 18, 19]). It was proved analytically in [21] that the 3D MHD-α
model preserves some of the original properties of the 3D MHD system when alpha approaches
zero. Direct numerical simulations were performed in [25] with periodic boundary conditions.
This model is a regularized approximation of the 3D MHD system and depending on a small
parameter α. For α = 0, the model is reduced to the 3D MHD system.

It is well known that the uniqueness theorem for the solution of the boundary value problem
still remains unproved for the 3D MHD system (see [28]). One cannot use the classical methods
based on the analysis of the global attractor of the corresponding semigroup to discuss the behavior
of solutions to this equation when the time approaches infinity.

The method of trajectory attractors for evolution partial differential equations was developed
in ([8]-[11]). This approach is highly fruitful in the study of the long-time behavior of solutions to
evolution equations for which the uniqueness theorem related to the corresponding initial-value
problem is not proved yet (e.g. the 3D Navier-Stokes system, the 3D MHD system) or fails. For
alternative approaches, the reader is referred to [2, 24, 20, 3, 30] and references therein.

In [21], the Cauchy problem for the 3D MHD-α model was studied, the global existence,
uniqueness and regularity of weak solutions were established. It was proved that there exists
a subsequence of solutions of the 3D MHD-α model that converges to one of the Leray-Hopf
weak solutions of the 3D MHD system with periodic boundary conditions. Similar studies were
investigated for the 3D Navier-Stokes-α model (see [19]). The stochastic version were also studied
in [15].

In the present paper, we study the approximation of the trajectory attractor of the 3D MHD
system by the trajectory attractor of the 3D MHD-α model. In the case of the 3D Navier-
Stokes system, it was proved in [12] that the trajectory attractor of the 3D Navier-Stokes-α
model converges to the trajectory attractor of the 3D Navier-Stokes system in an appropriate
topology when alpha approaches zero. Similar results were established in [13, 14] for the Leray-α
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model of turbulence. Our object here is to generalize the results in [12] from the Navier-Stokes
system to the MHD system. Our main result (see Theorem 6) states that bounded families of
solutions {(uα(t), Bα(t))} of the 3D MHD-α model converge to the trajectory attractor U0 of
the 3D MHD system when alpha approaches zero and t approaches infinity. In particular, the
trajectory attractor Uα of the 3D MHD-α model converges to the trajectory attractor U0 of the
3D MHD system. The proof is inspired by the work in [12]. Let us point out that one of the
main difference between this work and that of [12] is the presence of magnetic field which makes
the analysis of the problem studied in this article more involved. One of the main difficulty lies
in obtaining needed a priori estimates in which the constants are independent of alpha and the
passage to the limit which turns out to be rather complicated in view of the nature of the nonlinear
terms involved in our 3D MHD-α model (see the proof of Theorem 5).

The article is structured as follows. In Section 2, we consider the 3D MHD system and we
construct its trajectory attractor U0. For this purpose, we define spaces Fb+ and F loc+ which
contain weak solutions of the 3D MHD system. We then introduce the space of trajectory space
K+ of Leray-Hopf weak solutions of the 3D MHD system on the semiaxis 0 < t <∞. The space
F loc+ is equipped with the weak topology Oloc+ generated by the weak convergence of sequences
{(un(t), Bn(t))} ⊂ F loc+ . We prove that the trajectory space K+ is bounded in Fb+ and closed in
the topology Oloc+ . We consider the time translation semigroup {T (h)} := {T (h), h ≥ 0} acting
on the trajectory space K+ by the formula

T (h)(u(t), B(t)) = (u(t+ h), B(t+ h)).

It follows from the definition of the trajectory space that K+ is invariant under {T (h)}. Using
these facts and applying the theory of trajectory attractors, we prove that the translation semi-
group {T (h)} acting on K+ has a global attractor U0, which we call the trajectory attractor of the
3D MHD system. To describe the structure of the trajectory attractor U0, we define the kernel
K0 of the 3D MHD system and prove that U0 = Π+K0 where Π+ is the restriction operator on the
semiaxis R+. In Section 3, we consider the 3D MHD-α model. The corresponding initial value
problem is well-posed and we construct the trajectory attractor Uα for this system. In Section 4,
we study the convergence of the solutions of the 3D MHD-α model as α approaches zero. For this,
we study the system for which the couple (wα(t), Bα(t)) is satisfied where wα(t) = (1−α2∆)

1
2uα(t)

and (uα(t), Bα(t)) is the solution of the 3D MHD-α model. The main result of this section states
that if a sequence of solutions (wαn(t), Bαn(t)) of the mentioned above system converges to the
limit (w(t), B(t)) in the space Oloc+ as αn approaches zero and n tends to infinity, then (w(t), B(t))
is a Leray-Hopf weak solution of the 3D MHD system (see Theorem 5). In Section 5, using the
result of Section 4, we prove the convergence of trajectory attractors Uα to the trajectory attractor
U0 in the space Oloc+ when alpha approaches zero.

2 Trajectory attractor of the 3D MHD system

2.1 The 3D MHD system

Let Ω = [0, L]3, where L > 0. We consider the autonomous 3D MHD system with periodic
boundary conditions

∂u

∂t
+ (u.∇)u− ν∆u+∇π +

1

2
∇|B|2 = (B.∇)B + g(x), (1)

∂B

∂t
+ (u.∇)B − (B.∇)u− η∆B = 0, (2)

∇.u = 0, ∇.B = 0, (3)∫
Ω
u(x, t) dx = 0,

∫
Ω
B(x, t) dx = 0, (4)
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where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)), B(x, t) = (B1(x, t), B2(x, t), B3(x, t)) and π are the
unknown, representing respectively the velocity of the fluid, the magnetic field and the scalar
pressure at each point of the fluid. In the system above, ν is the kinematic viscosity of the fluid
, η the magnetic diffusivity and g is a given periodic field of external forces. We equip system
(1)-(4) with the initial conditions

u(x, 0) = u0(x), B(x, 0) = B0(x). (5)

We introduce some notations and background following the mathematical theory of Navier-
Stokes equations (NSE) (see [27]). Lp(Ω) and Hm(Ω) denote the Lp-Lebesgue space and Sobolev
space respectively. We denote by |.| the L2-norm, and by (., .) the L2-inner product. Let X be a
linear subspace of integrable functions defined on the domain Ω, we define

Ẋ = {ϕ ∈ X :

∫
Ω
ϕ(x) dx = 0},

and

V = {ϕ : ϕ is vector valued trigonometric polynomial defined in Ω,∇.ϕ = 0 and

∫
Ω
ϕ(x) dx = 0}.

The spaces H and V are the closures of V in L2(Ω)3 and H1(Ω)3 respectively. Let P : L̇2 → H
be the Helmholtz-Leray projection, and A = −P∆ be the Stokes operator with domain D(A) =
H2(Ω)3 ∩V . In the periodic boundary conditions A = −∆|D(A) is a self-adjoint positive operator
with compact inverse. Hence the space H has an orthonormal basis {wj}∞j=1 of eigenfunctions of

A, Awj = λjwj , with 0 < λ1 ≤ λ2 ≤ ...,≤ λj ∼ j
2
dL−2. On can show that V = D(A

1
2 ). We

denote ((u, v)) = (A
1
2u,A

1
2 v) = (∇u,∇v) and ‖u‖ = |A

1
2u| the scalar product and the norm on

V , respectively. For f ∈ V ′, we denote by 〈f, v〉 the action of the functional f ∈ V ′ on any v ∈ V .
The operator A is an isomorphism from V to V ′ and ((u, v)) = 〈Au, v〉 for u, v ∈ V . In the sequel,
we identify H with its dual and we have the following inclusions

D(A) ⊂ V ⊂ H ′ = H ⊂ V ′ ⊂ D(A)′, (6)

where each space is densely and compactly embedded in the next one. Following the notation of
the NSE, we denote

B(u, v) = P [(u.∇)v] = P
3∑
j=1

uj∂xjv. (7)

For u satisfying ∇.u = 0, we have

B(u, v) = P

3∑
j=1

∂xj (u
jv). (8)

It follows that

〈B(u, v), w〉 = −〈B(u,w), v〉 and 〈B(u, v), v〉 = 0 for all u, v, w ∈ V. (9)

For all w ∈ D(A) and u, v ∈ V , we have the estimate

|〈B(u, v), w〉| ≤ C|u|‖v‖‖w‖L∞ ≤ C1λ
− 1

4
1 |u|‖v‖‖w‖D(A),

and therefore

‖B(u, v)‖D(A)′ ≤ C1λ
− 1

4
1 |u|‖v‖, (10)
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where D(A)′ is the dual space of D(A).
The Pioncaré inequality implies that

λ1|u|2 ≤ ‖u‖2 for u∈ V, (11)

λ1‖u‖2 ≤ |Au|2 for u∈ D(A). (12)

We recall the following inequality in three dimension

‖f‖L4(Ω) ≤ C‖f‖
1
4

L2(Ω)
‖∇f‖

3
4

L2(Ω)
, (13)

where f ∈ V and C is a constant independent of Ω ( see [27], [23]). It follows from inequality
(13) that

|uiv|L2(Ω) ≤ C1|u|
1
4 ‖u‖

3
4 |v|

1
4 ‖v‖

3
4 , (14)

|uiu|L2(Ω) ≤ C1|u|
1
2 ‖u‖

3
2 (15)

for u, v ∈ V . By virtue of (8), we also have

‖B(u)‖V ′ ≤ C1|u|
1
2 ‖u‖

3
2 , (16)

‖B(u, v)‖V ′ ≤ C1|u|
1
4 ‖u‖

3
4 |v|

1
4 ‖v‖

3
4 , (17)

for u, v ∈ V .
We assume g ∈ H. Using the above notations, we apply the Leray-Helmholtz projector P to the
system (1)-(4) to obtain as for the case of the NSE, the equivalent system of equations

∂tu+ νAu+ B(u, u)− B(B,B) = g, (18)

∂tB + ηAB + B(u,B)− B(B, u) = 0. (19)

For a given M > 0, and for any couple of functions (u(.), B(.)) ∈ L2(0,M ;V ×V )∩L∞(0,M ;H×
H), it follows that

Au ∈ L2(0,M ;V ′), (20)

AB ∈ L2(0,M ;V ′), (21)

and due to (10), we also have

B(u(.), u(.)) ∈ L2(0,M ;D(A)′), (22)

B(u(.), B(.)) ∈ L2(0,M ;D(A)′), (23)

B(B(.), u(.)) ∈ L2(0,M ;D(A)′), (24)

B(B(.), B(.)) ∈ L2(0,M ;D(A)′). (25)

We can now find a couple of functions (u,B) of equations (18),(19) in the space of distributions
D′(0,M ;D(A)′) such that

∂tu ∈ L2(0,M ;D(A)′) and ∂tB ∈ L2(0,M ;D(A)′).

A couple of vector functions (u(.), B(.)) is said to be a weak solution of system (18)-(19) if for
every M > 0,

(u,B) ∈ L2(0,M ;V × V ) ∩ L∞(0,M ;H ×H), (26)

the function u satisfies equation (18) in the distribution sense of the space D′(0,M ;D(A)′) and
the function B satisfies equation (19) in the space of distribution D′(0,M ;D(A)′).
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Since a weak solution (u,B) belongs to L∞(0,M ;H × H), then using the well-known Lions-
Magenes lemma (see [22]), we have

u(.) ∈ Cw([0,M ];H) and B(.) ∈ Cw([0,M ];H),

where Cw([0,M ];H) denotes the space of weakly continuous function from [0,M ] to H. Conse-
quently for every t ≥ 0, the values u(t) and B(t) make sense in the space H and, in particular,
the initial conditions

u(0) = u0(x) ∈ H, (27)

B(0) = B0(x) ∈ H, (28)

are meaningful.
We now formulate the classical theorem on the existence of a weak solution of the Cauchy

problem for the 3D MHD system in the form we need in the sequel (see [17],[26]).

Theorem 1. Let g ∈ H and (u0, B0) ∈ H × H. Then for every M > 0, there exists a weak
solution (u,B) of system (18)-(19) from the space L2(0,M ;V × V )∩L∞(0,M ;H ×H) such that
u(0) = u0, B(0) = B0 and (u,B) satisfies the energy inequality

1

2

d

dt
(|u(t)|2 + |B(t)|2) + ν|u(t)‖2 + η‖B(t)‖2 ≤ 〈g, u(t)〉, for almost all t ∈ [0.M ]. (29)

Remark 1. Inequality (29) means that for any ψ ∈ C∞0 (]0,M [), ψ(t) ≥ 0,

−1

2

∫ M

0
(|u(t)|2 + |B(t)|2)ψ′(t)dt+

∫ M

0
(ν‖u(t)‖2 + η‖B(t)‖2)ψ(t)dt ≤

∫ M

0
〈g, u(t)〉ψ(t)dt. (30)

The proof of Theorem 1 uses the Galerkin approximation method. For every m ∈ N, we
construct the Galerkin approximation (um(x, t), Bm(x, t)) ∈ C1([0,M ];H2 ∩ V )2 of order m,
that is a solution of the corresponding system of ordinary differential equations, and prove the
existence of a subsequence {mj} ⊂ {m} such that (umj (x, t), Bmj (x, t)) converges in a weak sense
to a weak solution (u(x, t), B(x, t)) of problem (18)-(19),(27)-(28). The Galerkin approximation
(um(x, t), Bm(x, t)) satisfies

1

2

d

dt
|um(t)|2 + ν‖um(t)‖2 − 〈B(Bm(t), Bm(t)), um(t)〉 = 〈g, um(t)〉, (31)

1

2

d

dt
|Bm(t)|2 + η‖Bm(t)‖2 − 〈B(Bm(t), um(t)), Bm(t)〉 = 0 (32)

Summing up (31) and (32) and taking into account (9), we obtain the following energy equality

1

2

d

dt
(|um(t)|2 + |Bm(t)|2) + ν‖um(t)‖2 + η‖Bm(t)‖2 = 〈g, um(t)〉, t ∈ [0,M ]. (33)

Passing to a limit in (33) in a weak sense as mj → ∞, we obtain (29) in the form (30)( see
[17],[26]).

Remark 2. For the 3D MHD system, the question of the uniqueness of a weak solution of problem
(18)-(19),(27)-(28) remains open. It is also unknown, whether every weak solution satisfies the
energy inequality (29). Nevertheless, it is known that every weak solution resulting from the
Galerkin approximation method satisfies the energy inequality (29). The class of weak solutions
which satisfy the energy inequality (29) is called Leray-Hopf weak solutions.

Now, we establish some estimates for a weak solution of the 3D MHD system.
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Proposition 1. (A Priori estimates)
For any weak solution (u(t), B(t)) of problem (18)-(19),(27)-(28), the following inequalities hold:

i) |u(t)|2 + |B(t)|2 ≤ (|u(0)|2 + |B(0)|2)e−µλ1t +
|g|2

λ2
1µ

2
, (34)

ii) µ

∫ t+1

t
(‖u(s)‖2 + ‖B(s)‖2)ds ≤ (|u(0)|2 + |B(0)|2)e−µλ1t +

|g|2

λ2
1µ

2
+
|g|2

µλ1
, (35)

where µ = min(ν, η).

Proof. The proof uses the energy inequality (29), the Poincaré inequality and follows the same
line as in a case of the Navier-Stokes system (see [11]).

2.2 Construction of the trajectory attractor of 3D MHD system

We now construct the trajectory attractor of the 3D MHD system. At first, we define the trajec-
tory space K+ of system (18),(19).

Definition 1. The trajectory space K+ is the set of all Leray-Hopf weak solutions (u,B) of system
(18),(19) in the space Lloc2 (R+;V × V ) ∩ Lloc∞ (R+;H ×H) that satisfy the energy inequality (29)
for t ≥ 0, that is

−1

2

∫ ∞
0

(|u(t)|2 + |B(t)|2)ψ′(t)dt+

∫ ∞
0

(ν‖u(t)‖2 + η‖B(t)‖2)ψ(t)dt ≤
∫ ∞

0
< g, u(t) > ψ(t)dt,

for all ψ ∈ C∞0 (R+), ψ ≥ 0.

We note that by Theorem 1, the trajectory space K+ is nonempty that is for any (u0, B0) ∈
H ×H, there is a trajectory (u,B) such that u(0) = u0 and B(0) = B0.
Let us now define the spaces F loc+ , Fb+ and the topology Θloc

+ . Set

F loc+ = {z = (u,B) / (u,B)(.) ∈ Lloc2 (R+;V × V ) ∩ Lloc∞ (R+;H ×H),

∂tu(.) ∈ Lloc2 (R+;D(A)′), ∂tB(.) ∈ Lloc2 (R+;D(A)′)}.

In the space F loc+ , we define the following local weak convergence topology. By definition, a
sequence of functions {(un(.), Bn(.)), n ∈ N} ⊂ F loc+ converges to (u(.), B(.)) ∈ F loc+ in Θloc

+ as
n→∞ if, for each M > 0, the following limit relations hold:

un ⇀ u weakly star in L∞(0,M ;H) and weakly in L2(0,M ;V ),

∂tun ⇀ ∂tu weakly in L2(0,M ;D(A)′),

Bn ⇀ B weakly star in L∞(0,M ;H) and weakly in L2(0,M ;V ),

∂tBn ⇀ ∂tB in L2(0,M ;D(A)′).

The space F loc+ equipped with the topology Θloc
+ is a Hausdorff Fréchet-Uryhson topological vector

space with a countable base (see [11]).
We consider a linear subspace Fb+ ⊂ F loc+ consisting of vector functions (u,B) ∈ F loc+ with finite
norm

‖(u,B)‖Fb+ :=‖(u,B)‖Lb2(R+;V×V ) + ‖(u,B)‖L∞(R+;H×H)+

‖∂tu‖Lb2(R+;D(A)′) + ‖∂tB‖Lb2(R+;D(A)′), (36)
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where

‖(u,B)‖2
Lb2(R+;V×V )

= sup
t≥0

∫ t+1

t
‖u(s)‖2 ds+ sup

t≥0

∫ t+1

t
‖B(s)‖2 ds,

‖(u,B)‖L∞(R+;H×H) = ess sup
t≥0
|u(t)|+ ess sup

t≥0
|B(t)|,

‖∂tu‖2Lb2(R+;D(A)′)
= sup

t≥0

∫ t+1

t
‖∂tu(s)‖2D(A)′ ds,

‖∂tB‖2Lb2(R+;D(A)′)
= sup

t≥0

∫ t+1

t
‖∂tB(s)‖2D(A)′ ds.

Recall that the norm of a function φ in the space Lbp(R+;X) where X is Banach space and p ≥ 1,

is defined by the formula ‖φ‖p
Lbp(R+;X)

:= supt≥0

∫ t+1
t ‖φ(s)‖pX ds.

The space Fb+ with the norm (36) is a Banach space.

Remark 3. Any ball Br = {(u,B) ∈ Fb+ / ‖(u,B)‖Fb+ ≤ r} in the space Fb+ is compact in the

topology Θloc
+ . Moreover the corresponding topological subspace Br|Θloc+

is metrisable (see [11]).

Note that the space F loc+ |Θloc+
is not metrisable.

Consider the translation semigroup {T (h)} := {T (h), h ≥ 0} acting on F loc+ by the formula

T (h)(u(t), B(t)) = (u(t+ h), B(t+ h)), t ≥ 0. (37)

The semigroup {T (h)} takes K+ to itself that is T (h) : K+ → K+ for all h ≥ 0.
We are going to construct the global attractor of the translation semigroup {T (h)} on K+. We
call this attractor the trajectory attractor. The following key proposition is crucial for the proof.

Proposition 2. Let g ∈ H, then

1. The space K+ ⊂ Fb+.

2. For any couple of functions (u,B) ∈ K+

‖T (h)(u,B)‖Fb+ ≤ C0‖(u,B)(.)‖2L∞(0,1;H×H)e
−µλ1h +R2

0, (38)

where the constant C0 depends on µ, λ1 and R0 depends on µ, λ1, |g|.

For the proof of Proposition 2, we will need some additional estimates on weak solution of the
3D MHD system.

Proposition 3. If (u,B) ∈ K+, then

1. (∫ t+1

t
‖∂tu(s)‖2D(A)′ ds

) 1
2

≤ C2

(
|u(0)|2 + |B(0)|2

)
e−µλ1t +R2

1, (39)

where C2 depends on λ1, µ; R1 depends on λ1, µ and |g|.

2. (∫ t+1

t
‖∂tB(s)‖2D(A)′ ds

) 1
2

≤ C3

(
|u(0)|2 + |B(0)|2

)
e−µλ1t +R2

2, (40)

where C3 depends on λ1, µ; R2 depends on λ1, µ and |g|.
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Proof. For (u,B) ∈ K+, we have

∂tu = −νAu− B(u, u) + B(B,B) + g, (41)

∂tB = −ηAB − B(u,B) + B(B, u). (42)

Using (41) and applying the Minkowski inequality, we have(∫ t+1

t
‖∂tu(s)‖2D(A)′

) 1
2

≤ ν

(∫ t+1

t
‖Au(s)‖2D(A)′ ds

) 1
2

+

(∫ t+1

t
‖B(u(s), u(s))‖2D(A)′ ds

) 1
2

+

(∫ t+1

t
‖B(B(s), B(s))‖2D(A)′ ds

) 1
2

+ ‖g‖D(A)′ . (43)

We now estimate each term on the right.∫ t+1

t
‖Au(s)‖2D(A)′ =

∫ t+1

t
|u(s)|2 ds

≤ (|u(0)|2 + |B(0)|2)e−µλ1t +
|g|2

µ2λ2
1

. (44)

From the estimates (10), (34), (35), we have∫ t+1

t
‖B(u(s), u(s)‖2D(A)′ ds

≤ C4

∫ t+1

t
‖u(s)‖2|u(s)|2 ds

≤ C4ess sup
t≤s≤t+1

|u(s)|2
∫ t+1

t
‖u(s)‖2 ds

≤ C4µ
−1

(
(|u(0)|2 + |B(0)|2)e−µλ1t +

|g|2

λ2
1µ

2
+
|g|2

λ1µ

)2

.

We then deduce that(∫ t+1

t
‖B(u(s), u(s))‖2D(A)′ ds

) 1
2

≤ C5

(
|u(0)|2 + |B(0)|2

)
e−µλ1t +R2

2, (45)

where C5 = C1λ
− 1

4
1 µ−

1
2 and R2

2 = |g|2
λ21µ

2 + |g|2
λ1µ

.

We also have from the estimates (10), (34), (35),(∫ t+1

t
‖B(B(s), B(s))‖2D(A)′ ds

) 1
2

≤ C5

(
|u(0)|2 + |B(0)|2

)
e−µλ1t +R2

2. (46)

Conbining (43), (44), (45) and (46), we arrive at(∫ t+1

t
‖∂tu(s)‖2D(A)′

) 1
2

≤ ν
(

(|u(0)|2 + |B(0)|2)e−µλ1t +R2
3

) 1
2

+ 2C5

(
(|u(0)|2 + |B(0)|2)e−νλ1t +R2

2

)
+ λ−1

1 |g|

≤ C2

(
|u(0)|2 + |B(0)|2

)
e−νλ1t +R2

1,

where C2 = ν + 2C5 , R2
1 = ν(R2

3 + 1) + 2C5R
2
2 + λ−1

1 |g|, R2
3 = |g|2

µ2λ21
and R2

2 = |g|2
λ21µ

2 + |g|2
λ1µ

.

This completes the proof of (39). Using (42), we can also prove the estimate (40) in a similar
way.
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Proof. (Proof of Proposition 2)
The proof of (38) follows from Proposition 1 and Proposition 3. The proof of the inclusion

K+ ⊂ Fb+ follows from (38) by setting h = 0.

It follows from the definition of the topology Θloc
+ that the translation semigroup {T (h)} is

continuous in Θloc
+ . Hence also on K+ as well. The following assertion proves that the trajectory

space K+ is closed in the space Θloc
+ .

Proposition 4. The space K+ is closed in Θloc
+ .

Proof. Consider an arbitrary sequence (un(t), Bn(t)) ∈ K+ which converges as n→∞ in Θloc
+ to

an element (u(t), B(t)) ∈ F loc+ . We prove that (u(t), B(t)) ∈ K+. By the definition of the topology
Θloc

+ , for every segment [0,M ], the following convergence hold as n→∞

un ⇀ u weakly star in L∞(0,M ;H) and weakly in L2(0,M ;V ), (47)

∂tun ⇀ ∂tu weakly in L2(0,M ;D(A)′), (48)

Bn ⇀ B weakly star in L∞(0,M ;H) and weakly in L2(0,M ;V ), (49)

∂tBn ⇀ ∂tB in L2(0,M ;D(A)′). (50)

In particular the sequence (un) is bounded in L∞(0,M ;H) and L2(0,M ;V ), the sequence (Bn) is
bounded in L∞(0,M ;H) and L2(0,M ;V ), whereas the sequences (∂tun) and (∂tBn) are bounded
in L2(0,M ;D(A)′). Hence , due to inequalities (16)−(17), the sequences (B(un, un)), (B(un, Bn)),

(B(Bn, Bn)) , (B(Bn, un)) are bounded in the space L
4
3 (0,M ;V ′). Then, passing to a subsequence

{n′} ⊂ {n} and keeping the notation {n}, we can assume that

B(un, un) ⇀ B1(.) weakly in L
4
3 (0,M ;V ′), (51)

B(un, Bn) ⇀ B2(.) weakly in L
4
3 (0,M ;V ′), (52)

B(Bn, Bn) ⇀ B3(.) weakly in L
4
3 (0,M ;V ′), (53)

B(Bn, un) ⇀ B4(.) weakly in L
4
3 (0,M ;V ′), (54)

where Bi = Bi(x, t), i = 1, 2, 3, 4 are some elements of the space L
4
3 (0,M ;V ′).

Since (un, Bn) is a weak solution of system (18), (19), we have

∂tun + νAun + B(un, un)− B(Bn, Bn) = g(x),

∂tBn + ηABn + B(un, Bn)− B(Bn, un) = 0.

Using (47)-(50) and (51)-(54), we conclude that the couple (u,B) satisfies

∂tu+ νAu+B1(x, t)−B3(x, t) = g(x), t ≥ 0,

∂tB + ηAB +B2(x, t)−B4(x, t) = 0,

in the distribution sense. By the Aubin compactness theorem (see [23],[1],[16]), we have

un → u strongly in L2(0,M ;H), (55)

Bn → B strongly in L2(0,M ;H). (56)

Passing to a subsequence gives

un → u for a.e. (x,t) ∈ Ω×]0,M [,

Bn → u for a.e. (x,t) ∈ Ω×]0,M [.
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Applying the known Lions lemma concerning the weak convergence (see [23],Chap.1,Lemma 1.3),
we have the following limit relations as n→∞:

B(un, un) ⇀ B(u, u) weakly in L
4
3 (0,M ;V ′),

B(un, Bn) ⇀ B(u,B) weakly in L
4
3 (0,M ;V ′), (57)

B(Bn, un) ⇀ B(B, u) weakly in L
4
3 (0,M ;V ′),

B(Bn, Bn) ⇀ B(B,B) weakly in L
4
3 (0,M ;V ′).

Hence, due to (51)-(54), we conclude that B1(x, t) = B(u, u), B2(x, t) = B(u,B), B3(x, t) =
B(B,B), B4(x, t) = B(B, u) for a.e. Ω × (0,M). That is the couple (u,B) is a weak solution
of system (18),(19). It remains to prove that (u,B) satisfies the energy inequality (30):

−1

2

∫ M

0
(|u(t)|2 + |B(t)|2)ψ′(t)dt+

∫ M

0
(ν‖u(t)‖2 + η‖B(t)‖2)ψ(t)dt ≤

∫ M

0
〈g, u(t)〉ψ(t)dt. (58)

for all ψ ∈ C∞0 (R+), ψ ≥ 0.
The couple (un, Bn) satisfies the energy inequality (30) that is

−1

2

∫ M

0
(|un(t)|2 + |Bn(t)|2)ψ′(t)dt+

∫ M

0
(ν‖un(t)‖2 + η‖Bn(t)‖2)ψ(t)dt ≤

∫ M

0
〈g, un(t)〉ψ(t)dt.

(59)
for all ψ ∈ C∞0 (R+), ψ ≥ 0.
From (55)− (56) and the Lebesgue dominant convergence theorem, we have∫ M

0
|un(t)|2ψ′(t) dt→

∫ M

0
|u(t)|2ψ′(t) dt as n →∞, (60)∫ M

0
|Bn(t)|2ψ′(t) dt→

∫ M

0
|B(t)|2ψ′(t) dt as n →∞. (61)

We note that un
√
ψ(t) → u

√
ψ(t) weakly in L2(0,M ;V ) and Bn

√
ψ(t) → B

√
ψ(t) weakly in

L2(0,M ;V ). Consequently∫ M

0
‖u(t)‖2ψ(t) dt ≤ lim

n→∞
inf

∫ M

0
‖un(t)‖2ψ(t) dt, (62)∫ M

0
‖B(t)‖2ψ(t) dt ≤ lim

n→∞
inf

∫ M

0
‖Bn(t)‖2ψ(t) dt. (63)

From (55), we also have ∫ M

0
〈g, un(t)〉ψ(t) dt→

∫ M

0
〈g, u(t)〉ψ(t) dt. (64)

Using (60)-(64), and passing to the limit in (59), we obtain (58).
Thus we have proved that the limit (u,B) is a weak solution of the 3D MHD system and satisfies
the energy inequality (30), that is (u,B) ∈ K+. This completes the proof of Proposition 4.

We have defined the trajectory space K+ of system (18)-(19) on R+. We now extend this
definition on R. The kernel K0 of system (18)-(19) is the set of all weak solutions (u(t), B(t)), t ∈ R
bounded in the space

Fb = {z = (u,B) / (u,B)(.) ∈ Lb2(R;V × V ) ∩ L∞(R;H ×H),

∂tu(.) ∈ Lb2(R;D(A)′), ∂tB(.) ∈ Lb2(R;D(A)′)},
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that satisfies the following inequality:

−1

2

∫ +∞

−∞
(|u(t)|2 + |B(t)|2)ψ′(t)dt+

∫ +∞

−∞
(ν‖u(t)‖2 + η‖B(t)‖2)ψ(t)dt ≤

∫ +∞

−∞
〈g, u(t)〉ψ(t)dt,

(65)
for all ψ ∈ C∞0 (R), ψ ≥ 0.
The norm in Fb is defined in a similar way that the norm in Fb+ replacing R+ by R. The same
definition also holds for F loc with the topology Θloc where the intervals (0,M) are replaced by
(−M,M). We denote by Π+ the restriction operator onto R+. This operator takes a function
{φ(t), t ∈ R} to the function {Π+φ(t), t ≥ 0}, where Π+φ(t) = φ(t) for all t ≥ 0.
Let us now study the translation semigroup {T (h)} acting on the trajectory K+. We start with
the main definitions

Definition 2. A set P ⊂ K+ is said to be absorbing for the semigroup {T (h)}if for every bounded
set B ⊂ K+ in Fb+, there is a h1 = h1(B) such that

T (h)B ⊆ P for all h ≥ h1.

Definition 3. A set P ⊆ K+ is said to be attracting for the semigroup {T (h)} if any neighborhood
O(P ) of the set P in the topology Θloc

+ is an absorbing set for {T (h)}, i.e., for every bounded set
B ⊂ K+ in Fb+, there is a h1 = h1(B,O) ≥ 0 such that T (h)B ⊆ O(P ) for all h ≥ h1.

Definition 4. A set U ⊂ K+ is called a trajectory attractor for the semigroup {T (h)} on K+ if
U is bounded in Fb+, compact with respect to Θloc

+ , strictly invariant with respect to {T (h)}, i.e.
T (h)U = U , ∀h ≥ 0, and U is an attracting set for {T (h)}.

Let us now construct a trajectory attractor for {T (h)} on K+ and describe its structure by
using the kernel of system (18)-(19). It is the main result of this section

Theorem 2. If g ∈ H, then the translation semigroup {T (h)} acting on K+ has a trajectory
attractor U0. The set U0 is bounded in Fb+ and compact in Θloc

+ . Moreover

U0 = Π+K0,

the set K0 is bounded in Fb and compact in Θloc.

Proof. It is clear that T (t)K+ ⊆ K+, ∀t ≥ 0. Thanks to Proposition 2, the set P = {(u,B) ∈
Fb+/‖(u,B)(.)‖Fb+ ≤ 2R2

0} is an absorbing set for K+. The ball P is compact in Θloc
+ and bounded

in Fb+. Thus the conditions of Theorem XII.2.1 and Theorem XII.2.2 in [11] are valid and Theorem
2 is proved.

Remark 4. The trajectory attractor for the 3D Navier-Stokes system has been constructed [11,
29]. As far as we know , Theorem 2 is the first result dealing with the trajectory attractor for the
3D MHD system.
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3 The 3D MHD-α model and its trajectory attractor

3.1 The 3D MHD-α model and some properties

We consider the 3D MHD-α model with periodic boundary conditions. The model reads as follows:

∂v

∂t
+ (u.∇)v +

3∑
j=1

vj∇uj − ν∆v +∇π′ + 1

2
∇|B|2 = (B.∇)B + g, (66)

∂B

∂t
+ (u.∇)B − (B.∇)u− η∆B = 0, (67)

v = (1− α2∆)u, (68)

∇.u = ∇.v = ∇.B = 0, (69)∫
Ω
u(x, t) dx = 0, (70)∫

Ω
B(x, t) dx = 0. (71)

This is an approximation of the 3D MHD system (1)-(4) discussed in the previous section.
The unknown are u,B and π′ defined on Ω× [0,M ], representing respectively the ”filtered” fluid
velocity , the magnetic field and the pressure at each point of the fluid. We assume that the
functions u(x, t), B(x, t) and the known external force g(x) are periodic in x ∈ Ω and have zero
spatial mean i.e.

∫
Ω g(x) dx = 0. We observe that for α = 0, the function v = u and we formally

obtain the system (1)−(4). Recall that α is a fixed positive parameter called ”the sub-grid (filter)
length scale” of the model (see the motivations in [21] and references therein).

Following the notation of the NSE, we denote

B̃(u, v) = −P ((∇× v)× u) for any u,v ∈ V,

the bilinear operator. We have

(B̃(u, v), w) = (B(u, v), w)− (B(w, v), u), (72)

for any u, v, w ∈ V. In fact the equality (72) follows from the identity

(b.∇)a+
3∑
j=1

aj∇bj = −b× (∇× a) +∇(a.b), (73)

for a, b ∈ R3. The symbol × represents the vector product in R3. We recall that

B̃(u, u) = B(u, u), (74)

where B(u, v) = P (u.∇)v (see (7)).
We now rewrite the system (66)− (71) in the short form

∂tv + νAv + B̃(u, v)− B(B,B) = g, (75)

∂tB + ηAB + B(u,B)− B(B, u) = 0, (76)

v = u+ α2Au. (77)

For α = 0, system (75)− (77) coincides with the 3D MHD system (18)− (19).
We supplement (75)− (77) with initial conditions :

u(0) = u0 ∈ V, (78)

B(0) = B0 ∈ H. (79)
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We now formulate some properties of the bilinear operator B̃ that are analogous to the properties
of the operator B. The operator B̃ maps V × V to V ′ and the following inequalities hold (see
[21, 19] for the proof)

|〈B̃(u, v), w〉| ≤ C|u|
1
4 ‖u‖

3
4 ‖v‖|w|

1
4 ‖w‖

3
4 ,

|〈B̃(u, v), w〉| ≤ C|u|
1
2 ‖u‖

1
2 ‖v‖‖w‖,

for all u, v ∈ V .
We also have

〈B̃(u, v), w〉 = −〈B̃(w, v), u)〉, (80)

〈B̃(u, v), u〉 = 0, (81)

for all u, v ∈ V . We also need the following inequality proved in [21, 19]:

|〈B̃(u, v), w〉| ≤ C‖u‖|v||Aw|, (82)

for all u ∈ V , v ∈ H and w ∈ D(A).
This means that B̃ maps V ×H into D(A)′ and

‖B̃(u, v)‖D(A)′ ≤ C‖u‖|v|, (83)

for all u ∈ V , v ∈ H.

3.2 The Cauchy problem for the 3D MHD-α model

We recall from [21] the definition of weak solution of the 3D MHD-α model.

Definition 5. Let M > 0, (u0, B0) ∈ V × H and g ∈ H. A couple of functions (u,B) is weak
solution of system (75)− (77), (78)− (79) on [0,M ] if:

i) u and B satisfy

u ∈ C([0,M ];V ) ∩ L2(0,M ;D(A)),

du

dt
∈ L2(0,M ;H),

B ∈ C([0,M ];H) ∩ L2(0,M ;V ),

dB

dt
∈ L2(0,M ;V ′).

ii) (u,B) satisfies the system (75)− (77) in the sense of distributions, i.e.,

〈dv
dt
, w〉D(A)′ + 〈B̃(u, v), w〉D(A)′ + ν(v,Aw) = 〈B(B,B), w〉V ′ + 〈g, w〉V ′ ,

〈dB
dt
, ξ〉V ′ + (B(u,B), ξ)− (B(B, u), ξ) + η((B, ξ)) = 0,

(84)

for every w ∈ D(A), ξ ∈ V and for almost every t ∈ (0,M).

iii) u(0) = u0 and B(0) = B0.

In the work [21], the following theorem on the existence and uniqueness of weak solution for
the 3D MHD-α model was proved.
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Theorem 3. Let g ∈ H and (u0, B0) ∈ V × H. For every M > 0, the Cauchy problem (75) −
(77), (78) − (79) has a unique weak solution (u(t), B(t)) in the sense of Definition 5. Moreover
(u,B) satisfies the following energy equality :

1

2

d

dt
{|u(t)|2 + α2‖u(t)‖2 + |B(t)|2}+ {ν

(
‖u(t)‖2 + α2|Au(t)|2

)
+ η‖B(t)‖2} = 〈g, u(t)〉, (85)

for almost every t ∈ (0,M).

The energy equality (85) implies the main a priori estimates of problem (75)−(77), (78)−(79).

Proposition 5. Let (u(t), B(t)) be a weak solution of system (75) − (77), (78) − (79). Then the
following inequalities hold:

i) |u(t)|2 + α2‖u(t)‖2 + |B(t)|2 ≤
(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +

|g|2

λ2
1µ

2
, (86)

ii) µ

∫ t+1

t

(
‖u(t)‖2 + α2|Au(s)|2 + ‖B(s)‖2

)
ds ≤

(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +

|g|2

λ2
1µ

2
+
|g|2

µλ1
,

(87)

iii)

(∫ t+1

t
‖∂tv(s)‖2D(A)′ ds

) 1
2

≤ C6

(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +R2

6, (88)

iv)

(∫ t+1

t
‖∂tu(s)‖2D(A)′ ds

) 1
2

≤ C6

(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +R2

6, (89)

v)

(∫ t+1

t
‖∂tB(s)‖2D(A)′ ds

) 1
2

≤ C10

(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +R2

7, , (90)

where the constants C6, C10 depend on λ1 , µ. R6 and R7 depend on λ1, µ and |g|.

Proof. i) The proof uses the energy equality (85) and the Poincaré inequality.

ii) The proof follows from i).

iii) The function v satisfies (75) that is

∂tv + νAv + B̃(u, v)−B(B,B) = g. (91)

We apply to (91) the Minkowski inequality and obtain(∫ t+1

t
‖∂tv(s)‖2D(A)′ ds

) 1
2

≤ ν

(∫ t+1

t
‖Av(s)‖2D(A)′ ds

) 1
2

+

(∫ t+1

t
‖B̃(u(s), v(s))‖2D(A)′ ds

) 1
2

(∫ t+1

t
‖B(B(s), B(s))‖2D(A)′ ds

) 1
2

+ ‖g‖D(A)′ . (92)

We now estimate each of the terms on the right.
From the estimate ‖Av‖D(A)′ = |v| ≤ |u|+ α2|Au|, we have∫ t+1

t
‖Av(s)‖2D(A)′ ds ≤ 2

(∫ t+1

t
|u(s)|2 ds+ α2

∫ t+1

t
α2|Au(s)|2 ds

)
(93)

≤ 2

∫ t+1

t
(|u(s)|2 + α2|Au(s)|2) ds, since α2 ≤ 1. (94)

Using the Poincaré inequality and (87), we obtain∫ t+1

t
‖Av(s)‖2D(A)′ ds ≤ C7

(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +R2

2, (95)
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where the constant C7 depends on λ1 and µ,and R2
2 = |g|2

λ21µ
2 + |g|2

λ1µ
.

From the inequality (83), we have

‖B̃(u(t), v(t))‖D(A)′ ≤ C‖u(t)‖|v(t)| ≤ C‖u(t)‖
(
|u(t)|+ α2|Au(t)|

)
≤ C (|u(t)|‖u(t)‖+ α‖u(t)‖α|Au(t)|)

≤ C
(
|u(t)|2 + α2‖u(t)‖2

) 1
2
(
‖u(t)‖2 + α2|Au(t)|2

) 1
2 .

where we have used the Cauchy inequality. Applying inequality (86), we have

‖B̃(u(t), v(t))‖2D(A)′ ≤ C
2

((
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +

|g|2

λ2
1µ

2

)(
‖u(t)‖2 + α2|Au(t)|2

)
.

Integrating this inequality over [t, t+ 1] , we find∫ t+1

t
‖B̃(u(s), v(s))‖2D(A)′ ds

≤ C2

((
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +

|g|2

λ2
1µ

2

)∫ t+1

t

(
‖u(s)‖2 + α2|Au(s)|2

)
ds.

We now use (87) and obtain(∫ t+1

t
‖B̃(u(s), v(s))‖2D(A)′ ds

) 1
2

≤ C8

(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +R2

2, (96)

where R2
2 = |g|2

λ21µ
2 + |g|2

λ1µ
and C8 depends on λ1 and µ.

Using inequality (10), we have∫ t+1

t
‖B(B(s), B(s))‖2D(A)′ ds ≤ C

2

∫ t+1

t
‖B(s)‖2|B(s)|2 ds

≤ C2ess sup
0≤s≤M

|B(s)|2
∫ t+1

t
‖B(s)‖2 ds.

Taking into account of (86)− (87), on obtain∫ t+1

t
‖B(B(s), B(s))‖2D(A)′ ds ≤ C

2µ−1

((
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +

|g|2

λ2
1µ

2
+
|g|2

λ1µ

)2

.

This inequality implies that(∫ t+1

t
‖B(B(s), B(s))‖2D(A)′ ds

) 1
2

≤ C9

(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +R2

2, (97)

where C9 depends on λ1 and µ.
Putting (95), (96), (97) and (92) together , it follows that(∫ t+1

t
‖∂tv(s)‖2D(A)′ ds

) 1
2

≤ ν
(
C7

(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t + 2R2

2 + 1
)

+ C8

(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t + |g|λ−1

1 ,

≤ C6

(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +R2

6,

where C6 = νC7+C8+C9 andR2
6 = ν(R2

2+1)+2R2
2+|g|λ−1

1 . This completes the proof of iii).
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iv) The proof of iv) follows from iii) since ‖∂tu‖D(A)′ ≤ ‖∂tv‖D(A)′ .

v) From (76), we have(∫ t+1

t
‖∂tB(s)‖2D(A)′ ds

) 1
2

≤η
(∫ t+1

t
‖AB(s)‖2D(A)′ ds

) 1
2

+

(∫ t+1

t
‖B(u(s), B(s))‖2D(A)′ ds

) 1
2

+(∫ t+1

t
‖B(B(s), u(s))‖2D(A)′‖

2
D(A)′ ds

) 1
2

. (98)

We will bound each of the terms on the right.∫ t+1

t
‖AB(s)‖2D(A)′ =

∫ t+1

t
|B(s)|2 ds ≤

(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +

|g|2

λ2
1µ

2
.

(99)

In view of (10), (86)− (87), we have(∫ t+1

t
‖B(u(s), B(s))‖2D(A)′

) 1
2

≤ Cµ−
1
2

((
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +

|g|2

λ2
1µ

2
+
|g|2

λ1µ

)
.

(100)

We also have the estimate(∫ t+1

t
‖B(B(s), u(s))‖2D(A)′

) 1
2

≤ Cµ−
1
2

((
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +

|g|2

λ2
1µ

2
+
|g|2

λ1µ

)
.

(101)

Substituting (99)-(101) into (98), we obtain(∫ t+1

t
‖∂tB(s)‖2D(A)′ ds

) 1
2

≤ C10

(
|u(0)|2 + α2‖u(0)‖2 + |B(0)|2

)
e−µλ1t +R2

7,

where C10 = (η + 2Cµ−
1
2 ) and R2

7 = η( |g|
2

λ21µ
2 + 1) + 2Cµ−

1
2R2

2. This completes the proof of

Proposition 5.

Remark 5. We note that the constants on the right of estimates (86), (87), (88), (89), (90) are
independent of α. This fact plays the crucial role in the proof of convergence of solutions of the
3D MHD-α model to the solutions of the 3D MHD system as α approaches 0.

3.3 Existence of the trajectory attractor of the 3D MHD-α model

To construct the trajectory attractor for the system (75)-(77), we have to pass to new function
variable w that occupies an intermediate position between the function u and v.
Following [12], we set w = (1 + α2A)

1
2u. We have the following identities:

v = (1 + α2A)u = (1 + α2A)
1
2w,

|w|2 = |u|2 + α2‖u‖2, (102)

‖w‖2 = ‖u‖2 + α2|Au|2. (103)

The couple of functions (w,B) satisfies the following system:

∂tw + νAw + (1 + α2A)−
1
2 B̃
(

(1 + α2A)−
1
2w, (1 + α2A)

1
2w
)
− (1 + α2A)−

1
2B(B,B) = (1 + α2A)−

1
2 g,

(104)

∂tB + ηAB + B
(

(1 + α2A)−
1
2w,B

)
− B

(
B, (1 + α2A)−

1
2w
)

= 0. (105)

Using the function w, we rewrite inequalities (86), (87), (88), (90).
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Corollary 1.

i) |w(t)|2 + |B(t)|2 ≤
(
|w(0)|2 + |B(0)|2

)
e−µλ1t +

|g|2

λ2
1µ

2
. (106)

ii) µ

∫ t+1

t

(
‖w(t)‖2 + ‖B(s)‖2

)
ds ≤

(
|w(0)|2 + |B(0)|2

)
e−µλ1t +

|g|2

λ2
1µ

2
+
|g|2

µλ1
. (107)

iii)

(∫ t+1

t
‖∂tw(s)‖2D(A)′ ds

) 1
2

≤ C6

(
|w(0)|2 + |B(0)|2

)
e−µλ1t +R2

6. (108)

iv)

(∫ t+1

t
‖∂tB(s)‖2D(A)′ ds

) 1
2

≤ C10

(
|w(0)|2 + |B(0)|2

)
e−µλ1t +R2

7. (109)

Proof. The proof of i) and ii) follow from (86)− (87) and (102)− (103).
From the inequality ∫ t+1

t
‖∂tw(s)‖2D(A)′ ds ≤

∫ t+1

t
‖∂tv(s)‖2D(A)′ ds,

we obtain iii).
iv) also follows from (90) and (102).

Consider the Banach space Fb+ in Section 2. Recall that

Fb+ = {z = (w,B) / (w,B)(.) ∈ Lb2(R+;V × V ) ∩ L∞(R+;H ×H),

∂tw(.) ∈ Lb2(R+;D(A)′), ∂tB(.) ∈ Lb2(R+;D(A)′)}.

Inequalities (106)− (109) of Corollary 1 provide the following

Proposition 6. If g ∈ H, for any solution (u,B) of problem (75)−(79), the corresponding couple
(w(t), B(t)) being a solution of system (104)-(105) satisfies the inequality

‖T (h)(w,B)(.)‖Fb+ ≤ C11

(
|w(0)|2 + |B(0)|2

)
e−µλ1h +R2

8, (110)

where the constant C11 depends on µ, λ1 and R8 depends on µ, λ1, |g|.

Remark 6. We note that the constants C11 and R8 are independent of α.

Let us now construct the trajectory attractor for the 3D MHD-α model. The trajectory space
K+
α for system (75)− (77) is defined as follows

Definition 6. The trajectory space K+
α is the union of all couple (w(t), B(t)) where (u(t), B(t))

is a solution of system (75)− (77) with arbitrary (u0, B0) ∈ V ×H.

Using Theorem 3, we prove that the trajectory space K+
α is nonempty.

Proposition 6 implies that K+
α ⊂ F b+ for all α > 0. We also consider the topological space Θloc

+

introduced in Section 2 in connection with the 3D MHD system. Recall that Fb+ ⊂ Θloc
+ .

We consider the topology Θloc
+ on K+

α . We prove that the space K+
α is closed in Θloc

+ .

Proposition 7. The space K+
α is closed in Θloc

+ .

Proof. The proof follows the similar argument as in the proof of Proposition 4.

The translation semigroup {T (h)} acts on K+
α by the formula:

T (h) (wα(t), Bα(t)) = (wα(t+ h), Bα(t+ h)) ,

for h ≥ 0.
From the definition of K+

α , it follows that T (h)K+
α ⊆ K+

α for all h ≥ 0.
Our main result in this section is the following
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Theorem 4. (Existence of the trajectory attractor of the 3D MHD-α model)
If g ∈ H, then the translation semigroup {T (h)} acting on K+

α has a trajectory attractor Uα. The
set Uα is bounded in Fb+ and compact in Θloc

+ . Moreover

Uα = Π+Kα,

where Kα is the kernel of system (75)− (77).

Proof. We have T (t)K+
α ⊆ K+

α , for all t ≥ 0. The set
P ′ = {(w,B) ∈ F b+/‖(w,B)(.)‖Fb+ ≤ 2R2

8} is an absorbing set for K+
α (see Proposition 6). The

ball P ′ is compact in Θloc
+ and bounded in Fb+. This absorbing set does not depend on α since the

constants C11 and R8 in (110) are independent of α. Thus the conditions of Theorems XII.2.1
and XII.2.2 in [11] are valid. Thus there exists a trajectory attractor Uα ⊂ K+

α such that Uα is
bounded in Fb+, compact in Θloc

+ .

Remark 7. Since Uα ⊆ P ′, then the trajectory attractors Uα are uniformly ( with respect to
α ∈]0, 1] ) bounded in Fb+, that is

‖Uα‖Fb+ ≤ R ,∀α ∈]0, 1], (111)

where R is a constant independent on α.

4 Convergence of the solutions of the 3D MHD-α model

We formulate and prove the main result of this section concerning the behavior of the solutions
of the 3D MHD-α model when α approaches 0.

Theorem 5. Let a sequence {(wn(t), Bn(t))} ⊂ K+
αn be given such that

1. {(wn(t), Bn(t)), n ∈ N} is bounded in Fb+,
2. αn → 0+ as n→∞,
3. (wn(t), Bn(t))→ (w(t), B(t)) in Θloc

+ as n→∞. (112)

Then (w(t), B(t)) is a weak solution of the 3D MHD system such that (w,B) satisfies the energy
inequality

−1

2

∫ M

0
(|w(t)|2 + |B(t)|2)ψ′(t)dt+

∫ M

0
(ν‖w(t)‖2 +η‖B(t)‖2)ψ(t)dt ≤

∫ M

0
〈g, w(t)〉ψ(t)dt, (113)

for all ψ ∈ C∞0 (0,M), ψ ≥ 0, that is (w,B) ∈ K+, where K+ is the trajectory space of the 3D
MHD system.

For the proof of Theorem 5, we will need the following lemma

Lemma 1. Let two sequences (un(t), Bn(t)) ∈ Fb+ and {αn} ⊂]0, 1] be given such that αn → 0+

as n→∞. We denote wn = (1+α2
nA)

1
2un for n ∈ N. We assume that the sequence (wn(t), Bn(t))

is bounded in Fb+ and (wn(t), Bn(t)) → (w(t), B(t)) in Θloc
+ as n→ ∞. Then the sequence

(un(t), Bn(t)) is bounded in Fb+ and (un(t), Bn(t))→ (w(t), B(t)) in Θloc
+ as n→∞.

Proof. (Proof of Lemma 1)
The proof follows the one given in [12]. For the reader’s convenience, we will the details of the
proof. From the inequalities

|un|2 ≤ |un|2 + α2‖un‖2 = |wn|2,
‖un‖2 ≤ ‖un‖2 + α2|Aun|2 = ‖wn‖2,∫ t+1

t
‖∂tun(s)‖2D(A)′ ds,≤

∫ t+1

t
‖∂twn(s)‖2D(A)′ ds,
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we have
‖(un, Bn)‖Fb+ ≤ ‖(wn, Bn)‖Fb+ , (114)

for all n ∈ N.
From (114), we conclude that {(un(t), Bn(t))} is bounded in Fb+. Since a ball in Fb+ is weakly
compact set in Θloc

+ , we can extract from (un(t), Bn(t)) a convergent subsequence and we denote
the limit of this subsequence by (u(t), B(t)). For simplicity, we denote this subsequence by
(un(t), Bn(t)). We also keep the corresponding subsequence of (wn(t), Bn(t)). Then we have

(un(t), Bn(t))→ (u(t), B(t)) in Θloc
+ as n→∞

(wn(t), Bn(t))→ (w(t), B(t)) in Θloc
+ as n→∞.

We prove that u = w. In fact consider an arbitrary interval [0,M ]. By the assumption wn(t) →
w(t) weakly in L2(0,M ;V ) and ∂twn(t)→ ∂tw(t) weakly in L2(0,M ;D(A)′). Then by the Aubin
compactness theorem ( see [23, 1]), we obtain that wn(t)→ w(t) strongly in L2(0,M ;H). Arguing
similarly, we also have un(t)→ u(t) strongly in L2(0,M ;H).

We note that ‖(1 + α2
nA)−

1
2 ‖L(H,H) ≤ 1 and therefore

‖(1 + α2
nA)−

1
2wn − (1 + α2

nA)−
1
2w‖L2(0,M ;H)

≤ ‖wn − w‖L2(0,M ;H) → 0 as n→∞. (115)

On the other hand, Lemma 3.2 in [12] implies that

‖(1 + α2
nA)−

1
2w − w‖L2(0,M ;H) → 0 as n→∞. (116)

Combining (115) and (116), we obtain

‖un − w‖L2(0,M ;H)

= ‖(1 + α2
nA)−

1
2wn − w‖L2(0,M ;H)

≤ ‖(1 + α2
nA)−

1
2wn − (1 + α2

nA)−
1
2 ‖L2(0,M ;H)+ ‖(1 + α2

nA)−
1
2w − w‖L2(0,M ;H) → 0 as n→∞.

Therefore un(t) → w(t) strongly in L2(0,M ;H). Consequently u(t) = w(t) and Lemma 1 is
proved.

Proof. (Proof of Theorem 5)
The proof follows the one given in [12] but the presence here of the magnetic field makes the
analysis more involved.
Since

‖(wn, Bn)‖Fb+ ≤ C, ∀n ∈ N, (117)

and (wn, Bn) → (w(t), B(t)) in Θloc
+ as n → ∞, then we have ‖(w,B)‖Fb+ ≤ C. We set un =

(1 + α2
nA)−

1
2wn. The couple (un, Bn) is a solution of the original problem (75) − (77). The

estimates (117),(102) and (103) imply that

ess sup
t≥0

(
|un(t)|2 + α2

n‖un(t)‖2 + |Bn(t)|2
)
≤ C2, (118)

sup
t≥0

∫ t+1

t

(
‖un(s)‖2 + α2

n|Aun(s)|2 + ‖Bn(s)‖2
)
ds ≤ C2, (119)

sup
t≥0

∫ t+1

t
‖∂tun(s)‖2D(A)′ ds ≤ sup

t≥0

∫ t+1

t
‖∂twn(s)‖2D(A)′ ds ≤ C

2, (120)

sup
t≥0

∫ t+1

t
‖∂tBn(s)‖2D(A)′ ds ≤ C

2. (121)
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We now prove that (w(t), B(t)) is a weak solution of the 3D MHD system on any interval (0,M).
The couple (wn(t), Bn(t)) satisfies the system

∂twn + νAwn + (1 + α2
nA)−

1
2 B̃(un, vn)− (1 + α2

nA)−
1
2B(Bn, Bn) = (1 + α2

nA)−
1
2 g, (122)

∂tBn + ηABn + B(un, Bn)− B(Bn, un) = 0, (123)

in the sense of distributions. Here vn = un + α2
nAun.

From the assumption (112), we have

wn(t) ⇀ w(t) weakly in L2(0,M ;V ), weakly star in L∞(0,M ;H), (124)

∂twn(t) ⇀ ∂tw(t) weakly in L2(0,M ;D(A)′), (125)

Bn(t) ⇀ B(t) weakly in L2(0,M ;V ), weakly star in L∞(0,M ;H), (126)

∂tBn(t) ⇀ ∂tB(t) weakly in L2(0,M ;D(A)′). (127)

It follows from (124), (126) that

Awn(t) ⇀ Aw(t) weakly in L2(0,M ;V ′), (128)

ABn(t) ⇀ AB(t) weakly in L2(0,M ;V ′), (129)

and hence in the topology D′(0,M ;D(A)′) as well.
Besides combining Lemma 1,(126),(127) and Aubin compactness theorem, we also have

un(t)→ w(t) strongly in L2(0,M ;H), (130)

Bn(t)→ B(t) strongly in L2(0,M ;H). (131)

Arguing as in the proof of Proposition 4 (see (57)), we also have

B(un.Bn) ⇀ B(u,B) weakly in L
4
3 (0,M ;V ′), (132)

B(Bn, un) ⇀ B(B, u) weakly in L
4
3 (0,M ;V ′), (133)

B(Bn, Bn) ⇀ B(B,B) weakly in L
4
3 (0,M ;V ′), (134)

and therefore in D′(0,M ;D(A)′).
From Lemma 3.3 in [12] and (134), we deduce that

(1 + α2
nA)−

1
2B(Bn, Bn) ⇀ B(B,B) weakly in L

4
3 (0,M ;D(A)′). (135)

Applying Lemma 3.2 in [12] , we have

(1 + α2
nA)−

1
2 g → g strongly in L2(0,M ;H). (136)

Therefore having (124), (130), (131), (132), (133), (135), (136), to prove that (w,B) satisfies the
system

∂tw + νAw + B(w,w)− B(B,B) = g, (137)

∂tB + ηAB + B(u,B)− B(B, u) = 0, (138)

we must establish that

(1 + α2
nA)−

1
2 B̃(un, vn) ⇀ B(w,w) weakly in L

4
3 (0,M ;V ′). (139)

Following [12], we first prove that

B̃(un, vn) ⇀ B(w,w) weakly in the space Lq(0,M ;D(A)′) (140)
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for some q, 1 < q < 2.
We rewrite B̃(un, vn) as follows:

B̃(un, vn) = B̃(un, un + α2
nAun)

= B̃(un, un) + α2
nB̃(un, Aun)

= B(un, un) + α2
nB̃(un, Aun), (141)

where we have used the identity B̃(u, u) = B(u, u) (see (74)). Consider both terms of (141)
separately. We start with the second. By (82), we have

‖α2
nB̃(un, Aun‖D(A)′ ≤ Cα2

n‖un‖|Aun|. (142)

Fixing an arbitrary β, 1 < β < 2, we obtain the following chain of inequalities∫ M

0
‖α2

nB̃(un(t), Aun(t))‖βD(A)′ dt

≤ Cβα2β
n

∫ M

0
‖un(t)‖β|Aun(t)|β dt

≤ Cβα2β
n

(
sup

t∈[0,M ]
‖un(t)‖γ

)∫ M

0
‖un(t)‖β−γ |Aun(t)|β dt

≤ Cβα2β
n

(
sup

t∈[0,M ]
‖un(t)‖γ

)(∫ M

0
‖un(t)‖q(β−γ) dt

) 1
q
(∫ M

0
|Aun(t)|pβ dt

) 1
p

, (143)

where γ is an arbitrary number such that 0 < γ < β, and in (143) we have applied the Hölder
inequality with 1

p + 1
q = 1 ( these numbers will be determined later on). Combining the chain of

inequalities after (143), we have∫ M

0
‖α2

nB̃(un(t), Aun(t)‖βD(A)′ dt

≤ Cβα2β
n

(
sup

t∈[0,M ]
‖un(t)‖2

) γ
2 (∫ M

0
‖un(t)‖q(β−γ) dt

) 1
q
(∫ M

0
|Aun(t)|pβ dt

) 1
p

. (144)

We now set p = 2
β , q = 2

2−β , and find the number γ from the equation q(β − γ) = 2, that is
γ = 2(β − 1). We see that such γ satisfies the inequality γ < β ⇐⇒ β < 2. Replacing such p, q
and γ into (144), we obtain the following estimate∫ M

0
‖α2

nB̃(un(t), Aun(t)‖βD(A)′ dt

≤ Cβα2−β
n

(
sup

t∈[0,M ]
α2
n‖un(t)‖2

)β−1(∫ M

0
‖un(t)‖2 dt

) 2−β
2
(∫ M

0
α2
n|Aun(t)|2 dt

)β
2

. (145)

We now use estimates (118)− (119) and find that the right hand side of (145) is less than or equal

than C1α
2−β
n : ∫ M

0
‖α2

nB̃(un(t), Aun(t)‖βD(A)′ dt ≤ C1α
2−β
n , 1 < β < 2. (146)

Therefore, the term

α2
nB̃(un, Aun)→ 0 strongly in Lβ(0,M ;D(A)′) (147)
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for any β, 1 < β < 2.
On the other hand, arguing as in the proof of Proposition 4(see (57)), we also have

B(un, un) ⇀ B(w,w) weakly in L
4
3 (0,M ;V ′). (148)

Now combining (141), (147) and (148), we find that

B̃(un, vn) ⇀ B(w,w) weakly in L
4
3 (0,M ;D(A)′). (149)

Finally using Lemma 3.3 in [12], we deduce that

(1 + α2
nA)−

1
2 B̃(un, vn) ⇀ B(w,w) weakly in L

4
3 (0,M ;D(A)′). (150)

We have then established that the couple (w(t), B(t)) satisfies the system (137)-(138).
It is left to prove that (w(t), B(t)) satisfies the energy inequality (113). The proof is similar to
the case of (58) since the couple (wn(t), Bn(t)) satisfies the energy inequality

−1

2

∫ M

0
(|wn(t)|2 + |Bn(t)|2)ψ′(t)dt+

∫ M

0
(ν‖wn(t)‖2 + η‖Bn(t)‖2)ψ(t)dt ≤

∫ M

0
〈g, wn(t)〉ψ(t)dt,

(151)

for all ψ ∈ C∞0 (0,M), ψ ≥ 0. This completes the proof of Theorem 5.

5 Convergence of the trajectory attractor of the 3D MHD-α
model as α approaches zero

In Section 2, we have constructed the trajectory attractor U0 of the 3D MHD system:

∂tv + νAv + B(v, v)− B(B,B) = g, t ≥ 0, (152)

∂tB + ηAB + B(v,B)− B(B, v) = 0. (153)

Recall that the set U0 is bounded in Fb+, compact in Θloc
+ and U0 ⊂ K+. We have also proved that

U0 = Π+K0, (154)

where K0 is the kernel of system (152) − (153). K0 is the union of all bounded (in the norm
Fb) complete weak solutions (v(t), B(t)), t∈ R of the 3D MHD system that satisfy the energy
inequality (65).
We denote by

Bα = {(wα(t), Bα(t)), t ≥ 0}, 0 < α ≤ 1,

a family of couple (wα(t), Bα(t)) where wα(t) = (1 + α2A)
1
2uα(t) and (uα(t), Bα(t)) is a solution

of system (75)− (77). The norm of (wα(t), Bα(t)) in Fb+ are uniformly bounded with respect to
α, that is

‖(wα, Bα)‖Fb+ ≤ R

where R is an arbitrary number independent of α (see (110)) and

‖(wα, Bα)‖Fb+ = ‖(wα, Bα)‖Lb2(R+;V×V ) + ‖(wα, Bα‖L∞(R+;H×H)+

‖∂twα‖Lb2(R+;D(A)′) + ‖∂tBα‖Lb2(R+;D(A)′).

(155)
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Recall that (wα, Bα) satisfies the system

∂twα + νAwα + (1 + α2A)−
1
2 B̃(uα, vα)− (1 + α2A)−

1
2B(Bα, Bα) = (1 + α2A)−

1
2 g, (156)

∂tBα + ηABα + B(uα, Bα)− B(Bα, uα) = 0, (157)

where vα = (1 + α2)
1
2wα(t) and uα = (1 + α2A)−

1
2wα(t). We also recall that

T (h)(wα(t), Bα(t)) = (wα(t+ h), Bα(t+ h)). (158)

The main result of this paper is the following theorem

Theorem 6. 1) The trajectory attractor Uα of the system (75)−(77) converges in the topology
Θloc

+ as α→ 0+ to the trajectory attractor U0 of the 3D MHD system (152)− (153) :

Uα → U0 in Θloc
+ as α→ 0+. (159)

2) Let Bα = {(wα(t, x), Bα(t, x)), t ≥ 0}, 0 < α ≤ 1, be bounded sets of solutions of system
(156)− (157) that satisfy the inequality

‖(wα, Bα)‖Fb+ ≤ R, ∀α, 0 < α ≤ 1. (160)

Then the sets of shifted solutions {T (h)Bα} converge to the trajectory attractor U0 of the
3D MHD system (152)− (153) in the topology Θloc

+ as h→∞ and α→ 0+:

T (h)Bα → U0 in Θloc
+ as α→ 0+, h→∞. (161)

Proof. it suffices to prove 2) which implies (159) if we take Bα = Uα = T (h)Uα ∀h ≥ 0.
Assume that relation (161) fails to hold. Then there is a neighborhood Θ(U0) of U0 in Θloc

+ and
two sequences αn → 0+, hn →∞ as n→∞ such that

T (hn)Bαn * Θ(U0).

Hence, there are couple (wαn(.), Bαn(.)) ∈ Bαn , such that Xαn(.) := (wαn(.), Bαn(.)) ∈ Bαn , and
the functions

Wαn(t) := T (hn)Xαn(t)

= (wαn(t+ hn), Bαn(t+ hn)) , t ≥ 0

do not belong to Θ(U0), that is
Wαn(t) /∈ Θ(U0). (162)

The couple Wαn(t) = (Uαn(t), Vαn(t)) is a solution of system (156) − (157) on the interval
[−hn,+∞[ with α = αn, since (wαn(t+ hn), Bαn(t+ hn)) is a solution of the system for t+hn ≥ 0
and the system is autonomous. Moreover, it follows from (160) that(

sup
t≥−hn

∫ t+1

t
‖Uαn(s)‖2 ds+ sup

t≥−hn

∫ t+1

t
‖Vαn(s)‖2 ds

) 1
2

+ ess sup
t≥−hn

|Uαn(t)|+

ess sup
t≥−hn

|Vαn(t)|+

(
sup
t≥−hn

∫ t+1

t
‖∂tUαn(s)‖2D(A)′ ds

) 1
2

+

(
sup
t≥−hn

∫ t+1

t
‖∂tVαn(s)‖2D(A)′ ds

) 1
2

≤ R.

(163)

This inequality implies that the sequence {(Uαn(.), Vαn(.)), n ∈ N} is weakly compact in the space

Θ−M,M = L2(−M,M ;V × V ) ∩ L∞(−M,M ;H ×H)∩
{(v, b)/∂tv ∈ L2(−M,M ;D(A)′), ∂tb ∈ L2(−M,M ;D(A)′)}
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for every M , if we consider αn with indices n such that hn ≥ M . Therefore, for every fixed
M > 0, we can choose a subsequence {αn′} ⊂ {αn} such that {Wαn(.) = (Uαn(.), Vαn(.)), n ∈ N}
converges in Θ−M,M ′ . Thus using the well-known Cantor diagonal procedure, we can construct a
couple of functions W (.) = (U(t), V (t)), t ∈ R and a subsequence {αn”} ⊂ {αn} such that

Wαn” = (Uαn” , Vαn”)→ W=(U,V) weakly in Θ−M,M , (164)

as n”→∞ for every M > 0.
From (163), we obtain the inequality for the limit function W (t) = (U(t), V (t)), t ∈ R :(

sup
t∈R

∫ t+1

t
‖U(s)‖2 ds+ sup

t∈R

∫ t+1

t
‖V (s)‖2 ds

) 1
2

+ ess sup
t∈R
|U(t)|+

ess sup
t∈R
|V (t)|+

(
sup
t∈R

∫ t+1

t
‖∂tU(s)‖2D(A)′ ds

) 1
2

+

(
sup
t∈R

∫ t+1

t
‖∂tV (s)‖2D(A)′ ds

) 1
2

≤ R. (165)

In particular, we have

W (t) = (U(t), V (t)) ∈ Fb = Lb2(R;V × V ) ∩ L∞(R;H ×H)

∩ {(u, v)/∂tu ∈ Lb2(R;D(A)′), ∂tv ∈ Lb2(R;D(A)′)}.
(166)

We now apply Theorem 5, where we can assume that all the functions Uαn” , Vαn” are defined in
the semiaxis [−M ; +∞[ instead of [0,+∞[ ( equations are autonomous). Then from (164) and
(165), we conclude that W (t) = (U(t), V (t)) is a weak solution of the 3D MHD system for all
t ∈ R and W (t) = (U(t), V (t)) satisfies the energy inequality. Therefore W (t) = (U(t), V (t)) ∈ K0

where K0 is the kernel of the system (152)− (153).
Since Π+K0 = U0 and W (t) ∈ K0, we have Π+W ∈ U0. On the other hand, we have established
from (164) that

Π+Wαn” → Π+W in Θloc
+ as n”→∞. (167)

In particular for a large n”,
Π+Wαn” ∈ Θ(Π+W ) ⊆ Θ(U0). (168)

This contradicts (162). Therefore (161) is true . This completes the proof of Theorem 6.
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