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ABSTRACT

2D natural convection/isothermal viscous incompressible fluid flows are presented from the
unsteady Boussinessq approximation and the Navier-Stokes equations in its velocity-vorticity for-
mulation. These flows are obtained with a simple numerical method based on a fixed point iterative
process to solve the nonlinear elliptic system that results once a time discretization is performed.

Introduction

2D natural convection/isothermal viscous in-
compressible flows from the unsteady Boussi-
nessq approximation and the Navier-Stokes
equations in its velocity-vorticity formulation are
presented; they are obtained with a numerical
procedure based on a fixed point iterative pro-
cess to solve the nonlinear elliptic system that
results once a convenient second order time dis-
cretization is made. The iterative process leads
to the solution of uncoupled, well-conditioned,
symmetric linear elliptic problems for which ef-
ficient solvers exist either by finite differences or
finite elements as far as rectangular domains are
considered. On the lid driven cavity problem
thermal flows up to Rayleigh numbers Ra = 10°
and isothermal ones up to Reynolds numbers
Re = 1000 are presented; both cases with aspect
ratio (ratio of the height to the width) A =1
and 2.

We would like to point out that with the
velocity-vorticity formulation is more difficult to

solve these flows, at least with a numerical pro-
cedure similar to the one applied in the stream
function-vorticity formulation using a fixed point
iterative process to solve an analogous nonlin-
ear elliptic system, [1]. Moreover, works deal-
ing with the velocity-vorticity formulation are
scarce, even more for thermal flows. [2] uses a
control-volume finite difference approach to dis-
cretize the problem and then a direct solution
procedure to solve the algebraic system via a
block tridiagonal matrix algorithm; they present
isothermal results for the driven cavity problem,
and heat transfer results for natural and mixed
convection. [3] presents 3D isothermal results for
the driven cavity problem up to Re < 2000 using
finite differences combined with an ADI proce-
dure for the parabolic velocity Poisson equations
and the continuity equation to solve the resul-
tant algebraic system by a diagonally dominant
tridiagonal matrix algorithm. [4] through a Par-
allel multi-block method reports isothermal re-
sults also for 2D and 3D for the driven cavity



problem.

Continuous problem and numerical
method

Let Q C RV(N = 2,3) be the region of the
flow of an unsteady viscous incompressible ther-
mal fluid, and T its boundary. This kind of flows

is governed by the non-dimensional system, in
Qx (0,7, T >0,

u — =V’u+Vp+ (u-Vju=f (a)
V-u =0

0; — 2= V20 +u- V0 =0,

(1)

known as the Boussinesq approximation in prim-
itive variables if f = %Ge, where u, p,
and @ are the velocity, pressure, and tempera-
ture of the flow, and e is the unitary vector in
the gravitational direction. The dimensionless
parameters Re, Ra and Pr are the Reynolds,
Rayleigh and Prandtl numbers, given respec-

tively by Re = UL/v, with v = %:kinematic
viscosity, Ra = %ﬁ:g(ﬂ —Tv), Pr = k/ucy, in-
volving thermal coefficients, characteristic quan-
tities, and the gravitational constant g. If the
flow does not depend on the temperature the
coupling with (1c) is eliminated and f does not
depend on 6, then (1la—b) give the Navier-Stokes
equations for isothermal flows.

The system must be supplemented with ini-
tial and boundary conditions. For instance
u(x,0) = ug and 0(x,0) = Op(x) in Q; and u = f
and B = 0 on I', t > 0, where B is a tem-
perature boundary operator which can involve
Dirichlet, Neumann or mixed boundary condi-
tions.

Taking the curl in both sides of equation (1a),
one obtains the non-dimensional form of the vor-
ticity w transport equation in Q x (0,7

(2)

where the new f is the curl of the old one and
the vorticity vector w is defined by

1
wi— —Vw+u-Vw=w- -Vu+f,
Re

w=Vxu

3)

Taking the curl in (3), from the identity
VxVxa=—-V?a+V(V-a) and using (1b), the
following velocity Poisson equation is obtained

Viu=-Vxw (4)

Hence, equations (2), with the corresponding
f depending on 0 as stated before, and (4) cou-
pled to (1¢) give the Boussinesq approximation

in velocity-vorticity formulation. It can be eas-
ily verified that the vorticity, scalar, w transport
equation in Q x (0,7), Q C R?, is given by

1 o Ra 00
where, from the 2D restriction in (3),
- 8’&2 811,1
“= T oy ©

and, from (4), the two Poisson equations for the
velocity components are expressed as

Vu = —g—‘; (a)
(7)
V2U2 = g—; (b)

Then, the vector Boussinesq approximation
system (2) and (4) coupled to (1c¢) is reduced
to a scalar system of four equations in 2D: one
given by (5) and two by (7), coupled to (1c¢); (5)
and (7) are related through (6) from which the
boundary condition for w in (5) should be ob-
tained from that of u = (u1,u2). A description
of the numerical method follows.

For the time derivatives appearing in the
vorticity equation (5) and temperature equation
(1c¢) the following well known second-order ap-
proximation is used

3fn+1 _ 4fn + fn—l
AT , (8

where x € ), n > 1, At denotes the time step, and
/= f(x,rAt), assuming f is smooth enough.

Then, from (5), (7), and (1lc¢), a fully im-

plicit time-discretization gives rise to a nonlinear

system of elliptic equations, at each time level
(n + 1)At, of the following form, in €,

fi(x, (n+ 1)At) =

2 — _ 0w
\% Uy = 88y
2 —
V Uy = 6_:’

u=1u onl,

aw —vV2w+u-Vw =
w=wp on T,

af —yAf)+u- Vo
Bl|r = 0.

(9)

Ra 06
PrRe? 0z + f“”

= fo,

_ 3 _ 4w717w7171 _ 4971797171
where o = 57, fo = 55— fo = Toar

ﬁ has been replaced by the kinematic viscosity
v considering U = L = 1, and v = %Reg; Upe
and wp. denote the boundary condition for u and
w, and B is still the temperature boundary oper-
ator. This work involves isothermal flows, gov-
erned by the Navier-Stokes equations and nat-
ural convection flows under the Boussinesq ap-
proximation; then, for the latter case, Re = 1=v,



[5]. Since system (9) is of non-potential type, a
fixed point iterative process may be used, which
can be seen either as an adaptation to natural
convection of the one for mixed convection in
the stream function-vorticity formulation, [1], or
as an extension to natural convection of the one
for isothermal flows in velocity-vorticity formu-
lation, [6].
If we denote

R,(w,u) = aw—Aw—l—u-Vw—% 09

Pra_x_fw in Q

Ry(0,u) = ad—~vA0+u-VO— fy in ),
system (9) is equivalent to, in £,
_ _ Ow
V2u1 = _8_1/
V2uy =g ulr = e
(10)
R9(0, u) = 0, B9|p =0
R,(w,u,0) =0, w|r = wpe.

Then, (10) is solved by the fixed point itera-
tive process:
With w° = w™ and 0° = 6™ given, solve until
convergence on 0 and w, in €2,

V2um+1 — _Ow™

1 oy
2 m+1l _ Juw™
Viuy ™ = S,

u" =y,

gm+l — gm_

po(al —yA) "I Re(0™, u™t1);
BO™ =0, py >0,

wmtl = ym—

po(al — A)7IR, (W™, umtL gl
w™Hp =W p, >0,

then  take  (ul™h uhtt gntt wntl) =
(u;nJrl7 u72n+17 9m+1, merl).

Therefore, once the third and fourth equali-
ties for ™*1 and w™*! in (11) are multiplied by
the operators al —vA and al — A respectively,
it turns out that at each iteration four uncou-
pled, symmetric linear elliptic problems, two as-
sociated with these operators and two with V2,
have to be solved.

For the space discretization of elliptic prob-
lems either finite differences or finite elements
may be used, as far as rectangular domains are
concerned; in either case efficient solvers exist.

For the finite element case, variational formula-
tions have to be chosen and then restrict them
to finite dimensional spaces, like those in [5] and
[7]. For the results in the next Section, the sec-
ond order approximation of the Fishpack solver
in rectangular domains, [8], is used. Then, such
second order approximation in space combined
with the second order approximation in (8) for
the first derivatives in time, the approximation
with second order central differences at the in-
terior points, and with (8) on the boundary, for
all the first derivatives of including those that
appear in the local Nusselt number Nu(x) and
de second order trapezoidal rule to calculate the
global Nusselt number Nu, Nu(x) and Nu de-
fined for instance in [9], imply that the discrete
problem relies on second order discretizations.

Like for the isothermal case, [6], contrary to
what it was thought not all the results can be ob-
tained with second order discretizations, a fourth
order one is required for some of them. The
fourth order discretization is accomplished with
the fourth order option of Fishpack to approxi-
mate elliptic problems and with the one in [10]
to approximate the first derivatives.

Numerical experiments

The numerical experiments take place in
rectangular cavities, then © = (0,a) x (0, b) with
a, b > 0. By viscosity and since for natural con-
vection all the walls of the cavity are solid and
fixed, the boundary condition for u is 0 every-
where on I' whereas that for 8 is given by

{ 0=1o0nT|z—0, 0 =0o0nT|z—q;

96 __
5, =0 on Tly=0.p,

hence the horizontal walls are insulated and the
left vertical wall is the hot one. The Prandtl
number is given by Pr = 0.72 because it is as-
sumed that the cavity is filled with air. For
isothermal flows, the well known driven cavity
problem is considered, then u(z,b) = (1,0) on
the moving wall y = b and O elsewhere. The ini-
tial conditions for velocity, vorticity, and temper-
ature are given by u(x,0) = (0,0), w(x,0) = 0,
and 0(x,0) = 0 in Q. Results that converge
to the asymptotic steady state are reported at
moderate Rayleigh and Reynolds numbers. Con-
cerning the iterative process, pg = po, = 0.7
and the convergence is achieved with tolerance
of 107°. The mesh sizes are denoted by h,
and hy, and the time step by At; they will be
specified in each case under study. The results
are reported through the streamlines (left) and



isotherms (right) for natural convection flows
and through the streamlines (left) and the iso-
vorticity contours (right) for isothermal flows;
moreover, the results reported here were ob-
tained with 4** order approximations.

For natural convection flows Ra = 10* and
Ra = 10° are considered whereas Re = 400 and
1000 for isothermal ones; for both, the effect on
the aspect ratio A is analyzed. Figures 1 and 2
picture the natural convection flows for Ra = 10°
with A = 1 (square cavity) and 2 respectively;
the respective meshes are (hy, hy) = (1/64,1/64)
and (hg, hy) = (1/64,2/128), and the time steps
At = 0.0001 and At = 0.00001. Table 1 shows
the activity of the flow through the minimum
and maximum of the stream function, ,,,;, and
Ymaz (Vmaz = 0), and the corresponding global
Nusselt number Nu, denoted with the subscript
v — w, compared with the ones of the stream
function-vorticity formulation, denoted sf — w;
even though they show some noticeable discrep-
ancy the agreement with the physics is good: the
flow is more active if A increases (|tmin| is big-
ger) and the heat transfer is lower. The case
for Ra = 10* does not give any trouble at all;
however, to reinforce the validation something
will be pointed out next about it with results for
A =1 and 2 obtained with meshes (hy, hy) =
(1/64,1/64) and (hg, hy) = (1/64,2/128), and
time steps At = 0.0001 and At = 0.00001.
On this regard, Tables 2 and 3 show results for
Ra = 10° and for Ra = 10% respectively to
compare with [14] whose results are obtained
through a false transient. The comparison is
made with |tpma|=|¢ value| at the center of the
cavity and with the global Nusselt number Nu.
It can be observed that they are close for A =1,
in [14] results for A = 2 are not reported which is
indicated on the Tables by *’s, despite the fact
the methods are different. For Ra = 10°, as
has already been mentioned, the heat transfer is
lower if A increases, which agrees also with the
stream function formulation, Table 1, as it hap-
pens for higher Ra; however, as Table 3 shows,
for Ra = 10 this situation is the opposite.

Finally, Figures 3 and 4 show the isother-
mal flows for Re = 400 with A = 1 and 2
respectively, the latter rotated —90°; the re-
spective meshes are (hg, hy) = (1/80,1/80) and
(hg, hy) = (1/120,2/240), and the time steps
At = 0.01 and At = 0.001; the one with A =1
agrees with that in [6] with the contour values
given by [11] while here it is reported with the
contour values of [12], the one with A = 2 is

compared with that obtained from a scheme of
the stream function-vorticity formulation, which
has been validated with higher Reynolds num-
bers, [1]. Table 4 shows the activity of the
flow through ¥ and ¥,,q, compared with the
ones of the stream function-vorticity formula-
tion; even though they show some noticeable dis-
crepancy the aggreement with the physics is also
good: the behavior of the flow is almost the same
if A or Re increase. Figure 5 pictures the local
Nusselt number Nu(z) for Ra = 10% and A= 1
and 2. It shows that the heat transfer is greater
as the aspect ratio increases; the maximum value
of Nu(z) occurs close to y=0, which agrees with
other formulations.

Conclusions

We have reported numerical results of 2D
natural convection/isothermal flows of viscous
incompressible fluids from the unsteady Boussi-
nesq approximation/Navier-Stokes equations in
the velocity-vorticity formulation. The numer-
ical procedure shows to be good to capturing
asymptotic steady states for moderate Rayleigh
and Reynolds numbers with aspect ratios A > 1.
Despite the numerical procedure applied to this
formulation is not as good as for the stream
function-vorticity, [1], or the primitive variables,
[13], formulation the way it behaves, through
the discretization parameters (the meshes are
coarser and the time step bigger) and through
the discretization order (in general, fourth order
is required), gives us another point of view of
the behavior of the flows under different numer-
ical methods and different formulations of the
problem, showing, nevertheless, the agreement
with the physics of the flows. Moreover, from
the natural convection flows obtained here with
the velocity-vorticity formulation further inves-
tigation can be done, for instance with a mesh
size and time step independence studies, to find
out if for Ra < 10* the heat transfer is really
bigger as A increases, and if that were the case
which would the critical value Ra, < 10% be to
get the opposite situation?
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Figure 1: Ra=100000, h,=1/64, h,=1/64
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Figure 4: Re=400, hy=1/120, h,=2/240
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Figure 5: Local Nusselt numbers for the stream
Figure 2: Ra=100000, h,;=1/64, h,=2/128 function vorticity (SF-V) and Velocity-Vorticity
(VV) formulations with different aspect ratios

Ra=10° with different aspect ratios

Ra | A o 1/)§'fffw Nty—w Wusf —w
10° | 1 | -15.655 | -13.514 | 4.574 4.547
10° | 2 | -31.414 | -21.675 | 4.350 4.320

Lo Table 1.  %¥min and global Nusselt number for

O |
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Figure 3: Re=400, h,=1,/100, h,=1/100

Al [9[™ | [lps" | Nu_ | Nuyg

1 | 15.111 | 11.97 | 4.577 | 4.454

2 | 31.414 | *** 4.350 | *k*
Table 2. Ra = 10%: ™™ Vs ¢7" Nu Vs Nuyg




Al o™ [ [9lpd | Nu_ | Nuya
1 | 7515 | 5.176 | 2.259 | 2.212
2 | 10.160 | *** 2.363 | **

Table 3. Ra = 10*: ™™ Vs " Nu Vs Nuyq
Re | A | 2 | ¥ | vos | ¥5%
400 |1 | -.1214 | -.1113 | .00081 | .00061
400 | 2 | -.1218 | -.1116 | .0103 | .0088
1000 | 1 | -.1117 | -.1156 | .0022 | .0017
1000 | 2 | -.1159 | -1164 | .0217 | .0130

Table 4. min and Ymae for Re 400 and 1000 with
different aspect ratios
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