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Abstract Molecular shape is recognized as an emergent property that complements
the projection from four-dimensional space-time to tangent Euclidean space. Projec-
tion from hypercomplex algebra to real algebra necessitates the three-dimensional
definition of concepts such as chirality, quantum uncertainty and probability den-
sity to compensate for errors of abstraction. The emergent alternative description
of extranuclear charge density as spherical standing waves, optimized by a golden
spiral, reveals atomic structure in line with the periodic table of the elements and
underpinning the concepts of bond order, interatomic distance and stretching force
constant, related to chemical interaction. The principlesgiving rise to molecular
structure are shown to depend, like bond order, on the constructive interference of
atomic wave fields, optimized by minimal adjustment to bond orders. The procedure
is shown to be equivalent to the philosophy of molecular mechanics. Arguments
based on the traditional interpretation of electronegativity, are presented to relate
the parameters of strain-free bond lengths, dissociation energies and harmonic force
constants, used in molecular mechanics, to quantum-mechanically defined ioniza-
tion radii of atoms. Atomic electron densities and a bond-order function, both ob-
tained by number-theory optimization, enable the direct calculation of interatomic
distance, dissociation energy and stretching force constant for all pairwise interac-
tions of any order. Torsional interaction determines the final shape of a molecule
and presumably can only be understood as a four-dimensionaleffect.
Keywords: angular momentum, emergent property, molecular mechanics, molecu-
lar structure, torsional interaction
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1 Introduction

The principal aim of chemical analysis is to develop a theoretical model of the in-
teraction between atoms and molecules alike. Experimentalwork of the previous
two centuries has resulted in a highly successful empiricalaccount of chemical re-
activity, but efforts to formulate a fundamental theory as anon-classical many-body
problem have been less fruitful. By this approach chemical interaction is modelled
in terms of probability-density distributions of independent electrons. Although the
theory appears to work for one-particle problems, unforeseen effects emerge in the
treatment of more complex systems [1]. In particular, the distribution of extranu-
clear electrons seems to obey an exclusion principle, not anticipated in the basic
theory and there is no fundamental understanding of three-dimensional molecular
shapes, as observed experimentally. The pivotal role of entropy, which controls the
course of chemical reactions, is theoretically equally unexpected.

It is not unexpected that problems often occur in the fundamental analysis of
emergent properties. Maybe the prudent response of the chemist should then be a
critical re-examination of those assumptions that underpin the partially successful
theory. In any theory there is a reductionist limit, beyond which there are no data to
guide the recognition of more fundamental principles. In the theory of matter this
limit occurs in the vacuum, or sub-aether [2], seen as the primeval form of matter,
continuously spread across the endless void. On deformation of this featureless cos-
mos, ponderable matter emerges from the void as elementary distortions, which are
perpetually dispersed, except in a closed system. We propose such a structure as
the primary assumption in the theory of molecular shape and assume that persistent
elementary units occur in the form of what will be called waves, for lack of better
terminology. The elementary waves exhibit the first emergent properties of mass,
charge and spin, which they possess in characteristic measure.

Matter in all forms can now be recognized as consisting of thethree robust el-
ementary forms known as proton, electron and neutrino. A fourth common form,
known as neutron, only occurs in close combination with protons. It has a limited
lifetime in free space where it decays into an electron, a proton and a neutrino.

The postulated elementary units should not be confused withwaves as perceived
in three-dimensional space, but rather as undulations in four-dimensional space-
time. The mathematical description of these two types of swaying is fundamentally
different. A steady state that results from four-dimensionally balanced forces, as a
function of a scalar potentialΦ, obeys an equation of the type
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defines a characteristic constant on condition that∑k2
µ = 0. The general solution

of (1) is thereby defined as a four-dimensional hypercomplexfunction, known as a
quaternion, in which all variables remain inextricably entangled.

A common approximation that reduces the equation into a three-dimensional
wave equation assumes the separation of space and time coordinates, which is the
basis of wave mechanics. For many purposes this is a good approximation in tangent
Euclidean space, but it has no validity in curved four-dimensional space-time.

It is important to note that the property of spin is only defined in quanternion
notation, which specifies a conserved quantityJ. It may be viewed as a four-
dimensional symmetry operator, approximated by a three-dimensional angular-
momentum operatorL and a one-dimensional spin, on separation of space and
time variables. The approximationJ = L+ S implies that neitherL norS is a three-
dimensional vector, both of them implying rotation in spherical mode [3]. The one-
dimensional projections,Lz andSz, in an applied magnetic field or in a molecular
environment are vector quantities.

2 Space-like Correlations

It is appropriate to digress at this point into a discussion of the much-debated non-
locality of quantum theory. In a nutshell it amounts to the observation that a wave-
mechanical correlation, established at a given point, remains operational even as a
correlated pair drifts apart indefinitely. The logical implication of this is instanta-
neous action at a distance; an idea much maligned over the ages, but well-defined as
space-like interaction in the theory of special relativity. The interval between four-
dimensional points in Minkowski space,

ds=
√

dx2
0−dr2 ,

reduces to zero in the surface of the light cone and becomes complex on the outside.
Whereas a stationary object within the light cone moves through time with constant
space coordinates, the time coordinate remains constant for such an object in the
space region. Irrespective of spatial separation any pair of points in four-dimensional
space-time therefore remain in virtual contact and correlated.

Humans are conditioned to interpret the environment in three-, rather than four-
dimensional detail and destined to experience events that appear normal in four di-
mensions as mysterious in three. Common examples include non-locality, the com-
mutation properties and other mysterious features of wave-mechanical variables and
the chirality of space.
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3 Wave-mechanical Approximation

The non-classical mathematical description of the world follows equation (1), which
in practice is solved by the separation of space and time variables. Although it is a
good approximation it cannot render four-dimensional effects intelligible in three.
The problem is highlighted by analogy with efforts to describe geometrical shapes
in lower-dimensional space.

Mirror-related triangles in two dimensions clearly define achiral pair, which ap-
pear achiral in three dimensions.

In the same way the chirality of a three-dimensional tetrahedron is resolved in
four dimensions, which means that the three-dimensional chiral forms are identical
when described four-dimensionally. Small wonder that all efforts to find a wave-
mechanical difference betweenlaevoanddextroenantiomers are inconclusive. The
linear superposition principle, widely acclaimed as a distinctive property of quantum
systems, is now recognized as no more than a partially successful device to mimic
four-dimensional behaviour. This includes one of the pillars of chemical-bonding
theory, known as the resonance principle.

Probably the most distinctive feature of quantum systems isthe non-zero com-
mutators of conjugate variables, said to represent a drastic departure from classical
behaviour. In actual fact this is a standard feature of anyH

4 algebra, which only
becomes problematic on trying to reformulate this inR

3. All of the foregoing is
of decisive importance in a theory of molecular shape and creates a serious inter-
pretational dilemma. The strictly three-dimensional empirical data simply cannot
support a quasi four-dimensional theory, whereas many observed features cannot be
accounted for classically. The point is that nuclear position, the decisive parame-
ter, is a strictly classical particle property, but the interaction between atomic nuclei
is wave-like. The traditional compromise to represent bothnuclei and electrons by
probability-density functions does not work.

4 Atomic Structure

The formation of molecules is driven by the interaction between the extranuclear
electronic charge clouds that surround atomic nuclei. According to the wave model
proposed here [4] such an electron cloud is conveniently considered as a spherical
standing wave in the form of concentric annular shells. Eachshell consists of a fixed
number of electrons, proscribed by the quantum numbersl ands. All inner shells in
a ground-state atom are considered closed with the maximum number of electrons.
Except for some special cases such as the inert gases, the outermost valence shell
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is, by definition, not a closed shell. However, given the sub-level degeneracy of
2l +1, with magnetic quantum numbers in the range−l ≤ ml ≤ l , the valence shell
remains spherical in all cases. The quantum numberml = 0 defines a real wave
function with spherical symmetry and any pair of complex functions corresponding
to ±ml also defines the same symmetry. The quantum numbers for any number
of electrons in the valence shell can therefore always be assigned so as to define
spherical symmetry. This stipulation is known as Hund’s rule.

It is important to realise that all wave-mechanical predictions pertaining to
atomic structure are only valid for the H atom. For this reason wave mechanics
is only partially successful as a descriptor of the periodictable of the elements and
hence, of the electronic configuration of many-electron atoms.

Simulation by number theory is the only known procedure thatgenerates the
detailed structure of the periodic table without further assumptions orad hoccor-
rections. In its simplest form the simulation is based on thefact that any atomic
nucleus consists of integral numbers of protons (Z) and neutrons(N), such that the
ratio Z/N is a rational fraction. This ratio converges from unity to the golden ratio
(τ) with increasing atomic number, and yields a distribution commensurate with the
periodic table. The detailed structure of the periodic function is contained in the
Farey sequenceF4 of rational fractions and visualized in its Ford-circle mapping
[5].

Noting that the periodic table derives from the extranuclear electronic configura-
tion of atoms it would seem reasonable to assume that a number-theoretic simulation
could reveal this distribution as well. In this instance we are dealing with the spe-
cial distribution of matter around an active centre; the type of problem amenable
to analysis by optimization in terms of logarithmic spirals. The only requirement is
recognition of an appropriate convergence angle. Using themaximum valence-shell
degeneracy of 2n−1 at the principal leveln, a distribution that appears to replicate
the radii of the Bohr model atn2a0 for a variable convergence angle of 4π/(2n−1),
was indicated [6] and is shown here in Fig. 1.

1

9

25

4

16

Fig. 1 Points generated in a golden rectangle by a Fibonacci spiralwith variable convergence angle
of 4π/(2n−1). Numbers indicate distance to the spiral centre in units ofa0.
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However, in terms of the known periodic structure, the Bohr interpretation can-
not apply. In order to generate the periodic table it is necessary to interpret the ex-
tremum condition as satisfied by the nodal surfaces of the spherical electron wave,
as shown in Fig. 2. The detailed periodic structure, together with sub-shell degen-

2 He
8 (10) Ne

8 (18) Ar
18 (36) Kr

18 (54) Xe
32 (86) Rn

32 (118)

8 (10) Ne         2

2 He                 1

BSFC

18 (28) Ni        3

32 (60) Nd       4

50 (110)           5

9

4

0a

16

n

Fig. 2 Atomic shell structure as it emerges from electron-densityoptimization on a golden spiral.
The variable convergence angle of 4π/(2n−1) manifests in the appearance of 2n−1 additional
cycles (s, p,d, f ) in each interval between Bohr levelsn and n− 1, shown here as elementary
ripples. In contrast to the Bohr-Schrödinger (BS) model, closed shells in the Ford-circle simulation
(FC) invariably coincide with noble-gas configurations.

eracy of 2n− 1, corresponding tos, p,d, f spectroscopic states, emerges from the
graphical representation. The model has been shown [4] to produce the electronic
distribution on all atoms in quantitative detail.

It may be unexpected to find that number theory and traditional wave mechanics
yield comparable reconstructions of extranuclear electronic configurations. How-
ever, both models are based on classical waves in three-dimensional space, appro-
priate for the understanding of atomic structure in tangentEuclidean space.

5 Molecular Structure

Towards an understanding of molecular shape it is importantto enquire into the
symmetry of an activated atom in a chemically crowded environment. Whether the
quantum numberml represents, as traditionally interpreted, a measure of directed
orbital angular momentum, or an element of symmetry, is immaterial. An inter-
atomic collision either redirects the orbital angular momentum of the extranuclear
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electrons or distorts the symmetry of the charge clouds. Theonset of covalent in-
teraction is recognized in either the quenching of orbital angular momentum, or
equivalently, optimization of the overall symmetry as specified by Laplace’s equa-
tion. Either way this principle establishes a criterion in terms of which to predict
the relative orientation of sub-molecular fragments that join up in a chemical reac-
tion. Viewing the quantum numberml as an orbital angular momentum vector along
the polar direction (conventionally denoted byz) is the more convenient practice. It
has the advantage that residual angular momentum is the recognized diagnostic of a
magnetic moment that generates optical activity.

In the case of second-order covalent interaction the angular-momentum vectors
line up antiparallel in a direction perpendicular to the axis of interaction. The en-
ergy which is required to decouple these vectors measures the steric rigidity of the
arrangement, known as a barrier to rotation. In terms of the wave picture steric rigid-
ity relates to the overlap mode of wave crests as shown for ethylene and ethyne in
Fig. 3.

C C
H

H

H

H
H HCC

Fig. 3 Relative rotation about the axis of interaction destroys the interference pattern between the
wave forms shown on the left, but not of those on the right.

The universally accepted model of the second-order dicarbon interaction, collo-
quially known as an ethylenic double bond, has developed from a misreading of
a seminal paper which discussed the quantum theory of doublebonds [7]. In this
paper it is shown that by linear combination of the eigenfunctions

ψ(r,z)
e±iϕ
√

2π
,

which describe the angular momentum on a C atom, two eigenfunctions of different
energy,

ψ(r,z)
cosϕ√

π
and ψ(r,z)

sinϕ√
π

,

are produced. Interaction between two –CH2 units is next analyzed by perturbation
theory in terms of two derived functions of even and odd parity with respect to the
planeϕ = 0:

ψg(r,z,ϕ) and ψu(r,z,ϕ) .
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It was correctly pointed out that with these linear combinations a moment, as in O2,
no longer exists around the C–C axis.ψ2

u is identified as the diatomic ground state
which is shown to require a planar C2H4 arrangement, interpreted as the cause of
the steric rigidity of ethylene.

Derivative work, based on this analysis, erroneously assumes degeneracy of the
linear combinations when defining a set of orthogonal real “orbitals”. There is no
theoretical basis in the seminal paper to justify this assumption. However, what
is clearly implied is that the orbital moment on each carbon atom is directed per-
pendicular to the molecular plane. The molecular angular momentum is therefore
quenched vectorially only for this planar arrangement of the molecule. Torsional
distortion which creates residual angular momentum therefore requires work, the
true basis of a barrier to rotation.

It is instructive to note that the requirement of quenched angular momentum
predicts the same tetrahedral geometry for methane [8] as the concept of symmetry
optimization.

By exploiting these principles it becomes feasible to reconstruct the general
topology of complicated molecules with known connectivity. Optimization of the
topological shape to produce the geometrical details of molecular structure may be
done by the methods of molecular mechanics.

During diatomic covalent interaction the spherical electronic waves on free atoms
generate specific interference patterns, which define bond order, interatomic dis-
tance and a stretching force constant, characteristic of the interaction. These char-
acteristic properties remain largely intact as the diatomic fragment becomes incor-
porated in larger molecular assemblies, the three-dimensional structure of which, in
the first instance, depends on the interference between second-neighbour waves. It is
almost axiomatic that the wave structure of the central atomin a planar arrangement
will be elongated as shown for ethylene in Fig. 3.

Fig. 4 Schematic drawing
of the interacting spherical
electronic waves among four
identical atoms in a plane.

The geometry of a four-atom molecule, as shown in Fig. 4, but with dissimilar
atoms, is specified by three first-neighbour and three second-neighbour interatomic
distances – a total of six independent parameters, not necessarily compatible with
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constructive interference among all wave systems. In orderto arrive at an arrange-
ment that optimizes comprehensive constructive interference it may be necessary to
make small adjustments to the six independent bond orders. The required adjust-
ments will be functions of the relative stretching force constants. Each adjustment
requires an amount of work,

w = 1
2kr δ 2 ,

whereδ defines a linear increase in interatomic distance. The optimized nuclear
framework will in general not be planar, as suggested by the diagram.

The simple procedure, outlined here and extended over any number of connected
atoms, with minimization of the total work required to produce the optimal structure,
constitutes the philosophy ofmolecular mechanics(MM). In practice all secondary
interactions are described in terms more familiar to structural chemists. In this way
1,3-interactions are formulated as deformation of characteristicvalence angles, ac-
cording to

wθ = 1
2kθ (∆θ )2 ,

based on anangle-bendingforce constant. A 1,4-interaction is reduced to atorsional
function that describes a periodic barrier to rotation and aso-callednon-bondedin-
teraction, which is also used to incorporate more remote interactions into the force
field. Special parameters are added to deal with electrostatic interaction between
polar regions and to maintain the planarity of special conjugated systems. Another
refinement considers the interdependence of stretches and bends pertaining to com-
mon atoms.

Historically, molecular mechanics has developed from a purely empirical pro-
cedure to refine molecular trial structures by the minimization of steric energy
as a function of nuclear coordinates [9, 10]. The trial structure is generated by
assigning empirically idealized interatomic distances and valence angles accord-
ing to the chemical connectivity pattern. Today, under certain conditions, it is not
only the most efficient but also a very reliable procedure forthe optimization of
three-dimensional molecular structures, not only, but specifically also for large sys-
tems such as macromolecules, condensed phases and the analysis of conformational
space [9, 11].

Although most of the parameters used in MM simulation are based on adequate
theoretical concepts, the overall procedure to generate molecular structure remains
essentially empirical. The recognized benchmark generally is an experimental struc-
ture and therefore not a free molecule but a selected rigid fragment from a bulk struc-
ture (i.e., a crystal), and specific intermolecular interactions are generally ignored.
It was noted that isotropic (averaged) intermolecular interactions are included in
a force field based on crystal structures, and this mimics thesituation in solution.
Therefore, force fields based on experimental structures are not reproducing struc-
tures of isolated molecules and are slightly different fromforce fields derived from
quantum-chemical structures, which are claimed to producethe structures of iso-
lated molecules [9, 11, 12]. As intermolecular interactions are amongst the weakest
forces in bulk phases, bond distances and valence angles maynot be significantly
affected by the environment. It is mainly the relatively weak torsional interactions
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that differ significantly from their free-molecule counterparts. Since the torsional
flexibility of (primarily carbon-carbon) single bonds is the basis of conformational
variations, the shape of a molecule considerably depends onintermolecular inter-
actions. It follows that MM is only able to correctly predictthe shape if solvation,
hydrogen bonding, long-range van der Waals interactions, electrostatics and polar-
ization are accurately computed and if a full conformational analysis is performed.

5.1 Wave Mechanics

Quantum theory in general has problems similar to those discussed above for molec-
ular mechanics. In addition, the computation of bulk phasesand conformational
analysis are computationally much more expensive and therefore virtually impos-
sible. Matter, in its most elementary form, is nothing but a special configuration
of four-dimensional space-time. The allowed shapes of material aggregates must
therefore depend on the topology of space-time and any theory of molecular matter
is inferred to incorporate some aspect of four-dimensionalsymmetry. However, the
wave-mechanical model of matter, on assuming the separation of space and time co-
ordinates, destroys the four-dimensional symmetry, as evidenced by the disappear-
ance of the spin variable that links the shape of material aggregates to the topology
of space-time.

In the form of a three-dimensional wave equation the theory defines a complex
variable associated with a vector model of angular momentum. By the principle of
symmetry optimization,viz.minimization of angular momentum, this variable may
be used to predict the internal three-dimensional symmetryof assembling molecules
[8]. Followed by MM optimization it might constitute a method of predicting clas-
sical molecular structure from first principles. However, the standard procedures of
quantum chemistry, which rely on further separation of space variables, sacrifice
the angular-momentum parameter, in order to eliminate the complex variable, and
hence suppress the facility to predict internal molecular symmetry.

6 Molecular Mechanics

Among the techniques for structure optimization of chemical systems, molecular
mechanics (MM) is by far the fastest and therefore, for largesystems such as crystal
lattices, polymers, proteins and solutions often the only useful method, especially,
when a significant part of the conformational space and/or dynamics need to be in-
cluded [9, 13]. In many areas, where accurate force fields have been carefully opti-
mized,e.g.for carbohydrates and organic compounds in general [9, 14, 10], but also,
e.g. for cobalt(III) hexaamines [9, 15, 16, 17], the accuracy of the optimized bond
distances is< 0.01Å, and there also is good agreement between computed and ex-
perimental thermodynamic properties (relative strain energies) and vibrational fre-
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quencies [9, 10, 18, 19],i.e., the MM-derived parameters are nearly as accurate as
the experimental data (e.g.X-ray crystallography) and in many cases better than
those derived from quantum-chemical methods (QM).

Why then bother about much more expensive QM-based models? One reason
is that MM may only lead to accurate results for molecules of the same type used
for the optimization and validation of the force field, i.e. extrapolation is seen to
be dangerous if not impossible [9]. This also extends to transition states and short-
lived, unstable intermediates, and therefore to chemical reactivity. Since electrons
are not considered explicitly in MM, electronic effects related to structural distor-
tions, specific stabilities and spectroscopy cannot be modeled by MM. However, in
all other areas, there is no good reason for not using a well optimized and validated
MM model. Also, there are MM-based approaches to deal with most of the defi-
ciencies listed above [9, 20, 21, 22, 23, 24, 25]. In the last decade, there have been a
number of approaches, which have, based on simple rules [26], valence bond theory
[27, 28, 29, 30] and ligand field theory [20, 21, 22, 23], allowed the simplification of
the force-field optimization and validation procedure, and/or inclusion of electronic
effects in MM models.

Therefore, the probably most serious disadvantage of MM compared to all other
approaches in structural modeling is a seemingly missing theoretical basis, and the
unspoken consensus is that, despite its successes, MM should eventually give way
to more sophisticated QM-based models. It is primarily density functional theory
(DFT), which in recent years, due to important developmentsin theory, hard- and
software, has taken over some of the ground from MM. An interesting approach
related to this observation is that the full potential of DFTis then realized when it
is used to build-up a force field [31]. Another important aspect, of course, is that
MM in general only produces optimized structures and minimized energies,i.e. no
information about electronic ground and excited states.

6.1 Electronegativity

An alternative approach to QM, for the elucidation of the electronic basis of MM,
is to reexamine the traditional model of covalent interaction mediated by electron
pairs, based on the notion of chemical affinity. The assumption is that the interaction
between a pair of atoms in a molecule only involves their valence electrons. If the
two atoms are sufficiently alike, equally shared electron density between the atoms
binds them together, if they are of different chemical nature, the sharing is unequal
and the covalency reduced.

It has been a constant pursuit of chemists to classify the elements in terms of such
an affinity factor, in order to predict details of their interaction. The discovery of the
periodic table provided the first clue towards identification of such a chemical bond-
ing parameter, which later became known as electronegativity. On plotting Lothar
Meyer atomic volumes as a function of atomic number the elements are divided into
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two kinds, according to the local slope of the connecting curve [32]. This observa-
tion led to the classification into electropositive and electronegative elements.

Electronegativity has recently been redefined [33] as the quantum potential of
the atomic valence state, calculated from the ground-stateenergy of an electron,
confined to the ionization sphere of radiusr0:

Eg =
h2

8mr20
.

To stay in line with common practice it is convenient to assign a value ofχ =
√

Eg,
with Eg in eV, for general use. Numerically thisχ = 6.133/r0, with r0 in Å units.

Sincer0 is characteristic for each atom, characteristic energies are predicted for
atomic valence state electrons. It is the atomic equivalentof the Fermi energy of an
electron at the surface of the Fermi sea in condensed phases,and in that sense repre-
sents the chemical potential of the valence electron for each atom. Electronegativity
has been defined independently [34] in almost identical terms before. It is a function
of only the electronic configuration of atoms and emerges naturally in the response
of an atom to its environment. Alternatively, it is the tendency of an atom to interact
with electrons and the fundamental property that quantifieschemical affinity and
bond polarity.

It is instructive to examine the periodic variation of valence state electronega-
tivities, as a function of atomic number. It separates into the same segments as the
Lothar-Meyer curve and the qualitative trends are recognized as related to the known
empirical trends of other electronegativity scales [33]. The slope of the curves at
each atomic position represents a change in energy as a function of atomic num-
ber (i.e. number of electrons), and defines the chemical potential of the electrons,
dE/dn= −µ , at that point.

6.2 Simulation by Number Theory

In a previous analysis, based on the generalized covalency curve and empirically
adjusted values of ionization radii,r0 [8], it was shown how to obtain useful MM
force-field parameters. An even simpler and more reliable method has now become
available by recalculation of atomic ionization radii directly from numerical opti-
mization of valence densities.

The recalculated ionization radii are essentially free-atom values and therefore no
longer parametrically related to the general covalence curve. However, for homonu-
clear interactions of the same order,b, a common dimensionless interatomic dis-
tanced′

b is predicted, such thatd = d′
br0. By considering the interaction as an in-

terference between spherical standing waves, integer and half-integer bond-order
parametersd′

b are readily optimized with a golden logarithmic spiral. These param-
eters vary betweend′

0 = 1 andd′
4 = τ to allow the calculation of dissociation energy

from a bond-order related to some power of the golden ratio [35]:
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Dc = Kr2
0τn .

K is a dimensional constant. For heteronuclear interaction,

Dc = Kr3
0(1)τn/r0(2) ; r0(1) > r0(2).

The optimized quantized values of bond order correspond in an overwhelming ma-
jority of cases directly with the traditionally recognizedsingle, double, triple and
quadruple bonds that count electron pairs per interaction.Deformation of any di-
atomic system is resisted by the disturbance of an optimal arrangement, and mea-
sured as an harmonic stretching force constant. Its value depends on the differ-
ences∆D′ and∆d′, and the slope,s, of the line that represents the change between
bond orders as a continuous function as shown in Fig. 2 of the Covalence paper
[35]. Calculation of∆D′ is simplified by a special property of the golden ratio:
τn+1− τn = τn+2 ≡ τ+. In the common units of Ncm−1 or mdyne/̊A, the force con-
stant for a homonuclear stretch is defined as:

kr =
4.615τ+s
(∆d′ · r0)2 .

6.2.1 Non-bonded and 1,3-Interaction

The tetrahedral environment of a covalently saturated carbon atom specifies the sep-
aration between 1,3-neighbours by simple trigonometry1, with d(C–H)=1.12̊A, and
d(C–C)=1.54̊A asd(H· · ·H)=1.83Å, d(C· · ·C)=2.52̊A, d(C· · ·H)=2.19Å.

The H· · ·H distance is close to the 2r0 non-bonded limit, with an effective bond
order of -1, as in Fig. 5. For C· · ·C, the approximated′ = 2.52/1.78 is interpreted
to indicate an effective bond order of -1

2 .
From these data and the slope of 10 in the non-bonded region, 1,3 stretching

force constants are calculated and converted into angle-bending constants. In keep-
ing with common MM practice other non-bonded contacts may beinterpreted as
van der Waals interaction, but no effort has been made so far to calculate an at-
tractive component. Non-bonded distances of less than the van der Waals limit of
RvdW = r0(1)+ r0(2) amounts to repulsion against a force constant, as shown be-
low. Both 1,3 and van der Waals interactions are simulated bythe same function,
the latter at somewhat lower order. To calculatekr for the non-bonded C· · ·C inter-
action we consider a stretch from bond order 0→− 1

2 (∆d′ = 0.5) for 1,3, and 0→ 1
(∆d′ = 1) for van der Waals interaction. From table 3 [35]n+ = 10. For H· · ·H and
C· · ·H we consider a stretch from 0→ 1 (∆d′ = 1). For 1,3 interactionsn+ = 9 and
for van der Waals, withRvdW > R(1,3) we assumen+ = 10. The results under these
conditions are summarized by the following calculations:

1

c2 = a2 +b2−2abcosC
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Fig. 5 Variation of inter-
atomic distance with bond
order.

Bond order

31−1

1.0

1.5

2.0

0.7

d’

kr(C· · ·C) =
4.615× τ10

(0.5×1.78)2 ×10= 0.47Ncm−1

kθ = kr ×2.52/1.911

= 0.64mdyne/̊Arad.

RvdW = 3.56Å ; kr = 0.12Ncm−1

kr(H · · ·H) =
4.615× τ9

(1×0.98)2 ×10= 0.63Ncm−1

kθ = kr ×1.83/1.911

= 0.62mdyne/̊Arad.

RvdW = 1.96Å ; (τ10)kr = 0.40Ncm−1

kr(C· · ·H) =
4.615× τ9

1.78×0.98)
×10= 0.35Ncm−1

kθ = kr ×2.19/1.911

= 0.62mdyne/̊Arad.

RvdW = 2.76Å ; kr = 0.22Ncm−1
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6.2.2 Interatomic distance free of strain

In principle these formulae could generate useful parameters for the simulation of a
large variety of interactions by force-field methods. For simple diatomic interactions
calculated values of interatomic distance for given bond order can be interpreted
as the bond lengths free of strain (ideal bond distances), commonly used in MM.
However, for small atoms, such as carbon, in sterically crowded environments this
assumption needs adjustment.

The estimate of interatomic covalent distances proportional to τnr0 assumes
spherical charge distributions and does not compensate fordistortion by first-
neighbour ligands. The effect of such distortion is illustrated schematically below.

Constructive interference between the distorted waves nowoccurs at a reduced in-
teratomic distance compared to that of the undisturbed waves. Therefore, an inter-
atomic distance free of strain in the correct molecular symmetry environment is
reduced to

d0 = d− τ2nr0.

For first-order C–C interactions this results in

d0 = 1.545−1.78τ10= 1.531Å.

6.2.3 Covalent Interaction

The scheme outlined here has the potential to model all structural and thermody-
namic effects, except for torsional flexibility, which depends on orbital angular mo-
mentum. Special parameters are needed to model these effects in MM, and these are
not included here. Ionic contributions to covalent bondinghave not been considered
either but it should also be possible to do so with slight modifications of the model.

Rupture of a covalent bond occurs in stages in the number-theory-based model
[35], by transformation into bonds of lower order, until only zero-order interactions
(non-bonded) remain. At each stage, a significant rearrangement of the immediate
chemical environment accompanies the lowering of bond order. An intimate rela-
tionship between all bonds in a molecule is therefore implied. It follows that in-
tramolecular rearrangements, however drastic, do not involve the rupture of bonds.
An example is the rearrangement, which involves end-onµ-peroxo-dicopper(II),
side-onη2peroxo-dicopper(II) and dioxodicopper(III) [36]. In sucha process the
molecule preserves its integrity and only experiences a concerted flow of valence
electron density, whereby bond orders between all pairs of atoms are affected in a
continuous process. The most visible effect could be a modification of the geomet-
ric arrangement of nuclei, naturally interpreted in terms of bonds, broken at some
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points, and re-established elsewhere. This interpretation is certainly not right. In-
tramolecular cohesion should rather be seen as due to covalent interaction between
all pairs of atoms, with non-zero bond orders restricted to neighboring pairs, and
fading with increased separation.

In this sense covalency is a molecular property to be visualized as the interaction
within a set of positively charged atom cores in a sea of valence electrons, spreading
from local maxima around the nuclei through all of molecularspace. The point-
charge method models the interaction between all pairs of atoms in the equilibrium
configuration. MM does the opposite: from the details of interatomic interactions it
calculates the equilibrium configuration.

6.3 MM Simulation

The heart of MM is a force field [9], and the ultimate force fieldshould be fully
transferable between all types of molecules. However, progress towards compre-
hensive force fields, such as the Universal Force Field (UFF)and derivatives thereof
[26, 37], is invariably accompanied by a large increase in the number of parameters.
The elegant effort to reformulate MM in terms of valence bondconcepts [27] has
reduced the number of formal parameters at the expense of generic hybridization
parameters. However, the model has not been shown to be applicable for transi-
tion metal complexes [30]. These are traditionally modeledby a points-on-a-sphere
approach, where the angle function around the metal centersare replaced by non-
bonded 1,3-interactions [9, 38, 39], in combination with minor corrections based on
ligand-field theory [40] or, in the most general and advancedmodel for coordination
compounds, with a ligand-field (angular overlap model, AOM)term included in the
optimization routine [22, 23].

The complexity of problems addressed by molecular mechanics is such that
multi-parameter modeling is almost unavoidable. The best to hope for is to find
a parameter set, based on easily understood chemical concepts. The model outlined
above is proposed in that spirit, although considerable refinement is required before
it translates into an accurate and therefore useful tool. Itis based on the classical
concept of electronegativity, reinterpreted in terms of atomic ionization radii and
the chemical potential of the valence state. The calculation of these parameters for
non-hydrogen atoms does not involve empirical parameters or assumptions. It de-
fines the valence state in terms of characteristic spheres towhich a valence electron
is confined at uniform charge density. Chemical bond formation occurs on the ex-
change of this valence charge density between atoms. The consequent polarization,
when reduced to point-charge simulation in dimensionless units serves to describe
all covalent dissociation energies as a function of interatomic distance. This function
applies specifically to interactions free of strain (the ideal bond distances), which
define parameters of fundamental importance in MM. Optimization of a quantized
bond-order function allows direct calculation of diatomicdissociation energies and
stretching force constants.
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The bond-order function applies not only to integral and half-integer bond orders
but also to interactions of zero and negative order, characteristic for all non-bonded
interactions in a molecule. Based on these ideas it is in principle possible to de-
fine a force field, based on pair-wise interactions, which accounts for all structural
and thermodynamic effects, apart from those related to orbital and spin angular mo-
menta.

It is not the purpose of this paper to produce and present a newforce field. We
rather want to provide a theoretical basis for MM and therefore also to be able to
efficiently produce generic force-field parameters. As it stands, one parameter (ion-
ization radius) is needed to initiate the derivation of all other parameters to model
all bond orders of any covalent interaction. It is thereforereassuring to note that the
uniform valence density within a characteristic atomic sphere has the same symme-
try as the 1s hydrogen electron. The first-order covalent interaction between any pair
of atoms can therefore be modeled directly by the simple Heitler-London method
for hydrogen to predictd, D andkr [41]. The results are in agreement with those of
the simpler number-theory simulation [35], which is therefore preferred for general
use.

6.4 First Results

As a test for the proposed scheme, the parameters derived forC–C and C–H in-
teractions by point-charge [8] and number-theory simulation were used as a force
field for aliphatic hydrocarbons. Note that no optimizationof the parameters was
attempted, and the results are understood as a feasibility test that obviously needs
further refinement. Table 1 summarizes our new parameters derived from number
theory together with those from point-charge calculation.

Table 1 Force-field parameters for alkanes, as obtained by number theory. Corresponding values
obtained by point-charge similation [8] are shown in parentheses.

ParameterC—C C—H H—H Units
d0 1.531 1.14 Å

(1.51) (1.07)
kb 5.12 4.39 Ncm−1

(4.88) (5.09)
θ0 106 110 108 deg.

(106) (110) (108)
kθ (1,3) 0.64 0.40 0.62 mdyne/̊Arad

(0.6) (0.6) (0.6)
dvdW 3.56 2.76 1.96 Å

(3.60) (2.55) (2.55)
kvdW 0.12 0.22 0.40 Ncm−1

(0.6) (0.6) (0.19)
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Table 2 Experimental and computed C–C distances for substituted alkanes. (a) Experimental data
taken from [9, 14]; (b) calculated from Hyperchem [43] usingthe MM+ force field [9, 43, 42] with
k(C–C)= 4.4mdyne/̊A, r0(C–C)=1.523̊A; (c) this work.

Compound C–C C–C C–C (a)− (c)
exp.(a)cal.(b) cal.(c)

[Å] [Å] [Å] [Å]
CH3–CH3 1.532 1.531 1.531 0.001

CH3CH2–CH3 1.534 1.534 1.533 0.001
(CH3)2CH–CH3 1.535 1.537 1.534 0.001
(CH3)3C–CH3 1.539 1.541 1.534 0.005

(CH3)3C–C(CH3)3 1.582 1.574 1.550 0.032
(

(CH3)3C
)

2–CH3
(

C(CH3)3
)

1.611 1.620 1.566 0.045

All of the values are in the expected range (see other force fields, such as MM3,
Amber, Momec etc.,e.g. in [10, 9, 13, 18, 26, 42], but by no means are they re-
fined and do not define an accurate force field. The major difference between the
number-theory parameters and the alkane force field derivedby point-charge simu-
lation occurs in the strain-free C-C bond length withd0 = 1.53Å compared to 1.51
Å .

The optimized structural parameters of a series of aliphatic hydrocarbons, shown
in Table 2, although less accurate than with a properly optimized force field, re-
flect the expected steric variations satisfactorily. Experimental and calculated val-
ues with an established empirical force field are shown for comparison [9, 14]. The
differences between the sets of calculated bond distances demonstrate the expected
similarity between the two force fields and confirm that the new approach may be
used to generate a universal force field from first principles. It appears that, in the
number-theory-based force field there is a small imbalance between the attractive
bonding forces and the repulsive interaction, and some adjustment might be needed
(see also discussion above and note that the non-bonded interations have been mod-
eled with the simplest possible approach). An obvious and important extension of
the method described here, should it be used for the development of a general force
field, is the calculation of “electronegativities” for metal ions, in order to also be
able to parameterize metal-ligand interactions.

6.5 Discussion

The central idea behind number-theoretic simulation is that chemical interaction
happens between reactants in their respective valence states. In the case of diatomic
interaction the valence state is characterized by the ionization radii (electronega-
tivities) of the atoms, and is described by simple formulae that relate bond order,
interatomic distance and dissociation energy as functionsof the golden ratio. It is
important to note that the relationships are no more than good approximations for di-
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atomic interaction in polyatomic molecules. For this reason it is perhaps premature
to contemplate a comprehensive data set from which to generate the force field pa-
rameters for the simulation of any classical molecular structure in terms of pairwise
interactions. It may even transpire that the predicted diatomic interactions at a many-
ligand coordination site are not fully compatible. The simple formulae may require
adjustment to be self-consistent. Harmonic force constants would be most sensitive
to such modifications. In order to extend the number-theory approach rigorously
to complex molecules it should be necessary to take the chemical environment of
interacting atomic pairs into account. As an elementary example the interaction be-
tween two carbon atoms in ethane might be modelled as an interaction between two
methyl groups in their molecular valence state. Such second-order corrections may
be small and safely disregarded in general applications, but not completely ignored,
as experienced in all efforts to construct universal force fields. The feasibility of
deriving useful force fields based on number-theoretic diatomic interaction param-
eters has been demonstrated, but complications that arise on unrestricted extension
of the approach are anticipated. The inability to recognizethe principles that dictate
molecular shape is seen as the most serious constraint. Preliminary ideas, which
could serve as an initial guide in the development of algorithms that relate molecu-
lar shape to concepts in number theory, are explored next.

7 Molecular Conformation

Both molecular mechanics and wave mechanics are formulatedto deal with the in-
tricacies of molecular structure in three-dimensional tangent space. In many cases,
where the procedure is clearly inadequate, only minor assumptions are apparently
required to remedy small defects. Familiarity with such anomalies eventually con-
ditions the chemist into accepting thead hocassumptions as fundamental concepts.
The remarkable conviction of most chemists that optical activity only occurs as
the collective property of chiral molecules in the bulk, is of this kind. It seems to
avoid the absurd conclusion that the geometry of a chiral molecule could, by itself,
cause optical rotation. Supposedly, it makes more sense to accept that a collection of
molecules withoutSn symmetry generates the helical motion of charge density that
rotates the plane of polarized light. The wave-mechanical identification of molec-
ular magnetic vectors that may interact with polarized light [8] relies on complex
variables, but these are routinely eliminated by the separation of spatial variables
in quantum-chemical analyses. It is obvious, therefore, that optical activity remains
poorly understood. However, it is of more significance that certain aspects of opti-
cal activity cannot be rationalized in terms of the wave-mechanics of orbital angular
momentum [6] and clearly depend on hypercomplex rotation ofelectronic charge.
We identify this observation as one example that demonstrates the four-dimensional
nature of molecular conformation.
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7.1 Chirality
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Fig. 6 In two-dimensional projection the identical pairs of rotated objects 1,4 and 2,3 appear to
have opposite chiralities, whereas the enantiomeric pairs1,2 and 3,4 appear to be identical. The
racemization by 3D rotation within a 2D crystal is shown on the right.

We contend that molecular chirality appears as a four-dimensional symmetry
which is incorrectly interpreted in three dimensions. The type of anticipated error
is demonstrated by the way in which three-dimensional chirality is projected into
two dimensions, as in Fig. 6. The two-dimensional chiral system is defined here in
the plane that supports the triangular base of a three-dimensional chiral tetrahedron.
The symmetry element, shown as a solid vertical line, represents an inversion (I)
in three dimensions and a two-fold rotation (R) in two. The horizontal broken line
represents a two-fold rotation in three dimensions, but a reflection (M) in two di-
mensions. To complete the argument, the three-dimensionalreflection that operates
diagonally, also appears as a two-dimensional reflection. Two-dimensional inversion
is equivalent to rotation. In summary:

3DI ≡ 2DR

3DR≡ 2DM

3DM ≡ 2DM

The two forms on the same side in the frame on the left have the same three-
dimensional chirality but different absolute structures in two dimensions. Such a
relationship would explain the variable sense of optical rotation, which depends
on four-dimensional chirality, in a homochiral family of molecules. A mechanism
for sterically unlikely rearrangements is illustrated by the racemization of a two-
dimensional chiral crystal. The rearrangement is equivalent to a 2D reflection that
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appears to be chemically and sterically forbidden within a crystal, but conveniently
achieved by 3D rotation.

7.2 Torsional Interaction

The finer details of molecular shape depend to a large extent on the orientation of
fluxional groups on the molecular surface. Whereas MM force fields are based on
molecular structures observed in condensed phases, the torsion angles that fix the
orientation of such groups cannot be specified. The same probably applies to all
torsion angles in the molecular interior. The notorious difficulty of simulating the
tertiary structures of large biomolecules in terms of MM pairwise interactions is due
to this inability to model torsion angles.

In some carefully selected examples it has been shown how denatured proteins
can spontaneously recover their natural folding pattern. The peptide torsion angles,
which control the folding, return to the characteristic values of the native protein,
known to be independent of chemical factors. Some long-range interaction appears
to be at work.

We contend that the shape of large molecules in empty space isaffected by
the topology of the four-dimensional space-time manifold.Guided by the princi-
ple of cosmic self-similarity it is reasonable to assume that, like many spiral galax-
ies, extended molecules tend to curve like the surface of a golden spiral. It lies
in an elliptic plane, which in four dimensions is the projective space,S3, with a
continuous group structure given by the quaternions,α + iβ + jγ + kδ with norm
α2 + β 2 + γ2 + δ 2 = 1 [44]. On a local scale the shape of such a molecule is per-
ceived to follow the surface of a large sphere, which is the projection ofS3 into
three dimensions. Long-chain molecules will then develop the same spiral struc-
ture as kudu horns while two-dimensionally connected macromolecules, such as
graphene, will appear spherically distorted. In both casesthe apparent torsion an-
gles ofπ will more likely appear at a somewhat different value, such as 6/(5τ2) or
4
√

τ [6]. Similarly directed torsional modification on an enantiomeric pair would
impose different shapes on the molecules and destroy the apparent inversion sym-
metry that relates them. This minor difference in shape could be responsible for the
mysterious homochirality in biological systems.
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