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Abstract Some chemical phenomena, awkward to rationalize, are argued to orig-
inate in the four-dimensional nature of matter in curved space-time. The problem
is traced back to the separation of space and time variables in the analysis of four-
dimensional events. Although mathematically sound, this operation is not physically
valid. It destroys the essential non-classical entanglement of space and time, which
is recognized in relativistic theory, but not in quantum mechanics. We show that
without this approximation the state functions of quantum theory have the same
quaternion structure that describes Lorentz transformation and spin. Hypercomplex
formulation of four-dimensional motion eliminates several bothersome concepts,
such as wave-particle duality and probability density, by providing the logical ba-
sis for non-zero commutators in non-classical systems. It shows why chiral states
are undefined in quantum theory and why many solid-state transitions appear to be
sterically forbidden. A brief introduction to hypercomplex algebra is given as an
Appendix.
Keywords: d’Alembertian, Dirac’s equation, harmonic function, spin function,
quaternion

1 Introduction

Several generations of chemists have been conditioned to accept the notorious dis-
crepancy between the theory and practice of chemistry as theunquestionable norm.
Sterically forbidden molecular rearrangements and phase transformations are rou-
tinely reported without comment and the flow of electronic particles, postulated to
rationalize the course of chemical reactions, is never subjected to critical scrutiny.
In reality, practising chemists design their experiments in terms of the 19th century
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notions of chemical affinity, never adequately explained by20th century theories.
The innocent belief that quantum physics explains′′all of chemistry′′ is, like the
rest of quantum theory, obediently respected as just another of its deep inscrutable
mysteries.

The reluctance to abandon dogmatic theory often results in the introduction of
secondaryad hoc explanations to cover up any cracks in the theory, as they occur.
A prime example occurs in the quantum theory of elemental periodicity. Based on
the wave-mechanical ordering of electronic energy levels in an isolated H atom, a
logical Aufbau procedure for many-electron atoms suggestsitself. Elemental order-
ing in shells, consisting of 2n2 successive atoms, for integraln > 0, is predicted.
This pattern breaks down atn = 3. In order to rescue the theory a poorly explained
effect, ascribed to interelectron repulsion is conjectured, without modification of the
basic theory. Even if the only effect of the additional assumption were the splitting
of energy sub-levels whereby, for instance, the 4s sub-level occurs at a lower energy
than 3d, it still fails to account for the observed periodicity. Instead of the expected
4s1→23d1→10, the sequence 4s1→23d1→8(3d104s1→2) is observed. Contrary to Auf-
bau philosophy the interpolated transition series is almost uniformly characterized
by a 4s2, rather than 3d, valence shell. Arbitrary new concepts, such as the degree of
orbital penetration towards the nucleus, without any wave-mechanical basis, are in-
voked next, without improving the theory in any way. A more appropriate response
would have been to admit failure of the H model, applied to non-hydrogen atoms.

The unjustified confidence in wave mechanics to account for elemental periodic-
ity encouraged the belief in quantum theory to explain all chemistry, albeit with the
aid of supercomputers – another unfulfilled dream. The cruellest reality for chemists
has perhaps been the consistent failure to identify the quantum-mechanical basis of
the three-dimensional structure of molecules, substantiated by thousands of inde-
pendent observations, and despite massive computational efforts. This negative re-
sult provides a significant clue to account for the failure ofquantum theory in the
description of chemical systems.

One of the more successful devices to reconcile chemical behaviour with quan-
tum theory was the proposed definition of atomic orbitals to regulate the distribution
of electrons on both atoms and molecules. A minor irritant inthis application is the
complex nature of the relevant wave functions that underliethe definition of atomic
orbitals. As these complex functions invariably occur in orthogonal pairs, real func-
tions can be constructed by suitable linear combinations ofthese pairs. The same
strategy is used in all quantum-chemical computations in order to avoid complex
variables. This strategy comes at an exorbitant price.

A wave-mechanical model of the H atom describes an electron in terms of three
quantum numbers. However, in order to account for atomic spectra it is necessary to
assume that the extranuclear electrons are not all concentrated at the lowest energy
level, but distributed over several levels as stipulated bya fourth quantum number,
postulated to represent a two-level spin system that obeys an exclusion principle.
The strict consequence of this observation is that the orbitals of a three-fold degen-
erate level must have the third quantum number with values ofml = −1,0,1, which
eliminates the possibility of three real functions (Allml = 0). The simple conclusion
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is that any computational scheme that operates exclusivelyon real variables cannot
be considered to be quantum mechanical, but rather as strictly classical.

The pioneers of quantum theory were unprepared for the discovery of two re-
lated, but unforeseen, new effects – the appearance of complex variables as an es-
sential feature of the theory and pairs of conjugate variables that do not commute;
a stark departure from classical mechanics. The appearanceof complex variables is
now readily appreciated, even in two-dimensional harmonicfunctions, defined by
the equation:

∂ 2Φ
∂x2 +

∂ 2Φ
∂y2 = 0.

One method to solve this equation is by assuming the potential function to be the
product of two variable functions ofx andy respectively;i.e.:

Φ = X ·Y

which on differentiation gives

1
X

∂ 2X
∂x2 +

1
Y

∂ 2Y
∂y2 = 0 (1)

The two terms are functions of independent variables and, inorder to satisfy (1)
must be independent of both variables and therefore equal toa constant,i.e.

1
X

∂ 2X
∂x2 = k2

x ;
1
Y

∂ 2Y
∂y2 = k2

y .

To satisfy the implied condition,k2
x + k2

y = 0, eitherkx = ky = 0, or ikx = ky, such
that

Φ = ce±k(x+iy),

which describes a rotation in complex notation, exactly as required by wave me-
chanics.

In three-dimensional formulation the conditionk2
x + k2

y + k2
z = 0 or (A + iB)2

is satisfied, without loss of generality on settingkz = 0, ikx = ky, to describe a three-
fold degenerate state by the magnetic quantum numberml = 0, ±1. Equating all
constants to zero, by the mathematical separation of the physically entangledx and
y coordinates, not only avoids the use of complex functions, but also destroys the
ability to describe the angular momentum of the system. The one-dimensional pro-
jection appears as harmonic oscillation,e.g.

∂ 2X
∂x2 = k2X , X = ae±kx,

which is an incomplete description of the complex rotation.
We have reached the uncomfortable conclusion that our trusted three-dimensional

wave equation, interpreted as a projection from four-dimensional space-time must
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have the same defects as an harmonic oscillator when being considered a model of
complex rotation.

2 Four-dimensional Motion

Motion in four dimensions proceeds against the gradient of ascalar functionΦ,

�Φ =
3

∑
µ=0

∂Φ
∂xµ

= ∑∂Φµ ≡
(

1
ic

∂
∂ t

+
∂
∂x

+
∂
∂y

+
∂
∂ z

)

Φ

and the potential field is described by the d’Alembertian:

�2Φ =

(

∂ 2

∂x2
0

+
∂ 2

∂x2
1

+
∂ 2

∂x2
2

+
∂ 2

∂x2
3

)

Φ = 0 (2)

≡
(

∇2− 1
c2

∂ 2

∂ t2

)

Φ = 0 (2a)

Equation (2) is recognized as Laplace’s equation in four dimensions and in alterna-
tive form is known as the wave equation in 3-dimensional space.

The mathematical procedure of solving (2) is by treatingΦ as the product func-
tion

Φ = X0(x0) ·X1(x1) ·X2(x2) ·X3(x3).

By substituting the four factors,

∂ 2Φ
∂x2

0

=
∂ 2X0

∂x2
0

(X1X2X3), etc.

into (2) and dividing byΦ,

1
Φ

�2Φ =
1

X0

∂ 2Φ
∂x2

0

+
1

X1

∂ 2Φ
∂x2

1

+
1

X2

∂ 2Φ
∂x2

2

+
1

X3

∂ 2Φ
∂x2

3

= 0. (3)

Each term is a function of a single variable and (3) can only remain valid if each
term is independent of all variables and equal to a constant.Each term can hence be
written in the form of a one-dimensional Helmholtz equation:

d2X
dx2 − k2X = 0 (4)

in which X = ae±kx. For X = T (t) the equation

1
c2

d2T
dt2 + k2T = 0, (4a)
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writing ω = ck, yieldsT (t) = aexp(±iωt), in whichω is interpreted physically as
an angular frequency.

Each term in (3) requires an arbitrary constant to generate the overall solution
Φ = Aexp(k0x0+k1x1+k2x2+k3x3). These four constants are not independent and
must satisfy the general condition:∑k2

µ = 0, imposed by (3) and (4). The most gen-
eral solution of�2Φ = 0 is therefore a function that depends equally on all four
coordinates, rather than the product of four linear functions. The four-dimensional
Laplacian,�2Φ = 0 describes the state of potential balance along the curved Rie-
mannian manifold. Minkowski space-time, tangent to the manifold, describes a local
pseudo-Euclidean approximation. By separating space and time variables the Lapla-
cian reduces to a wave equation (2a) in Euclidean space. Thisequation is the basis
of wave mechanics, which further separates space and time variables into space-like
and time-like equations.

It is at this point that wave mechanics moves out of Minkowskispace. Away from
the assertion that space-time is characterized by the harmonics of a four-dimensional
Laplacian, visualized as long-wavelength undulation; like a wave field in Minkowski
space. In wave-mechanical approximation the time and spacevariables (collectively
represented asx) are separated by definition of the product function

u(x,t) = f (x) · e−iω0t

to yield

∇2ψ +
(ω0

c

)2
ψ = 0 (5)

and
(

∇2 +
iω0

c2

∂
∂ t

)

Ψ = 0. (5a)

By de Broglie’s postulate, the wave vector becomes

k =
ω0

c
=

2π
λ

=
p
h̄
,

whereby (5) and (5a) reduce to the familiar Schrödinger equations, which provide a
good practical approximation within the locally perceivedthree-dimensional space,
but the holistic entanglement of space-time coordinates islost.

Developed into a theory of atomic stability the equilibriumcondition,dE/dr = 0,
defines the so-called stationary states of the hydrogen atomas a function of the total
electronic energy,

E =
p2

2m
− e2

r
(in esu).

Considerd as a standing de Broglie wave of wavelengthnλ = 2πrn, the distance
between proton and electron follows as
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rn =
(nh̄)2

me2 , i.e. En = − e2

2r
= − me4

2(nh)2 = −Rhc
n2 .

This inverse square relationship, which assumes a spherically symmetrical stand-
ing electron wave, is the fundamental equation of atomic spectroscopy and non-
relativistic wave mechanics. In four-dimensional space-time, especially in a non-
zero gravitational field, the assumption is not strictly valid and the proportionality
factor,Rn may vary withn.

The mass variable is a strictly empirical assumption that only acquires meaning
in non-Euclidean space-time on distortion of the Euclideanwave field defined by
equation (2). The space-like equation (5), known as Schrödinger’s time-independent
equation is not Lorentz invariant. It is satisfied by a non-local wave function which,
in curved space, generates time-like matter-wave packets,characterized in terms
of quantized energy and three-dimensionalorbital angular momentum. The four-
dimensional aspect of rotation, known asspin, is lost in the process and added on
by assumption. For macroscopic systems the wave-mechanical quantum condition
h̄ω = E −V is replaced by Newtonian particle mechanics, in whichE = 1

2mv2 +V .
This condition, in turn, breaks down asv → c.

Wave mechanics, and particle mechanics, formulated to describe motion in three-
dimensional space are both incomplete by their failure to account for spin and rela-
tivistic effects. The common defect in both formulations lies in the unphysical sep-
aration of space and time variables. The proper procedure requires hypercomplex
solutions of (2), which describe motion in four-dimensional space-time1.

Although hypercomplex solution of (2) has never been achieved, a conditional
covariant form of the wave equation was proposed by Dirac [1]on assuming spin
matrices as possible solutions. The procedure consisted ofmodifying Schrödinger’s
equation

ih̄
∂Ψ
∂ t

= HΨ ,

which is linear in∂/∂ t, by inserting the relativistic Hamiltonian

H =
(

p2c2 + m2
0c4)

1
2 .

To ensure Lorentz invariance the Hamiltonian should also belinear in space deriva-
tives,−h̄ipk = ∂/∂xk (k = 1,2,3), such that

H =
3

∑
k=1

αkcpk + β m0c2, i.e.

ih̄

[

β
c

∂
∂ t

+
3

∑
k=1

β αk
∂

∂xk

]

Ψ = m0cΨ .

1 For the benefit of those readers who are not familiar with hypercomplex numbers and quaternions
an elementary introduction is provided as an Appendix to this paper.
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With γ0 = β , γk = β αk , x0 = ct the equation

ih̄

(

γ0 ∂
∂x0

+ γ1 ∂
∂x1

+ γ2 ∂
∂x2

+ γ3 ∂
∂x3

)

Ψ = m0cΨ ,

is Lorentz invariant and commonly transformed, using unitsof h̄ = c = 1 and the
Einstein summation convention, to read

(

iγµ ∂µ −m
)

= 0.

These conditions are fulfilled by assuming coefficients of the form

αk =

[

0 σk

σk 0

]

, β =

[

I 0
0 −I

]

whereσk are Pauli matrices andI is the 2×2 unit matrix. As before, the spin vari-
ables are therefore introduced empirically.

The most significant difference of Dirac’s results from those of the non-relativistic
Pauli equation is that the orbital angular momentum and spinof an electron in a
central field are no longer separate constants of the motion.Only the components of
J = L+ S andJ2, which commute with the Hamiltonian, emerge as conserved quan-
tities [1]. Dirac’s equation, extended to general relativity by the method of projective
relativity [2] automatically ensures invariance with respect to gauge, coordinate and
spinor transformations, but has never been solved in this form.

The surprising implication is that Dirac’s equation does not allow of a self-
consistent single-particle interpretation, although it has been used to calculate ap-
proximate relativistic corrections to the Schrödinger energy spectrum of hydrogen.
The obvious reason is that a 4D point particle is without duration and hence unde-
fined. An alternative description of elementary units of matter becomes unavoidable.
Prompted by such observation Dirac [3] re-examined the classical point model of the
electron only to find that it has three-dimensional size, with an interior that allows
superluminal signals. It all points at a wave structure withphase velocityvφ > c.

The equation�2Φ = 0 has unitary quaternion solutions of the form

Φ = eθ(iα+ jβ+kγ) = cosθ +sinθ (iα + jβ + kγ) ,

which represent theSU(2) rotational Lie group. The four-dimensional eigenfunction
is the proper spin function. Withθ = ωt it is the state function that describes total
angular momentumJ = L+ S. For iα + jβ + kγ = i, it describes spin only. Finally,
with β = γ = 0, it defines spin in polar projection (s = ± 1

2), as shown in more detail
below. AlternativelyΦ is the state function of an electromagnetic photon.

With cosθ = 0 Φ could represent the space-like state function of electric charge,
known as the angular-momentum function, described by the quantum numberl in
Schrödinger notation, also known as the three-dimensional spherical harmonics.

The most general rotation of a four-vector represented byq = w+ ix + jy + kz is
described by the equation
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q′ = eθ(iα+ jβ+kγ)qe−ϕ(iλ+ jµ+kν)

whereα2 +β 2+ γ2 = λ 2+ µ2+ν2 = 1. When bothθ andϕ are imaginary angles,
the transformation corresponds to the Lorentz transformation [4, 5]. This is math-
ematical proof that quantum theory and special relativity originate from the same
basis, as the most general solution of (2) must obviously be aquaternion function.

3 Spherical Rotation and Spin

The quaternion that describes rotation throughθ about thex-axis, follows as

ei(θ/2) = cos(θ/2)+ isin(θ/2) .

This hypercomplex number is given in matrix form by

q =

(

0 e−iθ/2

eiθ/2 0

)

and rotation of 2ωt in time, by
(

0 e−iωt

eiωt 0

)

.

This matrix operates on a two-level object, called a spinor,e.g. {φ1 , φ2}. A spinor
system that moves in some general direction,x, say:

Φ =

(

0 e−i(ωt−kx)

ei(ωt−kx) 0

)(

φ2

φ1

)

≡
(

φ1e−

φ2e+

)

(in shorthand notation) is shown to satisfy Schrödinger’s[6] and Dirac’s [7] equa-
tions, by forming the derivatives:

∂Φ
∂ t

= iω
(

−φ1e−

φ2e−

)

,
∂Φ
∂x

= ik

(

φ1e−

φ2e+

)

,
∂ 2Φ
∂x2 = k2

(

−φ1e−

φ2e+

)

from which follows that
1

iω
∂Φ
∂ t

=
1
k2

∂ 2Φ
∂x2 .

Equatingm = h̄k2/2ω , the equation

− i
∂Φ
∂ t

=
ω
k2 ∇2Φ =

h̄
2m

∇2Φ (5a)

in three dimensions, is identical to Schrödinger’s equation or its complex conjugate,
and describes both matter and antimatter, each with the spinstates{φ1,φ2}. Writing



Chemistry in Four Dimensions 9

the wave vectork = 2π/λ = p/h̄, with de Broglie, the quantum condition̄hω =
p2/2m follows directly.

The common assertion that electron spin is a strictly relativistic effect [8] needs
modification. As shown before [9] a linearized Schrödingerequation, first order in
all space-time derivatives implies the Pauli equation [10]with the correct value of
the electron gyromagnetic ratio. The 1/2-spin appears, notas a relativistic effect, but
because of the implied four-dimensional space-time. It hasthe significant advantage
that the spin degrees of freedom are contained in the theory from the beginning,
without being addedad hoc. However, the spin and angular-momentum variables
remain separated.

Since there is no geometrical understanding of spin in three-dimensional space
it is not reflected in standard wave mechanics. A four-dimensional quaternion func-
tion, on the other hand, contains a four-component spinor astemporal characteristic,
entangled with the space variables. Spin is generated in four-dimensional quaternion
rotation, which is intrinsically different from the axial rotation of three-dimensional
space, and is also described as spherical rotation2 [7]. Because rotation in spin space
is governed by one-half the angles of rotation in ordinary space, it has the special
property that any entanglement of the spinor with the supporting medium, which de-
velops during rotation of 2π , spontaneously disentangles after a further 2π rotation.
This is the result of the half-angle operation of quaternionrotation. It causes a peri-
odic fluctuation in the medium (vacuum) that surrounds the spinor, and is observed
as spin. The undulation withλ = 2π on the surface of the unit sphere describes spin
asmω = h̄/2, half a unit of angular momentum.

Each spin

(

eiωt

0

)

has an inverse state

(

0
iωt

)

and an antispin

(

e−iωt

0

)

. The prod-

ucts
(0 iωt)

(

eiωt

0

)

= 0 ,
(e−iωt 0)

(

eiωt

0

)

= 1

show that spin pairing yields a boson of spin zero, while the annihilation of spin and
antispin produces a photon of spinh̄ and which satisfies the wave equation (2a). The
conditionc =

√

E/2m, (V = 0), now implies conversion of the total mass of matter
and antimatter into a photon of energyE = 2mc2 = h̄ω .

It is ironic that spin, which is the only non-classical attribute of quantum me-
chanics, is absent from the pioneering formulations of Heisenberg and Schrödinger.
Even in Dirac’s equation the appearance of spin is ascribed by fiat to Lorentz in-
variance, without further elucidation. In reality, both Lorentz invariance and spin,
representing relativity and quantum mechanics, respectively, are properties of the
quaternion field that underpins both theories.

2 The relationship between spherical rotation and quaternions is visualized pictorially by
Kauffman[11]
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4 The Physical Model

Within the time-like domain of Minkowski space the gravitational field dominates
and a quantum-potential field dominates in the space-like domain. Electromag-
netic bosons, which occur in the interface, exhibit both time-like and space-like
behaviour. Events close to, or in, the interface show both quantum and relativistic
behaviour. There is only one classical–non-classical limit as quantum mechanics
and relativity appear as a single theory. Confusion sets in with failure to distin-
guish between waves and particles as elementary entities and with the possibility of
massive objects moving faster than light in the vacuum. It isthe unphysical iden-
tification of elementary point particles with quantum wavesthat gives rise to the
spurious concepts of wavicle, quantum uncertainty, probability density and infinite
self-energy. Elementary wave structures exist without such complications. It is in-
structive to note that the authoratitive exposition of Uns¨old [12] does not involve
probability density.

Standing waves, like gas molecules, exert pressure on the walls of a container.
With the container at rest or in uniform motion the force exerted on any wall is
balanced by that exerted on the opposite wall. If the container is accelerated radia-
tion reflected off the rear wall gains more momentum than thatlost by the radiation
which reflects off the front wall. It has been demonstrated [13, 14, 16] that radiation
exerts a net force, which opposes an applied force on the container, such that

(

m+
ER

c2

)

a = F .

The radiant energy adds an effective inertial massER/c2 to the mass of the container.
In the same way the total mass of an electron may be interpreted as deriving from
internal motion in a phase-locked cavity.

Plane waves with phase velocityvφ form wave packets with group velocityvg,
such thatvφ vg = c2 (= 1/ε0µ0). The phase and group velocities are the same only
for electromagnetic waves withvφ = c. To describe the inertial properties of a wave
packet a mass variable is introduced [17]. A group velocityvg ≶ c defines matter
waves as described by the Elbaz [18] equation:

∇2u±
(m0c

h̄

)2
u =

1
c2

∂ 2u
∂ t2 (8)

This is interpreted to show that the curving of space produces time-like(vg < c) as
well as space-like(vg > c) wave packets with real(m) and imaginary(im) mass
[19], respectively known asbradyons andtachyons.

Equation (8), second-order in time, has solutionsu(t) andu(−t), defining matter
and antimatter waves respectively. Of the four possible forms only bradyonic matter
waves are directly observed in time-like tangent space. Other types of wave are
encountered in sub-atomic quantum systems.
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The formation of wave packets depends on the interaction of acomplementary
bradyon-tachyon pair. The bradyonic group velocity corresponds to the de Broglie
wavelength of the packet,λdB = h/mvg. The tachyonic component defines the in-
ternal structure of the wave packet with Compton wavelengthλC = h/mc. The two
components are said [20] to be trapped in a relativisticallyinvariant way. We note
that vbvt = c2 = 1/ε0µ0, where the group velocity of the tachyonvt matches the
phase velocity of the bradyon. Such a wave-packet is not dispersive. Essentially the
same model, developed from another perspective, is described by Milo Wolff [21].
An elementary unit of charge (e.g. electron) is considered here as a standing wave
packet created by the interaction between a pair of time-symmetric spherical scalar
waves: a retarded wave radiated by the electron, in balance with an advanced wave
that represents the resultant as the radiation from all other sources in the cosmos
interferes. This is Mach’s principle in wave formalism.

Variability in the internal structure of elementary wave packets is responsible
for the appearance of protons, neutrons and electrons [22],which interact by the
exchange of intermediate massless photons. Chemical interactions, all of this type
[6], are responsible for the growth of massive structures, which on the macro scale
interact gravitationally.

All debates on the interpretation of quantum mechanics mustend in confusion,
unless the classical and non-classical models of the world are clearly distinguished.
The classical model is based on the assumption that persistent fragmentation of mat-
ter terminates in a set of elementary particles that resist further subdivision, but re-
tain the innate quality to predict the behaviour of matter inthe bulk. A non-classical
alternative starts at the other extreme with a featureless plenum that develops peri-
odic wave structures in a topologically closed universe. Inprojective relativity [23]
there is

... no such thing as a body in space, but matter is an aspect of the space-time structure.

These elementary waves coalesce into bigger units that exhibit all the known prop-
erties of ponderable matter.

Classical mechanics analyzes the interaction between particles, and non-classical
mechanics should study the interaction between wave structures. We repeat that the
two models do not refer to classical and non-classical domains – they both model the
same world, but from different points of view. It so happens that at different levels
of aggregation one or the other provides a more convenient description. Attempts
to describe classical structures non-classically, orvice versa, inevitably end up with
illogical conclusions.

Physics has the dilemma of irrefutable evidence for a four-dimensional world, but
a genetic inability among physicists to visualize more thanthree dimensions. It is
therefore not surprising to find that those instances in which reality is badly distorted
in three-dimensional projection, inevitably lead to convoluted theories, bordering on
the supernatural. Quantum mechanics is a prime example of such a theory. It was
inspired by experimental results that defied explanation based on classical theory. It
was first recognized in the study of microphysical systems, which in time came to
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be seen as deviating from the classical and therefore subject to a new theory, without
relevance in macrophysics.

A more plausible interpretation is that the motion of ponderous objects, projected
into tangent three-dimensional space, differs imperceptably from four-dimensional
reality in the local environment where a classical description suffices. It only be-
comes an issue for fast-moving objects and where particle mass approaches zero.
The real meaning of both relativity and quantum theory is obscured by their formu-
lation as alternatives to Newtonian mechanics that kick in at some classical limit.

A notable difference between three- and four-dimensional formulation of quan-
tum mechanics occurs in their commutation properties. InR3 commutators that in-
volve a time-dependent variable are found to be non-zero. For instance

[p,q] = (pq−qp) = ih̄ , [Jx,Jy] = ih̄Jz, etc.

Uncertainty relationships such as∆ p∆q > h̄, ∆E∆ t > h̄, etc, derive directly from
these commutation rules [24].

The unexpected appearance of complex operators is also associated with non-
zero commutators and reflects the essential two-dimensional representation inM2

Minkowski space-time. In four-dimensional space-time,H4, all commutators are
non-zero, as appropriate for wave motion of both quantum andrelativity theories.
An important consequence is that local observation has no validity on global extrap-
olation, as evidenced by the appearance of cosmical redshifts in the curved manifold
and the illusion of an expanding universe.

5 The Chemical Model

Chemical theory, if anything, is distorted even more than physics on projection
from four-dimensional space-time. In electromagnetic andother field theories gauge
particles have mathematically assigned phase factors, which in chemistry is simu-
lated as probability density. Whereas the purely mathematical symbolism suffices
as working models in particle physics, chemistry has the more stringent demand to
deal with extended three-dimensional entities. Even at itslowest level the known
chemical function of an electron, defined as a structurelesspoint particle, becomes
incomprehensible.

The analysis of dynamic systems in terms of point particles originated with New-
ton, but the context in which the concept was introduced has been ignored and for-
gotten. Newton was concerned with the motion of heavenly bodies and their mutual
interaction. To avoid the complication that the moon’s effect at the proximal and
distal surfaces of the earth cannot be the same, the total interaction was assumed
mathematically equivalent to the attraction between objects with all mass concen-
trated at their respective centres of gravity, which is a point. Earth and moon are
therefore modelled as interacting mass points. What works for planets also works
for apples and electrons. In practical application reference to the centre of gravity
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was made less frequently and, in time, the actual nature of elementary units of matter
as mass points became generally accepted as physical reality.

When the wave nature of electrons was discovered experimentally Newton’s per-
ception of mass points as centres of gravity had been inactive for so long that, instead
of a wave packet with a centre of gravity, an electron was considered as the physical
union of a particle and a wave. In this approach particle nature is considered to be
of primary importance and wave nature is simulated by a probability function that
specifies particle coordinates. This interpretation was pioneered by de Broglie’s pos-
tulate [25] of a particle piloted by a wave. However, the morenatural wave model
does the opposite and follows the motion of a wave packet in terms of its centre-of-
gravity coordinates. The photoelectric and Compton effects can then be understood
as interaction between waves, rather than particles, as pointed out by Schrödinger
[26]. As stated in the Abstract of [26]:

A definiteψ−distribution in configuration space is interpreted as a continuous distribution
of electricity (and electric current density) in actual space.

Unforunately this level-headed interpretation was never generally accepted. As re-
marked by David Bohm [27]:

The current formulation of quantum mechanics must be regarded merely as a statistical
algorithm, which provides no conceptual structure in termsof which the movement of indi-
vidual systems can be understood.

It is only the theory of general relativity that provides anyguidance towards
an understanding of the elementary nature of matter,via Einstein’s field equations,
conveniently condensed into the form

Gµν = kTµν , µ ,ν = 0,3,

which balances the tensor of space-time curvature against the stress tensor of the
matter-energy field. The vital assertion is that a vanishingcurvature tensor, which
implies flat Euclidean space, demands the disappearance of all matter. It is unequiv-
ocally inferred that matter appears as a result of the curving of space-time. By the
minimal assumption, known as Occam’s razor, matter must be identified as a distor-
tion of curved space-time.

As a reasonable conjecture we now propose that curved space-time, like an in-
flexible sheet wrapped around a curved surface, must developpersistent wrinkles
– the elementary units of matter or energy. We envisage flat space-time in feature-
less undulation that develops elementary wave packets whencurved. We recognize
few types of wave packet with internal wave patterns perceived as the characteris-
tic mass, charge, spin and chirality of the four-dimensional elementary units whose
behaviour is prescribed by a potential function according to equation (2).

On projection into three-dimensional tangent space the chiral forms known as
matter and antimatter are distinct and, asc → ∞ [28], obey conjugate forms of the
wave equation (2a), the three-dimensional approximation of (2). To substantiate this
reasoning it is noted that many features of the H atomic spectrum are reproduced
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to good approximation by the solution of (5) for the single electron on a hydrogen
atom.

The crunch comes when trying to analyze non-classical many-electron systems
by the same procedure. The mathematics to solve the many-body differential equa-
tion does not exist. The popular alternative is to consider each electron as an indi-
vidual particle and to describe ann-electron system by a probability density in 3n-
dimensional configuration space. The use of complex variables is tacitly avoided.
The result is a procedure that pretends to simulate a non-classical problem by a
classical model, with an unnecessary complicated structure, designed to resemble
quantum formalism. In this case the statistical model that works for an ideal gas,
fails to explain the behaviour of a many-electron wave.

An alternative procedure is suggested by the recognition ofelementary matter as
wave-like distortions of space-time. Unlike free-floatinghard particles in a void, the
wave packets envisaged here remain part of the medium and their distribution there-
fore depends on the symmetry of space-time. The extranuclear charge cloud on an
atom may thus be viewed as the coalescence of electronic wavepackets to constitute
a common spherical standing wave around the nucleus. The internal structure of the
wave must reflect the charge distribution as optimized underthe nuclear attraction,
like a three-dimensional analogue of the essentially planar solar system.

Optimization by a golden spiral predicts the correct distribution of matter in
the solar sytem [29], with the inference that the spiral structure reflects space-time
topology. Fractal models of the universe, which imply cosmic self-similarity, would
then indicate the same optimization for extranuclear electron density. The resulting
wave structure inevitably carries an imprint of the golden ratio.

Interatomic interaction entails the interference of extranuclear electronic waves.
Constructive interference must occur at specific interatomic distances, which should
correlate with the notion of bond order, numerically related to the golden ratio.
The feasibility of modelling chemical interaction by elementary number theory is
foreseen.

6 Conclusion

Contrary to popular belief new ideas in science are rarely embraced with acclaim.
This was known, in a different context, to Machiavelli who stated 500 years ago
[30]:

... that there is nothing more difficult to arrange, more doubtful of success, and more dan-
gerous to carry through than initiating changes .... The innovator makes enemies of all those
who prospered under the old order, and only lukewarm supportis forthcoming from those
who would prosper under the new. Their support is lukewarm partly from fear of their ad-
versaries, who have the existing laws on their side, and partly because men are generally
incredulous, never really trusting new things unless they have tested them by experience.
In consequence, whenever those who oppose the changes can doso, they attack vigorously,
and the defence made by the others is only lukewarm. So both the innovator and his friends
are endangered together.
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As an example in science, Schrödinger had to endure such attacks in response to his
wave-mechanical interpretation of quantum effects, as evidenced by his statement,
from the biography by Moore [31]:

Let me say at the outset, that in this discourse, I am opposingnot a few special statements
of quantum mechanics held today (1950), I am opposing as it were the whole of it, I am
opposing its basic views that have been shaped 25 years ago, when Max Born put forward
his probability interpretation, which was accepted by almost everybody.. . . I don’t like it,
and I’m sorry I ever had anything to do with it.

Schrödinger tried to introduce a wave model of matter in opposition to the contem-
porary dogmatic belief in elementary particles. He failed and the debate was closed
for the best part of a century. By now the ranks of those who profit by the preserva-
tion of the wave-particle model have swelled by orders of magnitude. Even the few
lukewarm defenders have to rely on commercialized softwarebased on probabili-
ties to generate results considered suitable for publication in the mainstream media.
There is no reason to believe that the 4D analysis proposed here will be treated
any differently. Promoting a new system remains fraught with danger, despite com-
pelling mathematical support.

Current consensus among mathematicians [32] is that normeddivision algebras,
which could be the basis of high–dimensional physical vector spaces, are restricted
to 1, 2, 4 and 8 dimensions. We interpret this to explain why physical theories in 3 di-
mensions are plagued by confusing features such as non-commutation and complex
phases that intrude themselves in quantum theory. In four dimensions these would be
natural features. The same argument explains why five-dimensional Kaluza-Klein
models fail as unified field theories. The alternative four-dimensional unification
based on projective geometry in curved space-time [33] and awave model of matter
works without awkward compacted dimensions and develops gauge invariance in a
natural way.

Some common practices further aggravate the situation. Theaccepted interpre-
tation of special relativity considers all space outside ofthe Minkowski time cone
as non-physical. This prejudice obscures the non-local nature of quantum theory
and distorts the common perception of space-time topology.By an equally arbitrary
assumption advanced solutions (in−t) of the three-dimensional wave equation are
rejected. This way all perceptions of space-time chirality, the existence of antimatter
and non-local correlation are lost.

In chemical theory misreading of the superposition principle underpins the
widespread use of real orbitals and basis sets, without any mathematical meaning.
Half a century’s research results in quantum chemistry may well be wasted effort.
But this represents Machiavelli’s profit under the old system. We propose that the
utility of number theory in the description of chemical systems could provide an
escape route from this dilemma.

Acknowledgements I have discussed the mathematics of four dimensions many times with my
colleague Casper Schutte and I gratefully acknowledge his valuable input.
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Appendix

7 Hypercomplex Numbers

The theory of Special Relativity is conveniently summarized by a set of equations,
known as a Lorentz transformation, which describes all relative motion, including
that of electromagnetic signals, observed to propagate with constant speedc, irre-
spective of the observer’s state of motion. This transformation,

x′ =
x− vt

√

1− v2/c2
, t ′ =

t − vx/c2
√

1− v2/c2
,

relates two frames of reference in relative motion and has nomeaning in a system
that separates space and time variables. The resulting four-dimensional space-time
is known as Minkowski space.

From the equation for the moving front of a spherical light wave:

x2 + y2+ z2 = c2t2 ,

a fourth coordinate is often defined asx0 = ct, redefined by Minkowski asx0 = ict,
such that

x2
0 + x2

1+ x2
2 + x2

3 = 0

at the wavefront. In terms of the velocity ratioβ = v/c andγ = 1/
√

1−β 2, the
Lorentz transformation for uniform relative motion alongx1 then takes the simple
form, x′ = Lx i.e.

(

x′0
x′1

)

=

(

γ −iβ γ
iβ γ γ

)(

x0

x1

)

This transformation matrix has the same form as an orthogonal rotation matrix

R =

(

cosφ −sinφ
sinφ cosφ

)

.

The Lorentz transformation thereby defines a rotation in the(x,t) plane through an
imaginary angleφ , defined by

cosφ =
1

√

1−β 2
, sinφ =

iβ
√

1−β 2
, φ = tan−1 iβ .

As this rotation mathematically interchanges time and space coordinates it means
that they are symmetry related and no longer seperable in theusual way. It is there-
fore more appropriate to deal with four–dimensional space–time, rather than the tra-
ditional three–dimensional space and absolute time. To visualize Minkowski space
it is useful first to review some properties of the complex plane.
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7.1 Complex Numbers

There is a similarity between two–dimensional vectors and complex numbers, but
also subtle differences. One striking difference is between the product functions of
complex numbers and vectors.

The product of two vectors is either a scalar

z3 = z1 · z2 = z1z2cosθ = x1x2 + y1y2

or a vector
z3 = z1× z2 = z1z2sinθ = y1x2− y2x1 .

By way of comparison, the product of two complex numbers is

z1z2 = (x1 + iy1)(x2 + iy2)

= (x1x2− y1y2)+ i(x1y2 + x2y1)

z3 = x3 + iy3 .

The complex product contains two terms, not unlike the scalar and vector products,
from which it differs only in a sign convention.

It is well known that the complex numberx+ iy is given in polar form by Euler’s
equation:

r(cosθ + isinθ ) = reiθ .

The product
z1z2 = r1eiθ1 · r2eiθ2 = r1r2ei(θ1+θ2)

is recognized immediately as the rotation ofz1 through the angleθ2 and increase
of its length by a factorr2. To summarize: an operatorw = u + iv = Ceiθ , with
C2 = u2 + v2, θ = tan−1(v/u), when it multiplies any vector increases its length by
a factorC. The magnitude and phase of the complex numberx+ iy arer =

√

x2 + y2

andθ = tan−1(y/x). The complex conjugatez∗ = (x + iy)∗ = x− iy has the phase
−θ and magnituder. The magnitude of a complex quantity is obtained fromzz∗ =
(reiθ )(re−iθ ) = r2, which is always real and nonnegative.

Matrices in the form

(

α −β
β α

)

, combined by matrix addition and multiplication

are isomorphic with the field of complex numbers(α + iβ ). This way,

(α + iβ )+ (γ + iδ ) = (α + γ)+ i(β + δ ) ,

and
(

α −β
β α

)

+

(

γ −δ
δ γ

)

=

(

α + γ −(β + δ )
β + δ α + γ

)

.

Also
(α + iβ )(γ + iδ ) = (αγ −β δ )+ i(β γ + αδ )

and
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(

α −β
β α

)(

γ −δ
δ γ

)

=

(

αγ −β δ −(β γ + αδ )
β γ + αδ αγ −β δ

)

.

Euler’s equation in the form:

reiθ = r

(

cosθ −sinθ
sinθ cosθ

)

confirms the geometrical meaning of complex numbers as rotation and enlargement.

As an example the complex numberi corresponds to the matrix

(

0 −1
1 0

)

, which

represents a counter–clockwise rotation ofπ/2 about the origin.
Another alternative form of the rotation matrix is obtainedby settingα = a2+b2

andβ = 2ab, with a = cos(θ/2), b = sin(θ/2). Hence

α = cos2(θ/2)−sin2(θ/2) = cosθ
β = 2cos(θ/2)sin(θ/2) = sinθ ,

i.e.

(a,b) =

(

a2−b2 −2ab
2ab a2−b2

)

=

(

cosθ −sinθ
sinθ cosθ

)

. (6)

7.2 Quaternions

Extension of the complex formalism to more dimensions suggests the definition of
relatedhypercomplex numbers. On multiplication of two three–dimensional vectors,
without defining the mathematical properties of unit vectors i, j, k, the formal result
is:

q = (ix1 + jy1+ kz1)(ix2 + jy2+ kz2)

= i2x1x2 + j2y1y2 + k2z1z2

+ ijx1y2 + jiy1x2 + ikx1z2 + kiz1x2 + jky1z2 + kjz1y2

This expression is rearranged into the same form as a complexproduct by defining

i2 = j2 = k2 = −1

ij = k , jk = i , ki = j

ji = −k , kj = −i , ik = −j ,

the result first obtained by William Hamilton who defined

q = −(x1x2 + y1y2 + z1z2)+ i(y1z2− y2z1)+ j(z1x2− z2x1)+ k(x1y2− x2y1)
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with the rule of composition:i2 = j2 = k2 = i jk = −1.
A hypercomplex number of unit norm can now be defined in the form z = a0+aiei,
where theei are generalizations of

√
−1, in matrix notation:

1 =

(

1 0
0 1

)

, e1 =

(

i 0
0 −i

)

, e2 =

(

0 1
−1 0

)

, e3 =

(

0 i
i 0

)

For i = 1,3 it is called a quaternion and the matrices are quaternion units. The unit
number1 represents the unit vector in the fourth dimension.

To represent a quaternion in matrix form, as was done for complex numbers, it is
written as a pair of complex numbers,q = (u,v), in the same way that the complex

numbera+ ib is written as(a,b) =

(

a −b
b a

)

. As for complex numbers the product

of (u,v) and its conjugate should be(|u|2+ |v|2,0). This result is obtained by defin-

ing the conjugateq∗ = (u∗,−v) and the matrix equivalent of(u,v) as

(

u v∗

−v u∗

)

.

This way

qq∗ =

(

u v∗

−v u∗

)(

u∗ −v
v u

)

=

(

uu∗+ v∗v −uv∗+ v∗u
−vu∗ + u∗v vv∗ + u∗u

)

≡
(

|u|2 + |v|2,0
)

The modulus ofq,
√

q∗q =
√

u2 + v2. Notice that the determinant of the matrix of
q = (u,v), gives

∣

∣

∣

∣

u v∗

−v u∗

∣

∣

∣

∣

= |u|2 + |v|2 .

By expanding the quaternion in terms of the complex pair,u = a+ ib andv = c+ id,
it follows directly thatq2 = a2 + b2 + c2 + d2. In terms of four quaternion compo-
nents:

q ·q = q2
0 + q2

1+ q2
2+ q2

3 . (7)

For |u|2 + |v|2 = 1, the product of the quaternion and its conjugate (or adjoint)

is the unitary matrix

(

1 0
0 1

)

. Unit quaternions (of modulus 1) are therefore seen

to define rotations ofC2, just as the unit complex numbers correspond to rotations
of R2. The group of unitary transformations ofC2 of determinant 1 is the special
unitary Lie groupSU(2), which describes the spin function.

In Hamilton’s notation the conjugate of the general quaternion q = a+ ib+ jc+
kd is q∗ = a− ib− jc− kd, so that the square of the magnitude,|q|2 = q∗q = a2 +
b2 + c2+ d2 is a simple extension of the rule for complex numbers.

As with complex numbers the product of two quaternions

(p = α + iβ + jγ + kδ )q = (αa−β b− γc− δd)+ i(αb +βa+ γd− δc)

+ j(αc−β d + γa + δb)+ k(αd + β c− γb + δa)
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is another quaternion. Quaternion multiplication is clearly not commutative, aspq 6=
qp.

By expanding the exponential and using the rules for multiplication of i, j, k, it
can be shown that, forα2+β 2+γ2 = 1, a quaternion equivalent of Euler’s equation
for the imaginary exponent is obtained as:

eθ(iα+ jβ+kγ) = cosθ +sinθ (iα + jβ + kγ) .

This exponential is of unit length; the exponent representsa space vector of length
θ , with direction as given by the direction cosinesα, β , γ .

Any quaternion can now be represented in the formQeθ(iα+ jβ+kγ), whereQ is
the length of a four vector with direction as fixed byθ , α, β , γ. By analogy with
the complex exponential it is anticipated that this operator (with Q = 1) describes a
rotation. The argument on which it operates is also a quaternion. In three dimensions
the vectorf = ix+ jk +kz, in quaternion notation, is rotated by an angleθ about an
axis of direction cosinesα, β , γ into f ′ according to:

f ′ = ix′ + jy′ + kz′ = e(θ/2)(iα+ jβ+kγ) f e−(θ/2)(iα+ jβ+kγ) = q · f ·q−1 ,

whereα2 + β 2 + γ2 = 1.
As in (6) we define the rotation matrix by a pair of complex numbers (u,v),

setting

q0 = acos(θ/2)

q1 = isin(θ/2)

q2 = jsin(θ/2)

q3 = k sin(θ/2) ,

which define the three-dimensional rotation matrix:

R(q) =





q2
0 + q2

1−q2
2−q2

3 2q1q2−2q0q3 2q1q3+2q0q2

2q1q2 +2q0q3 q2
0−q2

1+ q2
2−q2

3 2q2q3−2q0q1

2q1q3−2q0q2 2q2q3 +2q0q1 q2
0−q2

1−q2
2+ q2

3



 (8)

Each row (or column) has unit magnitude,e.g.:

(

q2
0 + q2

1−q2
2−q2

3

)2
+(2q1q2−2q0q3)

2 +(2q1q3 +2q0q2)
2 = (q ·q)2 = 1,

and the total matrix
(

R f = q f q−1
)

is orthogonal, as required for 3D rotation.
Quaternions describe rotation in any number of dimensions from 1 to 4. It is

straightforward to demonstrate3 that for the special case of rotation about thex–
axis:

f ′ = e(θ/2)i(ix + jy + kz)e−(θ/2)i

3 Using: sin(θ/2) = ±
√

1
2(1−cosθ) , cos(θ/2) = ±

√

1
2(1+cosθ)
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= ix + j(ycosθ − zsinθ )+ k(ysinθ + zcosθ )

=
(i j k)





1 0 0
0 cosθ −sinθ
0 sinθ cosθ









x
y
z





i.e. a rotation through the imaginary angleθ about thex–axis in the(y,z)–plane.
The right–to–left order of matrix multiplication is important. Proof of the general
case only involves more algebra. Symbolicallyf ′ = ζ f ζ ∗. By a second rotation
f ′′ = η f ′η∗ = ηζ f ζ ∗η∗.

The final result depends on the order in which the operations are applied, because
of the fact that the quaternionsη andζ do not commute. The quantityQ is called the
tensor (stretcher) and the exponential is called theversor (turner) of the operator.

In four-dimensional rotation the argument of the operationis the full quaternion
four-vector,vµ = (v0,vi), rather than the three-vectorf with v0 = 0, considered
before. On working out the full rotation matrix it turns out to decompose into a pair
of 3D rotations, such as (8), indicating that the four-dimensional rotation amounts
to double covering of the underlying space of 3D rotations [35].
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