Chemistry in Four Dimensions

Jan C. A. Boeyens

Abstract Some chemical phenomena, awkward to rationalize, are drguerig-
inate in the four-dimensional nature of matter in curvedcepéme. The problem
is traced back to the separation of space and time variabkbeianalysis of four-
dimensional events. Although mathematically sound, thesation is not physically
valid. It destroys the essential non-classical entanghtimfespace and time, which
is recognized in relativistic theory, but not in quantum imuics. We show that
without this approximation the state functions of quantimoty have the same
quaternion structure that describes Lorentz transfoomatnd spin. Hypercomplex
formulation of four-dimensional motion eliminates sevdrathersome concepts,
such as wave-particle duality and probability density, byvjling the logical ba-
sis for non-zero commutators in non-classical systemsidivs why chiral states
are undefined in quantum theory and why many solid-statsitrans appear to be
sterically forbidden. A brief introduction to hypercomplalgebra is given as an
Appendix.

Keywords: d’Alembertian, Dirac’s equation, harmonic function, sdunction,
quaternion

1 Introduction

Several generations of chemists have been conditionedcagptithe notorious dis-
crepancy between the theory and practice of chemistry asrtyeestionable norm.
Sterically forbidden molecular rearrangements and phassformations are rou-
tinely reported without comment and the flow of electronidtipkes, postulated to
rationalize the course of chemical reactions, is neveresiegl to critical scrutiny.
In reality, practising chemists design their experimenterms of the 19th century
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notions of chemical affinity, never adequately explaine®Bth century theories.
The innocent belief that quantum physics expldia of chemistry is, like the
rest of quantum theory, obediently respected as just anofties deep inscrutable
mysteries.

The reluctance to abandon dogmatic theory often resultsanrtroduction of
secondaryad hoc explanations to cover up any cracks in the theory, as theyrocc
A prime example occurs in the quantum theory of elementabgamity. Based on
the wave-mechanical ordering of electronic energy levelan isolated H atom, a
logical Aufbau procedure for many-electron atoms suggessh. Elemental order-
ing in shells, consisting off# successive atoms, for integmat> 0, is predicted.
This pattern breaks down at= 3. In order to rescue the theory a poorly explained
effect, ascribed to interelectron repulsion is conjeaduwdthout modification of the
basic theory. Even if the only effect of the additional asption were the splitting
of energy sub-levels whereby, for instance, teeudb-level occurs at a lower energy
than 3, it still fails to account for the observed periodicity. fead of the expected
4s'—23d~10, the sequencest—23d'~8(3d'%4s'~?) is observed. Contrary to Auf-
bau philosophy the interpolated transition series is atmogormly characterized
by a 47, rather than 8, valence shell. Arbitrary new concepts, such as the dedree o
orbital penetration towards the nucleus, without any waeshanical basis, are in-
voked next, without improving the theory in any way. A mor@egpriate response
would have been to admit failure of the H model, applied to-hgdrogen atoms.

The unjustified confidence in wave mechanics to account &nehtal periodic-
ity encouraged the belief in quantum theory to explain afirafstry, albeit with the
aid of supercomputers — another unfulfilled dream. The sileality for chemists
has perhaps been the consistent failure to identify thetguamechanical basis of
the three-dimensional structure of molecules, substaatiny thousands of inde-
pendent observations, and despite massive computatifioabeThis negative re-
sult provides a significant clue to account for the failureqoantum theory in the
description of chemical systems.

One of the more successful devices to reconcile chemicavielr with quan-
tum theory was the proposed definition of atomic orbital&tputate the distribution
of electrons on both atoms and molecules. A minor irritarthia application is the
complex nature of the relevant wave functions that undéréedefinition of atomic
orbitals. As these complex functions invariably occur ithogonal pairs, real func-
tions can be constructed by suitable linear combinatiorth@de pairs. The same
strategy is used in all quantum-chemical computations deioto avoid complex
variables. This strategy comes at an exorbitant price.

A wave-mechanical model of the H atom describes an electrégrins of three
guantum numbers. However, in order to account for atomictspé is necessary to
assume that the extranuclear electrons are not all coratedtat the lowest energy
level, but distributed over several levels as stipulate@ ligurth quantum number,
postulated to represent a two-level spin system that obeyexelusion principle.
The strict consequence of this observation is that thealsbitf a three-fold degen-
erate level must have the third quantum number with values ef —1,0, 1, which
eliminates the possibility of three real functions (&l = 0). The simple conclusion
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is that any computational scheme that operates exclusivehgal variables cannot
be considered to be quantum mechanical, but rather adystiassical.

The pioneers of quantum theory were unprepared for the disgmf two re-
lated, but unforeseen, new effects — the appearance of eanaptiables as an es-
sential feature of the theory and pairs of conjugate vaembiat do not commute;
a stark departure from classical mechanics. The appeacdcoeplex variables is
now readily appreciated, even in two-dimensional harmdumctions, defined by
the equation:

9?0 %0
—— +—=— =0.
ox2 ~ 9y?
One method to solve this equation is by assuming the potduatiation to be the
product of two variable functions ofandy respectivelyj.e.:

»=X-Y
which on differentiation gives
10?X  19%
B H S 1
X %2 * Y dy? @)

The two terms are functions of independent variables andrder to satisfy (1)
must be independent of both variables and therefore eqaatomstant,.e.

102X, . 10N
Xoxz % ’ Ydyz_ky'

To satisfy the implied conditiork? + k§ = 0, eitherky = k, = 0, oriks = ky, such
that
@ — cetk(xHy)

which describes a rotation in complex notation, exactlyexpiired by wave me-
chanics.

In three-dimensional formulation the conditif k7 + k2 =0 or (A+iB)?
is satisfied, without loss of generality on setthyg= 0, iky = ky, to describe a three-
fold degenerate state by the magnetic quantum numipet 0, +1. Equating all
constants to zero, by the mathematical separation of thsigdily entanglec and
y coordinates, not only avoids the use of complex functions atso destroys the
ability to describe the angular momentum of the system. Tieedimensional pro-
jection appears as harmonic oscillatier.

92X
X2
which is an incomplete description of the complex rotation.

We have reached the uncomfortable conclusion that ouetliktee-dimensional
wave equation, interpreted as a projection from four-disiamal space-time must

=KX , X=ae™
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have the same defects as an harmonic oscillator when beirgidesed a model of
complex rotation.
2 Four-dimensional Motion

Motion in four dimensions proceeds against the gradientsafadar functiond,

S 90 1 9 4 0
PRI CERE)

icat ' ox ' dy 9z
and the potential field is described by the d’Alembertian:

2 2 2 2
D%p:(a 9 +‘9_+‘9_)q>:o (2)

X3 * X2 Ox5  0x2
1 92
= 2_ —_— =
= (D ) dtZ) =0 (2a)

Equation (2) is recognized as Laplace’s equation in fouregisions and in alterna-
tive form is known as the wave equation in 3-dimensional spac
The mathematical procedure of solving (2) is by treatings the product func-
tion
P = Xo(X0) - Xa(X1) - Xa(X2) - Xa(X3)-

By substituting the four factors,

20 9%%g

— = —— (XX etc.

axg axcz) ( 1 2><3)7 C
into (2) and dividing by®,

2 2 2 2
iDZcD 1090 10°® 10°¢0 1090

o Xk Xk %ok Xk

0. 3)

Each term is a function of a single variable and (3) can onfyai@ valid if each
term is independent of all variables and equal to a condtatth term can hence be
written in the form of a one-dimensional Helmholtz equation

d2x

2

in which X = ae™®. ForX = T(t) the equation

1d2T

?W‘FkZTZO, (48.)
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writing w = ck, yieldsT(t) = aexp(ziwt), in which w is interpreted physically as
an angular frequency.

Each term in (3) requires an arbitrary constant to genereg@verall solution
@ = Aexp(koxo + Kix1 + koxo + ksxs). These four constants are not independent and
must satisfy the general conditio@kﬁ =0, imposed by (3) and (4). The most gen-
eral solution of 2@ = 0 is therefore a function that depends equally on all four
coordinates, rather than the product of four linear fumior he four-dimensional
Laplacian,[1°® = 0 describes the state of potential balance along the curieed R
mannian manifold. Minkowski space-time, tangent to theifioéoh describes a local
pseudo-Euclidean approximation. By separating spacamed/ariables the Lapla-
cian reduces to a wave equation (2a) in Euclidean space efhtion is the basis
of wave mechanics, which further separates space and tirables into space-like
and time-like equations.

Itis at this point that wave mechanics moves out of Minkovegldce. Away from
the assertion that space-time is characterized by the hmacsof a four-dimensional
Laplacian, visualized as long-wavelength undulatiore Blkwave field in Minkowski
space. In wave-mechanical approximation the time and sga@bles (collectively
represented ag are separated by definition of the product function

u(x,t) = f(x)- et

to yield
2 w\2
0 w+(?) Y=0 )
and
2l 0\, _
(D +2 dt)w_o. (5a)

By de Broglie’s postulate, the wave vector becomes

ko _2m_p
¢ A W
whereby (5) and (5a) reduce to the familiar Schrodingeaéqas, which provide a
good practical approximation within the locally perceitbree-dimensional space,
but the holistic entanglement of space-time coordinatkssis
Developed into a theory of atomic stability the equilibriaondition,dE /dr =0,
defines the so-called stationary states of the hydrogenasanfunction of the total

electronic energy,

p2

=_——— (inesu).
2m r ( W
Considerd as a standing de Broglie wave of wavelemdth= 2mr),, the distance

between proton and electron follows as
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This inverse square relationship, which assumes a sphgrsganmetrical stand-
ing electron wave, is the fundamental equation of atomictspscopy and non-
relativistic wave mechanics. In four-dimensional spanet especially in a non-
zero gravitational field, the assumption is not strictlyidand the proportionality
factor,R, may vary withn.

The mass variable is a strictly empirical assumption th&t anquires meaning
in non-Euclidean space-time on distortion of the Euclideawe field defined by
equation (2). The space-like equation (5), known as Scéhgéd's time-independent
equation is not Lorentz invariant. It is satisfied by a nocalavave function which,
in curved space, generates time-like matter-wave pacgbtsacterized in terms
of quantized energy and three-dimensioodiital angular momentum. The four-
dimensional aspect of rotation, known gn, is lost in the process and added on
by assumption. For macroscopic systems the wave-mechapiaatum condition
hw = E -V is replaced by Newtonian particle mechanics, in whick imv? 4 V.
This condition, in turn, breaks down as- c.

Wave mechanics, and particle mechanics, formulated taitbesootion in three-
dimensional space are both incomplete by their failure tmant for spin and rela-
tivistic effects. The common defect in both formulatioreslin the unphysical sep-
aration of space and time variables. The proper procedargres hypercomplex
solutions of (2), which describe motion in four-dimensitsace-timé.

Although hypercomplex solution of (2) has never been addea conditional
covariant form of the wave equation was proposed by Diraoflhssuming spin
matrices as possible solutions. The procedure consisteddifying Schrodinger’s
equation

oy

% — Hy
Nt ’

which is linear ind /dt, by inserting the relativistic Hamiltonian

H= (p2c2+m%c4)% .

To ensure Lorentz invariance the Hamiltonian should alskinle@r in space deriva-
tives,—hipk =0d/dx (k=1,2,3), such that

3
H=% oCpx + Bmoc?, i.e.
&

Bo 2 0
__+ZBak0—Xk

ih Y =mycW.
cot &5

1 For the benefit of those readers who are not familiar with hymaplex numbers and quaternions
an elementary introduction is provided as an Appendix t® piaiper.
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With y° = B, Y = Bay, xo = ct the equation
. 0 0 7} 7}
|H<VO%+V10—X1+V20—X2+V30—X3) Y =moc¥,

is Lorentz invariant and commonly transformed, using uafte = ¢ = 1 and the
Einstein summation convention, to read

(iy#dy—m) =0.

These conditions are fulfilled by assuming coefficients efftrm

(98] sls

wheregy are Pauli matrices anldis the 2x 2 unit matrix. As before, the spin vari-
ables are therefore introduced empirically.

The most significant difference of Dirac’s results from tho$the non-relativistic
Pauli equation is that the orbital angular momentum and spian electron in a
central field are no longer separate constants of the ma@ioly.the components of
J = L 4+ SandJ?, which commute with the Hamiltonian, emerge as conservadqu
tities [1]. Dirac’s equation, extended to general rel&gity the method of projective
relativity [2] automatically ensures invariance with respto gauge, coordinate and
spinor transformations, but has never been solved in this.fo

The surprising implication is that Dirac’s equation doeg atbow of a self-
consistent single-particle interpretation, althoughas lbeen used to calculate ap-
proximate relativistic corrections to the Schrodingeergy spectrum of hydrogen.
The obvious reason is that a 4D point particle is without dansand hence unde-
fined. An alternative description of elementary units oftei@becomes unavoidable.
Prompted by such observation Dirac [3] re-examined thesidabpoint model of the
electron only to find that it has three-dimensional sizehwaih interior that allows
superluminal signals. It all points at a wave structure \pitlase velocity, > c.

The equatio]?® = 0 has unitary quaternion solutions of the form

@ = P(a+IB+kY) — cosh +sinB(ia + jB+ky),

which represent th8U (2) rotational Lie group. The four-dimensional eigenfunction
is the proper spin function. WitB = «t it is the state function that describes total
angular momenturd =L + S. Foria + j +ky =, it describes spin only. Finally,
with B = y =0, it defines spin in polar projectios £ +1), as shown in more detail
below. Alternatively® is the state function of an electromagnetic photon.

With cosB = 0 @ could represent the space-like state function of elechérge,
known as the angular-momentum function, described by tlamtyun numbetl in
Schrodinger notation, also known as the three-dimenbgpheerical harmonics.

The most general rotation of a four-vector representeq sy + ix+ jy+kzis
described by the equation
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q/ _ ee(ia+jﬁ+ky)qef¢(i)\ +jp-+kv)

wherea? 4 B2+ y? = A%+ u?+v2 = 1. When bothd and¢ are imaginary angles,
the transformation corresponds to the Lorentz transfaomdé#, 5]. This is math-
ematical proof that quantum theory and special relativiiginate from the same
basis, as the most general solution of (2) must obviouslydpgagernion function.

3 Spherical Rotation and Spin

The quaternion that describes rotation throéighbout thex-axis, follows as
d(0/2) — cog6/2) +isin(6/2).

This hypercomplex number is given in matrix form by

0 e8/2
(&)

and rotation of 2t in time, by
0 efia)t
(%)

This matrix operates on a two-level object, called a spiegr,{@., @}. A spinor
system that moves in some general directiqisay:

o= (adw ") (2)=(5e)
el(a)tka) 0 o (pze+

(in shorthand notation) is shown to satisfy Schroding@jsand Dirac’s [7] equa-
tions, by forming the derivatives:

0_¢>_iw —he 0_®_ik he- ‘32_(D_k2 —he
ot e )’ ox  \@e" )’ ox2 pe"
100 _10%

wdt k2 ox2’

Equatingm = hk? /2w, the equation

from which follows that

w h

— =S Po=_—[%0 5
ik 2m (5a)
in three dimensions, is identical to Schrodinger’s eaquradir its complex conjugate,

and describes both matter and antimatter, each with thessgties{ ¢, @ }. Writing

90
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the wave vectok = 2m/A = p/h, with de Broglie, the quantum conditidiw =
p?/2mfollows directly.

The common assertion that electron spin is a strictly nétditc effect [8] needs
modification. As shown before [9] a linearized Schrodingguation, first order in
all space-time derivatives implies the Pauli equation jdfh the correct value of
the electron gyromagnetic ratio. The 1/2-spin appearsasatrelativistic effect, but
because of the implied four-dimensional space-time. Ithasignificant advantage
that the spin degrees of freedom are contained in the theory the beginning,
without being adde@d hoc. However, the spin and angular-momentum variables
remain separated.

Since there is no geometrical understanding of spin in tdeensional space
it is not reflected in standard wave mechanics. A four-dirierad quaternion func-
tion, on the other hand, contains a four-component spintaraporal characteristic,
entangled with the space variables. Spin is generated idionensional quaternion
rotation, which is intrinsically different from the axiadtation of three-dimensional
space, and is also described as spherical rotaffinBecause rotation in spin space
is governed by one-half the angles of rotation in ordinargycsp it has the special
property that any entanglement of the spinor with the sugoppmedium, which de-
velops during rotation of &, spontaneously disentangles after a furthrer@ation.
This is the result of the half-angle operation of quatermtation. It causes a peri-
odic fluctuation in the medium (vacuum) that surrounds theapand is observed
as spin. The undulation with = 277 on the surface of the unit sphere describes spin

asmw = h/2, half a unit of angular momentum.
j it

wt
Each spin( e|0 ) has an inverse sta<eigt> and an antispir( € 0 ) . The prod-

ucts _ _ .
(Oioot)<e"*")_0 (g1t 0)(@‘*”)_1
0 ’ 0
show that spin pairing yields a boson of spin zero, while ti@lalation of spin and
antispin produces a photon of sfimnd which satisfies the wave equation (2a). The
conditionc = y/E/2m, (V = 0), now implies conversion of the total mass of matter
and antimatter into a photon of energy= 2mc? = hw.

It is ironic that spin, which is the only non-classical ditrie of quantum me-
chanics, is absent from the pioneering formulations of efdierg and Schrodinger.
Even in Dirac’s equation the appearance of spin is ascrilyefiabto Lorentz in-
variance, without further elucidation. In reality, bothreatz invariance and spin,
representing relativity and quantum mechanics, respagtiare properties of the
quaternion field that underpins both theories.

2 The relationship between spherical rotation and quatesniis visualized pictorially by
Kauffman[11]
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4 The Physical Model

Within the time-like domain of Minkowski space the gravitetal field dominates
and a quantum-potential field dominates in the space-likeaio. Electromag-
netic bosons, which occur in the interface, exhibit bothetilike and space-like
behaviour. Events close to, or in, the interface show bo#mtum and relativistic
behaviour. There is only one classical-non-classicalt lasi quantum mechanics
and relativity appear as a single theory. Confusion setsiih failure to distin-
guish between waves and particles as elementary entitibwiimthe possibility of
massive objects moving faster than light in the vacuum. thésunphysical iden-
tification of elementary point particles with quantum waveat gives rise to the
spurious concepts of wavicle, quantum uncertainty, pridibadensity and infinite
self-energy. Elementary wave structures exist withouhszamplications. It is in-
structive to note that the authoratitive exposition of bldg12] does not involve
probability density.

Standing waves, like gas molecules, exert pressure on tlie efea container.
With the container at rest or in uniform motion the force ¢xdron any wall is
balanced by that exerted on the opposite wall. If the cortamaccelerated radia-
tion reflected off the rear wall gains more momentum thanltsitby the radiation
which reflects off the front wall. It has been demonstrated] [, 16] that radiation
exerts a net force, which opposes an applied force on thaic@mt such that

E
<m+—2R>a_F.
c

The radiant energy adds an effective inertial nigg4&? to the mass of the container.
In the same way the total mass of an electron may be interpesteleriving from
internal motion in a phase-locked cavity.

Plane waves with phase velocity form wave packets with group velocity,
such thayvg = ¢2 (= 1/&o). The phase and group velocities are the same only
for electromagnetic waves with, = c. To describe the inertial properties of a wave
packet a mass variable is introduced [17]. A group velogitys ¢ defines matter
waves as described by the Elbaz [18] equation:

MoC\ 2 1 d%u
DZU:I:(?) u= ?F (8)
This is interpreted to show that the curving of space prositioge-like (vy < c) as
well as space-likévgy > c) wave packets with redlm) and imaginary(im) mass
[19], respectively known asradyons andtachyons.

Equation (8), second-order in time, has solutiaftg andu(—t), defining matter
and antimatter waves respectively. Of the four possiblegoonly bradyonic matter
waves are directly observed in time-like tangent spaceelOtypes of wave are
encountered in sub-atomic quantum systems.
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The formation of wave packets depends on the interactionaoinaplementary
bradyon-tachyon pair. The bradyonic group velocity cqroggls to the de Broglie
wavelength of the packedgg = h/mvg. The tachyonic component defines the in-
ternal structure of the wave packet with Compton waveleAgth- h/mc. The two
components are said [20] to be trapped in a relativistidgalariant way. We note
that vy = ¢®> = 1/&lo, Where the group velocity of the tachyenmatches the
phase velocity of the bradyon. Such a wave-packet is noedisge. Essentially the
same model, developed from another perspective, is destchi Milo Wolff [21].
An elementary unit of charge.¢. electron) is considered here as a standing wave
packet created by the interaction between a pair of timersgtric spherical scalar
waves: a retarded wave radiated by the electron, in balaitbeaw advanced wave
that represents the resultant as the radiation from allrstberces in the cosmos
interferes. This is Mach'’s principle in wave formalism.

Variability in the internal structure of elementary waveckets is responsible
for the appearance of protons, neutrons and electrons \\&f¢h interact by the
exchange of intermediate massless photons. Chemicahatiens, all of this type
[6], are responsible for the growth of massive structurdschvon the macro scale
interact gravitationally.

All debates on the interpretation of quantum mechanics modtin confusion,
unless the classical and non-classical models of the weeldlaarly distinguished.
The classical model is based on the assumption that persisigmentation of mat-
ter terminates in a set of elementary particles that resigtiér subdivision, but re-
tain the innate quality to predict the behaviour of mattehmbulk. A non-classical
alternative starts at the other extreme with a featurelkessim that develops peri-
odic wave structures in a topologically closed universeqrizjective relativity [23]
there is

... no such thing as a body in space, but matter is an aspeut space-time structure.

These elementary waves coalesce into bigger units thabieafiithe known prop-
erties of ponderable matter.

Classical mechanics analyzes the interaction betweeitleartand non-classical
mechanics should study the interaction between wave anext\We repeat that the
two models do not refer to classical and non-classical dostathey both model the
same world, but from different points of view. It so happdmat tat different levels
of aggregation one or the other provides a more conveniestriggion. Attempts
to describe classical structures non-classicallyj g versa, inevitably end up with
illogical conclusions.

Physics has the dilemma of irrefutable evidence for a foomedisional world, but
a genetic inability among physicists to visualize more ttteee dimensions. It is
therefore not surprising to find that those instances in vfeeality is badly distorted
in three-dimensional projection, inevitably lead to cdwed theories, bordering on
the supernatural. Quantum mechanics is a prime examplecbfatheory. It was
inspired by experimental results that defied explanati@etan classical theory. It
was first recognized in the study of microphysical systentsckvin time came to
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be seen as deviating from the classical and therefore dubjacew theory, without
relevance in macrophysics.

A more plausible interpretation is that the motion of porderobjects, projected
into tangent three-dimensional space, differs imperdgypfaom four-dimensional
reality in the local environment where a classical desinipsuffices. It only be-
comes an issue for fast-moving objects and where particksrapproaches zero.
The real meaning of both relativity and quantum theory iscabsd by their formu-
lation as alternatives to Newtonian mechanics that kick soane classical limit.

A notable difference between three- and four-dimensiosahtilation of quan-
tum mechanics occurs in their commutation propertie®3wommutators that in-
volve a time-dependent variable are found to be non-zeminstance

[p,q) = (pg—ap) =i , [JJy] = iR, etc.

Uncertainty relationships such ApAq > h, AEAt > h, etc, derive directly from
these commutation rules [24].

The unexpected appearance of complex operators is alsoiassbwith non-
zero commutators and reflects the essential two-dimenisiepgesentation ifvi2
Minkowski space-time. In four-dimensional space-tirfi#, all commutators are
non-zero, as appropriate for wave motion of both quantumrafadivity theories.
An important consequence is that local observation has ligityason global extrap-
olation, as evidenced by the appearance of cosmical reésighthe curved manifold
and the illusion of an expanding universe.

5 The Chemical Mode

Chemical theory, if anything, is distorted even more thagspds on projection
from four-dimensional space-time. In electromagneticeather field theories gauge
particles have mathematically assigned phase factorghwhichemistry is simu-
lated as probability density. Whereas the purely mathemalasiymbolism suffices
as working models in particle physics, chemistry has theenstningent demand to
deal with extended three-dimensional entities. Even dbit&st level the known
chemical function of an electron, defined as a structurglesd particle, becomes
incomprehensible.

The analysis of dynamic systems in terms of point partictegrmated with New-
ton, but the context in which the concept was introduced leas lignored and for-
gotten. Newton was concerned with the motion of heavenlydsoahd their mutual
interaction. To avoid the complication that the moon'’s effat the proximal and
distal surfaces of the earth cannot be the same, the to&ahttton was assumed
mathematically equivalent to the attraction between dbjedth all mass concen-
trated at their respective centres of gravity, which is anpdtarth and moon are
therefore modelled as interacting mass points. What warkglanets also works
for apples and electrons. In practical application refeecto the centre of gravity
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was made less frequently and, in time, the actual natureofehtary units of matter
as mass points became generally accepted as physicaf.realit

When the wave nature of electrons was discovered experaiheNewton’s per-
ception of mass points as centres of gravity had been ireftihnso long that, instead
of a wave packet with a centre of gravity, an electron wasidensd as the physical
union of a particle and a wave. In this approach particle neaisiconsidered to be
of primary importance and wave nature is simulated by a itibafunction that
specifies particle coordinates. This interpretation was@éred by de Broglie’s pos-
tulate [25] of a particle piloted by a wave. However, the moatural wave model
does the opposite and follows the motion of a wave packerimg®f its centre-of-
gravity coordinates. The photoelectric and Compton edfean then be understood
as interaction between waves, rather than particles, aggubout by Schrodinger
[26]. As stated in the Abstract of [26]:

A definite ¢—distribution in configuration space is interpreted as aiooous distribution
of electricity (and electric current density) in actual spa

Unforunately this level-headed interpretation was nesregally accepted. As re-
marked by David Bohm [27]:

The current formulation of quantum mechanics must be reghrderely as a statistical
algorithm, which provides no conceptual structure in teofnghich the movement of indi-
vidual systems can be understood.

It is only the theory of general relativity that provides agwidance towards
an understanding of the elementary nature of mattarzinstein’s field equations,
conveniently condensed into the form

GUV:kTUV ) uav:Oa37

which balances the tensor of space-time curvature agdiasittess tensor of the
matter-energy field. The vital assertion is that a vanistimgature tensor, which
implies flat Euclidean space, demands the disappearanteradtter. It is unequiv-
ocally inferred that matter appears as a result of the cgrefrspace-time. By the
minimal assumption, known as Occam'’s razor, matter musdéetified as a distor-
tion of curved space-time.

As a reasonable conjecture we now propose that curved sipaeelike an in-
flexible sheet wrapped around a curved surface, must deypeligistent wrinkles
— the elementary units of matter or energy. We envisage fetesime in feature-
less undulation that develops elementary wave packets alred. We recognize
few types of wave packet with internal wave patterns pestess the characteris-
tic mass, charge, spin and chirality of the four-dimensiefementary units whose
behaviour is prescribed by a potential function accordingdguation (2).

On projection into three-dimensional tangent space theakforms known as
matter and antimatter are distinct andcas « [28], obey conjugate forms of the
wave equation (2a), the three-dimensional approximatig2)oTo substantiate this
reasoning it is noted that many features of the H atomic specare reproduced
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to good approximation by the solution of (5) for the singleotton on a hydrogen
atom.

The crunch comes when trying to analyze non-classical nedegtron systems
by the same procedure. The mathematics to solve the manyeliiberential equa-
tion does not exist. The popular alternative is to consideheslectron as an indi-
vidual particle and to describe arelectron system by a probability density in-3
dimensional configuration space. The use of complex vasaisl tacitly avoided.
The result is a procedure that pretends to simulate a nasickd problem by a
classical model, with an unnecessary complicated strectigsigned to resemble
quantum formalism. In this case the statistical model thatk for an ideal gas,
fails to explain the behaviour of a many-electron wave.

An alternative procedure is suggested by the recogniti@erhentary matter as
wave-like distortions of space-time. Unlike free-floathmyd particles in a void, the
wave packets envisaged here remain part of the medium aidli$teibution there-
fore depends on the symmetry of space-time. The extranucheage cloud on an
atom may thus be viewed as the coalescence of electronicpeakets to constitute
a common spherical standing wave around the nucleus. Témaitstructure of the
wave must reflect the charge distribution as optimized uttteenuclear attraction,
like a three-dimensional analogue of the essentially plaokr system.

Optimization by a golden spiral predicts the correct distion of matter in
the solar sytem [29], with the inference that the spiraldtrce reflects space-time
topology. Fractal models of the universe, which imply casgglf-similarity, would
then indicate the same optimization for extranuclear ed@atiensity. The resulting
wave structure inevitably carries an imprint of the goldaimor.

Interatomic interaction entails the interference of extidear electronic waves.
Constructive interference must occur at specific interatalistances, which should
correlate with the notion of bond order, numerically retate the golden ratio.
The feasibility of modelling chemical interaction by elem&y number theory is
foreseen.

6 Conclusion

Contrary to popular belief new ideas in science are rarelgraged with acclaim.
This was known, in a different context, to Machiavelli whated 500 years ago
[30]:

... that there is nothing more difficult to arrange, more dhulof success, and more dan-
gerous to carry through than initiating changes .... Thewator makes enemies of all those
who prospered under the old order, and only lukewarm suppdorthcoming from those
who would prosper under the new. Their support is lukewarrtyptom fear of their ad-
versaries, who have the existing laws on their side, andypaecause men are generally
incredulous, never really trusting new things unless theyehtested them by experience.
In consequence, whenever those who oppose the changes santdey attack vigorously,
and the defence made by the others is only lukewarm. So betintiovator and his friends
are endangered together.



Chemistry in Four Dimensions 15

As an example in science, Schrodinger had to endure suwatkatin response to his
wave-mechanical interpretation of quantum effects, adesded by his statement,
from the biography by Moore [31]:

Let me say at the outset, that in this discourse, | am opposinhg few special statements
of quantum mechanics held today (1950), | am opposing asri¢ Wes whole of it, | am
opposing its basic views that have been shaped 25 years hgo, Max Born put forward
his probability interpretation, which was accepted by atreverybody. .. | don't like it,
and I'm sorry | ever had anything to do with it.

Schradinger tried to introduce a wave model of matter inagigon to the contem-
porary dogmatic belief in elementary particles. He failaed the debate was closed
for the best part of a century. By now the ranks of those whditdrp the preserva-
tion of the wave-particle model have swelled by orders of mitagle. Even the few
lukewarm defenders have to rely on commercialized softwased on probabili-
ties to generate results considered suitable for pubtinéti the mainstream media.
There is no reason to believe that the 4D analysis proposedwié be treated
any differently. Promoting a new system remains fraughih\danger, despite com-
pelling mathematical support.

Current consensus among mathematicians [32] is that nodiwisibn algebras,
which could be the basis of high—dimensional physical vespaces, are restricted
to 1, 2,4 and 8 dimensions. We interpret this to explain whysptal theories in 3 di-
mensions are plagued by confusing features such as non-gtatiom and complex
phases that intrude themselves in quantum theory. In fouedsions these would be
natural features. The same argument explains why five-diroeal Kaluza-Klein
models fail as unified field theories. The alternative foume&hsional unification
based on projective geometry in curved space-time [33] amav@ model of matter
works without awkward compacted dimensions and developggmvariance in a
natural way.

Some common practices further aggravate the situationa€bepted interpre-
tation of special relativity considers all space outsidéhef Minkowski time cone
as non-physical. This prejudice obscures the non-localreatf quantum theory
and distorts the common perception of space-time topoB®gwn equally arbitrary
assumption advanced solutions i) of the three-dimensional wave equation are
rejected. This way all perceptions of space-time chirglity existence of antimatter
and non-local correlation are lost.

In chemical theory misreading of the superposition prilecipnderpins the
widespread use of real orbitals and basis sets, without atiilematical meaning.
Half a century’s research results in quantum chemistry mely be wasted effort.
But this represents Machiavelli’s profit under the old syst&¥Ve propose that the
utility of number theory in the description of chemical gsis could provide an
escape route from this dilemma.

Acknowledgements | have discussed the mathematics of four dimensions marsstimith my
colleague Casper Schutte and | gratefully acknowledgediisable input.
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Appendix
7 Hypercomplex Numbers

The theory of Special Relativity is conveniently summadiby a set of equations,
known as a Lorentz transformation, which describes altikedanotion, including
that of electromagnetic signals, observed to propagate eunstant speed irre-
spective of the observer’s state of motion. This transfaiona

X—wt v t—vx/c?

V1i=VvZj2 V1=V2/c2’

relates two frames of reference in relative motion and hasmeaning in a system
that separates space and time variables. The resultinglfoensional space-time
is known as Minkowski space.

From the equation for the moving front of a spherical lightreza

X2+ Y2+ 2 = c?t?,

a fourth coordinate is often definedxas= ct, redefined by Minkowski agy = ict,
such that

X +34+x5+x=0

at the wavefront. In terms of the velocity ratp= v/c andy = 1/,/1— 32, the
Lorentz transformation for uniform relative motion alorgthen takes the simple

form,x' =Lx i.e
(5)-(3,#)(2)
X1 iBy vy X1

This transformation matrix has the same form as an orthdgotation matrix

R_ [ COSP - sing
“\ sing cosp /"’
The Lorentz transformation thereby defines a rotation in(%ig plane through an
imaginary anglep, defined by

1 . iB »
COSp= ——— , sSing=—— , @=tan tip.
caip o ™am o P

As this rotation mathematically interchanges time and sgaordinates it means
that they are symmetry related and no longer seperable st way. It is there-

fore more appropriate to deal with four—dimensional sptoes; rather than the tra-
ditional three—dimensional space and absolute time. Twalize Minkowski space

it is useful first to review some properties of the complexpla
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7.1 Complex Numbers

There is a similarity between two—dimensional vectors amtdmex numbers, but
also subtle differences. One striking difference is betwibe product functions of
complex numbers and vectors.

The product of two vectors is either a scalar

Z3 =71 -Zp = 2175 COSO = X1X2 + Y1Y2

or a vector
723 =21 X 2p = lezsine = Y1X2 — Y2X1.

By way of comparison, the product of two complex numbers is

217 = (X1 +iy1) (X2 +iy2)
= (X1X2 — Y1Y2) +i(X1y2 + X2y1)
Z3 = X3+iys3.

The complex product contains two terms, not unlike the seaid vector products,
from which it differs only in a sign convention.
Itis well known that the complex number-iy is given in polar form by Euler’'s
equation: _
r(cosd +isin@) =re?.

The product _ _ _
21Zp = rle'el . rze'92 = rlrze'(91+92)

is recognized immediately as the rotationzpfthrough the angl@, and increase
of its length by a factor,. To summarize: an operater = u+ iv = Ce?, with

C?2 = u?+V?, 8 = tan 1(v/u), when it multiplies any vector increases its length by
a factorC. The magnitude and phase of the complex numbeiy arer = /x2 +y2
and 6 = tan 1(y/x). The complex conjugatg = (x+iy)* = x— iy has the phase
—0 and magnitude. The magnitude of a complex quantity is obtained frzan=
(réf)(re %) = r2, which is always real and nonnegative.

a—pB
B a

are isomorphic with the field of complex numbéos+if3). This way,

Matrices in the for , combined by matrix addition and multiplication

(a+iB)+ (y+id)=(a+y)+i(B+9),

(52 (53)- (v )

(a+iB)(y+i6) = (ay—Bd) +i(By+ad)

and

Also

and
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ip [ cosB —sinB
re _r(sine cose)

confirms the geometrical meaning of complex numbers asoatahd enlargement.
), which

As an example the complex numbecorresponds to the matrié 1 0

represents a counter—clockwise rotatiomm® about the origin.
Another alternative form of the rotation matrix is obtairiBdsettinga = a?+ b?
andf = 2ab, with a=cog8/2), b=sin(6/2). Hence

a = cog(0/2) —sirf(6/2) = cosh
B =2co0g6/2)sin(6/2) =sinb,
(6)

(ab) = a>—b? —2ab '\ [ cosh —sinf
T\ 2ab a?—b?) " \ sin@ cosB )

7.2 Quaternions

Extension of the complex formalism to more dimensions satggthe definition of
relatechypercomplex numbers. On multiplication of two three—dimensional vegto
without defining the mathematical properties of unit vestoy, k, the formal result
is:
q= (ixe+]jy1+kz1)(ixe+jy2 +kz)
= i%ue + %Yy + K?2z
+ ijXay2 +]iyaXe + ikx1zo + KizgXo + jky12o + Kjz1y2

This expression is rearranged into the same form as a comppeict by defining
j2 _ k2 -1
K, ]

3

2
i =i, ki=]
ji=—k,Kj=—i,ik=—

=~

I

the result first obtained by William Hamilton who defined

0= —(XXo+Y1¥o + 2120) + (Y122 — Yo71) + j(ZaX2 — ZoX1) + K(X1Y2 — XoY1)
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with the rule of composition? = j2 =k?® =ijk= —1.
A hypercomplex number of unit norm can now be defined in thenfbe= ag + g,
where theg are generalizations gf —1, in matrix notation:

1 (39), = (50 e (52) e ()

Fori =1,3itis called a quaternion and the matrices are quaternigs.urhe unit
numberl represents the unit vector in the fourth dimension.

To represent a quaternion in matrix form, as was done for éexmpumbers, itis
written as a pair of complex numbers= (u,v), in the same way that the complex
a-b
b
of (u,v) and its conjugate should 1|2 + |v|2,0). This result is obtained by defin-

numbera—+ib is written as(a,b) = . As for complex numbers the product

ing the conjugate” = (u*,—v) and the matrix equivalent aiu,v) as (_3 ﬁ )
This way
« [ uv u* —v\ [ uut+Vviv —uvt+viu

(luf?+v2,0)

The modulus ofy, \/gq = v/u? + V2. Notice that the determinant of the matrix of
q=(u,v), gives
uv*

2 2
UV = w2,

By expanding the quaternion in terms of the complex peit,a-+ib andv=c+id,
it follows directly thatg? = a2 + b2 + ¢ + d2. In terms of four quaternion compo-
nents:
q-0=05+0f+ 05+ 3. (7

For |u|? 4 |v|? = 1, the product of the quaternion and its conjugate (or at)join
is the unitary matrix(é 2) Unit quaternions (of modulus 1) are therefore seen
to define rotations of?, just as the unit complex numbers correspond to rotations
of R?. The group of unitary transformations 67 of determinant 1 is the special
unitary Lie groupU (2), which describes the spin function.

In Hamilton’s notation the conjugate of the general quatergq = a-+ib+ jc+
kd is g = a—ib— jc—kd, so that the square of the magnitugg? = q*q = a® +
b? 4 ¢® + d? is a simple extension of the rule for complex numbers.

As with complex numbers the product of two quaternions

(p=a+iB+jy+kd)q= (aa—Bb—yc—dd)+i(ab+ Ba+yd—dc)
+ j(ac— Bd+ ya+ db) +k(ad+ Bc— yb+ da)
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is another quaternion. Quaternion multiplication is digaot commutative, apq #
ap.
By expanding the exponential and using the rules for muidgpion ofi, j, k, it
can be shown that, far? + 32+ y? = 1, a quaternion equivalent of Euler’s equation
for the imaginary exponentis obtained as:

edla+iB+ky) — cosf +sinB(ia + jB +ky).

This exponential is of unit length; the exponent represarggace vector of length
6, with direction as given by the direction cosiresf, y.

Any quaternion can now be represented in the f@ef(@+iB+kV) whereQ is
the length of a four vector with direction as fixed Bya, 3, y. By analogy with
the complex exponential it is anticipated that this operétith Q = 1) describes a
rotation. The argument on which it operates is also a quiaterin three dimensions
the vectorf = ix+ jk+ Kz, in quaternion notation, is rotated by an anflabout an
axis of direction cosineaq, B, y into f’ according to:

£ =iX + jy + kZ = e0/2(a+iB+ky) g (8/2)((a+iB+ky) — q. . gL,

wherea? + B2+ y? = 1.
As in (6) we define the rotation matrix by a pair of complex nemgu,v),
setting

go =acog6/2)
gy =isin(6/2)
o2 = jsin(6/2)
ds = ksin(6/2),

which define the three-dimensional rotation matrix:

20102+ 20003 G5 — G5+ 05— 03 20203 — 20001
20103 — 20002 20203+ 20001 9% — O — O3 + 05

B+F— 05— 03 2010 — 2000z 20103 + 20002
R(q) = (8)

Each row (or column) has unit magnituesg.:

2
(g3 + 0% — o — 3) "+ (29102 — 20003)° + (29103 + 20002)° = (9-G)* =1,

and the total matri>(Rf = qfq*l) is orthogonal, as required for 3D rotation.

Quaternions describe rotation in any number of dimensioo® f1 to 4. It is
straightforward to demonstrat¢hat for the special case of rotation about sae
axis:

f' = e®2i(ix+ jy+kz)e~(6/2)

8 Using: sin6/2) = +/3(1—cosh) , cog8/2) ==+,/1(1+cos)
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= ix+ j(ycosf — zsin8) + k(ysin6 + zcosH)

(ijk /1 0 0 X
= 0 cosf —sinB y
0 siné cosO z

i.e. a rotation through the imaginary angeabout thex—axis in the(y,z)—plane.
The right—to—left order of matrix multiplication is imparit. Proof of the general
case only involves more algebra. Symbolicafly= ¢ f{*. By a second rotation
f// — r.,f/n* — nzfz*n*

The final result depends on the order in which the operationagplied, because
of the fact that the quaternionsand{ do not commute. The quantiyis called the
tensor (stretcher) and the exponential is called ¥eesor (turner) of the operator.

In four-dimensional rotation the argument of the operatsothe full quaternion
four-vector,v, = (Vo,V;), rather than the three-vectdrwith vo = 0, considered
before. On working out the full rotation matrix it turns oatdecompose into a pair
of 3D rotations, such as (8), indicating that the four-digienal rotation amounts
to double covering of the underlying space of 3D rotatiorq.[3
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