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Summary: This paper focuses on the construction of D- and Ds-optimal designs for a second-
order response surface model when the block sizes are not fixed. Overviews of the Procedure
OPTEX in SAS for the construction of these designs are given. With the BLOCK statement this
procedure can produce optimal designs when the block sizes are fixed but for unknown block sizes
it requires additional programming to generate the optimal designs for a given number of runs and
number of blocks (see Atkinson, Donev and Tobias, 2007). An example about a pastry dough exper-
iment (Goos and Jones, 2011) is used to demonstrate how to generate designs in such situations.

1. Preliminaries

1.1. Introduction

Response surface methodology (RSM) comprises a group of statistical techniques for empirical
model building and model exploitation. By careful design and analysis of experiments, it seeks
to relate a response variable to the levels of a number of predictors or factors that affect it (Box and
Draper, 1987). One of the main goals of RSM is to find the levels of input variables that optimize a
response or set of responses. This optimization is done by fitting data collected from an experiment
and selecting the operating conditions that meet specifications or goals for each response. The
basic theory of RSM is well established and is presented in a number of texts such as those by
Box and Draper (1987), Box, Hunter and Hunter (2005), Khuri (2006) and Myers, Montgomery
and Anderson-Cook (2009). The focus of this paper is on optimal designs related to second-order
polynomial models.

1.2. Model and Designs

Let k denote the number of independent variables or factors or treatments x1,x2, . . . ,xk, i.e. k is the
dimension of the experimental region. Let the true functional relationship between the response vari-
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able y and the set of the k independent variables be approximated by the second-order, or quadratic
model

y j = β0 +
k

∑
i=1

βi x ji +
k

∑
i=1

βii x2
ji +∑∑

h<i
βhi x jh x ji + ε j, j = 1, . . . ,N (1)

where β0 denotes the intercept, βi is the main effect of the ith factor, βii is the quadratic effect of the
ith factor, βhi is the effect of the interaction involving the hth and ith factors, N is the total number
of experimental runs, and ε j is IID N(0,σ2). In matrix form model (1) can be written as

y = Xββ + εε (2)

with E(εε) = 0 and Var(εε) = σ2I where ββ is the parameter vector and X is the design matrix. In
response surface designs the factors could naturally have different ranges or they could be measured
on different scales; by convention all the factor levels or settings are coded to −1 as the lowest level
for the factor and +1 for the highest level.
Assuming that X is of full rank, that is X′X is nonsingular, the least squares estimate of ββ is given
by β̂β = (X′X)−1X′y with the variance-covariance matrix σ2 (X′X)−1. In order to support estimation
of the coefficients of the second-order, an experimental design must include at least three distinct
values for each input variable. A number of classes of designs have been developed to fit this type of
response surface, such as Central Composite designs, CCD (Box and Wilson, 1951), Box-Behnken
designs (Box and Behnken, 1960), Augmented pairs designs (Morris, 2000), and Complete three-
level factorial designs (Morris, 2011).

2. Computer-generated optimal designs

The standard response surface designs, such as CCD and the Box-Behnken designs, have been de-
veloped to accommodate common situations observed in practice and hence may not be appropriate
in certain situations, for example when the experimental region is not a cube or a sphere, when there
is prior knowledge that the experimental process should be represented by a nonstandard model and
when the experimental runs are extremely expensive or time consuming and hence the number of ex-
perimental runs required by the standard response surface design should be reduced. In such cases,
computer-generated optimal designs, i.e. designs that are best with respect to some optimality cri-
terion, are alternatives to consider. Since optimal designs are the solution to optimization problems
for which the number of experimental runs can be specified to be any integer value, the selection
of designs need not be restricted to the values that are convenient for any particular standard de-
signs (Morris, 2011, page 301). There are several optimality criteria but in this paper we use D-
and Ds-optimality criteria; where a D-optimal design maximizes |X′X| or, equivalently, minimizes
|(X′X)−1|, i.e. it minimizes the generalized variance of β̂β . Geometrically, this is equivalent to max-
imizing the volume spanned by the columns of X′X, which is inversely proportional to the size of
the confidence ellipsoid for the parameters of a linear model. In contrast, a Ds optimal design is
appropriate when the interest is in estimating a subset of the s parameters in the model as precisely
as possible. This will be discussed in the following section.
A computer-based algorithm is required to compute these designs. Procedure OPTEX in conjunction
with procedure PLAN in SAS can be used to generate these designs. In this paper we will illustrate
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how these procedures can be used to generate blocked response-surface designs with desirable prop-
erties.

3. Blocking in response surface design

When using a response surface design, if it is possible to group the experimental runs in such a
way that runs in each group are more like each other than they are like runs in a different group,
then statistically it is more efficient to make grouping explicit (Goos and Jones, 2011). It is ideal
to make the blocking factor orthogonal to the other factors. A response surface design is said to
be orthogonally blocked, if it is divided into blocks such that the block effects do not affect the
parameter estimates of the response surface model. However, in some experimental situations the
constraints on block sizes and the total number of runs available can make the orthogonal blocking
impossible. In such cases, an optimal blocking is a useful alternative.
Suppose that the block effects are fixed. By extending the linear model (2) to accommodate the fixed
block effects, the model for a blocked response surface design can be given by

y = Xββ +Bαα + εε = Zγγ + εε, (3)

where B is a matrix whose columns are indicators of the blocks, αα is the vector of block effects,
Z = [X B], γγ = [ββ αα] and the other terms are as defined in (2). The most commonly used design
criterion when vector ββ in (3) is the only parameter of interest is Ds-optimality. A Ds-optimal
design minimizes the variance-covariance matrix of the least squares estimator of ββ or equivalently
maximizes the determinant of the information matrix of ββ , X′GX where G = I−B(B′B)−1B′ . Or
equivalently a Ds-optimal design maximizes

|Mβ (ξN)|=
|Z′Z|
|B′B|

= |X′X−X′B(B′B)−1B′X|

where ξN is an exact or discrete design (Atkinson et al., 2007, page 139). Observe that if the block
sizes are fixed, the determinant |B′B| is constant. Therefore, maximizing |Mβ (ξN)| is equivalent to
maximizing |Z′Z| and hence the D-optimum designs of model (2) and Ds-optimum designs are the
same for fixed block sizes. However, in general this result does not hold when the block sizes are
not fixed and possibly differ from block to block. Note that designs where blocks are orthogonal to
the treatment effects, i.e. X′B = 0, or X′GX = X′X are 100% Ds efficient.
The optimum block designs for fixed block sizes, i.e. Ds-optimum designs, can be calculated using
the OPTEX procedure with a BLOCK statement. However, when block sizes are not fixed and need
to be optimally allocated, for a given number of experimental runs and number of blocks, the OPTEX
procedure needs additional programming to calculate the efficient designs; for example the OPTEX
procedure can be combined with the SAS macro of Atkinson et al. (2007, pages 219–220). For
the example that is discussed in the following section we have used the OPTEX procedure and this
macro, but other alternative methods are also available in the literature, e.g. Meyer and Nachtsheim
(1995).
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Table 1: Factors and factor levels used in the pastry dough mixing experiment

Flow rate (kg/h)1 Moisture content (%) Screw speed (rpm)
30.0 18 300
37.5 21 350
45.0 24 400

4. The Pastry Dough Experiment

The example used in this section is discussed in Chapter 7 of Goos and Jones (2011). The experiment
is about the baking of pastry dough. There are three continuous factors, namely the initial moisture
content of the dough (Moisture), the screw speed of the mixer (Screw), and the feed flow rate of water
being added to the mix (Flow). Since the researchers expected a curvature in the responses that they
were going to measure and wanted to fit a second-order response surface model, they decided to
consider three levels for each of the factors (see Table 1). They scheduled the laboratory for seven
days in two weeks and planned to do four runs a day. Therefore, the experiment has 28 runs and
7 blocks of size 4. The standard design, e.g. the central composite design, does not accommodate
their plan. Assuming the day effect is fixed we generated the D-optimal designs which are also Ds-
optimal because the block sizes are equal. The designs generated (Table 3) have efficiency values
which are greater than 0% implying that the three main effects, the three first-order interactions and
the three quadratic effects are estimable.
The SAS code shown in Table 2 illustrates the use of Proc PLAN and Proc OPTEX. The Proc PLAN
is used to create the full 3× 3× 3 factorial and stores it in the file Table74. In the Proc OPTEX,
the model statement specifies a quadratic model in the three factors, Flow, Moisture and Screw.
The block and the generate statements specify that a design with all 28 treatment combinations be
created, that is blocked into 7 blocks of size 4. When this code is run, Proc OPTEX calculates a Ds-
optimal design for estimating all the effects listed in the model statement. In this code we have used
chain to select candidate points in the order in which they occur in the original data set (i.e. Table74)
and noexchange to force only interchange steps, making sure the final design is a reordering of the
27 candidates. The method option specifies the procedure used to search for the optimal design.
The examine statement displays the characteristics, such as information and variance-covariance
matrices, of a selected design (SAS Institute Inc., 2010). The option orthcan is used to make the
efficiency measures more interpretable.
The exact Ds-optimal designs in Table 3 are obtained using the default search algorithm that uses the
simple exchange method of Mitchell and Miller (1970), starting with a completely random design.
The default size of the design is the number of parameters in the model plus 10 and OPTEX searches
for a D-optimum design 10 times with different random initial designs and displays the efficiencies
of the resulting designs in a table.
However, besides those used in Table 2, different options available in the OPTEX procedure include
the size of the design, type of initial designs, optimality criterion and search algorithm that can
be fixed by the practitioner. Atkinson et al. (2007) advise almost always using the options COD-
ING = ORTHCAN in order to make the efficiency measures more interpretable and METHOD =



EFFICIENT RESPONSE-SURFACE DESIGNS 19

Table 2: SAS code to calculate a Ds optimal block design

proc plan;
factors Flow = 3 Moisture = 3 Screw=3 ordered;
output out = Table74 Flow nvals = (30.0, 37.5, 45.0)

Moisture nvals = (18, 21, 24)
Screw nvals = (300, 350, 400);

run;

proc optex data=Table74 coding=orthcan seed=12345;
model Flow|Moisture|Screw@2 Flow*Flow Moisture*Moisture Screw*Screw;
block structure = (7)4 init = chain noexchange;
generate initdesign = Table74 method = M_FEDOROV criterion = D;
examine design information variance;
output out = DesignMF;

run;

M_FEDOROV, i.e. the Modified Fedorov algorithm of Cook and Nachtsheim (1980), in order to use
a more reliable search algorithm than the default one. They have found that the Modified Fedorov
algorithm of Cook and Nachtsheim (1980) is the most reliable and takes less time to compute an
optimum design.
The variances of the factor-effect estimates can be calculated using the inverse of the information ma-
trix of the Ds-optimal design, i.e. the variances are the diagonal elements of the variance-covariance
matrix (X′X)−1, where X is the design matrix of Ds-optimal design. The variances of the factor-
effect estimates using the fixed block or day effects are presented in Table 4 and they are obtained
using the statement examine with variance option in Proc OPTEX.
Suppose that the researchers have budget to conduct either 24 or 25 or 26 runs, but on each day they
will be able to do not more than four runs and not less than two runs. As the block sizes are not
fixed and can vary among the days the BLOCK option in Procedure OPTEX was combined with the
SAS macro of Atkinson et al. (2007) to generate the optimal designs. The block sizes for the seven
days that yield the Ds-optimum designs are listed in Table 5. The days with 3 or 4 runs occurring do
not affect the optimality of the designs as long as the factor levels generated by the program are not
swapped.
For brevity we have not discussed in this paper the efficiency measures of optimal designs. However,
we would like to remind readers that the formula used to calculate the efficiency measures, e.g.
Ds-efficiency reported in Section 4, by Proc OPTEX are different from those given in the optimal
designs literature. We therefore advise that the efficiency measures from the procedure OPTEX
should be used to compare one design to another for the same situation or to use the SAS macro that
is discussed in Chapter 13 of Atkinson et al. (2007). In the example, although we have generated the
designs using fixed block effect, for the analysis Goos and Jones (2011) treated block (i.e. day) as a
random effect because the responses on any given day are more alike than responses from different
days and hence they may introduce correlation in the model for the data.



20 DEBUSHO & CHIBAYAMBUYA

Table 3: Exact Ds-optimal designs with seven blocks of size four using the factor levels

Factor levels
Day (Block) Flow rate (kg/h) Moisture content (%) Screw speed (rpm)
1 30.0 18 300

45.0 18 400
37.5 21 350
45.0 24 300

2 30.0 21 400
45.0 24 400
45.0 18 350
37.5 24 300

3 30.0 18 350
37.5 24 400
30.0 24 300
45.0 21 300

4 45.0 18 300
30.0 18 400
30.0 24 300
37.5 21 350

5 30.0 18 300
35.0 18 400
45.0 24 300
30.0 24 400

6 45.0 24 350
30.0 24 400
30.0 21 300
37.5 18 400

7 30.0 18 400
30.0 24 350
37.5 18 300
45.0 21 400
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Table 4: Variances of the factor effect estimates

Factor effect Variances
Flow rate 0.0332
Moisture content 0.0342
Screw speed 0.0342
Flow rate ×Moisture content 0.0269
Flow rate × Screw speed 0.0269
Moisture content × Screw speed 0.0260
Flow rate × Flow rate 0.0507
Moisture content ×Moisture content 0.0507
Screw speed × Screw speed 0.0507

Table 5: Block sizes for the seven days, ni, i = 1,2, . . . ,7 that yield the Ds-optimum designs

Block sizes
Runs n1 n2 n3 n4 n5 n6 n7

24 4 4 4 3 3 3 3
25 4 4 4 4 3 3 3
26 4 4 4 4 4 3 3
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