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Summary: In this paper we investigate the finite sample risk performance of feasible generalised
least squares estimators applied in models with serially correlated error terms. The risk functions of
the ordinary least squares, generalised least squares and feasible generalised least squares estimators
are derived under the asymmetric Linear-Exponential loss function. A numerical evaluation using
simulation is used to compare the risk functions. Our numerical results show that the relative risk
gains of the feasible generalised least squares estimators over the ordinary least squares estimator
increases with higher loss asymmetry, particularly for larger serial correlation coefficients.

1. Introduction

There are a number of assumptions underlying the classical linear regression model (CLRM). In
practice, however, when using finite sample data to estimate the unknown regression coefficients
there is usually some doubt about the validity of some of these assumptions. Serially correlated er-
ror terms, for example, is commonly encountered in models involving time series data. In particular,
Cochrane and Orcutt (1949) found that error terms in most economic models are highly positively
serially correlated. It is well known that when the error terms in a model are serially correlated,
the Ordinary Least Squares (OLS) estimator is inefficient, though it remains unbiased. Therefore,
there is a strong motivation to consider alternative estimators that account for serial correlation when
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estimating models where the assumption of no serial correlation is violated. The generalised least
squares (GLS) estimator is the best linear unbiased estimator, however, it requires the serial corre-
lation coefficient to be known, which is rarely the case in practice. Various feasible Generalised
Least Squares (FGLS) estimators have been proposed in the literature. Rao and Griliches (1969)
investigated the finite sample performance of these FGLS estimators based on the mean square error
criterion. Their Monte Carlo results suggest that when compared to the OLS estimator, the FGLS
estimators are more efficient, particularly for moderate and high levels of serial correlation in the
error terms. We consider the risk performance of the FGLS estimators under the asymmetric Linear-
Exponential (LINEX) loss function and evaluate the effects of the asymmetry by considering various
combinations of the loss parameters by making use of Monte Carlo experiments.

Section 2 discusses the model and the estimators under consideration. The risk functions of the
OLS, GLS and FGLS estimators are derived in section 3 and the numerical evaluations of the risk
functions follow in section 4.

2. The model and estimators

We consider the classical linear regression model
y=XB+u (1)

where y is a T x 1 vector of observations on a dependent variable, X is a 7' X k nonstochastic design
matrix of full column rank k, B is a k x 1 vector of unknown regression coefficients anduisa T x 1
random vector of the error terms. In most econometric models it is commonly assumed that the error
terms are generated by a stationary first order autoregressive process given by

W = pPpu;—1+e, e~ N(0, GZI)

where e = (ey,...,er) and p is the serial correlation coefficient (for positive stationary processes
0<p <.
Under this assumption, it follows that

E(u)=0
and
1 p p2 prl
o2 P 1 P p’2
E(uu') = e p> P 1 p' _
W=y 0 | o:
T-1 T-2 T-3
p p p U L s
therefore,

u~N(0,029)

If the serial correlation coefficient, p, is equal to zero and assuming that all other assumptions of the
CLRM holds, it follows from the Gauss-Markov theorem that the OLS estimator, (eq. @]), is the best
linear unbiased estimator of the unknown regression coefficient vector §.

B, = (XX)"'Xly B, ~N(B,o2(X'X)™") @)
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However, as discussed by Judge, Griffiths, Hill, Lutkepohl and Lee (1985), even though the OLS
estimator remains unbiased in the presence of serial correlation, it is no longer efficient relative to
estimators obtained by taking into account knowledge of serial correlation in the error terms. They
further point out that the least squares estimator for the variances of the regression coefficients will
be biased and inconsistent, leading to invalid inferences about the regression coefficients. Therefore,
estimators that adjust for serial correlation by making use of ¢ through some transformation tech-
niques, have more desirable statistical properties and should be considered in models with serially
correlated error terms.

If the value of p is known, then the problem of serial correlation can be remedied by using ¢ in
estimating 3. The GLS estimator is then the minimum variance linear unbiased estimator and is
given by:

B, =Xo¢'X)'X¢"y B, ~NPB,o;(X¢ X)) 3)
However, the value of p is rarely known in practice, therefore it is not possible to obtain the GLS
estimator directly. Some variants of the GLS estimator based on consistent estimates of p have been
suggested in the literature and the general FGLS estimator is given by:

B, =Xo'X)"'X'¢ly B, ~N(B.oZX¢ X)) )

The various FGLS estimators differ in the method used in estimating the value of p and in how they
deal with the first observation in the transformation matrix. Cochrane and Orcutt (1949) suggested
an estimation procedure that estimates both p and f iteratively. The model (eq. [1) is estimated by
the usual OLS procedure and the first sample autocorrelation coefficient of the estimated residuals
from this model is then used in estimating p, that is

p= Zr:z“;“t—l/Zt:I ll;ll;

This estimator is then used in the Cochrane-Orcutt transformation matrix (eq. @), P ., to obtain the

co’
Cochrane-Orcutt estimator:

B, = (XP. P ,X)"'X'P_ P,y )
where
-p 1 0 0 O
0 —p 1L ... 0 0 O
Peo = : : : : : : ©)
0 0 0 0 —p 1

((T—-1)xT)

A second round of residuals u; = (y; — X; [3CO) can then be obtained and used in calculating the
second round estimates of p and . This procedure is then repeated iteratively until both values of p
and B o converges. The Cochrane-Orcutt two stage estimator based on the second round estimates
is however considered to be a consistent estimator in practice.

The Cochrane-Orcutt estimator is based on the transformation matrix that disregard the first observa-
tion. Prais and Winsten (1954) noted that this transformation procedure can have a significant impact
on the efficiency of the obtained estimator, particularly for small sample sizes and in trended time
series where the first observation could be very different from the average observation of the series.
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They then suggested a modification of the Cochrane-Orcutt procedure where the transformation is
based on the following matrix

1-p2 0 0 0 0 0
-p 1 0 O 0 O
0 o o ... ... —p 1 (TxT)
and p is obtained by using the Cochrane-Orcutt procedure.
Thus, the Prais-Winsten estimator is given by:
B,, =XP, P, X)"'XP P,y (8)

Durbin (1960), on the other hand, proposed a procedure where the estimate of p is obtained by the
coefficient of the lagged dependent variable in the model

Y = PYi-1 +ﬁXt —Pﬁxt—l +V;. 9)

The least squares estimate of p in (eq. [9) is then used to replace the Cochrane-Orcutt two stage
estimate of p in the matrix (eq. [7]) to obtain the transformation matrix P,. Therefore, the Durbin
estimator is given by R

B, =XPPX) 'XPPy. (10)
An alternative to the estimators considered above is a non-linear estimator obtained by maximum
likelihood estimation procedures that estimate 8 and p simultaneously. Beach and Mackinnon
(1978) suggested a maximum likelihood estimator that incorporates the first observation and sta-
tionarity of the error process. Under the assumption that the error terms are normally distributed, the
estimate of B8, conditional on p is obtained by maximising the log-likelihood function given by:

Z = const%log(l —p?)— %IOg[(l -p?)(n —Xlﬁ)z"‘ZzT:z(Yt —X.B—pyi—1 +pX:—1B)?].

An algorithm for maximising this likelihood function is given by Beach and Mackinnon (1978).
Judge et al. (1985) assert that all the FGLS estimators discussed above have the same asymptotic
properties. However, for small samples the performance of the FGLS estimators will be influenced
by the accuracy of the estimates of p. Monte Carlo evidence from Rao and Griliches (1969) suggests
that all the estimators of p are biased in small samples, though the Durbin estimator of p is signif-
icantly less biased for positive values of p. They conclude that the Prais-Winsten estimator based
on the Durbin estimate of p is likely to be more efficient over a wide range of parameters compared
to other estimators. Park and Mitchell (1980) also compared the efficiency of the various estima-
tors, specifically for trended time series. Their results show that the Cochrane-Orcutt procedure has
very low efficiency among all the FGLS estimators. Furthermore, they found that the Prais-Winsten
estimator only performs slightly better than the maximum likelihood estimator.

3. Risk functions

Suppose [A? is an estimator of the unknown parameter vector 3. The LINEX loss takes the form

Lk (B:B) = clexpla’(B—B)] —a'(B—B)—1] (1)
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where a = (ay,...,a;) anda; 0 fori=1,....kand ¢ > 0.

The LINEX loss was proposed by Varian (1975) and its properties are discussed therein and are
further illustrated in Figure [T] which presents the graphs for the loss function for selected values
of the loss parameters ¢ and a, where k = 2. The parameter c is a scale parameter and the vector
a determines the shape of the loss function. The signs of the @;’s determine and reflect the direc-
tion of asymmetry and their magnitudes reflect the degree of asymmetry. The LINEX loss is quite
asymmetric when the absolute values of the a;’s are large and almost symmetric for smaller absolute
values. For simplicity, we will assume equal values of the a;’s in our analysis.

/ e 7
P e e
— . ””‘;{‘:/ — — w//,
a=(0.5,05),c=1 a=(3,3) ,c=1
— ) u/.,v v 7:/»/”
a=(-05,-05) c=1 a=(-3,-3),c=1
Errorl = (B —B1) Error2 = (B —B2)

Figure 1: Graphs of LINEX loss (see eq. for selected parameter values.

3.1. Risk function of OLS estimator

From (eq. [2) and (eq. [TI)), it follows that the risk function of the OLS estimator under the LINEX
loss is defined by

~

Runex(B,,:B) = E{clexpla’(B,,,—B) —a'(B,,.—B)—1]}
= c[Efexp(a'B,,)]exp(~a'B) —a'(E[B, |-B) 1]
= clexp(-aB)M; (a)-a'(B—PB)—1]
= clexp(—a'B)exp(B'a+ %a’EOLSa) —1]

1
= c[exp(ia’ZOLSa) —1]

where M (-) is the moment generating function of B o A Zy o= 07 (X'X) L
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3.2. Risk functions of GLS and FGLS estimators
Using (eq. B and (eq. [T T)), the GLS risk expression can be derived as

R(B,,:B) = Efclexpla’(B,,.—B)—a'(B, . —B)-1]}
= c[Efexp(a'B,, ) exp(—a'B)—a'(E[B_, ]-B) 1]
= clexp(~a')M; S(a)—a’(ﬂ —B)—1]

= c[exp(—a’ﬁ)exp(ﬁ a+ a’ZGLS) 1]

where Mg ( ) is the moment generating function of ﬁ and £, = 62(X'¢ 1X)~!. It follows
directly from the GLS risk expression that the risk functlon for the FGLS estimator, (eq. M), is given
by

o~

R(B,os:B)  =cl exp(z2Z g 5a)—1 ]

where M B (+) is the moment generating function of ﬁ and L a2(X'¢~1X)!
FGLS

FGLS FGLS =

4. Numerical evaluation and discussion

Following Beach and Mackinnon (1978), the data used in the Monte Carlo study are generated by a
single explanatory variable such that

Y, = ﬁ1+ﬁ2Xt+Mt

where X, = exp(0.04¢) + w,, w, ~ N(0,0.009), B = (B1,5:2) = (1,1) and the sample size T = 20.
The values of the explanatory variable are held fixed in repeated samples. The u, are then generated
by the first order autoregressive error process

Ur = pM171 + (43 er ~ N(0,00036)

and N = 1000 replications of the experiment were used. We consider values of p from 0 to 0.9. The
risks for the estimator B are calculated by (eq. and normalised by dividing by the GLS risks
R(B,,,:B) to obtain the relative risks.

N

LINEXBB Z c(expla ﬁ ﬁ)]_a(ﬁ -B)-1) (12)

All computations were done in SAS 9.2.

We have evaluated the risk functions for loss parameters c = 1; a= (—0.5,—0.5)", a= (-3, -3)’
and a = (—8,—8)’. Representative results from our analysis are presented in Table [1|and Figure
As expected for a = (—0.5,—0.5), which represents a relatively lower degree of asymmetry, we find
that the results from our analysis are consistent with those given by Rao and Griliches (1969). That
is, the OLS estimator is risk superior to all FGLS for p < 0.2, the GLS estimator strictly dominates



GENERALISED LEAST SQUARES ESTIMATORS IN CORRELATED ERROR MODELS 59
[ p [ o [ or JT o2 JT o3 J o4 ] o057 06 [ 07 [ 08 ] 09 ]
a=(—05,—-0.5) [ 1.000 [ 1.010 | 1.030 | 1.060 | 1.105 | 1.168 | 1.260 | 1.387 | 1.533 | 1.559
OLS [ a=(-3,-3) 1.000 | 1.010 | 1.030 | 1.060 | 1.105 | 1.169 | 1.260 | 1.387 | 1.534 | 1.561
a—(—8,-8) 1.000 | 1.010 | 1.030 | 1.061 | 1.107 | 1.173 | 1.268 | 1401 | 1.563 | 1.627
a=(—05,-05) | 1.020 | 1.025 | 1.030 | 1.035 | 1.042 | 1.055 | 1.078 | 1121 | 1.174 | 1.199
D a=(—3,-3) 1.020 | 1.025 | 1.030 | 1.035 | 1.042 | 1.054 | 1.076 | L.1I18 | 1.169 | 1.192
a—(—8,-8) 1.019 | 1.024 | 1.029 | 1.034 | 1.041 | 1.053 | 1.075 | 1.114 | 1.160 | 1.185
a=(-05,-05)" | 1282 | 1342 | 1.414 | 1498 | 1.594 | 1.701 | 1.815 | 1.919 | 1.964 | 1.787
Cco a—=(—3,-3) 1282 | 1342 | 1414 | 1498 | 1594 | 1.702 | 1.816 | 1.919 | 1.960 | 1.788
a=(—8,-8) 1286 | 1346 | 1.419 | 1.506 | 1.608 | 1.726 | 1.853 | 1.970 | 2.031 | 1.901
a=(—05,-05) | 1.012 | 1.016 | 1.023 | 1.033 | 1.047 | 1.069 | 1.104 | 1.160 | 1.241 | 1.293
PW a—(—3,-3) 1011 | 1.016 | 1.023 | 1.033 | 1.047 | 1.069 | 1.103 | 1.158 | 1237 | 1.293
a—(—8,-8) 1011 | 1.016 | 1.023 | 1.032 | 1.047 | 1.068 | 1.102 | 1.156 | 1.236 | 1.318
a=(—05,—-05) | 1.029 | 1.049 | 1.047 | 1.049 | 1.057 | 1.073 | 1.100 | 1.133 | 1.158 | 1.172
MLE [ a=(-3,-3) 1.027 | 1.047 | 1.045 | 1.048 | 1.056 | 1.072 | 1.098 | 1.130 | 1.152 | 1.171
a—(—8,-8) 1.025 | 1.042 | 1.042 | 1.045 | 1.054 | 1.071 | 1.097 | 1.127 | 1.144 | 1.175

Table 1: Relative risks of the estimators under the LINEX loss.

Relative Risk
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147
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e
110
1.08
108
107
108
105
104
103
102
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Loss parameters  ——— a=(05,-05)"

63,3

—— 8,8

Figure 2: Relative risk functions for the Durbin estimator for different choices of LINEX loss
parameters.

all estimators over the entire range of p and the Durbin estimator performs the best and Cochrane-
Orcutt the worst among all the FGLS estimators considered.

We note that some of the key results based on the mean square error criterion, or equivalently
the squared error loss, continue to hold as the degree of loss asymmetry increases. The relative
ordering of the FGLS estimators’ performance as well as the range of p over which the OLS es-
timator dominates all FGLS estimators remains the same. Generally, the risks of the OLS and the
Cochrane-Orcutt estimators increase with an increase in loss asymmetry and most importantly the
OLS estimator strictly dominates the Cochrane-Orcutt estimator over the entire range of p, once
again showing the inferiority of the Cochrane-Orcutt estimator as an alternative to OLS. On the
other hand, the risks of the Prais-Winsten, MLE and Durbin estimators decreases as the degree of
loss asymmetry increases and as clearly illustrated in Figure[2]for the Durbin estimator, the decrease
in the risks is more substantial for higher levels of serial correlation. The implication of this is that
the risk gains of the FGLS estimators, with the exception of the Cochrane-Orcutt estimator, over
the OLS estimator increase as the loss asymmetry increases, particularly for higher levels of serial
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correlation.

Considering that the OLS estimator is relatively more efficient than FGLS estimators for small
values of p, it is imperative to use serial correlation test procedures to determine the significance
of the serial correlation in the error terms. The estimation strategy is then made to choose between
the OLS estimator and FGLS estimator depending on the significance of the serial correlation in the
error terms. Work in progress by the authors investigates this strategy from an asymmetry viewpoint.
This work is based on the research supported by the National Research Foundation of South Africa
for the grant TTK1206151317. Any opinion, finding and conclusion or recommendation expressed
in this material is that of the authors and the NRF does not accept any liability in this regard. The
authors would like to thank the anonymous referees for constructive comments that improved the
presentation of the paper.
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