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Adaptive Threshold-Based Shadow Masking for

Across-Date Settlement Classification of

Panchromatic QuickBird Images
F. P. S. Luus, F. van den Bergh, and B. T. J. Maharaj

Abstract—Multitemporal land-use analysis is becoming in-
creasingly important for the effective management of earth
resources. Despite that, consistent differences in the viewing-
and illumination geometry in satellite-borne imagery introduce
some issues in the creation of land-use classification maps. The
focus of this study is settlement classification with high-resolution
panchromatic acquisitions, using texture features to distinguish
between settlement classes. The important multitemporal vari-
ance component of shadow is effectively removed before feature
determination, which allows for minimum-supervision across-
date classification. Shadow detection based on local adaptive
thresholding is employed and experimentally shown to outper-
form existing fixed threshold shadow detectors in increasing
settlement classification accuracy. Both same and across-date
settlement accuracies are significantly improved with shadow
masking during feature calculation. A statistical study was
performed and found to support the hypothesis that the increased
accuracy is due to shadow masking specifically.

Index Terms—Image texture analysis, feature extraction, urban
areas, remote sensing.

I. INTRODUCTION

MULTITEMPORAL satellite-borne image acquisition in-

troduces complex variances due to a conflation of

differences in viewing angles, illumination characteristics and

environmental factors of the captured scenes. Multitemporal

land-use analysis has to filter out these artificial differences

to obtain an accurate account of actual land-cover changes. In

the case of supervised settlement classification with limited

ground truth data, such calculated invariance can substan-

tially improve across-date classification accuracy. The varying

viewing- and illumination geometry in multitemporal imagery

must be accounted for since those differences will normally

become embedded in the classification features and compro-

mise the supervised labelling.

The QuickBird satellite acquires scenery at potentially very

different azimuth angles due to its maximum 45◦ off-nadir

wide accessible ground swath. Viewing geometry variations
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aggravates the strong directional differences seen in urban

surface features [1]. The sun elevation and solar illumination

characteristics during acquisition may also have significant

across-date differences, which produce considerable illumi-

nation variance of which shadowing is a dominant factor.

Changes in dynamic range of the scene intensity is another

effect of illumination variance, but shadowing is more adverse

since its presentation is locally coupled with surface features

and thus more difficult to remove.

Shadow detection is the initial step after which effective

shadow removal is achieved through mainly shadow correction

or masking. Augmenting data such as digital surface models

have been used to perform topographic correction of surface

reflectance, and terrain illumination correction with shadow

and occlusion detection [2]. Most shadow detection methods

depend on rich multispectral imagery and the shadow property

of maintained relative color but reduced intensity (retinex

theory) [3], and the use of near-infrared information [4].

Tsai presented an algorithm which uses the ratio value of the

hue over the intensity to construct the ratio map for shadow

detection in color aerial images [5]. The detection accuracy

was improved with a successive thresholding scheme utilized

by Chung et al. [6]. The shadow property of low intensity can

be used to good effect for shadow detection [7], where fixed

intensity thresholding is a predominant panchromatic detection

method [8]. Bimodal histogram splitting is suitable for large

shadow detection [9], but finding a suitable threshold for the

smaller shadows of urban structures is non-trivial. This paper

focuses on panchromatic-only imagery, since multispectral

methods are well studied, and for the research to also be useful

for imagery from satellites like WorldView-1.

The authors previously explored fixed thresholding for

panchromatic shadow removal [7] and aim in this new study

to expand the investigation into the relative performance

benefits of local adaptive thresholding for shadow detection.

Adaptive thresholding allows for more robust shadow de-

tection, especially for gradient shadows, and its threshold

parameters require less across-date modification than with

fixed thresholding. The causal relationship between shadow

detection accuracy and the accuracy improvement in across-

date settlement classification with shadow masking is also

statistically analysed in this work.

The original image and its detected shadow mask are

used to perform shadow masking, and in this study has

the purpose of effectively removing multitemporal shadow

variances by removing the shadows. Histogram matching,
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gamma correction and linear-correlation correction [10] are

popular methods of shadow correction, where shadows are

lifted to have similar intensity to that of the surroundings.

Corrected shadows suffer from posterization and the effect on

classification accuracy is of concern. Alternatively this study

will opt for shadow masking, where shadows are ignored

during feature calculation.

Pattern classification relies on differential measures to

distinguish between different classes, but in the instance

of across-date settlement classification the potentially severe

shadow variances can cause intra-class feature variation. This

leads to a higher incidence of class confusion and overlap,

so it is the objective of shadow invariance to remove the

significant illumination variance from the feature calculation.

Texture features are used as it has been shown to be a good

measure of settlement patterns (see [11]).

The methodology is explained in Section II and a descrip-

tion of the study area is given in Section III. The experimental

setup and objectives are elaborated on in Section IV and the

results and a discussion thereof are provided in Section V,

before conclusions are drawn in Section VI.

II. METHODOLOGY

The effects of across-date shadow variances on settlement

classification accuracy are investigated by removing shadows

before calculating settlement features. Same-date and across-

date settlement classification are analysed with the shadows

intact and with the shadows removed to ascertain the influence

of shadow differences, primarily on classification accuracy.

The modified features then capture the settlement distinctions

minus the temporal illumination geometry variances.

Gray-level co-occurrence matrix (GLCM) [12] and local

binary pattern (LBP) [13] texture features have been shown

to perform well in settlement determination (see [11]) and are

used in this study. However, texture features such as GLCM

and LBP are sensitive to viewing- and illumination geometry

differences [11], so these features have the potential to benefit

from calculated feature invariance.

The shadow-effect mitigation method involves shadow de-

tection and removal as shown in Figure 1, where detection

is the determination of a binary shadow mask indicating the

perceived occlusion of sunlight. Fixed intensity thresholding

can be applied to produce a rudimentary shadow mask [7]

by declaring all pixels with an intensity less than the fixed

threshold as shadow, but here the accuracy of the mask has

a strong dependence on the specific threshold chosen. A

range of experiments is thus performed for fixed thresholding

with a threshold of up to 40% of the maximum intensity as

determined by the image bit depth.

Local adaptive thresholding is better suited as a panchro-

matic detector since the actual threshold is determined relative

to the mean intensity in a local window. A pixel is declared

as shadow in the mask if its intensity is less than the mean

pixel intensity in the square window centered at that pixel,

minus a given offset intensity value, which gives local adaptive

thresholding two main parameters, i.e. window size (number

of edge pixels) and the adaptive offset. Shadow intensity
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Fig. 1. An outline of the experiment methodology, and the separation of
same-date ( ) and across-date ( ) experiments (top left).

perturbations in the same scene and across-date dynamic range

differences can thus be better accommodated than with a fixed

threshold. To simplify analysis the shadow detection experi-

ments are performed in terms of only one threshold, so multi-

date images are initially histogram matched to reduce dynamic

range variances and then the threshold detector classifies every

pixel with an intensity less than the threshold as shadow. Fixed

intensity thresholding is used as a benchmark to test local

adaptive thresholding against, where the adaptive threshold is

tested for the range of 0% to 40% of the maximum intensity

subtracted from the local window intensity average.

The binary shadow mask provided by the detector is then

directly used during texture feature calculation in order to

mask out shadow areas. Every GLCM pixel pair is skipped if

one of those pixels is located in shadow, which then effectively

removes off-diagonal entries in the co-occurrence matrix that

would have resulted with no masking. The LBP features are

calculated in a similar manner so that a pattern is not placed

when its central pixel forms part of a shadow area. The shadow

masking is intensified in a variant named LBPA (LBP-All)

where a pattern placement would be skipped if any of its

pixels falls in the shadow mask. This differentiation between

LBP and LBPA is examined to enable further conclusions to

be drawn regarding the efficacy of stricter shadow masking.

III. DATA DESCRIPTION

The settlement classifier is evaluated in a study area with

three main settlement types as shown in Figure 2, namely for-

mal settlements (FS), formal settlements with backyard shacks

(FSB) and ordered informal settlements (OIS). A fourth non-

builtup class (NBU) that includes natural vegetation is added

to test classifier separability between builtup and non-builtup

areas. Formal settlements are characterised by permanent

residential structures that are positioned in a planned manner,

while formal settlements with backyard shacks have larger res-

idential structures accompanied by smaller backyard shacks.

When permanent and semi-permanent residential structures are

arranged in a planned manner an ordered informal settlement

is constituted.

A 4.85×9.86 km2 section of the subtropical highland of

Soweto (Gauteng, South Africa) was selected as the study site.

Panchromatic QuickBird imagery of the site was captured at
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a 0.6×0.6 m2 pixel resolution, with a nominal 30◦ off-nadir

wide accessible ground swath, on 18 October 2005 (d1, early

summer, rain season) and 30 May 2006 (d2, early winter). The

across-date settlement classification is investigated for these

two dates denoted by d1 and d2.

The 11-bit panchromatic scenes were across-date histogram

matched before representative polygons of each settlement

type were selected in an assisted manner to produce multiple

co-registered sample pairs over both dates. Image tiles of

120×120 m2 areas were then automatically extracted from the

polygon pairs with tile overlap to maximise polygon coverage.

IV. EXPERIMENTAL SETUP

The purpose of the study is to determine how shadow

masking can increase settlement classification accuracy, so

experiments are performed to determine the shadow detection

accuracy and to measure the settlement classification accuracy

with and without shadow masking. The correlation between

shadow detection accuracy and settlement classification is also

measured to make inferences about the mechanism underlying

settlement classification accuracy improvements.

1) Settlement classification accuracy: A distinction is made

between same-date and across-date experiments to test the

hypothesis that differences in shadow profiles contribute to

settlement classification inaccuracy. The tiles from each scene

(d1 and d2) are separated into areas A and B, which constitute

interchangeable training and testing datasets. For two acquisi-

tions of the study area there are 4 same-date and 8 across-date

experiments, as shown in Figure 1. The first datasets Ad1
and

Ad2
consist of 125, 202, 142 and 335 co-registered labelled

tiles respectively for the FS, FSB, OIS and NBU classes. The

remaining datasets Bd1
and Bd2

contain 91, 263, 154 and 318

tiles for the FS, FSB, OIS and NBU classes, respectively.

Texture features are calculated per labelled tile, using either

GLCM or LBP features. The first 13 of Haralick’s GLCM

features [12] are determined with the GLCM window having

the tile dimensions of 200×200 pixels. Using the first 13

GLCM features proved to be more accurate for the study

area, compared to using a feature subset of size 6 based on

information gain or correlation feature selection, or only the

most relevant features (energy, contrast, variance, correlation,

entropy and the inverse difference moment). GLCM pairs are

used in all cardinal and ordinal directions with respective

ℓ1-norms of 1 and 2. LBP features utilise the 10 basic

patterns [13] in an 8-point circle with radii of 1, 4 and 8

pixels to render a total of 30 features. When shadow masking

is performed the GLCM pairs or LBP patterns that fall within a

shadow area are ignored during feature calculation. Both fixed

and local adaptive thresholding shadow detectors are tested

and compared as part of the shadow masking process.

A multi-layer perceptron (learning rate of 0.3, momentum

rate of 0.2, 500 training epochs, and unipolar sigmoid acti-

vation functions) is used as classifier with texture features

as input and with four classes FS, FSB, OIS and NBU as

separate output units. The number of input units is equal to

the number of texture features (13 for GLCM and 30 for

LBP) and the number of units in the single hidden layer

is the sum of the number of attributes and classes, divided

by two. The perceptron is trained with each one of the

datasets (Ad1
, Ad2

, Bd1
or Bd2

) in turn, and tested on each

of the remaining datasets. In this manner each experiment

pairs different datasets and is performed for 10 repetitions,

where the perceptron network weights are reinitialised with a

different random seed each time.

2) Shadow detection accuracy: Shadow detection accuracy

is measured with a Jaccard similarity coefficient (also known

as the Jaccard index), which is the ratio of the intersected

area to the union of the two shadow areas given by the

ground truth and detected shadow masks. A representative set

of ground truth shadow masks is used, determined for all of

the settlement classes over both dates. The shadow detection

accuracy is determined for both the fixed and local adaptive

thresholding detectors over a range of threshold values.

V. RESULTS AND DISCUSSION

Shadow variances are amongst the more acute of across-date

differences, and this is indicated in the comparison shown in

Figure 2. Sample areas of the three main settlement types are

shown for each of the study dates and the shadows detected

with local adaptive thresholding are shown in color. For a

particular settlement type the same area is shown for both

dates so that the shadow differences may be directly compared.

Since d1 was acquired during the summer season, and d2
during winter, the shadows of d2 are longer due to the Sun

being in a more northerly position.

1) Settlement classification accuracy: When across-date

shadow differences are removed during feature calculation

a notable improvement in settlement classification accuracy

is observed, as shown in Figure 3. The LBP features have

also shown benefit from shadow masking on same-date train-

ing and testing dataset pairs, but the across-date accuracy

improvements are more significant due to greater feature

variance being reduced. The same-date accuracy increases with

LBP were only possible when the higher detection accuracy

of local adaptive thresholding was used and the across-date

improvements were also greater than with fixed thresholding.

(a) FS - Date 1 (b) FSB - Date 1 (c) OIS - Date 1

(d) FS - Date 2 (e) FSB - Date 2 (f) OIS - Date 2

Fig. 2. Examples of the across-date shadow differences for three of the
settlement classes found in Soweto.
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Fig. 3. Settlement classification percentage accuracy with GLCM, LBP and
LBPA with fixed and adaptive shadow detection thresholds (25-pixel window).

LBP/LBPA features with local adaptive threshold shadow

masking posted statistically significant accuracy increases

in all of the 4 same-date experiments. Posterization in the

shadow areas potentially increments randomized patterns in

the LBP histogram which decreases the valid to randomized

pattern ratio. Fixed threshold detection may also remove non-

shadow areas which may negate the accuracy improvement

of shadow masking, while adaptive thresholding can lower

the pattern noise floor with more precision. In same-date

experiments shadows and the associated posterization affect

GLCM similarly without degrading the non-shadow features to

the extent seen with LBP and LBPA. However, in across-date

experiments the shadow contrast variance negatively affects

GLCM features, so shadow masking causes improvement here.

In the across-date experiments with fixed threshold shadow

masking the GLCM, LBP and LBPA features achieved 8, 5

and 4 statistically significant accuracy improvements out of

the 8 possible experiments, respectively. Here LBP features

significantly outperformed LBPA and GLCM features respec-

tively in 4 and 5 of the 8 across-date experiments, despite

GLCM features leading to a higher mean accuracy value.

The maximum mean settlement classification accuracies and

corresponding shadow detection accuracies for the various

experiments are given in Table I.

When local adaptive thresholding is used the across-date

settlement classification accuracies with GLCM, LBP and

LBPA features increase from 87.39% (κ =0.82), 84.55%

(κ =0.78) and 85.07% (κ =0.79) to 96.04% (κ =0.94),

94.37% (κ =0.92) and 94.64% (κ =0.92), respectively. Here

LBPA features significantly outperform LBP features in 4 of

the 8 across-date experiments, but GLCM features achieve a

higher settlement classification accuracy than LBPA features

with statistical significance in 2 of the 8 experiments.

The settlement classification accuracy for the various local

adaptive threshold parameters are shown in Figures 4(a), (b)

and (c) for the GLCM, LBP and LBPA features, respectively.

The accuracy is relatively stable throughout the range of local

window sizes, but it is more sensitive to threshold offset

especially for LBPA. Considering the shadow accuracy graph

shown in Figure 4(d) it can be asserted that LBPA features

are more sensitive to shadow accuracy than GLCM or LBP

features. The fact that any pattern point in shadow excludes

the placement for LBPA, in contrast to just the center point

for LBP, means that the detected shadow mask will have a

greater influence on the LBPA calculations than with LBP.

TABLE I
SHADOW DETECTION AND SETTLEMENT CLASSIFICATION ACCURACIES

Feature Mask type

Max. accuracy Jaccard index

Same- Across- Same- Across-
date date date date

GLCM

No mask 94.91 87.39 0 0
Fixed 94.91 91.73 0 0.484
Adaptive 94.97 96.04 0.401 0.401

LBP

No mask 94.35 84.55 0 0
Fixed 95.10 88.98 0.446 0.446
Adaptive 98.61 94.37 0.388 0.342

LBPA

No mask 94.15 85.07 0 0
Fixed 94.88 87.11 0.446 0.530
Adaptive 98.64 94.64 0.388 0.388
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Fig. 4. Across-date settlement classification percentage accuracy with local
adaptive thresholding shadow detection and a) GLCM, b) LBP and c) LBPA
features. d) The shadow detection accuracy as measured from ground truth
data for the various adaptive threshold parameters.

2) Shadow detection accuracy: In Table I the Jaccard index

measures the shadow accuracy, which is 0 in the case of no

mask being applied since the mask area is zero. It is noted

that the Jaccard index with fixed thresholding is greater than

with local adaptive thresholding, and that the largest index

of 0.53 is achieved with fixed thresholding. However, since

shadow masking with local adaptive thresholding performs

significantly better than fixed thresholding it is clear that

the Jaccard index, calculated with the available ground truth

shadow masks, is not an accurate predictor of the possible

improvements in settlement classification accuracy. This is

most likely due to the subjectivity of the human-aided ground

truth shadow mask generation, where it is hard to separate

shadows from darker surfaces and to delineate the shadow

boundaries of partially translucent objects like trees.

3) Statistical analysis: The scatter graphs in Figure 5

display the relationship between settlement classification and

shadow detection accuracy for the same-date and across-date

experiments, with added linear regressions. With the exception

of same-date experiments with GLCM features, there is a pos-

itive correlation for all other experiments where the settlement
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Fig. 5. The relationship between classification accuracy and shadow detection
accuracy (local adaptive thresholding) based on the Jaccard index.

TABLE II
CORRELATION COEFFICIENTS AND STATISTICAL SIGNIFICANCE

Feature Measure Same-date Across-date ∆ p-val

GLCM
ρ -0.062 0.806

0
p-val 0.581 0

LBP
ρ 0.629 0.759

0.049
p-val 0 0

LBPA
ρ 0.467 0.602

0.003
p-val 0 0

classification accuracy improves as the Jaccard index becomes

greater. So as the shadow masks become more accurate the

shadow masking reduces settlement feature variations to a

greater degree.

Pearson’s correlation coefficients (denoted by ρ) given in

Table II show that the across-date experiments have stronger

correlations than same-date experiments, due to stronger

across-date shadow profile differences. The correlation for

same-date experiments with GLCM features is not reliable as

indicated by its p-value of 0.581, which gives the statistical

significance of the correlation as calculated using Student’s

t-distribution. For a null-hypothesis of same and across-date

correlations being equal, it can be seen that there are relatively

small probabilities∆ p-val of obtaining correlation differences

at least as extreme as were observed, given that the null-

hypothesis is true. The case of correlated correlation coeffi-

cients [14] is used to determine ∆ p-val, where the Jaccard

index is the shared variable between same and across-date

samples. At a significance level of 0.05 all of the features show

a definitely greater across-date correlation, which supports the

hypothesis that it is the shadow masking specifically that can

improve settlement classification accuracy.

VI. CONCLUSION

Multi-date satellite imagery embeds acquisition-related vari-

ations, which are difficult to eliminate in panchromatic

scenes without augmenting information. A means of removing

shadow differences was explored and local adaptive thresh-

olding was employed for shadow detection and was shown

to be superior to fixed thresholding. Shadow masking was

integrated into the feature determination layer for effective

shadow invariance by performing masking during GLCM and

LBP feature calculation. GLCM features outperformed LBP

features during across-date classification, but LBP features

were better for same-date classification with shadow masking

using adaptive thresholding.

Minimum-supervision multitemporal classification is thus

possible, where a classifier may be trained on a single date

and tested on other dates. Experimental results showed signif-

icant increases in settlement accuracy, where same-date tests

improved from 94.15% to 98.64% and across-date experi-

ments from 87.39% to 96.04%. A statistical correlation study

indicated that across-date experiments benefited more from

shadow detection accuracy, and support was obtained for the

theory that it is the removal of shadows specifically that im-

proved settlement classification accuracy. Future research may

consider the use of multiband information and an extension to

the study with an expanded multitemporal image set.
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