

HUDSON-LAMB D C

THE ANALYSIS OF TRACE IMPURITIES IN URANIUM COMPOUNDS USING SPARK-SOURCE MASS SPECTRO-METRY

MSc

UP

1991



### THE ANALYSIS OF TRACE IMPURITIES IN URANIUM COMPOUNDS

### USING SPARK-SOURCE MASS SPECTROMETRY

by

### DAVID CHARLES HUDSON-LAMB, B.Sc (HONS) (UPE)

A dissertation submitted in partial

fulfilment of the requirements

for the degree of

#### MAGISTER SCIENTIAE

in the Faculty of Science

at the University of Pretoria, South Africa

MAY 1991

PROMOTOR : PROFESSOR R G BÖHMER CO-PROMOTOR : DR W C A VAN NIEKERK



# THE ANALYSIS OF TRACE IMPURITIES IN URANIUM COMPOUNDS

# USING SPARK-SOURCE MASS SPECTROMETRY

BY

DAVID CHARLES HUDSON-LAMB

MAY 1991

ATOMIC ENERGY CORPORATION OF SOUTH AFRICA, LIMITED

PRETORIA



### CHAPTER FIVE

### QUANTITATIVE ANALYSIS

### 5.1 Calculation Methods

The calculation method used to derive the formula for determination of relative sensitivity factors (RSF's) for impurity elements in different matrices relative to an internal standard is discussed in detail on page 138.

For clarity, the essential formulae are also given here:



where:

 $K_{x}/K_{y}$  is the RSF for element X relative to the internal standard, X (see page 28).

Equation (1) can be rewritten as follows:



where:

 $C_x$  is the unknown concentration of an element X,  $C_y$  is the known concentration of the internal standard,



 $Q_x/Q_y^-$  is the ratio between the exposure values of an element X and the internal standard at 50% transmission, and  $K_x/K_y$  is the relative sensitivity factor for element X relative to the internal standard, which is derived from calibration plots as the slope of the regression line.

Equation (1) can be used to determine the RSF of any element X relative to any internal standard (IS) in any matrix Z. Rewriting equation (1) into the above notation gives:

$$(RSF_{IS}^{X})_{Z} = \begin{bmatrix} \frac{Q_{X}}{Q_{IS}} \\ \frac{Q_{IS}}{C_{X}} \\ \frac{C_{IS}}{C_{X}} \end{bmatrix}_{Z}$$
 .....(3)

This formula is directly related to the general formula for a RSF, namely:

### where:

 $C_{ms}$  is the concentration of an element X relative to an internal standard determined experimentally with the mass spectrometer, and

 $C_{true}$  is the true concentration of an element X relative to an internal standard where both concentrations are known.

The calculation method used to derive the formula which is used to determine the unknown background concentration of an element X in different matrices, Z, using different standards is given below. The general spark-source mass spectrometry equation applies:



where:

 $\begin{pmatrix} C_{X} \end{pmatrix}_{Z}$  is the unknown concentration of element X in matrix Z, K<sub>X</sub> is a constant for element X, and  $\begin{pmatrix} Q_{X} \end{pmatrix}_{Z}$  is the instrument signal for element X in matrix Z.

Equation (5) also applies when a known standard (STD) is added to the matrix Z:

where:

 $(C_{x})_{z+std}$  is the unknown concentration of element X in the matrix Z plus the known concentration of element X in the standard,  $K_{x}$  is a constant (see equation (5)), and  $(Q_{x})_{z+std}$  is the combined instrument signal for element X and the standard in the matrix Z.

In order to determine the unknown background concentration  $\binom{C}{x'z}$  of element X in matrix Z, equations (5) and (6) are combined as follows:

$$(C_{\mathbf{x}})_{z+std} - (C_{\mathbf{x}})_{z} = K_{\mathbf{x}} \left[ \frac{1}{(Q_{\mathbf{x}})_{z+std}} - \frac{1}{(Q_{\mathbf{x}})_{z}} \right]$$

This difference is equal to the concentration of the added standard, expressed as  $\binom{C}{x}_{std}$ :



 $\binom{(Q_x)_z}{z}$  and  $\binom{(Q_x)_z}{z+std}$  values can be determined as outlined on page 105 below.

 $\binom{C}{x}_{std}$  values are known and  $K_x$  can be calculated. Inserting the  $K_x$  value for element X in equation (5) enables the determination of  $\binom{C}{x}_z$ . This leads to the following equation:

$$(C_{x})_{z} = (C_{x})_{std} \cdot \frac{(Q_{x})_{z+std}}{(Q_{x})_{z} - (Q_{x})_{z+std}} \dots \dots \dots (8)$$

Equation (8) is the fundamental formula used to determine the background concentration of an element X in a matrix Z, using known prepared graphite standards. This formula will be used to determine background concentrations of impurity elements in  $U_3O_8$  and  $UF_4$  matrices in the following sections. The instrument signals of element X in both the matrix Z and the combination of matrix plus standard can be expressed relative to an internal reference standard (IS) (see page 28).  $Q_{\rm IS}$  values are the same in the Z and Z+STD matrices for a particular choice of Y concentration.

Equation (8) then converts to:

$$(C_x)_z = (C_x)_{std} \cdot \frac{(Q_x/Q_{IS})_{z+std}}{(Q_x/Q_{IS})_z - (Q_x/Q_{IS})_{z+std}} \dots \dots (9)$$



This formula only holds true when  $(Q_x/Q_{IS})_z$  is larger than  $(Q_x/Q_{IS})_{z+std}$ . The opposite can never happen in spark-source mass spectrometry because the concentration is inversely proportional to the instrument signal. Thus, the higher the concentration, i.e. when the standard is added to the matrix Z, the resultant instrument signal will be smaller than that for only the matrix Z.

# 5.2 <u>U<sub>3</sub>O<sub>8</sub>/graphite matrix quantitation</u>

### 5.2.1 Blank correction

In order to determine relative sensitivity factors (RSF's) for impurity elements in a U<sub>3</sub>O<sub>8</sub>/graphite matrix, the blank U<sub>3</sub>O<sub>8</sub> sample must first be quantified. Considerable effort was initiated to obtain a blank  $U_3O_8$  sample with few impurity elements to ensure a background spectrum relatively free from spectral lines. This blank base  $U_3O_8$  sample (ES 0) was then mixed with a graphite powder, spiked with Y as an internal reference standard, in the ratio of five parts  $U_3O_8$  to one part graphite by mass. The choice of this ratio has been discussed on page 30. The sample was then analysed several times to obtain an instrument signal,  $(Q_x / Q_y)_{U_1 O_4}$  for element X relative to the internal standard, Y, in a  $U_3O_8$ /graphite matrix. The exposure value for Y,  $Q_v^-$ , is the mean of the singly and doubly charged species. The blank base U<sub>3</sub>O<sub>8</sub> sample used for this purpose is stoichiometric i.e. 100 per cent  $U_3O_8$ .

To be able to quantify the impurity elements present in the blank base  $U_3O_8$  sample, a range of graphite standards were prepared



which contained the impurity elements under investigation in different concentrations, together with Y as internal reference standard. The method followed to prepare these graphite standards has been described on page 26. UCAR SP1 graphite powder was used for these standards. The concentration range of the standards is as follows:

U<sub>3</sub>O<sub>8</sub> used: stoichiometric i.e. 84,8 per cent U. Concentrations: 4 μg X /gC 20 μg X /gC 40 μg X /gC 100 μg X /gC 200 μg X /gC

Expressed relative to U, the concentrations  $(C_x)_{x \text{ std}}$  for each impurity element X, become:

1 μg X /gU 5 μg X /gU 10 μg X /gU 25 μg X /gU 50 μg X /gU

The concentration of Y added to each of the above graphite standards as internal standard is 20  $\mu$ g Y/gC or 5  $\mu$ g Y/gU.

In addition to the above range of graphite standards using UCAR SP1 graphite, a range of check standards were also prepared using Ultra 'F' graphite. The main reason for preparing these check standards was to see whether results obtained for certain elements using UCAR SP1 graphite could not be improved by using Ultra 'F' graphite. The difference between these two graphite powders' background spectra for certain elements was used to



check the results obtained from the UCAR SP1 range of graphite standards. This was especially useful for Fe, which has a high background concentration in UCAR SP1 compared to Ultra 'F'. Additional impurity elements not incorporated in the UCAR SPI graphite standards were now added to these check standards using Ultra 'F' graphite. These elements could not be added to the UCAR SP1 graphite because of spectral line interferences from elements already added. However due to the absence of these interfering elements in Ultra 'F' graphite these additional impurity elements could be added and analysed without any interference. Elements falling into this category were Li, W, P, Na, K and S. This fact also accounts for the low value for the number of analyses in Table 5.2 (see page 111) where the calibration curve parameters are listed.

The concentration range of these check graphite standards is as follows:

Concentrations: 20 μg X /gC 40 μg X /gC 80 μg X /gC 200 μg X /gC

Expressed relative to U, the concentration,  $(C_x)_{std}$ , becomes:

5 μg X /gU 10 μg X /gU 20 μg X /gU 50 μg X /gU



The concentration of Y added to each of the above graphite check standards as internal standard is 80 µgY/gC or 20 µgY/gU.

Using standard addition methods, each of the above graphite standards are mixed with the blank base  $U_3O_8$  sample in the ratio of five parts  $U_3O_8$  to one part graphite by mass. Similarly, as for the blank base  $U_3O_8$ /graphite matrix sample, each sample is analysed several times to obtain an instrument signal,  $(Q_x/Q_y^-)_{U_3O_8+std}$ , for element X relative to the internal standard in the blank base  $U_3O_8$  plus the graphite standard. These instrument signals are used in equation (9) to calculate the concentration of element X in the blank base  $U_3O_8$ ,  $(C_x)_{U_3O_8}$ .

$$(C_{x})_{U_{3}O_{8}} = (C_{x})_{std} \qquad \frac{(Q_{x}/Q_{y}^{-})_{U_{3}O_{8}} + std}{(Q_{x}/Q_{y}^{-})_{U_{3}O_{8}} - (Q_{x}/Q_{y}^{-})_{U_{3}O_{8}} + std}$$

The results obtained to quantify the impurity elements in the blank base  $U_3O_8$  sample are given in Table 5.1 as  $C_{\chi}(SSMS)$  in  $\mu g \chi / g U$ .

The concentration values for Na (20,9), Mg (26,0), Si (18,3) and Fe (20,3) are all very high in comparison to the concentrations of the graphite standards e.g. the 1, 5, 10 and 25  $\mu$ gX/gU standards. This fact greatly influences the gradient of the calibration line. This is shown as follows:

On the x-axis of the calibration curve, the ratio  $C_y/C_x$  is plotted where  $C_x = (C_x)_{std} + (C_x)_{30}$ . Thus when  $(C_x)_{030}$  is large, the ratio  $C_y/C_x$  becomes smaller where  $C_y$  is taken as constant. This makes the gradient, m, of the regression line



<u>Table 5.1</u>: Blank Base  $U_3O_8$  (ES 0) quantification

| Element | Charge<br>State(+) | n  | Std Error at<br>95 % CL (%) | C <sub>x</sub> (SSMS)<br>(µg X /gU) | Certified conc<br>(µg X /gU) |
|---------|--------------------|----|-----------------------------|-------------------------------------|------------------------------|
| В       | 1                  | 18 | 10,4                        | 9,8                                 | 0,07                         |
| Na      | 1                  | 5  | 42,1                        | 20,9                                | 5                            |
| Mg      | 2                  | 12 | 31,2                        | 26,0                                | 0,5                          |
| A1      | 2                  | 18 | 13,3                        | 9,6                                 | 1                            |
| Si      | 2                  | 16 | 33,6                        | 18,3                                | 17                           |
| Р       | 1&2                | 12 | 18,4                        | 3,5                                 | -                            |
| Ca      | 2                  | 35 | 16,1                        | 6,0                                 | 2,2                          |
| K       | 1&2                | 6  | 25,2                        | 5,6                                 | 4                            |
| Ti      | 1&2                | 14 | 12,6                        | 0,42                                | 0,3                          |
| V       | 1&2                | 38 | 18,0                        | 0,38                                | 0,31                         |
| Cr      | 1&2                | 45 | 10,0                        | 5,3                                 | 2                            |
| Mn      | 1&2                | 34 | 12,6                        | 0,35                                | 0,14                         |
| Fe      | 1&2                | 22 | 9,7                         | 20,3                                | 13                           |
| Со      | 1&2                | 26 | 8,1                         | 0,30                                | 0,1                          |
| Ni      | 1                  | 28 | 10,5                        | 2,4                                 | 0,8                          |
| Cu      | 1&2                | 26 | 12,3                        | 0,5                                 | 0,3                          |
| Zn      | 1                  | 31 | 7,3                         | 1,78                                | 1,66                         |
| Zr      | 1&2                | 36 | 12,9                        | 3,5                                 | 0,5                          |
| Мо      | 2                  | 12 | 18,7                        | 2,5                                 | 0,3                          |
| Sb      | 1                  | 25 | 14,1                        | 1,22                                | 1,2                          |
| Li      | 1                  | 3  | 19,3                        | 0,19                                | 0,21                         |



inaccurate and limits the calibration range. In this way the RSF is influenced directly by a high background concentration. Even elements with lower background concentrations e.g. B (9,8) and A1 (9,6) influence the Q-values of the lower graphite standards with concentrations of 1, 5 and 10  $\mu$ gX/gU. The same can be said for Ca (6,0), K (5,6) and Cr (5,3) which influence the two lowest graphite standards with concentrations of 1 and 5  $\mu$ gX/gU. The rest of the elements in Table 5.1 have background concentrations which do not influence the calculation of relative sensitivity factors significantly.

The  $C_{_X}$  values in Table 5.1 determined for impurity elements in the blank base  $U_3O_8$  are only for the elements in their elemental state. The hydrogenated and oxygenated species of the elements have not been considered. When analysing unknown  $U_3O_8$  samples with the spark-source mass spectrometer, it is assumed that the same degree of hydrogenation and oxygenation of elements in the sample takes place as with the  $U_3O_8$  calibration standard samples. This assumption is reasonable if the unknown sample is also stoichiometric  $U_3O_8$  and the sparking parameters used to generate ions are identical for the  $U_3O_8$  sample as for the  $U_3O_8$  calibration standard samples.

The chemical composition of the impurity elements within the  $U_3O_8$ samples are also assumed to be similar to those in the  $U_3O_8$  calibration standard samples. The plasma generated between the two electrodes in the ion source provides the equalising locality for such differences. In this plasma the chemical structures are atomised and ionised and recombination of species takes place.

The high standard errors at 95% confidence level (CL) for Na (42,1%) and K (25,2%) can be ascribed to the small number of data



points (n = 5 for Na and n = 6 for K). The fact that the concentration of Na in the blank base  $U_3O_8$  sample is quite high ( $C_x = 20,9 \ \mu g \ Na/gU$ ) also plays a direct role in the relatively high uncertainty.

Similarly, the high standard errors at 95% CL for Mg (31,2%) and Si (33,6%) can also be ascribed to the high concentrations of these two elements in the blank base  $U_3O_8$  sample ( $C_x = 26,0$  for Mg and  $C_x = 18,3$  for Si). This explains why the  $(C_x)_{U_3O_8}$  values for these two elements fluctuated over the concentration range of the graphite standards. This fluctuation can further be enhanced by the position on the photoplate where the spectral lines of Mg at m/e 12,5 and of Si at m/e 14,5 are influenced by background emulsion fogging due to the strong spectral line of the major component, <sup>12</sup>C at m/e 12. This interference directly affects the results obtained for Mg and Si and can lead to large standard errors.

For the remainder of the impurity elements in the blank base  $U_3O_8$  sample, the standard errors at a 95% CL show typical values comparable to the precision of the method, namely approximately 20%. The large values of n for these elements also ensures the reliability of the lower ( $C_X$ )  $U_3O_8$  values over the concentration range of the graphite standards.

In Table 5.1 concentration values of impurities in the base  $U_3O_8$  material obtained with the spark-source mass spectrometer are compared with values obtained using different analytical techniques (see certified concentration column). These techniques are described on page 158. The main reason for some of the differences is the fact that the  $C_{_{\rm X}}$  (SSMS) values include the concent



tration of that particular element present in the graphite powder used. In other words, the  $C_x$  (SSMS) value reported is a combination of the concentration of that particular element in the blank base  $U_3O_8$  sample as well as the concentration of that particular element in the UCAR SP1 graphite or Ultra 'F' graphite used. In this way, the impurities in the graphite powder have been quantified and should be kept in mind when using these graphite powders for future analyses.

Differences can also be due to contamination picked up from a variety of sources. An important source of contamination, especially at trace level concentrations, is from ordinary dust in the laboratory environment [24]. Typical elements found in dust samples collected in the laboratory and analysed for impurities included such elements as B, Mg, Al, Si and Ca. It has also been shown that the Na from NaCl in human perspiration is a significant source of Na contamination. Another source of contamination is from the stainless steel tools which are used in the preparation of the electrodes. Possible impurity elements include Al, Cr, Fe, Ni, Zr and Mo. It is thus difficult at this stage to identify the exact sources of contamination and to quantify these impurities. Proposals to prevent or minimise such contamination are discussed in Chapter 7 on page 166.

### 5.2.2 Calibration Curves

Calibration curves are constructed according to equation (1) on page 98.  $Q_x/Q_y^-$  is plotted on the y-axis. The value of  $C_x$  in  $C_y/C_x$  is taken as the sum of the concentrations of an element X in the prepared graphite standard plus the value in the blank base  $U_3O_8$ . Expressed as symbols,  $C_x = C_{std} + C_{U_3O_8}$  where  $C_{U_3O_8}$ is obtained from Table 5.1 on page 106.



The slope,  $K_{\chi}/K_{\gamma}$ , of the calibration curve is the relative sensitivity factor (RSF) of that particular impurity element X present in the matrix  $U_{3}O_{8}$  relative to an internal standard, Y. Calibration curve parameters are listed in Table 5.2. The parameters c, r and n are discussed below. The standard error,  $s_{m}$ , in the slope is expressed in the form of the confidence limits of the slope,  $\alpha$ , at a 95% confidence level (CL). These two parameters are discussed on pages 115 and 148 in terms of the statistical significance of the results.

The values of the intercept on the y-axis (c) are, with only a few exceptions, relatively close to the origin (0;0). The value of c must be evaluated in perspective with the magnitude of the scale of the y-axis. Elements with high RSF's have large absolute values for c. Examples of such elements are K<sup>2+</sup> (c = -0,6448) and  $Bi^{2+}$  (c = -1,0788). Furthermore, elements with large a's also tend to have large values for c. This follows from the uncertainty in the slope of the regression line. Elements classified into this category are Mo<sup>1+</sup> and W<sup>2+</sup>. The intercept on the y-axis is reflected in the correlation coefficient of the fit of data to a regression line. A bad fit suggests that there are unreliable data points which, when included, would affect the intercept on the y-axis. Elements falling into this category are Mo<sup>1+</sup> and Ba<sup>1+</sup>. The value of c is not of importance as it is not incorporated directly into any calculations regarding concentration or RSF's.

However, the value obtained for r is an indication of the fit of the data to the regression line. Ideally, r should be unity. The values of r obtained in Table 5.2 are generally quite good. The rather poor fits of data for  $Fe^{1+}$  (r = 0,8529),  $Ba^{1+}$ (r = 0,8972) and  $Mg^{2+}$  (r = 0,9278) are also apparent from the



# Table 5.2: U<sub>3</sub>O<sub>8</sub> Calibration curve parameters

|         | T                  |         | •     |         |        |    |
|---------|--------------------|---------|-------|---------|--------|----|
| Element | Charge<br>State(+) | m (RSF) | a (%) | с       | r      | п  |
| В       | 1                  | 1,1468  | 4,6   | -0,0122 | 0,9961 | 19 |
| Na      | 1                  | 0,2483  | 28,2  | 0,0016  | 0,9716 | 7  |
| Mg      | 2                  | 1,7725  | 19,3  | -0,0898 | 0,9278 | 21 |
| A1      | 2                  | 1,2399  | 10,9  | 0,0083  | 0,9740 | 22 |
| Si      | 2                  | 1,2836  | 15,1  | -0,0197 | 0,9273 | 32 |
| P       | 1                  | 0,2178  | 20,8  | 0,0121  | 0,9839 | 7  |
| P       | 2                  | 1,3978  | 37,8  | 0,0511  | 0,9649 | 6  |
| Ca      | 2                  | 0,3035  | 12,2  | -0,0216 | 0,9317 | 44 |
| K       | 1                  | 0,1073  | 15,7  | -0,0014 | 0,9883 | 8  |
| K       | 2                  | 18,3676 | 24,2  | -0,6448 | 0,9910 | 5  |
| Ti      | 1                  | 0,2598  | 16,0  | 0,0004  | 0,9660 | 15 |
| Ti      | 2                  | 0,4684  | 5,3   | -0,0061 | 0,9969 | 12 |
| V       | 1                  | 0,3025  | 2,4   | 0,0248  | 0,9955 | 24 |
| V       | 2                  | 0,5004  | 19,9  | 0,0489  | 0,9580 | 13 |
| Cr      | 1                  | 0,2408  | 9,9   | 0,0087  | 0,9622 | 36 |
| Cr      | 2                  | 0,7199  | 9,4   | -0,0082 | 0,9847 | 18 |
| Mn      | 1                  | 0,1529  | 10,3  | 0,0357  | 0,9753 | 23 |
| Mn      | 2                  | 1,0094  | 17,8  | 0,0324  | 0,9660 | 13 |
| Fe      | 1                  | 0,2301  | 23,6  | 0,0041  | 0,8529 | 30 |
| Fe      | 2                  | 1,1867  | 13,1  | -0,0039 | 0,9809 | 13 |
| Co      | 1                  | 0,2697  | 4,0   | -0,0049 | 0,9957 | 25 |
| Co      | 2                  | 1,2153  | 12,9  | 0,0362  | 0,9836 | 12 |
| Ni      | 1                  | 0,2397  | 5,7   | 0,0099  | 0,9898 | 29 |
| Cu      | 1                  | 0,2987  | 7,3   | 0,0215  | 0,9840 | 28 |
| Cu      | 2                  | 3,9934  | 8,2   | 0,0669  | 0,9924 | 13 |
| Zn      | 1                  | 0,6078  | 7,4   | 0,0074  | 0,9857 | 25 |
| Sr      | 1                  | 0,4877  | 10,0  | 0,1405  | 0,9767 | 23 |
| Sr      | 2                  | 0,3316  | 11,7  | 0,0109  | 0,9848 | 13 |

| 4        |                                                     |
|----------|-----------------------------------------------------|
| <b>!</b> | UNIVERSITEIT VAN PRETORIA<br>UNIVERSITY OF PRETORIA |
| $\sim$   | YUNIBESITHI YA PRETORIA                             |
|          | 112                                                 |

# Table 5.2: Continued

|         | Y                  |         |       |         |        |    |
|---------|--------------------|---------|-------|---------|--------|----|
| Element | Charge<br>State(+) | m (RSF) | α (%) | с       | r      | n  |
| Zr      | 1                  | 1,3375  | 7,8   | 0,0501  | 0,9839 | 25 |
| Zr      | 2                  | 0,6769  | 8,9   | -0,0154 | 0,9911 | 13 |
| Nb      | 1                  | 1,3581  | 8,5   | 0,0273  | 0,9814 | 25 |
| Nb      | 2                  | 0,9780  | 10,1  | -0,0180 | 0,9886 | 13 |
| Мо      | 1                  | 2,8176  | 19,2  | -0,3758 | 0,9249 | 22 |
| Мо      | 2                  | 1,4294  | 9,1   | -0,0468 | 0,9907 | 13 |
| Ru      | 1                  | 2,8572  | 6,0   | -0,0171 | 0,9927 | 20 |
| Rů      | 2                  | 5,1368  | 19,2  | 0,0095  | 0,9609 | 13 |
| Cd      | 1                  | 1,1031  | 13,2  | 0,1175  | 0,9702 | 25 |
| In      | 1                  | 0,5853  | 12,5  | 0,1331  | 0,9607 | 25 |
| In      | 2                  | 7,7360  | 11,9  | 0,0027  | 0,9842 | 13 |
| Sb      | 1                  | 1,7565  | 16,9  | 0,0113  | 0,9342 | 24 |
| Sb      | 2                  | 7,0408  | 7,5   | -0,1386 | 0,9937 | 13 |
| Ba      | 1                  | 0,5416  | 23,0  | 0,6769  | 0,8972 | 22 |
| Ba      | 2                  | 0,4784  | 10,5  | 0,0230  | 0,9879 | 13 |
| Sm      | 1                  | 4,2008  | 45,0  | 0,0000  | 0,9310 | 7  |
| Sm      | 2                  | 0,6019  | 4,9   | 0,0437  | 0,9945 | 26 |
| Eu      | 1                  | 4,6455  | 6,2   | 0,0082  | 0,9962 | 12 |
| Eu      | 2                  | 0,6633  | 9,7   | 0,0179  | 0,9743 | 26 |
| Gd      | 1                  | 3,6455  | 7,4   | -0,0127 | 0,9960 | 12 |
| Gd      | 2                  | 0,9391  | 5,5   | -0,0087 | 0,9939 | 20 |
| Dy      | 1                  | 7,2053  | 6,3   | -0,1353 | 0,9960 | 12 |
| Dy      | 2                  | 0,6998  | 5,5   | 0,0883  | 0,9922 | 24 |
| W       | 2                  | 2,1239  | 40,3  | 0,5395  | 0,9604 | 6  |
| Bi      | 2                  | 20,1841 | 14,8  | -1,0788 | 0,9681 | 16 |
| Th      | 2                  | 2,0486  | 7,7   | -0,0852 | 0,9889 | 19 |
| Li      | 1                  | 0,0243  | 7,1   | 0,0002  | 1,0000 | 5  |



large errors in the slopes where a for  $Fe^{1+} = 23,6\%$ , a for  $Ba^+ = 23,0\%$  and a for  $Mg^{2+} = 19,3\%$ . Another explanation for the poor calibration lines for  $Fe^{1+}$  and  $Mg^{2+}$  is the high values of these elements in the blank base  $U_3O_8$ , where  $C_{U_3O_8} = 20,3 \ \mu g \ Fe/gU$  for  $Fe^{1+}$  and  $C_{U_3O_8} = 26,0 \ \mu g \ Mg/gU$  for  $Mg^{2+}$ . This is in spite of the large number of data points (n) used to draw the calibration curves for these elements. The calibration graph for  $Fe^{1+}$  in a  $U_3O_8$  matrix is given in Figure 5.1 as an example of a poor calibration curve.

Good calibration curves were obtained for Co1+ and V1+ as indicated by the correlation coefficients obtained for these elements where r = 0,9957 and r = 0,9955, respectively. Factors contributing to the good fit of data points for these elements is the fact that they both have very small a values where a = 4,0% for  $Co^{1+}$  and  $\alpha = 2,4\%$  for V<sup>1+</sup>. Another reason is the fact that they both have small concentrations in the blank base  $U_3O_8$  where  $C_{U_3O_8} = 0,3 \ \mu gCo/gU$  for  $Co^{1+}$  and  $C_{U_3O_8} = 0,38 \ \mu gV/gU$  for  $V^{1+}$ . In both cases the value of n is large where n = 25 for  $Co^{1+}$  and n = 24 for  $V^{1+}$ . A typical example of a good calibration curve is given in Figure 5.2 for  $Co^{1+}$  in a  $U_3O_8$  matrix. Another good calibration curve is obtained for B1+ where the concentration obtained in the blank base  $U_3O_8$  is fairly high where  $C_{U_3O_8} = 9,8$  $\mu gB/gU$  for  $B^{1+}$ . The other parameters coupled to this calibration curve are: r = 0,9961; n = 19 and  $\alpha = 4,6\%$ . This calibration line is also given in Figure 5.3 as a good line where a large background concentration is present.

The value of n in Table 5.2 is the number of data points where each analysis was taken as a separate data point. The value for the blank is also incorporated in n as a data point.







<u>Figure 5.2</u>: Calibration curve for  $Co^{1+}$  in  $U_3O_8$ /graphite matrix







### 5.2.3 Relative sensitivity factors (RSF's) - U<sub>3</sub>O<sub>8</sub>

The instrument sensitivity for a particular element is totally unique for a specific spark-source mass spectrometer and detection system. Different RSF's will be obtained for an element using a radio frequency (RF) spark compared to a triggered lowvoltage discharge spark as was used in this investigation.

Another important factor to be considered is that a RSF for a particular element X will differ from matrix to matrix [25]. This is illustrated when comparing RSF's obtained for mutual elements (e.g. A1, P, Ca, Si and Zn) for both a UF<sub>4</sub> and a  $U_3O_8$  matrix. Differences in this case could be ascribed, among other reasons, to the fact that in a UF<sub>4</sub> matrix, fluorination occurs within the plasma resulting in less elemental species of ions. © University of Pretoria



A RSF is also unique with regard to a particular internal reference standard.

It was beyond the scope of this investigation to determine whether a RSF for an element in a  $U_3O_8$  matrix will differ from that for another uranium oxide matrix, for example  $UO_2$  or  $UO_3$ . It is the author's opinion that there would not be a significant difference because the combinations of uranium and oxygen would create very similar plasma conditions [11]. In all uranium oxide matrices, there is an over-abundance of oxygen species generated within the plasma.

Correlations between physico-chemical properties of various elements as impurities and relative sensitivity factors have been published [23, 26]. Instead of using standards to determine RSF's, some authors have determined theoretical RSF's from making use of various combinations of physico-chemical properies of the elements. For the purpose of this investigation, an attempt will only be made to explain certain of the anomalies observed in the experimentally determined RSF's.

Physico-chemical properties such as heats of vaporisation, electrical resistivity, thermal conductivity, ionisation potentials, atomic radii and melting points were studied and some correlations drawn. These correlations are qualitative at their best. Due to the complexity of plasmas in relation to the physico-chemical properties, anomalies cannot be adequately explained in this qualitative fashion. It would require computer simulations involving chemical and physical studies in order to relate the properties to RSF's. This is a very complex task which has not been described in the literature and is beyond the scope of this



thesis. Qualitative comments will nevertheless be offered for some of the observations.

The high relative sensitivity factors (RSF's) obtained for a few of the impurity elements in a  $U_3O_8$ /graphite matrix can be related to their physico-chemical properties with some degree of confidence. Elements which do not readily form ions of a particular species tend to have high RSF's for this species. A prime example is K<sup>2+</sup> which has a very low ion yield for doubly charged species. A factor in this regard is the fact that potassium has only one valence electron in its outermost shell (4s orbital). This valence electron is readily lost to form the singly charged state having the noble gas structure of argon. Thereafter, it would require far more energy to remove a second electron to form the doubly charged species. This fact could be related to the second ionisation potential  $(I_p^{II})$  for K which, together with the other alkali-earth metals, has the highest  $I_P^{II}$  of all the ele-The RSF of 18,3676 obtained for K<sup>2+</sup> differs consideraments. bly from that obtained for  $K^+$  (RSF = 0,1073). It is evident that K<sup>+</sup> ions are formed in great abundance in the mass spectrometer. Another element which has a small RSF is Li (RSF = 0,0243). Both Li and K are alkali-earth metals of group IA which readily lose an electron to have a noble gas structure. In the case of Li, this would be helium. Na also has a relatively small RSF namely All the group IA elements have of the lowest melting 0.2483. points which would contribute to the high yield of ions for these elements and the subsequent low RSF's. These elements also have of the lowest electrical resistivity of all the elements present. This fact could also contribute to these elements being atomised and ionised more easily.



Bismuth has a high electrical resistance which could account for the very poor ion yield for the Bi<sup>2+</sup> ion and the subsequent high RSF value. Only the doubly charged Bi<sup>2+</sup> was recorded (see page 71). Bismuth is also the most diamagnetic of all the metals and the thermal conductivity is lower than any metal, except for Hg. Both the electrical resistivity and the thermal conductivity are physico-chemical properties which play a role in the generation of the plasma between the two electrodes in the ion-source.

Another group of elements having relatively high RSF's are the singly charged species of the rare-earth metals e.g. Sm, Eu, Gd and Dy. These all have relatively high electrical resistivities and large atomic radii. It was found that the ion yield for doubly charged species was greater than for the singly charged species. This can be demonstrated by plotting the number of ions yielded against the charge state [27].

It would seem that the larger the atom becomes, the fewer ions reach the photoplate, probably due to their momentum and collisions in the flight tube. Elements falling into this category are  $W^{2+}$ ,  $Th^{2+}$ ,  $Sb^{2+}$ ,  $In^{2+}$ ,  $Ru^{2+}$ ,  $Ru^{1+}$  and  $Mo^{1+}$ , and high RSF's could be expected. However, it should be taken into account that the number of ions generated in the ion source also plays a determining role.

The relatively high RSF for  $Cu^{2+}$  (RSF = 3,9934) is of interest as it is the highest of the 3d transition elements. Cu and Ag



have of the lowest electrical resistance as well as the highest thermal conductivity. They both are group IB elements having electron configurations such that their d-orbitals are filled and having one electron in the outermost s-orbital. The filled dorbitals lead to stability and an electron is readily lost from the half filled s-orbital. In order to lose another electron to form Cu<sup>2+</sup> species, more energy is required to remove an electron from a paired 3d orbital resulting in a high RSF for Cu<sup>2+</sup>.

Only a few of the physico-chemical properties of the elements have been referred to in order to explain some of the anomalies obtained with RSF's for impurities in a  $U_3O_8/graphite$  matrix. Properties such as bond strengths in diatomic molecules and heats of formation of gaseous atoms from elements in their standard states should also be included when attempting to explain these anomalies.

The RSF's obtained from calibration curves can be checked by making use of the instrument signals obtained. The ratio between the instrument signal for the singly charged state of an element and the instrument signal for the doubly charged state of the same element at a concentration level should be the same as the ratio between the RSF of the singly charged state of the particular element and the RSF for the doubly charged state of that ele-The ratio  $X^{1+}/X^{2+}$  is independent of the concentration of ment. element X. A number of elements were measured both in the singly and doubly charged states at two different concentration The means of the ratio  $X^{1+}/X^{2+}$  between these two concenlevels. trations were compared and good correlation was obtained. This ratio was used to test the ratio RSF X1+/RSF X2+ for the same element using the RSF's obtained in Table 5.3. Good agreement was obtained for most of the elements, which confirmed that outliers did not seriously influence the determination of RSF's. The ratio  $X^{1+}/X^{2+}$  can be used with a RSF for  $X^{1+}$  to get an estimate of the RSF for  $X^{2+}$  and vice versa.



Table 5.3: Relative Sensitivity Factors: U<sub>3</sub>O<sub>8</sub>/Graphite Matrix

| RSF<br>Singly      | Element | RSF<br>Doubly      | RSF X1+                           | X1+/X2+                  | X1+/X2+                  |
|--------------------|---------|--------------------|-----------------------------------|--------------------------|--------------------------|
| charged<br>Species |         | charged<br>Species | $\frac{RST}{RSF}$ X <sup>2+</sup> | C <sub>x</sub> =10µgX/gU | C <sub>x</sub> =50µgX/gU |
| 0,0243             | Li      |                    |                                   |                          |                          |
| 1,1468             | В       |                    |                                   |                          |                          |
| 0,2483             | Na      |                    |                                   |                          |                          |
|                    | Mg      | 1,7725             |                                   |                          |                          |
|                    | A1      | 1,2399             |                                   |                          |                          |
|                    | Si      | 1,2836             |                                   |                          |                          |
| 0,2178             | Р       | 1,3978             |                                   |                          |                          |
|                    | Ca      | 0,3035             |                                   |                          |                          |
| 0,1073             | K       | 18,3676            |                                   |                          |                          |
| 0,2598             | Ti      | 0,4684             |                                   |                          |                          |
| 0,3025             | v       | 0,5004             | 0,60                              | 0,60                     | 0,58                     |
| 0,2408             | Cr      | 0,7199             | 0,33                              | 0,34                     | 0,37                     |
| ò,1529             | Mn      | 1,0094             | 0,15                              | 0,15                     | 0,15                     |
| 0,2301             | Fe      | 1,1867             | 0,19                              | 0,20                     | 0,20                     |
| 0,2697             | Со      | 1,2153             | 0,22                              | 0,22                     | 0,21                     |
| 0,2397             | Ni      |                    |                                   |                          |                          |
| 0,2987             | Cu      | 3,9934             | 0,07                              | 0,08                     | 0,09                     |
| 0,6078             | Zn      |                    |                                   |                          |                          |
| 0,4877             | Sr      | 0,3316             | 1,47                              | 1,55                     | 1,85                     |
| 1,3375             | Zr      | 0,6769             | 1,98                              | 2,03                     | 2,06                     |
| 1,3581             | Nb      | 0,9780             | 1,39                              | 1,42                     | 1,27                     |
| 2,8176             | Мо      | 1,4294             | 1,97                              | 2,02                     | 2,02                     |
| 2,8572             | Ru      | 5,1368             | 0,56                              | 1,37                     | 0,67                     |



# Table 5.3: Continued

| RSF<br>Singly<br>charged<br>Species | Element | RSF<br>Doubly<br>charged<br>Species | RSF X <sup>1+</sup><br>RSF X <sup>2+</sup> | X <sup>1+</sup> /X <sup>2+</sup><br>C <sub>x</sub> =10μgX/gU | X <sup>1+</sup> /X <sup>2+</sup><br>C <sub>x</sub> =50µgX/gU |
|-------------------------------------|---------|-------------------------------------|--------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| 1,1031                              | Cd      |                                     |                                            |                                                              |                                                              |
| 0,5853                              | In      | 7,7360                              | 0,08                                       | 0,08                                                         | 0,09                                                         |
| 1,7565                              | Sb      | 7,0408                              | 0,25                                       | 0,25                                                         | 0,24                                                         |
| 0,5416                              | Ba      | 0,4784                              | 1,13                                       | 1,08                                                         | 1,19                                                         |
| 4,2008                              | Sm      | 0,6019                              | 6,98                                       | 6,63                                                         | 6,55                                                         |
| 4,6455                              | Eu      | 0,6633                              | 7,00                                       | 7,05                                                         | 7,58                                                         |
| 3;6455                              | Gd      | 0,9391                              | 3,88                                       | 3,97                                                         | 3,89                                                         |
| 7,2053                              | Dy      | 0,6998                              | 10,30                                      | 10,64                                                        | 9,76                                                         |
|                                     | W       | 2,1239                              |                                            |                                                              |                                                              |
|                                     | Bi      | 20,1841                             |                                            |                                                              |                                                              |
|                                     | Th      | 2,0486                              |                                            |                                                              |                                                              |

### 5.3 UF<sub>4</sub>-graphite matrix quantitation

### 5.3.1 Blank correction

In order to determine relative sensitivity factors (RSF's) for impurity elements in a UF<sub>4</sub>/graphite matrix, the blank UF<sub>4</sub> sample which was to be used to simulate the matrix material first had to be quantified. Considerable effort was initiated to obtain a blank UF<sub>4</sub> sample with the least impurity elements to ensure a background spectrum relatively free from spectral lines. This blank UF<sub>4</sub> sample was mixed with graphite powder, spiked with Y as an internal reference standard, in the ratio of one to one by



mass. The sample was then analysed several times to obtain an instrument signal  $(Q_x/Q_y^-)_{UF_4}$  for element X relative to the internal standard, Y. The exposure value for Y,  $Q_y^-$ , is the mean for the singly and doubly charged species. The blank UF<sub>4</sub> sample used for this purpose is stoichiometric i.e. 100 per cent UF<sub>4</sub>.

A range of graphite standards were prepared with the impurity elements of interest at different concentrations, together with Y as internal reference standard. The method followed to prepare these graphite standards is given on page 26. The concentration range of these graphite standards is as follows:

UF<sub>4</sub> used: stoichiometric i.e. 75,8% per cent U. Concentrations: 100 µg X /g UF<sub>4</sub> 200 µg X /g UF<sub>4</sub> 500 µg X /g UF<sub>4</sub> 700 µg X /g UF<sub>4</sub> 1 000 µg X /g UF<sub>4</sub>

Expressed relative to U, the concentrations  $\begin{pmatrix} C \\ x \end{pmatrix}$  for each impurity element X, become:

132 μg X /gU 264 μg X /gU 660 μg X /gU 924 μg X /gU 1 319 μg X /gU

The concentration of Y added to each of the above graphite standards as internal standard is 132 µgY/gU.



These standards were used to quantify the impurity elements in the blank UF<sub>4</sub>. Using standard addition methods, each of the above graphite standards was mixed with the blank UF<sub>4</sub> sample in the ratio of one to one by mass. Similar to the blank UF<sub>4</sub> graphite matrix sample, each spiked sample is analysed several times to obtain an instrument signal,  $(Q_x/Q_y^-)_{UF_4}$ , for element X relative to the internal standard, Y. The concentration of each element X can be determined on the basis of equation (9) discussed on page 101:

$$(C_x)_{UF_4} = (C_x)_{std} \cdot \frac{(Q_x/Q_y)_{UF_4+std}}{(Q_x/Q_y)_{UF_4} - (Q_x/Q_y)_{UF_4+std}}$$

Results are given in Table 5.4 as  $C_{x}$  in  $\mu gX/gU$ .

Table 5.4: Blank UF<sub>4</sub> quantification

| Element | Isotope  | Isotopic<br>Abundance(%) | Charge<br>State | n  | Std Error at<br>95% CL (%) | C <sub>x</sub><br>(µg X/gU) |
|---------|----------|--------------------------|-----------------|----|----------------------------|-----------------------------|
| A1      | 27       | 100                      | 2               | 8  | 21,36                      | 5,6                         |
| Р       | 31       | 100                      | 2               | 5  | 34,85                      | 76,7                        |
| Ca      | 40<br>42 | 96,94<br>0,65            | 2<br>2          | 9  | 12,48                      | 25,2                        |
| Si      | 30       | 3,09                     | 1               | 5  | 13,59                      | 77,4                        |
| S       | 32       | 95,0                     | 1               | 5  | 38,74                      | 385,4                       |
| C1      | 35<br>37 | 75,72<br>24,28           | 1<br>1          | 10 | 21,35                      | 52,5                        |
| Zn      | 64<br>67 | 48,89<br>27,77           | 1<br>1          | 8  | 23,78                      | 4,0                         |



The concentration value for S is quite high (385,4  $\mu$ gS/gU). This greatly influences the calibration line. On the x-axis of the calibration curve, the ratio  $C_y/C_x$  is plotted where  $C_x = (C_x)_{std}$ +  $(C_x)_{UF_4}$ . When the background concentration of an element X in the blank UF<sub>4</sub>,  $(C_x)_{UF_4}$ , is large, the ratio  $C_y/C_x$  becomes smaller, where  $C_y$  is taken as constant. This makes the gradient of the regression line inaccurate and limits the calibration range. The other impurity elements have background concentrations which do not influence the calibration.

The  $C_{_X}$  values in Table 5.4 determined for impurity elements in the blank UF<sub>4</sub> are only for the elemental states. The fluorinated species of the elements have not been considered. When analysing UF<sub>4</sub> samples with the spark-source mass spectrometer, it can be assumed that the same degree of fluorination of the elements takes place in the sample as with the UF<sub>4</sub> calibration samples. This assumption is valid if the unknown sample is also stoichiometric UF<sub>4</sub> and the sparking parameters used to generate ions are identical for the UF<sub>4</sub> sample as for the UF<sub>4</sub> calibration samples.

The chemical structures of the impurity elements in the UF<sub>4</sub> sample are assumed to be similar to those in the UF<sub>4</sub> calibration samples. The plasma generated between the two electrodes in the ion source provides the equalising locality for such differences. In this plasma the chemical structures are broken in the process of atomisation and ionisation and recombination of species can take place.

The preparation and characterisation of graphite standards to obtain relative sensitivity factors (RSF's) for impurity elements



in a UF<sub>4</sub> sample were done under serious production pressures due to the study of reactions in the uranium fuel production process and time was not allowed to analyse the blank UF<sub>4</sub> sample more comprehensively. It was nevertheless decided to include the results in this thesis as they were reasonable in terms of the precision of the method and made a major contribution to the solving of the production problems at the time. The fact that the UF<sub>4</sub> work was done as an additional project under severe time constraints must be kept in mind when accessing the small number of data points on which the principles have been demonstrated.

The high standard errors at 95 % confidence level (CL) for P (34,85%) and S (38,74%) can be ascribed to the small number of data points which were statistically acceptable. This shows how the  $(C_x)_{UF_4}$  values for these two elements fluctuated over the concentration range of the standards resulting in the  $C_x$  values at higher concentrations being rejected leaving n = 5 with still a larger error in the remaining  $(C_x)_{UF_4}$  values. The standard error at 95 % CL obtained for Si (13,59%) with n = 5 seems to be the exception where the remaining  $(C_x)_{UF_4}$  values show a better standard error at lower concentration levels of the graphite standards. For the above three elements, namely P, Si and S, their concentrations present in the UF<sub>4</sub> sample are the highest, which has a direct influence in the standard errors at 95 % CL.

For the remainder of the impurity elements in the blank UF<sub>4</sub> sample, the standard errors at a 95 % CL show typical values comparable to the precision of the method, namely ~ 20 %. The larger value of n for these elements also shows the reliability of the lower  $(C_x)_{UF_4}$  values over the concentration range of the graphite standards.



### 5.3.2 Calibration curves

The procedure used to construct calibration curves is given in detail on page 137. A few interesting observations are high-lighted below.

Similar to procedures followed for the  $U_3O_8$  matrix (see page 109), the instrument signal,  $Q_x/Q_y^-$ , is plotted on the y-axis and the ratio between the concentrations,  $C_y/C_x$ , is plotted on the x-axis. The value of  $C_x$  in  $C_y/C_x$  is taken as the sum of the concentrations of an element X in the prepared graphite standard plus the value of the blank UF<sub>4</sub>, expressed as,  $C_x = C_{std} + C_{UF_4}$ , where  $C_{UF_4}$  is obtained from Table 5.4.

The slope of the resultant curve is the relative sensitivity factor (RSF) of that particular impurity element X present in the matrix  $UF_4$  relative to an internal reference standard, Y.

Theoretically, the calibration curve should pass through the origin (see page 139). The values of the intercept on the y-axis, c, listed in Table 5.5 are in accordance with this fact for most of the elements. The values obtained for P and Cl must be kept in perspective as the values of m for these two elements are also large in magnitude compared to the rest. Negative values for c on the y-axis could indicate a minimum detection value for  $C_{x}$  on the x-axis. Below this minimum detection value, non-linearity is evident. For the purpose of this investigation, the highest concentration measured was 1319  $\mu$ g X/gU. A1 and Zn display good linearity over the entire concentration range.



# Table 5.5: UF, Calibration curve parameters

| Element | Isotope  | Isotopic<br>Abundance(%) | Charge<br>State | m (RSF) | α (%) | с       | r      | n  |
|---------|----------|--------------------------|-----------------|---------|-------|---------|--------|----|
| A1      | 27       | 100                      | 2               | 2,0059  | 0,84  | 0,0008  | 0,9999 | 10 |
| Р       | 31       | 100                      | 2               | 25,7454 | 10,6  | -0,9496 | 0,9917 | 10 |
| Ca      | 40<br>42 | 96,94<br>0,65            | 2<br>2          | 0,6104  | 3,64  | -0,0169 | 0,9980 | 16 |
| Si      | 30       | 3,09                     | 1               | 0,9438  | 8,38  | -0,0490 | 0,9948 | 10 |
| S       | 32       | 95,0                     | 1               | 0,6891  | 26,9  | -0,0123 | 0,9575 | 9  |
| C1      | 35<br>37 | 75,72<br>24,28           | 1<br>1          | 20,0095 | 4,82  | -0,9232 | 0,9965 | 16 |
| Zn      | 64<br>67 | 48,89<br>27,77           | 1<br>1          | 0,4946  | 0,87  | 0,0279  | 0,9999 | 10 |

The calibration graph for Zn in the  $UF_4$  matrix is given in Figure 5.4 as an example of a good calibration curve.

The calibration graph for S in a  $UF_4$  matrix is given in Figure 5.5 as an example of a poor calibration curve.



Figure 5.4: Calibration curve for  $Zn^{1+}$  in a UF<sub>4</sub>/graphite matrix



Figure 5.5: Calibration curve for  $S^{1+}$  in UF<sub>4</sub>/graphite matrix



The poor fit of data for S is manifested through the relatively large error in the slope ( $\alpha = 26,9\%$ ) and the high value obtained for S in the blank UF<sub>4</sub>. Where blank values are reasonably high, uncertainties in these values are reflected in all other data points. This also happens when standards are added to a quantity which is not known in absolute terms.

The value of n in Table 5.5 is an indication of the number of data points used to construct the calibration curves, where each data point is taken as a single analysis. The value for the blank is also incorporated as a data point.

### 5.3.3 <u>Relative Sensitivity Factors (RSF's) - UF</u>4

For the impurity elements investigated in a UF<sub>4</sub> matrix, various physico-chemical properties were studied in order to find a qualitative solution for the very high RSF's obtained for P (25,7454) and C1 (20,0095) listed in Table 5.5. Properties such as first and second ionisation potentials  $(I_p)$ , bond strength  $(B_s)$  of the F-X species, heats of formation  $(H_f^{\circ})$  of gaseous atoms from elements in their standard states, heat of vaporisation  $({\rm H}^{\circ}_{vap}),$  electronegativity (E  $_{\rm neg}),$  melting points (M  $_{\rm p})$  and boiling points (B<sub>p</sub>) were studied [28]. No specific physico-chemical property can be singled out to explain anomalies in RSF's as each property plays a role within the plasma. When the melting points and heats of vaporisation are compared between the various elements, it is apparent that P and Cl have the lowest values. However, these elements also have of the highest E and ionisation potentials.



# 5.4 <u>Semi-quantitative</u> analysis

# 5.4.1 50% Transmission intercept method

This method is more time consuming than the appearance level method (see page 132) but is still quicker than setting up the MD100 microdensitometer to obtain analytical data. Instruments required to perform this method are a Hilger & Watts<sup>\*</sup> microphotometer Model L-500-2 equipped with a carriage to hold a photographic plate and a Fluk<sup>#</sup> multimeter. Many of the principles and preliminary procedures discussed in detail for the appearance level method also apply to this method. However, only the operational procedure will be discussed below.

The marked photographic plate is positioned and the lens focused, once the light of the photocell has been switched on. A clear plate region of at least 5mm in diameter is made on the photographic plate where there are no spectral lines of interest, by scraping away the emulsion on the photographic plate. This spot will serve as the 100% transmission region in order to calibrate the multimeter.

The intensity of the light is adjusted by means of the photocell amperage so that when the beam of light is mechanically shut off

- \* Hilger & Watts Ltd, 98 St Pancras Way, Camden Road, London NW1.
- # John Fluke MFG. Co. INC, P.O. Box 43210, Mountlake Terrace, Everett, Washington, 98043, U.S.A.


there is 0% transmission of light and when the beam of light passes through the clear plate region there is a 100% transmission of light through the photoplate. The Fluke digital multimeter is coupled to the photocell output using its 1 volt scale so that 0% transmission is zero volt on the multimeter and 100% transmission is 1,0 volt on the multimeter. The second decimal scale is sufficient for this method as a reading of 0,65 volt on the multimeter gives a reading of 65% transmission of light through the spectral line. Dark spectral lines on the photoplate will have lower percentage transmission of light through them than lighter spectral lines. The 50 % transmission intercept method can now be implemented.

An element of known concentration is used to obtain a k-factor The <sup>234</sup>U<sup>2+</sup> spectral line at m/e 117 is used as e.g. U or Y. internal standard or the <sup>8</sup>'Y<sup>1+</sup> or <sup>8</sup>'Y<sup>2+</sup> spectral lines at m/e 89 and 44,5, respectively, can be used as internal standard if Y is present in the sample. A transmission curve is obtained by plotting on the y-axis, using ordinary graph paper, the multimeter reading multiplied by 100 to obtain a percentage transmission for each spectral line on the photographic plate. This is plotted against the natural logarithm on the x-axis of the applicable exposure value of each spectral line on the photographic plate i.e. % T on the y-axis and In Q on the x-axis. From this transmission curve, the exposure value at 50 % transmission is read off the graph paper and is used in the general formula to obtain a k-factor.

The same procedure is followed as above to obtain a transmission curve for an element X of interest. The exposure value at 50 % transmission is used, together with the k-factor obtained from



the internal reference to obtain the concentration value,  $C_x$ , of element X. However, this concentration is only for that particular isotope of element X. In order to obtain the total concentration  $C_x$  of element in the sample, the isotopic abundance of the applicable isotope measured must be incorporated.

This method is suitable to obtain concentration values for impurity elements in a sample where no relative sensitivity factors are available. In this case the RSF is taken as unity and the final result obtained differs from the true value by about a factor of two or three. The fact that no background correction has been incorporated must be borne in mind. This method can be utilised with high and low concentrations of impurity elements as long as there is a spectral line that can produce a workable transmission curve. Both the semi-quantitative methods are extremely useful for analysing uranium samples where no standard is available. In this case the uranium is taken as the internal standard and used to quantify impurity elements.

## 5.4.2 Appearance level method

This method is the more reliable method of the two used for semiquantitative analysis. However, its interpretation differs from analyst to analyst as will be illustrated below. The only instrument required to perform this method is a microscope which is equipped with a carriage to hold a photographic plate. Whilst looking through the eye-piece of the microscope, the analyst must be able to move the carriage holding the photographic plate, along both the x- and y-axes. The x-direction gives the analyst the opportunity to view the spectrum on the photographic plate in its entirety whereas movement in the y-direction focuses on a specific area of the photoplate and the number of different exposures in the form of spectral lines can be counted. This last step is the essence of the method.



If an uranium oxide sample, for example  $U_3O_8$ , has been mixed with graphite powder spiked with the internal reference standard, Y, of known concentration, then the U and/or Y are used as the elements of known concentration. A prerequisite for using the U line as reference, is that the isotopic composition is known. If the U is natural, then the concentrations of the various isotopes are known and can be used as reference concentrations. This is shown below as an example.

Uranium used: natural isotopic abundance (converted to mass percent): 238 = 99,286 235 = 0,710 234 = 0,0055 thus concentration of: <sup>238</sup>U = 992 860 µg <sup>238</sup>U/g U<sub>3</sub>O<sub>8</sub> <sup>235</sup>U = 7 100 µg <sup>235</sup>U/g U<sub>3</sub>O<sub>8</sub> <sup>234</sup>U = 55 µg <sup>234</sup>U/g U<sub>3</sub>O<sub>8</sub>

The concentration of the  $^{234}U$  isotope of uranium is normally used as it has a value similar to impurity levels in the  $U_3O_8$ .

The above concentrations can be expressed in general ppm terms as  $\mu g$  of the U isotope per total mass of U (in grams). For natural uranium in U<sub>3</sub>O<sub>8</sub> the concentrations are:

<sup>2</sup> <sup>3</sup> <sup>8</sup> U = 882 425 ppm <sup>2</sup> <sup>3</sup> <sup>5</sup> U = 6 167 ppm <sup>2</sup> <sup>3</sup> <sup>4</sup> U = 47,8 ppm

When graphite powder spiked with a known concentration of Y is mixed with the  $U_3O_8$ , it is done in the ratio of five parts  $U_3O_8$ to one part graphite by mass. This was shown on page 30. The concentration of the Y in the graphite is typically 80 µg Y/gC. When mixed with  $U_3O_8$ , the concentration of Y relative to uranium is approximately 20 µg Y/gU. These two concentrations are used when applying the appearance level method.



When a set of spectral lines belonging to a specific element on the photographic plate is investigated under the microscope, dark lines at longer exposures up to light lines at shorter exposures, are observed. At very short exposures, no spectral lines are detected depending on the concentration level of that element in the sample.

The faintest detectable spectral line is called the appearance line. According to the exposure pattern used, this appearance line thus has a specific appearance exposure. The appearance exposure can thus be defined as that exposure necessary for a specific impurity element present at a certain concentration level to become visible to the analyst. This is where the difference in interpretation of the appearance level method varies from analyst to analyst. What might be the appearance exposure for one analyst is not necessarily that for the other analyst.

When performing semi-quantitative analyses with this method, both the  $Y^{1+}$  and  $Y^{2+}$  lines at masses 89 and 44,5, respectively, are scrutinized to obtain appearance exposures. Similar to quantitative analysis procedures, the mean of these two values is obtained:

$$Q_{\overline{y}} = \frac{Q_{y^{1+}} + Q_{y^{2+}}}{2}$$

When applying the general formula for spark-source mass spectrometry,

k-factor  $concentration (C) = -------, \qquad \dots \dots \dots \dots \dots \dots (1)$  exposure (Q)  $the k-factor for Y , K_y, can be obtained:$   $K_y = C_y Q_y^- \qquad \dots \dots \dots \dots \dots (2)$ 



where:

C is the concentration of the internal standard Y, relative to the U content, i.e. typically 20  $\mu$ g Y/gU in the above example, and

 $Q_{_{m V}}^-$  is the mean appearance exposure of the internal standard.

For an unknown impurity element X present in the  $U_3O_8$  sample, the appearance exposure,  $Q_X$ , is determined using the same method as described above.

Using the above  $Q_x$  and  $K_y$  from equation (2) in equation (1), the concentration  $C_x$  of element X relative to the internal standard is determined:

$$C_{\mathbf{X}} = \frac{K_{\mathbf{Y}}}{Q_{\mathbf{X}}}$$
(3)

If the internal standard is not present, the U spectral lines are used in exactly the same way. However, only the  $^{23}$   $^{4}U^{2+}$  spectral line at m/e 117 is suitable for use. The concentration of an element X is then expressed relative to the  $^{23}$   $^{4}U$  isotope.

This method is a quick way to obtain a concentration for an element without using relative sensitivity factors. The result can differ by a factor of two or three compared to the use of relative sensitivity factors (RSF's). In the above case, the sensitivity of an element X relative to an internal standard is taken as unity. If a RSF does exist for an element X relative to Y in a specific matrix, then it can be used together with the usual formula given below which was derived on page 98:



$$C_{\mathbf{x}} = \frac{RSF \cdot C_{\mathbf{y}}}{\frac{Q_{\mathbf{x}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}$$

The appearance exposure of element X,  $Q_x$ , is expressed as a ratio together with the mean appearance exposure of the internal standard,  $Q_y^-$ . The concentration  $C_x$  obtained for element X is only the concentration of that particular isotope of element X. In order to obtain the total concentration of the element, the concentration obtained for that particular isotope measured, is divided by its isotopic abundance and multiplied by 100 to cancel the percentage.



## CHAPTER SIX

### **EVALUATION OF THE METHOD**

# 6.1 <u>Statistical significance of results</u>

### 6.1.1 Statistical approach

Data interpretation is based on the graphic method [29, 30]. This incorporates the use of calibration lines which are obtained from plotting the instrument signal, y, against the concentration, x, of an element. The relationship between x and y can be derived by linear regression using the standard formula:

where:

*m* is the slope of the calibration line, and c is the intercept of the y-axis.

The general spark-source mass spectrometry formula [8] can be interpreted on this basis:

$$C_{\mathbf{x}} = \frac{K_{\mathbf{x}}}{Q_{\mathbf{x}}} \qquad (2)$$

where:

 $C_x$  is the concentration of element X,  $K_x$  is a constant and  $Q_x$  is the exposure value at 50% transmission of element X.

Equation (2) can be rewritten in the form of equation (1) as follows:

$$\frac{1}{Q_x} = K_x \cdot C_x$$

The intercept c, on the y-axis of equation (1) is taken as zero and is explained later on in this section (see page 139). © University of Pretoria



The same general formula applies for the internal standard Y, namely:

$$C_{y} = \frac{K_{y}}{Q_{-}}$$
(3)

 $Q_y^-$  is the mean exposure value of Y for the charge states 1+ and 2+ (see page 29).

Combining equations (2) and (3) gives:

$$\frac{Q_{\mathbf{x}}}{Q_{\mathbf{y}}^{-}} = \frac{K_{\mathbf{x}}}{K_{\mathbf{y}}} \cdot \frac{C_{\mathbf{y}}}{C_{\mathbf{x}}} \qquad \dots \dots \dots \dots (4)$$

where:

 $\frac{Q_x}{Q_y^-}$  is the instrument signal, expressed as the ratio between the exposure value,  $Q_x$ , of element X at 50% transmission and the exposure value  $Q_y^-$ , of the internal reference standard, Y, at 50% transmission;  $\frac{C_y}{C}$  is the ratio between the concentration of the internal

reference standard, Y, and the concentration of element X which is given in  $\mu g$  X/gU; and

 $\frac{K_x}{K_y}$  is the slope, expressed as the relative sensitivity factor (RSF) [18, 31] of an element X, relative to the internal reference standard, Y.

The concentration of the internal standard, Y, is taken as 20  $\mu$ g Y/gU when analysing unknown U<sub>3</sub>O<sub>8</sub> samples and 132  $\mu$ g Y/gU when analysing unknown UF<sub>4</sub> samples. The choice of these concentrations of the internal standard is comprehensively described on pages 29, 103 and 122.



The concentration of an element X varies according to the range of graphite standards prepared. The choice of these ranges is comprehensively described on page 103 for a  $U_3O_8$ /graphite matrix and on page 122 for a UF<sub>4</sub>/graphite matrix.

The instrument signal,  $Q_x/Q_y^-$ , is obtained when doing data interpretation and is taken as the intercept at a 50% transmission of the Hull function plot. This is described on page 36.

The origin (0;0), of the calibration graph is also incorporated in the calibration line. This is shown as follows: When  $C_x$  tends to infinity, then the expression  $C_y/C_x$  tends to zero when  $C_y$  is taken as constant. From equation (2), when  $C_x$ tends to infinity, then  $Q_x$  tends to zero. Likewise, the expression  $Q_x/Q_y^-$  tends to zero when  $Q_y^-$  is taken as constant because  $C_y$ is constant. Thus both expressions tend to the origin (0;0) when  $C_x$  tends to infinity. This verifies the use of the origin as a data point when compiling calibration graphs.

Linear regression formulae [29] (see Appendix A on page 174) are used to determine the standard error,  $s_m$ , in the slope of the regression line. The confidence limits of the slope, expressed as a, is given by the following formula [32]:

where:

 $s_m$  is the standard error of the slope, and t is the Student's t-value [33] at a 95% confidence level (CL) with (n-2) degrees of freedom where n is the number of data points (x;y) used to draw up the calibration graph.

The parameters RSF,  $\alpha$ , c, r and n obtained from the regression line are given in Table 5.2 (see page 111).



# 6.1.2 Propagation-of-errors approach [30, 34]

This method is used when determining the concentration  $C_{\chi}$ , of an element X, in an unknown  $U_3O_8$  sample. Equation (4) can be rewritten as follows:

$$C_{x} = \frac{(RSF \pm \alpha) . (C_{y} \pm c_{y})}{\frac{Q_{x}}{\frac{Q_{y}}{Q_{y}}}} (95\% CL) \dots (6)$$

The confidence limits a, of the slope or relative sensitivity factor is obtained from Table 5.2 on page 111. Likewise, the applicable relative sensitivity factor RSF, is given in Table 5.3 (see page 120). The concentration of the internal standard, Y, given by  $C_{v}$ , is taken as 20  $\mu$ g Y/gU where graphite powder has been spiked with 80  $\mu$ g Y/gC. This graphite powder, called UFY80, is used as electrode material when analysing unknown U<sub>3</sub>O<sub>8</sub> sam-The error in  $C_v$ , given by  $c_v$ , is taken as 0,5% which is ples. the maximum imprecision of a 1 000  $\mu$ 1 varipette used to dispense the Y ICP standard solution. The precision of the Mettler H10T mass balance used to weigh out the required mass of graphite powder is 0,1 mg which gives an error of 0,002% when 5 grams of graphite is used. The Y ICP standard solution is certified to <0,01% and the error is not significant. These errors can be ignored statistically and only the error in the varipette, 0,5%, is taken as  $c_v$  [38].

The precision of the method is also known and is given in Table 6.1 (see page 147). For a single analysis of an unknown  $U_3O_8$  sample, the error coupled to the instrument signal,  $Q_X/Q_y^-$ , for element X is taken as twice the standard deviation, 2s [35, 38]. This is based on the assumption of a normal distribution of results where an analysis result has a 95% chance of lying within two standard deviations of the mean.



When considering the general error formulae used in composite errors, the following applies [36, 37]: For a number of quantities, n, with means  $\bar{x}_1$ ,  $\bar{x}_2$ , ....,  $\bar{x}_n$ , with standard errors  $a_1$ ,  $a_2$ , ...,  $a_n$ , the standard error of

any function of  $\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n$ , namely,  $f(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$  is

given by 
$$\alpha$$
, where  $\alpha^2 = (\frac{\partial f}{\partial \bar{x}_1})^2 \alpha_1^2 + (\frac{\partial f}{\partial \bar{x}_2})^2 \alpha_2^2 + \dots + (\frac{\partial f}{\partial \bar{x}_n})^2 \alpha_n^2$ 

The quotient of two mean values is given by:

$$f(\bar{x}_{1}, \bar{x}_{2}) = \frac{\bar{x}_{1}}{\bar{x}_{2}}$$

$$thus \quad \frac{\partial f}{\partial \bar{x}_{1}} = \frac{1}{\bar{x}_{2}} \quad and \quad \frac{\partial f}{\partial \bar{x}_{2}} = -\frac{\bar{x}_{1}}{\bar{x}_{2}}$$

$$This \ gives \ \alpha^{2} = (\frac{1}{\bar{x}_{2}})^{2} \quad \alpha_{1}^{2} + (-\frac{\bar{x}_{1}}{\bar{x}_{2}})^{2} \quad \alpha_{2}^{2}$$

$$= \frac{1}{\bar{x}_{2}^{4}} \quad (\bar{x}_{2}^{2}\alpha_{1}^{2} + \bar{x}_{1}^{2}\alpha_{2}^{2})$$

$$Therefore \quad \alpha = \frac{1}{\bar{x}_{2}^{2}} \quad \sqrt{\bar{x}_{2}^{2}\alpha_{1}^{2} + \bar{x}_{1}^{2}\alpha_{2}^{2}} \quad \dots \dots \dots \dots \dots (7)$$



The product of two mean values is given by:

 $f(\overline{x}_1, \overline{x}_2) = \overline{x}_1 \cdot \overline{x}_2$ 

thus  $\frac{\partial f}{\partial \bar{x}_1} = \bar{x}_2$  and  $\frac{\partial f}{\partial \bar{x}_2} = \bar{x}_1$ 

This gives  $\alpha^2 = \overline{x}_2^2 \alpha_1^2 + \overline{x}_1^2 \alpha_2^2$ 

Applying the above equations (7) and (8) to equation (6), the standard error, s<sub>C</sub>, of the concentration of element X in the x unknown sample is derived.

Thus 
$$s_{C_{X}} = \frac{1}{Q_{X}} \cdot \sqrt{\frac{Q_{X}}{(Q_{Y}^{-})^{2}} \cdot (C_{Y}^{2}\alpha^{2} + RSF^{2}c_{Y}^{2}) + (RSF \cdot C_{Y})^{2} \cdot (2s)^{2}} \cdot \dots \cdot (9)$$

The final result of element X is reported as:

$$C_{\mathbf{x}} \pm s_{C_{\mathbf{x}}}$$
 (95 % CL)

This gives the confidence interval derived using the propagationof-errors method at a 95 % confidence level.



### 6.1.3 Precision

In order to determine the precision coupled to the analysis of  $U_3O_8$ /graphite matrix samples using spark-source mass spectrometry, three of the prepared graphite standards with concentrations of 1,0; 10,0 and 50,0 µg X /gU were each analysed six times (i.e. n = 6) mixed with the base  $U_3O_8$  (see page 103). The results obtained are tabulated in Table 6.1 on page 147. The precision that is obtained is for both the instrument and the analyst.

The standard error at a 95% confidence level (CL) was determined using the following formula [37]:

where:

 $\bar{x}$  is the mean of the six analyses of one standard; s is the standard deviation of the six analyses; and t is the Student's t-value taken at a 95% confidence level using (n - 1) degrees of freedom (v).

Before the above formula could be used, the data obtained had to be subjected to the Dixon outlier test [38, 39, 40, 41] in order to ascertain whether there were any "mavericks". The Dixon outlier test assumes that the parent population from which the measurements are obtained is normally distributed.

One way of assessing a suspect measurement is to compare the difference between it and the measurement nearest to it in size with the difference between the highest and lowest measurements. The ratio of the differences is known as Dixon's Q and is given as  $Q_{calc}$  in the following basic formula:

| suspect value - nearest value |

 $Q_{calc}$ 

(largest value - smallest value) © University of Pretoria .... (2)



The critical values of Q, given as  $Q_{tab}$ , are taken from the table of critical values for Q at a 95% confidence level (CL).

The following reasoning is applied in the Dixon test: If  $Q_{tab} \ge Q_{calc}$ , then the suspect value is retained; if  $Q_{calc} > Q_{tab}$ , then the suspect value is rejected. From the table of critical values of Q, the sample size in this case is taken as six.

It is important to note that at a 95% CL there is still a 5% chance of incorrectly rejecting the suspect value. When measurements are repeated only a few times rejection of one value makes a great difference to the mean and standard error. This has a considerable effect on the estimation of the precision. The importance of caution in rejecting outliers cannot be over-emphasised. There is also the possibility of two suspect values which leads to masking in the application of the Dixon Q-test.

Using the above approach, suspect values were rejected for a number of elements from each of the standards. This is shown in Table 6.1 where n = 5. For  $Mo^{1+}$  (n = 4) and  $Sm^{1+}$  (n = 3), the experimental data obtained was limited as the spectral lines on the photographic plate could not be measured in all the cases.

An assessment of the results tabulated in Table 6.1 reveals that most of the standard errors at a 95% CL are below 20% with the exception of a few cases which will be explained below. This is in accordance with values reported by many other authors [31] who have used electrical detection, radio frequency (RF), glow discharge (GD) and other types of spark-source mass spectrometers for analysing U samples.



The first few elements in Table 6.1, namely B, Mg and A1, have high standard errors at all the concentration levels. This is ascribed to interference of their spectral lines at masses 10 and 11 for B, 12,5 for Mg and 13,5 for A1, due to the spectral lines of the matrix component C at masses 12 and 13. The C spectral lines, being from the major constituent of the sample, are intense and dispersed in the region surrounding them, thus affecting the adjacent spectral lines and their precision, irrespective of concentration.

The standard errors for most of the elements at a concentration level of 1  $\mu$ g X /gU are relatively high. This is a result of unreliable data obtained from the transmission curves. Only a few points could be utilised in the Hull function plot as most of these were light points. This could also be ascribed to the fact that at this concentration level, the detection limit for some of the elements is reached. Typical examples affected in this manner are Mn<sup>1+</sup>, Zn<sup>1+</sup>, Zr<sup>1+</sup> and the heavier elements such as the rare earths Sm, Eu and Dy.

The high standard errors at a 95% CL for the heavier elements, such as the rare earths at a concentration level of  $1 \mu g X / gU$ , is ascribed to the fact that these elements provide small ion yields of the various charge states resulting in poor transmission curves. The atomic size of these elements affects the number of ions entering the ion source due to collisions. These ions also have a smaller velocity down the flight tube of the mass spectrometer. All these factors have a decisive impact on the nett total of ions yielded at the photographic plate.

The very high standard error for  $Mo^{1+}$  at a 95% CL, namely 84,1%, can be ascribed to the previous reasons (poor ion yield, near the



low concentration detection limit, as well as the small number of useful data points). When applying the formula to determine the standard error at a 95% CL, the degrees of freedom (v) is given as (n - 1), i.e. 3 where n = 4, which is relatively small. This means that the standard deviation, s, is multiplied by a factor 1,59 (3,182/2) giving a higher standard error. As n gets larger, the factor of  $t/\sqrt{n}$  gets smaller, thus reducing the standard error in a significant way.

The standard errors for Ca<sup>2+</sup> and Si<sup>1+</sup> are relatively high as the Ca<sup>2+</sup> spectral line was measured as a doublet and the Si<sup>1+</sup> spectral line was measured as a triplet. The analyst has to set windows around these lines and this affects the background surrounding the spectral lines which are under scrutiny. This leads to a weaker precision at all concentration levels.

The high standard error for Ni<sup>1+</sup> at 95% CL at a concentration of 50  $\mu$ g Ni /gU, namely 34,2%, is verified as follows. From the raw data obtained, there is one data point out of the set of six (n = 6) that appears to differ from the remainder. However. when applying the Dixon outlier test to this data point, the test shows that this data point cannot be taken as an outlier and must thus be retained. This leads to the high standard error. If the Dixon outlier test had shown that this point could be rejected, the precision would have been 15,9% for the remainder of the This could be interpreted as a possible data points (n = 5). limitation of the Dixon outlier test.

The precision values obtained are used together with the relative sensitivity factors (RSF's) when analysing the unknown  $U_3O_8$  samples where the error in the instrument signal is taken as twice the standard deviation.

#### UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA <u>UNIVERSITH VA PRETORIA</u> 147

<u>TABLE 6.1</u>: Precision for  $U_3O_8$ 

| 1        |        |                                |   | T                          |        |                                        |        |
|----------|--------|--------------------------------|---|----------------------------|--------|----------------------------------------|--------|
| Element  | Charge | $C_{\rm X} = 1\mu g \ X \ /gU$ |   | $C_{X} = 10\mu g X / gU$   |        | $C_{\mathbf{X}} = 50 \mu g \mathbf{X}$ | /gU    |
|          | State  | Std Error at<br>95% CL (%)     | n | Std Error at<br>95% CL (%) | n      | Std Error at<br>95% CL (%)             | n      |
| В        | 1      | 27,6                           | 6 | 24,8                       | 6      | 36,1                                   | 6      |
| Mg       | 2      |                                |   | 10,3                       | 5      | 40,4                                   | 6      |
| A1       | 2      |                                |   | 24,7                       | 6      | 22,6                                   | 6      |
| Si<br>Si | 2<br>1 | 38,6                           | 6 | 11,1<br>25,3               | 6<br>6 | 16,6<br>35,5                           | 6<br>6 |
| Ca       | 2      | 12,0                           | 6 | 24,8                       | 6      | 29,5                                   | 6      |
| Ti<br>Ti | 2<br>1 | 21,2                           | 6 | 6,1                        | 5      | 13,2                                   | 6      |
| V<br>V   | 2<br>1 | 7,6                            | 6 | 13,9<br>10,5               | 6<br>6 | 15,9<br>8,8                            | 6<br>6 |
| Cr<br>Cr | 2<br>1 | 17,7                           | 6 | 10,8<br>14,0               | 6<br>6 | 10,7<br>18,6                           | 6<br>6 |
| Mn<br>Mn | 2<br>1 | 29,7                           | 6 | 16,3<br>19,1               | 6<br>6 | 22,0<br>19,1                           | 6<br>6 |
| Fe<br>Fe | 2<br>1 | 18,9                           | 6 | 19,0<br>15,5               | 6<br>6 | 12,8<br>15,4                           | 6<br>6 |
| Co<br>Co | 2<br>1 | 6,6                            | 6 | 11,2<br>5,0                | 6<br>6 | 17,2<br>17,7                           | 6<br>6 |
| Ni       | 1      | 19,3                           | 6 | 2,6                        | 6      | 34,2                                   | 6      |
| Cu<br>Cu | 2<br>1 | 15,3                           | 6 | 7,1<br>15,3                | 6<br>6 | 17,0<br>19,3                           | 6<br>6 |
| Zn       | 1      | 32,5                           | 6 | 8,8                        | 6      | 21,6                                   | 6      |
| Sr<br>Sr | 2<br>1 | 18,1                           | 6 | 10,2<br>9,4                | 6<br>6 | 17,2<br>15,7                           | 6<br>6 |
| Zr<br>Zr | 2<br>1 | 36,1                           | 6 | 8,4<br>6,2                 | 6<br>6 | 15,8<br>11,2                           | 6<br>6 |
| Nb<br>Nb | 2<br>1 | 18,2                           | 6 | 10,6<br>10,9               | 6<br>6 | 15,6<br>5,8                            | 6<br>5 |



# Table 6.1: Continued

|          | Charge | $C_{\mathbf{X}} = 1 \mu g \mathbf{X} / g U$ |   | $C_{\mathbf{X}} = 10 \mu g X$ | /gU    | $C_{\mathbf{x}} = 50 \mu g X$ | /gU    |
|----------|--------|---------------------------------------------|---|-------------------------------|--------|-------------------------------|--------|
| Element  | State  | Std Error at<br>95% CL (%)                  | n | Std Error at<br>95% CL (%)    | n      | Std Error at<br>95% CL (%)    | n      |
| Mo<br>Mo | 2<br>1 | 84,1                                        | 4 | 8,6<br>7,1                    | 6<br>6 | 16,2<br>11,2                  | 6<br>6 |
| Ru<br>Ru | 2<br>1 |                                             |   | 13,9<br>7,7                   | 6<br>5 | 12,2<br>5,0                   | 6<br>5 |
| Cd       | 1      |                                             |   | 10,4                          | б      | 15,3                          | 6      |
| In       | 1      | 23,9                                        | 6 | 11,7                          | 6      | 21,9                          | 6      |
| Sb<br>Sb | 2<br>1 | 34,1                                        | 6 | 7,6<br>12,2                   | 6<br>6 | 8,6<br>16,3                   | 6<br>6 |
| Ba<br>Ba | 2<br>1 | 27,5                                        | 6 | 8,6<br>15,9                   | 6<br>6 | 8,9<br>17,1                   | 6<br>6 |
| Sm<br>Sm | 2<br>1 | 48,3                                        | 5 | 9,4<br>18,8                   | 6<br>3 | 10,7<br>17,0                  | 6<br>6 |
| Eu<br>Eu | 2<br>1 | 33,3                                        | 6 | 7,3<br>5,8                    | 6<br>6 | 14,2<br>8,8                   | 6<br>5 |
| Gd<br>Gd | 2<br>1 |                                             |   | 6,8<br>8,4                    | 5<br>5 | 9,3<br>5,0                    | 6<br>5 |
| Dy<br>Dy | 2<br>1 | 32,0                                        | 5 | 14,9<br>7,3                   | 6<br>5 | 9,8<br>12,4                   | 6<br>6 |
| Bi       | 2      |                                             |   | 25,2                          | 6      | 15,0                          | 6      |
| Th       | 2      | 25,8                                        | 6 | 12,9                          | 6      | 20,2                          | 6      |

# 6.1.4 Confidence Intervals - U<sub>3</sub>O<sub>8</sub>

Confidence limits of the slope, expressed as  $\alpha$ , have a significant influence on the relative sensitivity factor (RSF) derived



as the slope of the calibration curve. Large a values mean large uncertainties in the RSF's. These uncertainties must be included in the overall errors calculated for the final analysis results. Values of a greater than 20% in Table 5.2 (see page 111) can be ascribed to a number of reasons, of which the important ones are given below.

The value of n has a significant influence on the value of  $\alpha$ . This can be demonstrated using equation (5) on page 139 where the t-value is obtained using (n - 2) degrees of freedom at a 95% confidence level (CL). For n = 7, the t-value from the Students t-Distribution Table is 2,571. The standard error in the slope,  $s_m$ , must be multiplied by this number in order to obtain the  $\alpha$ value and leads to large confidence limits of the slope.

When determining the calibration curve parameters, each analysis of a graphite standard sample was treated as an individual analysis. Thus, when a graphite standard was analysed in triplicate, the value of n was taken as three. This was typically done using the check graphite standards where some elements were analysed for the first time, e.g. Na, P, K and W. Using two such check graphite standards together with the origin (0;0) gives a t-value of 2,571, where n = 7. This means that a standard error in the slope of 20% becomes a confidence limit of 51,4%. A number of elements in Table 5.2 fall into this category, namely Na<sup>1+</sup> (11%), P<sup>1+</sup> (8,1%), P<sup>2+</sup> (13,6%), K<sup>2+</sup> (7,8%) and W<sup>2+</sup> (14,5%), where the standard error is given in brackets after each element.



The ion yields of certain elements with specific charge states at their lowest concentration levels are not very good, with the result that poor transmission curves are obtained. Only a few long exposure values are used in the Hull function plot and the rest of the data points are discarded as light points. The charge state differs from element to element depending on the atomisation and ionisation of the particular element. This can be illustrated when plotting characteristic curves of number of ions yielded against charge state. A number of cases in Table 5.2 where a is near or greater that 20 % can be placed into this category, namely  $K^{2+}$ ,  $Ru^{2+}$ ,  $Ba^{1+}$ ,  $W^{1+}$ ,  $Sm^{1+}$ ,  $Mo^{1+}$  and  $Sb^{1+}$ .

Elements with large atomic radii are more prone to collisions and also have a slower velocity down the flight tube. This leads to fewer ions reaching the photoplate. From Table 5.2, elements falling into this category are  $Sm^{1+}$ ,  $W^{2+}$ ,  $Ba^{1+}$ ,  $Mo^{1+}$ ,  $Sb^{1+}$  and  $Ru^{2+}$ .

The correlation coefficient, r, in Table 5.2 can also be coupled to a larger a value. Ideally r should be unity, thus values of r < 0,90 show that the fit of calibration data to the regression line is seriously affected by a few bad data points. The inclusion of these bad data points is confirmed by applying the Dixon outlier test which shows that these values have to be retained. However, great caution should be exercised in drawing conclusions from the result of repeated applications of the Dixon's test. If a few statistical outliers are found at a certain particular concentration level this is not very serious, but if several outliers occur at different concentration levels, this may be considered as indicating that the regression line and thus the RSF is This would lead to a large spread of data points inaccurate. resulting in a large standard error in the slope, s<sub>m</sub>.



Correspondingly, a larger a value is obtained. Elements in Table 5.2 having poor correlations where r < 0,90 are  $Fe^{1+}$ (r = 0,853) and  $Ba^{1+}$  (r = 0,897). This is in spite of n being large for  $Fe^{1+}$  (n = 30) and  $Ba^{1+}$  (n = 22). Elements in Table 5.2 having correlation coefficients of r < 0,95 are the following:  $Mg^{2+}$ ,  $Si^{2+}$ ,  $Ca^{2+}$ ,  $Mo^{1+}$ ,  $Sb^{1+}$  and  $Sm^{1+}$ .

For Mg<sup>2+</sup>, Si<sup>2+</sup>, Fe<sup>1+</sup> and Na<sup>1+</sup> it is significant to note that these elements all have high background concentrations in the blank base U<sub>3</sub>O<sub>8</sub> sample. The influence of this high blank concentration on the calibration line is discussed on page 105. This effectively reduces the range on the x-axis of the calibration plot. Typically, for Fe<sup>1+</sup> the range on the x-axis is from zero to 0,2844. The spread of data points in this case is larger than over a greater range on the x-axis and results in a poor fit of the data points on the regression line. Another reason for  $Mg^{2+}$  having an  $\alpha$  of 19,3% is the fact that it is measured at m/e 12,5 which lies inbetween the two spectral lines of the major component of the U<sub>3</sub>O<sub>8</sub>/graphite mixture, namely <sup>12</sup>C and <sup>13</sup>C at m/e 12 and 13, respectively. Intense fogging on the surrounding background makes the measurements of Mg<sup>2+</sup> difficult and inaccurate.

When using a values to determine the error coupled to an element's concentration in an unknown  $U_3O_8$  sample, the analyst must exercise great care. In the case of  $Ba^{1+}$  (23,0%) and  $Sm^{1+}$ (45,0%), the analyst should avoid using these charge states, and should rather use the other charge states where the a values are more acceptable. The same argument applies for  $W^{2+}$  (40,3%).

The  $\alpha$  value for the impurity elements in a U<sub>3</sub>O<sub>8</sub>/graphite matrix are tabulated in Table 5.2. However, these have also been given as a visual presentation in the form of two periodic tables, the



first for the singly charged species, Figure 6.1, and the other for the doubly charged species, Figure 6.2. It is demonstrated that the appropriate application of the guidelines for quantification enables the acquisition of analytical data within very acceptable confidence intervals for most of the selected elements.

# 6.1.5 Confidence Intervals - UF4

The confidence limits of the slope, expressed as a and as a percentage in Table 5.5 on page 127, is a direct measure of the uncertainty coupled to the RSF. The a value for S is the only one which is relatively high (26,9%) for impurities in a UF<sub>4</sub> matrix. This could be attributed to a number of factors of which the most important is the fact that sulphur is measured at mass 32 as a doublet with the main interference being  ${}^{64}Zn^{2+}$ . This could influence the data and result in a bigger spread of data points for the calibration curve. This bigger spread implies a larger standard error in the slope, resulting in a large a value. This fact is also supported by the relatively poor correlation coefficient obtained (r = 0,9575) for the regression line.

The  $\alpha$  value for S could also be influenced by the relatively high background concentration in the blank UF<sub>4</sub> ( $C_x = 385, 4 \ \mu gS/gU$ ). This value is used together with the concentration of the standard to define the x-value in a data point (x;y) when applying linear regression. The higher the blank concentration, the more influence it has on the  $C_y/C_x$  value on the x-axis. The standard error for S in the blank UF<sub>4</sub> at a 95% confidence level (38,74%) is also an indication of the difficulty experienced to obtain reliable data for sulphur in a UF<sub>4</sub> matrix.





© University of Pretoria

Figure 6.2: Confidence intervals (a) at 95% CL for  $X^{2+}$ in U<sub>3</sub>O,

154



The other  $\alpha$  values in Table 5.5 are all acceptable in the sense that they fall within the precision of the instrument and the analyst. The exceptionally good  $\alpha$  values obtained for A1 = 0,84% and Zn = 0,87% where n = 10 for both elements is an indication of the accuracy of the method over a wide concentration range. The reproducibility of the results and the homogeneity of the standards are illustrated by these  $\alpha$  values. It should also be noted that A1 and Zn both have the lowest concentrations in the blank UF, as shown in Table 5.4 on page 123.

### 6.2 <u>Comparative</u> analyses

### 6.2.1 International standard U<sub>3</sub>O<sub>8</sub> No IAEA/SR-54

The analysis results are tabulated in Table 6.2. For the certified reference material (CRM) SR-54 the concentration values and their confidence intervals at 95% CL for impurity elements in  $U_3O_8$  were obtained from the certificate of analysis. Various analytical methods were used to obtain these concentration values. The results obtained using spark-source mass spectrometry are the mean of four analyses, where equation (4) on page 136 was used to calculate the concentration  $C_{_{\mathbf{Y}}}$  of impurity element X The standard error values at 95% CL in Table 6.2 in the CRM. were obtained using equation (9) on page 142. The SSMS concentration values compare favourably to those certified for the CRM SR-54, especially if the confidence interval is also taken into account. Where differences do occur, notibly for V, it must be borne in mind that the concentration value for the CRM SR-54 was presented as non-certified information.

### 6.2.2 Internal U<sub>3</sub>O<sub>8</sub> certified standards

As a result of the non-availability of suitable standards at trace levels of elements in a U matrix, the Atomic Energy Corporation prepared a series of standards according to guidelines as



| <u>TABLE 6.2</u> : | Comparison | of | U <sub>3</sub> 0, | CRM | SR-54 | with | SSMS |
|--------------------|------------|----|-------------------|-----|-------|------|------|
|--------------------|------------|----|-------------------|-----|-------|------|------|

| Element        | Certified<br>conc. value<br>(µg X /gU) | Confidence interval<br>at 95% CL         | SSMS conc.<br>value<br>(µg X /gU) | Std<br>error at<br>95% CL |
|----------------|----------------------------------------|------------------------------------------|-----------------------------------|---------------------------|
| Al             | 71,3                                   | 54,8 - 82,0                              | 70,4                              | 15,9                      |
| Со             | 4,2                                    | 4,0 - 4,3                                | 5,2                               | 1,3                       |
| Cr             | 3,6                                    | 3,1 - 4,3                                | 2,9                               | 0,8                       |
| Cu             | 5,0                                    | 4,2 - 6,7                                | 5,7                               | 0,5                       |
| Fe             | 64,7                                   | 46,0 - 77,5                              | 66,2                              | 10,2                      |
| K              | 1,7*                                   | -                                        | 3,3                               | 0,7                       |
| Mg             | 0,99*                                  | 0,81 - 1,1                               | 1,9                               | 0,8                       |
| Mn             | 15,6                                   | 14,3 - 16,9                              | 18,4                              | 3,7                       |
| Mo             | 13,0                                   | 9,5 - 17,5                               | 12,7                              | 1,1                       |
| Na             | 2,8*                                   | -                                        | 3,9                               | 0,8                       |
| Ni             | 11,4                                   | 8,4 - 13,9                               | 10,8                              | 2,0                       |
| Si             | 34,3*                                  | 18,0 - 53,5                              | 29,8                              | 7,5                       |
| Ti             | 0,98*                                  |                                          | 1,74                              | 0,37                      |
| V              | 3,7*                                   |                                          | 0,12                              | 0,01                      |
| Zn             | 2,4*                                   | 0,89 - 3,2                               | 2,2                               | 0,2                       |
| * The:<br>non- | se values are n<br>certified info      | not certified, but are primation values. | presented as                      |                           |

laid down by the New Brunswick Laboratory<sup>#</sup>. These standards covered a wide concentration range and were prepared in a  $U_3O_8$ 

# U.S. Department of Energy, New Brunswick Laboratory, 9800 S. Cass Avenue, Building 350, Argonne, Illinois, 60439, U.S.A.



matrix. The standard with the highest concentration level of impurity elements is called ES 1 and the comparison between the certified value and the concentration value obtained with the spark-source mass spectrometer is given in Table 6.3. The standard with the lowest concentration of impurity elements is called ES 5 and the comparison of results obtained is given in Table 6.7. Standards with concentrations falling inbetween ES 1 and ES 5, named ES 2, ES 3 and ES 4, are given in Tables 6.4, 6.5 and 6.6 respectively.

Of every standard in the ES series of standards, three samplings were each analysed in triplicate. This resulted in each ES series of standards being analysed nine times by a specific analytical technique. The spark-source mass spectrometer (SSMS) concentration values given in Table 6.3 to Table 6.7, are the mean concentrations over nine analyses. These concentration values within an ES standard were also subjected to the Dixon outlier test to ascertain whether there were any outliers before each final mean value was reported.

The formula used to calculate the concentration,  $C_{_X}$ , of an impurity element X in each of the ES series of standards is given by equation (4) on page 136. However, this concentration value also contains the contribution from that impurity element also found in the graphite which was used to mix with the  $U_3O_8$  ES series of standards. This has been described on page 108. The concentration levels of impurity elements in the graphite were quantified and deducted from the mean concentration values reported for each of the ES series of standards.



Various analytical methods were used by different laboratories in order to certify these internal  $U_3O_8$  standards, amongst others:

- Inductively coupled plasma (ICP) optical emission spectroscopy (OES),
- Ion chromatography (IC),
- Carrier distillation emission spectroscopy (CDES),
- Atomic absorption spectroscopy (AAS), and
- UV spectroscopy.

It is beyond the scope of this investigation to go into any detail of how the data obtained for the ES series of standards analysed with the above methods, was evaluated. The certified concentration values and confidence intervals at a 95% CL for the various impurity elements across the ES series of standards given in Tables 6.3 to 6.7 were obtained after the evaluation. These certified values were calculated from the experimental data.

The standard error values at a 95% CL in Tables 6.3 to 6.7 were obtained using equation (9) on page 142. However, the term 2s in this equation was replaced by the term  $s.t/\sqrt{n'}$  as denoted by equation (1) on page 143. This is in accordance with the fact that the  $Q_x/Q_v^-$  value used in equation (9) is the mean of several (nine) analyses as previously mentioned in this section. The standard error coupled to this mean  $Q_x/Q_v^-$  value at a 95% CL is thus derived using equation (1) where n is taken as nine and s is the standard deviation over the nine analyses. The other terms used in equation (9) are identical to those used in equation (6) on page 142 and which were comprehensively described. The use of equation (6) was not warranted as multiple analyses were performed and not just a single analysis.



When comparing the results in Tables 6.3 to 6.7, a number of facts should be kept in mind. The certified values must not be accepted as being the absolute values for particular impurity elements in the series of ES standards. A better representation of the results obtained is given in Appendix C on page 191 where graphs have been compiled for all the impurity elements across the concentration range for each of the analytical methods in comparison to the expected concentration values. In this way anomalies can be detected and comparisons drawn between the spark-source mass spectrometry results and the expected concentration values.

Another interesting fact to consider is whether there is a meaningful difference between a certified value of, for example, 0,1  $\mu$ g Cd/gU and a SSMS value of 0,64  $\mu$ g Cd/gU, as reported in Table 6.7. Both these values are less than 1  $\mu$ g Cd/gU and at these trace levels the detection limits of certain analytical instruments have to be considered. The same could be true for Fe in Table 6.4 where the certified value is given as 208  $\mu$ g Fe/gU and the SSMS value is given as 264  $\mu$ g Fe/gU. In view of the various confidence intervals for these two values, it is clear that the analyst should not compare exact values with each other but also take cognicance of the confidence limits coupled to a result when assessing such data.

The SSMS concentration value obtained for Ca across the ES series of standards is higher than the certified concentration values. The higher value could possibly be coupled to an incorrect relative sensitivity factor (RSF) for Ca. This can be seen in the graph for Ca in Appendix C where the graph for SSMS (method B) lies above the dotted line which represents the true concentration values. The very high value for Ca obtained for the ES 1 standard with SSMS was also obtained by three other analytical techniques, namely A, C and D. It has not been possible to



confirm the reasons for this difference. Ca is a difficult element to determine with spark-source mass spectrometry and the investigation has not been persued for this element.

The SSMS concentration value obtained for Th across the ES series of standards is higher than the certified concentration values reported for ES 1, ES 2 and ES 3, although no confidence intervals were reported for these values. However, the SSMS results compare favourably to the expected values as shown in the graph in Appendix C.

It should be noted from the graphs in Appendix C that the mass spectrometry results in general, compare remarkably well with the expected standard values.



| <u>Table</u> | <u>6.3</u> : | Comparison | of | U <sub>3</sub> O <sub>8</sub> -Standard | ES  | 1 | with | SSMS  |  |
|--------------|--------------|------------|----|-----------------------------------------|-----|---|------|-------|--|
|              |              |            |    |                                         | ~~~ | - |      | DDIID |  |

| ſ       |                                    | I                                |                               |                        |
|---------|------------------------------------|----------------------------------|-------------------------------|------------------------|
| Element | Certified conc<br>value (µg X /gU) | Confidence in-<br>terval 95 % CL | SSMS conc<br>value (µg X /gU) | Std Error at<br>95% CL |
| A1      | 234                                | 189 - 279                        | 242                           | 43                     |
| В       | 5,7                                | 5,0 - 6,4                        | 4,9                           | 1,0                    |
| Bi      | 14,3                               | 11,6 - 17,0                      | 13,1                          | 3,0                    |
| Ca      | 272                                | 245 - 299                        | 416                           | 110                    |
| Cd      | · 5,5                              | 5,0 - 6,1                        | 6,0                           | 1,3                    |
| Со      | 26,6                               | 23,7 - 29,5                      | 28,8                          | 3,5                    |
| Cr      | 125                                | 77 - 174                         | 154                           | 27                     |
| Cu      | 104                                | 84,4 - 124                       | 120                           | 21                     |
| Dy      | 0,56                               | 0,43 - 0,69                      | 0,71                          | 0,24                   |
| Eu      | 0,56                               | 0,44 - 0,68                      | 0,69                          | 0,16                   |
| Fe      | 827                                | 663 - 990                        | 972                           | 191                    |
| Gd      | 0,64                               | 0,41 - 0,87                      | 0,85                          | 0,34                   |
| In      | 6,2                                | 4,4 - 7,9                        | 8,9                           | 1,6                    |
| K       | 536                                | 481 - 591                        | 379                           | 112                    |
| Li      | 11,5                               | 9,31 - 13,7                      | 13,2                          | 3,8                    |
| Mg      | . 56,2                             | 48,5 - 63,9                      | 49,8                          | 14,6                   |
| Мл      | 55,3                               | 47,5 - 63,2                      | 65,1                          | 15,5                   |
| Мо      | 54,6                               | 46,1 - 63,1                      | 59,4                          | 7,3                    |
| Ni      | 233                                | 209 - 259                        | 243                           | 47                     |
| Sb      | 11,2                               | 9,2 - 13,1                       | 13,8                          | 2,8                    |
| Si      | 206                                | 169 - 244                        | 221                           | 65                     |
| Sm      | 0,60                               | 0,51 - 0,69                      | 0,62                          | 0,17                   |
| Th      | 3,4                                | -                                | 11,0                          | 1,7                    |
| Ti      | 52,5                               | 39,9 - 65,1                      | 56,4                          | 12,5                   |
| v       | 5,08                               | 3,97 - 6,19                      | 5,40                          | 0,38                   |
| W       | 13,3                               | 11,4 - 15,2                      | 12,7                          | 5,0                    |
| Zn      | . 247                              | 207 - 287                        | 261                           | 41                     |
| Zr      | 59                                 | © University of Pr               | etoria 55                     | 6,6                    |



| Element | Certified conc<br>value (µg X /gU) | Confidence in-<br>terval 95 % CL | SSMS conc<br>value (µg X /gU) | Std Error at<br>95% CL |
|---------|------------------------------------|----------------------------------|-------------------------------|------------------------|
| A1      | 115                                | 93 - 137                         | 120                           | 24                     |
| В       | 3,8                                | 3,3 - 4,3                        | 3,5                           | 0,7                    |
| Bi      | 5,3                                | 4,2 - 6,3                        | 5,6                           | 1,5                    |
| Ca      | 108                                | 97 - 119                         | 163                           | 32                     |
| Cd      | . 2,7                              | 2,4 - 3,0                        | 3,0                           | 0,7                    |
| Со      | 13,5                               | 12,0 - 14,9                      | 13,9                          | 1,1                    |
| Cr      | 59                                 | 36 - 82                          | 65                            | 11                     |
| Cu      | 54,1                               | 43,7 - 64,4                      | 58,3                          | 5,7                    |
| Dy      | 0,56                               | 0,43 - 0,69                      | 0,69                          | 0,16                   |
| Eu      | 0,39                               | 0,30 - 0,48                      | 0,49                          | 0,14                   |
| Fe      | 208                                | 165 - 251                        | 264                           | 53                     |
| Gd      | 0,47                               | 0,29 - 0,65                      | 0,64                          | 0,42                   |
| In      | 5,3                                | 3,8 - 6,8                        | 6,4                           | 1,1                    |
| K       | 180                                | 162 - 199                        | 171                           | 35                     |
| Li      | 9,51                               | 7,70 - 11,3                      | 10,8                          | 3,1                    |
| Mg      | 21,8                               | 18,7 - 24,8                      | 22,9                          | 6,2                    |
| Mn      | 25,1                               | 21,6 - 28,7                      | 29,0                          | 4,5                    |
| Мо      | 2,0                                | 1,7 - 2,4                        | 2,4                           | 0,6                    |
| Ni      | 97,4                               | 87,3 - 107                       | 92,0                          | 11,1                   |
| Sb      | 8,0                                | 6,6 - 9,4                        | 10,0                          | 1,9                    |
| Si      | 75                                 | 59 - 90                          | 77                            | 17                     |
| Sm      | 0,59                               | 0,50 - 0,68                      | 0,66                          | 0,32                   |
| Th      | 0,6                                |                                  | 5,5                           | 0,58                   |
| Ti      | 25,2                               | 19,1 - 31,2                      | 26,7                          | 4,4                    |
| V       | 2,03                               | 1,55 - 2,51                      | 2,18                          | 0,25                   |
| W       | 5,7                                | 5,0 - 6,4                        | 5,3                           | 2,37                   |
| Zn      | 98,4                               | 82,2 - 115                       | 95,9                          | 14,1                   |

© University of Pretoria

46

Zr

49

5

| <u>Table 6.4</u> : | Comparison | of | $U_{3}O_{a}$ -Standard | ES | 2 | with | SSMS |
|--------------------|------------|----|------------------------|----|---|------|------|
|--------------------|------------|----|------------------------|----|---|------|------|



| <i>Table 6.5</i> : | Comparison | of | U <sub>3</sub> O <sub>8</sub> -Standard | ES | 3 | with | SSMS |
|--------------------|------------|----|-----------------------------------------|----|---|------|------|

|         | I                                  | Y                                |                               |                        |
|---------|------------------------------------|----------------------------------|-------------------------------|------------------------|
| Element | Certified conc<br>value (µg X /gU) | Confidence in-<br>terval 95 % CL | SSMS conc<br>value (µg X /gU) | Std Error at<br>95% CL |
| A1      | 68                                 | 54 - 81                          | 68                            | 18                     |
| В       | 1,4                                | 1,2 - 1,6                        | 1,3                           | 0,3                    |
| Bi      | 3,8                                | 3,0 - 4,6                        | 4,9                           | 1,7                    |
| Ca      | 72                                 | 65 - 79                          | 99                            | 20                     |
| Cd      | 1,0                                | 0,9 - 1,2                        | 1,3                           | 0,3                    |
| Со      | 5,1                                | 4,5 - 5,7                        | 5,8                           | 0,6                    |
| Cr      | 28                                 | 17 - 40                          | 29                            | 7                      |
| Cu      | 34,0                               | 27,4 - 40,5                      | 38,3                          | 5,6                    |
| Dy      | 0,48                               | 0,36 - 0,60                      | 0,54                          | 0,21                   |
| Eu      | 0,39                               | 0,30 - 0,48                      | 0,50                          | 0,11                   |
| Fe      | 72                                 | 56 - 89                          | 65                            | 16                     |
| Gd      | 0,22                               | 0,12 - 0,32                      | 0,74                          | 0,20                   |
| In      | 4,3                                | 3,0 - 5,5                        | 5,7                           | 1,0                    |
| K       | 87                                 | 78 - 96                          | 79                            | 22                     |
| Li      | 7,12                               | 5,75 - 8,49                      | 7,86                          | 2,1                    |
| Mg      | 11,4                               | 9,8 - 13,0                       | 15,9                          | 4,9                    |
| Mn      | 12,1                               | 10,4 - 13,8                      | 13,3                          | 2,1                    |
| Mo      | 1,2                                | 1,0 - 1,4                        | 1,3                           | 0,3                    |
| Ni      | 53,9                               | 48,3 - 59,6                      | 52,2                          | 8,2                    |
| Sb      | 3,9                                | 3,1 - 4,7                        | 5,2                           | 1,2                    |
| Si      | 44                                 | 33 - 54                          | 63                            | 21                     |
| Sm      | 0,43                               | 0,36 - 0,50                      | 0,56                          | 0,20                   |
| Th      | 0,3                                | -                                | 3,0                           | 0,5                    |
| Ti      | 10,9                               | 8,3 - 13,6                       | 10,1                          | 2,0                    |
| V       | 1,01                               | 0,74 - 1,28                      | 1,22                          | 0,12                   |
| W       | 4,2                                | 3,6 - 4,7                        | 3,7                           | 1,6                    |
| Zn      | 54,8                               | 45,6 - 63,9                      | 62,7                          | 7,6                    |
| Zr      | 49                                 | © University of Preto            | 46<br>vria                    | 6                      |



| <u>Table 6.6</u> : 0 | Comparison | of | U308 | -Standard | ES | 4 | with | SSMS |
|----------------------|------------|----|------|-----------|----|---|------|------|
|----------------------|------------|----|------|-----------|----|---|------|------|

| Element | Certified conc<br>value (µg X /gU) | Confidence in-<br>terval 95 % CL | SSMS conc<br>value (µg X /gU) | Std Error at<br>95% CL |
|---------|------------------------------------|----------------------------------|-------------------------------|------------------------|
| A1      | 23                                 | 19 - 28                          | 27                            | 5                      |
| В       | 0,6                                | 0,5 - 0,7                        | 0,8                           | 0,1                    |
| Bi      | 2,5                                | 1,9 - 3,0                        | 3,1                           | 0,8                    |
| Ca      | 23,8                               | 21,2 - 26,4                      | 34,1                          | 5,7                    |
| Cd      | 0,5                                | -                                | 1,5                           | 0,4                    |
| Со      | 2,7                                | 2,4 - 3,0                        | 3,5                           | 0,3                    |
| Cr      | 16                                 | 9 - 23                           | 19                            | 3                      |
| Cu      | 11,4                               | 9,1 - 13,6                       | 14,2                          | 1,8                    |
| Dy      | 0,40                               | 0,30 - 0,50                      | 0,59                          | 0,16                   |
| Eu      | 0,37                               | 0,28 - 0,46                      | 0,51                          | 0,13                   |
| Fe      | 29                                 | 21 - 37                          | 40                            | 8                      |
| Gd      | 0,24                               | 0,13 - 0,35                      | 0,90                          | 0,38                   |
| In      | 2,5                                | 1,7 - 3,3                        | 4,7                           | 0,7                    |
| K       | 48                                 | 43 - 53                          | 46                            | 12                     |
| Li      | 3,25                               | 2,60 - 3,90                      | 3,73                          | 0,44                   |
| Mg      | 5,4                                | 4,6 - 6,2                        | 8,8                           | 2,2                    |
| Mn      | 5,73                               | 4,9 - 6,6                        | 7,24                          | 1,32                   |
| Мо      | 5,3                                | 4,5 - 6,2                        | 6,7                           | 0,9                    |
| Ni      | 23,2                               | 20,7 - 25,7                      | 25,0                          | 2,5                    |
| Sb      | 1,6                                | 1,2 - 2,0                        | 4,2                           | 0,7                    |
| Si      | 13                                 | 8 - 19                           | 31                            | 8                      |
| Sm      | 0,41                               | 0,35 - 0,47                      | 0,59                          | 0,10                   |
| Th      | _                                  |                                  | 1,1                           | 0,2                    |
| Ti      | 5,5                                | 4,2 - 6,9                        | 6,3                           | 1,1                    |
| V       | 0,44                               | 0,29 - 0,59                      | 0,79                          | 0,17                   |
| W       | 2,8                                | 2,4 - 3,2                        | 3,3                           | 1,5                    |
| Zn      | 22,9                               | 18,9 - 26,8                      | 29,0                          | 4,0                    |
| Zr      | 40                                 | © University of Pret             | oria 37                       | 3,4                    |



| <u> Table 6.7</u> : Comparison | of | U <sub>3</sub> O <sub>8</sub> -Standard | ES | 5 | with | SSMS |  |
|--------------------------------|----|-----------------------------------------|----|---|------|------|--|
|--------------------------------|----|-----------------------------------------|----|---|------|------|--|

|         | · · · · · · · · · · · · · · · · · · · | T                                |                               |                        |
|---------|---------------------------------------|----------------------------------|-------------------------------|------------------------|
| Element | Certified conc<br>value (µg X /gU)    | Confidence in-<br>terval 95 % CL | SSMS conc<br>value (µg X /gU) | Std Error of<br>95% CL |
| A1      | 12                                    | 0 - 15                           | 14                            | 3,4                    |
| В       | 0,4                                   | 0,30 - 0,40                      | 0,9                           | 0,2                    |
| Bi      | 0,6                                   | 0,5 - 0,8                        | 1,6                           | 0,6                    |
| Ca      | 11                                    | 9,7 - 12,3                       | 29                            | 6,7                    |
| Cd      | 0,1                                   |                                  | 0,64                          | 0,2                    |
| Со      | 2,6                                   | 2,3 - 2,9                        | 3,8                           | 0,5                    |
| Cr      | 12                                    | 7 - 17                           | 12                            | 2                      |
| Cu      | 6,2                                   | 5,0 - 7,5                        | 8,5                           | 0,8                    |
| Dy      | 0,23                                  | 0,16 - 0,30                      | 0,50                          | 0,38                   |
| Eu      | 0,22                                  | 0,16 - 0,28                      | 0,36                          | 0,08                   |
| Fe      | 19                                    | 13 - 25                          | 24                            | 5                      |
| Gd      | 0,16                                  | 0,08 - 0,20                      | 0,39                          | 0,02                   |
| In      | 1,8                                   | 1,2 - 2,4                        | 3,1                           | 0,5                    |
| K       | 20                                    | 17 - 22                          | 22                            | 7                      |
| Li      | 1,86                                  | 1,47 - 2,25                      | 2,37                          | 0,86                   |
| Mg      | 2,4                                   | 2,0 - 2,8                        | 5,9                           | 1,7                    |
| Мл      | 3,09                                  | 2,6 - 3,6                        | 4,8                           | 0,9                    |
| Мо      | 20,9                                  | 17,6 - 24,2                      | 24,4                          | 2,6                    |
| Ni      | 12,8                                  | 11,4 - 14,2                      | 15,4                          | 2,0                    |
| Sb      | 0,5                                   | 0,3 - 0,8                        | 2,6                           | 0,6                    |
| Si      | _                                     |                                  | 85                            | 33                     |
| Sm      | 0,18                                  | 0,14 - 0,22                      | 0,30                          | 0,26                   |
| Th      | _                                     | -                                | 0,71                          | 0,2                    |
| Ti      | 3,1                                   | 2,3 - 3,9                        | 4,5                           | 0,8                    |
| v       | 0,14                                  | 0,05 - 0,23                      | 0,39                          | 0,1                    |
| W       | 0,9                                   | 0,8 - 1,1                        | 1,2                           | 1,0                    |
| Zn      | 13,2                                  | 10,8 - 15,6                      | 18,1                          | 3,3                    |
| Zr      | 27                                    | © University of Pret             | oria 23                       | 2                      |



### CHAPTER SEVEN

### GENERAL COMMENTS AND CONCLUSIONS

The success of the project for the development of analytical and data interpretation methods for the qualitative and quantitative analysis of trace impurities in uranium compounds with sparksource mass spectrometry has been adequately demonstrated.

Not only did the mass spectrometry results contribute to the characterisation of the internal  $U_3O_8$  impurity standards, but the analytical data was in many cases closer to the expected values than those of any of the other analytical techniques.

Furthermore, the ability to analyse  $UF_4$  materials provided analytical results which could not be obtained with any other technique available at the time.

The use of the ratio between singly and doubly charged exposure values as well as the use of the mean exposure value for the internal standard to determine whether a photoplate is acceptable or not, is a new approach to data interpretation in spark-source mass spectrometry. In this way possible misleading results can be directly avoided. Other quality assurance data interpretation methods have also been introduced. This thesis is now being used as a reference document for the mass spectrometry laboratory.

Contamination is an ever present threat to elemental trace level analysis. An effective but expensive solution would be a laboratory conforming to class 100 requirements. A relatively inexpensive alternative has been implemented in this laboratory. A laminar flow cabinet, where a curtain of HEPA filtered air is induced at the opening, is used for all sample preparation steps. Due to the positive pressure of air within the cabinet no contamination in the form of dushiverity of Peroria


The apparent disadvantages of the spark-source mass spectrometric technique are:

- 1 Successful use requires wide experience, both in the operation of equipment and in the reading and interpretation of spectra.
- 2 The instrument is essentially a comparator; for quantitative analyses, standards of composition similar to the material under analysis are required. Unknown samples therefore present a problem when quantitative results are required.
- 3 The accuracy and precision are not as high as for some spectroscopic methods, notably inductively coupled plasma mass spectrometry (ICP-MS). It should be realised that these techniques have their own unique limitations, for example, laser ablation has a big problem with point inhomogeneity.

The use of spark-source mass spectrometry to analyse trace impurities in uranium compounds is still one of the most powerful techniques available. This is confirmed by the following advantages:

- 1 The procedure is specific for the element being determined. Sources of interference can be unequivocally identified and in many cases eliminated.
- 2 Quantitative determination of traces of the elements in a powder sample can be achieved without any preliminary chemical treatment. All solid materials may be determined.
- 3 A permanent record is obtained on a photographic plate.



- 4 The technique may be applied to the determination of small quantities of added constituents or of traces of impurities to solidstate matrices where conventional methods of analysis are difficult, fail, or give less accurate results.
- 5 The information content of analytical data which can be utilised is vast. This compensates for the relatively high operation costs of the technique. A direct complete picture can be obtained for all major and minor elements with the analysis of a single sample. This is especially useful when characterising unknown samples as well as for semi-quantitative analyses. Quantitative analysis with alternative methods for the identified impurities can then be executed cost effectively.
- 6 All isotopes of an element are recorded on a photoplate with intensities according to their isotopic abundances which leads to undisputed confirmation that a particular element is present in the sample as an impurity.
- 7 The up-time and reliability of the instrument is a proven fact, making this technique comparable if not better than any other analytical technique in this field.

Spark-source mass spectrometry today has wider applications than just for the analysis of uranium compounds. Fields in which this technique is actively used include biomedical [42], geological [43] and horticultural science [44], as well as agricultural and environmental sciences [45]. It continues to play a prominent role in the contemporary nuclear technology laboratory [46, 47].



### REFERENCES

| 1 | K.D. Schuy and J. Franzen, Z. Anal. Chem., <u>225</u> (2), (1967).                                                                                                                                                                |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | J. Franzen and K.D. Schuy, Z. Naturforschg., <u>21a</u> , 1479, (1967).                                                                                                                                                           |
| 3 | R. Honig et al, 6th International Conference on Phenomena in<br>Ionized Gases, Paris, <u>2</u> , 109, (1964).                                                                                                                     |
| 4 | J. Franzen and K.D. Schuy, Z. Naturforschg., <u>20a</u> , 176, (1965).                                                                                                                                                            |
| 5 | G.I. Ramendik and V.I. Derzhiev, Zh. Anal. Khim., <u>32</u> (8),<br>1516-1523, (Aug 1977).                                                                                                                                        |
| 6 | J.A.A. Verlinden, K.M.E. Swenters and R.H.H. Gijbels, Anal.<br>Chem., <u>57</u> (1), 131-136, (1985).                                                                                                                             |
| 7 | D.S. Jones, L.D.V. Grant and D.E.C. Rogers, "INTERACT II - New<br>improved software and hardware for the reading and interpretation<br>of mass spectrographic ion sensitive plates", NIMR (CSIR) report<br>- IMAT 15 (June 1985). |
| 8 | D.S. Jones, D.E.C. Rogers and C. Claase, "INTERACT - A user<br>friendly program for high precision microphotometric evaluation<br>of ion plates from the Varian MAT mass spectrograph", NIMR<br>(CSIR) report - IMAT 3 (1983).    |
| 9 | SM1B-F Spark-source mass spectrometry Varian MAT operating manual.                                                                                                                                                                |

- 10 R.E. Honig, "Trace Analysis by Mass Spectrometry", Ed. A.J. Ahearn, Academic Press, 102-132, (1972).
- 11 K.L. Ramakumar et al, Fresenias Z. Anal. Chem., <u>318</u>, 12 14, (1984).



J. Franzen and K.D. Schuy, Z. Anal. Chem., 225, 295, (1967).

| 13 | S.R. Taylor, Geochim. Cosmochim. Acta, <u>29</u> , 1243-1261, (1965).                                                                                                                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 | D.C.G. Pearton, "Determination of relative sensitivity factors<br>for use in spark-source mass spectrometry", Randburg, Council for<br>Mineral Technology, Report M188, 9 pages, Feb 1985. |
| 15 | L.D.V. Grant, "The computer controlled microphotometer (UCOR)",<br>NIMR (CSIR) report, (August 1983).                                                                                      |
| 16 | Microdensitometer MD 100 instruction and operating manual.                                                                                                                                 |
| 17 | K.D. Schuy and J. Franzen, Z. Anal. Chem., <u>225</u> , 260, (1967).                                                                                                                       |
| 18 | D.E.C. Rogers and P.F.S. Jackson, Int. J. Mass Spec. and Ion Physics, <u>47</u> , 283 - 286, (1983).                                                                                       |
| 19 | P.R. Kennicott, "Trace Analysis by Mass Spectrometry". Ed.<br>A.J. Ahearn, Academic Press, 187-194, (1972).                                                                                |
| 20 | K.L. Ramakumar, V.A Raman, V.L. Sant, V.D. Kavimandan and<br>H.C. Jain, Int. J. Mass Spectrom. Ion Processes, <u>75</u> , 171,<br>(1987).                                                  |
| 21 | T.A. O'Donnel, "The Chemistry of Fluorine," Pergamon Press,<br>1062 - 1106, (1973).                                                                                                        |
| 22 | F.A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry,"<br>John Wiley & Sons, Fourth Edition, Part 2 & 3, (1980).                                                                    |
| 23 | B.P. Datta and H.C. Jain, Int. J. Mass Spectrom. Ion Processes,<br><u>68</u> , 219 - 237, (1986).                                                                                          |



- 24 G.J.J. Joubert, Interne verslag, Maart 1988, Atoomenergiekorporasie van Suid-Afrika, Beperk.
- 25 M. Ito, S. Sato and K. Yanagihara, Anal. Chim. Acta, <u>120</u>, 217-226, (1980).
- 26 G.I. Ramendik et al, Int. J. Mass Spectrom. Ion Processes, <u>63</u>, 1 - 15, (1985).
- 27 S. Becker and H.-J. Dietze, Z. Anal. Khim, <u>42</u> (9), 1604 1609, (1987).
- 28 R.C. Weast (Ed.). "Handbook of Chemistry and Physics", C R C Press, Cleveland, Ohio, 52nd edn., 1971 - 1972.
- 29 G.R. Long and J.D. Winefordner, Anal. Chem., <u>55</u> (7), 712 A, (1983).
- 30 W.C.A. van Niekerk, "Minimum meetvlakke in Analitiese Chemie: Kritiese beskouing van die IUPAC-definisie en statistiese evalueringsmetodes", Internal Lecture, Atomic Energy Corporation of South Africa Limited, 1986.
- 31 E. van Hoye, R. Gijbels and F. Adams, Talanta, <u>23</u>, 369-375, also 789-798, (1976).
- 32 J.D. Lee and T.D. Lee, "Statistics and Computer Methods in BASIC", Van Nostrand Reinhold Co. Ltd, Berkshire, 110.
- 33 W.J. Youden, "Statistical Methods for Chemists", Robert E. Krieger Pub. Co., Huntington, NY, (1977).



34 J.K. Taylor, Anal. Chem., <u>56</u> (2), 130A, (1984).

- 35 R. Welgemoed, Internal Report, May 1988, Atomic Energy Corporation of South Africa Limited.
- 36 J. Topping, "Errors of Observation and their Treatment", Chapman and Hall Ltd, London, Fourth Edition, 1972.
- 37 W.C.A. van Niekerk, Interne verslag, Augustus 1986, Atoomenergiekorporasie van Suid-Afrika Beperk.
- 38 J.C. Miller and J.N. Miller, "Statistics for Analytical Chemistry", Ellis Horwood Ltd, England, 85, (1984).
- 39 H.C. Hamaker, J. Assoc. Off. Anal. Chem., <u>69</u> (3), 417, (1986).
- 40 R.H. Albert, J. Assoc. Off. Anal. Chem., 69 (3), 429, (1986).
- 41 ISO Standards Handbook 3, Statistical Methods, Second edition, 424, (1981).
- 42 J.R. Bacon, Adv. Mass Spectrom., Part B (Proc. 10th Int. Mass Spectrom. Conf., Swansea, 9 - 13 Sept 1985), 1277, (1986).
- 43 G.I. Ramendik, O.I. Kryuchkova, D.A. Tyurin and S.I. Gronskaya, Zh. Anal. Khim., <u>43</u> (7), 1177 - 1183, (1988).
- 44 A. Chamel, A.M. Andreani, Hort. Science, <u>20</u> (5), 907 908, (Oct 1985).
- 45 D.F.S. Natusch, C.F. Bauer and A. Loh, "Air Pollution Control" Part III, John Wiley & Sons, 264 - 268, (1978).



- 46 H.C. Jain and K.L. Ramakumar, Adv. Mass Spectrom., <u>11B</u> (Proc. 11th Int. Mass Spectrom. Conf., Bordeaux, Fr., 29 Aug - 2 Sept 1988), 1640, (1989).
- 47 S. Deron, Adv. Mass Spectrom., <u>11B</u> (Proc. 11th Int. Mass Spectrom. Conf., Bordeaux, Fr., 29 Aug - 2 Sept 1988), 1746 - 1785, (1989).



# LINEAR REGRESSION FORMULAE [29]

•

y = mx + c

$$s_{xy} = \frac{\binom{n}{j=1} (\frac{x}{j}) - \binom{n}{j=1} (\frac{x}{j}) (\frac{x}{j})}{\binom{n}{j=1} (\frac{x}{j})^{2}} - \frac{\binom{n}{j=1} (\frac{x}{j})^{2}}{\binom{n}{j=1} (\frac{x}{j})^{2}}$$

$$s_{yy} = \frac{\binom{n}{(z - y)}}{\binom{n}{j=1} (\frac{y}{j})} - \frac{\frac{j=1}{j-1} (\frac{x}{j})}{\binom{n}{n}}$$

$$s_{xx} = \binom{n}{(z - y)} - \frac{\binom{n}{(z - y)^{2}}}{\binom{n}{n}}$$

$$s_{xy} = \binom{n}{(z - y)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}}$$

$$s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}}$$

$$s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}}$$

$$s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}}$$

$$s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}}$$

$$s_{xy} = \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}}$$



### APPENDIX B

TABLE OF ATOMIC AND MOLECULAR LINES FOR SPARK SOURCE MASS SPECTROMETRY OF

COMPLEX SAMPLE-GRAPHITE MIXES

R. A. BURDO AND G. H. MORRISON Department of Chemistry Cornell University, Ithaca, N.Y.

# ABSTRACT

A detailed table of atomic and molecular mass spectral lines has been prepared to aid in the interpretation of interferences and assignment of spectral lines in complex spectra arising from the spark source analysis of natural insulating powders blended with graphite to sustain the RF spark. The compilation consisting of 3000 listings is particularly useful for multielement trace analysis of geological and biological solids. Included are carbides, oxides, polymers, multiply-charged ions, and other molecular species of several or more major and minor elements as well as a large number of trace elements.



#### INTRODUCTION

Spark source mass spectrometry is a useful technique for multielemental trace analysis Spark source mass spectrometry is a useful technique for multielemental trace analysis of geological and biological solids. Such insulating materials are usually powdered and mixed with graphite to produce strong and conducting electrodes. However, the sparking of complex graphite mixes yields complicated spectra containing the carbides, oxides, polymers, multiply-charged ions, and other molecular species of several or more major and minor ele-ments as well as a large number of trace elements. The primary purpose of the following table is to aid in the interpretation of inter-ferences and assignment of spectral lines in complex spectra arising from the spark source analysis of natural insulating nowders in a graphite matrix. In a secondary sense, the table

analysis of natural insulating powders in a graphite matrix. In a secondary sense, the table may also be applied to other sample types or even to other fields of mass spectrometry such

may also be applied to other sample types or even to other fields of mass spectrometry such as ion probe analysis where molecular species become relatively more important. There are indeed other excellent mass tables available for general use, but they are limited for application to the specific problem as stated. More explicitly, the table of Owens and Sherman (1) is arranged by individual element with comprehensive coverage for certain kinds of species excluding carbides, oxides, and many molecular species. The table of Guthrie and Heath (2), albeit arranged by mass, excludes carbides, most oxides, charge-exchange species, and other species of interest. The aim herein is to include those species omitted in preceding tables but of possible interest in complex graphite systems, to arrange the table in order of ascending mass values, to include the relative abundance of each species listed, to indicate the theoretical resolution required to sepa-rate a listed species from a line of analytical value, and finally to be concise in format but comprehensive in scope. The latter requirement, has resulted in approximately 3000 listings each containing four data words and producing a text of approximately 12,000 words on a physical format of only thirteen pages.

Istings each containing four data words and producing a text of approximately 12,000 word on a physical format of only thirteen pages. The entire table was manually calculated, compiled, and typed and is therefore not meant as a manual of supercritical mass and abundance data, but merely as an interpretive and useful guide. The user must assume any liability of any kind incurred in the employ-ment of this table. Further, no claim is made as to the existence or nonexistence of any species listed herein, nor to that of any species accidentally or purposely omitted.

#### EXPLANATION OF TABLE

Each listing consists of a row of four words starting with the name of the species and followed by the mass, abundance, and resolutional requirement of the named species respectively.

### I. NOMENCLATURE OF SPECIES

The usual chemical notation is used to identify the elemental constuents of the species. A leading superscript refers to the nominal mass of the species and a trailing superscript refers to the positive charge of the species. The plus signs of the charge superscripts are omitted since all species are ions of positive charge. The charge superscripts omitted since all species are ions of positive charge. The charge superscript is omitted entirely for species having a single positive charge. A special two-digit charge superscript indicates a charge-exchange species where the first digit is the initial charge of the species before a charge-reducing collision and the second digit gives the resulting or final charge after collision. The general nomenclature and the special meaning of the nominal mass superscript are best illustrated by example.

#### Elementally Homogeneous Species I.A.

- 12C a singly-charged ion of carbon 12 a triply-charged ion of carbon 12 (a) :
- 12Č3 (ъ)

| (c) | 12 C2            | : | a homo-isotopic dimer of carbon and the only combination of carbon   |
|-----|------------------|---|----------------------------------------------------------------------|
|     | _                |   | isotopes having a nominal mass of 24. (Absence of superscript = +1). |
| (d) | <sup>25</sup> C2 | : | a hetero-isotopic dimer of carbon having a +2 positive charge and    |
|     |                  |   | containing all combinations of carbon isotopes having a nominal mass |
|     |                  |   | of 25. (Only one combination in this case).                          |

- of 25. (Only one combination in this case). a trimer of silicon containing all combinations of silicon isotopes giving a nominal mass of 86, ie,  ${}^{8}$  Si<sub>3</sub> = ( ${}^{28}$ Si<sub>2</sub> +  ${}^{30}$ Si) + ( ${}^{28}$ Si +  ${}^{29}$ Si<sub>2</sub>), where the parentheses indicate the combinations having the same nominal eeSis (e) • mass.
- 12C35 : (f)a charge-exchange species of carbon 12 where the initial charge is +3 and the final charge is +2.

I.B. Elementally Heterogeneous Species

<sup>28</sup>SiC : (a)

- <sup>41</sup>SiC : (b)
- a monocarbide of silicon 28 and the only significant\* combination of carbon and silicon isotopes having a nominal mass of 40. all the combinations\*\* of silicon and carbon isotopes having a nominal mass of 41, ie,  $\binom{29}{51} + \frac{12}{2}$  and  $\binom{29}{51} + \frac{13}{2}$ . the only significant\* combination of silicon and carbon isotopes having a nominal mass of 108, ie, there is only one silicon trimer of nominal mass 84 and only one carbon dimer of nominal mass 24. all the combinations\*\* of silicon trimer and carbon dimer having a nominal mass of 109, ie,  $\binom{85}{513} + \frac{12}{2}C_2$  and  $\binom{28}{513} + \frac{25}{2}C_2$ . <sup>28</sup>Si3C2: (c)
- <sup>109</sup>S1<sub>3</sub>C<sub>2</sub>: (d)

The word 'significant' means that if a single combination of isotopes is cited, then it is either the only possible combination or a combination which accounts for 99.0% or more of

- of the abundance of all possible combinations. The phrase 'all the combinations' means that the combinations included are either the only possible ones or that they cumulatively account for 99.0% or more of the abundance of all combinations.
  - The starred definitions have meaning in relation to the mass and abundance data following a cited species (see parts II and III).
- II. MASS (second word)

The masses of singly-charged species are taken from the table of Guthrie and Heath (2) and are rounded to five decimal places. Some elements are known to less than five places while others are only approximated vas producted by a (/) following the last digit in the mass value. Polymeric and heterogeneous species have masses equal to the sum of



the individual contributing masses. Charge-exchange masses are obtained by multiplying the singly-charged mass by a factor  $(m/n^2)$  where (m) is the initial and (n) the final charge of the ion. Multiply-charged ions have masses equal to the singly-charged mass divided by the

the ion. Multiply-charged ions have masses equal to the singly-charged mass divided by the integral number of positive charges. For species containing more than one combination of isotopes (eg., I.A.e, I.E.b, and I.B.d), the mass is that of the combination of isotopes which is the most abundant, as opposed to masses of single combinations which are unequivocal. The grouping of combinations of isotopes of the same elements to produce a species of the same chemical formula was performed to reduce the number of listings and is based on the fact that the combinations in a group are not resolvable with present commercial apparatus which have resolutions of 10,000 maximum and 5,000 or less practical.

#### <u>ABUNDANCE</u> (third word)

Isotopic abundances are based on Guthrie and Heath (2). Abundances apply only to species of the same kind (same chemical formula, same charge, but possibly different exact masses). For example, <sup>29</sup>SiC at mass 39.97693 comprises 31.19% of the total amount of silicon carbide formed from all combinations of silicon and carbon isotopes, <sup>41</sup>SiC at mass 40.97649 accounts for 5.67%, etc. The abundance of <sup>29</sup>SiC is that of a single combination while that of <sup>41</sup>SiC is the sum of the abundances of more than one combination. The abundances of molecular species which are elementally homogeneous are calculated using the binomial expansion according to Hill (3) or the equivalent probability formula given by Owens and Sherman (1) for polyatomic clusters:

 $RA = (A^{a}B^{b}C^{c}...N^{n})(M!)/(a!b!c!..n!)$ 

1.

where RA is the relative abundance of a given polyatomic cluster (a specified combination of isotopes) containing M total atoms of an element which has isotopes A', B', C',...N' with isotopic abundances A, B, C, ...N respectively and where the number of atoms of each isotope contained in the cluster is a, b, c, ...n respectively. The summation (a+b+c+...n) is equal to M. This formula is applied to each specific combination of isotopes until all possible combinations are exhausted.

For clusters containing different elements, the above formula is applied to each ele-ment individually and the abundance of the heterogeneous cluster is taken as the product of the indivual RA's for each element in the cluster.

The tabled abundances are given in percent. The appearance of an (E) in the tabled abundance indicates a negative exponential form so that 1.2E3, for example, means 00.0012%. For species containing more than one combination (seeI), the abundance is the sum of all combinations considered, whereas the mass is that of the most abundant combination.

#### IV. RESOLUTIONAL REQUIREMENT (fourth word)

Resolution is defined as  $R = M_0/4M$ .  $M_0$  is indicated in the table by a series of five dashes for a line of interest at each nominal mass unit and at some half-mass units where appropriate. A negative value for R indicates that the listed species occurs at a lower mass than  $M_0$ , the latter being indicated by the next dashed line. A positive value of R indicates a higher mass than  $M_0$  which is defined as the first previous dashed line. The appearance of an (E) in the resolution value indicates a positive exponential form so that 15E3, for example, means a resolution of 15,000. There are no exponential forms for resolutions less than 10,000 (= 10E3).

### V. SCOPE

The number and kinds of species included for each element depends on its definition as a major, minor, or trace constituent in geological and biological samples. Carbon, being the matrix considered, is defined as a major element. Other defined majors are oxygen, sodium, silicon, phosphorous, sulfur, potassium, calcium, titanium, and iron. Minors are given as chromium, nickel, zinc, strontium, zirconium, and barium. Most other elements are defined as trace.

defined as trace. For trace elements the species considered are: singly-and-multiply charged ions up to +3, polymerization up to the dimer only, mono-and-dicartides, and mono-and-di-oxides. For minor elements the species are: singly-and-multiply charged ions up to +4, polymer-ization up to the trimer, formation of cxide up to the trioxide and cartide to the tricartide, and charge-exchange species with initial charges of +4 or less. Major elements have more extensive coverage: singly-and-multiply charged ion up to +6, polymerization up to four atoms, formation of tetra-oxide and tetra-cartide, charge-exchange species with initial charge of 7 or less, and some complex species having two atoms of the major species and one to three atoms or carbon or oxygen. Polymer formers such as carbon, aluminum, and silicon are considered to form even more complex species and some combinations of these elements with other major elements are included. Appropriate higher degrees of polymerization and carbide and oxide formation are listed for these three elements. Only the lower-charged species of rare gases are considered.

polymerization and carbide and oxide formation are fisted for these three elements. Only the lower-charged species of rare gases are considered. Hydrocarbons up to mass 100 are included. The first hydrides(MH) of all elements from lithium to molybdenum plus barium, lan-thanum, and cerium are also listed. The mass range covered is from 1 to 270 with reductions in the number of entries from mass 210 to 270 where only two elements, thorium and uranium, are of interest.

#### REFERNCES

1. E.B. Owens and A.M. Sherman, Mass Spectrographic Lines of the Elements, MIT Tech. E.B. Owens and A.M. Sherman, Mass Spectrographic Lines of the Elements, Mill Tech. Rep. No. 265, 1962
 J.W. Guthrie and R.L. Heath, Table of Atomic Masses, Sandia Corporation Monograph SCR-245, 16th Ed., 1961
 H.C. Hill, Introduction to Mass Spectrometry, Heydon and Son, London, 1966

| 1 <sub>H</sub><br>3402                                | 1.00782              | 99.985           |                         | 3656<br>3616                                        | 5.99451            | 00.014             | - 292          | 43Ca5                                               | 8.59176            | 00.146         |                |
|-------------------------------------------------------|----------------------|------------------|-------------------------|-----------------------------------------------------|--------------------|--------------------|----------------|-----------------------------------------------------|--------------------|----------------|----------------|
| 1206                                                  | 2.00000              | 98,893           | - 143                   | <sup>30</sup> S1 <sup>5</sup>                       | 5.99459            | 00.337             | - 293<br>- 295 | 26 <sub>Mg</sub> 3                                  | 8.65675            | 83.76<br>11.17 | -2107          |
| <sup>4</sup> He <sup>2</sup>                          | 2.00130              | 99.999           | - 157                   | 24 Mg4<br>25 Mg 65                                  | 5.99626            | 78.70              | - 319          | 35C14                                               | 8.74221            | 75.529         |                |
| °Li <sup>j</sup><br>2D                                | 2.00500              | 07.42            | - 221                   | 1803                                                | 5.99972            | 00.204             | - 391          | 44Ca5                                               | 8.79110            | 02.06          | + 026          |
| 1 H2                                                  | 2.01565              | 99.970           | +1300                   | 12 C2<br>87 4                                       | 6.00000            | 98.893             | - 398          | 53 Cr <sup>6</sup>                                  | 8.82344            | 09.55          |                |
| <sup>13</sup> C <sup>6</sup>                          | 2.16723              | 01.107           |                         | 515                                                 | 6.01512<br>6.10/76 | 100.000            |                | 54~ 6                                               | 8.88606            | 99.759         | 107            |
| 120'0<br>7143                                         | 2.33328              | 99.893           |                         | 14N43                                               | 6,22358            | 99.63 <sup>4</sup> | - 273          | 54Fe <sup>6</sup>                                   | 8.98993            | 02.30          | - 405          |
| 13C76                                                 | 2.52837              | 01.107           |                         | <sup>26</sup> Mg <sup>65</sup><br>25Mg <sup>4</sup> | 6.23582            | 11.17              | - 587          | 45 Sc <sup>5</sup>                                  | 8.99118            | 100.000        | - 429          |
| 1909<br>1909                                          | 2.60067              | 01.107           |                         | 19 F3                                               | 6.33280            | 100.000            |                | 36A4                                                | 8.99189            | 00.337         | - 441<br>- 444 |
| 14N5                                                  | 2.80051              | 99.634           |                         | 3255<br>27 1 85                                     | 6.39441            | 95.0               | 303            | 27A13                                               | 8.99384            | 100.000        | - 491          |
| 1708<br>12085                                         | 2.83319              | 00.037           |                         | зэКе                                                | 6.49395            | 93.10              | - 3820         | 15 <sup>C</sup> 35                                  | 9.00000            | 98.893         | - 739          |
| 1806                                                  | 2.99986              | 00.204           | - 186                   | 26Mg4<br>1302                                       | 6.49565            | 11.17              |                | ₽Be                                                 | 9.01219            | 100.000        |                |
| 12 <sup>74</sup>                                      | 3.00000              | 98.893           | - 187                   | 33 <u>5</u> 5                                       | 6.59429            | 00.76              | +1011          | 29 S154<br>55Mp 6                                   | 9.05515            | 04.70          | + 210          |
| °Be <sup>3</sup><br>°L†2                              | 3.00407 ]            | 100.000<br>07.42 | - 252                   | 40 A 6<br>40 Ca 6                                   | 6.66040            | 99.6<br>96.97      | -22E4          | 4 <sup>6</sup> T1 <sup>5</sup>                      | 9.19053            | 08.00          |                |
| 3 He                                                  | 3.01603              | 01.4E4           |                         | 40Ke                                                | 6.66067            | 00.012             | +27E3          | 46Ca <sup>5</sup><br>37 C1 4                        | 9.19074            | 00.003         | +44E3          |
| SH2                                                   | 3.01605              | 00.030           | +15E4<br>+ 512          | <sup>20</sup> Ne <sup>3</sup><br>12053              | 6.66415            | 90.92              | +1790          | 5°Fe <sup>6</sup>                                   | 9.32249            | 91.66          | -2961          |
| 16078                                                 | 3,11051              | 99.759           |                         | 28 S1 65                                            | 6.71446            | 92.21              | +100+          | 28513<br>39865                                      | 9.32564            | 92.21          | - 604          |
| 13 Ce5                                                | 3.12080              | ói.ió7           |                         | 27A14<br>34c5                                       | 6.74538<br>6.79358 | 100.000            |                | 30 S154                                             | 9.36680            | 03.09          |                |
| 13C4                                                  | 3.19898<br>3.25084   | 99.759           |                         | 41K6                                                | 6.82697            | 06.88              |                | <sup>47</sup> T1 <sup>5</sup><br>17053              | 9.39075<br>9.44396 | 07.29          |                |
| 17076                                                 | 3.30531              | 00.037           |                         | <sup>29</sup> S1 <sup>65</sup>                      | 6.95436            | 04.70              |                | 57 Fe 6                                             | 9.48923            | 02.19          | - 953          |
| 1705                                                  | 3.33765              | 19.61<br>00.037  |                         | <sup>42</sup> Ca <sup>5</sup><br>35C15              | 6.99310<br>6.99377 | 00.64<br>75.529    | - 306          | 38Å4                                                | 9.49068            | 00.063         | -1115          |
| 18076                                                 | 3.49976              | 00.204           | - 437                   | 28S14                                               | 6.99423            | 92.21              | - 322          | 19 <sub>F</sub> ≥<br>48m-∤5                         | 9.49920            | 100.000        |                |
| - * N *<br>7 L i <sup>2</sup>                         | 3.50800              | 99.634           | - 485<br>               | <sup>21</sup> Ne <sup>3</sup><br>14 <sub>N</sub> 2  | 6.99795<br>7.00154 | 00.257<br>99.638   | - 389<br>- 485 | 48 Ca 5                                             | 9.59051            | 00.185         | +10E3          |
| 1805                                                  | 3.59983              | 00.204           |                         | 7Li                                                 | 7.01600            | 92.58              |                | **Ca **                                             | 9,59102            | 02.06          | +6706          |
| 12 054                                                | 3.66977              | 80.39<br>98.893  |                         | °LiH                                                | 7.02282            | 07.42              | +1029          | 58 Fe8                                              | 9.65555            | 00.33<br>69.18 | -2945          |
| 15 <sub>N</sub> 4                                     | 3.75003              | 00.366           |                         | 43 <sub>Ca</sub> 6                                  | 7.10885            | 99.759<br>00.146   |                | 29 S13                                              | 9.65883            | 04.70          |                |
| 16065                                                 | 3.83163 J<br>3.83878 | 99.759           |                         | 23Na54                                              | 7.18431            | 100.000            |                | 39 <sub>K</sub> 4                                   | 9.67930            | 93.10          | + 472          |
| 24 <sub>Mg</sub> 6                                    | 3.99751              | 78.70            | - 786                   | 365105<br>3655                                      | 7.19370            | 03.09              | + 765          | 13032                                               | 9.75252            | 01.107         | + 840          |
| 1604                                                  | 3.99873              | 99.759           | -1034                   | 36Å5                                                | 7.19351            | 00.337             | + 781          | <sup>49</sup> Ti <sup>5</sup><br>597.8              | 9.78957            | 05.51          |                |
| 4He                                                   | 4.00000              | 99.999           | -1540                   | 29 Si <sup>4</sup>                                  | 7.22409            | 04.70              |                | 41Kes                                               | 9.83084            | 93.10          | +1138          |
| <sup>2</sup> H <sub>2</sub>                           | 4.02820              | 02.0E4           | + 156                   | 44 Ca 8                                             | 7.32592            | 02.06              |                | <sup>so</sup> Ni <sup>s</sup>                       | 9.98846            | 26.23          | - 409          |
| 13054<br>17085                                        | 4.06355              | 01.107           |                         | 37 C15                                              | 7.39318            | 24.471             | +T0T4          | 50 T15                                              | 9.98896            | 05.34          | - 410          |
| 25 <sub>Mg</sub> 6                                    | 4.07979<br>4.16431   | 10.13            |                         | 31p85<br>45co8                                      | 7.43370            | 100.000            | -0100          | 50V5                                                | 9.98943            | 00.24          | - 426          |
| 170 <sup>4</sup><br>18065                             | 4.24978              | 00.037           |                         | <sup>30</sup> Si <sup>4</sup>                       | 7.49344            | 03.09              |                | 20 <sub>Ne</sub> 2                                  | 9.99127            | 90.92          | - 599          |
| 2 6 <sub>Mg</sub> 6                                   | 4.33043              | 11.17            | - 829                   | 24Mg <sup>54</sup><br>15M <sup>2</sup>              | 7.49533            | 78.70              | +3965<br>±1134 | 18053<br>105                                        | 9.99953            | 00.204         | - 747          |
| 1303<br>14154                                         | 4.33445              | 01.107           |                         | 17043                                               | 7.55170            | 00.037             |                | <sup>10</sup> Be                                    | 10.01294           | 19.61          | +17E3          |
| 27Å] 6                                                | 4.49692 ]            | 100.000          | -1570                   | 32565<br>3104                                       | 7.67330            | 95.0               |                | <sup>9</sup> BeH                                    | 10.02001           | 99.985         | +1416          |
| 1804<br>9265                                          | 4.49979              | 00.204           | <b></b><br><b>-</b> 713 | 39K5                                                | 7.79274            | 93.10              |                | <sup>e1</sup> Ni <sup>e</sup><br>51,75              | 10.15518           | 01.19          |                |
| 2 <sup>3</sup> Na <sup>5</sup>                        | 4.59796              | 100.000          | 1 1 22                  | 2⊃Mg э∓<br>47 m 1 8                                 | 7.80807            | 10.13              | + 508<br>+ 240 | 23Na43                                              | 10.21767           | 100.000        |                |
| <sup>c o</sup> Si <sup>6</sup><br>14 N <sup>3</sup>   | 4.66282<br>4.66769   | 92.21<br>99.634  | - 960<br>               | 48 <sub>T1</sub> 6                                  | 7.99132            | 73.98              | -1303          | 41K4<br>82 N4 8                                     | 10.24046           | 06.88          | -3006          |
| 19 <sub>F</sub> 4                                     | 4.74960 1            | 100.000          |                         | 48 Ca 6                                             | 7.99209            | 00.185             | -1489          | 31P3                                                | 10.32459           | 100.00         |                |
| 29 S16                                                | 4.79717              | 78,70            |                         | 40 Ca 5                                             | 7.99240            | 99.6<br>96.97      | -1619          | 63 Cu 6                                             | 10.38810           | 83.76          | -7547          |
| 30 <sub>S1</sub> 6                                    | 4.99563              | 03.09            |                         | 40K5                                                | 7.99280            | 00,012             | -1717          | 42 Ca 4                                             | 10.48966           | 00.64          |                |
| 25 Mg 5                                               | 4.99717              | 10.13            | +3240                   | 24 <sub>Mg</sub> 3                                  | 7.99502            | 92.0<br>78.70      | -3264          | <sup>21</sup> Ne <sup>2</sup><br>14 <sub>N</sub> 32 | 10,49692           | 00.257         | +1445<br>+ 829 |
| 15N3                                                  | 4.99841<br>5.00004   | 99•759<br>00.366 | +1797<br>+1130          | 180 <sup>2</sup><br>18043                           | 7.99746            | 99.759             |                | 44 Ca. 65                                           | 10.54932           | 02.06          | ,              |
| 10 <sup>B2</sup>                                      | 5.00647              | 19.61            | + 461                   | 7LiH                                                | 8.02382            | 92.57              | + 303          | 34g54                                               | 10.58813           | 09.55          |                |
| 31p8                                                  | 5.16229              | 100.000          |                         | 2 6 <sub>Mg</sub> 54                                | 8.11956            | 11.17              |                | 64N18                                               | 10.65466           | 01.08          | -3947          |
| 170 <sup>54</sup>                                     | 5.31223              | 00.037           | - 275                   | 34 <u>5</u> 85                                      | 8.15229            | 04.22              | -1434          | 32 <sub>S</sub> 3                                   | 10.65486           | 48.89<br>95.0  | -4262          |
| 3256<br>1603                                          | 5.32868              | 95.0             | -1801                   | 41K2                                                | 8.19237            | 06.88              |                | 24 Mg 43                                            | 10.66002           | 78.70          | +1702          |
| 12 643                                                | 5.33333              | 98.893           | +3149                   | 3354<br>50m,8                                       | 8.24287            | 00.76              | -1847          | 54Cr5                                               | 10.78777           | 02.38          | - 224<br>-72E3 |
| 3356<br>1152                                          | 5.49524              | 00.76            | - 585                   | 50 Cr <sup>6</sup>                                  | 8.32434            | 04.31              | -1950          | 54Fe <sup>5</sup>                                   | 10.78792           | 05.82          |                |
| 28 S15                                                | 5.59539              | 92.21            | •                       | 50 <sub>0</sub> 8<br>25 <sub>М~</sub> 3             | 8.32453            | 00.24              | -2040          | 55 Mr 5                                             | 10.08741           | 100 00         | - 507          |
| 18054<br>3456                                         | 5.62474<br>5.66131   | 00.204           | -1120                   | 42 Ca 5                                             | 8.39173            | 00.64              | + 132          | eezne                                               | 10.98768           | 27.81          | - 509          |
| 17 03                                                 | 5.66638              | 00.037           |                         | 27A154<br>19F43                                     | 8.43173            | 100.00             | + 703          | 44Ca4<br>33c3                                       | 10.98887           | 02.06          | - 539          |
| <sup>- 3</sup> Na <sup>4</sup><br>24 <sub>Mo</sub> 85 | 5.74745 1<br>5.75641 | 78.70            | + 642                   | 51 <sub>V</sub> 8                                   | 8.49066            | 99.76              | - 954          | <sup>22</sup> Ne <sup>2</sup>                       | 10.99569           | 08.82          | - 808          |
| 13 c 43                                               | 5.77926              | 01.107           | + 181                   | 3454                                                | 8.49197            | ó4.22              | -1118          | В<br>10 вн                                          | 11.02076           | 80.39<br>19.61 | + 962          |
| ²°Si⁵                                                 | 5.79530              | 04.70            |                         | 170 <sup>2</sup>                                    | 8.49957            | 00.037             |                | 40T1 05                                             | 11.02863           | 08.00          | + 570          |

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI VA PRETORIA 178

| 25 <sub>52</sub> 43            | 11.10482              | 10.13                                   |               | <sup>68</sup> Zn <sup>5</sup>      | 13.53497  | 18.57         |                 | 58Fe54                                    | 17.47967 | 91.66           | -3680        |
|--------------------------------|-----------------------|-----------------------------------------|---------------|------------------------------------|-----------|---------------|-----------------|-------------------------------------------|----------|-----------------|--------------|
| 37 Zn 3                        | 11.15452              | 04.11                                   | - 344         | <sup>4 1</sup> K <sup>3</sup>      | 13.65394  | 03.38         |                 | <sup>7</sup> <sup>o</sup> Zn <sup>4</sup> | 17.48134 | 00.62           | -5677        |
| 56 <u>-e</u> 5                 | 11.18699              | 51.66                                   |               | 57 Fe <sup>65</sup>                | 13.66450  | 02.19         | +1293           | 35012                                     | 17.48442 | 75.529          |              |
| 45 Sc 4                        | 11.23898              | 100.00                                  |               | <sup>55</sup> Mn <sup>4</sup>      | 13.73451  | 100.00        |                 | 53Cr3                                     | 17.64688 | 09.55           |              |
| 47 Ti 65                       | 11.26842              | 07.29                                   |               | <sup>44</sup> Ca <sup>54</sup>     | 13.73609  | 02.06         | +8693           | 40 Ca 43                                  | 17.76115 | 96.97           |              |
| <sup>se</sup> Zn <sup>s</sup>  | 11.32081              | 18.57                                   | -6256         | 31P43                              | 13.76612  | 100.00        | + 434           | 3253                                      | 17.76226 | 95.0            | +1923        |
| 3453                           | 11.52262              | 04.22                                   |               | <sup>69</sup> Ga <sup>5</sup>      | 13.78514  | 60.4          | + 271           | ∍′Ee⊐"                                    | 17.79251 | 02.19           | + 510        |
| 57 - 5                         | 11.58703              | 02.19                                   |               | 58 Fe <sup>65</sup>                | 13.90400  | 00.33         |                 | 54 Cr <sup>3</sup>                        | 17,97962 | 02.38           | - 921        |
| െപ്പ്പ                         | 11.48762              | 60.4                                    | -1581         | 560.4                              | 17 08274  | 01 00         | ROL             | 54 - 3                                    | 17 97987 | 05.32           | - 933        |
| 4 ôr i 4                       | 11.48816              | 08.00                                   | -1708         | 707.5                              | 17.90074  | 91.55         | - 724           | 3 egž                                     | 17.98354 | 00.014          | -1152        |
| 4 8 Ca 4                       | 11.48842              | 00.003                                  | -1777         | 70755                              | 17.35460  | 20.52         | - / 55          | 3682                                      | 17.98377 | 00.337          | -1170        |
| 23 <sub>Na</sub> 2             | 11.49489              | 100.000                                 |               | 43 003                             | 13 08601  |               | - //0           | 241032                                    | 17,98878 | 78.70           | -1734        |
| 48 7 4 65                      | 11.50751              | 73.98                                   | + 911         | 28012                              | 17 098/17 | 00.64         | - 021           | 180                                       | 17,99916 | 00.204          |              |
| 26 43                          |                       | , , , , , , , , , , , , , , , , , , , , |               | 14N                                | 10.90047  | 92.21         | - 959           | 12 02                                     | 18.00000 | 96.71           | +21E3        |
| Mg                             | 11.54782              | 11.17                                   |               | 140                                | 14.0000   | 99.624        | .2017           | ษะถ้                                      | 18.01056 | 99.747          | +1579        |
| Seres                          | 11.58666              | 00.33                                   | -28E3         | 1364                               | 14.00524  | LT.UI         | +0252           | SLIC                                      | 18.01500 | 07.34           | +1136        |
| <sup>33</sup> Ni <sup>3</sup>  | 11.58707              | 69.18                                   |               | 12 01                              | 14.01115  |               | +1/26           | 9 8eo                                     | 18.02439 | 100.00          | +713         |
| Gee                            | 11.65400              | 20.52                                   | -5112         | 7 T CH2                            | 14.01565  | 98.863        | +1113           | 14 <sub>NH</sub>                          | 18.03437 | 99.584          | + 511        |
| Zno                            | 11,65422              | 00.62                                   | -5658         | Ll2                                | 14.05200  | 85+71         | + 484           |                                           | -0 -0 -0 | 00 77           |              |
| 35013                          | 11.65628              | 75.529                                  |               | 32 <sub>5</sub> 43                 | 14.20981  | 95.0          | - 593           | 11:43                                     | 15.10415 |                 |              |
| 7′T17                          | 11.73794              | 07.29                                   |               | <sup>57</sup> Fe <sup>4</sup>      | 14.23385  | 02.19         |                 | 41K-3                                     | 18.20526 | 106.00          |              |
| 2°Co2                          | 11.78664              | 100.00                                  |               | 19 <sub>F</sub> 35                 | 14.24880  | 100.00        | + 952           | 37 m                                      | 18.91269 |                 |              |
| ('Ga°                          | 11.32080              | 39.6                                    |               | 46T154                             | 14.36020  | 08.00         |                 | 3, C1-                                    | 18.45295 | 24.4/1          | - 087        |
| 60 N 1 5                       | 11.98615              | 26.23                                   | - 866         | <sup>43</sup> Ca <sup>3</sup>      | 14.31959  | 00.146        |                 | 3 / C5                                    | 12.20100 | 2.25            | <b>-</b> >07 |
| 50 m 1 35                      | 11.98675              | 05 45                                   | - 906         | 2 6 <sub>Mg</sub> 5 3              | 14.43477  | 11.17         |                 | 58 <sub>Fe</sub> 3                        | 18.64498 | 91.66           |              |
| 7225                           | 11 08:03              | 27 43                                   | - 018         | 59-4                               |           |               | 0010            | 25 <sub>Mg</sub> 32                       | 18.73938 | 10.13           |              |
| 49714                          | 11 09200              | 73.08                                   | - 910         | 50 Fe                              | 14.40222  | 00.22         | -2945           | з4 <sub>5</sub> 5э                        | 18.87103 | 04.22           |              |
| 50 7, 35                       | 11 08705              | 04 31                                   | - 027         | 29 212                             | 14.40,004 | 69.10         | - 2226          | =7 = 3                                    | -0.07017 | 00.10           | 053          |
| 48754                          | 11 08813              | 00 186                                  | -1011         | 44 2 3                             | 14.40025  | 04.70         |                 | o re                                      | 18.9/04/ | 02.19           | - 900        |
| 3623                           | 11 08003              |                                         | -100#         | ••℃a<br>47                         | 14.65103  | 02.06         |                 | JGAE                                      | 10.90101 |                 | -1773        |
| 3613                           | 11 08012              | 00.014                                  | -1110         | * 1712                             | 14.67242  | 07.29         | + イエク           | 192                                       | 18.99840 | 100.00          |              |
| 271143                         | 11.90910              | 100.550                                 | -1110         | Sa Co.                             | 14.73330  | 100.00        | 2.47            | 38 C S                                    | 19.00336 | 00.036          | +3830        |
| 2411-2                         | 11.99100              | 100.00                                  | -1462         | NI NI                              | 14.98269  | 26.23         | - 861           | 13OH                                      | 19.00698 | 00.204          | +2214        |
| 1 4 4 3 2                      | 11.99252              | (3.70                                   | -1604         | *°T12*                             | 14.98373  | 73.98         | - 916           | H <sub>2</sub> O                          | 19.01477 | 00.037          | +1161        |
| 120                            | 11.99619              | 99.759                                  | -2150         | #PSc2                              | 14.98531  | 100.00        | -1014           | <sup>19</sup> LiC                         | 19.01600 | 91.64           | +1079        |
|                                | 12.00000              | 90.092                                  |               | Si                                 | 14.98688  | 03.09         | -1134           | HaO                                       | 19.01837 | 99.714          | + 951        |
| -BH                            | 12.01713              | 30.33                                   | + 701         | 2/A193                             | 14.98974  | 100.00        | -1446           |                                           |          |                 | - 0 <b></b>  |
| <sup>5</sup> Li <sub>2</sub>   | 12.03000              | 00.551                                  | + 400         | TPN                                | 15.00011  | 00.366        |                 | seres                                     | 19.31110 | 00.33           | -2050        |
| 73 ~ 6                         |                       |                                         |               | 12 CH3                             | 15.02347  | 98.523        | + 642           | - NT-                                     | 19.31178 | 69.18           |              |
| Geo                            | 12.15389              | 07.78                                   | - 547         | 14NH                               | 15.01090  | 99.509        | +1390           | 39K5                                      | 19.48186 | 93.10           |              |
| SU KUT                         | 12.17616              | 93.10                                   |               | 34043                              | 15 09683  | 04.22         |                 | 2 Mg32                                    | 19.48695 | 11.17           | +3827        |
| 11                             | 12.18622              | 01.13                                   | +1510         | 51N+4                              | 15 23277  | 01 13         |                 | 44Ca43                                    | 19.53577 | 02.06           | + 361        |
| 7426                           | 12.23697              | 05.51                                   | -01           | 4 5 - 3                            | 15 31754  |               | _L3F3           | 50 m 3                                    | 10 07602 | 26.23           | -1288        |
| <u>f</u> geg                   | T5°250T/              | 26•2 <u>4</u>                           | -6845         | 467.3                              | 15 31700  | 00.003        |                 | 40 12                                     | 10 08110 |                 | -1777        |
| 'Se'                           | 12.52042              | 00.87                                   | -7950         | 62 N - 4                           | 15 18200  |               |                 | 40 00 2                                   | 10 08120 | 99.00           | -1793        |
| CT CT                          | 15.25181              | 24.471                                  |               | 3152                               | 15 18688  | 100.00        | - ) 2 ) )       | 40 <del>,,</del> 2                        | 10 28200 |                 | 1015         |
| SzN15                          | 12.38567              | 03.66                                   |               | 35 - 33                            | 19.40000  | 100.00        | 1 (* 17 7       | 20 10                                     | 10.00200 |                 | -1910        |
| 28Si43                         | 12.43418              | 92.21                                   |               | 28 21 53                           | 15.541/1  | (5.549        | -1262           | - NG                                      | 19.99244 | 90,92           | 11/151       |
| 52 Cr 65                       | 12.46752              | 33.76                                   | - 459         | 507.54                             | 15.54274  | 92.21         |                 |                                           | 20.00022 | 00 200          |              |
| 50Ti4                          | 12.48620              | 05.45                                   | -1859         | 5011154                            | 15.50775  | 05.24         |                 | 120                                       | 20.01400 | 00.204          | - + 094      |
| 50Cr4                          | 12.48651              | 04.31                                   | -1949         | o Croi                             | 15.60814  | 04. <u>91</u> | +40セン           | 1002                                      | 20.02565 | UD.35           | + 590        |
| 50 <sub>V</sub> 4              | 12.48679              | 00.24                                   | -2038         | <sup>33</sup> Cu <sup>*</sup>      | 15.73240  | 69.09         |                 | 27 1 32                                   | 20.23616 | 100.00          |              |
| <sup>75</sup> As <sup>3</sup>  | 12.49695              | 100.00                                  | -2093         | TITI                               | 15.65059  | 01.21         |                 | e1ਜ਼ੋੜੇ3                                  | 20.31036 | 01.19           |              |
| 4° Ca54                        | 12.48831              | 96.97                                   | -2710         | 64N14                              | 15.98199  | 01.08         | -1238           | 4 3 4 3                                   | 20.42330 |                 |              |
| <sup>25</sup> Mg <sup>2</sup>  | 12.49292              | 10.13                                   |               | 64Zn4                              | 15.93229  | 48,35         | -1267           | 4122                                      | 20.48002 | 06.33           |              |
| 63 7.,5                        | 10 53500              | so co                                   |               | 49743                              | 15.98265  | 73.93         | -1305           | -32 <del>. 1</del> 3                      | 20.84273 | 03.66           |              |
| 3813                           | 12 000094<br>10 85/0/ | 00.083                                  |               | 48 Ca 3                            | 15.98413  | 00.135        | -1401           | 47 - 43                                   | 20.86745 | 07.29           |              |
| 53 ~ , 65                      | 10 00578              |                                         | - 448         | 3252                               | 15.98604  | 95.0          | -1303           |                                           | 20.001.7 | 0,020           |              |
| 51.4                           | 12 73500              |                                         |               | 1 eO                               | 15,09491  | - 99. T59     |                 | <u> </u>                                  | 20.97653 | 69.09           | -1212        |
| 17 632                         | 10 74035              | 00 037                                  | + 053         | 15NH                               | 16.00793  | 00.366        | +1229           | 34574                                     | 20.97831 | 00.56           | -1351        |
| 23 1 53                        | 12 77200              | 100.00                                  | - 231         | 14NH2                              | 16.01872  | 99.955        | + 671           | - Tacar                                   | 20.37931 | 00.54           | -1444        |
| 64 11 - 5                      | 10 79650              | 100.00                                  | -5353         | 12 CH4                             | 16.03130  | <u>98.341</u> | + 400           | 205102                                    | 20.98270 | 92.21           | -1383        |
| 6475                           | 12.73583              | 42.80                                   | //<br>        | 29 ~ . 5 7                         | 10.00005  |               |                 | ~_Se                                      | 20.99385 | 00.257          |              |
| 41254                          | 12,80057              | 06.88                                   | + 867         |                                    | 16.09805  | 04.70         | 2072            | ĭ∃eC                                      | 21.01219 | 98.89           | +1144        |
| 29 . 43                        | 12.87843              | 04.70                                   |               | - Cr - 4                           | 10.20141  |               | - 20122         | 2 - E2                                    | 51.05552 | ¢1.52           | + 739        |
| 540,65                         | 10 04633              | 02.38                                   | - 224         | Cu-<br>49m+3                       | TP.52TAD  | 20.91         |                 | 95 <sub>2b</sub> 4                        | 21.22801 | 72.15           |              |
| 54 - 65                        | 12 24551              | 03 32                                   | - 225         |                                    | 16.01096  | 02.51         | 7007            | 54 11 3                                   | 21.30932 | 01.03           | -5553        |
|                                |                       | 0,                                      |               | 33 <i>c</i> 2                      | 10.40171  | 27.01         |                 | 34 Zn3                                    | 21.30971 | E3 89           |              |
| >2Cr4                          | 12.93513              | 83.76                                   | - 713         | 532 54                             | 16.40575  | 00./5         |                 | 48 43                                     | 21.31020 | <u>ร</u> รุ วล์ | +4353        |
| 55 Cu <sup>5</sup>             | 12,98556              | 30.91                                   | - 731         | 50013                              | 10.54545  | V7•22         |                 | 36~ 1                                     |          |                 | • •          |
| зөКз                           | 12.98790              | 93.10                                   | - 841         | 50212                              | 16.64026  | 05.24         | 1057            |                                           | 21.47754 | 07.86           | -11E3        |
| <sup>2 6</sup> Vg <sup>2</sup> | 12.99130              | 11.17                                   | -1078         | Cr <sup>-</sup>                    | 10.54050  |               | ++02フ<br>よう1 マネ | - Caf                                     | 21.47939 | -00.146         |              |
| 13C                            | 13.00336              | 01.107                                  |               | 30 0+53                            | 16.64905  | 00.24         | キビエニン           | 39.0 <b>U</b> 3                           | 21.64259 | 20.91           |              |
| 12 CH                          | 13.00782              | 98,378                                  | +2916         | $-51^{-4}$                         | 10.05209  |               | 4-4 J.4         | 87 ~ 4                                    | 21.64650 | 75.10           | +2235        |
| <sup>13</sup> Li <sub>2</sub>  | 13.03112              | 13.74                                   | + 468         | ~'Zn*                              | TP.()T(Q  | 04.11         |                 | Sr                                        | 21.72725 | 09.36           | -27 E4       |
| -<br>55M-65                    | 13 18613              | 100 00                                  | - 265         |                                    | 10.000000 | 02.00         |                 |                                           | =1.72733 | 2(.35           |              |
| 867 <u>~</u> 5                 | 13 18501              | 27 81                                   | - 265         | -7₹e9 <b>*</b>                     | 15.35613  | 05.32         | キィラニク           | - SI32                                    | 21.73237 | 04.70           | +4311        |
| 5304                           | 13 03610              | 00 EE                                   |               | <sup>68</sup> Zn <sup>4</sup>      | 16,98122  | 18.57         | - 949           | <sup>66</sup> 7n <sup>3</sup>             | 21.97575 | 27-81           | -0157        |
| 4013                           | 13 30080              | 22.22                                   | -22 FL        | sı <sub>V</sub> 3                  | 16,98133  | 99.75         | - 955           | 39574                                     | 21.97650 | 82.56           | -1847        |
| 40 0 3                         | 13 30080              | 77.50                                   | - a a s = = = | 34 <sub>S</sub> 2                  | 16.98393  | ó4.22         | -1118           | 447,22                                    | 21.97775 | 02.06           |              |
| - ∪a<br>40-⁄-3                 | 13 30133              | 20.97                                   | 10823         | 170                                | 16,99913  | 00.037        |                 | 22110                                     | 21,99138 | 08.82           | +1612        |
| 30 C + 43                      | 17.76122              | 00.012                                  | +202J<br>1753 | 1 SOH                              | 17,00274  | 99.747        | +4709           | <sup>€</sup> 1.10                         | 22.00001 | 07.40           | + 683        |
| 244-53                         | 17.30500              | 78 70                                   | +3202         | 14NH2                              | 17.02655  | 99.593        | + 320           | 1020                                      | 22.01294 | 19.39           | + 625        |
| Mig                            | 12.2505               | 10.10                                   | TJEVE         |                                    |           | 100 000       |                 | 118                                       | 22.01861 | 64.63           | + 574        |
| <sup>67</sup> Zn <sup>5</sup>  | 13.38543              | 04.11                                   |               | <sup>&gt;</sup> Mn <sup>&gt;</sup> | 17.16814  | T00.000       |                 | =                                         |          |                 |              |
| 5 6 <sub>7</sub> e 65          | 13.42439              | 91.66                                   |               | 31p53                              | 17.20765  | 100.000       |                 | >0T143                                    | 22.19768 | 05.34           | - 773        |
| 54(Jr4                         | 13.48472              | 02.38                                   | -2230         | 23 Na32                            | 17.24234  | 100.000       |                 | SC Cr43                                   | 22.19824 | 04.31           | - 738        |
| 547e4                          | 13.48490              | 05.82                                   | -2298         | 52Cr <sup>3</sup>                  | 17.31350  | 83.75         |                 | Ca_53                                     | 22.20143 | _96.97          | - 339        |
| 27 A12                         | 13.49077              | 100.00                                  |               | 39K43                              | 17.31720  | 93.10         | +4579           | 8974                                      | 22.22643 | 100.00          |              |
| 18032                          | 13.49937              | 00.204                                  | +1569         | -                                  |           |               |                 | °′Zn <sup>3</sup>                         | 22.30905 | 04.11           |              |



| 90Zr4                                               | 22.47608             | 51.48           | -12E3          | <sup>50</sup> Ti <sup>53</sup><br>500753                        | 27.74710             | 05.34           | -39E3           | <sup>38</sup> Zn <sup>2</sup>                         | 32.96302             | 27.81           | -3907                   |
|-----------------------------------------------------|----------------------|-----------------|----------------|-----------------------------------------------------------------|----------------------|-----------------|-----------------|-------------------------------------------------------|----------------------|-----------------|-------------------------|
| 45 Sc <sup>2</sup><br>30 St 32                      | 22.47796             | 100.00          |                | 567 <u>6</u> 2                                                  | 27 267/17            | 04.51<br>01.88  |                 | 99 Ru3                                                | 32.96868             | 12.72           | -6812<br>-12E3          |
| 68 Zn3                                              | 22.64162             | 18.57           | 79524          | 63 Cu43                                                         | 27.96871             | 91.00<br>69.09  | -3404           | 335<br>13284                                          | 32.97146             | 00.76           |                         |
| <sup>91</sup> Zr <sup>4</sup><br>41 <sub>K</sub> 53 | 22.72633             | 11.22           |                | 845r3                                                           | 27.97050             | 56.90           | -4351           | 32 SH                                                 | 32.97989             | 95.0            | +3911                   |
| з9 <sub>Са</sub> з                                  | 22,97524             | 60.4            | -1581          | 2851                                                            | 27.97693             | 92.21           |                 | <sup>330</sup> 2                                      | 32.99405             | 00.075          | +1460                   |
| 92Zr4                                               | 22.97617             | 17.11           | -1689          | <sup>27</sup> AlH<br><sup>12</sup> CO                           | 27.98936             | 99.985          | +2251           | 100 Ru <sup>3</sup><br>100 Mo <sup>3</sup>            | 33.302/              | 12.62           | -20E4                   |
| *°T1 <sup>2</sup><br>45Ca <sup>2</sup>              | 22.97632             | 08.00           | -1708          | 14N2                                                            | 28,00615             | 90.66<br>99.269 | +1556<br>+ 957  | 87 Zn2                                                | 33.46357             | 04.11           |                         |
| 23 Na                                               | 22.98978             | 100.00          |                | <sup>12</sup> C <sub>2</sub> H <sub>4</sub>                     | 28.03130             | 97.75           | + 524           | <sup>13</sup> *Ba*<br>101 <sub>Bu</sub> 3             | 33.47606             | 02.42           | +2679                   |
| 23BC<br>7L10                                        | 23.00931             | 79.72           | +1177          | <sup>95</sup> Rb <sup>3</sup><br><sup>54</sup> 7n <sup>43</sup> | 28.30401             | 72.15           |                 | 135 Ba 4                                              | 33.72639             | 06.59           |                         |
| 52Cr43                                              | 23.08467             | 83.76           | 12009          | 57 Fe <sup>2</sup>                                              | 28.46770             | 02.19           |                 | <sup>68</sup> Zn <sup>2</sup>                         | 33.96243             | 18.57           | -6256                   |
| 93Nb4                                               | 23.22642             | 100.00          |                | esgr3                                                           | 28.63645             | 09.86           |                 | 102 Ru3                                               | 33.96786<br>33.96791 | 04.22<br>31.61  | +68E4                   |
| <sup>70</sup> Ge <sup>3</sup>                       | 23.30800             | 20.52           | +5955          | 52 Cr 53                                                        | 28.35584             | 83.76           | +50E)           | 102 Pd3                                               | 33.96829             | óo.96           | +79E3                   |
| <sup>70</sup> Zn <sup>3</sup><br>47m42              | 23.30845             | 00.62           | +52E3          | 590u*5                                                          | 28.35679             | 30.91           | +30E3           | 33SH                                                  | 33.97928             | 07.81           | $+412^{\circ}$<br>+2974 |
| 94Zr4                                               | 23.47691             | 17.40           | +23E3          | 58 Ni2                                                          | 28.96666             | 00.33<br>69.18  | -2948<br>-3289  | <sup>34</sup> 0 <sub>2</sub><br>10PC                  | 33.99408             | 00.407          | +1295                   |
| 53Cr43<br>7163                                      | 23.52918             | 09.55           |                | <sup>87</sup> Sr <sup>3</sup>                                   | 23.96966             | 07.02           | -4242           | DU2                                                   | 34.01294             | 19.10           | + 10-                   |
| 54 Cr 43                                            | 23.97283             | 02 38           | -1064          | 29 S1                                                           | 28.97649             | 04.70           | -4312           | 103 Rh3                                               | 34.30152             | 100.00          |                         |
| 54 Fe <sup>43</sup>                                 | 23.97316             | 05.82           | -2019          | <sup>28</sup> SiH                                               | 28.98475             | 92.20           | +3508           | <sup>69</sup> Ga <sup>2</sup><br>4 6 <sub>71</sub> 32 | 34.46286<br>34.46447 | 60.4<br>08.00   |                         |
| ′~Ge³<br>48∏12                                      | 23.97386             | 27.43           | -2145          | 12C170                                                          | 28.99910             | 00.037          | +1282           | 138 Ba4                                               | 34.47622             | 71.66           | +2580                   |
| 48 Ca2                                              | 23.97626             | 00.185          | -2731          | 12 CHO<br>29N                                                   | 29.00274             | 98.64           | +1104           | 104Pd <sup>3</sup><br>104 <sub>P1</sub> 3             | 34.63443<br>34.63474 | 10.97<br>18.58  | +11E4                   |
| °Zr⁼<br>32 <sub>S</sub> 32                          | 23.97733             | 02.80<br>95.0   | -3111          | 12 C2 H5                                                        | 29.03912             | 97.74           | + 463           | 139 La 4                                              | 34.72651             | 99.911          |                         |
| <sup>2</sup> <sup>4</sup> Mg                        | 23.98504             | 78.70           |                | зэкза                                                           | 29.22278             | 93.10           |                 | <sup>70</sup> Ge <sup>2</sup>                         | 34.96200             | 20.52           | -5105                   |
| <sup>23</sup> NaH<br><sup>12</sup> Ca               | 23.99760             | 99.985          | +1910<br>+1603 | 385r <sup>3</sup><br>536553                                     | 29.30200             | 82.56           |                 | 105 Pd3                                               | 34.96267<br>34.96827 | 22.23           | -5650<br>-60E3          |
| 73 <sub>Ge</sub> 3                                  | 24.30778             | 07.76           |                | 59 Co2                                                          | 29.46659             | 100.00          |                 | 35Cl                                                  | 34.96885             | 75.529          |                         |
| 55 Mn 43                                            | 24.41691             | 100.00          | -8690          | 89 Y3                                                           | 29.63524             | 100.00          |                 | <sup>140</sup> Ce <sup>4</sup>                        | 34.97560<br>34.97632 | 88.48           | +468]                   |
| **Ca>3<br>+9T12                                     | 24.41972             | 02.06           |                | <sup>60</sup> N1 <sup>2</sup><br>54Cr <sup>53</sup>             | 29.96538             | 26.23           | -3577           | 23NaC                                                 | 34.98978             | 98.89           | +1669                   |
| 74 Ge3                                              | 24.64033             | 36.54           |                | 54Fe <sup>53</sup>                                              | 29.96645             | 05.82           | -4100           | 3502                                                  | 34.99829             | 99.75<br>1.4E4  | +1188                   |
| 567e43                                              | 24.64085             | 00.87<br>91.66  | +47E3          | $^{90}Zr^{3}$<br>$^{40}Ca^{32}$                                 | 29.96881             | 51.48<br>96.97  | -5305<br>-16E3  | 35BC2                                                 | 35.00931             | 79.05           | + 861                   |
| <sup>so</sup> Ti <sup>2</sup>                       | 24.97239             | 05.34           | -1858          | 30Si                                                            | 29.97376             | 03.09           |                 | 47 T1 <sup>32</sup><br>108043                         | 35.21382             | 07.29<br>27.33  |                         |
| 50Cr <sup>2</sup><br>50772                          | 24.97302             | 04.31           | -1949          | <sup>20</sup> S1H<br><sup>14</sup> NO                           | 29.98451<br>29.99799 | 04.70<br>39.39  | +2841<br>+1237  | 10 8 Cd 3                                             | 35.30198             | 01.215          | +35E3                   |
| <sup>75</sup> As <sup>3</sup>                       | 24.97390             | 100.00          | -2038          | 120180                                                          | 29.99916             | 00.202          | +1180           | <sup>71</sup> Ga <sup>2</sup><br>142 <sub>Ce</sub> 4  | 35.46241             | 39.6<br>11.07   | +2377                   |
| 25Mg                                                | 24.98584             | 10.13           |                | 15 N2                                                           | 30.00000             | 94.57           | +1133           | 107 Ag3                                               | 35.63495             | 51.35           |                         |
| 25 C2                                               | 25.00336             | 02.189          | +2559<br>+1426 | 12CH2O                                                          | 30.01056             | 99.63           | + 315           | <sup>72</sup> Ge <sup>2</sup><br>48m432               | 35.96080             | 27.43           | -5718                   |
| <sup>9</sup> BeŌ                                    | 25.00711             | 99.759          | +1175          | °L1C2<br><sup>12</sup> C2He                                     | 30.01500             | 97.73           | + 727           | 38 <u>5</u>                                           | 35.96709             | 00.014          |                         |
| 57⊐-43                                              | 25.00/02             | 91.100          |                | 91 <sub>Zr</sub> 3                                              | 30.30177             | 11.22           |                 | зед<br>108 рдз                                        | 35.96755             | 00.337<br>26.71 | +79E:<br>+49E3          |
| <sup>7 a</sup> Se <sup>3</sup>                      | 25.30643             | 02.19           | -38E3          | 81 <sub>N1</sub> 2<br>551-53                                    | 30.46554             | 01.19           |                 | 1H35C1                                                | 35.97568             | 75.52           | +3750                   |
| <sup>76</sup> Ge <sup>3</sup><br>51172              | 25.30710             | 07.76           |                | 69 Ga 4 3                                                       | 30.63365             | 60.4            | -25E3           | 23Na13C                                               | 35 <b>.</b> 90504    | 01.107          | +1378                   |
| 34532                                               | 25.47590             | 04.22           | +6515          | 92Zr <sup>3</sup><br>92Mo <sup>3</sup>                          | 30.63489             | 17.11<br>15.84  | <br>12483       | 3 # C3                                                | 36.00000             | 96.71           | +1097                   |
| 51 <sub>C4</sub><br>4377;53                         | 25.50502             | 5.4E4           | + 771<br>+ 445 | 41K32                                                           | 30.72137             | 06.88           | 14,47           | 109 <sub>A</sub> -3                                   | 36 30154             | 48.65           | + ) <b>)</b> -          |
| 77 Se <sup>3</sup>                                  | 25.64000             | 07.58           |                | 62 11 <sup>2</sup>                                              | 30.96417             | 03.66           | -7230           | <sup>73</sup> Ge <sup>2</sup>                         | 36.46167             | 07.76           |                         |
| 58Fe43                                              | 25.74814             | 00.33           |                | 31p                                                             | 30.96855             | 100.00          | -5945           | 110 Cd 3<br>110 Pd 3                                  | 36.63443<br>36.63482 | 12.39<br>11.81  | +94E                    |
| 52Cr <sup>2</sup><br>78583                          | 25.97026             | 83.76           | -2107          | 30 SiH                                                          | 30.98158             | 03.09           | +3961           | 74762                                                 | 36,96050             | 36.54           | -6846                   |
| <sup>78</sup> Kr <sup>3</sup>                       | 25.97340             | 00.354          | -2927          | 15CE                                                            | 30.99840             | 98.893          | +1457           | 74 Se <sup>2</sup>                                    | 36.96127             | 60.87           | -7981                   |
| <sup>с 5</sup> Мд<br>25 Мдн                         | 25.98259             | 11.17           | +2347          | 1300                                                            | 31.00251             | 00.002          | +1077           | 1117da                                                | 36.96809             | 12.75           | +17 E                   |
| 12 CN                                               | 26.00307             | 98.54           | +1269          | <sup>31</sup> L1C2                                              | 31.01600             | 90.70           | + 733           | <sup>а а</sup> зн<br>37 н С                           | 36.97491             | 00.014          | +5120                   |
| 10 BO                                               | 26.00571             | 19.56           | +1029          | <sup>12</sup> CH <sub>3</sub> O                                 | 31.01839             | 98.62<br>01.66  | + 694           | 773                                                   | 37.00336             | 03.25           | + 987                   |
| 12C2H2                                              | 26.01565             | 97.77           | + 786          | 94 <sub>M0</sub> 3                                              | 31.30198             | 09.04           | -55E3           | 12 Co H                                               | 37.00782             | 96.70           | + 882                   |
| <sup>47</sup> T1 <sup>53</sup><br>597-43            | 26.08431             | 07.29           | - 760          | 94Zr <sup>3</sup>                                               | 31.30255             | 17.40           |                 | 112Cd <sup>3</sup>                                    | 37.30102             | 24.07           |                         |
| 35C132                                              | 26.22664             | 75.529          |                | ea Ca                                                           | 31.50502             | 00.0013         | 3               | 50T132                                                | 37.45859             | 05.34           | -17E                    |
| <sup>79</sup> Br <sup>3</sup><br>53Cr <sup>2</sup>  | 26.30613             | 50.537          |                | 57 Fe53                                                         | 31.63078             | 02.19           | -7849           | 50Cr <sup>32</sup><br>7542                            | 37.45954             | 04.31           | -28E3                   |
| 60 Ni 43                                            | 26.63590             | 26.23           | -9123          | 64 M 4 2                                                        | 31.06308             | 01.08           | -3952           | <sup>113</sup> In <sup>3</sup>                        | 37.63477             | 04.28           |                         |
| <sup>so</sup> Se <sup>3</sup><br>so <sub>K</sub> ,3 | 26.63882             | 49.82           | +67E4          | <sup>84</sup> Zn <sup>2</sup>                                   | 31.96457             | <u>48.89</u>    | -4263           | 113Cd3<br>85Pb43                                      | 37.63482             | 12.26<br>72.15  | +75E4                   |
| 48T153                                              | 26.63775             | 73.98           | -25E3          | <sup>9 6</sup> Мо <sup>3</sup><br>9 6 <sub>В11</sub> 3          | 31.96832<br>31.9696  | 16.53           | -8526<br>-13£3  | 78 <sub>Se</sub> 2                                    | 37.95964             | 09.02           | -12E3                   |
| 54Cr <sup>2</sup>                                   | 26.96944             | 02.38           | -2230          | 9 SZr <sup>3</sup>                                              | 31.96977             | 02.30           | -14E3           | <sup>7 6</sup> Ge <sup>2</sup>                        | 37.96065             | 07.76           | -18E                    |
| STFe <sup>∠</sup><br>81 <sub>Br</sub> 3             | 26.96980<br>26.97214 | 05.82<br>49.463 | -2870          | зеS<br>зірн                                                     | 31.97207<br>31.98158 | 99.985          | +3362           | 114Cd <sup>3</sup>                                    | 27.96273<br>37.96785 | 28.86           | +7415                   |
| 27Ă1                                                | 26.98154             | 100.00          |                | 1802                                                            | 31.98983             | 99.52           | +1800           | 114 Sn <sup>3</sup><br>1 r <sup>37</sup> cn           | 37.9680              | 00.66           | +720                    |
| - ~ MgH<br>12 (15 N                                 | 26.99041             | 11.11<br>00.362 | +1453          | 12 <sub>CH4</sub> 0                                             | 32.00176<br>32.02613 | 01.11<br>99.60  | +1077<br>+ 591  | <sup>38</sup> MgC                                     | 37.98269             | 11.16           | +1910                   |
| 11B0                                                | 27.00422             | 80.20           | +1190<br>+1084 | 58 <sub>Fe</sub> 53                                             | 32.18517             | 00.33           |                 | <sup>25</sup> Mg <sup>13</sup> C<br>197_              | 37.98920             | 00.112          | +1434                   |
| 12 C2 Ha                                            | 27.00643             | 97.762          | + 643          | 97 MO3                                                          | 32.30207             | 09.46           |                 | 3873                                                  | 38,00670             | 00.036          | + 863                   |
| <sup>82</sup> Kr <sup>3</sup>                       | 27.30448             | 11.56           | -26E3          | 130 Ba4                                                         | 32.47656             | 00.101          | +2562           | $^{12}C_{2}$ <sup>14</sup> N                          | 38.00307             | 97.43           | + 943                   |
| 82 Se <sup>3</sup>                                  | 27.30554             | 09.19           |                | <sup>98</sup> Мо <sup>3</sup><br>98 р., 3 (С)                   | <b>University</b>    | of Pretor       | 1 <u>2</u> 2083 | 03 M2                                                 | JU-U1905             | 20.09           | <i>⊤ (</i> ⊥(           |
| <sup>83</sup> Kr <sup>3</sup>                       | 27.63802             | 11.55           |                | 74Ge43                                                          | 32.85378             | 36.54           | .2007           |                                                       |                      |                 |                         |
|                                                     |                      |                 |                |                                                                 |                      |                 |                 |                                                       |                      |                 |                         |



| 115 Sn <sup>3</sup><br>115 In <sup>3</sup><br>77 Se <sup>2</sup><br>118 Sn <sup>3</sup><br>118 Cd <sup>3</sup><br>52 Cr <sup>32</sup><br>78 Se <sup>2</sup><br>78 Kr <sup>2</sup><br>39 K<br>117 Sn <sup>3</sup><br>27 ALC<br>23 NaO<br>26 Mg <sup>13</sup> C | 38.30112<br>38.30120<br>38.45999<br>38.63406<br>38.63500<br>38.95530<br>38.95530<br>38.95810<br>38.96371<br>38.96371<br>38.96371<br>38.98154<br>38.988605<br>38.988605 | 00.35<br>95.530<br>14.55<br>07.530<br>07.55<br>03.55<br>03.62<br>97.68<br>97.68<br>90.12<br>90.28<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.1 | -48E4<br><br>+41E3<br>-4678<br>-7777<br>-11E3<br><br>+9765<br>+2190<br>+1856<br>+1748 | 43 Ca<br>42 CaH<br>129 Xe <sup>3</sup><br>31 PC<br>27 AlO<br>30 S112 C<br>25 Mg180<br>12 C2 19 F<br>11 BO <sub>2</sub><br>C 2H <sub>3</sub> H <sub>7</sub><br>130 Ba | 42.95373<br>42.96645<br>42.96825<br>42.97376<br>42.97711<br>42.997911<br>42.99884<br>42.999913<br>43.005477<br>43.30117<br>43.30208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00.146<br>00.64<br>26.44<br>93.76<br>00.021<br>97.50<br>97.50<br>97.53<br>00.101 | +5601<br>+42860<br>+2332<br>+1065<br>+1450<br>+1450<br>+1065<br>+ 748<br>-4853 | 3 6 SC<br>144 Nd3<br>24 Mg23<br>144 Sm3<br>35 Cl13 C<br>30 St13<br>26 O3<br>24 MgC2<br>12 C4<br>145 Nd3<br>97 Mo2<br>37 C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47.96709<br>47.967093<br>47.97055<br>47.972202<br>47.972202<br>47.972292<br>47.973200<br>47.973200<br>47.973200<br>47.973200<br>47.973200<br>47.938500<br>47.938500<br>48.0000<br>43.345311<br>48.50168 | 00.013<br>23.85<br>61.34<br>03.09<br>00.34<br>09.006<br>93.28<br>76.97<br>95.63<br>03.30<br>03.46<br>07.25 | +2505<br>+2167<br>+2122<br>+1977<br>+1914<br>+1294<br>+1294<br>+ 921         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| <sup>12</sup> C <sub>2</sub> <sup>15</sup> N<br><sup>7</sup> LiO <sub>2</sub><br><sup>13</sup> C <sub>3</sub><br><sup>12</sup> C <sub>3</sub> H <sub>3</sub><br><sup>38</sup> Sr <sup>43</sup>                                                                | 39.00011<br>39.00581<br>39.01005<br>39.02347<br>39.06934                                                                                                               | 00.362<br>92.13<br>01.4E4<br>96.70<br>82.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +1070<br>+ 926<br>+ 841<br>+ 652                                                      | 130 Te3<br>58 Fe32<br>87 Sr2<br>87 Rb2<br>131 Xe3<br>88 cm2                                                                                                          | 43.30232<br>43.44999<br>43.45450<br>43.45465<br>43.63503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.48<br>00.33<br>07.02<br>27.85<br>21.18                                        | +18E4<br>-9635<br><br>+29E4                                                    | 49Ti<br>98M02<br>48TiH<br>37C1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.63756<br>48.69584<br>48.94787<br>48.95299<br>48.95577<br>48.95577                                                                                                                                    | 17.22<br>30.91<br>05.51<br>23.78<br>73.97<br>24 20                                                         | + 834<br>+9560<br>+6196<br>+2715                                             |
| <sup>118</sup> Sn <sup>3</sup><br><sup>79</sup> Br <sup>2</sup><br><sup>89</sup> Y <sup>43</sup><br><sup>119</sup> Sn <sup>3</sup><br><sup>53</sup> Cr <sup>32</sup><br><sup>90</sup> 7 x <sup>43</sup>                                                       | 39.30068<br>39.45920<br>39.51365<br>39.63438<br>39.70549                                                                                                               | 24.03<br>50.537<br>100.00<br>08.58<br>09.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7800                                                                                  | 44Ca<br>43CaH<br>132Ba3<br>132Xe3<br>28S10<br>3222                                                                                                                   | 43.95550<br>43.95550<br>43.966837<br>43.96837<br>43.96837<br>43.96835<br>43.97184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52.56<br>02.06<br>00.146<br>00.097<br>26.89<br>91.99                             | -1885<br>+3960<br>+3415<br>+3502<br>+2690                                      | 49 SO<br>49 Mg2<br>147 Sm3<br>98 Ru <sup>2</sup><br>49 MgC <sub>2</sub><br>49 O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48.96540<br>48.97088<br>48.97150<br>48.9777<br>48.98584<br>48.98584                                                                                                                                     | 00.80<br>15.95<br>14.97<br>01.87<br>11.63                                                                  | +2641<br>+2127<br>+2071<br>+1680<br>+1290                                    |
| soSe2<br>soKr2<br>40A<br>40Ca<br>40K<br>120Sn <sup>3</sup><br>120Te <sup>3</sup>                                                                                                                                                                              | 39.95824<br>39.95824<br>39.95830<br>39.96239<br>39.96259<br>39.96250<br>39.96740<br>39.96740                                                                           | 49.82<br>02.27<br>99.60<br>96.97<br>00.012<br>320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -7320<br>-9187<br>-9315<br>-20E4<br><br>+28E3<br>+8308<br>+7175                       | 52 SC<br>31 p13 C<br>26 Mg13 O<br>CO2<br>C2 H4 O<br>C3 H8<br>59 C0 32                                                                                                | 43.97207<br>43.97711<br>43.98175<br>43.98983<br>44.02621<br>44.06260<br>44.19989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94.0<br>01.107<br>00.023<br>97.8<br>97.51<br>96.62<br>100.00                     | +2653<br>+2026<br>+1674<br>+1280<br>+ 622<br>+ 410                             | 49 C4<br>12 C4 H<br>148 Sm <sup>3</sup><br>148 Nd <sup>3</sup><br>99 Ru <sup>2</sup><br>149 Sm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49.00336<br>49.00782<br>49.30481<br>49.30549<br>49.45303<br>49.63893                                                                                                                                    | 04.29<br>95.62<br>11.24<br>05.73<br>12.72<br>13.83                                                         | + 382<br>+ 316<br>+73E3                                                      |
| 39 KH<br>29 S1C<br>24 MgO<br>27 Al 13 C<br>12 C2 O<br>12 C3 H4                                                                                                                                                                                                | 39.97153           39.97693           39.97693           39.97996           39.98489           39.99491           40.03130                                             | 93.09<br>91.19<br>78.60<br>98.89<br>97.56<br>95.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +4470<br>+2993<br>+2301<br>+1791<br>+1236<br>+ 582                                    | 1330s <sup>3</sup><br>a9 y <sup>2</sup><br>134 Ba <sup>3</sup><br>134 Xe <sup>3</sup><br>a0 Xi <sup>32</sup><br>90 Zr <sup>2</sup>                                   | 44.30171<br>44.45286<br>44.63475<br>44.63514<br>44.94808<br>44.95217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.00<br>100.00<br>02.42<br>10.44<br>26.23<br>51.46                             | +1124<br>-5734<br>-1223                                                        | 50 Ti<br>50 Cr<br>50 V<br>100 Ru <sup>2</sup><br>100 M0 <sup>2</sup><br>49 TiH<br>34 SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.94479<br>49.944605<br>49.94716<br>49.953<br>49.95326<br>49.955269<br>49.955269<br>49.955269                                                                                                          | 05.34<br>04.31<br>00.22<br>02.63<br>03.63<br>05.51                                                         | +40E3<br>+21E3<br>+6083<br>+5897<br>+4582<br>+2776                           |
| 121503<br>54Cr32<br>54Fe2<br>31Br2<br>122Te3<br>122Sn3<br>52Kr2<br>32Sr43<br>52Kr2<br>41K                                                                                                                                                                     | 40.30124<br>40.45415<br>40.45471<br>40.45820<br>40.63449<br>40.634652<br>40.95832<br>40.95832<br>40.95833                                                              | 57.25<br>02.38<br>05.82<br>49.46<br>04.72<br>17.11<br>11.56<br>09.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -9965<br>-12E3<br>-21E4<br>-8032<br>-12E3                                             | 44 CaH<br>135 Ba3<br>29 SiO<br>45 SC<br>27 AlO<br>\$5 CO2<br>12 C2 HsO<br>136 Ba3<br>136 Ce3                                                                         | 44.99675142<br>444.99675142<br>444.9967750<br>444.9969710<br>444.9969710<br>444.9969710<br>445.9997<br>445.9997<br>445.445<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.4545.45<br>455.45<br>455.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45 | 02.06<br>06.59<br>04.69<br>01.80<br>00.204<br>01.175<br>97.50<br>07.81<br>00.193 | +6075<br>+3568<br>+2902<br>+2305<br>+1314<br>+1207<br>+ 575<br>                | 50 Mg2<br>37 ClC<br>23 NaAl<br>130 Sm <sup>3</sup><br>150 Nd <sup>3</sup><br>50 MgC2<br>50 O <sub>3</sub><br>12 CF2<br>50 C4<br>12 C Ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.9672301<br>49.977301<br>49.977301<br>49.977301<br>49.9988880<br>49.9988880<br>49.9988880<br>49.9988880<br>49.9988880<br>50.0055                                                                      | 18.61<br>00.27<br>100.00<br>07.44<br>05.62<br>11.16<br>00.61<br>98.89<br>00.61                             | +2187<br>+2041<br>+1883<br>+1815<br>+1733<br>+1321<br>+1320<br>+9806<br>+806 |
| 123 Sb <sup>3</sup><br>123 Te <sup>3</sup><br>40 CaH<br>40 KH<br>41 SiC<br>23 Na <sup>18</sup>                                                                                                                                                                | 40.96806<br>40.9681<br>40.97041<br>40.97182<br>40.97649                                                                                                                | 42.75<br>00.37<br>96.96<br>00.012<br>05.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +6575<br>+6533<br>+4774<br>+4100<br>+2792<br>+1508                                    | 136Xe <sup>3</sup><br>91Zr <sup>2</sup><br>137Ba <sup>3</sup><br>92Zr <sup>2</sup><br>43Ti                                                                           | 45.30240<br>45.45286<br>45.63519<br>45.95234<br>45.95234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08.87<br>11.22<br>11.32<br>17.11<br>03.00                                        | +48E3                                                                          | 151 Eu3<br>101 Ru2<br>152 Sm3<br>152 Sd3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.30651<br>50.453<br>50.63979<br>50.63981                                                                                                                                                              | 47.32<br>17.07<br>26.72<br>00.20                                                                           | F . CJ                                                                       |
| 12 C2 17 0<br>12 C2 HO<br>9 BeO2<br>12 C3 H5<br>55 Mp 32                                                                                                                                                                                                      | 40.99910<br>41.00274<br>41.0020<br>41.0391                                                                                                                             | 00.037<br>97.55<br>99.52<br>96.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +1099<br>+1001<br>+1020<br>+ 530                                                      | 4 5 C 4<br>9 2 Mo 2<br>4 5 S C H<br>3 4 S C<br>1 3 5 E a 3                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03.7E3<br>15.84<br>99.935<br>04.17<br>71.66                                      | +43625<br>+426360<br>+430625<br>+30625<br>+30655                               | 102 542<br>102 542<br>50 774<br>50 774<br>50 774<br>50 774<br>102 542<br>50 774<br>102 542<br>50 774<br>102 542<br>50 774<br>102 542<br>50 774<br>102 542<br>50 774<br>102 542<br>102 544<br>102 544<br>100 544<br>1000<br>1000<br>10000000000000000000000000 | 50.45957<br>50.45957<br>50.455267<br>50.455267<br>50.45571                                                                                                                                              | 99.78<br>71.61<br>00.76<br>05.74<br>05.74<br>05.74                                                         | +6457<br>+6029<br>+5903<br>+5151<br>+2582                                    |
| 124Te3<br>124Sn3<br>124Sn3<br>124Xe3<br>33Kr2<br>125Te3<br>94Zr43                                                                                                                                                                                             | 41.30104<br>41.30175<br>41.30204<br>41.45703<br>41.63487<br>41.73673                                                                                                   | 04.61<br>05.94<br>00.096<br>11.55<br>06.99<br>17.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -58E3<br><br>+14E4                                                                    | 50 S10<br>135 Ce3<br>135 L18<br>25 S1<br>23 Na2<br>14 NO2<br>C2 H 60                                                                                                 | 45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.568000<br>45.568000<br>45.568000<br>45.568000<br>45.5680000<br>45.56800000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03.08<br>00.25<br>00.089<br>00.138<br>100.00<br>99.15<br>97.49                   | +2365<br>+2863<br>+2863<br>+1956<br>+1706<br>+1741<br>+ 515                    | <sup>33</sup> ClO<br><sup>24</sup> MgAl<br><sup>28</sup> SiNa<br><sup>51</sup> Mg2<br><sup>153</sup> Eu <sup>3</sup><br><sup>27</sup> AlC2<br><sup>19</sup> FO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.96376<br>50.96651<br>50.96674<br>50.96674<br>50.9664<br>50.9735<br>50.9664<br>50.9662<br>50.9662<br>50.9662                                                                                          | - 70<br>- 70<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 2                                | +2576<br>+2254<br>+2241<br>+2034<br>+1726<br>+1358<br>+1152                  |
| 537632<br>34Kr <sup>2</sup><br>84Sr <sup>2</sup><br>42Ca<br>128Te <sup>3</sup><br>128Xe <sup>3</sup><br>41mu                                                                                                                                                  | 41.95120<br>41.95576<br>41.95663<br>41.95863<br>41.968363<br>41.968363                                                                                                 | 91.66<br>56.90<br>00.56<br>00.64<br>18.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -5647<br>-15E3<br>-20E3<br>-4497<br>+4497                                             | 139 La <sup>3</sup><br>93 Nb <sup>2</sup><br>140 Ce <sup>3</sup><br>47 Ti<br>94 Zr <sup>2</sup><br>94 Vo <sup>2</sup>                                                | 46.30201<br>46.45283<br>46.53509<br>46.95176<br>46.95582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.911<br>100.000<br>33.48<br>07.29<br>17.40                                     | +2323                                                                          | 13 CF2<br>51 C4<br>C4H3<br>154 Gd3<br>154 Sm3<br>103 5%2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51.00016<br>51.01005<br>51.02346<br>51.30698<br>51.30731                                                                                                                                                | 01.11<br>05.4E4<br>95.61<br>02.15<br>22.71                                                                 | + 207<br>+ 771<br>+ 641<br>-16E4                                             |
| <sup>42</sup> SiC<br><sup>26</sup> Mg0<br><sup>24</sup> Mg <sup>18</sup> 0<br><sup>12</sup> C <sub>2</sub> 180<br><sup>84</sup> C <sup>7</sup>                                                                                                                | 41.96965<br>41.97649<br>41.97751<br>41.98420<br>41.99916<br>42.00000                                                                                                   | 06.00<br>03.11<br>11.11<br>00.16<br>97.56<br>92.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +2766<br>+2222<br>+1641<br>+1035<br>+1014                                             | 4°TiH<br>31P0<br>35ClC<br>141Pr3<br>29Sii80                                                                                                                          | 46.96045<br>46.96872<br>46.96885<br>46.96916<br>46.97565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09.04<br>08.00<br>99.76<br>74.69<br>100.00<br>00.01                              | +5403<br>+2763<br>+2763<br>+2747<br>+26981<br>+1961                            | 208004<br>155043<br>89322<br>207 Fb4<br>5207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51.49361<br>51.6409<br>51.69428<br>51.74397<br>51.94051                                                                                                                                                 | 23.6<br>14.73<br>60.4<br>22.6<br>83.76                                                                     | +1245<br>+ 967                                                               |
| 12 BO2<br>12 C2H2O<br>12 C3H6<br>127 I3<br>85 Rb2<br>85 C2                                                                                                                                                                                                    | 42.00274<br>42.01056<br>42.04695<br>42.30155<br>42.45601<br>42.50168                                                                                                   | 19.52<br>97.54<br>96.64<br>100.00<br>72.15<br>07.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + 951<br>+ 808 \<br>+ 475                                                             | - NaC2<br>15NO2<br>- 3Cu <sup>32</sup><br>142Nd <sup>3</sup><br>142Ce <sup>3</sup><br>95M0 <sup>2</sup>                                                              | 46.98978<br>46.98991<br>47.19720<br>47.30249<br>47.30310<br>47.45222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97.80<br>00.36<br>69.09<br>27.11<br>11.07<br>15.72                               | +1234<br>+1231<br>-78E3                                                        | 104Pd <sup>2</sup><br>51VH<br>104Ru <sup>2</sup><br>28SiMg<br>36SO<br>40CaC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.95180<br>51.95180<br>51.95211<br>51.96197<br>51.96200<br>51.96259                                                                                                                                    | 10.97<br>99.935<br>13.53<br>72.57<br>00.014<br>95.90                                                       | +4667<br>+4601<br>+4478<br>+2420<br>+2417<br>+2352                           |
| 128 Xe <sup>3</sup><br>128 Te <sup>3</sup><br>57 Fe <sup>32</sup><br>88 Sr <sup>2</sup><br>86 Kr <sup>2</sup>                                                                                                                                                 | 42.63450<br>42.63518<br>42.70155<br>42.95468                                                                                                                           | 01.919<br>31.79<br>02.19<br>09.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -63E3<br>                                                                             | 14313<br>64Zn <sup>32</sup><br>48Ti<br>96Mo2<br>48Ca                                                                                                                 | 47.94686<br>47.94686<br>47.94795<br>47.95248<br>47.95253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.17<br>48.89<br>73.98<br>16.53<br>00.185                                       | -44E3<br><br>+11E3<br>+10E3                                                    | <sup>2</sup> <sup>6</sup> Mg <sub>2</sub><br><sup>2</sup> <sup>5</sup> MgAl<br><sup>5</sup> <sup>2</sup> KC<br><sup>15</sup> <sup>6</sup> Dy <sup>3</sup><br><sup>15</sup> <sup>6</sup> Gd <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.96518<br>51.96738<br>51.96706<br>51.971/<br>51.97409                                                                                                                                                 | 01.25<br>10.13<br>01.04<br>00.052<br>20.47                                                                 | +2105<br>+1933<br>+1956<br>+1704<br>+1547                                    |
| 43 Ca                                                                                                                                                                                                                                                         | 42.95878                                                                                                                                                               | 00.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       | <sup>96</sup> Ru <sup>2</sup><br><sup>95</sup> Zr <sup>2</sup><br>47TiH<br>32SO                                                                                      | 47.9544<br><b>Univer:</b><br>47.95959<br>47.96699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 05.51<br>of Prefor<br>94.8                                                       | +7434<br>147156<br>44123<br>+2518                                              | <sup>208</sup> Pb <sup>4</sup><br><sup>12</sup> C <sub>3</sub> O<br><sup>12</sup> C <sub>4</sub> H <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51.99416<br>51.99416<br>51.99492<br>52.03128                                                                                                                                                            | 90.18<br>52.3<br>96.48<br>95.60                                                                            | +1427<br>+ 968<br>+ 955<br>+ 572                                             |





173 Yb3

57.646/



UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

| SOVO                                         | 65.94207             | 00.24           | +4115         | 70                                            | 60 02700             | 20 52          |                | 57 5 61                        |                      |                    |                |
|----------------------------------------------|----------------------|-----------------|---------------|-----------------------------------------------|----------------------|----------------|----------------|--------------------------------|----------------------|--------------------|----------------|
| <sup>33</sup> S <sub>2</sub>                 | 65.94293             | 00.006          | +3906         | 70Zn                                          | 69.92534             | 00.82          | +5283          | 50 CmC                         | 71.95814             | 02.19              | +4323          |
| Jacris C                                     | 65.94401             | 00.106          | +3673         | <sup>70</sup> FeC                             | 69.23331             | 00.35          | +7503          | 74040                          | 77.04065             | 04.22              | +3762          |
| 43m+180                                      | 65.94525             | 93.10           | +3434         | 69 GaH                                        | 69.93353             | 60.4           | +7330          | 5851-0                         | 73 34560             | 05.04              | +3107          |
| 1221 2                                       | 65.94711             | 00.151          | +3132         | <sup>54</sup> CrO                             | 69.93379             | 02.38          | +7135          | 42 CaO-                        | 73 01813             | 00.21              | +2005          |
| 132p-2                                       | 65.95205             | 26.89           | +2533         | 54FeO                                         | 69.93452             | 05.31          | +6540          | 74Mg                           | 73 06268             | 37.18              | +2077          |
| 34co                                         | 02·95256             | 00.097          | +2487         | 70 S2                                         | 69.93495             | 05.001         | +6380          | 148 m2                         | 73.95721             | 11 24              | +20/11         |
| 50102                                        | 02.95/69             | 104.20          | +2024         | 53NiC                                         | 69.93535             | 68.41          | +6155          | 148 <sub>Nd</sub> 2            | 73.95823             | 05 77              | +1086          |
| M320                                         | 07.96254             | 15.50           | +1809         | 35 CT_                                        | 69.93771             | 56.05          | +5097          | 2 6MgOs                        | 73.96732             | 11.00              | +1507          |
| 27 Mg20                                      | 65.96659             | 01.03           | +1626         | 57 Fe <sup>13</sup> C                         | 89.93 <u>976</u>     | 00.024         | +4734          | 74 Møn Ch                      | 73.96763             | 18.54              | +1585          |
| AL2C                                         | 65.96308             | 98.90           | +1780         | 52 Cr180                                      | 69.93967             | 00.171         | +4451          | 74 MgC                         | 73.93259             | 11.11              | +1200          |
| 138 243                                      | 65.97576             | 03.14           | +1381         | 7051-0                                        | 69.95069             | 05.95          | +2619          | 74Ce                           | 74.00670             | 00.176             | + 863          |
| 1981-3                                       | 65.97.58             | 0.4.51          | +1381         | 46080                                         | 63 95%69             |                | +035Å          | 12 CaHa                        | 74.01564             | 93.50              | +781           |
| 12 A2                                        | 65.90592             | 10.02           | +1049         | 4 6T1C2                                       | 69.95263             | 07.82          | +2442          | 149 0-2                        |                      | 17 07              |                |
| U11<br>C U                                   | 66.00000             | 85.45           | + 891         | 27 Å ] 2                                      | 69.95799             | 99.75          | +2053          | Sm                             | 74.45840             | 13.83              |                |
| CSH6                                         | 66.04692             | 94.50           | + 545         | 70 SC                                         | 69.96786             | 04.10          | +1592          | <sup>75</sup> As               | 74.92171 :           | 100.00             |                |
| 199 <sub>Hg</sub> 3                          | 66.32274             | 16.84           |               | CaHio                                         | 70.0782              | 94 45          | + 453          | <sup>59</sup> CoO              | 74.92809             | 99.76              | +12E3          |
| 133Cs <sup>2</sup>                           | 66.45257             | 100.00          |               | NapCp                                         | 69.97976             | 97.80          | +1254          | 7⁴GeH                          | 74.92882             | 36.53              | +11E3          |
| 133 3211                                     | 66.50168             | 10.90           | +1353         | 947.32                                        |                      |                | ,              | <sup>48</sup> TiAl             | 74.92949             | 73.98              | +9630          |
| 200 <sub>Hg</sub> 3                          | 66.65611             | 23.13           |               | 141p.2                                        | 70.40070             | 1/.40          |                | <sup>es</sup> CuC              | 74.92959             | 68.33              | +9506          |
| ອອ <sub>ບ</sub> ເຊ                           | 66.67929             | 105.05          | +2876         | - Pr                                          | 10.45274             | T00.00         | +9062          | SeH                            | 74.93036             | 00.87              | +8661          |
| 67 7                                         |                      | 01 77           |               | <sup>71</sup> Ga                              | 70.92482             | 39.6           |                | 57Fe <sup>18</sup> O           | 74.93457             | 00.004             | +5812          |
| - 211<br>667рН                               | 65.92714<br>66.03387 | 04.11           |               | <sup>70</sup> GeH                             | 70.93181             | 20.52          | +10E3          | 2 TAC <sup>5</sup>             | 74.94398             | 97.56              | +3364          |
| 551000                                       | 66 07805             | 27.01           | +9945         | <sup>55</sup> MnO                             | 70.93297             | 99.76          | +8702          | (PMgg                          | 74.95347             | 05.34              | +2359          |
| 5100                                         | 66.97005             | 93.09           | +6124         | 59 CoC                                        | 70.93318             | 98.89          | +8484          | <sup>25</sup> Mg3              | 74.95752             | 00.01              | +2092          |
| 57 5-                                        | 66 03033             | 99.52           | +5596         | 44CaAl                                        | 70.93654             | 02.06          | +6052          | 150 Sm <sup>2</sup>            | 74.95845             | 07.44              | +2039          |
| 28 a + 39 v                                  |                      | 00.054          | +5490         | 58Fe <sup>13</sup> C                          | 70.93666             | 03.7E3         | +5990          | <sup>43</sup> CaO <sub>2</sub> | 74.95858             | 00.145             | +2032          |
| 54 cm 13 c                                   | 66.94064             | 05.05           | +4950         | SeNi <sup>13</sup> C                          | 70.93370             | 00.766         | +5110          | 150Nd2                         | 74.96041             | 05.63              | +1936          |
| 54 m 13 c                                    | 66.94222             | 00.026          | ++++>0        | 530r130                                       | 70.93981             | 00.019         | +4735          | 35 KCa                         | 74.96371             | 90.04              | +1784          |
| 40002711                                     | 66.94296             | 00.064          | +4251         | °*FeOH                                        | 70.94231             | 05.81          | +4055          | 27A103                         | 74.96627             | 99.25              | +1681          |
| 49 ma 18 0                                   | 66.94440             | 90.97           | +2070         | TiC <sub>2</sub>                              | 70.95176             | 07.31          | +2633          | 2'AlC4                         | 74.98154             | 95.65              | +1253          |
| 1342,2                                       | 66 05013             | 00.011          | +>>/0         | KO2                                           | 70.95351             | 92.65          | +2472          | С <sub>в</sub> Нз              | 75.02346             | 93.48              | + 736          |
| 134 <sub>Vo</sub> 2                          | 66 05217             | 102.42          | +25(0         |                                               | 70.95374             | 27.11          | +2452          | <sup>isi</sup> Eu <sup>2</sup> | 75.45977             | 47.32              |                |
| 35010                                        | 50.952/1<br>66 05865 | 75 17           | +2010         | 11°Cer                                        | 70.95465             | 11.07          | +2378          | 760                            |                      |                    |                |
| 67 CaCa                                      | 66 05878             | 12.11           | +2124         | 23 NaO3                                       | 70.97451             | 36.72          | +1427          | 'SSe                           | 75.91925             | 09.02              | 0              |
| 31p7_                                        | 66 97376             | 06 72           | +2110         | - NaC4                                        | 70.98978             | 92.62          | +1091          | four o                         | 15.92019             | 07.76              | +2082          |
| 201473                                       | 65 92010             | 70.12           | +1063         | C5H11                                         | 11.02605             | 94.44          | + 440          | 54 N10                         | (5.92560             | 26.1/              | +1252          |
| 134 ~2                                       | 67.00336             |                 | + 879         | 143Nd <sup>2</sup>                            | 71.15479             | 12.17          |                | 647mC                          | 75.92190             | 18 25              | +0745          |
| $C = H_{\pi}^{\cup 11}$                      | 67.05474             | 00.011<br>04.40 | + 525         | 7200                                          | 71 00150             | 07 113         |                | 75 A GU                        | 75.92914             | 00.086             | +7107          |
| 202- 2                                       |                      |                 |               | 56500                                         | 71 00085             |                | 11/27          | 76701                          | 75.92952             | 27 08              | +7300          |
| 135502                                       | 67.52354             | 29.30           |               | 60 N 4 C                                      | 71 03077             | 91.77<br>05 04 | +7935          | 63 0, 13 0                     | 75 03202             | 00 765             | +5566          |
| 307.32                                       | 67.45278             | 06.59           |               | 720100                                        | 71 92071             | 4J•77<br>01 93 | +6956          | 52 CrC2                        | 75 94051             | 81.92              | +3576          |
| 203m-3                                       | 67.42025             | 51.46           |               | 71Gou                                         | 71 0306h             | 30 6           | +6500          | 32 S.C                         | 75.94414             | 39.25              | +3054          |
| - <u>-</u> -                                 | 01.0010              | 29.50           |               | 360_                                          | 71 03418             | 29.0<br>3 0 FG | +5713          | 44CaOa                         | 75.94529             | 02.05              | +2919          |
| <sup>88</sup> Zn                             | 67.92486             | 13.57           |               | 7201                                          | 71 37478             | 36.97          | +5461          | 7 SMZa                         | 75.95023             | 03.29              | +2453          |
| 5°FeC                                        | 67.93194             | 90.64           | +9594         | 590,130                                       | 71 03953             |                | 1,1817         | 152 Sm <sup>2</sup>            | 75.95968             | 26.72              | +1879          |
| <sup>87</sup> ZnH                            | 67.93496             | Q4.11           | +6725         | 540,130                                       | 71 07303             | 01.107         | -++OI4         | 152 Jd2                        | 75.95971             | 00.20              | +1878          |
| <sup>52</sup> CrO                            | 67.93543             | 33.56           | +6426         | 54 - 180                                      | 71 05377             |                |                | 28 S10a                        | 75.96166             | 91.54              | +1~91          |
| 58 S2                                        | 67.93573             | 00.204          | +6249         | 72040-                                        | 71 04705             | 72 50          | T0405          | <sup>40</sup> CaCa             | 75.96259             | 93.79              | +1753          |
| SiÇa                                         | 67.93979             | 39.42           | +4550         | 2951002                                       | 71 24977             | 74.33          | +2646          | 28SiC4                         | 75.97693             | 38.19              | +1318          |
| <sup>oo</sup> Mn <sup>1</sup> <sup>o</sup> C | 67.94140             | 01.107          | +4107         | 4º CaOo                                       | 71.25230             | 36.5 <u>0</u>  | +2335          | <sup>12</sup> CO4              | 75.97964             | 97.94              | +1259          |
| * KAI                                        | 67.94337             | C6.88           | +\$670        | 43 Ca.Ca                                      | 71.95253             | 00.181         | +2325          | 12CgH4                         | 76.03123             | 33+47              | + 378          |
| 50 T1 50                                     | 57.94/95             | 00.011          | +2553         | 144 Nd <sup>2</sup>                           | 71.35490             | 23.35          | +2154          | 1532                           | 78 - 203             | 52 13              |                |
|                                              | 67.94521             | 00.009          | +3339         | 24.23                                         | 71.05513             | 13.71          | +2144          |                                |                      | JC•10              |                |
| 1350-2                                       | 01.40219             |                 | +2405         | 144 Šm2                                       | 71. 5533             | 03.02          | +2101          | Se                             | <u>78.91998</u>      | 07.55              |                |
| 136v.2                                       | 01.92224             | 00.195          | +2000         | <sup>2 4</sup> MgO <sub>3</sub>               | 71.03977             | 78.13          | +1407          | <u>3</u> 1110                  | 73.92600             | 01.13              | ++;;;;;;       |
| 2804 0                                       | 01.90000<br>07.05780 | 31 00           | +2262         | <sup>2 4</sup> Mg <sub>2</sub> C <sub>2</sub> | 71,97003             | 30 <b>.</b> 53 | +1+35          | ~~tet                          | 10.15/10             |                    | +1122          |
| 44000                                        | 27 0 = = 00          | 02.015          | +22=2         | $^{24}$ MgC <sub>4</sub>                      | 71.93504             | 75.27          | +113-          | 7 êdayî                        | 70.141.0             | 10.9.<br>17. Te    | +9062          |
| 3290                                         | 67 07207             | 02.01           | +1430         | <sup>72</sup> Ca                              | 72.00000             | 93.52          | + 717          | 85 77                          | 79.92001             | 30.27              | 17260          |
| 204 Dh3                                      | 67 00103             | 91.95           | +1027         | 145 NJ2                                       | 70 15203             | 08 30          | _              | 647513 r                       | 70.22110             | 00 54              | +9062          |
| 204 <sub>Ur</sub> 3                          | 67 30116             | 06 35           | +1025         | 14502_                                        | 72 50188             | 11 78          | ±1637          | 53777                          | 76 34065             | 00.34              | +3709          |
| Ca Ha                                        | 63.06256             | <u>34</u> 44    | + 403         | ~12                                           |                      | ر. •مد<br>- مع | · ( ·          | 520,250                        | 76.04387             | 01.37              | +-220          |
| 205                                          |                      | 70 70           |               | - 3 Ge                                        | 72.92334             | 07.73          |                | 45 Sc0,                        | 73.94752             | 99.52              | +2793          |
| 137 D-2                                      | 55.5246              | /0.50           |               | JeH<br>570                                    | 72.92941             | 27.47          | +12E3          | 77.53                          | 76.95102             | 66. <u>3</u> 8     | +2475          |
| 20 6 m 3                                     | 67.492/9             | 11.52           |               | 7 3 X 4 9                                     | 72.05052             | 02.19          | +1022          | 1547,12                        | 76.26047             | 02.15              | +1900          |
|                                              | 00.00010             | 27.5            |               | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5         | 72.72107<br>70.52107 | 01.4/<br>01.5/ | オジャワト          | 154 5 2 2                      | 73.98097             | 22.71              | +1877          |
| <sup>69</sup> Ga                             | 63.92571             | 60.4            |               | 551180                                        | /2.35464<br>70 02701 | 00 00 h        | +0400<br>15001 | 29 SiOa                        | 76.96122             | 04.87              | +1865          |
| 92Zr <sup>32</sup>                           | 68.92850             | 17.11           | +25E3         | 73T*A                                         | 12.30121<br>70 01707 | 00.204         | 〒フビロ上<br>エンハママ | 41%Ca                          | 73.36183             | 36.65              | +1333          |
| <sup>68</sup> ZnH                            | 68.93268             | 18.57           | +9889         | 1102<br>7301_0                                | 16.74/7/<br>70 14833 | 03.57          | +2019          | 77 SiC4                        | 76.27649             | 08.45              | +1361          |
| 5°Fe <sup>13</sup> C                         | 68.93529             | 01.015          | <b>+</b> 7194 | 41K0-                                         | 72 05163             | 16.35          | +2573          | 13C04                          | 76.)3300             | 01 <b>.1</b> 0     | +1221          |
| FeC                                          | 68.93541             | 02.166          | +7106         | 73 <sub>Mar</sub>                             | 72.05502             | 18-32          | +22=3          | 12C6H5                         | 77.03910             | 97.45              | + 643          |
| <sup>53</sup> CrO                            | 68.93556             | 09.53           | +6998         | 146142                                        | 72,35635             | 17.22          | +2209          | 232mh3                         | 77 3480              | 100 00             |                |
| 69S2                                         | 65.93855             | 02.E4           | +5368         | 37 C1Ca                                       | 72.23590             | 23.67          | +1713          | 1557,32                        | 77.4614              | 14.73              |                |
| <sup>138</sup> Ba <sup>2</sup>               | 69.95244             | 71.66           | +2579         | 25 <sub>M2</sub> 02                           | 72.97057             | 10.06          | +1544          |                                | it• ∘≎π⇒             | ш • , <sup>с</sup> |                |
| rae Ces                                      | 68.95302             | 00.25           | +2524         | 73 Mg Co                                      | 72.57088             | 16.96          | +1534          | /ªSe                           | 77.91739             | 27.52              |                |
| - <sup>35</sup> La <sup>e</sup>              | 65.95337             | 00.089          | +2487 `       | 73 MgCa                                       | 72.23584             | 13.07          | +1167          | / <sup>°</sup> Kr              | 77.92019             | 00.35-             | +2353          |
| Si2C                                         | 68.95342             | 09.50           | +2487         | 730 -                                         | 73.00336             | 06.29          | + 911          | N10                            | 17.92325             | 05.84              | +13 E3         |
| 3′C102                                       | 68,95570             | 24.35           | +2298         | 12CeH                                         | 73.00782             | 93.51          | + 363          | ~~ZnC<br>397                   | 11.92605             | 21.50              | +0999          |
| 45 ScC2                                      | 69.•95592            | 97 <b>.</b> 80  | +2282         | 147 -2                                        | 73 12705             | 1/1 017        | -              | 41x37 ~7                       | 77.92742             | 36.68              | +//60          |
| SCa                                          | 68.97542             | 03.83           | +1387         | 5m-                                           | 12.70120             | ⊥+•≯{          |                | 77 Satt                        | 11.927()             | 01.60<br>01.60     | +1500          |
| eu'Pb'                                       | 68.99196             | 22.6            | +1040         | 74Ge                                          | 73.92100             | 36.54          |                | 000<br>65 0,13 0               | 11.42/30             |                    | +1405          |
| CsHə                                         | 69.0704              | 94.46           | + 476         | ′_⁴Se                                         | 73.92254             | 00.87          | +4853          | 780m0                          | 11.49110<br>77 5207  | 00.54              | +25/1          |
| 208 <sub>Pb</sub> 3                          | 69.32555             | 52.3            |               | ⊃¤FeO                                         | 73.92822             | 00.33          | +10E3          | 54 240                         | 77 03041             | 05 50              | +3027<br>13507 |
| <sup>139</sup> La <sup>2</sup>               | 69.45302             | <u>99.911</u>   |               | ' NiC                                         | 73.92834             | 03.63          | +1053          | 785.0                          | 77 03003             | 07 05              | +2007<br>17160 |
| 209 <sub>Bi</sub> 3                          | 69.65978 :           | 100.00          |               | 2°NiQ                                         | 73.93026             | 69.01          | +7983          | 4 °T10~                        | ィイ・ブノブブフ<br>77、ロムクルド | 07 98              | +/*/<br>+3110  |
| 70 <sub>00</sub>                             | 69.02300             | 20 53           |               | 737 Fe <sup>18</sup> 0                        | 73.93110             | 00.137         | +7319          | 78 <sub>Møs</sub>              | 77.04777             | 00 14              | +2266          |
| 50                                           | ~~~ <i>~~~</i> /77   | 20.72           |               | GeH                                           | 73.93116             | 07.76          | +7276          | 15 6 Dv2                       | 77.957/              | 00.052             | +1967          |
|                                              |                      |                 |               | 39 v 21 🔞 🚺                                   | versityedf           | Pretoria       | +6838          | y                              | 11.02217             | 00.092             | F7201          |
|                                              |                      |                 |               | VCT                                           | 12.7256              | 10.52          | +0295          |                                |                      |                    |                |



| <sup>30</sup> SiO3<br><sup>42</sup> CaC3<br>15 <sup>6</sup> Gd <sup>2</sup><br><sup>31</sup> P <sub>2</sub> O<br><sup>27</sup> Al <sub>2</sub> C2<br><sup>23</sup> Na <sub>2</sub> O2 | 77.95849<br>77.95863<br>77.96113<br>77.96244<br>77.96308<br>77.96938             | 03.07<br>00.62<br>20.47<br>99.76<br>97.80<br>97.52            | +1895<br>+1889<br>+1781<br>+1730<br>+1705<br>+1499          | <sup>34</sup> SO <sub>3</sub><br><sup>4</sup> <sup>6</sup> TiC <sub>3</sub><br><sup>50</sup> Mg <sub>2</sub> O <sub>2</sub><br>164Dy <sup>2</sup><br>164Er <sup>2</sup> | 81.95261<br>81.95263<br>81.95745<br>81.9643<br>81.9649               | 04.19<br>07.74<br>18.53<br>28.18<br>01.56          | +2277<br>+2275<br>+2007<br>+1718<br>+1697                        | <sup>175</sup> Lu <sup>2</sup><br>56Fe <sup>32</sup> S<br>88Sr<br>40Ca <sup>48</sup> Ti<br>72Ge0                                                                                     | 87.471/<br>87.90401<br>87.90601<br>87.91081<br>87.91650                          | 97.41<br>87.08<br>82.56<br>71.74<br>27.37                   | -44E3<br><br>+18E3<br>+8372                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| 78 SiC4<br>14NO4<br>12C23<br>12C6H6<br>235U3                                                                                                                                          | 77.97376<br>77.98271<br>78.00000<br>78.04692<br>78.3476                          | 03.16<br>98.67<br>86.49<br>93.45<br>00.72                     | +1382<br>+1193<br>+ 943<br>+ 602                            | 165 <sub>H0</sub> 2<br>56FeA1<br>83Kr<br>26S155Mn                                                                                                                       | 81.96786<br>82.46455<br>82.91348<br>82.91405<br>82.91405             | 04.04<br>100.00<br>91.66<br>11.55<br>92.21         | +1599<br>-15E4<br>                                               | 88Ca2<br>87SrH<br>87RbH<br>76SeC<br>76GeC                                                                                                                                            | 87.91653<br>87.91681<br>87.91712<br>87.91928<br>87.92129                         | 00.40<br>07.02<br>27.85<br>08.92<br>07.67                   | +8348<br>+8139<br>+7912<br>+6624<br>+5753                   |
| 157 <sub>Gd</sub> 2<br>157 <sub>C13</sub><br>79 <sub>Br</sub>                                                                                                                         | 78.4621<br>78.50168<br>78.91839                                                  | 15.68<br>12.60<br>50.537                                      | +1982                                                       | <sup>67</sup> ZnO<br><sup>83</sup> Ca <sub>2</sub><br><sup>82</sup> SeH<br>71 GaC                                                                                       | 82.92205<br>82.92278<br>82.92445<br>82.92445                         | 04.10<br>00.28<br>09.19                            | +092)<br>+1023<br>+9498<br>+7973                                 | <sup>5 6</sup> FeO2<br><sup>88</sup> Si3<br><sup>64</sup> ZnC2<br><sup>64</sup> NiC2                                                                                                 | 87.92174<br>87.92445<br>87.92914<br>87.92796                                     | 91.22<br>00.28<br>47.81<br>01.06                            | +5505<br>+4767<br>+3801<br>+4003                            |
| <sup>52</sup> CrAl<br><sup>33</sup> CuO<br>78SeH<br>79ZnC<br>79K-                                                                                                                     | 78.92205<br>78.92451<br>78.92521<br>78.92714                                     | 83.76<br>68.92<br>23.52<br>04.42                              | +22E3<br>+13E3<br>+12E3<br>+9019                            | <sup>59</sup> CoC2<br><sup>51</sup> VO2<br><sup>83</sup> TiC3<br><sup>35</sup> ClO3                                                                                     | 82.93318<br>82.93378<br>82.95176<br>82.95355                         | 97.80<br>99.28<br>97.31<br>74.98                   | +4334<br>+4202<br>+2199<br>+2099                                 | 52 CrC3<br>28 S1202<br>32 S2C2<br>40 Ca03                                                                                                                                            | 87.94051<br>87.94368<br>87.94414<br>87.94414                                     | 81.01<br>84.62<br>88.26<br>96.27                            | +2547<br>+2333<br>+2305<br>+2114                            |
| <sup>68</sup> Zn <sup>13</sup> C<br><sup>55</sup> MnC2<br><sup>47</sup> T102<br><sup>31</sup> P03                                                                                     | 78.92941<br>78.93805<br>78.94156<br>78.95849                                     | 00.31<br>97.80<br>07.25<br>99.28                              | +7168<br>+4014<br>+3406<br>+1968                            | <sup>188</sup> Er <sup>2</sup><br><sup>35</sup> ClC <sub>4</sub><br>167 <sub>Er<sup>2</sup></sub><br>280456Ec                                                           | 82.9644<br>82.96885<br>83.4653                                       | 33.41<br>72.24<br>22.94                            | +1647<br>+1513                                                   | <sup>2</sup> <sup>4</sup> MgO <sub>4</sub><br><sup>17</sup> <sup>8</sup> Hf <sup>2</sup><br><sup>17</sup> <sup>8</sup> Lu <sup>2</sup><br><sup>17</sup> <sup>8</sup> Lu <sup>2</sup> | 87.96468<br>87.9704<br>87.9710<br>87.97136                                       | 92.75<br>77.94<br>05.20<br>02.59<br>12.73                   | +1365<br>+1365<br>+1352<br>+1345                            |
| 79 CaC3<br>158 Dy2<br>158 Gd2<br>31 PC4                                                                                                                                               | 78.95878<br>78.96200<br>78.9622<br>78.97376                                      | 00.161<br>00.09<br>24.87<br>95.65                             | +1954<br>+1810<br>+1801<br>+1425                            | 84Kr<br>84Sr<br>57FeAl                                                                                                                                                  | 83.91325<br>83.91325<br>83.91695                                     | 56.90<br>00.56<br>02.19                            | -48E3<br>+23E3                                                   | <sup>12</sup> C7H4<br>177Hf <sup>2</sup><br>897                                                                                                                                      | 88.03128<br>88.4713<br>88.90572                                                  | 92.46<br>18.50<br>100.00                                    | + 702                                                       |
| 158 <sub>C</sub> 2<br>C <sub>6</sub> H <del>7</del><br>239 <sub>U</sub> 3                                                                                                             | 79.00335<br>79.05474<br>79.3495                                                  | 00.847<br>93.44<br>99.274                                     | + 929<br>+ 579                                              | <sup>68</sup> ZnO<br>72GeC<br>52CrO2                                                                                                                                    | 83.91808<br>83.91977<br>83.92159<br>83.93031                         | 18.53<br>27.13<br>83.36                            | +1785<br>+1383<br>+1083<br>+4919                                 | 57 Fe <sup>32</sup> S<br>88 SrH<br>73 GeO<br>89 SeC                                                                                                                                  | 88.90748<br>88.91383<br>88.91825<br>88.91998                                     | 02.08<br>82.55<br>07.73<br>07.60                            | +51E3<br>+11E3<br>+7095<br>+6235                            |
| <sup>ao</sup> Se<br><sup>so</sup> Kr<br><sup>28</sup> Si <sup>52</sup> Cr                                                                                                             | 79.46244<br>79.91647<br>79.91659<br>79.91744                                     | 100.000<br>49.82<br>02.27<br>77.24                            | + 703<br><br>+67E4<br>+82E3                                 | <sup>60</sup> NiC <sub>2</sub><br><sup>84</sup> TiC <sub>3</sub><br><sup>48</sup> CaC <sub>3</sub><br>168 Tr                                                            | 83.93079<br>83.93078<br>83.94795<br>83.95253<br>83.95253             | 78.40<br>25.65<br>71.79<br>00.18                   | +4784<br>+4787<br>+2418<br>+2136<br>+1609                        | 89 S13<br>57 FeO2<br>65 CuC2<br>89 CrC3                                                                                                                                              | 88.92401<br>88.92521<br>88.92778<br>88.94065                                     | 00.013<br>02.18<br>30.23<br>11.96                           | +4861<br>+4562<br>+4030<br>+2545                            |
| <sup>84</sup> N10<br><sup>84</sup> Zn0<br><sup>80</sup> ZnC<br><sup>40</sup> Ca <sub>2</sub>                                                                                          | 79.92287<br>79.92405<br>79.92486<br>79.925517                                    | 01.08<br>48.77<br>18.41<br>93.45                              | +13E3<br>+11E3<br>+9525<br>+9186                            | 168 <u>7</u> 62<br>12 <sub>C7</sub><br>169 <sub>Tm</sub> 2                                                                                                              | 83.96695<br>84.00000<br>84.46717                                     | 00.135<br>92.48<br>100.00                          | +1563<br>+ 967                                                   | <sup>3</sup> Si <sub>2</sub> O <sub>2</sub><br><sup>4</sup> KO <sub>3</sub><br><sup>4</sup> KC <sub>4</sub><br><sup>25</sup> MgO <sub>4</sub><br>178 Hf <sup>2</sup>                 | 88.94324<br>88.94563<br>88.96183<br>88.96548<br>88.9715                          | 08.62<br>06.83<br>06.58<br>10.03<br>27.14                   | +2370<br>+2228<br>+1584<br>+1488<br>+1352                   |
| H <sup>79</sup> Br<br><sup>55</sup> FeC2<br>55Mn <sup>25</sup> C2                                                                                                                     | 79.9252<br>79.92622<br>79.93194<br>79.94141                                      | 50.52<br>89.64<br>02.19                                       | +8197<br>+5166<br>+3204                                     | 85S1Fe<br>85Rb<br>58TeAl                                                                                                                                                | 84.90843<br>34.91202                                                 | 06.33<br>72.15                                     | -24E3                                                            | <sup>12</sup> C <sub>7</sub> H <sub>5</sub><br><sup>179</sup> Hf <sup>2</sup><br><sup>90</sup> 7r                                                                                    | 89.03910<br>89.4726<br>89.90433                                                  | 92.45<br>13.75<br>51.46                                     | + 667                                                       |
| <sup>32</sup> S <sub>2</sub> O<br><sup>48</sup> CaO <sub>2</sub><br><sup>28</sup> Si <sub>2</sub> C <sub>2</sub><br><sup>44</sup> CaC <sub>3</sub><br><sup>32</sup> SO <sub>3</sub>   | 79.93775<br>79.93905<br>79.94233<br>79.95386<br>79.95500<br>79.95602             | 90.03<br>90.184<br>83.16<br>01.99<br>94.32                    | +3735<br>+3539<br>+3090<br>+2137<br>+2074<br>+1981          | <sup>84</sup> SrH<br><sup>85</sup> GeC<br><sup>85</sup> Si <sub>3</sub><br><sup>53</sup> CrO <sub>2</sub><br><sup>85</sup> N1C2                                         | 84.92107<br>84.92334<br>84.93035<br>84.93045<br>84.93109             | 00.39<br>00.56<br>07.97<br>11.99<br>09.50<br>01.73 | +9383<br>+9383<br>+7501<br>+4632<br>+4607<br>-± <sup>44</sup> 53 | 45 SC2<br>89 YH<br>7 4 GeO<br>90 SeC<br>7 4 SeO<br>59 <b>B</b> 00                                                                                                                    | 89.91184<br>89.91354<br>89.91591<br>89.91591<br>89.91739<br>89.91745<br>89.92311 | 100.00<br>99.985<br>36.38<br>23.32<br>00.87                 | +12E3<br>+9762<br>+7764<br>+6884<br>+6852<br>+4787          |
| <sup>24</sup> Mg2O2<br>150Dy2<br>160Jd <sup>2</sup><br>32SC4<br>12CgHa                                                                                                                | 79.95990<br>79.9620<br>79.96361<br>79.97207<br>80.06256                          | 61.64<br>02.294<br>21.90<br>92.77<br>93.43                    | +1840<br>+1755<br>+1695<br>+1437<br>+ 547                   | <sup>37</sup> ClC <sub>3</sub><br><sup>37</sup> ClC <sub>4</sub><br>170Yb2<br>170Er <sup>2</sup><br><sup>85</sup> C7<br>12C7                                            | 84.94787<br>84.96590<br>84.967/<br>84.9678<br>85.00336               | 07.73<br>02.40<br>03.03<br>14.38<br>07.25          | +2369<br>+1576<br>+1544<br>+1522<br>+ 930                        | 58 NiO2<br>532nC2<br>39 K2C<br>90 CrC3<br>54 FeC3                                                                                                                                    | 89.92515<br>89.92605<br>89.92742<br>89.93887<br>89.93961                         | 68.85<br>27.20<br>85.72<br>02.61<br>05.63                   | +4318<br>+4139<br>+3894<br>+2602<br>+2548                   |
| <sup>161</sup> Dy <sup>2</sup>                                                                                                                                                        | 80.4629                                                                          | 18.88                                                         |                                                             | 171Yb <sup>2</sup>                                                                                                                                                      | 85.468/                                                              | 92.49<br>14.31                                     | + 505                                                            | <sup>90</sup> Si202<br><sup>28</sup> Mg04                                                                                                                                            | 89.94051<br>39.96223                                                             | 05.89<br>11.06                                              | +2485<br>+1553                                              |
| 54FeAl<br>65CuO<br>80SeH<br>69GaC<br>81FeC2                                                                                                                                           | 80.92115<br>80.92269<br>80.92269<br>80.92429<br>80.92571<br>80.93541             | 05.82<br>30.84<br>49.81<br>59.73<br>04.15                     | +17 E3<br>+13E3<br>+10E3<br>+8710<br>+4261                  | <sup>8</sup> <sup>6</sup> Sr<br><sup>8</sup> <sup>6</sup> Kr<br>54 Fe <sup>32</sup> S<br>70 GeO<br>85 RbH<br>79 70                                                      | 85.90935<br>85.91079<br>85.91168<br>85.91390<br>85.91984             | 09.86<br>17.37<br>05.53<br>60.3<br>72.14           | +60E3<br>+37E3<br>+8996<br>+3190                                 | <sup>27</sup> Al <sub>2</sub> C <sub>3</sub><br>180 W2<br>180 Ta <sup>2</sup><br>180 Hf <sup>2</sup><br>12 C <sup>2</sup> 5<br>12 C - H                                              | 59.96308<br>59.9723<br>59.973/<br>59.9731<br>90.00000<br>90.04692                | 96.72<br>00.135<br>00.012<br>35.24<br>84.58<br>92.43        | +1530<br>+1323<br>+1309<br>+1307<br>+ 940<br>+ 631          |
| <sup>27</sup> Al <sub>3</sub><br><sup>81</sup> S1 <sub>2</sub> C <sub>2</sub><br><sup>49</sup> Mg <sub>2</sub> O <sub>2</sub>                                                         | 80.93767<br>80.94462<br>80.95342<br>80.96070                                     | 05.48<br>100.00<br>12.12<br>15.87                             | +3808<br>+2869<br>+2187<br>+1827                            | 8 * GeC<br>7 * SeC<br>8 * Si3                                                                                                                                           | 85.92100<br>85.92254<br>85.92762                                     | 36.23<br>00.87<br>08.49                            | +7374<br>+6513<br>+4702                                          | $181Ta^{2}$<br>$181C^{2}_{15}$                                                                                                                                                       | 90.4729<br>90.50168                                                              | 99.988<br>14.22                                             | +3144                                                       |
| 162 Dy <sup>2</sup><br>162 Er <sup>2</sup><br>12 C <sub>6</sub> H9<br>163 Dy <sup>2</sup>                                                                                             | 80.9628<br>80.96436<br>81.07038<br>81.4639                                       | 25.53<br>00.136<br>93.41<br>24.97                             | +1745<br>+1688<br>+ 526                                     | 54 CrO2<br>54 CrO2<br>54 FeO2<br>8 STIC3<br>50 CrC3<br>27 AloO2                                                                                                         | 55.92594<br>85.92867<br>85.92941<br>85.94479<br>85.94065<br>85.95289 | 02.37<br>05.79<br>05.34<br>04.17<br>99.52          | +4924<br>+4446<br>+4283<br>+2424<br>+2341<br>+1973               | 90ZrH<br>75As0<br>79BrC<br>59CoC2<br>.91ZpCa                                                                                                                                         | 90.90592<br>90.91215<br>90.91662<br>90.91839<br>90.92298<br>90.922714            | 51.45<br>99.76<br>49.98<br>97.80<br>04.63                   | +13E3<br>+8045<br>+6955<br>+5148<br>+4166                   |
| <sup>28</sup> Si <sup>54</sup> Fe<br><sup>82</sup> Se<br><sup>55</sup> MnAl<br><sup>82</sup> ZnO<br><sup>82</sup> Caa                                                                 | 81.91345<br>81.91654<br>81.91663<br>81.91959<br>81.92096                         | 11.56<br>05.37<br>09.19<br>100.00<br>27.74                    | -26E3<br>-91E4<br>+28E3<br>+19E3                            | 172 YD2<br>$31 P_2 C_2$<br>$8 C_7$<br>$12 C_7 H_2$<br>173 YD2                                                                                                           | 85.9626<br>85.96753<br>86.00670<br>86.01564                          | 21.32<br>97.80<br>00.244<br>92.48                  | +1612<br>+1477<br>+ 382<br>+ 808                                 | 55MnC3<br>54Fe <sup>37</sup> C3<br>27AlO4<br>192W2<br>182C15                                                                                                                         | 90.93805<br>90.94297<br>90.96114<br>90.9730<br>91.00335                          | 96.72<br>00.189<br>99.04<br>26.41<br>01.115                 | +2777<br>+2414<br>+1629<br>+1343<br>+ 927                   |
| <sup>4</sup> 1K <sub>2</sub><br><sup>7</sup> °GeC<br>H <sup>8</sup> 1Br<br><sup>7</sup> °ZnC                                                                                          | 81.92366<br>81.92399<br>81.92425<br>81.92534                                     | 00.47<br>20.29<br>49.44<br>00.63                              | +12E3<br>+11E3<br>+11E3<br>+9405                            | 87 Sr<br>87 Rb<br>88 SrH<br>71 GaO                                                                                                                                      | 86.90899<br>86.90930<br>86.91717<br>86.91973                         | 07.02<br>27.85<br>09.86<br>39.50                   | +28E4<br>+11E3<br>+8092                                          | 183 <sub>W</sub> 2<br>40Ca <sup>52</sup> Cr<br><sup>92</sup> Zr<br><sup>46</sup> T12                                                                                                 | 91.4741<br>91.90337<br>91.90467<br>91.90526                                      | 14.40<br>81.22<br>17.11<br>00.64                            | -71E3<br><br>+16E4                                          |
| Ga+3C<br>82 FeC2<br>50 TiO2<br>58 NiC2<br>88 S2O<br>50 CrO2<br>82 SisCo                                                                                                               | 01.92906<br>81.93331<br>81.93459<br>81.93535<br>81.93585<br>81.93585<br>81.95069 | 00.669<br>00.368<br>05.31<br>67.66<br>08.00<br>04.29<br>05.98 | +6590<br>+4911<br>+4561<br>+4376<br>+4498<br>+4262<br>+2405 | 75ASC<br>74Ge13C<br>55MnO2<br>87S13<br>39KO3<br>174Yb2<br>38VC                                                                                                          | 86.92171<br>86.92436<br>86.92785<br>86.92718<br>86.94841<br>86.96287 | 98.89<br>00.40<br>99.52<br>00.81<br>92.43<br>31.84 | +6832<br>+5654<br>+4608<br>+4773<br>+2205<br>+1615               | 92 Mo<br>91 ZrH<br>78 SeO<br>76 GeO<br>80 SeC<br>80 SeC<br>80 N102<br>92 75 C                                                                                                        | 91.90855<br>91.91314<br>91.91419<br>91.91620<br>91.91620<br>91.92057<br>91.92057 | 15.84<br>11.22<br>09.01<br>07.75<br>49.27<br>26.10<br>18.25 | +24E3<br>+11E3<br>+9654<br>+7971<br>+7789<br>+5780<br>+4552 |
|                                                                                                                                                                                       |                                                                                  |                                                               | /                                                           | <sup>17 4</sup> Hf <sup>2</sup><br><sup>12</sup> C <sub>7</sub> H <sub>3</sub>                                                                                          | 87.02346                                                             | 92.47                                              | +1425<br>+ 759                                                   | 21102                                                                                                                                                                                | J =+ J = + 00                                                                    |                                                             |                                                             |

.

184

| 4°Ca <sub>2</sub> C                         | 91.92517          | 92.42             | +4483          | 967 rH                           | 26 21712             | 02 80          | 18882          | 539.0                           | 100 005-0  |                 |                |
|---------------------------------------------|-------------------|-------------------|----------------|----------------------------------|----------------------|----------------|----------------|---------------------------------|------------|-----------------|----------------|
| 44CaO3                                      | 91.94023          | 02.05             | +2584          | es CuOs                          | 96.91758             | 30.76          | +8523          | es curda                        | 100.92538  | 09.48           | +4951          |
| <sup>2</sup> Si <sub>2</sub> C <sub>3</sub> | 91.95386          | 32.24             | +1868          | 97GeC2                           | 96,92334             | ó8.19          | +5657          | 101020                          | 100.92775  | 29.09           | +4450          |
| 2°CaC4                                      | 91.95550          | 01,97             | +1908          | <u>97</u> Si3Č                   | 96.93035             | 12.73          | +4014          | 202 Hg2                         | 100.98531  | 29.80           | +1256          |
| 184002                                      | 91.95657          | 91.35             | +1771          | , NiCs                           | 96.93109             | 02.00          | +3895          | C <sub>B</sub> H <sub>5</sub>   | 101.03910  | 91.42           | + 752          |
| 184 <sub>W2</sub>                           | 91.9745           | 30.84             | +1245          | 271103                           | 96.93257             | 05.47          | +3676          | 135 <sub>Ba</sub> 32            | 101.17216  | 06.59           |                |
| 185 0 2                                     |                   | 20.84             | +1010          | 97 T1 C.                         | 96.99952             | 99.76          | +2908          | 203 m                           | 101.4360   | 29,50           |                |
| Re-                                         | 92.474            | 37.07             |                | 194p+2                           | 96.94/0/<br>96.9817/ | 32 3           | +2526<br>±1284 | 1020                            | 101 99050  | 27.00           |                |
| 93Nb                                        | 92.90566          | 100.00            |                | 194 ČŽ                           | 97.00335             | 01.26          | + 398          | 51m                             | 101.00695  | 07.22           | -0920          |
| 772rH                                       | 92.91249          | 17.11             | +14E3          | 97 Cs -                          | 97.00335             | 08.20          | + 998          | 1025                            | 101.00795  | 39.54           | -0+50          |
| albrC                                       | 92.91489          | 07.57             | +10E3          | <sup>12</sup> C <sub>8</sub> H   | 97.00782             | 91.45          | + 954          | 3 5 C O                         | 101.90575  |                 |                |
| 61NtO                                       | 92.91642          | 40.92             | +5634          | 195 <sub>Pt</sub> 2              | 97,4831/             | 33.8           |                | 907rC                           | 101.90425  | 0 <b>9.</b> 04  | +1954          |
| <sup>69</sup> GaC2                          | 92.92571          | 59.07             | +6100          | 98m.                             |                      | 22.00          | 7790           | 102 pd                          | 101 20486  | 00.96           | +1, L,         |
| 93FeC3                                      | 92.93530          | 05.10             | +3134          | 98M0                             | 97.09273             | 05.20          | -7.589         | 89v13r                          |            |                 | +19F3          |
| 27AlgC                                      | 92.94462          | 98.89             | +2385          | 9 55rC                           | 97.90990             | 00 75          | ±29.53         | <sup>70</sup> Ge02              | 101.91379  | 20.42           | +10E3          |
| <sup>3</sup> P3                             | 92.95129          | 100.00            | +2036          | <sup>92</sup> SeO                | 97.91154             | 09.18          | +18E3          | 102 SeCa                        | 101.91739  | 23.15           | +7460          |
| 29 CI2C3                                    | 92.95342          | 11.14             | +1945          | <sup>97</sup> MoH                | 97.91403             | 09.46          | +12E3          | <sup>102</sup> Si30             | 101.92253  | 08.47           | +5420          |
| 18602                                       | 92.95613          | 04.65             | +1841          | 98S3.                            | 97.91201             | 11.43          | +16E3          | 54CrQ <sub>3</sub>              | 101.92360  | 02.36           | +5129          |
| 1850-2                                      | 92.9124           | 20.41             | +1352          | <sup>BS</sup> Rb <sup>13</sup> C | 97.91545             | 00.80          | +10E3          | °⁴FeO3                          | 101.92434  | 05.78           | +4944          |
| 187- 2                                      | 92.910/           | 01.59             | +1721          | <sup>33</sup> ZnO <sub>2</sub>   | 97.91585             | 27.68          | +9920          | <sup>CC</sup> ZnC <sub>3</sub>  | 101.92605  | 26.90           | +4566          |
| 1870-2                                      | 93.477/           | 62.93             |                | 745eC-                           | 97.92100<br>97.92100 | 25•91<br>00 85 | +6510          | 102 CrC4                        | 101.92025  | 07.51           | ++1)1          |
| 08-                                         | 92.4(0/           | 01.64             | +94 83         | 98SiaC                           | 37.92762             | 08.53          | +4524          | 54FeC4                          | 101.93961  | 05.57           | +2840          |
| 40 Ti2                                      | 93.90058          | 12.37             | -1353          | 98 NiCa                          | 97.92834             | 03.58          | +4379          | 27A1203                         | 101.94781  | 99 <b>.</b> 28  | +2312          |
| T <sup>o</sup> CaFe                         | 93.90247          | 05.64             | -13E3          | <sup>50</sup> TiO3               | 97.92952             | 05.30          | +4159          | 204 Pb2                         | 101.98654  | 01.48           | +1231          |
| 94/7m                                       | 93.90594          | 09.04             | -55E3          | 50 CrO3                          | 97.93078             | 04.28          | +3948          | 204 Hg <sup>2</sup>             | 101.98674  | Q6.85           | +1228          |
| 785e0                                       | 92.90764          | 17.40             | 100 53         | SOCIC4                           | 97.94479             | 05.35          | +2523          | 12C17                           | 102.00000  | 32.72           | +1059          |
| 93NbH                                       | 93.91348          | - <u>6</u> 0 - 97 | +2023          | 34co                             | 97.94605             | 04.12          | +2445          | Caris                           | 102.04692  | 91.41           | + 712          |
| 82 SeC                                      | 93.91663          | 09.09             | +10E3          | 98 <sub>21</sub> ,               | 27 954/02            | 01 87          | +2039          | 205T12                          | 102.4869_  | 70.50           |                |
| <sup>62</sup> N102                          | 93.91814          | 03.64             | +8944          | 31 P2Ca                          | 97.96753             | 96.72          | +1591          | 205C17                          | 102.50168  | 15.75           | +6934          |
| <sup>39</sup> K <sub>2</sub> O              | 93.92233          | 86.47             | +6393          | 196Hg2                           | 97.98291             | 00.146         | +1273          | 13'Ba32                         | 102.67918  | 11.32           |                |
| GeC2                                        | 93.92399          | 20.07             | +5744          | 19 SPt2                          | 97.9836              | 25.3           | +1261          | 103Cr2                          | 102.88670  | 00,82           | -5765          |
| 58 N# C                                     | 93.93331          | 00.39             | +3658          | 95Ca.                            | 98.00670             | 00.321         | + 972          | 87 SrO                          | 102.90390  | 07.00           | -16E4          |
|                                             | 92.92222          | 07 04             | +2209          | - Ce Hz                          | 98.01564             | 91.44          | + 893          | a7 RDO                          | 102.90421  | 27.78           | <b>-</b> 30 E4 |
| 94SiaCa                                     | 93,950.69         | 06.01             | +2181          | <sup>197</sup> Au <sup>2</sup>   | 98.4836              | 100.00         |                | 103Rh                           | 102.90455  | 100.00          |                |
| 46T1C4                                      | 93.95263          | 07.65             | +2087          | <sup>99</sup> Tia                | 38.89266             | 00.59          | -7387          | <sup>103</sup> Zr <b>C</b>      | 102.90532  | 11.67           | +13E4          |
| <sup>30</sup> SiO4                          | 93.95340          | 03.06             | +2052          | 99 Ru                            | 28.90605             | 12.72          |                | $\frac{71}{2}$ GaO <sub>2</sub> | 102.91462  | 39.41           | +10E3          |
| 31P202                                      | 93.95735          | 99.52             | +1890          | 99SrC                            | 98.90899             | 07.05          | +34 E3         | [BrC <sub>2</sub>               | 102.91839  | 49.42           | +7435          |
| -000s2                                      | 93.9785/          | 13.3              | +1325          | 87 RbC                           | 98.90930             | 27.54          | +30 E3         | 103 grad                        | 102.92278  | 99.28           | +5645          |
| <sup>189</sup> 0s <sup>2</sup>              | 94.4793/          | 16.1              |                | <sup>9</sup> <sup>3</sup> MoH    | 98.91380             | 23.78          | +13E3          | 55Mm C                          | 102.92714  | 04,00           | ++>>>>         |
| 95 min                                      | a4 80070          | 11 67             | -2073          | ~' <u>1</u> n02                  | 98.91694             | 04.09          | +9082          | 3970.                           | 102.90000  | 92.21           | +2652          |
| 40 CaMn                                     | 94,90091          | 96.97             | -27 53         | 63 Cu C-                         | 38 32350             | 97.00          | +6216          | 20 6ph2                         | 102,98722  | 23.6            | +1245          |
| 95 <sub>Mo</sub>                            | 94.90444          | 15.72             |                | 35C104                           | 98,94849             | 74.80          | +2330          | CaH <sub>7</sub>                | 103.05474  | 91.40           | + 685          |
| <sup>79</sup> BrC                           | 94.91330          | 50.42             | +11E3          | 198 Pt2                          | 96.9823              | 07.21          | +1297          | 207 Dh2                         | 103 48704  | 22.6            |                |
| MoH                                         | 94.91376          | 09.04             | +10E3          | <sup>198</sup> Hg <sup>2</sup>   | 98.98337             | 10.02          | +1279          | 138 Ra 32                       | 103.42866  | 71.66           | 1746           |
| ZrH                                         | 94.91546          | 17.40             | +8615          | CsH3                             | 99.02346             | 91.43          | + 842          | 1040                            | 107 20100  | 70 37           | hees           |
| 40 ca Fa                                    | 25 80480          | 88 88             | -661)          | <sup>199</sup> Hg <sup>2</sup>   | 99.48411             | 16.34          |                | 38 G MO                         | 103.00102  | 30.36           | -4623          |
| 9eria                                       | 95.39539          | 56.38             | -7152          | 50m4.                            | 00 88058             | 00.00          | = =            | 104 DA                          | 107 20328  | 10 07           |                |
| 9 <sup>e</sup> Mo                           | 95.90496          | 16.53             | -2223          | 50 Cr2                           | 99.39210             | 00.19          | -4233          | 104 Pm                          | 107,90422  | 13.58           | +1124          |
| <sup>9</sup> <sup>€</sup> Ru                | 95.9087           | 05.51             | -16E4          | 100 <sub>R11</sub>               | 99,905/              | 12.52          | -87 53         | 1047rC                          | 103, 20467 | 17.04           | +75Ë3          |
| 9 <sup>6</sup> Zr                           | 95.90930          | 02.30             |                | 100570                           | 99.90610             | 31.7×          | -25E4          | <sup>∋</sup> 2MoC               | 103.90355  | 15.66           | +20E3          |
| SeO                                         | 95.91138          | 49.71             | +46E3          | 100 <sub>Mo</sub>                | 99,90651             | 09.63          |                | 72 GeO2                         | 103.91139  | 27.30           | +13E3          |
| B4gnC                                       | 95.91226          | 15.72             | + ラビビラ         | <sup>84</sup> SrO                | 39.30816             | 00.56          | +60 E3         | 30 SeC2                         | 103.91647  | 48.72           | +7877          |
| 325                                         | 95.91622          | 85.74             | +1453          | a7 Rb13C                         | 99.91265             | 27.54          | +16E3          | Jereos                          | 103.91664  | 91.00           | +/////         |
| 64 NiO2                                     | 95 <b>.</b> 91776 | 01.07             | +1123          | <sup>co</sup> ZnO <sub>2</sub>   | 99.91266             | 18.43          | +1253          | 40 Ca - C-                      | 103.32517  | 21.30           | 44747          |
| 64Zn02                                      | 95.91896          | 48.65             | +9928          | Tage C2                          | 99.91928             | 08.52 .        | +7324          | 567eC/                          | 103.93194  | 37.67           | +3625          |
| $^{40}Ca_{2}O$                              | 95.92008          | 93.22             | +8397          | 52 CrO-                          | 29.92129             | 83 16          | +5/50<br>16340 | 28 Siz03                        | 103.93859  | 34.42           | +2943          |
| GeC <sub>2</sub>                            | 95.92159          | 26.83             | +7804          | 23 Sta0                          | 39.92521             | 78.21          | +5203          | <sup>40</sup> Ca04              | 103.94250  | 96.04           | +2649          |
| 28 Ci C                                     | 95.93077          | 25.40             | +4467          | 39 K2 C2                         | 99.92742             | 84.77          | +4778          | 208 Pb2                         | 103.93333  | 52.3            | +1222          |
| 48mi0-                                      | 95.95079          | ((・))<br>フェール5    | ++++02         | <sup>64</sup> NIC3               | <u>99</u> .92796     | 01.04          | +4655          | CsHa                            | 104.06256  | 91.39           | + 652          |
| <sup>32</sup> SaOa                          | 95.93396          | 89.82             | +3889          | <sup>34</sup> ZnC <sub>3</sub>   | 99.92914             | 47.28          | +4415          | <sup>139</sup> La <sup>32</sup> | 104.17952  | 99.911          |                |
| ∂°TiC4                                      | 95.94795          | 71.07             | +2481          | SecrC4                           | 99.94051             | 20.11          | +2938          | <sup>209</sup> 3i <sup>2</sup>  | 104.43967  | 100.000         |                |
| <sup>32</sup> S04                           | 95.95173          | 94.09             | +2260          | 200 <u>1 -</u> 2                 | 99.94414<br>00 08/12 | 01.29          | +2504          | 105 <sub>0-0</sub>              | 104.38159  | 16.00           | -4516          |
| +340s <sup>2</sup>                          | 95.9811/          | 41.0              | +1336          | C-H-                             | 100-03128            | 2/•1/<br>91.42 | + 801          | səyo.                           | 104.90063  | 99.76           | -25E3          |
| Pt <sup>e</sup><br>12 <i>0</i>              | 95.9824/          | 00.78             | +1312          | 201 2                            |                      | , <u> </u>     |                | 105 Pd                          | 104.90492  | 22.23           |                |
| U8<br>193- 2                                | 96.00000          | 91.46<br>         | +1057          | Hgf                              | 100.48515            | T2•55          |                | <sup>93</sup> NbC               | 104.90566  | 93.39           | +13E4          |
| <br>19362                                   | 96.4834/          | 62.7              |                | 101 Ru                           | 100.905/             | 17.07          |                | <sup>73</sup> Ge02              | 104.91314  | 07.72           | +13E3          |
| ∪īe                                         | 96.50168          | ⊥4•99             | +5278          | 39YC                             | 100.90572            | <u>9</u> 8.89  | +1424          | <sup>31</sup> BrC <sub>2</sub>  | 104.916-2  | 48.37           | +9044          |
| Tia                                         | 96.89581          | 08.93             | -9318          | ⇒ RbO                            | 100.90693            | 71.98          | +5253          | P FeO3                          | 104.92011  | 02.17           | +6861          |
| CaFe                                        | 96.89827          | 02.12             | -12E3          | 100                              | 100.90945            | 00.914         | +とうどう          | 105 mg/                         | 104.92896  | 30.40<br>0 = 02 | ++246          |
| MO<br>Blb-0                                 | 96.90621          | 09.46             |                | 69COO                            | 100.91433            | 09.00<br>60 11 | +1772)         | 57 St - 0                       | 104.03815  | 08.60           | +7147          |
| -bru<br>35 brc                              | 70.71133          | 49.54             | +1983<br>±1753 |                                  | 100,01008            | 07 - 61        | +6736          | 27 41 - 0-                      | 104 044460 | 37.80           | +2636          |
| ● <sup>M</sup> OH                           | 96.91278          | 16-53             | +15E3          | 101Sia0                          | 100.92526            | 11.96          | +4981          | AT305                           | <u></u>    | -1 -            | ,20,0          |
| 97 Sa                                       | 96.91561          | 02.06             | +10E3          |                                  | 2 . 2                | -              | -              | 10 °Cr2                         | 105.37938  | 04.90           | -4501          |
|                                             |                   |                   |                |                                  |                      |                |                | <sup>2</sup> ZrO                | 105.59924  | 51.34<br>27 33  | -29E3          |
|                                             |                   |                   |                |                                  |                      |                |                | Pa                              | 100.90591  | e(•22           |                |



| 10 8 Pd                        | 105,90291                | 27.33          |           | 113-                                       |             |                                        |                               | 10 -                                       |             |                                        | 0                 |
|--------------------------------|--------------------------|----------------|-----------|--------------------------------------------|-------------|----------------------------------------|-------------------------------|--------------------------------------------|-------------|----------------------------------------|-------------------|
| 10602                          |                          | - 01 - 01 F    |           | Fe <sub>2</sub>                            | 112.86735   | 04.02                                  | -3056                         | * Ca <sub>3</sub>                          | 119.88776   | 90.34                                  | -8303             |
|                                | 102.90292                | 01.217         | +25522    | <sup>97</sup> MoO                          | 112.90112   | 00 46                                  | 3653                          | 88 Sr0a                                    | 119.89592   | 82.16                                  | -19F3             |
| <sup>9</sup> "MoC              | 105.90594                | 08.94          | +35E3     | 113 -                                      | 110 00 120  |                                        | - 7027                        | 104 740                                    |             |                                        | 30 53             |
| 947rC                          | 105,90764                | 17.21          | +2253     | 2 2 2 <sup>111</sup>                       | 112.90450   | 04:28                                  |                               | Pau                                        | 113.03013   | 10.94                                  | - 30 E 3          |
| 93 130                         |                          |                |           | 113Cd                                      | 112.90446   | 12.26                                  | +71E4                         | <sup>10</sup> *RuO                         | 119.89914   | 18.53                                  | -39E3             |
| NDC                            | 102.90901                | 01.10/         | +17 ビラ    | 119 <sub>Ru</sub>                          | 112 005     | 17 00                                  | 1.000                         | 120 cm                                     | 110 00000   | 30 85                                  |                   |
| <sup>106</sup> FeC₄            | 105.93331                | 00.41          | +3484     | 89                                         | 112.905     | 11.02                                  | +T0F4                         | Sn                                         | 119.90220   | 22.02                                  |                   |
| 58 NIC                         | 105 03525                | 66 17          | 12005     | YC <sub>2</sub>                            | 112.90572   | 97.80                                  | +80E3                         | <sup>100</sup> PdC                         | 119.90347   | 26.41                                  | +94E3             |
|                                | 105.92525                | 00.11          | +2265     | <sup>81</sup> BrOa                         | 112 00622   | 10 22                                  | LEO EZ                        | 108 040                                    | 110 00407   | 00 865                                 | LELES             |
| °°Si203                        | 105.93542                | 05.88          | +3258     | 65 2. 2                                    | 112.90022   | 77.22                                  | モンタニノ                         | 120-000                                    | 119.90.01   |                                        | +0+57             |
|                                |                          |                | . / _ / 0 | CuOs                                       | 112.91251   | 30.69                                  | +14E3                         | Te                                         | 119.90449   | 00.089                                 | +52E3             |
| 107 Cr <sub>2</sub>            | 106.87592                | 00.46          | -4224     | 49 T104                                    | 112,92751   | 05.46                                  | 14867                         | 120 MoCa                                   | 119.90496   | 16.41                                  | 14383             |
| 917.0                          | 106 00003                | 11 00          | 0777      | 65 m. m                                    |             |                                        | ++007                         | 960.0                                      |             |                                        |                   |
| 10410                          | 108.90025                | TT. 20         | -2555     | 27.0404                                    | 116.96110   | 29.56                                  | +4809                         | - RuC2                                     | 119.9007    | 05.29                                  | +10ピン             |
| 10' MoC                        | 106.90444                | 10.68          | -27 E4    | ~'Alg02                                    | 112.93444   | 99.52                                  | +3746                         | <sup>9</sup> <sup>6</sup> ZrC <sub>2</sub> | 119.90930   | 02.74                                  | +17E3             |
| 107 4                          | 100 00007                |                |           |                                            |             | ,,,, <u>,</u> _                        |                               | 5600                                       | 110 01168   | 00 78                                  | 11353             |
| Ag                             | 106.90403                | 51.35          |           | 114Fea                                     | 113.86525   | 00.66                                  | -2974                         | 37                                         | 119.91150   | 90.70                                  |                   |
| 947 n130                       | 106.01000                | 00 103         | ±17 🖬 3   | 57                                         |             | 00000                                  |                               | ≤′Al₄C                                     | 119.92616   | 98,89                                  | +5004             |
| 75 1 2                         | 100091099                |                |           | rez                                        | 112.01002   | 00.05                                  | -3481                         | 28 StaCa                                   | 119.93079   | 75.83                                  | +4104             |
| ' ASO2                         | 106.91151                | 99.52          | +16E5     | 9°MoQ                                      | 113.90089   | 23.72                                  | -43E3                         | 120-303                                    |             |                                        | 1.1.0.0           |
| 54                             |                          |                |           | 11401                                      | 117 00755   |                                        |                               | 010                                        | 150.00000   | 09.44                                  | +T556             |
| J <sup>T</sup> Cr <sub>2</sub> | 107.87774                | 00.06          | -4194     | Ca                                         | 113.90355   | 28.86                                  |                               | 1 3 1                                      |             |                                        | 0000              |
| 5400                           | 107 87000                | 00 74          |           | <sup>114</sup> RuC                         | 113,90373   | 31.45                                  | +63E4                         | <sup>121</sup> Ni2                         | 120.86186   | 00.62                                  | -2889             |
| CL65                           | 101.01922                | 00.54          | -4450     | 114                                        | 113 0030    |                                        |                               | 1217                                       | 100 99777   | 07 70                                  | 7700              |
| J2Zr0                          | 107.89958                | 17.07          | -28E3     | ao_ <sup>on</sup>                          | 112.90.59   | 00.66                                  | +シンピ4                         | K3                                         | 120.00/2/   | 01.52                                  | -1,299            |
| 92 <sub>M00</sub>              | 107.00346                | 15.80          | -10 86    | <sup>3</sup> <sup>°</sup> ZrC <sub>2</sub> | 113.90433   | 50.33                                  | +15E4                         | eg XO2                                     | 120.89552   | 99.52                                  | -15E3             |
| 108-1                          | 1010/10                  | 1).00          | - 10 10   | 102 PAC                                    | 113,00486   |                                        | 18753                         | 105 040                                    | 120 80073   | 55 18                                  | _ ਤੁਹੇਸ਼ਤੇ        |
| - Pd                           | 107.90347                | 26.71          |           | 82 - 2                                     |             |                                        |                               | ruo                                        | 120.09917   | ~~• <u>1</u> 0                         |                   |
| 108 CA                         | 107 00407                | 00 875         | 18 FL     | Se02                                       | 113.90645   | 09.17                                  | +39E3                         | 121Sb                                      | 120.90371   | 57.25                                  |                   |
| 108.00                         | 101.30401                | 00.079         | -TO P-    | 5°T104                                     | 113,92443   | 05.29                                  | +5455                         | 109 100                                    | IZO OOLEI   | 18 11                                  | エコスアは             |
| + O o MoC                      | 107.90496                | 16.47          | +72E3     | 50000                                      | 113 005 00  |                                        |                               | 121.000                                    | 120.90401   |                                        |                   |
| 96 <sub>Bu</sub> C             | 107 9087                 | 05 45          | 101 83    |                                            | 117.92009   | 04.21                                  | +2142                         | MCC2                                       | 120.90621   | 09.61                                  | +40ビン             |
| 782.0                          | 107.9001                 |                | +2107     | <u> </u>                                   | 113.92605   | 26.60                                  | +5062                         | <sup>57</sup> Fe0₄                         | 120.91505   | 02.17                                  | +11E3             |
| _ SeO₂                         | 107.90910                | 08.98          | +19E3     | 98 Ru0                                     | 113.040/    | 01.87                                  | 12452                         | 12104 0                                    | 120 03035   | 1 1 1 1 1                              | 11538             |
| 96ZrC                          | 107.90930                | 02.77          | +19E3     | 12 2                                       |             |                                        |                               | 1212130                                    | 3120.97075  | 14.14                                  | 77970             |
| 78000                          |                          | 07 70          | 11/177    | 019                                        | 114.00000   | 00.09                                  | +TTOT                         | 15_1C10                                    | 121.00335   | 10.02                                  | +1512             |
| deu2                           | 101.91111                | 01.12          | +1+0)     | 99                                         | 111 00000   | 10.00                                  | 1                             | 122                                        |             | 07 1.2                                 | 000               |
| °°SrC⊳                         | 107.91325                | 00.55          | +11E3     | Ruo                                        | 114.90096   | 12.69                                  | -43E3                         | 122 Ni2                                    | 121.85911   | 03.41                                  | -2784             |
| 27 41.                         | 107 02613                | 100 00         | 14762     | 115 Sn                                     | 114,90335   | 00.35                                  | -4464                         | 110 FeaC                                   | 121.87155   | 10.55                                  | -3888             |
| 60 x x 4                       | 107.92017                | 100.00         | ++/02     | 115 -                                      |             |                                        |                               | 551 2                                      |             |                                        | jug ho            |
| ~~N1C₄                         | 107.93077                | 25.09          | +2953     | 10°° TU                                    | T14.2020T   | 22. (2                                 |                               | Mn2C                                       | TST.0( 010  | 70.09                                  | -4549             |
| 28 Sta Ca                      | 107.93079                | 76.67          | +3050     | <sup>103</sup> RhC                         | 114.90455   | 98.89                                  | +12E4                         | 122 Caa                                    | 121,88435   | 01.79                                  | -6572             |
| 440.0                          |                          |                |           | 1157 n.C.                                  | 174 00530   | 1210                                   | 6753                          | 907.0                                      |             |                                        | 1/1777            |
| -∵ca0₄                         | 107.93514                | 02.04          | +2411     | 90-2102                                    | 117.900022  | 12.10                                  | +0(1)                         | 2702                                       | 121.09412   | 51.21                                  | -1462             |
| <sup>12</sup> Ca               | 108.00000                | 90.44          | +1118     | ZrfSC                                      | 2114.90769  | 01.13                                  | +28E3                         | <sup>10 e</sup> PdO                        | 121.89782   | 27.26                                  | -24E3             |
| 09                             | 100.00000                |                |           | <b>F</b> 0                                 |             |                                        | -                             | 108040                                     |             |                                        | - 50 83           |
| 217 C2                         | 108.50168                | 16.50          |           | °°Ni2                                      | 115.87070   | 47.86                                  | -3681                         | - Cuu                                      | 121.90004   | UI•EI                                  | - 79-27           |
| 018                            | 100. 00100               | 10.00          |           | 58 80-                                     | 116 86662   | 00 001                                 | 3258                          | <sup>122</sup> Te                          | 121,90290   | 02.46                                  |                   |
| 93 mbo                         | 108 00057                | 00 76          | 07 E3     | P 4 5 5 5                                  | 119.00002   | 00.001                                 | - 72.50                       | 110                                        |             | 10.05                                  |                   |
| 108.00                         | 100.90097                | 22.10          | -2127     | °⁻Sr0₂                                     | 115.90305   | 00.56                                  | -14E4                         | ++ CaC                                     | 121.90329   | 15.52                                  | +ウエビ4             |
| 10° Ag                         | 108.90461                | 48.65          |           | 100 Bu                                     | 115,900     | 12.50                                  | -5383                         | 110 PdC                                    | 121,90447   | 11.68                                  | +78E3             |
| 109 100                        | 108 00621                | 00 51          | 16853     | 100100                                     |             |                                        |                               | 122120                                     |             | 07 17                                  | 1002              |
| 77                             | 100.90021                | 09.07          | +001      | MOO                                        | 115.90142   | 09.61                                  | -1554                         | - MOC2                                     | 121.90590   | 27.41                                  | +40 57            |
| ( SeO <sub>2</sub>             | 108,90980                | 07.54          | +21E3     | 118 <sub>Sn</sub>                          | 115,90219   | 14.30                                  |                               | <sup>e e</sup> SrC <sub>3</sub>            | 121,90935   | 09.54                                  | +19E3             |
| 85 RbCa                        | 108.91202                | 70.56          | +1583     | 104 010                                    |             | 10.02                                  |                               | 58 TAN.                                    | 121 01205   | 00 33                                  | +12E3             |
| 967                            | 100.01000                |                |           | Pac                                        | TT2+20,250  | T0.02                                  | +1154                         | 58.04                                      |             |                                        |                   |
| - Zrisc                        | 100.91265                | 00.051         | +1462     | 104 RuC                                    | 115.90422   | 18.37                                  | +57E3                         | <sup>30</sup> N104                         | 121.91499   | 60.52                                  | +10E2             |
| - <sup>IUS</sup> SiaC          | <pre>&gt;108.93035</pre> | 13.50          | +4231     | 1167.0                                     | 115 00467   | 16 66                                  | ルファス                          | 12251-0                                    | -121.92762  | 08.60                                  | +4931             |
| 109 ~                          | 100 00336                | 00 10          | 1103      | 110000                                     | 119.90407   | 10.90                                  |                               | 980.730                                    |             | 01.83                                  | 10386             |
| ⊂a                             | 109.000000               | 09.12          | +110)     | Cd                                         | 115.90499   | 07.58                                  | +41E3                         | , Ruce                                     | 121.95-7    | 01.07                                  | +2,000            |
| 110                            | 100 97155                | 10 67          | 7107      | 92MoCa                                     | 115,90855   | 15.49                                  | +18E3                         | 144C10                                     | 122.00670   | 00,505                                 | +1174             |
| re2                            | 109.07100                | 10.01          | -2462     | 522.0                                      |             | Số cố                                  |                               | 123                                        | 122 88678   | <u></u> Ω                              | -7063             |
| <sup>J J</sup> Mn <sub>2</sub> | 109.87611                | 100.00         | -4044     | -Cr04                                      | 115.92015   | 02.90                                  | +0+22                         | 91                                         | 122.00010   |                                        | 1 1 1 7 7         |
| 94Ma0                          | 100 00085                | 00 02          | 1653      | 28 Sta0a                                   | 115.92061   | 78.02                                  | +6298                         | <sup>2</sup> ZrO <sub>2</sub>              | 122.89512   | 11•1 <i>(</i>                          | -14E2             |
| MOU                            | 109.90005                | 09.02          | -4262     | 1167-0                                     | 115 02/86   | 17 04                                  | 16113                         | 107 AgO                                    | 122.89974   | 51.23                                  | -28E3             |
| ¶ 4Zr0                         | 109,90255                | 17.36          | -15E4     | ZnC4                                       | 112.92400   | 11.94                                  | モンエン                          | 100                                        |             |                                        | /                 |
| 110 04                         | 100 00300                |                | -         | * CapCa                                    | 115.92517   | 90.38                                  | +5044                         | ±≤ Sb                                      | 122.90418   | 42.75                                  |                   |
| ca                             | 103.30253                | 16.22          |           | 232mh2                                     | 116 0100    | 100.00                                 | +1185                         | 123 CAC                                    | 122.00428   | 12.75                                  | +1255             |
| <sup>110</sup> Pd              | 109.90447                | 11.81          | +93E3     | 111                                        | 110.0190    | 100.00                                 |                               | 1230                                       | 122.90420   |                                        | +12 10            |
| 110MoC                         | 100 00508                | 23 62          | ⊥น้ำ ธ่3  | 397                                        | 116 80113   | 80 70                                  | -9766                         | Te                                         | 122.9043    | 00.07                                  | +T0E2             |
| 78 2.0                         | 109.90790                |                |           | 1013                                       |             |                                        | 70.07                         | <sup>123</sup> RuC <sub>2</sub>            | 122.90605   | 12.48                                  | +66E3             |
| SeO2                           | 109.90721                | 22.42          | +20E2     | 101 RuO                                    | 116.9000    | 17.022                                 | -2052                         | 123 cmC-                                   | 122 20802   | 07 11                                  | +26F3             |
| <sup>ae</sup> SrC <sub>2</sub> | 109.90935                | 09.64          | +18E3     | 85 BDO2                                    | 116.90182   | 71.80                                  | -91E3                         | 2 DI 03                                    | 122.90099   | 01.11                                  |                   |
| 397                            |                          | 86.26          | 17878     |                                            | 110190100   |                                        |                               | <sup>e</sup> RbCa                          | 122.90930   | 26.94                                  | +24E3             |
| _ <u>r</u> 505                 | 109.91/24                | 00.20          | +1010     | <sup>117</sup> Sn                          | 116.90310   | 07.61                                  |                               | 1230                                       | ີ 27 ຄຳຄໍຄິ | 0515                                   | +1161             |
| <sup>110</sup> SiaC            | - 109 <b>.</b> 92763     | 08.55          | +4515     | 117010                                     | 110 00190   | 20 10                                  | 10953                         | <b>V10</b>                                 | 12/01000    | 00.01)                                 | 1 7 7 9 7         |
| 4 6 T 1 0                      | 100 03227                | 07.02          | ±3702     | Pac                                        | 116.90462   | 22.10                                  | +6052                         | 124.                                       | 103 35873   | 00 57                                  | -2664             |
| 31-04                          | 109.97221                |                |           | <sup>93</sup> NbCa                         | 116,90566   | 97.80                                  | +46E3                         | - N12                                      | 12/0000     | 00.57                                  | -2004             |
| - P203                         | T03.92555                | 99.20          | +2244     | 8501 0                                     | 116 02017   | 11 03                                  | <u>re848</u>                  | <sup>56</sup> FeaC                         | 123.86388   | 83.09                                  | -3000             |
| 98 RuC                         | 109.954/                 | 01.85          | +2167     | 01302                                      | 110.92011   |                                        | 10000                         | 12400                                      | 103 88070   | 05 70                                  | -5053             |
| 1100                           | 110 00670                |                | 1063      | <sup>53</sup> CrO₄                         | 116.92029   | 09.46                                  | +600T                         | a_3                                        | 122.000/2   | 02.19                                  | - 10 - 10         |
| C9                             | TT0.00010                | 00.409         | +106)     | 27 41-0-                                   | 116,94462   | 96.72                                  | +2816                         | <sup>92</sup> ZrO <sub>2</sub>             | 123.39447   | 17.03                                  | -12E3             |
| 1117                           | 110 97500                | 00 26          | 3700      | 23410                                      |             | 05 653                                 | 008                           | 92M00-                                     | 123.89835   | 15.76                                  | -18E3             |
| Fe2                            | TTO 01205                | 00.20          | -2790     |                                            | 111.0202    | 05.057                                 | ÷ 330                         | 108-10                                     |             |                                        | 1957              |
| 95MoO                          | 110.89935                | 10.73          | -23E3     | 2352                                       | 117 6014    | 00 70                                  |                               | PdO                                        | T55.02020   | <0.30                                  | -1053             |
| 11100                          |                          | 10 76          |           | <b>-</b> u-                                | 111 • 7414  | 00.12                                  |                               | TOB COO                                    | 123.89898   | 00.871                                 | -20E3             |
| <b>-</b> ua                    | TTO-20458                | 14.(5          |           | 118                                        | 117 96010   | 36 00                                  | -3081                         | 124 CAC                                    | 123.00306   | 23.04                                  | -57 E3            |
| 99 Run                         | 110.00605                | 12.58          | +6353     | °Ni2                                       | TT(*00015   | J0.29                                  | - <i>Je</i> 01                | 124~                                       |             | 51.37                                  | 25.22             |
| 79                             |                          |                |           | 59 Co-                                     | 117.86636   | 100.00                                 | -3304                         | ''e                                        | TSD•A09T5   | 04.6L                                  | - ウダ やう           |
| Br02                           | TTO . 20013              | 20.29          | +2017     | 102 5.0                                    | 117 8096    | 31 63                                  | - 35 57                       | 124 RuCo                                   | 123.905     | 12.32                                  | -50 E4            |
| <sup>111</sup> SrC-            | 110.90899                | 07.09          | +24E3     | HuO                                        | 111.02004   | 21.22                                  | -2222                         | 1240                                       | 107 0000    | OF OF                                  |                   |
| 87 02 7                        | 110 00030                | 27 34          | エククデネ     | <sup>ee</sup> Sr0,                         | 117.89915   | 09.81                                  | -4⊥E5                         | · Sn                                       | 122.90524   | UD•94                                  |                   |
| 63                             | TTO . 202.20             | - I •          |           | 102 040                                    | 117 80077   | 00.96                                  | -52E3                         | 1240-0                                     | 123 00010   | 80 08                                  | <u> ተ</u> ገ և ም ሥ |
| °° CuOa                        | 110.91432                | 68 <b>.</b> 59 | +11E3     | Fau                                        | TT1 . 02211 |                                        |                               | - SrUg                                     | T57.700T0   |                                        |                   |
| 63 0 1 0                       | 110 62050                | 86.08          | +4382     | 118 Sn                                     | 117.90205   | 24.03                                  |                               | ⁺≃⁴Xe                                      | 123.90612   | 00.01                                  | +14E4             |
| 47                             |                          |                | 11202     | 118                                        | 117 00001   | 07 00                                  | 11200                         | 100MAC-                                    | 123.00651   | 09.42                                  | +98E3             |
| T104                           | 110.93140                | 06.97          | +4089     | PdC                                        | 117.90291   | 21.28                                  | +1+54                         | 80                                         |             |                                        |                   |
| 111 <sub>Ca</sub>              | 111.01008                | 00.011         | +1048     | 10 0 CAC                                   | 117.90593   | 01.20                                  | +30 E3                        | °∼NiO₄                                     | 123.91041   | 25.90                                  | +2453             |
| ~ <b>9</b>                     |                          |                | · · -     | 841-0                                      | 117 00601   | 08 84                                  | +30 83                        | 27A1.0                                     | 123.92107   | 99.76                                  | +7827             |
| 112 Po-                        | 111.86388                | 84.0e          | -2856     | - MOU2                                     | 111.20274   |                                        |                               |                                            |             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                   |
| 112-22                         |                          |                | 27717     | ∃*ZrC>                                     | 117.90764   | 17.02                                  | +とエビク                         | 113 For C                                  | 124.86735   | 03.97                                  | -3351             |
| Fez                            | TTT.0(595                | 00.04          | -2(12     | 8801-0-                                    | 117,01744   | 08.45                                  | +7661                         | 93                                         |             |                                        | ייים ול ר         |
| 9 6MOO                         | 111 80087                | 16.40          | -35 83    | 542 2                                      |             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 17163                         | I NDO2                                     | 124.09546   | 72.25                                  | -14E3             |
| 1100                           | 102201                   |                | رشار ر    | _⁼Cr0₄                                     | 117.91851   | 02.00                                  | <b>*(</b> <u>+</u> <u>2</u> 2 | 109 AgÕ                                    | 124.89952   | 48.53                                  | -25E3             |
| TTE Cd                         | 111.90306                | 24.07          |           | 54Fe0.                                     | 117.91925   | 05.76                                  | +6855                         | 113720                                     | 104 00412   | 04 52                                  | - 30 11           |
| 9 6 R110                       | 111 00361                | 05.50          | +2014     |                                            |             |                                        |                               | 128                                        |             |                                        |                   |
| 967 -                          |                          |                |           | 119 Ni-                                    | 118.86644   | 01.65                                  | -3239                         | ⁺f°CdC                                     | 124.90446   | 15.09                                  | -70E4             |
| <sup>o</sup> <sup>o</sup> ZrO  | 111.90421                | 02.19          | +91E2     | 110                                        |             |                                        | QEE II                        | 125 To                                     | 124 004A2   | 06.99                                  |                   |
| 112 RuC                        | 111.905                  | 12.62          | +58E3     | ®Ka                                        | 118.88925   | 17.09                                  | -0224                         | 125 - ~                                    |             |                                        | 12250             |
| 112                            |                          | 00.00          | 16553     | 87 Sm0-                                    | 118.80870   | 06.99                                  | -27E3                         | RuC2                                       | 124.905     | 10.97                                  | キククビ4             |
| sn                             | TTT•202T                 | 20.30          | T2252     | 87                                         |             |                                        | -3053                         | an -                                       | 10F 0F0     | 1                                      | <u> </u>          |
| 112 SrCa                       | 111.9061                 | 80.89          | +37E3     | - RbO2                                     | TT0.02775   | < 1 • 1 Z                              |                               | os Cu2                                     | 125.85918   | 47.73                                  | -2017             |
| 80                             | 111 00000                | 40 36          | +3552     | 103 RhŌ                                    | 118.89946   | 99.76                                  | -32E3                         | 1235 0                                     | 125 86525   | 00.65                                  | -3260             |
| 100002                         | TTT. 20052               | 77.20          |           | 110-                                       |             | 00 -0                                  |                               | re20                                       |             |                                        |                   |
| +00MoC                         | 111.90651                | 09.52          | +2253     | ÷∸° Sn                                     | 110.90315   | 00.50                                  |                               | ° <sup>™</sup> MoO>                        | 125.89574   | 09.00                                  | -16E3             |
| 28 4                           | 111 00770                | 72-30          | +24E3     | 1194-0                                     | 118 00111   | 10.72                                  | +9283                         | 947-0                                      | 125 80711   | 17.32                                  | -20 83            |
| 40                             |                          | 72.52          | 10000     | MOU2                                       |             | ±2.15                                  |                               | 110102                                     |             | きん・イラ                                  |                   |
| ~~Ca202                        | 111.91554                | 92 <b>.5</b> 0 | +0901     | +0" AgC                                    | 118.90483   | 50.78                                  | +(155                         | ++°CdO                                     | 125.59820   | 12.36                                  | -2253             |
| 48 11 1 1                      | 111.92759                | 73.27          | +4562     | 55Mnn                                      | 118.01760   | 99.04                                  | +8178                         | 110 PAO                                    | 125.89938   | 11.78                                  | -28E3             |
| *64 7 ~ ~                      |                          | 16 70          | Lunn      | 238                                        |             | 66°                                    | - dei                         | 128                                        |             |                                        | - 20-2            |
| ~~ZnC4                         | TTT•75(26                | 40.0           |           | ~ J O U2                                   | LLY.0245    | 770214                                 | - 70I                         | ÷€°CdC                                     | 125.90355   | 20.60                                  | - 29 54           |
| <sup>32</sup> S=0a             | 111.92887                | 89.60          | +4336     | 120                                        |             | 11 01                                  | 2010                          | 128R1C-                                    | 125.90373   | 31.28                                  | -90E4             |
|                                |                          |                |           | - Niz                                      | 119.06154   | 11.94                                  | -2777                         | 12 8m-                                     | 125 00287   | 18 71                                  |                   |
|                                |                          |                |           | -                                          |             |                                        |                               | T.e                                        | 10/05+70/01 |                                        |                   |

© University of Pretoria

186



| 12 600                           | 125 00397  | 18 71             |                   | 1 4 -                                        | 177 25001    | 10 00          | 0510                                    | 14104                                        | 10 85031               | 02 63          | -2555   |
|----------------------------------|------------|-------------------|-------------------|----------------------------------------------|--------------|----------------|-----------------------------------------|----------------------------------------------|------------------------|----------------|---------|
| 114900                           | 125 20320  | 00 65             | 14025             | 87 m                                         | 122.35091    | 10.50          | -2510                                   | 9311-0                                       | 140.09274              | 20.22          | -2250   |
| 907-0                            | 125.90 00  | 10.77             | +0750             | ~j_n₂                                        | 137.35423    | 00.17          | -2680                                   |                                              | 140.59059              | 19.20          | 1153    |
| 12 Arts                          | 125.90435  | 49.11             | +27 5.4           | 110 7-2C2                                    | 133.87155    | 10.43          | -4094                                   | 125 AgU2                                     | 140.09441              | 40.42          | 1957    |
| 102 DIG                          | 125.90445  | 00.09             | +2224             | <sup>55</sup> Mn <sub>2</sub> C <sub>2</sub> | 133.87610    | 97.80          | -4757                                   | 141                                          | 140.59952              | 05.70          | -1062   |
| PdC2                             | 125.90406  | 00.94             | +1254             | 102 Ru02                                     | 133.89353    | 31.46          | -13E3                                   | f SnC2                                       | 140.9051               | 07.19          | -2422   |
| - J- C2 1                        | 125.00000  | (9•⊥4             | +1010             | <sup>36</sup> SrO <sub>3</sub>               | 133.89410    | 09.79          | -13E3                                   | 12 TeC                                       | 140.90555              | 21.44          |         |
| <sup>95</sup> MoO2               | 126.89424  | 10.71             | -12EB             | 118 SnO                                      | 133.39696    | 23.97          | -18E3                                   | SSN6C4                                       | 140.,0555              | 90.00          | -(10)   |
| 111CdO                           | 126.80919  | 12.72             | -23EF             | <sup>122</sup> TeC                           | 133.9029     | 02.43          | -99E3                                   | 141 Pr                                       | 140.90743              | 100.00         |         |
| 115 SnC                          | 126,90335  | 00.35             | - 27 मई           | 110 CdCa                                     | 133.90329    | 12.12          | -14E4                                   | 140CeH                                       | 140.91310              | 38.47          | +25E3   |
| 115 TnC                          | 126.00361  | 94.66             | -1274             | 122 SnC                                      | 133,00346    | 04.67          | $-17 \pm 4$                             | 142 7                                        | 141 34558              | 11 23          | -2227   |
| 103 BhCa                         | 126.90455  | 57. Sõ            | -7295             | 134 <sub>B2</sub>                            | 133 00425    | 02 12          |                                         | xe2                                          | 141.JC                 | -1             | -2227   |
| 127 7                            | 126 00466  | 100.00            |                   | 110 010                                      | 177 00427    | 11             |                                         | 144Tis                                       | 141.54853              | 14.51          | -2335   |
| 127720                           | 126 00532  | 12 52             | 10F4              | Bee e                                        | 100.90447    | 11.55          | +6124                                   | ' <sup>1</sup> Ga <sub>2</sub>               | 141.84964              | 15.68          | -2379   |
| 63 0.00                          | 126 00023  | 68 <u>1</u> 3     | 12853             | sec. o                                       | 122.90925    | 09.42          | +2613                                   | 110 Fee0a                                    | 141.86137              | 10.62          | -2961   |
| 254 22                           | 127 00335  | 02 085            | 1296              | 1340                                         | 172.91275    | 00.45          | +1(E)                                   | <sup>55</sup> Mn <sub>2</sub> 0 <sub>2</sub> | 141.86592              | 99.52          | -3271   |
| 647n                             | 127 85502  | 23 21             | -2527             | 011                                          | 194.006/0    | 00.611         | +1207                                   | 107 AgCl                                     | 141.87368              | 38.78          | -3984   |
| 128 0.                           | 107 85737  | 20.91             | 0855              | 135~02                                       | 134.85200    | 01.53          | -2519                                   | <sup>94</sup> ZrÕ3                           | 141.89237              | 17.27          | -8382   |
|                                  | 127.05727  | 42.11             | -2000             | 87 SrO-                                      | 134 80372    | 06.07          | _1153                                   | 110 Cd02                                     | 141.89309              | 12.33          | -8754   |
| <sup>56</sup> Fe <sub>2</sub> O  | 127.35879  | 83.81             | -2735             | 87 800-                                      | 134 80403    | 27 65          | -1283                                   | <sup>110</sup> Pd0 <sub>2</sub>              | 141.39427              | 11.75          | -9442   |
| <sup>128</sup> Ca <sub>3</sub>   | 127.33053  | 00.64             | -5112             | 103 500-                                     | 134 80435    |                | -1253                                   | <sup>12 a</sup> TeO                          | 141.89878              | 13.65          | -14E3   |
| 52 Cr2 C2                        | 127.88102  | 68.61             | -5214             | 119 0-0                                      |              | 27•J2          | 1007                                    | 142 SnC2                                     | 141.00205              | 23.67          | -20E3   |
| <sup>9 6</sup> MoO <sub>2</sub>  | 127.89476  | 16.45             | -12E3             | 123010                                       | 174.09006    | 00.56          | -1057                                   | 130 BaC                                      | 141,90623              | 00.100         | -46E3   |
| 9 °Ru02                          | 127.8985   | 05.48             | -18E3             | 135616                                       | 124.90410    | 42.20          | -90E2                                   | 130 TeC                                      | 141,90695              | 34.10          | -60E3   |
| 112Cd0                           | 127.89797  | 23.95             | -17E3             | LOO CAC2                                     | 194.90420    | T5.90          | -1124                                   | 142 <sub>Nd</sub>                            | 141.90748              | 27.11          | -78E3   |
| <sup>9</sup> €ZrC₂               | 127.89910  | 02.79             | -20E3             | 135 Ea                                       | 134.90555    | 06.59          |                                         | 947rC4                                       | 141.90764              | 16.64          | -86E3   |
| 112 Sn0                          | 127.9000   | 00.95             | -23E3             | 27A15                                        | 134.90770    | 100.00         | +63E3                                   | 142 0                                        | 141.00030              | 11.07          |         |
| 116SnC                           | 127,90219  | 14 14             | -38E3             | 68 7                                         | 175 84070    | oz he          | 01.87                                   |                                              | 1 1. 0                 |                | - 1     |
| 104 PdCa                         | 127,90329  | 10.73             | -56E3             | 1127. 0                                      | 155.04912    | 02.45          | -2407                                   | IZ IO                                        | 142.89957              | 99.76          | -14E3   |
| 128 Xe                           | 127.90351  | 01.917            | -6323             | 40 0 - 0                                     | 2122.06500   | 02.20          | -2226                                   | 5 SnC2                                       | 142.90315              | 02.92          | -22E3   |
| 104 R110-                        | 127,90422  | 18.17             | -GÁES             | T CagO                                       | 1000267      | 90.12          | -0203                                   | 143Nd                                        | 142.90958              | 12.17          |         |
| 128 ZrCa                         | 127.00467  | 16.91             | -1554             | Se SrOg                                      | 125.39082    | ST.96          | -1083                                   | 142NdH                                       | 142.91530              | 27.11          | +25E3   |
| 116 <sub>040</sub>               | 127 00400  | 07.50             | -2354             | 10 FPdO2                                     | 135.89308    | 10.92          | -12E2                                   | <sup>142</sup> CeH                           | 142.91712              | 11.07          | +19E3   |
| 1280-                            | 107 00555  | 31 70             |                   | $104 \text{RuO}_2$                           | 135.89402    | 18.49          | -1353                                   | 7200                                         | 1/12 8/1218            | 07 50          | -2160   |
| 40 a - 0                         | 127.90000  | 21.19             | 100 23            | 120 Sn0                                      | 135.89711    | 32.77          | -19E <u>3</u>                           | 144m2                                        | 147.04710              | 11.17          | 2182    |
| 10 Ca203                         | T51.90330  | 92.10             | +2950             | <sup>120</sup> TeO                           | 135.89940    | 00.089         | -27 E3                                  | 1447.                                        | 142.04200              | 22 51          | -5105   |
| 97100                            | 108 80201  |                   | 1077              | 124TeJ                                       | 135.89898    | 04.56          | -25E3                                   | Je2                                          | 142.04499              | 22·91          | -2220   |
| 113700                           | 128 90001  | 00.07             |                   | 136CdC2                                      | 135.90306    | 23.82          | -10E4                                   | 3°Fe202                                      | 143.555/0              | 32.6L          | -2565   |
| 113240                           | 108 90027  | 10 07             | -2020             | <sup>136</sup> Ba                            | 135.90437    | 07.81          |                                         | Agci                                         | 143.57346              | 12.57          | -2682   |
| 129 0. 0                         | 120.09997  | 12.20             | -2452             | ll2SnC2                                      | 135.9051     | 00.94          | +19 E4                                  | to Ca3C2                                     | 147.88776              | 38.35          | -6522   |
| 129                              | 120.9051   | 07.69             | -(942             | 124SnC                                       | 135.90524    | 05.87          | +16E4                                   | 112CdO2                                      | 143.39286              | 23.95          | -8495   |
| 129 D 10                         | 125.904/4  | 25.44             |                   | <sup>136</sup> SrC <sub>4</sub>              | 135.90610    | 79.26          | +79E3                                   | 12°TeO                                       | 143.90046              | 31.70          | -15E3   |
| PaC2                             | 128.90482  | 51.98             | +1655             | <sup>136</sup> Ce                            | 135.90707    | 00.193         | +50E7                                   | 111 SnC2                                     | 143.9022               | 32.32          | -19E3   |
| NbCa                             | 128,90764  | 96.72             | +4523             | <sup>136</sup> Xe                            | 135,90721    | 08.87          | +48E3                                   | 13Z BaC                                      | 143.90512              | 00.096         | -31E3   |
| ~′Al <sub>3</sub> O <sub>3</sub> | 128,92935  | 99.23             | +5233             | 137                                          | 170 00075    |                | 7 7 7 0                                 | 144Nd                                        | 143.90980              | 23.35          |         |
| 130-                             | 100 Pellon | 07 00             | 01 50             | 101 Hez Ca                                   | 2106.06735   | 05.77          | -2532                                   | <u>1</u> 4 4 Sm                              | 143.91185              | 03.09          | +78E3   |
| EE.                              | 129.35401  | 27.20             | -2452             | ag Yog                                       | 136.39042    | 99.28          | -9037                                   | 27A14C3                                      | 143.92616              | 26.72          | +8800   |
| Jug                              | 129.35556  | 09.55             | -2228             | 105 Pd02                                     | 136.89462    | 22.12          | -13E3                                   | C15                                          | 100000                 | 57.46          | +1595   |
| <sup>3</sup> MoO <sub>2</sub>    | 129.39578  | 23.67             | -12E3             | 121SbO                                       | 136.89862    | 57.11          | -20E3                                   | 145710                                       | 144.24377              | 10.78          | -2122   |
| 114CdO                           | 129.39846  | 28.79             | -15E3             | <sup>113</sup> InC <sub>2</sub>              | 136.90430    | 04 <b>.1</b> 9 | -11E <sup>4</sup>                       | 145 200                                      | 144,84403              | 04.15          | -2159   |
| 114Sn0                           | 129.3983   | 00.66             | -18E3             | 137 CdC2                                     | 136.90446    | 12.52          | -1254                                   | 113 700-                                     | 122 83210              | 04 26          | -80.60  |
| <sup>130</sup> SnC               | 129.90205  | 23.92             | -27 E3            | 137 TeC                                      | 156.90462    | 06.96          | -14E4                                   | 113040-                                      | 100 37036              | 12 20          | -8141   |
| 130 Pd C2                        | 129.90291  | 27.22             | -32 E3            | 137 Ba                                       | 136.90557    | 11.32          |                                         | 121ch/2                                      | 122.0 220              | 55 00          | -1753   |
| <sup>130</sup> Хе                | 129.90350  | 04.08             | -37E3             |                                              |              |                |                                         | 133720                                       | 144 00513              | 22.22          | -2123   |
| 10 °CdC2                         | 129,90593  | 01.19             | -13E <sup>1</sup> | 59 Ga2                                       | 137.35142    | 36.48          | -2530                                   | - 45                                         |                        | 90.09          |         |
| <sup>130</sup> Ba -              | 129.90823  | 00.1Ĉ1            | -13E4             | ZrOg                                         | 137.33906    | 51.09          | -3717                                   | = 10 IId                                     | 144.91208              | 05.30          |         |
| <sup>130</sup> Te                | 129.90695  | 34.43             |                   | - PdO <sub>2</sub>                           | 137.59271    | 27.20          | -1233                                   | 145 712                                      | 145.00335              | 11.78          | +1587   |
| 94ZrCa                           | 120.90764  | 13.83             | +19E4             | ty 20d0a                                     | 137.39573    | 01.21          | -15E3                                   | 148-1                                        | a 1 = 21 0 00          |                | 2007    |
| 131~                             | 170 37710  |                   | 0.000             | tffTeO                                       | 137.99781    | 02.45          | -20E3                                   | 1480-                                        | 1 2 . 2 . 0            | 07.04          | -2027   |
| 10 1                             | 100.00010  | JUZ               | -2519             | tffSn0                                       | 137.39837    | 04.71          | -21E3                                   | 1021227                                      | +-2· *-27              | 22.32          | -2001   |
| Z RuO2                           | 130.39505  | 12.66             | -14E3             | 130CdC2                                      | 137.90355    | 23.49          | -10E4                                   | 114040                                       | - Teb. 105T            |                | -2-22   |
| 115 SnO                          | 130.39326  | 00.35             | -19E5             | 137TeC                                       | 137.90387    | 13.55          | -14E4                                   | 132 - 0202                                   |                        | 20. 2          | -,2-2   |
| 113 InO                          | 170.39852  | 22.40             | -20E3             | -14SnC2                                      | 137.9039     | 00.65          | -14E4                                   | 1307-0                                       | 1-2.50130<br>1-2.50130 |                | -1222   |
| 131SnC                           | 130.90315  | 03.73             | -68E2             | $g_0 ZrC_4$                                  | 137.90433    | 49.22          | -25E4                                   | 122-00                                       | 142.90100              | 24.20          | -1422   |
| 131 AgC2                         | 130.90485  | 20.25             | -25252            | <sup>138</sup> Ba                            | 137.90488    | 71.66          |                                         | 122000                                       | 1 = 50352              | 02.41          | -1922   |
| Xe                               | 130.90508  | 21.13             |                   | <sup>138</sup> Ce                            | 137.90603    | 00.25          | +1254                                   | 1345.0                                       | 1-7.10.40              | 04.02          | -1020   |
| 1327n-                           | 131,35080  | 25 80             | -2522             | 138 La                                       | 137.90674    | 00.039         | +7+E3                                   | ==================================           | 1,5 01045              | 02+29<br>17 00 | -エ(コン   |
| 40 00 0                          | 131 92776  | 20.27             | -7508             | 317 0                                        | 170 20000    |                | 0.05.0                                  | d                                            | 1-2.41269              | T1.55          |         |
| 100 p                            | 171 8010   | J7•)4<br>10 = 0   | -1000<br>-1722    | ĭ †∠rOg                                      | T22.20005    | 11.14          | - : : : : : : : : : : : : : : : : : : : | 17512                                        | 1-8.00670              | 00.725         | +1552   |
| 100100                           | 121 80071  | 12.50             |                   | 123 AU02                                     | 158.89463    | 51.10          | -1422                                   | 147742                                       | 148.94081              | 01.30          | -1989   |
| 116002                           | 171 90710  |                   | -1027<br>1077     | 123500                                       | 138.89909    | 42.02          | -56.57                                  | 147 200                                      | 748, 2447E             | 05.57          | -2094   |
| 116040                           | 171 20000  | 14.21             |                   | 12°TeO                                       | 135.8992     | 00.87          | -20E2                                   | 115 Tr.O.                                    | 148.30741              | 25.26          | - 69 69 |
| 1320-0                           | 171.099990 | 20 23             | 16722             | 1 SnC2                                       | 138.90335    | 00.25          | -52=2                                   | 123576                                       | 148.00419              | 41.B1          | -1423   |
| 108 040                          | 171 00220  | 22.50             |                   | 113 InCa                                     | 138.90361    | 93.61          | -57 E2                                  | 147 BaC                                      | 148.00555              | 06.55          | -1653   |
| 108 040                          | 131 20107  | 20.12             | -00 ±5            | 139 IC                                       | 138.90466    | 98.89          | -1024                                   | 134 ta 13                                    | d 46.20760             | 00.026         | -21E3   |
| 132V2                            | 131 00016  | 26.30             | -1/24<br>1//24    | 139 TC4                                      | 158.90532    | 12.94          | -20 E4                                  | 2741=C                                       | 146.00770              | 28.39          | -2253   |
| 120mar                           | 131 00000  | 20.09             | ーエッジャ<br>- フィント   | 139 La                                       | 120.90603    | 99.911         |                                         | 147 cm                                       | 146 01440              | 14 07          | /       |
| 132-                             | 1)1.90449  | 00.037            |                   | тгг∋ан                                       | 138.91540    | 71.65          | +20E3                                   | 147 0                                        | 1 7 01002              | 20.007         | . 1677  |
| Ba                               | 191.90512  | 00.097            |                   | <sup>70</sup> Gep                            | 139.34798    | 04.21          | -2442                                   | C12                                          | T+1:0T003              | 00.027         | +100%   |
| - S1303                          | 121.91552  | 77.33             | +15E3             | 140 345                                      | 139.35053    | 47.84          | -2555                                   | 148Tia                                       | 147.33752              | 00.68          | -1874   |
| - Al <sub>4</sub> C <sub>2</sub> | 191.92616  | 97.80             | +6269             | 140                                          | 139 85321    | 01 40          | -2697                                   | 148 Geo                                      | 147.34200              | 17.81          | -1987   |
| C <sub>11</sub>                  | 795.00000  | 80 <b>.</b> 45    | +1390             | 28312                                        | 139.88465    | 66 66          | -6733                                   | 5 6 7 6 2 Ca                                 | 147.86388              | 31.26          | -2317   |
| 1337n-                           | 132.85318  | 02.29             | -2558             | 923r0a                                       | 179,33040    | 16.00          | -8810                                   | 118Sn0a                                      | 1-7.39199              | 14.23          | -6045   |
| 1010.0                           | 130 8018   | 16.00             | <br>_1 3 5 3      | 103 240-                                     | 139, 99327   | 26 68          | -1253                                   | 1130405                                      | 147.39479              | 07.54          | -6826   |
| 85phA                            | 130 2069   | 10.77<br>71 67    | -1683             | 124TeO                                       | 139,89803    | 04 É8          |                                         | 124TeC-                                      | 147.39898              | 00.139         | -8462   |
| 117 0003                         | 132 80801  | $1 \pm 0 = 0 = 0$ | -1057             | 1245n0                                       | 139,90015    | 05.03          | -1959<br>-2753                          | 132Ba0                                       | 147.90003              | 00.097         | -9000   |
| 13300                            | 132 00513  | 100 00            | -1767             | 11eSnC-                                      | 139,90219    | 13.00          | -45 23                                  | 148 EaC                                      | 147.00437              | 07.79          | -12E3   |
| 109/ -7                          | 130 00/21  | 100.00<br>17 28   | -26Fh             | 1407-0                                       |              |                |                                         | 135 <sub>Ba</sub> ĭ3                         | c 47.90891             | 00.07          | -20E3   |
| B5 pr a                          | 130 01000  | -1.50<br>60 01    |                   | 116020                                       | 170 00467    | 16.34          | -23E4                                   | 124 SnC-                                     | 147.90524              | 05.81          | -13E3   |
| 85 0 4                           | 130 01608  | 11 00             |                   | 14000                                        | 130 00E0P    | 07.41<br>gg 10 | -4024                                   | 138CeC                                       | 147.90707              | 00.191         | -16E3   |
| 1337                             | 172 · 7100 |                   | +1353             | 128 Ter                                      | 130 00555    | 31 11          | 15050                                   | <sup>148</sup> Sm                            | 147.01442              | 11.24          | -73E3   |
| 611                              |            | 10.90             | 1-10-1            | 139 <sub>1.2</sub> H                         |              | 00 00          | T7254                                   | 148Nd                                        | 147.91646              | 05.73          |         |
|                                  |            |                   |                   | 27 41.00                                     | Louvaroite   | DProtori       | TLOL)                                   |                                              |                        | -              |         |
|                                  |            |                   |                   | ···⊥4∪29                                     | MIN MULDHY U | 110001         | いーエフトレフ                                 |                                              |                        |                |         |



| 149Ge2                                                                                                                                                                          | 148.84463  | 01.20  | -2063          |                                           |                                                                                         |             |                   |                                 |           |                    |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|----------------|-------------------------------------------|-----------------------------------------------------------------------------------------|-------------|-------------------|---------------------------------|-----------|--------------------|--------|
| <sup>as</sup> Rb0₄                                                                                                                                                              | 148.89170  | 71.46  | -5933          | 12.0                                      | 0.                                                                                      |             |                   | 144 cmC                         | 167 01165 | 03.00              | 87.00  |
| 117 SnO2                                                                                                                                                                        | 148.89290  | 07.57  | -6230          | TeO2                                      | 157.89367                                                                               | 18.62       | -5139             | 156D.C                          | 167.91105 | 09.02              | -0169  |
| <sup>133</sup> CsO                                                                                                                                                              | 148.90004  | 99.76  | -8885          | NdO                                       | 157.90239                                                                               | 27.04       | -7175             | 152 Sm()                        | 167 01427 | 26 66              | -9990  |
| 149 TeC2                                                                                                                                                                        | 148.90462  | 06.94  | -12E3          | 134 CeO                                   | 157.90421                                                                               | 11.04       | -7822             | 152040                          | 167.01434 |                    | -1057  |
| <sup>1</sup> <sup>3</sup> BaC                                                                                                                                                   | 148.90557  | 11.28  | -13E3          | 158N4C                                    | 157.90425                                                                               | 02.37       | -7837             | 168GdC                          | 167.92226 | 20.40              | -21E3  |
| 149 BaC                                                                                                                                                                         | 148.90772  | 00.086 | -16E3          |                                           | 157.91269                                                                               | 17.12       | -14E3             | 168 Er                          | 167.9308  | 27.07              |        |
| 149 Sm                                                                                                                                                                          | 148.91680  | 13.83  |                | 158 CH                                    | 157.92401                                                                               | 00.09       | -4124             | 168 Yh                          | 167.93390 | 00.135             | +54E3  |
| 150 Geo                                                                                                                                                                         | 149.84229  | 05.67  | -1909          | 158 g                                     | 157.9244                                                                                | 24.87       |                   | 12 C14                          | 168.00000 | 85.55              | +2427  |
| 75A50                                                                                                                                                                           | 149.84342  | 100.00 | -1937          | 13                                        | 150.000005                                                                              | 00.847      | +2000             | 1 49 -                          |           |                    |        |
| 865r04                                                                                                                                                                          | 149.38899  | 09.77  | -4712          | 158 Cr3                                   | 158.82003                                                                               | 01.23       | -1516             | 137 Fea                         | 168.79929 | 05.52              | -1251  |
| 134 BaO                                                                                                                                                                         | 149.89916  | 02.35  | -6921          | <sup>159</sup> Se <sub>2</sub>            | 158.83661                                                                               | 01.39       | -1800             | 169 BaO2                        | 168,89537 | 11.27              | -4225  |
| 150 TeCa                                                                                                                                                                        | 149,90387  | 18.45  | -8845          | 143 NdO                                   | 158.90449                                                                               | 12.14       | -7794             | NdC2                            | 168.91206 | 08.64              | -7582  |
| 150 BaC                                                                                                                                                                         | 149.90488  | 71.00  | -0405          | 159 BaC2                                  | 158.90555                                                                               | 06.50       | -8221             | <sup>155</sup> EuO              | 168.91551 | 52.05              | -8972  |
| 138 CeC                                                                                                                                                                         | 149,90603  | 00.25  | -1053          | 147 SmC                                   | 158.91449                                                                               | 14.80       | -15E3             | + °° GdC                        | 168.9241  | 15.74              | -17 E3 |
| 138 TaC                                                                                                                                                                         | 149,90674  | 00.088 | -1153          | 159Tb                                     | 158.92488                                                                               | 100.00      |                   | 105 Tm                          | 168.93434 | 100.00             |        |
| 150 Sm                                                                                                                                                                          | 149.91690  | 07.44  | -3883          | <sup>159</sup> C13                        | 159.01008                                                                               | 00.038      | +1865             | 189C14                          | 169.00335 | 13.42              | +2448  |
| 150 Nd                                                                                                                                                                          | 149.92082  | 05.62  |                | 160 0 -                                   | 150 9700%                                                                               |             | 1 40 4            | 170 Fee                         | 169.80319 | 00.96              | -1287  |
| 87                                                                                                                                                                              | 1,9,9,2002 | 0.02   |                | 160 0                                     | 159.02294                                                                               | 29.14       | -1696             | 170 Sra                         | 169.82260 | 00.11              | -1504  |
| Sr04                                                                                                                                                                            | 150.88863  | 06.95  | -4883          | 5 6 T 0                                   |                                                                                         | 49.99       | -1751             | 85 Rh2                          | 169.82404 | 52.06              | -1527  |
| ° RbO4                                                                                                                                                                          | 150.88894  | 27.58  | -4932          | 1280-0                                    | 150 8575                                                                                | 02.41       | -2025             | 138 BaOa                        | 169.89468 | 71.32              | -4157  |
| 115 Sn02                                                                                                                                                                        | 150.89295  | 08.54  | -5676          | 160 2002                                  | 159.0595                                                                                | 07 79       | ~21(0             | 138 CeO2                        | 169.89585 | 00.25              | -4275  |
| 135Ba0                                                                                                                                                                          | 150.90046  | 06.57  | -7909          | 144 140                                   | 150 00/77                                                                               | 07.70       | -7000             | 138 La02                        | 169.89654 | 00.089             | -4351  |
| <td>150.90261</td> <td>99.76</td> <td>-8914</td> <td>1440-0</td> <td>159.904//</td> <td>22.19</td> <td></td> <td>134 BaCa</td> <td>169.90425</td> <td>02.34</td> <td>-5421</td> | 150.90261  | 99.76  | -8914          | 1440-0                                    | 159.904//                                                                               | 22.19       |                   | 134 BaCa                        | 169.90425 | 02.34              | -5421  |
| $I_2^{IC_2}$                                                                                                                                                                    | 150.90466  | 97.80  | -10E3          | 1380-0                                    | 150 00707                                                                               | 09.00       |                   | 146NdCa                         | 169.91269 | 16.84              | -7418  |
| 191BaC                                                                                                                                                                          | 150.90824  | 00.79  | -13E3          | 160 0-0                                   | 150 01/00                                                                               | 11 00       | -/941             | 154Gd0                          | 169.91585 | 02.14              | -8604  |
| - <sup>-</sup> Eu                                                                                                                                                               | 150.91954  | 47.82  |                | 148 Mag                                   | 150 016/6                                                                               | 11.29       | -1252             | 154 SmO                         | 169.91684 | 22.66              | -9058  |
| 152 Cra                                                                                                                                                                         | 151.83261  | 00.47  | -1751          | 160                                       | 150 0030                                                                                | 02.00       | -1353             | 158 DVC                         | 169.924   | 00.089             | -15E3  |
| 15256                                                                                                                                                                           | 151.83856  | 01.22  | -1880          | 160 04                                    | 150 00701                                                                               | 21 00       |                   | 170 GdC                         | 169.9244  | 24.76              | -15E3  |
| 40 Can                                                                                                                                                                          | 151.87758  | 89.91  | -3636          | da                                        | 109.96761                                                                               | 21.90       |                   | 170 Yb                          | 169.934/  | 03.03              | -11E4  |
| 885r0.                                                                                                                                                                          | 151.88574  | 81.77  | -4519          | 161 BaC2                                  | 160.90557                                                                               | 11.36       | -7994             | 170 Er                          | 169.9356  | 14.88              |        |
| 120 Sn0-                                                                                                                                                                        | 151.89200  | 32.60  | -5553          | 145NdO                                    | 160.90697                                                                               | 08.28       | -8592             | 170 C14                         | 170.00670 | 00.977             | +2390  |
| 136Ba0                                                                                                                                                                          | 151.89928  | 07.79  | -7566          | 1 SmC                                     | 160 <b>.916</b> 8                                                                       | 13.80       | -18E3             | 171                             | 170 8000  | 00 070             | _1=07  |
| 140 CeC                                                                                                                                                                         | 151.90528  | 87.50  | -11E3          | 181Dy                                     | 160.9257                                                                                | 18.88       |                   | 1397.0                          | 170 80587 | 00.019             | -1000  |
| 128 TeC-                                                                                                                                                                        | 151.90555  | 31.09  | -11E3          | 81pr-                                     | 161 8308h                                                                               | 24 47       | -1746             | 171B-0                          | 170 00555 | 71.47<br>06 15     | -+205  |
| 152 Jac                                                                                                                                                                         | 151.90938  | 01.106 | -15E3          | 16250-                                    | 161 83310                                                                               | 00 15       | -1751             | 147 cmC                         | 170.90555 | 11 61              |        |
| 152 Sm                                                                                                                                                                          | 151.91936  | 26.72  |                | 130 800-                                  | 161 80603                                                                               | 00 101      | -5476             | 155040                          | 170.91449 | 14.04              | -1941  |
| 152 GA                                                                                                                                                                          | 151,91943  | 00.20  | +20 E5         | 130 ToO2                                  | 161 80675                                                                               | 34 31       | -5613             | 159 mb C                        | 170.91/01 | 14.09              | -9293  |
|                                                                                                                                                                                 |            | 00.20  |                | 27 1 1 27                                 | 161 88024                                                                               | 100.00      | -1453             | 17117                           | 170.92400 | 90.09              | -1262  |
| 153Se2                                                                                                                                                                          | 152.83926  | 01.37  | -1880          | 162800-                                   | 161 00488                                                                               | 70.33       | -7815             | 1710                            | 171 01008 |                    | 10307  |
| SSY04                                                                                                                                                                           | 152.88536  | 99.04  | -4339          | 138000                                    | 161.90400                                                                               | 00.245      | -8274             | 014                             | 1/1.01000 | 00.044             | +2301  |
| 121Sb02                                                                                                                                                                         | 152.89351  | 56.97  | -5645          | 162 SmC                                   | 161.9169                                                                                | 07.51       | -1983             | 172 Sr2                         | 171.81935 | 01.90              | -1621  |
| - BaO                                                                                                                                                                           | 152.90048  | 11.29  | -7600          | 150 NdC                                   | 161.92082                                                                               | 05.56       | -34E3             | 172 Rb2                         | 171.82132 | 40.19              | -1655  |
| 153 PrC                                                                                                                                                                         | 152.90748  | 98.89  | -12E3          | 162 DV                                    | 161.9256                                                                                | 25.53       |                   | 140 CeO2                        | 171.89508 | 88.05              | -5705  |
| 153                                                                                                                                                                             | 152.90065  | 00.979 | -1969          | 162 Er                                    | 161.92873                                                                               | 00.136      | +52E3             | 170 DyC                         | 171.9239  | 02.27              | -1354  |
| ш                                                                                                                                                                               | 192.9200   | 92.10  |                | 1637.0                                    | 1 (0, 0080)                                                                             | 01 67       | 9770              | 156D o                          | 171.90437 | 07.76              | -8254  |
| $^{154}Cr_3$                                                                                                                                                                    | 153.82707  | 09.07  | -1623          | 1387.0                                    | 162.90024                                                                               | 01.5/       |                   | 130Dy0                          | 171.909   | 00.052             | -1123  |
| 156Se2                                                                                                                                                                          | 153.83667  | 05.68  | -1805          | 147 cup                                   | 162.90605                                                                               | 99.71       | -7004             | 1/2 SmC2                        | 171.91442 | 11.31              | -16E3  |
| <sup>90</sup> ZrO <sub>4</sub>                                                                                                                                                  | 153.88397  | 50.97  | -4055          | 151 m.g                                   | 162.90940                                                                               | 14.92       | -0075             | 1 NdC2                          | 171.91646 | 05.60              | -20E3  |
| <sup>122</sup> TeO <sub>2</sub>                                                                                                                                                 | 153.8927   | 02.45  | -5266          | 163p.                                     | 162.91924                                                                               | 41.29       | -2069             |                                 | 171.91717 | 20.42              | -21E   |
| <sup>122</sup> SnO <sub>2</sub>                                                                                                                                                 | 153.8933   | 04.70  | -5376          | Dy                                        | 102.9210                                                                                | 27.91       |                   |                                 | 171.92721 | 21.66              | -86E)  |
| 138 BaO                                                                                                                                                                         | 153.89979  | 71.49  | -6952          | 164Fe3                                    | 163.81415                                                                               | 00.93       | -1434             | TY TYD                          | 171.9252/ | 51.95              |        |
| 138 LaO                                                                                                                                                                         | 153.90165  | 00.089 | -7590          | 164Se2                                    | 163.83326                                                                               | 00.84       | -1721             | 173 Sr2                         | 172.81834 | 01.38              | -1445  |
| 130 D 0                                                                                                                                                                         | 153.90094  | 00.25  | -(222)         | 132 BaO2                                  | 163.89492                                                                               | 00.097      | -4882             | 141 Pr02                        | 172.89728 | 99.52              | -4247  |
| 130 BaC2                                                                                                                                                                        | 153.90625  | 00.099 | -9004          | 140 CeC2                                  | 163.90528                                                                               | 86.53       | -7060             | <sup>173</sup> BaC <sub>3</sub> | 172.90557 | 11.20              | -5333  |
| 142 TeC2                                                                                                                                                                        | 153.90695  | 22.62  | -10E3          | 148 SmO                                   | 163.90933                                                                               | 11.21       | -8551             | 173SmC2                         | 172.9168  | 13.78              | -8157  |
| 142 NdC                                                                                                                                                                         | 153.90748  | 56.9T  | -1153          | 148NdO                                    | 163.91138                                                                               | 05.72       | -9575             | 157 Gd0                         | 172.91901 | 15.64              | -9107  |
| 15401                                                                                                                                                                           | 153.9095   | 10.95  | -12E)          | 152 SmC                                   | 163.91936                                                                               | 26.42       | -18E3             | 173DyC                          | 172.9257  | 18.70              | -14E3  |
| 1540                                                                                                                                                                            | 153.92094  | 02.15  | -1014          | 152GdC                                    | 163.91943                                                                               | 00.198      | -18E3             | 173 Yb                          | 172.938/  | 16.13              |        |
| 10 Sm                                                                                                                                                                           | 122.95132  | 55.(1  |                | 164Dy                                     | 163.9285                                                                                | 28.18       |                   | 58 M.                           | 173 80605 | 77 11              | nligg  |
| 155Cr3                                                                                                                                                                          | 154.82721  | 02.07  | -1622          | <sup>1</sup> <sup>6</sup> <sup>4</sup> Er | 163.9298                                                                                | 01.56       | <b>+</b> 13E3     | 174920                          | 173 81545 | 16.77              | -1570  |
| 155Se2                                                                                                                                                                          | 154.83737  | 03.56  | -1816          | 55 <sub>Mna</sub>                         | 164.81415                                                                               | 100.00      | -1435             | 174 Rh-                         | 173.81860 | 07.76              | -1625  |
| <sup>91</sup> Zr04                                                                                                                                                              | 154.88496  | 11.11  | -4105          | 133C602                                   | 164.89493                                                                               | 99.52       | -4827             | 142 NdO-                        | 173.89728 | 26.98              | -6141  |
| 123Sb02                                                                                                                                                                         | 154.39398  | 42.54  | -5394          | 141 PrC-                                  | 164.90748                                                                               | 97.80       | -7629             | 142 CeO-                        | 173.8991  | 11.02              | -6567  |
| <sup>139</sup> La0                                                                                                                                                              | 154.90094  | 99.67  | -7120          | 1 49 SmO                                  | 164.91171                                                                               | 13.80       | -9484             | 17 4 Ba C-                      | 173.90488 | 69.68              | -8301  |
| -Jong NgC                                                                                                                                                                       | 154.90958  | 12.30  | -12 <u>E3</u>  | 153 EuC                                   | 164.9206                                                                                | 51.60       | -19E3             | 174 SmC-                        | 173.9169  | 07.58              | -20E3  |
| 122CeC                                                                                                                                                                          | 154.91265  | 00.123 | -15E3          | 1850-0                                    | 161 00861                                                                               | 01 04       | -8061             | 158Dv0                          | 173.919   | 00.09              | -26E   |
| TP2 GG                                                                                                                                                                          | 154.9227   | 14.73  |                | - CeC2                                    | 104.90004                                                                               | 01.94       | -000 <sup>1</sup> | 158 <u>Gd</u> 0                 | 173.91931 | 24.8í              | -28E   |
| 158 Cr-                                                                                                                                                                         | 155,82153  | 59.40  | -1548          | - Of Ho                                   | 164.9291                                                                                | TOO.00      |                   | 150 NdC-                        | 173.92082 | 05.50              | -36E   |
| 15856                                                                                                                                                                           | 155,83575  | 14.68  | -1802          | 166FPA                                    | 165-80340                                                                               | 14.67       | -1325             | 174DyC                          | 173.9256  | 25. <sup>4</sup> 6 | INF.   |
| 927r0.                                                                                                                                                                          | 155,88431  | 16.05  | -4108          | 134 Ran-                                  | 165.80405                                                                               | 02.41       | -4780             | 17 4 YĎ                         | 173.9256  | 3 <b>1.</b> 84     |        |
| 40 Ca-C-                                                                                                                                                                        | 155,88776  | 87.37  | -4510          | 142 NAC-                                  | 165.90748                                                                               | 26.51       | -7819             | <sup>162</sup> ErC              | 173.92873 | 00.134             | +56E3  |
| 124TeOr                                                                                                                                                                         | 155.88878  | 04 59  | -4657          | 142 CeC-                                  | 165.90930                                                                               | 10.83       | -8553             | 174Hf                           | 173.939   | 00.18              | +13E3  |
| 124 Sn0-                                                                                                                                                                        | 155.89504  | 05.91  | -5728          | 150 SmO                                   | 165.91181                                                                               | 07.42       | -9824             | 1750-                           | 174 81500 | 11 50              | -1 270 |
| 132 Ba.C-                                                                                                                                                                       | 155.90512  | 00.095 | -9097          | 150 NdO                                   | 165.91573                                                                               | 05.61       | -13E3             | 143NAA                          | 174 80038 | 12 11              | -12/0  |
| 15 eNdC                                                                                                                                                                         | 155.9098   | 23.72  | -13E3          | 154GdC                                    | 165.92094                                                                               | 02.13       | -21E3             | 1397.002                        | 174 20603 | 75.77              | -78en  |
| 144SmC                                                                                                                                                                          | 155.91165  | 03.06  | -15E3          | 154SmC                                    | 165.92193                                                                               | 22.46       | -44E3             | 151 E. C-                       | 174,01054 | 46.77              | -7780  |
| 15 eGd                                                                                                                                                                          | 155.92226  | 20.47  |                | leeEr                                     | 165.9287                                                                                | 33.41       |                   | 159 mh0                         | 174,01070 | 99.76              | -7877  |
| 156C13                                                                                                                                                                          | 156.00000  | 86.49  | +2006          | 187 -                                     | 166 80005                                                                               | 00.70       | -1385             | 175DvC                          | 174.9278  | 24.97              | -1283  |
| 157                                                                                                                                                                             | 156 80107  | 20 10  | _1530          | 135 Ran-                                  | 166.80535                                                                               | 06.56       | -4740             | 175 Lu                          | 174.942/  | 97.41              |        |
| 0r3                                                                                                                                                                             | 156 8301C  | 20.10  | -1700          | 1 67 NAC-                                 | 166.00059                                                                               | 12 40       | -7979             | 17 8                            |           | 77 00              |        |
| 93NTLO                                                                                                                                                                          | 156 98570  |        | -1077          | 167 CaC-                                  | 166-01265                                                                               | 00.242      | -9352             | 1760                            | 175.50147 | 2(.66              | -1246  |
| 125004                                                                                                                                                                          | 156 800000 | 77.04  | -5287          | 1515.0                                    | 166 Q144F                                                                               | 47.70       | -1053             | 144                             | T(2.01505 | PO.TE              | -1346  |
| 1330-0                                                                                                                                                                          | 156 00517  | 00.90  | -9207          | 1 87 240                                  | 166-0227                                                                                | 14 50       | -2183             |                                 | 1/5.0996  | 22.14              | -4080  |
| 1410-0                                                                                                                                                                          | 156,00230  | 99.76  | -7228          | 1 67 Er                                   | 166.9305                                                                                | 22.04       | /                 | 140 C-C                         | 175 00500 | 07.00<br>85 57     | -4263  |
| 145 NAC                                                                                                                                                                         | 156.91206  | 08.47  | -15E3          | 1 68 -                                    |                                                                                         |             |                   | 160 770                         | 175 01881 | 00.01              | -+099  |
| 157 Gd                                                                                                                                                                          | 156.9241   | 15.68  |                | 28 CFe3                                   | Tel. 19265                                                                              | 11.12       | -1244             | 152 cm C                        | 175 01036 | 26 13              | -7530  |
| 157 Či 3                                                                                                                                                                        | 157.00335  | 12.60  | +1980          | 4000                                      | 167 87200                                                                               | 20.00       | -2420             | 152GdC~                         | 175.91943 | 20.10              | -7554  |
| 1587-                                                                                                                                                                           | 157 81080  | 07 31  | _1517          | 1360.0                                    | 167 90117                                                                               | 07.77       | _1686             | 1 80 Gd 0                       | 175.92212 | 21.85              | -8541  |
| 158c                                                                                                                                                                            | 157 8338C  | 02 20  | -1711<br>-1711 | 136000                                    | 167 80687                                                                               | 00.102      | -4040             | 17 SDVC                         | 175.9285  | 28.15              | -12E3  |
| 79 Br-                                                                                                                                                                          | 157,83678  | 25 54  | -1802          | 168 N.M.J                                 | There and a start                                                                       | f Profileri | 2-700A            | 164 ErC                         | 175.9298  | 01.54              | -14E3  |
| 942.r0.                                                                                                                                                                         | 157.88728  | 17.23  | -4257          | 11 W 2                                    | $\mathcal{O}$ and $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ |             |                   |                                 |           | -                  | -      |
|                                                                                                                                                                                 |            |        | ・ニント           |                                           |                                                                                         |             |                   |                                 |           |                    |        |



|   | 17 SHf<br>17 SLu<br>17 SYb                                                                                                            | 175.92212<br>175.9419<br>175.94272                            | 05.20<br>02.59<br>12.73                   | -8541<br>-2223                            | 173 EuO2<br>185 BaC4<br>185 DyCa                                                                                        | 184.9140<br>184.90557<br>184.9257                            | 51.93<br>11.17<br>18.52                    | -4919<br>-4359<br>-8294                   | 193 <sub>CU3</sub><br>193 <sub>MO2</sub><br>181 <sub>DVO2</sub>    | 192.78515<br>192.81042<br>19 <b>2.</b> 9155                | 19.80<br>10.60<br>18.79                   | -1063<br>-1235<br>-3769                   |
|---|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
|   | <sup>59</sup> CO3<br>177Ni3<br>145NdO2                                                                                                | 175.79954<br>176.90179<br>176.90186                           | 100.00<br>01.71<br>08.26                  | -1238<br>-1257<br>-4354                   | 1 89 TmO<br>185 YbC<br>185 Re                                                                                           | 184.9292<br>184.938<br>184.948                               | 99.76<br>16.37<br>37.07                    | -9843<br>-19E3                            | 169 TmC2<br>177 HfO<br>181 TaC<br>193 Ir                           | 192.9343<br>192.9374<br>192.9458<br>192.9667/              | 97.80<br>18.46<br>98.88<br>62.7           | -5956<br>-6586<br>-9233                   |
|   | 161Dy0<br>165HoC<br>177Hf                                                                                                             | 176.9206<br>176.92061<br>176.9291<br>176.9425                 | 18.83<br>98.89<br>18.50                   | -5080<br>-8083<br>-13E3                   | <sup>185</sup> Ni <sub>3</sub><br><sup>93</sup> Nb <sub>2</sub><br><sup>186</sup> Zr <sub>2</sub><br><sup>186</sup> Mo2 | 185.78501<br>185.81132<br>185.81231<br>185.81449             | 00.09<br>100.00<br>08.83<br>02.86          | -1122<br>-1334<br>-1344<br>-1365          | 193C18<br>194Zn3<br>194M02                                         | 193.00335<br>193.78197<br>193.81094                        | 14.99<br>19.95<br>10.49                   | +5265<br>-1070<br>-1273                   |
|   | <sup>178</sup> N13<br>89Y2<br>146NdO2<br>162DYO<br>1542dC                                                                             | 177.79689<br>177.81144<br>177.90249<br>177.92051              | 19.53<br>100.00<br>17.14<br>25.47         | -1218<br>-1353<br>-4393<br>-7912          | 138 BaO3<br>188 BaC4<br>154 GdO2<br>154 SmO2<br>188 YbC                                                                 | 185.88961<br>185.90488<br>185.91074<br>185.91173<br>185.9256 | 71.14<br>70.03<br>02.14<br>22.60<br>31.67  | -3044<br>-4058<br>-4653<br>-4772<br>-7408 | 194 Ruz<br>162 DyOz<br>170 YbCz<br>170 ErCz<br>178 HfO             | 193.86270<br>193.9154<br>193.934<br>193.9356<br>193.9379   | 00.21<br>25.41<br>02.96<br>14.55<br>27.07 | -1928<br>-4049<br>-6620<br>-7002<br>-7636 |
|   | 154SmC2<br>162ErO<br>166ErC<br>175U6                                                                                                  | 177.92193<br>177.92364<br>177.9287                            | 22.21<br>00.136<br>33.04                  | -8445<br>-9191<br>-12E3                   | 186DyC2<br>162ErC2<br>170YD0<br>170Er0                                                                                  | 185.9256<br>185.92873<br>185.9290<br>185.9356                | 25.38<br>00.133<br>03.02<br>14.84          | -7408<br>-8464<br>-8569<br>-12E3          | 182WC<br>194Pt<br>194C16                                           | 193.9460<br>193.9633/<br>194.00670                         | 26.12<br>32.9<br>01.26                    | -11E3<br>+4469                            |
|   | 179 <sub>Ni3</sub><br>147 <sub>SmO2</sub><br>179 <sub>3dCa</sub>                                                                      | 178.79720<br>178.90429<br>178.9227                            | 27.14<br>01.30<br>14.90<br>14.73          | -1209<br>-4374<br>-7953                   | 174HfC<br>186W<br>186OS                                                                                                 | 185.939<br>185.9507<br>185.952                               | 00.18<br>28.41<br>01.59                    | -16E3<br>+14E4                            | 195 MO2<br>195 Ru2<br>183 DyO2<br>195 Yb C-                        | 194.73506<br>194.81219<br>194.81475<br>194.91760           | 02.95<br>07.53<br>01.40<br>24.85          | -1067<br>-1266<br>-1237<br>-4012          |
|   | 163 DyO<br>179 ErC<br>179 Hf                                                                                                          | 178.92271<br>178.9305<br>178.9452                             | 24.86<br>23.05<br>13.75                   | -7957<br>-12E3                            | 187 M02<br>187 Zr2<br>139 LaO3<br>155 GdOa                                                                              | 186.78738<br>186.81299<br>186.81462<br>186.89076             | 00.003<br>04.98<br>00.63<br>99.19          | -1129<br>-1335<br>-1351<br>-3004<br>-4516 | 179HfO<br>195WC<br>195Pt<br>195C18                                 | 194.9401<br>194.9401<br>194.9481<br>194.9662/<br>195.01008 | 14.08<br>13.72<br>14.53<br>33.8<br>00.066 | -9490<br>-7470<br>-11E3<br>               |
|   | 100 N13<br>90 Zr2<br>148 SmO2<br>148 NdO2<br>180 GdC2                                                                                 | 179.79446<br>179.80866<br>179.90422<br>179.9065<br>179.92226  | 07.37<br>26.48<br>26.48<br>05.70<br>20.34 | -1187<br>-1309<br>-4297<br>-4544<br>-7548 | 187 DyC2<br>171 Yb0<br>175 LuC<br>187 Re                                                                                | 186.9278<br>186.9310<br>186.942<br>186.953/                  | 24.98<br>14.28<br>96.33<br>62.93           | -7419<br>-8498<br>-17E3                   | 198Zn3<br>198M02<br>198Ru2<br>28S17                                | 195.78078<br>195.81196<br>195.31370                        | 24.65<br>08.84<br>01.43                   | -1052<br>-1263<br>-1277<br>-1524          |
|   | 164 DyO<br>164 ErO<br>180 ErC<br>168 YbC<br>180 W                                                                                     | 179.92341<br>179.92471<br>179.9308<br>179.9339                | 28.11<br>01.56<br>27.02<br>00.134         | -7931<br>-8413<br>-12E3<br>-15E3          | 188Nis<br>188Nis<br>188Zr2<br>188Mo2                                                                                    | 186.956/<br>187.78463<br>187.81528<br>187.81188              | 01.64<br>00.014<br>03.99<br>06.05          | +62E3<br>-1091<br>-1327<br>-1311          | 164 ErO2<br>164 DyO2<br>196 YbC2<br>180 WO                         | 195.91960<br>195.92340<br>195.9252<br>195.9394             | 01.55<br>23.04<br>21.35<br>00.135         | -4126<br>-4484<br>-4677<br>-7075          |
|   | 180 Ta<br>180 Hf<br>12 C15                                                                                                            | 179.945/<br>179.945/<br>179.9461<br>180.00000                 | 00.012<br>35.24<br>84.58                  | -16E4<br>-13339                           | 140 CeC4<br>156GdO2<br>172YbO<br>188 DyCa                                                                               | 187.90528<br>187.91206<br>187.9201<br>187.9285               | 84.63<br>20.37<br>21.76<br>28.11           | -2010<br>-3641<br>-4192<br>-5108<br>-6618 | 180 TaO<br>1840sC<br>196WC<br>196Hg                                | 195.9410<br>195.9399<br>195.946/<br>195.9489<br>195.96583  | 00.012<br>00.018<br>30.46<br>00.146       | -7205<br>-9288<br>-1123<br>-1524          |
|   | 1812r2<br>149SmO2<br>165H00<br>1813dC2                                                                                                | 130.79262<br>130.30965<br>130.9066<br>180.9241<br>180.9241    | 00.43<br>11.56<br>13.76<br>99.76<br>15.78 | -1181<br>-1329<br>-4616<br>-8339<br>-8339 | 164 ErC2<br>176HfC<br>188 LuC<br>176YbC                                                                                 | 187.9298<br>187.9408<br>187.9419<br>187.94272                | 01.53<br>05.14<br>03.64<br>12.59           | -6936<br>-12E3<br>-13E3<br>-13E3          | 19 SPt<br>197 Zn3<br>197 MO2<br>197 Ru2                            | 195.9671/<br>196.78115<br>196.81272<br>196.81370           | 25.3<br>03.35<br>01.82<br>02.36           | -1059<br>-1275<br>-1283                   |
|   | 169 TmC<br>181 Ta<br>181 C15<br>182 N4                                                                                                | 180.9343<br>180.9458<br>181.00335                             | 98.89<br>98.988<br>14.22                  | -16E3<br>+3144                            | <sup>63</sup> Cu <sub>3</sub><br><sup>189</sup> MO <sub>2</sub><br><sup>27</sup> Alz                                    | 187.9569<br>188.78877<br>188.81476<br>188.87078              | 02.59<br>32.98<br>05.84                    | -1113<br>-1315<br>-2154                   | <sup>197</sup> Si7<br>185H002<br>197 YbC2<br>181Ta0                | 196.83806<br>196.9189<br>196.938/<br>196.9407              | 20.22<br>99.52<br>15.24<br>99.747         | -1525<br>-4078<br>-6745<br>-7432          |
|   | 182Zr2<br>134BaO3<br>134BaC4<br>150SmO2                                                                                               | 191.90907<br>191.90900<br>181.88898<br>191.90425<br>191.90670 | 13.87<br>02.40<br>02.31<br>07.40          | -1328<br>-3191<br>-4358<br>-4630          | 157 GdO2<br>185 HOC2<br>173 YbO<br>189 HfC                                                                              | 188.91390<br>188.9291<br>188.9330<br>188.9425                | 15.60<br>97.30<br>16.09<br>18.36           | -4237<br>-6427<br>-7410<br>-1223          | 198 Zn3<br>198 Ru2                                                 | 196.9672<br>196.9672<br>197.77814<br>197.81243             | 100.00<br>17.99<br>05.57                  | -1062<br>-1298                            |
|   | 150 NdO2<br>165ErO<br>182 GdC2<br>170 YbC                                                                                             | 131.91062<br>181.92361<br>181.924<br>181.934/                 | 05.59<br>33.33<br>24.66<br>03.00          | -5143<br>-8126<br>-8270<br>-15E3          | <sup>190</sup> Nis<br>190Mo2<br>1907ra                                                                                  | 188.9585<br>189.78425<br>189.31453<br>189.81694              | 16.1<br>00.001<br>12.99                    | -1057<br>-1271<br>-1291                   | 198517<br>198517<br>134BaO4<br>185ErO2<br>199VbC-                  | 197.81249<br>197.83533<br>197.88390<br>197.9185            | 04.00<br>16.39<br>02.40<br>33.25          | -1301<br>-1531<br>-2453<br>-4294          |
|   | 182 <sub>0</sub><br>182 <sub>0</sub><br>183 <sub>2</sub><br>272                                                                       | 191.9356<br>191.9460<br>182.00670<br>182.80999                | 14.72<br>26.41<br>1.115<br>03.84          | -18E3<br><br>+2997<br>-1325               | 158Gd02<br>174Yb0<br>188ErC2<br>174Hf0                                                                                  | 189.9142<br>189.9205<br>189.9287<br>189.9339                 | 24.75<br>31.76<br>32.67<br>00.18           | -3815<br>-4367<br>-5381<br>-6311          | 174HfC2<br>182WO<br>186WC<br>186OSC                                | 197.939/<br>197.9409<br>197.9507<br>197.952/               | 00.75<br>26.65<br>28.10<br>01.57          | -7735<br>-8353<br>-1453<br>-1653          |
|   | 183 Nis<br>135 BaO3<br>182 BaC4<br>159 TbC2                                                                                           | 132.79019<br>182.89028<br>182.90555<br>182.92488              | 00.12<br>06.54<br>06.40<br>97.80          | -1159<br>-3164<br>-4300<br>-7879          | 190 HfC<br>190 Pt<br>191 Cu3                                                                                            | 189.9430<br>189.964<br>190.78696                             | 27.04<br>00.013<br>44.26                   | -9046<br>                                 | 198 Pt<br>198 Hg<br>199 Zng<br>199 Pul-                            | 197.9646<br>197.96675<br>198.77996                         | 07.21<br>10.02<br>03.19                   | +9223                                     |
|   | 187 ErO<br>183 YbC<br>183 W<br>183 C <sub>15</sub>                                                                                    | 182.92541<br>182.9360<br>182.9481<br>183.01008                | 22.88<br>14.18<br>14.40<br>00.054         | -8063<br>-15E3<br><br>+2952               | 159 TbO2<br>191 ErC2<br>175 LuO<br>191 HfC                                                                              | 190.80940<br>190.91468<br>190.9305<br>190.9369               | 06.91<br>99.52<br>23.16<br>97.18<br>13.90  | -1240<br>-3920<br>-5804<br>-7206<br>-1153 | 199 S17<br>135 BaO4<br>167 ErO2<br>175 LuC2                        | 198.83489<br>198.88519<br>198.9203<br>198.942/             | 04.33<br>06.53<br>22.83<br>95.27          | -1492<br>-2397<br>-4152<br>-7588          |
|   | <sup>184</sup> Ni <sub>3</sub><br><sup>184</sup> Zr <sub>2</sub><br><sup>184</sup> MO <sub>2</sub><br><sup>136</sup> BaO <sub>3</sub> | 183.78744<br>183.80934<br>183.31710<br>183.88910              | 00.49<br>20.83<br>02.51<br>07.75          | -1139<br>-1318<br>-1396<br>-3076          | <sup>64</sup> Zn <sub>3</sub><br><sup>192</sup> MO2                                                                     | 190.9634<br>191.78388<br>191.81192                           | 37.3<br>11.69<br>13.05                     | -1077<br>-1277                            | 193W0<br>187 ReC<br>187 OsC<br>199 Hg                              | 198.9430<br>198.953/<br>198.956/<br>198.96822              | 14.33<br>62.23<br>01.62<br>16.84          | -7889<br>-13E3<br>-16E3                   |
| • | 160 BaC4<br>160 DyC2<br>152 SmO2<br>184 YbC<br>168 FrO                                                                                | 183.90437<br>183.9239<br>183.90916<br>183.9252<br>183.9257    | 07.73<br>02.24<br>26.59<br>21.74<br>27.00 | -4131<br>-7358<br>-4629<br>-7762<br>-7932 | <sup>192</sup> Ru2<br><sup>160</sup> DyO2<br><sup>160</sup> GdO2<br><sup>192</sup> ErC2                                 | 191.81860<br>191.81740<br>191.9137<br>191.91703<br>191.9308  | 00.078<br>00.31<br>02.28<br>21.30<br>26.97 | -1337<br>-1326<br>-3958<br>-4250<br>-6113 | 200Zn3<br>200Ru2<br>200M02<br>200S17                               | 199.77696<br>199.81110<br>199.81302<br>199.83216           | 10.01<br>09.16<br>00.93<br>01.37          | -1045<br>-1263<br>-1288<br>-1469          |
|   | 160 GdC2<br>168 Yb0<br>1840s<br>184W                                                                                                  | 183.92721<br>183.9288<br>183.946<br>183.9489                  | 21.41<br>00.135<br>00.018<br>30.64        | -8481<br>-9156<br>-63E3                   | 168YbC2<br>176Hf0<br>176Lu0<br>176Yb0                                                                                   | 191.9339<br>191.9357<br>191.9368<br>191.9376                 | 00.132<br>05.19<br>02.58<br>12.70          | -6783<br>-7244<br>-7558<br>-7803          | <sup>136</sup> BaO4<br>168 ErO2<br>176 HfC2<br>200 LuC2<br>176 VLC | 199.88401<br>199.92060<br>199.9408<br>199.9419             | 07.73<br>26.94<br>05.09<br>04.56          | -2371<br>-4190<br>-7264<br>-7317          |
|   | 185Ni3<br>185Zr2<br>137BaO3                                                                                                           | 184.78776<br>184.81296<br>184.89030                           | 00.03<br>03.91<br>11.24                   | -1154<br>-1370<br>-3205                   | 180WC<br>180TaC<br>192HfC<br>192Os<br>192P <del>+</del>                                                                 | 191.9445<br>191.945<br>191.9461<br>191.9622                  | 00.134<br>00.012<br>35.00<br>41.0          | -11E3<br>-11E3<br>-12E3<br>-12E3          | -1002<br>1840s0<br>184W0<br>1880sC<br>200Hg                        | 199.9409<br>199.9409<br>199.9438<br>199.9569<br>199.96833  | 12.45<br>00.018<br>30.57<br>13.2<br>22.13 | -7290<br>-7290<br>-8152<br>-1823          |
|   |                                                                                                                                       |                                                               |                                           |                                           | <sup>12</sup> C <sub>18</sub>                                                                                           | 117561218 Ot                                                 | Riefdus                                    | +5078                                     | <b>-</b> -                                                         |                                                            | -                                         |                                           |



| 201Zn3<br>201Ru2<br>137Ba0<br>169Tm0<br>201HfC                     | 200.77805<br>200.80978<br>4 200.88521<br>2 200.9241<br>2 200.9425 | 01.36<br>12.35<br>11.21<br>99.52<br>18.20 | -1045<br>-1252<br>-2362<br>-4351<br>-7232 | 1880sCz<br>194Pt0<br>198PtC<br>211HgC     | 209.952<br>209.9582<br>209.9646<br>209.96675  | 01.55<br>32.8<br>07.13<br>16.76 | -34E3<br><br>+33E3<br>+25E3 | 232 Sn2<br>232 Cd2<br>232 PbC2<br>232 Th                                                            | 231.80638<br>231.80998<br>231.97665<br>232.0380 | 03.05<br>00.57<br>51.6<br>100.00 | -1002<br>-1018<br>-3782 |
|--------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------|---------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|-------------------------|
| 2010sC<br>201Hg                                                    | 200.943/<br>200.9585<br>200.97209                                 | 36.98<br>16.0<br>13.22                    | -7364<br>-17E3                            | 187 ReC2<br>195 PtO<br>199 HgC            | 210.80773<br>210.953<br>210.9611<br>210.96822 | 12.15<br>61.54<br>33.7          | -1376<br>-27E3              | <sup>233</sup> Sn <sub>2</sub><br><sup>209</sup> B1C <sub>2</sub><br><sup>234</sup> Sn <sub>2</sub> | 232.80529<br>232.97934<br>233.80424             | 02.46<br>97.80<br>08.04          | +1338<br>- 991          |
| <sup>202</sup> Zn <sub>3</sub><br>202 Ru <sub>2</sub><br>138 BaO4  | 201.77577<br>201.8087<br>201.88452                                | 03.45<br>11.58<br>70.97                   | -1037<br>-1247<br>-2346                   | 212 Pd2<br>180 HfO2<br>196 P+0            | 211.80582<br>211.9359                         | 13.55<br>35.07                  | -1357<br>-8121              | 234U<br>235 Sn2<br>23511                                                                            | 234.0403<br>234.80515<br>235.0428               | 00.0056                          | ; - <u>-</u> -<br>- 989 |
| 170 Yb02<br>170 Er05                                               | 201.9238                                                          | 03.03                                     | -4313                                     | 212HgC                                    | 211.96833                                     | 23.06                           | +34E3                       | 238Sn2                                                                                              | 235.80439                                       | 16.65                            |                         |
| 202 HfC2                                                           | 201.9430                                                          | 26.95                                     | -7311                                     | 213Pd2                                    | 212.80829                                     | 11.88                           | -1385                       | 237 Sn2                                                                                             | 236,80530                                       | 09.16                            | -1497                   |
| <sup>202</sup> 0sC                                                 | 201.9456                                                          | 28.35<br>26.3                             | -8071<br>-13E3                            | 197 Au0                                   | 212.9 <i>3</i> 56<br>212.9621                 | 99•51<br>99•76                  | -8036                       | <sup>208</sup> T10 <sub>2</sub>                                                                     | 236.9636                                        | 70.20                            |                         |
| ≥°≃Hg                                                              | 201.97063                                                         | 29.80                                     |                                           | <sup>213</sup> HgC<br>214D4               | 212.97029                                     | 13.33                           | +26E3                       | <sup>20 6</sup> Pb02                                                                                | 237.96424                                       | 23.5                             | -2822                   |
| 203 Zn3<br>203 Ru2                                                 | 202.77685<br>202.8087/                                            | 00.47<br>15.52                            | -1041<br>-1244                            | 214Ag2                                    | 213,80966                                     | 26.37                           | -1978                       | 238U                                                                                                | 238.0486                                        | 99.2739                          | )                       |
| <sup>171</sup> Yb0 <sub>2</sub><br><sup>203</sup> HfC <sub>2</sub> | 202.9258                                                          | 14.24                                     | -4403                                     | <sup>187</sup> WO2<br><sup>198</sup> Pt0  | 213.9358<br>213.9595                          | 26.28<br>02.19                  | -8274<br>-99E3              | <sup>239</sup> Sn <sub>2</sub><br><sup>207</sup> Pb0a                                               | 238.80535                                       | 06.40<br>22.5                    | -1490                   |
| 187 ReO                                                            | 202.948/                                                          | 62.78                                     | -8493                                     | <sup>198</sup> HgO<br>214HgC              | 213.96166                                     | 10.00                           | +24 E3                      | 240 Sn2                                                                                             | 239.80440                                       | 14.76                            | -1227                   |
| <sup>191</sup> IrC                                                 | 202.9510                                                          | 37.3                                      | -9712<br>-24E3                            | 215 Pd2                                   | 214.80695                                     | 05.25                           | -1397                       | <sup>208</sup> Pb0 <sub>2</sub><br><sup>240</sup> C <sub>20</sub>                                   | 239.96645                                       | 52.0<br>79.99                    | -7154                   |
| 2047.                                                              | 202.9719                                                          | 29.50                                     |                                           | 183WO2<br>199 <sub>H2</sub> 0             | 214.9379<br>214.96313                         | 14.33<br>16.80                  | -8520                       | 241 Sn2                                                                                             | 240.80661                                       | 01.71                            | -1225                   |
| 204 Ru2                                                            | 203.80746                                                         | 14.68                                     | -1027<br>-1232                            | 203T1C                                    | 214.9719                                      | 29.17                           | +25E3                       | <sup>242</sup> C20                                                                                  | 241.00335                                       | 17.93                            |                         |
| <sup>172</sup> Yb0 <sub>2</sub>                                    | 203.88492 203.9150                                                | 87.63<br>21.71                            | -2314<br>-3512                            | 218Pd2<br>218Ag2                          | 215.80694<br>215.80944                        | 13.58<br>49.96                  | -1119<br>-1134              | 242C20                                                                                              | 241.00566<br>242.0067 <b>0</b>                  | 05.98<br>01.91                   |                         |
| 180WC2<br>180TaCa                                                  | 203.9445                                                          | 00.132                                    | -7137                                     | 184W02<br>200Hg0                          | 215,9387                                      | 30.49                           | -3524                       | <sup>2 43</sup> Sn <sub>2</sub><br>2 43 C                                                           | 242.80839                                       | 01.02                            | -1205                   |
| 204HfC2                                                            | 203.9461                                                          | 34.76                                     | -7560                                     | 204 PbC                                   | 215.97308                                     | 01.46                           | -8024                       | 244 Sna                                                                                             | 243.80692                                       | 04.13                            |                         |
| 192 PtC                                                            | 203.9648                                                          | 40.55                                     | -19E3<br>-25E3                            | 12C18                                     | 215.97947                                     | 81.80                           | -0142                       | 232 ThC                                                                                             | 244.0380                                        | 98.89                            |                         |
| 204 Hg                                                             | 203.97308                                                         | 01.48<br>06.85                            | <br>+52E4                                 | 217 Cd2<br>186WO                          | 216.81021                                     | 00.31                           | -1124                       | 232ThO<br>238UC                                                                                     | 248.0329<br>250.0486                            | 99.76<br>98.175                  |                         |
| <sup>12</sup> C <sub>17</sub>                                      | 204.00000                                                         | 82.72                                     | +7577                                     | 205T1C                                    | 216.9738                                      | 69.72                           | -7344                       | 252C21<br>253C                                                                                      | 252.00000                                       | 79.14                            |                         |
| 205 Zng<br>205 Ru2                                                 | 204.77505<br>204.8092                                             | 00.067<br>06.34                           | -1031<br>-1245                            | 218 Cdo                                   | 217.00555                                     | 16,50                           |                             | <sup>254</sup> C <sub>21</sub>                                                                      | 254.00670                                       | 02.09                            |                         |
| <sup>173</sup> YbO <sub>2</sub><br><sup>181</sup> TaCa             | 204.9278                                                          | 16.05                                     | -4456                                     | 218 Pd2<br>218 A 7                        | 217.80794                                     | 06.31                           | -1097                       | 238 <sub>U0</sub> -<br>232mb 0                                                                      | 254.0435                                        | 99.035                           | +5930                   |
| 1890s0<br>1937.00                                                  | 204.9534                                                          | 16.1                                      | -10E3                                     | 202 HgO                                   | 217.96553                                     | 29.73                           | -5295                       | 238UC2                                                                                              | 256.0300                                        | 97.00                            |                         |
| 205T1                                                              | 204.9738                                                          | 70.50                                     | -2965                                     | <sup>20 8</sup> PbC<br><sup>218</sup> C18 | 217.97444<br>218.00670                        | 23.3<br>01.571                  | -6758                       | 232ThO2                                                                                             | 264.0278                                        | 99 <b>.</b> 52                   | 9496                    |
| 20.67                                                              | 205.00335                                                         | 15.75                                     | +6937                                     | 219 Cd2                                   | 218.80835                                     | 00.52                           | -1086                       | 285<br>285<br>C22                                                                                   | 265.00335                                       | 19.29                            |                         |
| 20 6 Ru2                                                           | 205.80795                                                         | 11.75                                     | -1033<br>-1237                            | 203T10<br>219PbC                          | 218.9668<br>218.97588                         | 29.43<br>22.7                   | -5060<br>-6404              | 288C22                                                                                              | 266.00670                                       | 02.27                            |                         |
| <sup>206</sup> Pd2<br>206Rh2                                       | 205.80814 205.80910                                               | 00.21                                     | -1239<br>-1246                            | <sup>219</sup> C <sub>18</sub>            | 219.01008                                     | 00.094                          |                             | 238U02                                                                                              | 270.0384                                        | 98.796                           |                         |
| <sup>174</sup> YbO <sub>2</sub><br><sup>182</sup> WC <sub>2</sub>  | 205.9154                                                          | 31.69<br>25.83                            | -3489<br>-7242                            | 220 Pd2                                   | 219.80658                                     | 02.66<br>01.39                  | -1383<br>-1383              |                                                                                                     |                                                 |                                  |                         |
| 1900s0<br>1940+0                                                   | 205.9497                                                          | 26.3                                      | -8326                                     | <sup>204</sup> Pb0<br><sup>204</sup> Hg0  | 219.96799<br>219.96838                        | 01.48<br>06.83                  | +57 E4                      |                                                                                                     |                                                 |                                  |                         |
| 20 6 pb                                                            | 205.97444                                                         | 26.4                                      | -1069                                     | <sup>220</sup> PbC                        | 219.97665                                     | 52.0                            | +25E3                       |                                                                                                     |                                                 |                                  |                         |
| 207 D4                                                             | 206.00670                                                         | 01,41                                     | +6385                                     | 205T10                                    | 220.80757                                     | 03.37<br>70.3                   | -1371                       |                                                                                                     |                                                 |                                  |                         |
| 175LuO2                                                            | 206.9318                                                          | 96.94                                     | -4695                                     | <sup>209</sup> B1C                        | 220.97934                                     | 98.89                           | +21E3                       |                                                                                                     |                                                 |                                  |                         |
| 191 IrO                                                            | 206.9481<br>206.9583                                              | 14.66<br>37.2                             | -7451<br>-12E3                            | so ebo                                    | 221.00635                                     | 23.5                            | -1962                       |                                                                                                     |                                                 |                                  |                         |
| <sup>207</sup> PtC<br>207 Pb                                       | 206.9662<br>206.97588                                             | 33.8<br>22.6                              | -21E3                                     | 223Cd2<br>207 Ph0                         | 222.80734                                     | 08.27                           | -1364                       |                                                                                                     |                                                 |                                  |                         |
| 207 C <sub>17</sub>                                                | 207.01008                                                         | 00.079                                    | +6052                                     | 224Cd2                                    | 223.80684                                     | 16.20                           | -1360                       |                                                                                                     |                                                 |                                  |                         |
| <sup>208</sup> Zn3<br>208Pd2                                       | 207.77554                                                         | 00.002<br>01.73                           | -1034<br>-1223                            | 224S18<br>208 ph0                         | 223.81544                                     | 52.27                           | -1435                       |                                                                                                     |                                                 |                                  |                         |
| 208 Ru2<br>176Hf0                                                  | 207.80844                                                         | 03.45                                     | -1236                                     | 75Asa                                     | 224.76513                                     | 100.00                          | -1076                       |                                                                                                     |                                                 |                                  |                         |
| <sup>17 6</sup> LuO <sub>2</sub>                                   | 207.9317                                                          | 02.58                                     | -4627                                     | 225 Cd2<br>20° B10                        | 224,80783                                     | 13.26                           | -1352                       |                                                                                                     |                                                 |                                  |                         |
| 208WC2                                                             | 207.9489                                                          | 30.29                                     | -7495                                     | 228Cd2                                    | 225.80661                                     | 17.27                           |                             |                                                                                                     |                                                 |                                  |                         |
| 1920s0<br>192Pt0                                                   | 207.9571                                                          | 40.9                                      | -11E3<br>-13E3                            | 227 Cd2                                   | 226.80801                                     | 09.01                           |                             |                                                                                                     |                                                 |                                  |                         |
| <sup>208</sup> PtC<br><sup>208</sup> Pb                            | 207.9671 207.97665                                                | 25.37<br>52.3                             | -22E3                                     | 228 Cd2<br>228 In2                        | 227.80710                                     | 08.19                           | -1188                       |                                                                                                     |                                                 |                                  |                         |
| 209 Pd2                                                            | 208.80810                                                         | 04.88                                     | -1220                                     | <sup>204</sup> PbC2<br>228 <sub>C19</sub> | 227.97308<br>228.00000                        | 01.45<br>80.89                  | -8470                       |                                                                                                     |                                                 |                                  |                         |
| <sup>177</sup> HfO <sub>2</sub><br><sup>185</sup> ReC <sub>2</sub> | 208.9323<br>208.948                                               | 18.41<br>36.25                            | -4443<br>-6668                            | 229 Cd2                                   | 228.80945                                     | 01.86                           | -1181                       |                                                                                                     |                                                 |                                  |                         |
| 193 IrO<br>197 Auc                                                 | 208.9616                                                          | 62.5                                      | -12E3                                     | 230 To -                                  | 229.00335                                     | 01 62<br>17.22                  |                             |                                                                                                     |                                                 |                                  |                         |
| 209B1                                                              | 208.97934                                                         | 100.00                                    |                                           | 230 Cd2                                   | 229.80854                                     | 04.38                           | -1161                       |                                                                                                     |                                                 |                                  |                         |
| <sup>210</sup> Pd2<br>178Hf0-                                      | 209.80619<br>209.80964                                            | 11.45                                     | -1381<br>-8266                            | 231 <sub>PbCa</sub>                       | 230.00670                                     | 22.6                            |                             |                                                                                                     |                                                 |                                  |                         |
| 18 6WC2                                                            | 209.9507                                                          | 27.78                                     | -28E3                                     | ~~~ <u>~</u>                              | University c                                  |                                 | ia                          |                                                                                                     |                                                 |                                  |                         |





# APPENDIX C

# COMPARISON OF EXPERIMENTAL ANALYTICAL DATA TO EXPECTED VALUES FOR SELECTED ELEMENTS USING VARIOUS ANALYTICAL TECHNIQUES

# Laboratory

Analytical Method

| Α | Inductively | coupled   | plasma   | (ICP) | optical |
|---|-------------|-----------|----------|-------|---------|
|   | emission sp | ectroscop | oy (OES) | )     |         |

- B Spark-source mass spectrometry (SSMS)
- C Inductively coupled plasma (ICP) optical emission spectroscopy (OES)
- D Atomic absorption spectroscopy (AAS)
- E Arc emission spectroscopy (AES) (AgC1 buffer)
- F Arc emission spectroscopy (AES) (NaC1 buffer)
- G Direct current emission spectroscopy

Experimental and expected values are given in the units  $\mu$ gX/gU. The dotted lines depict expected concentrations.



































# CHAPTER FIVE

# QUANTITATIVE ANALYSIS

## 5.1 Calculation Methods

The calculation method used to derive the formula for determination of relative sensitivity factors (RSF's) for impurity elements in different matrices relative to an internal standard is discussed in detail on page 138.

For clarity, the essential formulae are also given here:



where:

 $K_{x}/K_{y}$  is the RSF for element X relative to the internal standard, X (see page 28).

Equation (1) can be rewritten as follows:



where:

 $C_x$  is the unknown concentration of an element X,  $C_y$  is the known concentration of the internal standard,



 $Q_x/Q_y^-$  is the ratio between the exposure values of an element X and the internal standard at 50% transmission, and  $K_x/K_y$  is the relative sensitivity factor for element X relative to the internal standard, which is derived from calibration plots as the slope of the regression line.

Equation (1) can be used to determine the RSF of any element X relative to any internal standard (IS) in any matrix Z. Rewriting equation (1) into the above notation gives:

$$(RSF_{IS}^{X})_{Z} = \begin{bmatrix} \frac{Q_{X}}{Q_{IS}} \\ \frac{Q_{IS}}{C_{X}} \\ \frac{C_{IS}}{C_{X}} \end{bmatrix}_{Z}$$
 .....(3)

This formula is directly related to the general formula for a RSF, namely:

### where:

 $C_{ms}$  is the concentration of an element X relative to an internal standard determined experimentally with the mass spectrometer, and

 $C_{true}$  is the true concentration of an element X relative to an internal standard where both concentrations are known.

The calculation method used to derive the formula which is used to determine the unknown background concentration of an element X in different matrices, Z, using different standards is given below. The general spark-source mass spectrometry equation applies:



where:

 $\begin{pmatrix} C_{X} \end{pmatrix}_{Z}$  is the unknown concentration of element X in matrix Z, K<sub>X</sub> is a constant for element X, and  $\begin{pmatrix} Q_{X} \end{pmatrix}_{Z}$  is the instrument signal for element X in matrix Z.

Equation (5) also applies when a known standard (STD) is added to the matrix Z:

where:

 $(C_{x})_{z+std}$  is the unknown concentration of element X in the matrix Z plus the known concentration of element X in the standard,  $K_{x}$  is a constant (see equation (5)), and  $(Q_{x})_{z+std}$  is the combined instrument signal for element X and the standard in the matrix Z.

In order to determine the unknown background concentration  $\binom{C}{x'z}$  of element X in matrix Z, equations (5) and (6) are combined as follows:

$$(C_{\mathbf{x}})_{z+std} - (C_{\mathbf{x}})_{z} = K_{\mathbf{x}} \left[ \frac{1}{(Q_{\mathbf{x}})_{z+std}} - \frac{1}{(Q_{\mathbf{x}})_{z}} \right]$$

This difference is equal to the concentration of the added standard, expressed as  $\binom{C}{x}_{std}$ :



 $\binom{(Q_x)_z}{z}$  and  $\binom{(Q_x)_z}{z+std}$  values can be determined as outlined on page 105 below.

 $\binom{C}{x}_{std}$  values are known and  $K_x$  can be calculated. Inserting the  $K_x$  value for element X in equation (5) enables the determination of  $\binom{C}{x}_z$ . This leads to the following equation:

$$(C_{x})_{z} = (C_{x})_{std} \cdot \frac{(Q_{x})_{z+std}}{(Q_{x})_{z} - (Q_{x})_{z+std}} \dots \dots \dots (8)$$

Equation (8) is the fundamental formula used to determine the background concentration of an element X in a matrix Z, using known prepared graphite standards. This formula will be used to determine background concentrations of impurity elements in  $U_3O_8$  and  $UF_4$  matrices in the following sections. The instrument signals of element X in both the matrix Z and the combination of matrix plus standard can be expressed relative to an internal reference standard (IS) (see page 28).  $Q_{\rm IS}$  values are the same in the Z and Z+STD matrices for a particular choice of Y concentration.

Equation (8) then converts to:

$$(C_x)_z = (C_x)_{std} \cdot \frac{(Q_x/Q_{IS})_{z+std}}{(Q_x/Q_{IS})_z - (Q_x/Q_{IS})_{z+std}} \dots \dots (9)$$


This formula only holds true when  $(Q_x/Q_{IS})_z$  is larger than  $(Q_x/Q_{IS})_{z+std}$ . The opposite can never happen in spark-source mass spectrometry because the concentration is inversely proportional to the instrument signal. Thus, the higher the concentration, i.e. when the standard is added to the matrix Z, the resultant instrument signal will be smaller than that for only the matrix Z.

## 5.2 <u>U<sub>3</sub>O<sub>8</sub>/graphite matrix quantitation</u>

#### 5.2.1 Blank correction

In order to determine relative sensitivity factors (RSF's) for impurity elements in a U<sub>3</sub>O<sub>8</sub>/graphite matrix, the blank U<sub>3</sub>O<sub>8</sub> sample must first be quantified. Considerable effort was initiated to obtain a blank  $U_3O_8$  sample with few impurity elements to ensure a background spectrum relatively free from spectral lines. This blank base  $U_3O_8$  sample (ES 0) was then mixed with a graphite powder, spiked with Y as an internal reference standard, in the ratio of five parts  $U_3O_8$  to one part graphite by mass. The choice of this ratio has been discussed on page 30. The sample was then analysed several times to obtain an instrument signal,  $(Q_x / Q_y)_{U_1 O_4}$  for element X relative to the internal standard, Y, in a  $U_3O_8$ /graphite matrix. The exposure value for Y,  $Q_v^-$ , is the mean of the singly and doubly charged species. The blank base U<sub>3</sub>O<sub>8</sub> sample used for this purpose is stoichiometric i.e. 100 per cent  $U_3O_8$ .

To be able to quantify the impurity elements present in the blank base  $U_3O_8$  sample, a range of graphite standards were prepared



which contained the impurity elements under investigation in different concentrations, together with Y as internal reference standard. The method followed to prepare these graphite standards has been described on page 26. UCAR SP1 graphite powder was used for these standards. The concentration range of the standards is as follows:

U<sub>3</sub>O<sub>8</sub> used: stoichiometric i.e. 84,8 per cent U. Concentrations: 4 μg X /gC 20 μg X /gC 40 μg X /gC 100 μg X /gC 200 μg X /gC

Expressed relative to U, the concentrations  $(C_x)_{x \text{ std}}$  for each impurity element X, become:

1 μg X /gU 5 μg X /gU 10 μg X /gU 25 μg X /gU 50 μg X /gU

The concentration of Y added to each of the above graphite standards as internal standard is 20  $\mu$ g Y/gC or 5  $\mu$ g Y/gU.

In addition to the above range of graphite standards using UCAR SP1 graphite, a range of check standards were also prepared using Ultra 'F' graphite. The main reason for preparing these check standards was to see whether results obtained for certain elements using UCAR SP1 graphite could not be improved by using Ultra 'F' graphite. The difference between these two graphite powders' background spectra for certain elements was used to



check the results obtained from the UCAR SP1 range of graphite standards. This was especially useful for Fe, which has a high background concentration in UCAR SP1 compared to Ultra 'F'. Additional impurity elements not incorporated in the UCAR SPI graphite standards were now added to these check standards using Ultra 'F' graphite. These elements could not be added to the UCAR SP1 graphite because of spectral line interferences from elements already added. However due to the absence of these interfering elements in Ultra 'F' graphite these additional impurity elements could be added and analysed without any interference. Elements falling into this category were Li, W, P, Na, K and S. This fact also accounts for the low value for the number of analyses in Table 5.2 (see page 111) where the calibration curve parameters are listed.

The concentration range of these check graphite standards is as follows:

Concentrations: 20 μg X /gC 40 μg X /gC 80 μg X /gC 200 μg X /gC

Expressed relative to U, the concentration,  $(C_x)_{std}$ , becomes:

5 μg X /gU 10 μg X /gU 20 μg X /gU 50 μg X /gU



The concentration of Y added to each of the above graphite check standards as internal standard is 80 µgY/gC or 20 µgY/gU.

Using standard addition methods, each of the above graphite standards are mixed with the blank base  $U_3O_8$  sample in the ratio of five parts  $U_3O_8$  to one part graphite by mass. Similarly, as for the blank base  $U_3O_8$ /graphite matrix sample, each sample is analysed several times to obtain an instrument signal,  $(Q_x/Q_y^-)_{U_3O_8+std}$ , for element X relative to the internal standard in the blank base  $U_3O_8$  plus the graphite standard. These instrument signals are used in equation (9) to calculate the concentration of element X in the blank base  $U_3O_8$ ,  $(C_x)_{U_3O_8}$ .

$$(C_{x})_{U_{3}O_{8}} = (C_{x})_{std} \qquad \frac{(Q_{x}/Q_{y}^{-})_{U_{3}O_{8}} + std}{(Q_{x}/Q_{y}^{-})_{U_{3}O_{8}} - (Q_{x}/Q_{y}^{-})_{U_{3}O_{8}} + std}$$

The results obtained to quantify the impurity elements in the blank base  $U_3O_8$  sample are given in Table 5.1 as  $C_{\chi}(SSMS)$  in  $\mu g \chi / g U$ .

The concentration values for Na (20,9), Mg (26,0), Si (18,3) and Fe (20,3) are all very high in comparison to the concentrations of the graphite standards e.g. the 1, 5, 10 and 25  $\mu$ gX/gU standards. This fact greatly influences the gradient of the calibration line. This is shown as follows:

On the x-axis of the calibration curve, the ratio  $C_y/C_x$  is plotted where  $C_x = (C_x)_{std} + (C_x)_{30}$ . Thus when  $(C_x)_{030}$  is large, the ratio  $C_y/C_x$  becomes smaller where  $C_y$  is taken as constant. This makes the gradient, m, of the regression line



<u>Table 5.1</u>: Blank Base  $U_3O_8$  (ES 0) quantification

| Element | Charge<br>State(+) | n  | Std Error at<br>95 % CL (%) | C <sub>x</sub> (SSMS)<br>(µg X /gU) | Certified conc<br>(µg X /gU) |
|---------|--------------------|----|-----------------------------|-------------------------------------|------------------------------|
| В       | 1                  | 18 | 10,4                        | 9,8                                 | 0,07                         |
| Na      | 1                  | 5  | 42,1                        | 20,9                                | 5                            |
| Mg      | 2                  | 12 | 31,2                        | 26,0                                | 0,5                          |
| A1      | 2                  | 18 | 13,3                        | 9,6                                 | 1                            |
| Si      | 2                  | 16 | 33,6                        | 18,3                                | 17                           |
| Р       | 1&2                | 12 | 18,4                        | 3,5                                 | -                            |
| Ca      | 2                  | 35 | 16,1                        | 6,0                                 | 2,2                          |
| K       | 1&2                | 6  | 25,2                        | 5,6                                 | 4                            |
| Ti      | 1&2                | 14 | 12,6                        | 0,42                                | 0,3                          |
| V       | 1&2                | 38 | 18,0                        | 0,38                                | 0,31                         |
| Cr      | 1&2                | 45 | 10,0                        | 5,3                                 | 2                            |
| Mn      | 1&2                | 34 | 12,6                        | 0,35                                | 0,14                         |
| Fe      | 1&2                | 22 | 9,7                         | 20,3                                | 13                           |
| Со      | 1&2                | 26 | 8,1                         | 0,30                                | 0,1                          |
| Ni      | 1                  | 28 | 10,5                        | 2,4                                 | 0,8                          |
| Cu      | 1&2                | 26 | 12,3                        | 0,5                                 | 0,3                          |
| Zn      | 1                  | 31 | 7,3                         | 1,78                                | 1,66                         |
| Zr      | 1&2                | 36 | 12,9                        | 3,5                                 | 0,5                          |
| Мо      | 2                  | 12 | 18,7                        | 2,5                                 | 0,3                          |
| Sb      | 1                  | 25 | 14,1                        | 1,22                                | 1,2                          |
| Li      | 1                  | 3  | 19,3                        | 0,19                                | 0,21                         |



inaccurate and limits the calibration range. In this way the RSF is influenced directly by a high background concentration. Even elements with lower background concentrations e.g. B (9,8) and A1 (9,6) influence the Q-values of the lower graphite standards with concentrations of 1, 5 and 10  $\mu$ gX/gU. The same can be said for Ca (6,0), K (5,6) and Cr (5,3) which influence the two lowest graphite standards with concentrations of 1 and 5  $\mu$ gX/gU. The rest of the elements in Table 5.1 have background concentrations which do not influence the calculation of relative sensitivity factors significantly.

The  $C_{_X}$  values in Table 5.1 determined for impurity elements in the blank base  $U_3O_8$  are only for the elements in their elemental state. The hydrogenated and oxygenated species of the elements have not been considered. When analysing unknown  $U_3O_8$  samples with the spark-source mass spectrometer, it is assumed that the same degree of hydrogenation and oxygenation of elements in the sample takes place as with the  $U_3O_8$  calibration standard samples. This assumption is reasonable if the unknown sample is also stoichiometric  $U_3O_8$  and the sparking parameters used to generate ions are identical for the  $U_3O_8$  sample as for the  $U_3O_8$  calibration standard samples.

The chemical composition of the impurity elements within the  $U_3O_8$ samples are also assumed to be similar to those in the  $U_3O_8$  calibration standard samples. The plasma generated between the two electrodes in the ion source provides the equalising locality for such differences. In this plasma the chemical structures are atomised and ionised and recombination of species takes place.

The high standard errors at 95% confidence level (CL) for Na (42,1%) and K (25,2%) can be ascribed to the small number of data



points (n = 5 for Na and n = 6 for K). The fact that the concentration of Na in the blank base  $U_3O_8$  sample is quite high ( $C_x = 20,9 \ \mu g \ Na/gU$ ) also plays a direct role in the relatively high uncertainty.

Similarly, the high standard errors at 95% CL for Mg (31,2%) and Si (33,6%) can also be ascribed to the high concentrations of these two elements in the blank base  $U_3O_8$  sample ( $C_x = 26,0$  for Mg and  $C_x = 18,3$  for Si). This explains why the  $(C_x)_{U_3O_8}$  values for these two elements fluctuated over the concentration range of the graphite standards. This fluctuation can further be enhanced by the position on the photoplate where the spectral lines of Mg at m/e 12,5 and of Si at m/e 14,5 are influenced by background emulsion fogging due to the strong spectral line of the major component, <sup>12</sup>C at m/e 12. This interference directly affects the results obtained for Mg and Si and can lead to large standard errors.

For the remainder of the impurity elements in the blank base  $U_3O_8$  sample, the standard errors at a 95% CL show typical values comparable to the precision of the method, namely approximately 20%. The large values of n for these elements also ensures the reliability of the lower ( $C_X$ )  $U_3O_8$  values over the concentration range of the graphite standards.

In Table 5.1 concentration values of impurities in the base  $U_3O_8$  material obtained with the spark-source mass spectrometer are compared with values obtained using different analytical techniques (see certified concentration column). These techniques are described on page 158. The main reason for some of the differences is the fact that the  $C_{_{\rm X}}$  (SSMS) values include the concent



tration of that particular element present in the graphite powder used. In other words, the  $C_x$  (SSMS) value reported is a combination of the concentration of that particular element in the blank base  $U_3O_8$  sample as well as the concentration of that particular element in the UCAR SP1 graphite or Ultra 'F' graphite used. In this way, the impurities in the graphite powder have been quantified and should be kept in mind when using these graphite powders for future analyses.

Differences can also be due to contamination picked up from a variety of sources. An important source of contamination, especially at trace level concentrations, is from ordinary dust in the laboratory environment [24]. Typical elements found in dust samples collected in the laboratory and analysed for impurities included such elements as B, Mg, Al, Si and Ca. It has also been shown that the Na from NaCl in human perspiration is a significant source of Na contamination. Another source of contamination is from the stainless steel tools which are used in the preparation of the electrodes. Possible impurity elements include Al, Cr, Fe, Ni, Zr and Mo. It is thus difficult at this stage to identify the exact sources of contamination and to quantify these impurities. Proposals to prevent or minimise such contamination are discussed in Chapter 7 on page 166.

## 5.2.2 Calibration Curves

Calibration curves are constructed according to equation (1) on page 98.  $Q_x/Q_y^-$  is plotted on the y-axis. The value of  $C_x$  in  $C_y/C_x$  is taken as the sum of the concentrations of an element X in the prepared graphite standard plus the value in the blank base  $U_3O_8$ . Expressed as symbols,  $C_x = C_{std} + C_{U_3O_8}$  where  $C_{U_3O_8}$ is obtained from Table 5.1 on page 106.



The slope,  $K_{\chi}/K_{\gamma}$ , of the calibration curve is the relative sensitivity factor (RSF) of that particular impurity element X present in the matrix  $U_{3}O_{8}$  relative to an internal standard, Y. Calibration curve parameters are listed in Table 5.2. The parameters c, r and n are discussed below. The standard error,  $s_{m}$ , in the slope is expressed in the form of the confidence limits of the slope,  $\alpha$ , at a 95% confidence level (CL). These two parameters are discussed on pages 115 and 148 in terms of the statistical significance of the results.

The values of the intercept on the y-axis (c) are, with only a few exceptions, relatively close to the origin (0;0). The value of c must be evaluated in perspective with the magnitude of the scale of the y-axis. Elements with high RSF's have large absolute values for c. Examples of such elements are K<sup>2+</sup> (c = -0,6448) and  $Bi^{2+}$  (c = -1,0788). Furthermore, elements with large a's also tend to have large values for c. This follows from the uncertainty in the slope of the regression line. Elements classified into this category are Mo<sup>1+</sup> and W<sup>2+</sup>. The intercept on the y-axis is reflected in the correlation coefficient of the fit of data to a regression line. A bad fit suggests that there are unreliable data points which, when included, would affect the intercept on the y-axis. Elements falling into this category are Mo<sup>1+</sup> and Ba<sup>1+</sup>. The value of c is not of importance as it is not incorporated directly into any calculations regarding concentration or RSF's.

However, the value obtained for r is an indication of the fit of the data to the regression line. Ideally, r should be unity. The values of r obtained in Table 5.2 are generally quite good. The rather poor fits of data for  $Fe^{1+}$  (r = 0,8529),  $Ba^{1+}$ (r = 0,8972) and  $Mg^{2+}$  (r = 0,9278) are also apparent from the



# Table 5.2: U<sub>3</sub>O<sub>8</sub> Calibration curve parameters

|         | T                  |         | •     |         |        |    |
|---------|--------------------|---------|-------|---------|--------|----|
| Element | Charge<br>State(+) | m (RSF) | a (%) | с       | r      | п  |
| В       | 1                  | 1,1468  | 4,6   | -0,0122 | 0,9961 | 19 |
| Na      | 1                  | 0,2483  | 28,2  | 0,0016  | 0,9716 | 7  |
| Mg      | 2                  | 1,7725  | 19,3  | -0,0898 | 0,9278 | 21 |
| A1      | 2                  | 1,2399  | 10,9  | 0,0083  | 0,9740 | 22 |
| Si      | 2                  | 1,2836  | 15,1  | -0,0197 | 0,9273 | 32 |
| P       | 1                  | 0,2178  | 20,8  | 0,0121  | 0,9839 | 7  |
| P       | 2                  | 1,3978  | 37,8  | 0,0511  | 0,9649 | 6  |
| Ca      | 2                  | 0,3035  | 12,2  | -0,0216 | 0,9317 | 44 |
| K       | 1                  | 0,1073  | 15,7  | -0,0014 | 0,9883 | 8  |
| K       | 2                  | 18,3676 | 24,2  | -0,6448 | 0,9910 | 5  |
| Ti      | 1                  | 0,2598  | 16,0  | 0,0004  | 0,9660 | 15 |
| Ti      | 2                  | 0,4684  | 5,3   | -0,0061 | 0,9969 | 12 |
| V       | 1                  | 0,3025  | 2,4   | 0,0248  | 0,9955 | 24 |
| V       | 2                  | 0,5004  | 19,9  | 0,0489  | 0,9580 | 13 |
| Cr      | 1                  | 0,2408  | 9,9   | 0,0087  | 0,9622 | 36 |
| Cr      | 2                  | 0,7199  | 9,4   | -0,0082 | 0,9847 | 18 |
| Mn      | 1                  | 0,1529  | 10,3  | 0,0357  | 0,9753 | 23 |
| Mn      | 2                  | 1,0094  | 17,8  | 0,0324  | 0,9660 | 13 |
| Fe      | 1                  | 0,2301  | 23,6  | 0,0041  | 0,8529 | 30 |
| Fe      | 2                  | 1,1867  | 13,1  | -0,0039 | 0,9809 | 13 |
| Co      | 1                  | 0,2697  | 4,0   | -0,0049 | 0,9957 | 25 |
| Co      | 2                  | 1,2153  | 12,9  | 0,0362  | 0,9836 | 12 |
| Ni      | 1                  | 0,2397  | 5,7   | 0,0099  | 0,9898 | 29 |
| Cu      | 1                  | 0,2987  | 7,3   | 0,0215  | 0,9840 | 28 |
| Cu      | 2                  | 3,9934  | 8,2   | 0,0669  | 0,9924 | 13 |
| Zn      | 1                  | 0,6078  | 7,4   | 0,0074  | 0,9857 | 25 |
| Sr      | 1                  | 0,4877  | 10,0  | 0,1405  | 0,9767 | 23 |
| Sr      | 2                  | 0,3316  | 11,7  | 0,0109  | 0,9848 | 13 |

| 4        |                                                     |
|----------|-----------------------------------------------------|
| <b>!</b> | UNIVERSITEIT VAN PRETORIA<br>UNIVERSITY OF PRETORIA |
| $\sim$   | YUNIBESITHI YA PRETORIA                             |
|          | 112                                                 |

## Table 5.2: Continued

|         | Y                  |         |       |         |        |    |
|---------|--------------------|---------|-------|---------|--------|----|
| Element | Charge<br>State(+) | m (RSF) | α (%) | с       | r      | n  |
| Zr      | 1                  | 1,3375  | 7,8   | 0,0501  | 0,9839 | 25 |
| Zr      | 2                  | 0,6769  | 8,9   | -0,0154 | 0,9911 | 13 |
| Nb      | 1                  | 1,3581  | 8,5   | 0,0273  | 0,9814 | 25 |
| Nb      | 2                  | 0,9780  | 10,1  | -0,0180 | 0,9886 | 13 |
| Мо      | 1                  | 2,8176  | 19,2  | -0,3758 | 0,9249 | 22 |
| Мо      | 2                  | 1,4294  | 9,1   | -0,0468 | 0,9907 | 13 |
| Ru      | 1                  | 2,8572  | 6,0   | -0,0171 | 0,9927 | 20 |
| Rů      | 2                  | 5,1368  | 19,2  | 0,0095  | 0,9609 | 13 |
| Cd      | 1                  | 1,1031  | 13,2  | 0,1175  | 0,9702 | 25 |
| In      | 1                  | 0,5853  | 12,5  | 0,1331  | 0,9607 | 25 |
| In      | 2                  | 7,7360  | 11,9  | 0,0027  | 0,9842 | 13 |
| Sb      | 1                  | 1,7565  | 16,9  | 0,0113  | 0,9342 | 24 |
| Sb      | 2                  | 7,0408  | 7,5   | -0,1386 | 0,9937 | 13 |
| Ba      | 1                  | 0,5416  | 23,0  | 0,6769  | 0,8972 | 22 |
| Ba      | 2                  | 0,4784  | 10,5  | 0,0230  | 0,9879 | 13 |
| Sm      | 1                  | 4,2008  | 45,0  | 0,0000  | 0,9310 | 7  |
| Sm      | 2                  | 0,6019  | 4,9   | 0,0437  | 0,9945 | 26 |
| Eu      | 1                  | 4,6455  | 6,2   | 0,0082  | 0,9962 | 12 |
| Eu      | 2                  | 0,6633  | 9,7   | 0,0179  | 0,9743 | 26 |
| Gd      | 1                  | 3,6455  | 7,4   | -0,0127 | 0,9960 | 12 |
| Gd      | 2                  | 0,9391  | 5,5   | -0,0087 | 0,9939 | 20 |
| Dy      | 1                  | 7,2053  | 6,3   | -0,1353 | 0,9960 | 12 |
| Dy      | 2                  | 0,6998  | 5,5   | 0,0883  | 0,9922 | 24 |
| W       | 2                  | 2,1239  | 40,3  | 0,5395  | 0,9604 | 6  |
| Bi      | 2                  | 20,1841 | 14,8  | -1,0788 | 0,9681 | 16 |
| Th      | 2                  | 2,0486  | 7,7   | -0,0852 | 0,9889 | 19 |
| Li      | 1                  | 0,0243  | 7,1   | 0,0002  | 1,0000 | 5  |



large errors in the slopes where a for  $Fe^{1+} = 23,6\%$ , a for  $Ba^+ = 23,0\%$  and a for  $Mg^{2+} = 19,3\%$ . Another explanation for the poor calibration lines for  $Fe^{1+}$  and  $Mg^{2+}$  is the high values of these elements in the blank base  $U_3O_8$ , where  $C_{U_3O_8} = 20,3 \ \mu g \ Fe/gU$  for  $Fe^{1+}$  and  $C_{U_3O_8} = 26,0 \ \mu g \ Mg/gU$  for  $Mg^{2+}$ . This is in spite of the large number of data points (n) used to draw the calibration curves for these elements. The calibration graph for  $Fe^{1+}$  in a  $U_3O_8$  matrix is given in Figure 5.1 as an example of a poor calibration curve.

Good calibration curves were obtained for Co1+ and V1+ as indicated by the correlation coefficients obtained for these elements where r = 0,9957 and r = 0,9955, respectively. Factors contributing to the good fit of data points for these elements is the fact that they both have very small a values where a = 4,0% for  $Co^{1+}$  and  $\alpha = 2,4\%$  for V<sup>1+</sup>. Another reason is the fact that they both have small concentrations in the blank base  $U_3O_8$  where  $C_{U_3O_8} = 0,3 \ \mu gCo/gU$  for  $Co^{1+}$  and  $C_{U_3O_8} = 0,38 \ \mu gV/gU$  for  $V^{1+}$ . In both cases the value of n is large where n = 25 for  $Co^{1+}$  and n = 24 for  $V^{1+}$ . A typical example of a good calibration curve is given in Figure 5.2 for  $Co^{1+}$  in a  $U_3O_8$  matrix. Another good calibration curve is obtained for B1+ where the concentration obtained in the blank base  $U_3O_8$  is fairly high where  $C_{U_3O_8} = 9,8$  $\mu gB/gU$  for  $B^{1+}$ . The other parameters coupled to this calibration curve are: r = 0,9961; n = 19 and  $\alpha = 4,6\%$ . This calibration line is also given in Figure 5.3 as a good line where a large background concentration is present.

The value of n in Table 5.2 is the number of data points where each analysis was taken as a separate data point. The value for the blank is also incorporated in n as a data point.







<u>Figure 5.2</u>: Calibration curve for  $Co^{1+}$  in  $U_3O_8$ /graphite matrix







## 5.2.3 Relative sensitivity factors (RSF's) - U<sub>3</sub>O<sub>8</sub>

The instrument sensitivity for a particular element is totally unique for a specific spark-source mass spectrometer and detection system. Different RSF's will be obtained for an element using a radio frequency (RF) spark compared to a triggered lowvoltage discharge spark as was used in this investigation.

Another important factor to be considered is that a RSF for a particular element X will differ from matrix to matrix [25]. This is illustrated when comparing RSF's obtained for mutual elements (e.g. A1, P, Ca, Si and Zn) for both a UF<sub>4</sub> and a  $U_3O_8$  matrix. Differences in this case could be ascribed, among other reasons, to the fact that in a UF<sub>4</sub> matrix, fluorination occurs within the plasma resulting in less elemental species of ions. © University of Pretoria



A RSF is also unique with regard to a particular internal reference standard.

It was beyond the scope of this investigation to determine whether a RSF for an element in a  $U_3O_8$  matrix will differ from that for another uranium oxide matrix, for example  $UO_2$  or  $UO_3$ . It is the author's opinion that there would not be a significant difference because the combinations of uranium and oxygen would create very similar plasma conditions [11]. In all uranium oxide matrices, there is an over-abundance of oxygen species generated within the plasma.

Correlations between physico-chemical properties of various elements as impurities and relative sensitivity factors have been published [23, 26]. Instead of using standards to determine RSF's, some authors have determined theoretical RSF's from making use of various combinations of physico-chemical properies of the elements. For the purpose of this investigation, an attempt will only be made to explain certain of the anomalies observed in the experimentally determined RSF's.

Physico-chemical properties such as heats of vaporisation, electrical resistivity, thermal conductivity, ionisation potentials, atomic radii and melting points were studied and some correlations drawn. These correlations are qualitative at their best. Due to the complexity of plasmas in relation to the physico-chemical properties, anomalies cannot be adequately explained in this qualitative fashion. It would require computer simulations involving chemical and physical studies in order to relate the properties to RSF's. This is a very complex task which has not been described in the literature and is beyond the scope of this



thesis. Qualitative comments will nevertheless be offered for some of the observations.

The high relative sensitivity factors (RSF's) obtained for a few of the impurity elements in a  $U_3O_8$ /graphite matrix can be related to their physico-chemical properties with some degree of confidence. Elements which do not readily form ions of a particular species tend to have high RSF's for this species. A prime example is K<sup>2+</sup> which has a very low ion yield for doubly charged species. A factor in this regard is the fact that potassium has only one valence electron in its outermost shell (4s orbital). This valence electron is readily lost to form the singly charged state having the noble gas structure of argon. Thereafter, it would require far more energy to remove a second electron to form the doubly charged species. This fact could be related to the second ionisation potential  $(I_p^{II})$  for K which, together with the other alkali-earth metals, has the highest  $I_P^{II}$  of all the ele-The RSF of 18,3676 obtained for K<sup>2+</sup> differs consideraments. bly from that obtained for  $K^+$  (RSF = 0,1073). It is evident that K<sup>+</sup> ions are formed in great abundance in the mass spectrometer. Another element which has a small RSF is Li (RSF = 0,0243). Both Li and K are alkali-earth metals of group IA which readily lose an electron to have a noble gas structure. In the case of Li, this would be helium. Na also has a relatively small RSF namely All the group IA elements have of the lowest melting 0.2483. points which would contribute to the high yield of ions for these elements and the subsequent low RSF's. These elements also have of the lowest electrical resistivity of all the elements present. This fact could also contribute to these elements being atomised and ionised more easily.



Bismuth has a high electrical resistance which could account for the very poor ion yield for the Bi<sup>2+</sup> ion and the subsequent high RSF value. Only the doubly charged Bi<sup>2+</sup> was recorded (see page 71). Bismuth is also the most diamagnetic of all the metals and the thermal conductivity is lower than any metal, except for Hg. Both the electrical resistivity and the thermal conductivity are physico-chemical properties which play a role in the generation of the plasma between the two electrodes in the ion-source.

Another group of elements having relatively high RSF's are the singly charged species of the rare-earth metals e.g. Sm, Eu, Gd and Dy. These all have relatively high electrical resistivities and large atomic radii. It was found that the ion yield for doubly charged species was greater than for the singly charged species. This can be demonstrated by plotting the number of ions yielded against the charge state [27].

It would seem that the larger the atom becomes, the fewer ions reach the photoplate, probably due to their momentum and collisions in the flight tube. Elements falling into this category are  $W^{2+}$ ,  $Th^{2+}$ ,  $Sb^{2+}$ ,  $In^{2+}$ ,  $Ru^{2+}$ ,  $Ru^{1+}$  and  $Mo^{1+}$ , and high RSF's could be expected. However, it should be taken into account that the number of ions generated in the ion source also plays a determining role.

The relatively high RSF for  $Cu^{2+}$  (RSF = 3,9934) is of interest as it is the highest of the 3d transition elements. Cu and Ag



have of the lowest electrical resistance as well as the highest thermal conductivity. They both are group IB elements having electron configurations such that their d-orbitals are filled and having one electron in the outermost s-orbital. The filled dorbitals lead to stability and an electron is readily lost from the half filled s-orbital. In order to lose another electron to form Cu<sup>2+</sup> species, more energy is required to remove an electron from a paired 3d orbital resulting in a high RSF for Cu<sup>2+</sup>.

Only a few of the physico-chemical properties of the elements have been referred to in order to explain some of the anomalies obtained with RSF's for impurities in a  $U_3O_8/graphite$  matrix. Properties such as bond strengths in diatomic molecules and heats of formation of gaseous atoms from elements in their standard states should also be included when attempting to explain these anomalies.

The RSF's obtained from calibration curves can be checked by making use of the instrument signals obtained. The ratio between the instrument signal for the singly charged state of an element and the instrument signal for the doubly charged state of the same element at a concentration level should be the same as the ratio between the RSF of the singly charged state of the particular element and the RSF for the doubly charged state of that ele-The ratio  $X^{1+}/X^{2+}$  is independent of the concentration of ment. element X. A number of elements were measured both in the singly and doubly charged states at two different concentration The means of the ratio  $X^{1+}/X^{2+}$  between these two concenlevels. trations were compared and good correlation was obtained. This ratio was used to test the ratio RSF X1+/RSF X2+ for the same element using the RSF's obtained in Table 5.3. Good agreement was obtained for most of the elements, which confirmed that outliers did not seriously influence the determination of RSF's. The ratio  $X^{1+}/X^{2+}$  can be used with a RSF for  $X^{1+}$  to get an estimate of the RSF for  $X^{2+}$  and vice versa.



Table 5.3: Relative Sensitivity Factors: U<sub>3</sub>O<sub>8</sub>/Graphite Matrix

| RSF<br>Singly      | Element | RSF<br>Doubly      | RSF X1+                           | X1+/X2+                  | X1+/X2+                  |
|--------------------|---------|--------------------|-----------------------------------|--------------------------|--------------------------|
| charged<br>Species |         | charged<br>Species | $\frac{RST}{RSF}$ X <sup>2+</sup> | C <sub>x</sub> =10µgX/gU | C <sub>x</sub> =50µgX/gU |
| 0,0243             | Li      |                    |                                   |                          |                          |
| 1,1468             | В       |                    |                                   |                          |                          |
| 0,2483             | Na      |                    |                                   |                          |                          |
|                    | Mg      | 1,7725             |                                   |                          |                          |
|                    | A1      | 1,2399             |                                   |                          |                          |
|                    | Si      | 1,2836             |                                   |                          |                          |
| 0,2178             | Р       | 1,3978             |                                   |                          |                          |
|                    | Ca      | 0,3035             |                                   |                          |                          |
| 0,1073             | K       | 18,3676            |                                   |                          |                          |
| 0,2598             | Ti      | 0,4684             |                                   |                          |                          |
| 0,3025             | v       | 0,5004             | 0,60                              | 0,60                     | 0,58                     |
| 0,2408             | Cr      | 0,7199             | 0,33                              | 0,34                     | 0,37                     |
| ò,1529             | Mn      | 1,0094             | 0,15                              | 0,15                     | 0,15                     |
| 0,2301             | Fe      | 1,1867             | 0,19                              | 0,20                     | 0,20                     |
| 0,2697             | Со      | 1,2153             | 0,22                              | 0,22                     | 0,21                     |
| 0,2397             | Ni      |                    |                                   |                          |                          |
| 0,2987             | Cu      | 3,9934             | 0,07                              | 0,08                     | 0,09                     |
| 0,6078             | Zn      |                    |                                   |                          |                          |
| 0,4877             | Sr      | 0,3316             | 1,47                              | 1,55                     | 1,85                     |
| 1,3375             | Zr      | 0,6769             | 1,98                              | 2,03                     | 2,06                     |
| 1,3581             | Nb      | 0,9780             | 1,39                              | 1,42                     | 1,27                     |
| 2,8176             | Мо      | 1,4294             | 1,97                              | 2,02                     | 2,02                     |
| 2,8572             | Ru      | 5,1368             | 0,56                              | 1,37                     | 0,67                     |



## Table 5.3: Continued

| RSF<br>Singly<br>charged<br>Species | Element | RSF<br>Doubly<br>charged<br>Species | RSF X <sup>1+</sup><br>RSF X <sup>2+</sup> | X <sup>1+</sup> /X <sup>2+</sup><br>C <sub>x</sub> =10μgX/gU | X <sup>1+</sup> /X <sup>2+</sup><br>C <sub>x</sub> =50µgX/gU |
|-------------------------------------|---------|-------------------------------------|--------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| 1,1031                              | Cd      |                                     |                                            |                                                              |                                                              |
| 0,5853                              | In      | 7,7360                              | 0,08                                       | 0,08                                                         | 0,09                                                         |
| 1,7565                              | Sb      | 7,0408                              | 0,25                                       | 0,25                                                         | 0,24                                                         |
| 0,5416                              | Ba      | 0,4784                              | 1,13                                       | 1,08                                                         | 1,19                                                         |
| 4,2008                              | Sm      | 0,6019                              | 6,98                                       | 6,63                                                         | 6,55                                                         |
| 4,6455                              | Eu      | 0,6633                              | 7,00                                       | 7,05                                                         | 7,58                                                         |
| 3;6455                              | Gd      | 0,9391                              | 3,88                                       | 3,97                                                         | 3,89                                                         |
| 7,2053                              | Dy      | 0,6998                              | 10,30                                      | 10,64                                                        | 9,76                                                         |
|                                     | W       | 2,1239                              |                                            |                                                              |                                                              |
|                                     | Bi      | 20,1841                             |                                            |                                                              |                                                              |
|                                     | Th      | 2,0486                              |                                            |                                                              |                                                              |

## 5.3 UF<sub>4</sub>-graphite matrix quantitation

## 5.3.1 Blank correction

In order to determine relative sensitivity factors (RSF's) for impurity elements in a UF<sub>4</sub>/graphite matrix, the blank UF<sub>4</sub> sample which was to be used to simulate the matrix material first had to be quantified. Considerable effort was initiated to obtain a blank UF<sub>4</sub> sample with the least impurity elements to ensure a background spectrum relatively free from spectral lines. This blank UF<sub>4</sub> sample was mixed with graphite powder, spiked with Y as an internal reference standard, in the ratio of one to one by



mass. The sample was then analysed several times to obtain an instrument signal  $(Q_x/Q_y^-)_{UF_4}$  for element X relative to the internal standard, Y. The exposure value for Y,  $Q_y^-$ , is the mean for the singly and doubly charged species. The blank UF<sub>4</sub> sample used for this purpose is stoichiometric i.e. 100 per cent UF<sub>4</sub>.

A range of graphite standards were prepared with the impurity elements of interest at different concentrations, together with Y as internal reference standard. The method followed to prepare these graphite standards is given on page 26. The concentration range of these graphite standards is as follows:

UF<sub>4</sub> used: stoichiometric i.e. 75,8% per cent U. Concentrations: 100 µg X /g UF<sub>4</sub> 200 µg X /g UF<sub>4</sub> 500 µg X /g UF<sub>4</sub> 700 µg X /g UF<sub>4</sub> 1 000 µg X /g UF<sub>4</sub>

Expressed relative to U, the concentrations  $\begin{pmatrix} C \\ x \end{pmatrix}$  for each impurity element X, become:

132 μg X /gU 264 μg X /gU 660 μg X /gU 924 μg X /gU 1 319 μg X /gU

The concentration of Y added to each of the above graphite standards as internal standard is 132 µgY/gU.



These standards were used to quantify the impurity elements in the blank UF<sub>4</sub>. Using standard addition methods, each of the above graphite standards was mixed with the blank UF<sub>4</sub> sample in the ratio of one to one by mass. Similar to the blank UF<sub>4</sub> graphite matrix sample, each spiked sample is analysed several times to obtain an instrument signal,  $(Q_x/Q_y^-)_{UF_4}$ , for element X relative to the internal standard, Y. The concentration of each element X can be determined on the basis of equation (9) discussed on page 101:

$$(C_x)_{UF_4} = (C_x)_{std} \cdot \frac{(Q_x/Q_y)_{UF_4+std}}{(Q_x/Q_y)_{UF_4} - (Q_x/Q_y)_{UF_4+std}}$$

Results are given in Table 5.4 as  $C_{x}$  in  $\mu gX/gU$ .

Table 5.4: Blank UF<sub>4</sub> quantification

| Element | Isotope  | Isotopic<br>Abundance(%) | Charge<br>State | n  | Std Error at<br>95% CL (%) | C <sub>x</sub><br>(µg X/gU) |
|---------|----------|--------------------------|-----------------|----|----------------------------|-----------------------------|
| A1      | 27       | 100                      | 2               | 8  | 21,36                      | 5,6                         |
| Р       | 31       | 100                      | 2               | 5  | 34,85                      | 76,7                        |
| Ca      | 40<br>42 | 96,94<br>0,65            | 2<br>2          | 9  | 12,48                      | 25,2                        |
| Si      | 30       | 3,09                     | 1               | 5  | 13,59                      | 77,4                        |
| S       | 32       | 95,0                     | 1               | 5  | 38,74                      | 385,4                       |
| C1      | 35<br>37 | 75,72<br>24,28           | 1<br>1          | 10 | 21,35                      | 52,5                        |
| Zn      | 64<br>67 | 48,89<br>27,77           | 1<br>1          | 8  | 23,78                      | 4,0                         |



The concentration value for S is quite high (385,4  $\mu$ gS/gU). This greatly influences the calibration line. On the x-axis of the calibration curve, the ratio  $C_y/C_x$  is plotted where  $C_x = (C_x)_{std}$ +  $(C_x)_{UF_4}$ . When the background concentration of an element X in the blank UF<sub>4</sub>,  $(C_x)_{UF_4}$ , is large, the ratio  $C_y/C_x$  becomes smaller, where  $C_y$  is taken as constant. This makes the gradient of the regression line inaccurate and limits the calibration range. The other impurity elements have background concentrations which do not influence the calibration.

The  $C_{_X}$  values in Table 5.4 determined for impurity elements in the blank UF<sub>4</sub> are only for the elemental states. The fluorinated species of the elements have not been considered. When analysing UF<sub>4</sub> samples with the spark-source mass spectrometer, it can be assumed that the same degree of fluorination of the elements takes place in the sample as with the UF<sub>4</sub> calibration samples. This assumption is valid if the unknown sample is also stoichiometric UF<sub>4</sub> and the sparking parameters used to generate ions are identical for the UF<sub>4</sub> sample as for the UF<sub>4</sub> calibration samples.

The chemical structures of the impurity elements in the UF<sub>4</sub> sample are assumed to be similar to those in the UF<sub>4</sub> calibration samples. The plasma generated between the two electrodes in the ion source provides the equalising locality for such differences. In this plasma the chemical structures are broken in the process of atomisation and ionisation and recombination of species can take place.

The preparation and characterisation of graphite standards to obtain relative sensitivity factors (RSF's) for impurity elements



in a UF<sub>4</sub> sample were done under serious production pressures due to the study of reactions in the uranium fuel production process and time was not allowed to analyse the blank UF<sub>4</sub> sample more comprehensively. It was nevertheless decided to include the results in this thesis as they were reasonable in terms of the precision of the method and made a major contribution to the solving of the production problems at the time. The fact that the UF<sub>4</sub> work was done as an additional project under severe time constraints must be kept in mind when accessing the small number of data points on which the principles have been demonstrated.

The high standard errors at 95 % confidence level (CL) for P (34,85%) and S (38,74%) can be ascribed to the small number of data points which were statistically acceptable. This shows how the  $(C_x)_{UF_4}$  values for these two elements fluctuated over the concentration range of the standards resulting in the  $C_x$  values at higher concentrations being rejected leaving n = 5 with still a larger error in the remaining  $(C_x)_{UF_4}$  values. The standard error at 95 % CL obtained for Si (13,59%) with n = 5 seems to be the exception where the remaining  $(C_x)_{UF_4}$  values show a better standard error at lower concentration levels of the graphite standards. For the above three elements, namely P, Si and S, their concentrations present in the UF<sub>4</sub> sample are the highest, which has a direct influence in the standard errors at 95 % CL.

For the remainder of the impurity elements in the blank UF<sub>4</sub> sample, the standard errors at a 95 % CL show typical values comparable to the precision of the method, namely ~ 20 %. The larger value of n for these elements also shows the reliability of the lower  $(C_x)_{UF_4}$  values over the concentration range of the graphite standards.



## 5.3.2 Calibration curves

The procedure used to construct calibration curves is given in detail on page 137. A few interesting observations are high-lighted below.

Similar to procedures followed for the  $U_3O_8$  matrix (see page 109), the instrument signal,  $Q_x/Q_y^-$ , is plotted on the y-axis and the ratio between the concentrations,  $C_y/C_x$ , is plotted on the x-axis. The value of  $C_x$  in  $C_y/C_x$  is taken as the sum of the concentrations of an element X in the prepared graphite standard plus the value of the blank UF<sub>4</sub>, expressed as,  $C_x = C_{std} + C_{UF_4}$ , where  $C_{UF_4}$  is obtained from Table 5.4.

The slope of the resultant curve is the relative sensitivity factor (RSF) of that particular impurity element X present in the matrix  $UF_4$  relative to an internal reference standard, Y.

Theoretically, the calibration curve should pass through the origin (see page 139). The values of the intercept on the y-axis, c, listed in Table 5.5 are in accordance with this fact for most of the elements. The values obtained for P and Cl must be kept in perspective as the values of m for these two elements are also large in magnitude compared to the rest. Negative values for c on the y-axis could indicate a minimum detection value for  $C_{x}$  on the x-axis. Below this minimum detection value, non-linearity is evident. For the purpose of this investigation, the highest concentration measured was 1319  $\mu$ g X/gU. A1 and Zn display good linearity over the entire concentration range.



## Table 5.5: UF, Calibration curve parameters

| Element | Isotope  | Isotopic<br>Abundance(%) | Charge<br>State | m (RSF) | α (%) | с       | r      | n  |
|---------|----------|--------------------------|-----------------|---------|-------|---------|--------|----|
| A1      | 27       | 100                      | 2               | 2,0059  | 0,84  | 0,0008  | 0,9999 | 10 |
| Р       | 31       | 100                      | 2               | 25,7454 | 10,6  | -0,9496 | 0,9917 | 10 |
| Ca      | 40<br>42 | 96,94<br>0,65            | 2<br>2          | 0,6104  | 3,64  | -0,0169 | 0,9980 | 16 |
| Si      | 30       | 3,09                     | 1               | 0,9438  | 8,38  | -0,0490 | 0,9948 | 10 |
| S       | 32       | 95,0                     | 1               | 0,6891  | 26,9  | -0,0123 | 0,9575 | 9  |
| C1      | 35<br>37 | 75,72<br>24,28           | 1<br>1          | 20,0095 | 4,82  | -0,9232 | 0,9965 | 16 |
| Zn      | 64<br>67 | 48,89<br>27,77           | 1<br>1          | 0,4946  | 0,87  | 0,0279  | 0,9999 | 10 |

The calibration graph for Zn in the  $UF_4$  matrix is given in Figure 5.4 as an example of a good calibration curve.

The calibration graph for S in a  $UF_4$  matrix is given in Figure 5.5 as an example of a poor calibration curve.



Figure 5.4: Calibration curve for  $Zn^{1+}$  in a UF<sub>4</sub>/graphite matrix



Figure 5.5: Calibration curve for  $S^{1+}$  in UF<sub>4</sub>/graphite matrix



The poor fit of data for S is manifested through the relatively large error in the slope ( $\alpha = 26,9\%$ ) and the high value obtained for S in the blank UF<sub>4</sub>. Where blank values are reasonably high, uncertainties in these values are reflected in all other data points. This also happens when standards are added to a quantity which is not known in absolute terms.

The value of n in Table 5.5 is an indication of the number of data points used to construct the calibration curves, where each data point is taken as a single analysis. The value for the blank is also incorporated as a data point.

## 5.3.3 <u>Relative Sensitivity Factors (RSF's) - UF</u>4

For the impurity elements investigated in a UF<sub>4</sub> matrix, various physico-chemical properties were studied in order to find a qualitative solution for the very high RSF's obtained for P (25,7454) and C1 (20,0095) listed in Table 5.5. Properties such as first and second ionisation potentials  $(I_p)$ , bond strength  $(B_s)$  of the F-X species, heats of formation  $(H_f^{\circ})$  of gaseous atoms from elements in their standard states, heat of vaporisation  $({\rm H}^{\circ}_{vap}),$  electronegativity (E  $_{\rm neg}),$  melting points (M  $_{\rm p})$  and boiling points (B<sub>p</sub>) were studied [28]. No specific physico-chemical property can be singled out to explain anomalies in RSF's as each property plays a role within the plasma. When the melting points and heats of vaporisation are compared between the various elements, it is apparent that P and Cl have the lowest values. However, these elements also have of the highest E and ionisation potentials.



## 5.4 <u>Semi-quantitative</u> analysis

## 5.4.1 50% Transmission intercept method

This method is more time consuming than the appearance level method (see page 132) but is still quicker than setting up the MD100 microdensitometer to obtain analytical data. Instruments required to perform this method are a Hilger & Watts<sup>\*</sup> microphotometer Model L-500-2 equipped with a carriage to hold a photographic plate and a Fluk<sup>#</sup> multimeter. Many of the principles and preliminary procedures discussed in detail for the appearance level method also apply to this method. However, only the operational procedure will be discussed below.

The marked photographic plate is positioned and the lens focused, once the light of the photocell has been switched on. A clear plate region of at least 5mm in diameter is made on the photographic plate where there are no spectral lines of interest, by scraping away the emulsion on the photographic plate. This spot will serve as the 100% transmission region in order to calibrate the multimeter.

The intensity of the light is adjusted by means of the photocell amperage so that when the beam of light is mechanically shut off

- \* Hilger & Watts Ltd, 98 St Pancras Way, Camden Road, London NW1.
- # John Fluke MFG. Co. INC, P.O. Box 43210, Mountlake Terrace, Everett, Washington, 98043, U.S.A.



there is 0% transmission of light and when the beam of light passes through the clear plate region there is a 100% transmission of light through the photoplate. The Fluke digital multimeter is coupled to the photocell output using its 1 volt scale so that 0% transmission is zero volt on the multimeter and 100% transmission is 1,0 volt on the multimeter. The second decimal scale is sufficient for this method as a reading of 0,65 volt on the multimeter gives a reading of 65% transmission of light through the spectral line. Dark spectral lines on the photoplate will have lower percentage transmission of light through them than lighter spectral lines. The 50 % transmission intercept method can now be implemented.

An element of known concentration is used to obtain a k-factor The <sup>234</sup>U<sup>2+</sup> spectral line at m/e 117 is used as e.g. U or Y. internal standard or the <sup>8</sup>'Y<sup>1+</sup> or <sup>8</sup>'Y<sup>2+</sup> spectral lines at m/e 89 and 44,5, respectively, can be used as internal standard if Y is present in the sample. A transmission curve is obtained by plotting on the y-axis, using ordinary graph paper, the multimeter reading multiplied by 100 to obtain a percentage transmission for each spectral line on the photographic plate. This is plotted against the natural logarithm on the x-axis of the applicable exposure value of each spectral line on the photographic plate i.e. % T on the y-axis and In Q on the x-axis. From this transmission curve, the exposure value at 50 % transmission is read off the graph paper and is used in the general formula to obtain a k-factor.

The same procedure is followed as above to obtain a transmission curve for an element X of interest. The exposure value at 50 % transmission is used, together with the k-factor obtained from



the internal reference to obtain the concentration value,  $C_x$ , of element X. However, this concentration is only for that particular isotope of element X. In order to obtain the total concentration  $C_x$  of element in the sample, the isotopic abundance of the applicable isotope measured must be incorporated.

This method is suitable to obtain concentration values for impurity elements in a sample where no relative sensitivity factors are available. In this case the RSF is taken as unity and the final result obtained differs from the true value by about a factor of two or three. The fact that no background correction has been incorporated must be borne in mind. This method can be utilised with high and low concentrations of impurity elements as long as there is a spectral line that can produce a workable transmission curve. Both the semi-quantitative methods are extremely useful for analysing uranium samples where no standard is available. In this case the uranium is taken as the internal standard and used to quantify impurity elements.

## 5.4.2 Appearance level method

This method is the more reliable method of the two used for semiquantitative analysis. However, its interpretation differs from analyst to analyst as will be illustrated below. The only instrument required to perform this method is a microscope which is equipped with a carriage to hold a photographic plate. Whilst looking through the eye-piece of the microscope, the analyst must be able to move the carriage holding the photographic plate, along both the x- and y-axes. The x-direction gives the analyst the opportunity to view the spectrum on the photographic plate in its entirety whereas movement in the y-direction focuses on a specific area of the photoplate and the number of different exposures in the form of spectral lines can be counted. This last step is the essence of the method.



If an uranium oxide sample, for example  $U_3O_8$ , has been mixed with graphite powder spiked with the internal reference standard, Y, of known concentration, then the U and/or Y are used as the elements of known concentration. A prerequisite for using the U line as reference, is that the isotopic composition is known. If the U is natural, then the concentrations of the various isotopes are known and can be used as reference concentrations. This is shown below as an example.

Uranium used: natural isotopic abundance (converted to mass percent): 238 = 99,286 235 = 0,710 234 = 0,0055 thus concentration of: <sup>238</sup>U = 992 860 µg <sup>238</sup>U/g U<sub>3</sub>O<sub>8</sub> <sup>235</sup>U = 7 100 µg <sup>235</sup>U/g U<sub>3</sub>O<sub>8</sub> <sup>234</sup>U = 55 µg <sup>234</sup>U/g U<sub>3</sub>O<sub>8</sub>

The concentration of the  $^{234}U$  isotope of uranium is normally used as it has a value similar to impurity levels in the  $U_3O_8$ .

The above concentrations can be expressed in general ppm terms as  $\mu g$  of the U isotope per total mass of U (in grams). For natural uranium in U<sub>3</sub>O<sub>8</sub> the concentrations are:

<sup>2</sup> <sup>3</sup> <sup>8</sup> U = 882 425 ppm <sup>2</sup> <sup>3</sup> <sup>5</sup> U = 6 167 ppm <sup>2</sup> <sup>3</sup> <sup>4</sup> U = 47,8 ppm

When graphite powder spiked with a known concentration of Y is mixed with the  $U_3O_8$ , it is done in the ratio of five parts  $U_3O_8$ to one part graphite by mass. This was shown on page 30. The concentration of the Y in the graphite is typically 80 µg Y/gC. When mixed with  $U_3O_8$ , the concentration of Y relative to uranium is approximately 20 µg Y/gU. These two concentrations are used when applying the appearance level method.



When a set of spectral lines belonging to a specific element on the photographic plate is investigated under the microscope, dark lines at longer exposures up to light lines at shorter exposures, are observed. At very short exposures, no spectral lines are detected depending on the concentration level of that element in the sample.

The faintest detectable spectral line is called the appearance line. According to the exposure pattern used, this appearance line thus has a specific appearance exposure. The appearance exposure can thus be defined as that exposure necessary for a specific impurity element present at a certain concentration level to become visible to the analyst. This is where the difference in interpretation of the appearance level method varies from analyst to analyst. What might be the appearance exposure for one analyst is not necessarily that for the other analyst.

When performing semi-quantitative analyses with this method, both the  $Y^{1+}$  and  $Y^{2+}$  lines at masses 89 and 44,5, respectively, are scrutinized to obtain appearance exposures. Similar to quantitative analysis procedures, the mean of these two values is obtained:

$$Q_{\overline{y}} = \frac{Q_{y^{1+}} + Q_{y^{2+}}}{2}$$

When applying the general formula for spark-source mass spectrometry,

k-factor  $concentration (C) = -------, \qquad \dots \dots \dots \dots \dots \dots (1)$  exposure (Q)the k-factor for Y , K<sub>y</sub>, can be obtained:  $K_y = C_y \cdot Q_y^- \qquad \dots \dots \dots \dots \dots (2)$ 



where:

C is the concentration of the internal standard Y, relative to the U content, i.e. typically 20  $\mu$ g Y/gU in the above example, and

 $Q_{_{m V}}^-$  is the mean appearance exposure of the internal standard.

For an unknown impurity element X present in the  $U_3O_8$  sample, the appearance exposure,  $Q_X$ , is determined using the same method as described above.

Using the above  $Q_x$  and  $K_y$  from equation (2) in equation (1), the concentration  $C_x$  of element X relative to the internal standard is determined:

$$C_{\mathbf{X}} = \frac{K_{\mathbf{Y}}}{Q_{\mathbf{X}}}$$
(3)

If the internal standard is not present, the U spectral lines are used in exactly the same way. However, only the  $^{23}$   $^{4}U^{2+}$  spectral line at m/e 117 is suitable for use. The concentration of an element X is then expressed relative to the  $^{23}$   $^{4}U$  isotope.

This method is a quick way to obtain a concentration for an element without using relative sensitivity factors. The result can differ by a factor of two or three compared to the use of relative sensitivity factors (RSF's). In the above case, the sensitivity of an element X relative to an internal standard is taken as unity. If a RSF does exist for an element X relative to Y in a specific matrix, then it can be used together with the usual formula given below which was derived on page 98:



$$C_{\mathbf{x}} = \frac{RSF \cdot C_{\mathbf{y}}}{\frac{Q_{\mathbf{x}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}{\frac{Q_{\mathbf{y}}}$$

The appearance exposure of element X,  $Q_x$ , is expressed as a ratio together with the mean appearance exposure of the internal standard,  $Q_y^-$ . The concentration  $C_x$  obtained for element X is only the concentration of that particular isotope of element X. In order to obtain the total concentration of the element, the concentration obtained for that particular isotope measured, is divided by its isotopic abundance and multiplied by 100 to cancel the percentage.



## CHAPTER SIX

#### **EVALUATION OF THE METHOD**

## 6.1 <u>Statistical significance of results</u>

## 6.1.1 Statistical approach

Data interpretation is based on the graphic method [29, 30]. This incorporates the use of calibration lines which are obtained from plotting the instrument signal, y, against the concentration, x, of an element. The relationship between x and y can be derived by linear regression using the standard formula:

where:

*m* is the slope of the calibration line, and c is the intercept of the y-axis.

The general spark-source mass spectrometry formula [8] can be interpreted on this basis:

where:

 $C_x$  is the concentration of element X,  $K_x$  is a constant and  $Q_x$  is the exposure value at 50% transmission of element X.

Equation (2) can be rewritten in the form of equation (1) as follows:

$$\frac{1}{Q_x} = K_x \cdot C_x$$

The intercept c, on the y-axis of equation (1) is taken as zero and is explained later on in this section (see page 139). © University of Pretoria


The same general formula applies for the internal standard Y, namely:

$$C_{y} = \frac{K_{y}}{Q_{-}}$$
(3)

 $Q_y^-$  is the mean exposure value of Y for the charge states 1+ and 2+ (see page 29).

Combining equations (2) and (3) gives:

$$\frac{Q_{\mathbf{x}}}{Q_{\mathbf{y}}^{-}} = \frac{K_{\mathbf{x}}}{K_{\mathbf{y}}} \cdot \frac{C_{\mathbf{y}}}{C_{\mathbf{x}}} \qquad \dots \dots \dots \dots (4)$$

where:

 $\frac{Q_x}{Q_y^-}$  is the instrument signal, expressed as the ratio between the exposure value,  $Q_x$ , of element X at 50% transmission and the exposure value  $Q_y^-$ , of the internal reference standard, Y, at 50% transmission;  $\frac{C_y}{C}$  is the ratio between the concentration of the internal

reference standard, Y, and the concentration of element X which is given in  $\mu g$  X/gU; and

 $\frac{K_x}{K_y}$  is the slope, expressed as the relative sensitivity factor (RSF) [18, 31] of an element X, relative to the internal reference standard, Y.

The concentration of the internal standard, Y, is taken as 20  $\mu$ g Y/gU when analysing unknown U<sub>3</sub>O<sub>8</sub> samples and 132  $\mu$ g Y/gU when analysing unknown UF<sub>4</sub> samples. The choice of these concentrations of the internal standard is comprehensively described on pages 29, 103 and 122.



The concentration of an element X varies according to the range of graphite standards prepared. The choice of these ranges is comprehensively described on page 103 for a  $U_3O_8$ /graphite matrix and on page 122 for a UF<sub>4</sub>/graphite matrix.

The instrument signal,  $Q_x/Q_y^-$ , is obtained when doing data interpretation and is taken as the intercept at a 50% transmission of the Hull function plot. This is described on page 36.

The origin (0;0), of the calibration graph is also incorporated in the calibration line. This is shown as follows: When  $C_x$  tends to infinity, then the expression  $C_y/C_x$  tends to zero when  $C_y$  is taken as constant. From equation (2), when  $C_x$ tends to infinity, then  $Q_x$  tends to zero. Likewise, the expression  $Q_x/Q_y^-$  tends to zero when  $Q_y^-$  is taken as constant because  $C_y$ is constant. Thus both expressions tend to the origin (0;0) when  $C_x$  tends to infinity. This verifies the use of the origin as a data point when compiling calibration graphs.

Linear regression formulae [29] (see Appendix A on page 174) are used to determine the standard error,  $s_m$ , in the slope of the regression line. The confidence limits of the slope, expressed as a, is given by the following formula [32]:

where:

 $s_m$  is the standard error of the slope, and t is the Student's t-value [33] at a 95% confidence level (CL) with (n-2) degrees of freedom where n is the number of data points (x;y) used to draw up the calibration graph.

The parameters RSF,  $\alpha$ , c, r and n obtained from the regression line are given in Table 5.2 (see page 111).



# 6.1.2 Propagation-of-errors approach [30, 34]

This method is used when determining the concentration  $C_{\chi}$ , of an element X, in an unknown  $U_3O_8$  sample. Equation (4) can be rewritten as follows:

$$C_{x} = \frac{(RSF \pm \alpha) . (C_{y} \pm c_{y})}{\frac{Q_{x}}{\frac{Q_{y}}{Q_{y}}}} (95\% CL) \dots (6)$$

The confidence limits a, of the slope or relative sensitivity factor is obtained from Table 5.2 on page 111. Likewise, the applicable relative sensitivity factor RSF, is given in Table 5.3 (see page 120). The concentration of the internal standard, Y, given by  $C_{v}$ , is taken as 20  $\mu$ g Y/gU where graphite powder has been spiked with 80  $\mu$ g Y/gC. This graphite powder, called UFY80, is used as electrode material when analysing unknown U<sub>3</sub>O<sub>8</sub> sam-The error in  $C_v$ , given by  $c_v$ , is taken as 0,5% which is ples. the maximum imprecision of a 1 000  $\mu$ 1 varipette used to dispense the Y ICP standard solution. The precision of the Mettler H10T mass balance used to weigh out the required mass of graphite powder is 0,1 mg which gives an error of 0,002% when 5 grams of graphite is used. The Y ICP standard solution is certified to <0,01% and the error is not significant. These errors can be ignored statistically and only the error in the varipette, 0,5%, is taken as  $c_v$  [38].

The precision of the method is also known and is given in Table 6.1 (see page 147). For a single analysis of an unknown  $U_3O_8$  sample, the error coupled to the instrument signal,  $Q_X/Q_y^-$ , for element X is taken as twice the standard deviation, 2s [35, 38]. This is based on the assumption of a normal distribution of results where an analysis result has a 95% chance of lying within two standard deviations of the mean.



When considering the general error formulae used in composite errors, the following applies [36, 37]: For a number of quantities, n, with means  $\bar{x}_1$ ,  $\bar{x}_2$ , ....,  $\bar{x}_n$ , with standard errors  $a_1$ ,  $a_2$ , ...,  $a_n$ , the standard error of

any function of  $\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n$ , namely,  $f(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$  is

given by 
$$\alpha$$
, where  $\alpha^2 = (\frac{\partial f}{\partial \bar{x}_1})^2 \alpha_1^2 + (\frac{\partial f}{\partial \bar{x}_2})^2 \alpha_2^2 + \dots + (\frac{\partial f}{\partial \bar{x}_n})^2 \alpha_n^2$ 

The quotient of two mean values is given by:



The product of two mean values is given by:

 $f(\overline{x}_1, \overline{x}_2) = \overline{x}_1 \cdot \overline{x}_2$ 

thus  $\frac{\partial f}{\partial \bar{x}_1} = \bar{x}_2$  and  $\frac{\partial f}{\partial \bar{x}_2} = \bar{x}_1$ 

This gives  $\alpha^2 = \overline{x}_2^2 \alpha_1^2 + \overline{x}_1^2 \alpha_2^2$ 

Applying the above equations (7) and (8) to equation (6), the standard error, s<sub>C</sub>, of the concentration of element X in the x unknown sample is derived.

Thus 
$$s_{C_{X}} = \frac{1}{Q_{X}} \cdot \sqrt{\frac{Q_{X}}{(Q_{Y}^{-})^{2}} \cdot (C_{Y}^{2}\alpha^{2} + RSF^{2}c_{Y}^{2}) + (RSF \cdot C_{Y})^{2} \cdot (2s)^{2}} \cdot \dots \cdot (9)$$

The final result of element X is reported as:

$$C_{\mathbf{x}} \pm s_{C_{\mathbf{x}}}$$
 (95 % CL)

This gives the confidence interval derived using the propagationof-errors method at a 95 % confidence level.



#### 6.1.3 Precision

In order to determine the precision coupled to the analysis of  $U_3O_8$ /graphite matrix samples using spark-source mass spectrometry, three of the prepared graphite standards with concentrations of 1,0; 10,0 and 50,0 µg X /gU were each analysed six times (i.e. n = 6) mixed with the base  $U_3O_8$  (see page 103). The results obtained are tabulated in Table 6.1 on page 147. The precision that is obtained is for both the instrument and the analyst.

The standard error at a 95% confidence level (CL) was determined using the following formula [37]:

where:

 $\bar{x}$  is the mean of the six analyses of one standard; s is the standard deviation of the six analyses; and t is the Student's t-value taken at a 95% confidence level using (n - 1) degrees of freedom (v).

Before the above formula could be used, the data obtained had to be subjected to the Dixon outlier test [38, 39, 40, 41] in order to ascertain whether there were any "mavericks". The Dixon outlier test assumes that the parent population from which the measurements are obtained is normally distributed.

One way of assessing a suspect measurement is to compare the difference between it and the measurement nearest to it in size with the difference between the highest and lowest measurements. The ratio of the differences is known as Dixon's Q and is given as  $Q_{calc}$  in the following basic formula:

| suspect value - nearest value |

 $Q_{calc}$ 

(largest value - smallest value) © University of Pretoria .... (2)



The critical values of Q, given as  $Q_{tab}$ , are taken from the table of critical values for Q at a 95% confidence level (CL).

The following reasoning is applied in the Dixon test: If  $Q_{tab} \ge Q_{calc}$ , then the suspect value is retained; if  $Q_{calc} > Q_{tab}$ , then the suspect value is rejected. From the table of critical values of Q, the sample size in this case is taken as six.

It is important to note that at a 95% CL there is still a 5% chance of incorrectly rejecting the suspect value. When measurements are repeated only a few times rejection of one value makes a great difference to the mean and standard error. This has a considerable effect on the estimation of the precision. The importance of caution in rejecting outliers cannot be over-emphasised. There is also the possibility of two suspect values which leads to masking in the application of the Dixon Q-test.

Using the above approach, suspect values were rejected for a number of elements from each of the standards. This is shown in Table 6.1 where n = 5. For  $Mo^{1+}$  (n = 4) and  $Sm^{1+}$  (n = 3), the experimental data obtained was limited as the spectral lines on the photographic plate could not be measured in all the cases.

An assessment of the results tabulated in Table 6.1 reveals that most of the standard errors at a 95% CL are below 20% with the exception of a few cases which will be explained below. This is in accordance with values reported by many other authors [31] who have used electrical detection, radio frequency (RF), glow discharge (GD) and other types of spark-source mass spectrometers for analysing U samples.



The first few elements in Table 6.1, namely B, Mg and A1, have high standard errors at all the concentration levels. This is ascribed to interference of their spectral lines at masses 10 and 11 for B, 12,5 for Mg and 13,5 for A1, due to the spectral lines of the matrix component C at masses 12 and 13. The C spectral lines, being from the major constituent of the sample, are intense and dispersed in the region surrounding them, thus affecting the adjacent spectral lines and their precision, irrespective of concentration.

The standard errors for most of the elements at a concentration level of 1  $\mu$ g X /gU are relatively high. This is a result of unreliable data obtained from the transmission curves. Only a few points could be utilised in the Hull function plot as most of these were light points. This could also be ascribed to the fact that at this concentration level, the detection limit for some of the elements is reached. Typical examples affected in this manner are Mn<sup>1+</sup>, Zn<sup>1+</sup>, Zr<sup>1+</sup> and the heavier elements such as the rare earths Sm, Eu and Dy.

The high standard errors at a 95% CL for the heavier elements, such as the rare earths at a concentration level of  $1 \mu g X / gU$ , is ascribed to the fact that these elements provide small ion yields of the various charge states resulting in poor transmission curves. The atomic size of these elements affects the number of ions entering the ion source due to collisions. These ions also have a smaller velocity down the flight tube of the mass spectrometer. All these factors have a decisive impact on the nett total of ions yielded at the photographic plate.

The very high standard error for  $Mo^{1+}$  at a 95% CL, namely 84,1%, can be ascribed to the previous reasons (poor ion yield, near the



low concentration detection limit, as well as the small number of useful data points). When applying the formula to determine the standard error at a 95% CL, the degrees of freedom (v) is given as (n - 1), i.e. 3 where n = 4, which is relatively small. This means that the standard deviation, s, is multiplied by a factor 1,59 (3,182/2) giving a higher standard error. As n gets larger, the factor of  $t/\sqrt{n}$  gets smaller, thus reducing the standard error in a significant way.

The standard errors for Ca<sup>2+</sup> and Si<sup>1+</sup> are relatively high as the Ca<sup>2+</sup> spectral line was measured as a doublet and the Si<sup>1+</sup> spectral line was measured as a triplet. The analyst has to set windows around these lines and this affects the background surrounding the spectral lines which are under scrutiny. This leads to a weaker precision at all concentration levels.

The high standard error for Ni<sup>1+</sup> at 95% CL at a concentration of 50  $\mu$ g Ni /gU, namely 34,2%, is verified as follows. From the raw data obtained, there is one data point out of the set of six (n = 6) that appears to differ from the remainder. However. when applying the Dixon outlier test to this data point, the test shows that this data point cannot be taken as an outlier and must thus be retained. This leads to the high standard error. If the Dixon outlier test had shown that this point could be rejected, the precision would have been 15,9% for the remainder of the This could be interpreted as a possible data points (n = 5). limitation of the Dixon outlier test.

The precision values obtained are used together with the relative sensitivity factors (RSF's) when analysing the unknown  $U_3O_8$  samples where the error in the instrument signal is taken as twice the standard deviation.

#### UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA <u>UNIVERSITH VA PRETORIA</u> 147

<u>TABLE 6.1</u>: Precision for  $U_3O_8$ 

| 1        |        |                                |   | T                          |        |                                        |        |
|----------|--------|--------------------------------|---|----------------------------|--------|----------------------------------------|--------|
| Element  | Charge | $C_{\rm X} = 1\mu g \ X \ /gU$ |   | $C_{X} = 10\mu g X / gU$   |        | $C_{\mathbf{X}} = 50 \mu g \mathbf{X}$ | /gU    |
|          | State  | Std Error at<br>95% CL (%)     | n | Std Error at<br>95% CL (%) | n      | Std Error at<br>95% CL (%)             | n      |
| В        | 1      | 27,6                           | 6 | 24,8                       | 6      | 36,1                                   | 6      |
| Mg       | 2      |                                |   | 10,3                       | 5      | 40,4                                   | 6      |
| A1       | 2      |                                |   | 24,7                       | 6      | 22,6                                   | 6      |
| Si<br>Si | 2<br>1 | 38,6                           | 6 | 11,1<br>25,3               | 6<br>6 | 16,6<br>35,5                           | 6<br>6 |
| Ca       | 2      | 12,0                           | 6 | 24,8                       | 6      | 29,5                                   | 6      |
| Ti<br>Ti | 2<br>1 | 21,2                           | 6 | 6,1                        | 5      | 13,2                                   | 6      |
| V<br>V   | 2<br>1 | 7,6                            | 6 | 13,9<br>10,5               | 6<br>6 | 15,9<br>8,8                            | 6<br>6 |
| Cr<br>Cr | 2<br>1 | 17,7                           | 6 | 10,8<br>14,0               | 6<br>6 | 10,7<br>18,6                           | 6<br>6 |
| Mn<br>Mn | 2<br>1 | 29,7                           | 6 | 16,3<br>19,1               | 6<br>6 | 22,0<br>19,1                           | 6<br>6 |
| Fe<br>Fe | 2<br>1 | 18,9                           | 6 | 19,0<br>15,5               | 6<br>6 | 12,8<br>15,4                           | 6<br>6 |
| Co<br>Co | 2<br>1 | 6,6                            | 6 | 11,2<br>5,0                | 6<br>6 | 17,2<br>17,7                           | 6<br>6 |
| Ni       | 1      | 19,3                           | 6 | 2,6                        | 6      | 34,2                                   | 6      |
| Cu<br>Cu | 2<br>1 | 15,3                           | 6 | 7,1<br>15,3                | 6<br>6 | 17,0<br>19,3                           | 6<br>6 |
| Zn       | 1      | 32,5                           | 6 | 8,8                        | 6      | 21,6                                   | 6      |
| Sr<br>Sr | 2<br>1 | 18,1                           | 6 | 10,2<br>9,4                | 6<br>6 | 17,2<br>15,7                           | 6<br>6 |
| Zr<br>Zr | 2<br>1 | 36,1                           | 6 | 8,4<br>6,2                 | 6<br>6 | 15,8<br>11,2                           | 6<br>6 |
| Nb<br>Nb | 2<br>1 | 18,2                           | 6 | 10,6<br>10,9               | 6<br>6 | 15,6<br>5,8                            | 6<br>5 |



## Table 6.1: Continued

|          | Charge | $C_{\mathbf{X}} = 1 \mu g \mathbf{X} / g U$ |   | $C_{\mathbf{X}} = 10 \mu g X$ | /gU    | $C_{\mathbf{x}} = 50 \mu g X$ | /gU    |
|----------|--------|---------------------------------------------|---|-------------------------------|--------|-------------------------------|--------|
| Element  | State  | Std Error at<br>95% CL (%)                  | n | Std Error at<br>95% CL (%)    | n      | Std Error at<br>95% CL (%)    | n      |
| Mo<br>Mo | 2<br>1 | 84,1                                        | 4 | 8,6<br>7,1                    | 6<br>6 | 16,2<br>11,2                  | 6<br>6 |
| Ru<br>Ru | 2<br>1 |                                             |   | 13,9<br>7,7                   | 6<br>5 | 12,2<br>5,0                   | 6<br>5 |
| Cd       | 1      |                                             |   | 10,4                          | б      | 15,3                          | 6      |
| In       | 1      | 23,9                                        | 6 | 11,7                          | 6      | 21,9                          | 6      |
| Sb<br>Sb | 2<br>1 | 34,1                                        | 6 | 7,6<br>12,2                   | 6<br>6 | 8,6<br>16,3                   | 6<br>6 |
| Ba<br>Ba | 2<br>1 | 27,5                                        | 6 | 8,6<br>15,9                   | 6<br>6 | 8,9<br>17,1                   | 6<br>6 |
| Sm<br>Sm | 2<br>1 | 48,3                                        | 5 | 9,4<br>18,8                   | 6<br>3 | 10,7<br>17,0                  | 6<br>6 |
| Eu<br>Eu | 2<br>1 | 33,3                                        | 6 | 7,3<br>5,8                    | 6<br>6 | 14,2<br>8,8                   | 6<br>5 |
| Gd<br>Gd | 2<br>1 |                                             |   | 6,8<br>8,4                    | 5<br>5 | 9,3<br>5,0                    | 6<br>5 |
| Dy<br>Dy | 2<br>1 | 32,0                                        | 5 | 14,9<br>7,3                   | 6<br>5 | 9,8<br>12,4                   | 6<br>6 |
| Bi       | 2      |                                             |   | 25,2                          | 6      | 15,0                          | 6      |
| Th       | 2      | 25,8                                        | 6 | 12,9                          | 6      | 20,2                          | 6      |

# 6.1.4 Confidence Intervals - U<sub>3</sub>O<sub>8</sub>

Confidence limits of the slope, expressed as  $\alpha$ , have a significant influence on the relative sensitivity factor (RSF) derived



as the slope of the calibration curve. Large a values mean large uncertainties in the RSF's. These uncertainties must be included in the overall errors calculated for the final analysis results. Values of a greater than 20% in Table 5.2 (see page 111) can be ascribed to a number of reasons, of which the important ones are given below.

The value of n has a significant influence on the value of  $\alpha$ . This can be demonstrated using equation (5) on page 139 where the t-value is obtained using (n - 2) degrees of freedom at a 95% confidence level (CL). For n = 7, the t-value from the Students t-Distribution Table is 2,571. The standard error in the slope,  $s_m$ , must be multiplied by this number in order to obtain the  $\alpha$ value and leads to large confidence limits of the slope.

When determining the calibration curve parameters, each analysis of a graphite standard sample was treated as an individual analysis. Thus, when a graphite standard was analysed in triplicate, the value of n was taken as three. This was typically done using the check graphite standards where some elements were analysed for the first time, e.g. Na, P, K and W. Using two such check graphite standards together with the origin (0;0) gives a t-value of 2,571, where n = 7. This means that a standard error in the slope of 20% becomes a confidence limit of 51,4%. A number of elements in Table 5.2 fall into this category, namely Na<sup>1+</sup> (11%), P<sup>1+</sup> (8,1%), P<sup>2+</sup> (13,6%), K<sup>2+</sup> (7,8%) and W<sup>2+</sup> (14,5%), where the standard error is given in brackets after each element.



The ion yields of certain elements with specific charge states at their lowest concentration levels are not very good, with the result that poor transmission curves are obtained. Only a few long exposure values are used in the Hull function plot and the rest of the data points are discarded as light points. The charge state differs from element to element depending on the atomisation and ionisation of the particular element. This can be illustrated when plotting characteristic curves of number of ions yielded against charge state. A number of cases in Table 5.2 where a is near or greater that 20 % can be placed into this category, namely  $K^{2+}$ ,  $Ru^{2+}$ ,  $Ba^{1+}$ ,  $W^{1+}$ ,  $Sm^{1+}$ ,  $Mo^{1+}$  and  $Sb^{1+}$ .

Elements with large atomic radii are more prone to collisions and also have a slower velocity down the flight tube. This leads to fewer ions reaching the photoplate. From Table 5.2, elements falling into this category are  $Sm^{1+}$ ,  $W^{2+}$ ,  $Ba^{1+}$ ,  $Mo^{1+}$ ,  $Sb^{1+}$  and  $Ru^{2+}$ .

The correlation coefficient, r, in Table 5.2 can also be coupled to a larger a value. Ideally r should be unity, thus values of r < 0,90 show that the fit of calibration data to the regression line is seriously affected by a few bad data points. The inclusion of these bad data points is confirmed by applying the Dixon outlier test which shows that these values have to be retained. However, great caution should be exercised in drawing conclusions from the result of repeated applications of the Dixon's test. If a few statistical outliers are found at a certain particular concentration level this is not very serious, but if several outliers occur at different concentration levels, this may be considered as indicating that the regression line and thus the RSF is This would lead to a large spread of data points inaccurate. resulting in a large standard error in the slope, s<sub>m</sub>.



Correspondingly, a larger a value is obtained. Elements in Table 5.2 having poor correlations where r < 0,90 are  $Fe^{1+}$ (r = 0,853) and  $Ba^{1+}$  (r = 0,897). This is in spite of n being large for  $Fe^{1+}$  (n = 30) and  $Ba^{1+}$  (n = 22). Elements in Table 5.2 having correlation coefficients of r < 0,95 are the following:  $Mg^{2+}$ ,  $Si^{2+}$ ,  $Ca^{2+}$ ,  $Mo^{1+}$ ,  $Sb^{1+}$  and  $Sm^{1+}$ .

For Mg<sup>2+</sup>, Si<sup>2+</sup>, Fe<sup>1+</sup> and Na<sup>1+</sup> it is significant to note that these elements all have high background concentrations in the blank base U<sub>3</sub>O<sub>8</sub> sample. The influence of this high blank concentration on the calibration line is discussed on page 105. This effectively reduces the range on the x-axis of the calibration plot. Typically, for Fe<sup>1+</sup> the range on the x-axis is from zero to 0,2844. The spread of data points in this case is larger than over a greater range on the x-axis and results in a poor fit of the data points on the regression line. Another reason for  $Mg^{2+}$  having an  $\alpha$  of 19,3% is the fact that it is measured at m/e 12,5 which lies inbetween the two spectral lines of the major component of the U<sub>3</sub>O<sub>8</sub>/graphite mixture, namely <sup>12</sup>C and <sup>13</sup>C at m/e 12 and 13, respectively. Intense fogging on the surrounding background makes the measurements of Mg<sup>2+</sup> difficult and inaccurate.

When using a values to determine the error coupled to an element's concentration in an unknown  $U_3O_8$  sample, the analyst must exercise great care. In the case of  $Ba^{1+}$  (23,0%) and  $Sm^{1+}$ (45,0%), the analyst should avoid using these charge states, and should rather use the other charge states where the a values are more acceptable. The same argument applies for  $W^{2+}$  (40,3%).

The  $\alpha$  value for the impurity elements in a U<sub>3</sub>O<sub>8</sub>/graphite matrix are tabulated in Table 5.2. However, these have also been given as a visual presentation in the form of two periodic tables, the



first for the singly charged species, Figure 6.1, and the other for the doubly charged species, Figure 6.2. It is demonstrated that the appropriate application of the guidelines for quantification enables the acquisition of analytical data within very acceptable confidence intervals for most of the selected elements.

# 6.1.5 Confidence Intervals - UF4

The confidence limits of the slope, expressed as a and as a percentage in Table 5.5 on page 127, is a direct measure of the uncertainty coupled to the RSF. The a value for S is the only one which is relatively high (26,9%) for impurities in a UF<sub>4</sub> matrix. This could be attributed to a number of factors of which the most important is the fact that sulphur is measured at mass 32 as a doublet with the main interference being  ${}^{64}Zn^{2+}$ . This could influence the data and result in a bigger spread of data points for the calibration curve. This bigger spread implies a larger standard error in the slope, resulting in a large a value. This fact is also supported by the relatively poor correlation coefficient obtained (r = 0,9575) for the regression line.

The  $\alpha$  value for S could also be influenced by the relatively high background concentration in the blank UF<sub>4</sub> ( $C_x = 385, 4 \ \mu gS/gU$ ). This value is used together with the concentration of the standard to define the x-value in a data point (x;y) when applying linear regression. The higher the blank concentration, the more influence it has on the  $C_y/C_x$  value on the x-axis. The standard error for S in the blank UF<sub>4</sub> at a 95% confidence level (38,74%) is also an indication of the difficulty experienced to obtain reliable data for sulphur in a UF<sub>4</sub> matrix.





© University of Pretoria

Figure 6.2: Confidence intervals (a) at 95% CL for  $X^{2+}$ in U<sub>3</sub>O,

154



The other  $\alpha$  values in Table 5.5 are all acceptable in the sense that they fall within the precision of the instrument and the analyst. The exceptionally good  $\alpha$  values obtained for A1 = 0,84% and Zn = 0,87% where n = 10 for both elements is an indication of the accuracy of the method over a wide concentration range. The reproducibility of the results and the homogeneity of the standards are illustrated by these  $\alpha$  values. It should also be noted that A1 and Zn both have the lowest concentrations in the blank UF, as shown in Table 5.4 on page 123.

#### 6.2 <u>Comparative</u> analyses

#### 6.2.1 International standard U<sub>3</sub>O<sub>8</sub> No IAEA/SR-54

The analysis results are tabulated in Table 6.2. For the certified reference material (CRM) SR-54 the concentration values and their confidence intervals at 95% CL for impurity elements in  $U_3O_8$  were obtained from the certificate of analysis. Various analytical methods were used to obtain these concentration values. The results obtained using spark-source mass spectrometry are the mean of four analyses, where equation (4) on page 136 was used to calculate the concentration  $C_{_{\mathbf{Y}}}$  of impurity element X The standard error values at 95% CL in Table 6.2 in the CRM. were obtained using equation (9) on page 142. The SSMS concentration values compare favourably to those certified for the CRM SR-54, especially if the confidence interval is also taken into account. Where differences do occur, notibly for V, it must be borne in mind that the concentration value for the CRM SR-54 was presented as non-certified information.

#### 6.2.2 Internal U<sub>3</sub>O<sub>8</sub> certified standards

As a result of the non-availability of suitable standards at trace levels of elements in a U matrix, the Atomic Energy Corporation prepared a series of standards according to guidelines as



| <u>TABLE 6.2</u> : | Comparison | of | U <sub>3</sub> 0, | CRM | SR-54 | with | SSMS |
|--------------------|------------|----|-------------------|-----|-------|------|------|
|--------------------|------------|----|-------------------|-----|-------|------|------|

| Element        | Certified<br>conc. value<br>(µg X /gU) | Confidence interval<br>at 95% CL         | SSMS conc.<br>value<br>(µg X /gU) | Std<br>error at<br>95% CL |
|----------------|----------------------------------------|------------------------------------------|-----------------------------------|---------------------------|
| Al             | 71,3                                   | 54,8 - 82,0                              | 70,4                              | 15,9                      |
| Со             | 4,2                                    | 4,0 - 4,3                                | 5,2                               | 1,3                       |
| Cr             | 3,6                                    | 3,1 - 4,3                                | 2,9                               | 0,8                       |
| Cu             | 5,0                                    | 4,2 - 6,7                                | 5,7                               | 0,5                       |
| Fe             | 64,7                                   | 46,0 - 77,5                              | 66,2                              | 10,2                      |
| K              | 1,7*                                   | -                                        | 3,3                               | 0,7                       |
| Mg             | 0,99*                                  | 0,81 - 1,1                               | 1,9                               | 0,8                       |
| Mn             | 15,6                                   | 14,3 - 16,9                              | 18,4                              | 3,7                       |
| Мо             | 13,0                                   | 9,5 - 17,5                               | 12,7                              | 1,1                       |
| Na             | 2,8*                                   | -                                        | 3,9                               | 0,8                       |
| Ni             | 11,4                                   | 8,4 - 13,9                               | 10,8                              | 2,0                       |
| Si             | 34,3*                                  | 18,0 - 53,5                              | 29,8                              | 7,5                       |
| Ti             | 0,98*                                  |                                          | 1,74                              | 0,37                      |
| V              | 3,7*                                   |                                          | 0,12                              | 0,01                      |
| Zn             | 2,4*                                   | 0,89 - 3,2                               | 2,2                               | 0,2                       |
| * The:<br>non- | se values are n<br>certified info      | not certified, but are primation values. | presented as                      |                           |

laid down by the New Brunswick Laboratory<sup>#</sup>. These standards covered a wide concentration range and were prepared in a  $U_3O_8$ 

# U.S. Department of Energy, New Brunswick Laboratory, 9800 S. Cass Avenue, Building 350, Argonne, Illinois, 60439, U.S.A.



matrix. The standard with the highest concentration level of impurity elements is called ES 1 and the comparison between the certified value and the concentration value obtained with the spark-source mass spectrometer is given in Table 6.3. The standard with the lowest concentration of impurity elements is called ES 5 and the comparison of results obtained is given in Table 6.7. Standards with concentrations falling inbetween ES 1 and ES 5, named ES 2, ES 3 and ES 4, are given in Tables 6.4, 6.5 and 6.6 respectively.

Of every standard in the ES series of standards, three samplings were each analysed in triplicate. This resulted in each ES series of standards being analysed nine times by a specific analytical technique. The spark-source mass spectrometer (SSMS) concentration values given in Table 6.3 to Table 6.7, are the mean concentrations over nine analyses. These concentration values within an ES standard were also subjected to the Dixon outlier test to ascertain whether there were any outliers before each final mean value was reported.

The formula used to calculate the concentration,  $C_{_X}$ , of an impurity element X in each of the ES series of standards is given by equation (4) on page 136. However, this concentration value also contains the contribution from that impurity element also found in the graphite which was used to mix with the  $U_3O_8$  ES series of standards. This has been described on page 108. The concentration levels of impurity elements in the graphite were quantified and deducted from the mean concentration values reported for each of the ES series of standards.



Various analytical methods were used by different laboratories in order to certify these internal  $U_3O_8$  standards, amongst others:

- Inductively coupled plasma (ICP) optical emission spectroscopy (OES),
- Ion chromatography (IC),
- Carrier distillation emission spectroscopy (CDES),
- Atomic absorption spectroscopy (AAS), and
- UV spectroscopy.

It is beyond the scope of this investigation to go into any detail of how the data obtained for the ES series of standards analysed with the above methods, was evaluated. The certified concentration values and confidence intervals at a 95% CL for the various impurity elements across the ES series of standards given in Tables 6.3 to 6.7 were obtained after the evaluation. These certified values were calculated from the experimental data.

The standard error values at a 95% CL in Tables 6.3 to 6.7 were obtained using equation (9) on page 142. However, the term 2s in this equation was replaced by the term  $s.t/\sqrt{n'}$  as denoted by equation (1) on page 143. This is in accordance with the fact that the  $Q_x/Q_v^-$  value used in equation (9) is the mean of several (nine) analyses as previously mentioned in this section. The standard error coupled to this mean  $Q_x/Q_v^-$  value at a 95% CL is thus derived using equation (1) where n is taken as nine and s is the standard deviation over the nine analyses. The other terms used in equation (9) are identical to those used in equation (6) on page 142 and which were comprehensively described. The use of equation (6) was not warranted as multiple analyses were performed and not just a single analysis.



When comparing the results in Tables 6.3 to 6.7, a number of facts should be kept in mind. The certified values must not be accepted as being the absolute values for particular impurity elements in the series of ES standards. A better representation of the results obtained is given in Appendix C on page 191 where graphs have been compiled for all the impurity elements across the concentration range for each of the analytical methods in comparison to the expected concentration values. In this way anomalies can be detected and comparisons drawn between the spark-source mass spectrometry results and the expected concentration values.

Another interesting fact to consider is whether there is a meaningful difference between a certified value of, for example, 0,1  $\mu$ g Cd/gU and a SSMS value of 0,64  $\mu$ g Cd/gU, as reported in Table 6.7. Both these values are less than 1  $\mu$ g Cd/gU and at these trace levels the detection limits of certain analytical instruments have to be considered. The same could be true for Fe in Table 6.4 where the certified value is given as 208  $\mu$ g Fe/gU and the SSMS value is given as 264  $\mu$ g Fe/gU. In view of the various confidence intervals for these two values, it is clear that the analyst should not compare exact values with each other but also take cognicance of the confidence limits coupled to a result when assessing such data.

The SSMS concentration value obtained for Ca across the ES series of standards is higher than the certified concentration values. The higher value could possibly be coupled to an incorrect relative sensitivity factor (RSF) for Ca. This can be seen in the graph for Ca in Appendix C where the graph for SSMS (method B) lies above the dotted line which represents the true concentration values. The very high value for Ca obtained for the ES 1 standard with SSMS was also obtained by three other analytical techniques, namely A, C and D. It has not been possible to



confirm the reasons for this difference. Ca is a difficult element to determine with spark-source mass spectrometry and the investigation has not been persued for this element.

The SSMS concentration value obtained for Th across the ES series of standards is higher than the certified concentration values reported for ES 1, ES 2 and ES 3, although no confidence intervals were reported for these values. However, the SSMS results compare favourably to the expected values as shown in the graph in Appendix C.

It should be noted from the graphs in Appendix C that the mass spectrometry results in general, compare remarkably well with the expected standard values.



| <u>Table</u> | <u>6.3</u> : | Comparison | of | U <sub>3</sub> O <sub>8</sub> -Standard | ES  | 1 | with | SSMS  |  |
|--------------|--------------|------------|----|-----------------------------------------|-----|---|------|-------|--|
|              |              |            |    |                                         | ~~~ | - |      | DDIID |  |

| ſ       |                                    | I                                |                               |                        |
|---------|------------------------------------|----------------------------------|-------------------------------|------------------------|
| Element | Certified conc<br>value (µg X /gU) | Confidence in-<br>terval 95 % CL | SSMS conc<br>value (µg X /gU) | Std Error at<br>95% CL |
| A1      | 234                                | 189 - 279                        | 242                           | 43                     |
| В       | 5,7                                | 5,0 - 6,4                        | 4,9                           | 1,0                    |
| Bi      | 14,3                               | 11,6 - 17,0                      | 13,1                          | 3,0                    |
| Ca      | 272                                | 245 - 299                        | 416                           | 110                    |
| Cd      | · 5,5                              | 5,0 - 6,1                        | 6,0                           | 1,3                    |
| Со      | 26,6                               | 23,7 - 29,5                      | 28,8                          | 3,5                    |
| Cr      | 125                                | 77 - 174                         | 154                           | 27                     |
| Cu      | 104                                | 84,4 - 124                       | 120                           | 21                     |
| Dy      | 0,56                               | 0,43 - 0,69                      | 0,71                          | 0,24                   |
| Eu      | 0,56                               | 0,44 - 0,68                      | 0,69                          | 0,16                   |
| Fe      | 827                                | 663 - 990                        | 972                           | 191                    |
| Gd      | 0,64                               | 0,41 - 0,87                      | 0,85                          | 0,34                   |
| In      | 6,2                                | 4,4 - 7,9                        | 8,9                           | 1,6                    |
| K       | 536                                | 481 - 591                        | 379                           | 112                    |
| Li      | 11,5                               | 9,31 - 13,7                      | 13,2                          | 3,8                    |
| Mg      | . 56,2                             | 48,5 - 63,9                      | 49,8                          | 14,6                   |
| Мл      | 55,3                               | 47,5 - 63,2                      | 65,1                          | 15,5                   |
| Мо      | 54,6                               | 46,1 - 63,1                      | 59,4                          | 7,3                    |
| Ni      | 233                                | 209 - 259                        | 243                           | 47                     |
| Sb      | 11,2                               | 9,2 - 13,1                       | 13,8                          | 2,8                    |
| Si      | 206                                | 169 - 244                        | 221                           | 65                     |
| Sm      | 0,60                               | 0,51 - 0,69                      | 0,62                          | 0,17                   |
| Th      | 3,4                                | -                                | 11,0                          | 1,7                    |
| Ti      | 52,5                               | 39,9 - 65,1                      | 56,4                          | 12,5                   |
| v       | 5,08                               | 3,97 - 6,19                      | 5,40                          | 0,38                   |
| W       | 13,3                               | 11,4 - 15,2                      | 12,7                          | 5,0                    |
| Zn      | . 247                              | 207 - 287                        | 261                           | 41                     |
| Zr      | 59                                 | © University of Pr               | etoria 55                     | 6,6                    |



| Element | Certified conc<br>value (µg X /gU) | Confidence in-<br>terval 95 % CL | SSMS conc<br>value (µg X /gU) | Std Error at<br>95% CL |
|---------|------------------------------------|----------------------------------|-------------------------------|------------------------|
| A1      | 115                                | 93 - 137                         | 120                           | 24                     |
| В       | 3,8                                | 3,3 - 4,3                        | 3,5                           | 0,7                    |
| Bi      | 5,3                                | 4,2 - 6,3                        | 5,6                           | 1,5                    |
| Ca      | 108                                | 97 - 119                         | 163                           | 32                     |
| Cd      | . 2,7                              | 2,4 - 3,0                        | 3,0                           | 0,7                    |
| Со      | 13,5                               | 12,0 - 14,9                      | 13,9                          | 1,1                    |
| Cr      | 59                                 | 36 - 82                          | 65                            | 11                     |
| Cu      | 54,1                               | 43,7 - 64,4                      | 58,3                          | 5,7                    |
| Dy      | 0,56                               | 0,43 - 0,69                      | 0,69                          | 0,16                   |
| Eu      | 0,39                               | 0,30 - 0,48                      | 0,49                          | 0,14                   |
| Fe      | 208                                | 165 - 251                        | 264                           | 53                     |
| Gd      | 0,47                               | 0,29 - 0,65                      | 0,64                          | 0,42                   |
| In      | 5,3                                | 3,8 - 6,8                        | 6,4                           | 1,1                    |
| K       | 180                                | 162 - 199                        | 171                           | 35                     |
| Li      | 9,51                               | 7,70 - 11,3                      | 10,8                          | 3,1                    |
| Mg      | 21,8                               | 18,7 - 24,8                      | 22,9                          | 6,2                    |
| Mn      | 25,1                               | 21,6 - 28,7                      | 29,0                          | 4,5                    |
| Мо      | 2,0                                | 1,7 - 2,4                        | 2,4                           | 0,6                    |
| Ni      | 97,4                               | 87,3 - 107                       | 92,0                          | 11,1                   |
| Sb      | 8,0                                | 6,6 - 9,4                        | 10,0                          | 1,9                    |
| Si      | 75                                 | 59 - 90                          | 77                            | 17                     |
| Sm      | 0,59                               | 0,50 - 0,68                      | 0,66                          | 0,32                   |
| Th      | 0,6                                |                                  | 5,5                           | 0,58                   |
| Ti      | 25,2                               | 19,1 - 31,2                      | 26,7                          | 4,4                    |
| V       | 2,03                               | 1,55 - 2,51                      | 2,18                          | 0,25                   |
| W       | 5,7                                | 5,0 - 6,4                        | 5,3                           | 2,37                   |
| Zn      | 98,4                               | 82,2 - 115                       | 95,9                          | 14,1                   |

© University of Pretoria

46

Zr

49

5

| <u>Table 6.4</u> : | Comparison | of | $U_{3}O_{a}$ -Standard | ES | 2 | with | SSMS |
|--------------------|------------|----|------------------------|----|---|------|------|
|--------------------|------------|----|------------------------|----|---|------|------|



| <i>Table 6.5</i> : | Comparison | of | U <sub>3</sub> O <sub>8</sub> -Standard | ES | 3 | with | SSMS |
|--------------------|------------|----|-----------------------------------------|----|---|------|------|

|         | I                                  | Y                                |                               |                        |
|---------|------------------------------------|----------------------------------|-------------------------------|------------------------|
| Element | Certified conc<br>value (µg X /gU) | Confidence in-<br>terval 95 % CL | SSMS conc<br>value (µg X /gU) | Std Error at<br>95% CL |
| A1      | 68                                 | 54 - 81                          | 68                            | 18                     |
| В       | 1,4                                | 1,2 - 1,6                        | 1,3                           | 0,3                    |
| Bi      | 3,8                                | 3,0 - 4,6                        | 4,9                           | 1,7                    |
| Ca      | 72                                 | 65 - 79                          | 99                            | 20                     |
| Cd      | 1,0                                | 0,9 - 1,2                        | 1,3                           | 0,3                    |
| Со      | 5,1                                | 4,5 - 5,7                        | 5,8                           | 0,6                    |
| Cr      | 28                                 | 17 - 40                          | 29                            | 7                      |
| Cu      | 34,0                               | 27,4 - 40,5                      | 38,3                          | 5,6                    |
| Dy      | 0,48                               | 0,36 - 0,60                      | 0,54                          | 0,21                   |
| Eu      | 0,39                               | 0,30 - 0,48                      | 0,50                          | 0,11                   |
| Fe      | 72                                 | 56 - 89                          | 65                            | 16                     |
| Gd      | 0,22                               | 0,12 - 0,32                      | 0,74                          | 0,20                   |
| In      | 4,3                                | 3,0 - 5,5                        | 5,7                           | 1,0                    |
| K       | 87                                 | 78 - 96                          | 79                            | 22                     |
| Li      | 7,12                               | 5,75 - 8,49                      | 7,86                          | 2,1                    |
| Mg      | 11,4                               | 9,8 - 13,0                       | 15,9                          | 4,9                    |
| Mn      | 12,1                               | 10,4 - 13,8                      | 13,3                          | 2,1                    |
| Мо      | 1,2                                | 1,0 - 1,4                        | 1,3                           | 0,3                    |
| Ni      | 53,9                               | 48,3 - 59,6                      | 52,2                          | 8,2                    |
| Sb      | 3,9                                | 3,1 - 4,7                        | 5,2                           | 1,2                    |
| Si      | 44                                 | 33 - 54                          | 63                            | 21                     |
| Sm      | 0,43                               | 0,36 - 0,50                      | 0,56                          | 0,20                   |
| Th      | 0,3                                | -                                | 3,0                           | 0,5                    |
| Ti      | 10,9                               | 8,3 - 13,6                       | 10,1                          | 2,0                    |
| V       | 1,01                               | 0,74 - 1,28                      | 1,22                          | 0,12                   |
| W       | 4,2                                | 3,6 - 4,7                        | 3,7                           | 1,6                    |
| Zn      | 54,8                               | 45,6 - 63,9                      | 62,7                          | 7,6                    |
| Zr      | 49                                 | © University of Preto            | 46<br>vria                    | 6                      |



| <u>Table 6.6</u> : 0 | Comparison | of | U308 | -Standard | ES | 4 | with | SSMS |
|----------------------|------------|----|------|-----------|----|---|------|------|
|----------------------|------------|----|------|-----------|----|---|------|------|

| Element | Certified conc<br>value (µg X /gU) | Confidence in-<br>terval 95 % CL | SSMS conc<br>value (µg X /gU) | Std Error at<br>95% CL |
|---------|------------------------------------|----------------------------------|-------------------------------|------------------------|
| A1      | 23                                 | 19 - 28                          | 27                            | 5                      |
| В       | 0,6                                | 0,5 - 0,7                        | 0,8                           | 0,1                    |
| Bi      | 2,5                                | 1,9 - 3,0                        | 3,1                           | 0,8                    |
| Ca      | 23,8                               | 21,2 - 26,4                      | 34,1                          | 5,7                    |
| Cd      | 0,5                                | -                                | 1,5                           | 0,4                    |
| Со      | 2,7                                | 2,4 - 3,0                        | 3,5                           | 0,3                    |
| Cr      | 16                                 | 9 - 23                           | 19                            | 3                      |
| Cu      | 11,4                               | 9,1 - 13,6                       | 14,2                          | 1,8                    |
| Dy      | 0,40                               | 0,30 - 0,50                      | 0,59                          | 0,16                   |
| Eu      | 0,37                               | 0,28 - 0,46                      | 0,51                          | 0,13                   |
| Fe      | 29                                 | 21 - 37                          | 40                            | 8                      |
| Gd      | 0,24                               | 0,13 - 0,35                      | 0,90                          | 0,38                   |
| In      | 2,5                                | 1,7 - 3,3                        | 4,7                           | 0,7                    |
| K       | 48                                 | 43 - 53                          | 46                            | 12                     |
| Li      | 3,25                               | 2,60 - 3,90                      | 3,73                          | 0,44                   |
| Mg      | 5,4                                | 4,6 - 6,2                        | 8,8                           | 2,2                    |
| Mn      | 5,73                               | 4,9 - 6,6                        | 7,24                          | 1,32                   |
| Мо      | 5,3                                | 4,5 - 6,2                        | 6,7                           | 0,9                    |
| Ni      | 23,2                               | 20,7 - 25,7                      | 25,0                          | 2,5                    |
| Sb      | 1,6                                | 1,2 - 2,0                        | 4,2                           | 0,7                    |
| Si      | 13                                 | 8 - 19                           | 31                            | 8                      |
| Sm      | 0,41                               | 0,35 - 0,47                      | 0,59                          | 0,10                   |
| Th      | _                                  |                                  | 1,1                           | 0,2                    |
| Ti      | 5,5                                | 4,2 - 6,9                        | 6,3                           | 1,1                    |
| V       | 0,44                               | 0,29 - 0,59                      | 0,79                          | 0,17                   |
| W       | 2,8                                | 2,4 - 3,2                        | 3,3                           | 1,5                    |
| Zn      | 22,9                               | 18,9 - 26,8                      | 29,0                          | 4,0                    |
| Zr      | 40                                 | © University of Pret             | oria 37                       | 3,4                    |



| <u> Table 6.7</u> : Comparison | of | U <sub>3</sub> O <sub>8</sub> -Standard | ES | 5 | with | SSMS |  |
|--------------------------------|----|-----------------------------------------|----|---|------|------|--|
|--------------------------------|----|-----------------------------------------|----|---|------|------|--|

|         | ······································ | T                                |                               |                        |
|---------|----------------------------------------|----------------------------------|-------------------------------|------------------------|
| Element | Certified conc<br>value (µg X /gU)     | Confidence in-<br>terval 95 % CL | SSMS conc<br>value (µg X /gU) | Std Error of<br>95% CL |
| A1      | 12                                     | 0 - 15                           | 14                            | 3,4                    |
| В       | 0,4                                    | 0,30 - 0,40                      | 0,9                           | 0,2                    |
| Bi      | 0,6                                    | 0,5 - 0,8                        | 1,6                           | 0,6                    |
| Ca      | 11                                     | 9,7 - 12,3                       | 29                            | 6,7                    |
| Cd      | 0,1                                    |                                  | 0,64                          | 0,2                    |
| Со      | 2,6                                    | 2,3 - 2,9                        | 3,8                           | 0,5                    |
| Cr      | 12                                     | 7 - 17                           | 12                            | 2                      |
| Cu      | 6,2                                    | 5,0 - 7,5                        | 8,5                           | 0,8                    |
| Dy      | 0,23                                   | 0,16 - 0,30                      | 0,50                          | 0,38                   |
| Eu      | 0,22                                   | 0,16 - 0,28                      | 0,36                          | 0,08                   |
| Fe      | 19                                     | 13 - 25                          | 24                            | 5                      |
| Gd      | 0,16                                   | 0,08 - 0,20                      | 0,39                          | 0,02                   |
| In      | 1,8                                    | 1,2 - 2,4                        | 3,1                           | 0,5                    |
| K       | 20                                     | 17 - 22                          | 22                            | 7                      |
| Li      | 1,86                                   | 1,47 - 2,25                      | 2,37                          | 0,86                   |
| Mg      | 2,4                                    | 2,0 - 2,8                        | 5,9                           | 1,7                    |
| Мл      | 3,09                                   | 2,6 - 3,6                        | 4,8                           | 0,9                    |
| Мо      | 20,9                                   | 17,6 - 24,2                      | 24,4                          | 2,6                    |
| Ni      | 12,8                                   | 11,4 - 14,2                      | 15,4                          | 2,0                    |
| Sb      | 0,5                                    | 0,3 - 0,8                        | 2,6                           | 0,6                    |
| Si      | _                                      |                                  | 85                            | 33                     |
| Sm      | 0,18                                   | 0,14 - 0,22                      | 0,30                          | 0,26                   |
| Th      | _                                      | -                                | 0,71                          | 0,2                    |
| Ti      | 3,1                                    | 2,3 - 3,9                        | 4,5                           | 0,8                    |
| v       | 0,14                                   | 0,05 - 0,23                      | 0,39                          | 0,1                    |
| W       | 0,9                                    | 0,8 - 1,1                        | 1,2                           | 1,0                    |
| Zn      | 13,2                                   | 10,8 - 15,6                      | 18,1                          | 3,3                    |
| Zr      | 27                                     | © University of Pret             | oria 23                       | 2                      |



#### CHAPTER SEVEN

#### GENERAL COMMENTS AND CONCLUSIONS

The success of the project for the development of analytical and data interpretation methods for the qualitative and quantitative analysis of trace impurities in uranium compounds with sparksource mass spectrometry has been adequately demonstrated.

Not only did the mass spectrometry results contribute to the characterisation of the internal  $U_3O_8$  impurity standards, but the analytical data was in many cases closer to the expected values than those of any of the other analytical techniques.

Furthermore, the ability to analyse  $UF_4$  materials provided analytical results which could not be obtained with any other technique available at the time.

The use of the ratio between singly and doubly charged exposure values as well as the use of the mean exposure value for the internal standard to determine whether a photoplate is acceptable or not, is a new approach to data interpretation in spark-source mass spectrometry. In this way possible misleading results can be directly avoided. Other quality assurance data interpretation methods have also been introduced. This thesis is now being used as a reference document for the mass spectrometry laboratory.

Contamination is an ever present threat to elemental trace level analysis. An effective but expensive solution would be a laboratory conforming to class 100 requirements. A relatively inexpensive alternative has been implemented in this laboratory. A laminar flow cabinet, where a curtain of HEPA filtered air is induced at the opening, is used for all sample preparation steps. Due to the positive pressure of air within the cabinet no contamination in the form of dushiverity of Peroria



The apparent disadvantages of the spark-source mass spectrometric technique are:

- 1 Successful use requires wide experience, both in the operation of equipment and in the reading and interpretation of spectra.
- 2 The instrument is essentially a comparator; for quantitative analyses, standards of composition similar to the material under analysis are required. Unknown samples therefore present a problem when quantitative results are required.
- 3 The accuracy and precision are not as high as for some spectroscopic methods, notably inductively coupled plasma mass spectrometry (ICP-MS). It should be realised that these techniques have their own unique limitations, for example, laser ablation has a big problem with point inhomogeneity.

The use of spark-source mass spectrometry to analyse trace impurities in uranium compounds is still one of the most powerful techniques available. This is confirmed by the following advantages:

- 1 The procedure is specific for the element being determined. Sources of interference can be unequivocally identified and in many cases eliminated.
- 2 Quantitative determination of traces of the elements in a powder sample can be achieved without any preliminary chemical treatment. All solid materials may be determined.
- 3 A permanent record is obtained on a photographic plate.



- 4 The technique may be applied to the determination of small quantities of added constituents or of traces of impurities to solidstate matrices where conventional methods of analysis are difficult, fail, or give less accurate results.
- 5 The information content of analytical data which can be utilised is vast. This compensates for the relatively high operation costs of the technique. A direct complete picture can be obtained for all major and minor elements with the analysis of a single sample. This is especially useful when characterising unknown samples as well as for semi-quantitative analyses. Quantitative analysis with alternative methods for the identified impurities can then be executed cost effectively.
- 6 All isotopes of an element are recorded on a photoplate with intensities according to their isotopic abundances which leads to undisputed confirmation that a particular element is present in the sample as an impurity.
- 7 The up-time and reliability of the instrument is a proven fact, making this technique comparable if not better than any other analytical technique in this field.

Spark-source mass spectrometry today has wider applications than just for the analysis of uranium compounds. Fields in which this technique is actively used include biomedical [42], geological [43] and horticultural science [44], as well as agricultural and environmental sciences [45]. It continues to play a prominent role in the contemporary nuclear technology laboratory [46, 47].



#### REFERENCES

| 1 | K.D. Schuy and J. Franzen, Z. Anal. Chem., <u>225</u> (2), (1967).                                                                                                                                                                |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | J. Franzen and K.D. Schuy, Z. Naturforschg., <u>21a</u> , 1479, (1967).                                                                                                                                                           |
| 3 | R. Honig et al, 6th International Conference on Phenomena in<br>Ionized Gases, Paris, <u>2</u> , 109, (1964).                                                                                                                     |
| 4 | J. Franzen and K.D. Schuy, Z. Naturforschg., <u>20a</u> , 176, (1965).                                                                                                                                                            |
| 5 | G.I. Ramendik and V.I. Derzhiev, Zh. Anal. Khim., <u>32</u> (8),<br>1516-1523, (Aug 1977).                                                                                                                                        |
| 6 | J.A.A. Verlinden, K.M.E. Swenters and R.H.H. Gijbels, Anal.<br>Chem., <u>57</u> (1), 131-136, (1985).                                                                                                                             |
| 7 | D.S. Jones, L.D.V. Grant and D.E.C. Rogers, "INTERACT II - New<br>improved software and hardware for the reading and interpretation<br>of mass spectrographic ion sensitive plates", NIMR (CSIR) report<br>- IMAT 15 (June 1985). |
| 8 | D.S. Jones, D.E.C. Rogers and C. Claase, "INTERACT - A user<br>friendly program for high precision microphotometric evaluation<br>of ion plates from the Varian MAT mass spectrograph", NIMR<br>(CSIR) report - IMAT 3 (1983).    |
| 9 | SM1B-F Spark-source mass spectrometry Varian MAT operating manual.                                                                                                                                                                |

- 10 R.E. Honig, "Trace Analysis by Mass Spectrometry", Ed. A.J. Ahearn, Academic Press, 102-132, (1972).
- 11 K.L. Ramakumar et al, Fresenias Z. Anal. Chem., <u>318</u>, 12 14, (1984).



J. Franzen and K.D. Schuy, Z. Anal. Chem., 225, 295, (1967).

| 13 | S.R. Taylor, Geochim. Cosmochim. Acta, <u>29</u> , 1243-1261, (1965).                                                                                                                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 | D.C.G. Pearton, "Determination of relative sensitivity factors<br>for use in spark-source mass spectrometry", Randburg, Council for<br>Mineral Technology, Report M188, 9 pages, Feb 1985. |
| 15 | L.D.V. Grant, "The computer controlled microphotometer (UCOR)",<br>NIMR (CSIR) report, (August 1983).                                                                                      |
| 16 | Microdensitometer MD 100 instruction and operating manual.                                                                                                                                 |
| 17 | K.D. Schuy and J. Franzen, Z. Anal. Chem., <u>225</u> , 260, (1967).                                                                                                                       |
| 18 | D.E.C. Rogers and P.F.S. Jackson, Int. J. Mass Spec. and Ion Physics, <u>47</u> , 283 - 286, (1983).                                                                                       |
| 19 | P.R. Kennicott, "Trace Analysis by Mass Spectrometry". Ed.<br>A.J. Ahearn, Academic Press, 187-194, (1972).                                                                                |
| 20 | K.L. Ramakumar, V.A Raman, V.L. Sant, V.D. Kavimandan and<br>H.C. Jain, Int. J. Mass Spectrom. Ion Processes, <u>75</u> , 171,<br>(1987).                                                  |
| 21 | T.A. O'Donnel, "The Chemistry of Fluorine," Pergamon Press,<br>1062 - 1106, (1973).                                                                                                        |
| 22 | F.A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry,"<br>John Wiley & Sons, Fourth Edition, Part 2 & 3, (1980).                                                                    |
| 23 | B.P. Datta and H.C. Jain, Int. J. Mass Spectrom. Ion Processes,<br><u>68</u> , 219 - 237, (1986).                                                                                          |



- 24 G.J.J. Joubert, Interne verslag, Maart 1988, Atoomenergiekorporasie van Suid-Afrika, Beperk.
- 25 M. Ito, S. Sato and K. Yanagihara, Anal. Chim. Acta, <u>120</u>, 217-226, (1980).
- 26 G.I. Ramendik et al, Int. J. Mass Spectrom. Ion Processes, <u>63</u>, 1 - 15, (1985).
- 27 S. Becker and H.-J. Dietze, Z. Anal. Khim, <u>42</u> (9), 1604 1609, (1987).
- 28 R.C. Weast (Ed.). "Handbook of Chemistry and Physics", C R C Press, Cleveland, Ohio, 52nd edn., 1971 - 1972.
- 29 G.R. Long and J.D. Winefordner, Anal. Chem., <u>55</u> (7), 712 A, (1983).
- 30 W.C.A. van Niekerk, "Minimum meetvlakke in Analitiese Chemie: Kritiese beskouing van die IUPAC-definisie en statistiese evalueringsmetodes", Internal Lecture, Atomic Energy Corporation of South Africa Limited, 1986.
- 31 E. van Hoye, R. Gijbels and F. Adams, Talanta, <u>23</u>, 369-375, also 789-798, (1976).
- 32 J.D. Lee and T.D. Lee, "Statistics and Computer Methods in BASIC", Van Nostrand Reinhold Co. Ltd, Berkshire, 110.
- 33 W.J. Youden, "Statistical Methods for Chemists", Robert E. Krieger Pub. Co., Huntington, NY, (1977).



34 J.K. Taylor, Anal. Chem., <u>56</u> (2), 130A, (1984).

- 35 R. Welgemoed, Internal Report, May 1988, Atomic Energy Corporation of South Africa Limited.
- 36 J. Topping, "Errors of Observation and their Treatment", Chapman and Hall Ltd, London, Fourth Edition, 1972.
- 37 W.C.A. van Niekerk, Interne verslag, Augustus 1986, Atoomenergiekorporasie van Suid-Afrika Beperk.
- 38 J.C. Miller and J.N. Miller, "Statistics for Analytical Chemistry", Ellis Horwood Ltd, England, 85, (1984).
- 39 H.C. Hamaker, J. Assoc. Off. Anal. Chem., <u>69</u> (3), 417, (1986).
- 40 R.H. Albert, J. Assoc. Off. Anal. Chem., 69 (3), 429, (1986).
- 41 ISO Standards Handbook 3, Statistical Methods, Second edition, 424, (1981).
- 42 J.R. Bacon, Adv. Mass Spectrom., Part B (Proc. 10th Int. Mass Spectrom. Conf., Swansea, 9 - 13 Sept 1985), 1277, (1986).
- 43 G.I. Ramendik, O.I. Kryuchkova, D.A. Tyurin and S.I. Gronskaya, Zh. Anal. Khim., <u>43</u> (7), 1177 - 1183, (1988).
- 44 A. Chamel, A.M. Andreani, Hort. Science, <u>20</u> (5), 907 908, (Oct 1985).
- 45 D.F.S. Natusch, C.F. Bauer and A. Loh, "Air Pollution Control" Part III, John Wiley & Sons, 264 - 268, (1978).



- 46 H.C. Jain and K.L. Ramakumar, Adv. Mass Spectrom., <u>11B</u> (Proc. 11th Int. Mass Spectrom. Conf., Bordeaux, Fr., 29 Aug - 2 Sept 1988), 1640, (1989).
- 47 S. Deron, Adv. Mass Spectrom., <u>11B</u> (Proc. 11th Int. Mass Spectrom. Conf., Bordeaux, Fr., 29 Aug - 2 Sept 1988), 1746 - 1785, (1989).


# LINEAR REGRESSION FORMULAE [29]

•

y = mx + c

$$s_{xy} = \frac{\binom{n}{j=1} (\frac{x}{j}) - \binom{n}{j=1} (\frac{x}{j}) (\frac{x}{j})}{\binom{n}{j=1} (\frac{x}{j})^{2}} - \frac{\binom{n}{j=1} (\frac{x}{j})^{2}}{\binom{n}{j=1} (\frac{x}{j})^{2}} \\ s_{yy} = \frac{\binom{n}{(z - y)}}{\binom{n}{j=1} (\frac{y}{j})} - \frac{\frac{j=1}{j-1} (\frac{x}{j})}{\binom{n}{n}} \\ s_{xx} = \binom{n}{(z - y)} - \frac{\binom{n}{(z - y)^{2}}}{\binom{n}{n}} \\ s_{xx} = \binom{n}{(z - y)} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{n}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{(z - x)^{2}}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{(z - x)^{2}}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{(z - x)^{2}}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{(z - x)^{2}}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{(z - x)^{2}}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{(z - x)^{2}}} \\ s_{xy} = \binom{n}{(z - x)^{2}} - \frac{\binom{n}{(z - x)^{2}}}{\binom{n}{(z - x)^{2}}} \\ s_{xy} = \binom{n}{(z - x)^{2}}} \\ s_{xy} = \binom{n}{$$



#### APPENDIX B

TABLE OF ATOMIC AND MOLECULAR LINES FOR SPARK SOURCE MASS SPECTROMETRY OF

COMPLEX SAMPLE-GRAPHITE MIXES

R. A. BURDO AND G. H. MORRISON Department of Chemistry Cornell University, Ithaca, N.Y.

### ABSTRACT

A detailed table of atomic and molecular mass spectral lines has been prepared to aid in the interpretation of interferences and assignment of spectral lines in complex spectra arising from the spark source analysis of natural insulating powders blended with graphite to sustain the RF spark. The compilation consisting of 3000 listings is particularly useful for multielement trace analysis of geological and biological solids. Included are carbides, oxides, polymers, multiply-charged ions, and other molecular species of several or more major and minor elements as well as a large number of trace elements.



#### INTRODUCTION

Spark source mass spectrometry is a useful technique for multielemental trace analysis Spark source mass spectrometry is a useful technique for multielemental trace analysis of geological and biological solids. Such insulating materials are usually powdered and mixed with graphite to produce strong and conducting electrodes. However, the sparking of complex graphite mixes yields complicated spectra containing the carbides, oxides, polymers, multiply-charged ions, and other molecular species of several or more major and minor ele-ments as well as a large number of trace elements. The primary purpose of the following table is to aid in the interpretation of inter-ferences and assignment of spectral lines in complex spectra arising from the spark source analysis of natural insulating nowders in a graphite matrix. In a secondary sense, the table

analysis of natural insulating powders in a graphite matrix. In a secondary sense, the table may also be applied to other sample types or even to other fields of mass spectrometry such

may also be applied to other sample types or even to other fields of mass spectrometry such as ion probe analysis where molecular species become relatively more important. There are indeed other excellent mass tables available for general use, but they are limited for application to the specific problem as stated. More explicitly, the table of Owens and Sherman (1) is arranged by individual element with comprehensive coverage for certain kinds of species excluding carbides, oxides, and many molecular species. The table of Guthrie and Heath (2), albeit arranged by mass, excludes carbides, most oxides, charge-exchange species, and other species of interest. The aim herein is to include those species omitted in preceding tables but of possible interest in complex graphite systems, to arrange the table in order of ascending mass values, to include the relative abundance of each species listed, to indicate the theoretical resolution required to sepa-rate a listed species from a line of analytical value, and finally to be concise in format but comprehensive in scope. The latter requirement, has resulted in approximately 3000 listings each containing four data words and producing a text of approximately 12,000 words on a physical format of only thirteen pages.

Istings each containing four data words and producing a text of approximately 12,000 word on a physical format of only thirteen pages. The entire table was manually calculated, compiled, and typed and is therefore not meant as a manual of supercritical mass and abundance data, but merely as an interpretive and useful guide. The user must assume any liability of any kind incurred in the employ-ment of this table. Further, no claim is made as to the existence or nonexistence of any species listed herein, nor to that of any species accidentally or purposely omitted.

#### EXPLANATION OF TABLE

Each listing consists of a row of four words starting with the name of the species and followed by the mass, abundance, and resolutional requirement of the named species respectively.

#### I. NOMENCLATURE OF SPECIES

The usual chemical notation is used to identify the elemental constuents of the species. A leading superscript refers to the nominal mass of the species and a trailing superscript refers to the positive charge of the species. The plus signs of the charge superscripts are omitted since all species are ions of positive charge. The charge superscripts omitted since all species are ions of positive charge. The charge superscript is omitted entirely for species having a single positive charge. A special two-digit charge superscript indicates a charge-exchange species where the first digit is the initial charge of the species before a charge-reducing collision and the second digit gives the resulting or final charge after collision. The general nomenclature and the special meaning of the nominal mass superscript are best illustrated by example.

#### Elementally Homogeneous Species I.A.

- 12C a singly-charged ion of carbon 12 a triply-charged ion of carbon 12 (a) :
- 12Č3 (ъ)

| (c) | 12 C2            | : | a homo-isotopic dimer of carbon and the only combination of carbon   |
|-----|------------------|---|----------------------------------------------------------------------|
|     | _                |   | isotopes having a nominal mass of 24. (Absence of superscript = +1). |
| (d) | <sup>25</sup> C2 | : | a hetero-isotopic dimer of carbon having a +2 positive charge and    |
|     |                  |   | containing all combinations of carbon isotopes having a nominal mass |
|     |                  |   | of 25. (Only one combination in this case).                          |

- of 25. (Only one combination in this case). a trimer of silicon containing all combinations of silicon isotopes giving a nominal mass of 86, ie,  ${}^{8}$  Si<sub>3</sub> = ( ${}^{28}$ Si<sub>2</sub> +  ${}^{30}$ Si) + ( ${}^{28}$ Si +  ${}^{29}$ Si<sub>2</sub>), where the parentheses indicate the combinations having the same nominal eeSis (e) • mass.
- 12C35 : (f)a charge-exchange species of carbon 12 where the initial charge is +3 and the final charge is +2.

I.B. Elementally Heterogeneous Species

<sup>28</sup>SiC : (a)

- <sup>41</sup>SiC : (b)
- a monocarbide of silicon 28 and the only significant\* combination of carbon and silicon isotopes having a nominal mass of 40. all the combinations\*\* of silicon and carbon isotopes having a nominal mass of 41, ie,  $\binom{29}{51} + \frac{12}{2}$  and  $\binom{29}{51} + \frac{13}{2}$ . the only significant\* combination of silicon and carbon isotopes having a nominal mass of 108, ie, there is only one silicon trimer of nominal mass 84 and only one carbon dimer of nominal mass 24. all the combinations\*\* of silicon trimer and carbon dimer having a nominal mass of 109, ie,  $\binom{85}{513} + \frac{12}{2}C_2$  and  $\binom{28}{513} + \frac{25}{2}C_2$ . <sup>28</sup>Si3C2: (c)
- <sup>109</sup>S1<sub>3</sub>C<sub>2</sub>: (d)

The word 'significant' means that if a single combination of isotopes is cited, then it is either the only possible combination or a combination which accounts for 99.0% or more of

- of the abundance of all possible combinations. The phrase 'all the combinations' means that the combinations included are either the only possible ones or that they cumulatively account for 99.0% or more of the abundance of all combinations.
  - The starred definitions have meaning in relation to the mass and abundance data following a cited species (see parts II and III).
- II. MASS (second word)

The masses of singly-charged species are taken from the table of Guthrie and Heath (2) and are rounded to five decimal places. Some elements are known to less than five places while others are only approximated vas producted by a (/) following the last digit in the mass value. Polymeric and heterogeneous species have masses equal to the sum of



the individual contributing masses. Charge-exchange masses are obtained by multiplying the singly-charged mass by a factor  $(m/n^2)$  where (m) is the initial and (n) the final charge of the ion. Multiply-charged ions have masses equal to the singly-charged mass divided by the

the ion. Multiply-charged ions have masses equal to the singly-charged mass divided by the integral number of positive charges. For species containing more than one combination of isotopes (eg., I.A.e, I.E.b, and I.B.d), the mass is that of the combination of isotopes which is the most abundant, as opposed to masses of single combinations which are unequivocal. The grouping of combinations of isotopes of the same elements to produce a species of the same chemical formula was performed to reduce the number of listings and is based on the fact that the combinations in a group are not resolvable with present commercial apparatus which have resolutions of 10,000 maximum and 5,000 or less practical.

#### <u>ABUNDANCE</u> (third word)

Isotopic abundances are based on Guthrie and Heath (2). Abundances apply only to species of the same kind (same chemical formula, same charge, but possibly different exact masses). For example, <sup>29</sup>SiC at mass 39.97693 comprises 31.19% of the total amount of silicon carbide formed from all combinations of silicon and carbon isotopes, <sup>41</sup>SiC at mass 40.97649 accounts for 5.67%, etc. The abundance of <sup>29</sup>SiC is that of a single combination while that of <sup>41</sup>SiC is the sum of the abundances of more than one combination. The abundances of molecular species which are elementally homogeneous are calculated using the binomial expansion according to Hill (3) or the equivalent probability formula given by Owens and Sherman (1) for polyatomic clusters:

 $RA = (A^{a}B^{b}C^{c}...N^{n})(M!)/(a!b!c!..n!)$ 

1.

where RA is the relative abundance of a given polyatomic cluster (a specified combination of isotopes) containing M total atoms of an element which has isotopes A', B', C',...N' with isotopic abundances A, B, C, ...N respectively and where the number of atoms of each isotope contained in the cluster is a, b, c, ...n respectively. The summation (a+b+c+...n) is equal to M. This formula is applied to each specific combination of isotopes until all possible combinations are exhausted.

For clusters containing different elements, the above formula is applied to each ele-ment individually and the abundance of the heterogeneous cluster is taken as the product of the indivual RA's for each element in the cluster.

The tabled abundances are given in percent. The appearance of an (E) in the tabled abundance indicates a negative exponential form so that 1.2E3, for example, means 00.0012%. For species containing more than one combination (seeI), the abundance is the sum of all combinations considered, whereas the mass is that of the most abundant combination.

#### IV. RESOLUTIONAL REQUIREMENT (fourth word)

Resolution is defined as  $R = M_0/4M$ .  $M_0$  is indicated in the table by a series of five dashes for a line of interest at each nominal mass unit and at some half-mass units where appropriate. A negative value for R indicates that the listed species occurs at a lower mass than  $M_0$ , the latter being indicated by the next dashed line. A positive value of R indicates a higher mass than  $M_0$  which is defined as the first previous dashed line. The appearance of an (E) in the resolution value indicates a positive exponential form so that 15E3, for example, means a resolution of 15,000. There are no exponential forms for resolutions less than 10,000 (= 10E3).

#### V. SCOPE

The number and kinds of species included for each element depends on its definition as a major, minor, or trace constituent in geological and biological samples. Carbon, being the matrix considered, is defined as a major element. Other defined majors are oxygen, sodium, silicon, phosphorous, sulfur, potassium, calcium, titanium, and iron. Minors are given as chromium, nickel, zinc, strontium, zirconium, and barium. Most other elements are defined as trace.

defined as trace. For trace elements the species considered are: singly-and-multiply charged ions up to +3, polymerization up to the dimer only, mono-and-dicartides, and mono-and-di-oxides. For minor elements the species are: singly-and-multiply charged ions up to +4, polymer-ization up to the trimer, formation of cxide up to the trioxide and cartide to the tricartide, and charge-exchange species with initial charges of +4 or less. Major elements have more extensive coverage: singly-and-multiply charged ion up to +6, polymerization up to four atoms, formation of tetra-oxide and tetra-cartide, charge-exchange species with initial charge of 7 or less, and some complex species having two atoms of the major species and one to three atoms or carbon or oxygen. Polymer formers such as carbon, aluminum, and silicon are considered to form even more complex species and some combinations of these elements with other major elements are included. Appropriate higher degrees of polymerization and carbide and oxide formation are listed for these three elements. Only the lower-charged species of rare gases are considered.

polymerization and carbide and oxide formation are fisted for these three elements. Only the lower-charged species of rare gases are considered. Hydrocarbons up to mass 100 are included. The first hydrides(MH) of all elements from lithium to molybdenum plus barium, lan-thanum, and cerium are also listed. The mass range covered is from 1 to 270 with reductions in the number of entries from mass 210 to 270 where only two elements, thorium and uranium, are of interest.

#### REFERNCES

1. E.B. Owens and A.M. Sherman, Mass Spectrographic Lines of the Elements, MIT Tech. E.B. Owens and A.M. Sherman, Mass Spectrographic Lines of the Elements, Mill Tech. Rep. No. 265, 1962
 J.W. Guthrie and R.L. Heath, Table of Atomic Masses, Sandia Corporation Monograph SCR-245, 16th Ed., 1961
 H.C. Hill, Introduction to Mass Spectrometry, Heydon and Son, London, 1966

| 1 <sub>H</sub><br>3402                                | 1.00782              | 99.985           |                         | 3656<br>3616                                        | 5.99451            | 00.014             | - 292          | 43Ca5                                               | 8.59176            | 00.146         |                |
|-------------------------------------------------------|----------------------|------------------|-------------------------|-----------------------------------------------------|--------------------|--------------------|----------------|-----------------------------------------------------|--------------------|----------------|----------------|
| 1206                                                  | 2.00000              | 98,893           | - 143                   | <sup>30</sup> S1 <sup>5</sup>                       | 5•99459<br>5•99475 | 00.337             | - 293<br>- 295 | 26 <sub>Mg</sub> 3                                  | 8.65675            | 83.76<br>11.17 | -2107          |
| <sup>4</sup> He <sup>2</sup>                          | 2.00130              | 99.999           | - 157                   | 24 Mg4<br>25 Mg 65                                  | 5.99626            | 78.70              | - 319          | 35C14                                               | 8.74221            | 75.529         |                |
| °Li <sup>j</sup><br>2D                                | 2.00500              | 07.42            | - 221                   | 1803                                                | 5.99972            | 00.204             | - 391          | 44Ca5                                               | 8.79110            | 02.06          | + 026          |
| 1 H2                                                  | 2.01565              | 99.970           | +1300                   | 12 C2<br>87 4                                       | 6.00000            | 98.893             | - 398          | 53 Cr <sup>6</sup>                                  | 8.82344            | 09.55          |                |
| <sup>13</sup> C <sup>6</sup>                          | 2.16723              | 01.107           |                         | 515                                                 | 6.01512<br>6.10/76 | 100.000            |                | 54~ 6                                               | 8.88606            | 99.759         | 107            |
| 120'0<br>7143                                         | 2.33328              | 99.893           |                         | 14N43                                               | 6,22358            | 99.63 <sup>4</sup> | - 273          | 54Fe <sup>6</sup>                                   | 8.98993            | 02.30          | - 405          |
| 13C76                                                 | 2.52837              | 01.107           |                         | <sup>26</sup> Mg <sup>65</sup><br>25Mg <sup>4</sup> | 6.23582            | 11.17              | - 587          | 45 Sc <sup>5</sup>                                  | 8.99118            | 100.000        | - 429          |
| 1909<br>1909                                          | 2.60067              | 01.107           |                         | 19 F3                                               | 6.33280            | 100.000            |                | 36A4                                                | 8.99189            | 00.337         | - 441<br>- 444 |
| 14N5                                                  | 2.80051              | 99.634           |                         | 3255<br>27 1 85                                     | 6.39441            | 95.0               | 303            | 27A13                                               | 8.99384            | 100.000        | - 491          |
| 1708<br>12085                                         | 2.83319              | 00.037           |                         | зэКе                                                | 6.49395            | 93.10              | - 3820         | 15 <sup>C</sup> 35                                  | 9.00000            | 98.893         | - 739          |
| 1806                                                  | 2.99986              | 00.204           | - 186                   | 26Mg4<br>1302                                       | 6.49565            | 11.17              |                | ₽Be                                                 | 9.01219            | 100.000        |                |
| 12 <sup>74</sup>                                      | 3.00000              | 98.893           | - 187                   | 33 <u>5</u> 5                                       | 6.59429            | 00.76              | +1011          | 29 S154<br>55Mp6                                    | 9.05515            | 04.70          | + 210          |
| °Be <sup>3</sup><br>°L†2                              | 3.00407 ]            | 100.000<br>07.42 | - 252                   | 40 A 6<br>40 Ca 6                                   | 6.66040            | 99.6<br>96.97      | -22E4          | 4 <sup>6</sup> T1 <sup>5</sup>                      | 9.19053            | 08.00          |                |
| 3 He                                                  | 3.01603              | 01.4E4           |                         | 40Ke                                                | 6.66067            | 00.012             | +27E3          | 46Ca <sup>5</sup><br>37 C1 4                        | 9.19074            | 00.003         | +44E3          |
| SH2                                                   | 3.01605              | 00.030           | +15E4<br>+ 512          | <sup>20</sup> Ne <sup>3</sup><br>12053              | 6.66415            | 90.92              | +1790          | 5°Fe <sup>6</sup>                                   | 9.32249            | 91.66          | -2961          |
| 16078                                                 | 3,11051              | 99.759           |                         | 28 S1 65                                            | 6.71446            | 92.21              | +100+          | 28513<br>39865                                      | 9.32564            | 92.21          | - 604          |
| 13 Ce5                                                | 3.12080              | ói.ió7           |                         | 27A14<br>34c5                                       | 6.74538<br>6.79358 | 100.000            |                | 30 S154                                             | 9.36680            | 03.09          |                |
| 13C4                                                  | 3.19898<br>3.25084   | 99.759           |                         | 41K6                                                | 6.82697            | 06.88              |                | <sup>47</sup> T1 <sup>5</sup><br>17053              | 9.39075<br>9.44396 | 07.29          |                |
| 17076                                                 | 3.30531              | 00.037           |                         | <sup>29</sup> S1 <sup>65</sup>                      | 6.95436            | 04.70              |                | 57 Fe 6                                             | 9.48923            | 02.19          | - 953          |
| 1705                                                  | 3.33765              | 19.61<br>00.037  |                         | <sup>42</sup> Ca <sup>5</sup><br>35C15              | 6.99310<br>6.99377 | 00.64<br>75.529    | - 306          | 38Å4                                                | 9.49068            | 00.063         | -1115          |
| 18076                                                 | 3.49976              | 00.204           | - 437                   | 28S14                                               | 6.99423            | 92.21              | - 322          | 19 <sub>F</sub> ≥<br>48m-∤5                         | 9.49920            | 100.000        |                |
| - * N *<br>7 L i <sup>2</sup>                         | 3.50800              | 99.634           | - 485<br>               | <sup>21</sup> Ne <sup>3</sup><br>14 <sub>N</sub> 2  | 6.99795<br>7.00154 | 00.257<br>99.638   | - 389<br>- 485 | 48 Ca 5                                             | 9.59051            | 00.185         | +10E3          |
| 1805                                                  | 3.59983              | 00.204           |                         | 7Li                                                 | 7.01600            | 92.58              |                | **Ca **                                             | 9,59102            | 02.06          | +6706          |
| 12 054                                                | 3.66977              | 80.39<br>98.893  |                         | °LiH                                                | 7.02282            | 07.42              | +1029          | 58 Fe8                                              | 9.65555            | 00.33<br>69.18 | -2945          |
| 15 <sub>N</sub> 4                                     | 3.75003              | 00.366           |                         | 43 <sub>Ca</sub> 6                                  | 7.10885            | 99.759<br>00.146   |                | 29 S13                                              | 9.65883            | 04.70          |                |
| 16065                                                 | 3.83163 J<br>3.83878 | 99.759           |                         | 23Na54                                              | 7.18431            | 100.000            |                | 39 <sub>K</sub> 4                                   | 9.67930            | 93.10          | + 472          |
| 24 <sub>Mg</sub> 6                                    | 3.99751              | 78.70            | - 786                   | 365105<br>3655                                      | 7.19370            | 03.09              | + 765          | 13032                                               | 9.75252            | 01.107         | + 840          |
| 1604                                                  | 3.99873              | 99.759           | -1034                   | 36Å5                                                | 7.19351            | 00.337             | + 781          | <sup>49</sup> Ti <sup>5</sup><br>597.8              | 9.78957            | 05.51          |                |
| 4He                                                   | 4.00000              | 99.999           | -1540                   | 29 Si <sup>4</sup>                                  | 7.22409            | 04.70              |                | 41Kes                                               | 9.83084            | 93.10          | +1138          |
| <sup>2</sup> H <sub>2</sub>                           | 4.02820              | 02.0E4           | + 156                   | 44 Ca 8                                             | 7.32592            | 02.06              |                | <sup>so</sup> Ni <sup>s</sup>                       | 9.98846            | 26.23          | - 409          |
| 13054<br>17085                                        | 4.06355              | 01.107           |                         | 37 C15                                              | 7.39318            | 24.471             | +T0T4          | 50 T15                                              | 9.98896            | 05.34          | - 410          |
| 25 <sub>Mg</sub> 6                                    | 4.07979<br>4.16431   | 10.13            |                         | 31p85<br>45co8                                      | 7.43370            | 100.000            | -0100          | 50V5                                                | 9.98943            | 00.24          | - 426          |
| 170 <sup>4</sup><br>18065                             | 4.24978              | 00.037           |                         | <sup>30</sup> Si <sup>4</sup>                       | 7.49344            | 03.09              |                | 20 <sub>Ne</sub> 2                                  | 9.99127            | 90.92          | - 599          |
| 2 6 <sub>Mg</sub> 6                                   | 4.33043              | 11.17            | - 829                   | 24Mg <sup>54</sup><br>15N2                          | 7.49533            | 78.70              | +3965<br>±1134 | 18053<br>105                                        | 9.99953            | 00.204         | - 747          |
| 1303<br>14154                                         | 4.33445              | 01.107           |                         | 17043                                               | 7.55170            | 00.037             |                | <sup>10</sup> Be                                    | 10.01294           | 19.61          | +17E3          |
| 27Å] 6                                                | 4.49692 ]            | 100.000          | -1570                   | 32565<br>3104                                       | 7.67330            | 95.0               |                | <sup>9</sup> BeH                                    | 10.02001           | 99.985         | +1416          |
| 1804<br>9265                                          | 4.49979              | 00.204           | <b></b><br><b>-</b> 713 | 39K5                                                | 7.79274            | 93.10              |                | <sup>e1</sup> Ni <sup>e</sup><br>51,75              | 10.15518           | 01.19          |                |
| 2 <sup>3</sup> Na <sup>5</sup>                        | 4.59796              | 100.000          | 1 1 22                  | 2⊃Mg э∓<br>47 m 1 8                                 | 7.80807            | 10.13              | + 508<br>+ 240 | 23Na43                                              | 10.21767           | 100.000        |                |
| <sup>c o</sup> Si <sup>6</sup><br>14 N <sup>3</sup>   | 4.66282<br>4.66769   | 92.21<br>99.634  | - 960<br>               | 48 <sub>Ti</sub> 8                                  | 7.99132            | 73.98              | -1303          | 41K4<br>82 N4 8                                     | 10.24046           | 06.88          | -3006          |
| 19 <sub>F</sub> 4                                     | 4.74960 1            | 100.000          |                         | 48 Ca 6                                             | 7.99209            | 00.185             | -1489          | 31P3                                                | 10.32459           | 100.00         |                |
| 29516                                                 | 4.79717              | 78.70            |                         | 40 Ca 5                                             | 7.99240            | 99.6<br>96.97      | -1619          | 63 Cu 6                                             | 10.38810           | 83.76          | -7547          |
| 30 <sub>S1</sub> 6                                    | 4.99563              | 03.09            |                         | 40K5                                                | 7.99280            | 00,012             | -1717          | 42 Ca 4                                             | 10.48966           | 00.64          |                |
| 25 Mg 5                                               | 4.99717              | 10.13            | +3240                   | 24 <sub>Mg</sub> 3                                  | 7.99502            | 92.0<br>78.70      | -3264          | <sup>21</sup> Ne <sup>2</sup><br>14 <sub>N</sub> 32 | 10,49692           | 00.257         | +1445<br>+ 829 |
| 15N3                                                  | 4.99841<br>5.00004   | 99•759<br>00.366 | +1797<br>+1130          | 180 <sup>2</sup><br>18043                           | 7.99746            | 99.759             |                | 44 Ca. 65                                           | 10.54932           | 02.06          | ,              |
| 10 <sup>B2</sup>                                      | 5.00647              | 19.61            | + 461                   | 7LiH                                                | 8.02382            | 92.57              | + 303          | 34g54                                               | 10.58813           | 09.55          |                |
| 31p8<br>281.5                                         | 5.16229              | 100.000          |                         | 2 6 <sub>Mg</sub> 54                                | 8.11956            | 11.17              |                | 64N18                                               | 10.65466           | 01.08          | -3947          |
| 170 <sup>54</sup>                                     | 5.31223              | 00.037           | - 275                   | 34 <u>5</u> 85                                      | 8.15229            | 04.22              | -1434          | 32 <sub>S</sub> 3                                   | 10.65486           | 48.89<br>95.0  | -4262          |
| 3256<br>1603                                          | 5.32868              | 95.0             | -1801                   | 41K2                                                | 8.19237            | 06.88              |                | 24 Mg 43                                            | 10.66002           | 78.70          | +1702          |
| 12 643                                                | 5.33333              | 98.893           | +3149                   | 3354<br>50m,8                                       | 8.24287            | 00.76              | -1847          | 54Cr5                                               | 10.78777           | 02.38          | - 224<br>-72E3 |
| 3356<br>1152                                          | 5.49524              | 00.76            | - 585                   | 50 Cr <sup>6</sup>                                  | 8.32434            | 04.31              | -1950          | 54Fe <sup>5</sup>                                   | 10.78792           | 05.82          |                |
| 28 S15                                                | 5.59539              | 92.21            | •                       | 50 <sub>0</sub> 8<br>25 <sub>М~</sub> 3             | 8.32453            | 00.24              | -2040          | 55 Mr 5                                             | 10.08741           | 100 00         | - 507          |
| 18054<br>3456                                         | 5.62474<br>5.66131   | 00.204           | -1120                   | 42 Ca 5                                             | 8.39173            | 00.64              | + 132          | eezne                                               | 10.98768           | 27.81          | - 509          |
| 17 03                                                 | 5.66638              | 00.037           |                         | 27A154<br>19F43                                     | 8.43173            | 100.00             | + 703          | 44Ca4<br>33c3                                       | 10.98887           | 02.06          | - 539          |
| <sup>- 3</sup> Na <sup>4</sup><br>24 <sub>Mo</sub> 85 | 5.74745 1<br>5.75641 | 78.70            | + 642                   | 51 <sub>V</sub> 8                                   | 8.49066            | 99.76              | - 954          | <sup>22</sup> Ne <sup>2</sup>                       | 10.99569           | 08.82          | - 808          |
| 13C <sup>4</sup> 3                                    | 5.77926              | 01.107           | + 181                   | 3454                                                | 8.49197            | ó4.22              | -1118          | В<br>10 вн                                          | 11.02076           | 80.39<br>19.61 | + 962          |
| ²°Si⁵                                                 | 5.79530              | 04.70            |                         | 170 <sup>2</sup>                                    | 8.49957            | 00.037             |                | 40T1 05                                             | 11.02863           | 08.00          | + 570          |

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI VA PRETORIA 178

| 25 43                          | 11.10482              | 10.13                                   |               | <sup>68</sup> Zn <sup>5</sup>      | 13.53497  | 18.57         |                 | 58Fe54                                    | 17.47967 | 91.66           | -3680        |
|--------------------------------|-----------------------|-----------------------------------------|---------------|------------------------------------|-----------|---------------|-----------------|-------------------------------------------|----------|-----------------|--------------|
| 37 Zn 3                        | 11.15452              | 04.11                                   | - 344         | <sup>4 1</sup> K <sup>3</sup>      | 13.65394  | 05.38         |                 | <sup>7</sup> <sup>o</sup> Zn <sup>4</sup> | 17.48134 | 00.62           | -5677        |
| 56 <u>-e</u> 5                 | 11.18699              | 51.66                                   |               | 57 Fe <sup>65</sup>                | 13.66450  | 02.19         | +1293           | 35012                                     | 17.48442 | 75.529          |              |
| 45 Sc 4                        | 11.23898              | 100.00                                  |               | <sup>55</sup> Mn <sup>4</sup>      | 13.73451  | 100.00        |                 | 53Cr3                                     | 17.64688 | 09.55           |              |
| 47 Ti 65                       | 11.26842              | 07.29                                   |               | <sup>44</sup> Ca <sup>54</sup>     | 13.73609  | 02.06         | +8693           | 40 Ca 43                                  | 17.76115 | 96.97           |              |
| <sup>se</sup> Zn <sup>s</sup>  | 11.32081              | 18.57                                   | -6256         | 31P43                              | 13.76612  | 100.00        | + 434           | 3253                                      | 17.76226 | 95.0            | +1923        |
| 3453                           | 11.52262              | 04.22                                   |               | <sup>69</sup> Ga <sup>5</sup>      | 13.78514  | 60.4          | + 271           | ∍′Ee⊐"                                    | 17.79251 | 02.19           | + 510        |
| 57 - 5                         | 11.58703              | 02.19                                   |               | 58 Fe <sup>65</sup>                | 13.90400  | 00.33         |                 | 54 Cr <sup>3</sup>                        | 17,97962 | 02.38           | - 921        |
| െപ്പ്പ                         | 11.48762              | 60.4                                    | -1581         | 560.4                              | 17 08271  | 01 00         | ROL             | 54 - 3                                    | 17 97987 | 05.32           | - 933        |
| 4 ôr i 4                       | 11.48816              | 08.00                                   | -1708         | 707.5                              | 12 09/90  | 91.55         | - 724           | 3 egž                                     | 17.98354 | 00.014          | -1152        |
| 4 8 Ca 4                       | 11.48842              | 00.003                                  | -1777         | 70755                              | 17.35460  | 20.52         | - / 55          | 3682                                      | 17.98377 | 00.337          | -1170        |
| 23 <sub>Na</sub> 2             | 11.49489              | 100.000                                 |               | 43 003                             | 13 08601  |               | - //0           | 241032                                    | 17,98878 | 78.70           | -1734        |
| 48 7 4 65                      | 11.50751              | 73.98                                   | + 911         | 28012                              | 17 098/17 | 00.64         | - 021           | 180                                       | 17.99916 | 00.204          |              |
| 26 43                          |                       | , , , , , , , , , , , , , , , , , , , , |               | 14N                                | 10.90047  | 92.21         | - 959           | 12 02                                     | 18.00000 | 96.71           | +21E3        |
|                                | 11.54782              | 11.17                                   |               | 140                                | 14.0000   | 99.624        | .2017           | ษะถ้                                      | 18.01056 | 99.747          | +1579        |
| Seres                          | 11.58666              | 00.33                                   | -28E3         | 1364                               | 14.00524  | LT.UI         | +0252           | SLIC                                      | 18.01500 | 07.34           | +1136        |
| <sup>33</sup> Ni <sup>3</sup>  | 11.58707              | 69.18                                   |               | 12 01                              | 14.01115  |               | +1/26           | 9 8eo                                     | 18.02439 | 100.00          | +713         |
| Gee                            | 11.65400              | 20.52                                   | -5112         | 7 T CH2                            | 14.01565  | 98.863        | +1113           | 14 <sub>NH</sub>                          | 18.03437 | 99.584          | + 511        |
| Zno                            | 11,65422              | 00.62                                   | -5658         | L12                                | 14.05200  | 85+71         | + 484           |                                           | -0 -0 -0 | 00 77           |              |
| 35013                          | 11.65628              | 75.529                                  |               | 32 <sub>5</sub> 43                 | 14.20981  | 95.0          | - 593           | 11:43                                     | 15.10415 |                 |              |
| 7′T17                          | 11.73794              | 07.29                                   |               | <sup>57</sup> Fe <sup>4</sup>      | 14.23385  | 02.19         |                 | 41K-3                                     | 18.20526 | 106.00          |              |
| 2°Co2                          | 11.78664              | 100.00                                  |               | 19 <sub>F</sub> 35                 | 14.24880  | 100.00        | + 952           | 37 m                                      | 18.91269 |                 |              |
| ('Ga°                          | 11.32080              | 39.6                                    |               | 46T154                             | 14.36020  | 08.00         |                 | 3, C1-                                    | 18.45295 | 24.4/1          | - 087        |
| 60 N 1 5                       | 11.98615              | 26.23                                   | - 866         | <sup>43</sup> Ca <sup>3</sup>      | 14.31959  | 00.146        |                 | 3 / C5                                    | 12.20100 | 2.25            | <b>-</b> >07 |
| 50 m 1 35                      | 11.98675              | 05 45                                   | - 906         | 2 6 <sub>Mg</sub> 5 3              | 14.43477  | 11.17         |                 | 58Fe3                                     | 18.64498 | 91.66           |              |
| 7225                           | 11 08:03              | 27 hz                                   | - 018         | 59-4                               |           |               | 0010            | 25 <sub>Mg</sub> 32                       | 18.73938 | 10.13           |              |
| 49714                          | 11 09200              | 73 08                                   | - 910         | 50 Fe                              | 14.40222  | 00.22         | -2945           | з4 <sub>5</sub> 5э                        | 18.87103 | 04.22           |              |
| 50 7, 35                       | 11 08705              | 04 31                                   | - 027         | 29 212                             | 14.40,004 | 69.10         | - 2226          | =7 = 3                                    | -0.07017 | 00.10           | 053          |
| 48754                          | 11 08813              | 00 186                                  | -1011         | 44 2 3                             | 14.40025  | 04.70         |                 | o re                                      | 18.9/04/ | 02.19           | - 900        |
| 3623                           | 11 08003              |                                         | -100#         | ••℃a<br>47                         | 14.65103  | 02.06         |                 | JGAE                                      | 10.90101 |                 | -1773        |
| 3613                           | 11 08012              | 00.014                                  | -1110         | * 1712                             | 14.67242  | 07.29         | + イエク           | 192                                       | 18.99840 | 100.00          |              |
| 271143                         | 11.90910              | 100.550                                 | -1110         | Sa Co.                             | 14.73330  | 100.00        | 2.47            | 38 C S                                    | 19.00336 | 00.036          | +3830        |
| 2411-2                         | 11.99100              | 100.00                                  | -1462         | NI NI                              | 14.98269  | 26.23         | - 861           | 13OH                                      | 19.00698 | 00.204          | +2214        |
| 1 4 4 3 2                      | 11.99252              | (5.70                                   | -1604         | *°T12*                             | 14.98373  | 73.98         | - 916           | H <sub>2</sub> O                          | 19.01477 | 00.037          | +1161        |
| 120                            | 11.99619              | 99.759                                  | -2150         | #PSc2                              | 14.98531  | 100.00        | -1014           | <sup>19</sup> LiC                         | 19.01600 | 91.64           | +1079        |
|                                | 12.00000              | 90.092                                  |               | SI                                 | 14.98688  | 03.09         | -1134           | HaO                                       | 19.01837 | 99.714          | + 951        |
| -BH                            | 12.01713              | 30.33                                   | + 701         | 2/A193                             | 14.98974  | 100.00        | -1446           |                                           |          |                 | - 0 <b></b>  |
| <sup>5</sup> Li <sub>2</sub>   | 12.03000              | 00.551                                  | + 400         | TPN                                | 15.00011  | 00.366        |                 | seres                                     | 19.31110 | 00.33           | -2010        |
| 73 ~ 6                         |                       |                                         |               | 12 CH3                             | 15.02347  | 98.523        | + 642           | - NT-                                     | 19.31178 | 69.18           |              |
| Geo                            | 12.15389              | 07.78                                   | - 547         | 14NH                               | 15.01090  | 99.509        | +1390           | 39K5                                      | 19.48186 | 93.10           |              |
| SU KUT                         | 12.17616              | 93.10                                   |               | 34043                              | 15 09683  | 04.22         |                 | 2 Mg32                                    | 19.48695 | 11.17           | +3827        |
| 11                             | 12.18622              | 01.13                                   | +1510         | 51N+4                              | 15 23277  | 01 13         |                 | 44Ca43                                    | 19.53577 | 02.06           | + 361        |
| 7426                           | 12.23697              | 05.51                                   | -01           | 4 5 - 3                            | 15 31754  |               | _L3F3           | 50 m 3                                    | 10 07602 | 26.23           | -1288        |
| <u>f</u> geg                   | T5°250T/              | 26•2 <u>4</u>                           | -6845         | 467.3                              | 15 31700  | 00.003        |                 | 40 12                                     | 10 08110 |                 | -1777        |
| 'Se'                           | 12.52042              | 00.87                                   | -7950         | 62 N - 4                           | 15 18200  |               |                 | 40 00 2                                   | 10 08120 | 99.00           | -1793        |
| CT CT                          | 15.25181              | 24.471                                  |               | 3152                               | 15 18688  | 100.00        | - ) 2 ) )       | 40 <del>,,</del> 2                        | 10 28200 |                 | 1015         |
| SzN15                          | 12.38567              | 03.66                                   |               | 35 - 33                            | 19.40000  | 100.00        | 1 (* 17 7       | 20 10                                     | 10.00200 |                 | -1910        |
| 28Si43                         | 12.43418              | 92.21                                   |               | 28 21 53                           | 15.541/1  | (5.549        | -1262           | - NG                                      | 19.99244 | 90,92           | 11/151       |
| 52 Cr 65                       | 12.46752              | 33.76                                   | - 459         | 507.54                             | 15.54274  | 92.21         |                 |                                           | 20.00022 | 00 200          |              |
| 50Ti4                          | 12.48620              | 05.45                                   | -1859         | 5011154                            | 15.50775  | 05.24         |                 | 120                                       | 20.01400 | 00.204          | - + 094      |
| 50Cr4                          | 12.48651              | 04.31                                   | -1949         | o Croi                             | 15.60814  | 04. <u>21</u> | +40セン           | 1002                                      | 20.02565 | UD.35           | + 590        |
| 50 <sub>V</sub> 4              | 12.48679              | 00.24                                   | -2038         | <sup>33</sup> Cu <sup>*</sup>      | 15.73240  | 69.09         |                 | 27 1 32                                   | 20.23616 | 100.00          |              |
| <sup>75</sup> As <sup>3</sup>  | 12.49695              | 100.00                                  | -2093         | TITI                               | 15.65059  | 01.21         |                 | e1ਜ਼ੋੜੇ3                                  | 20.31036 | 01.19           |              |
| 4° Ca54                        | 12.48831              | 96.97                                   | -2710         | 64N14                              | 15.98199  | 01.08         | -1238           | 4 3 4 3                                   | 20.42330 |                 |              |
| <sup>25</sup> Mg <sup>2</sup>  | 12.49292              | 10.13                                   |               | 647n4                              | 15.93229  | 48,35         | -1267           | 4122                                      | 20.48002 | 06.33           |              |
| 63 7.,5                        | 10 53500              | so co                                   |               | 49743                              | 15.98265  | 73.93         | -1305           | -32 <del>. 1</del> 3                      | 20.84273 | 03.66           |              |
| 3813                           | 12 000094<br>10 85/0/ | 00.083                                  |               | 48 ca 3                            | 15.98413  | 00.135        | -1401           | 47 - 43                                   | 20.86745 | 07.29           |              |
| 53 ~ , 65                      | 10 00578              |                                         | - 448         | 3252                               | 15.98604  | 95.0          | -1303           |                                           | 20.001.9 | 0,020           |              |
| 51.4                           | 12 73500              |                                         |               | 1 eO                               | 15,09491  | - 99. T59     |                 | <u> </u>                                  | 20.97653 | 69.09           | -1212        |
| 17 632                         | 10 74035              | 00 037                                  | + 053         | 15NH                               | 16.00793  | 00.366        | +1229           | 34524                                     | 20.97831 | 00.56           | -1351        |
| 23 1 53                        | 12 77200              | 100.00                                  | - 231         | 14NH2                              | 16.01872  | 99.955        | + 671           | - TECAE                                   | 20.37931 | 00.54           | -1444        |
| 64 11 - 5                      | 10 79650              | 100.00                                  | -5353         | 12 CH4                             | 16.03130  | <u>98.341</u> | + 400           | 205102                                    | 20.98270 | 92.21           | -1383        |
| 6475                           | 12 73583              | 42.80                                   | //<br>        | 29 ~ . 5 9                         | 10.00005  |               |                 | ~_Se                                      | 20.99385 | 00.257          |              |
| 41254                          | 12,80057              | 06.88                                   | + 867         |                                    | 16.09805  | 04.70         | 2072            | ĭ∃eC                                      | 21.01219 | 98.89           | +1144        |
| 29 . 43                        | 12.87843              | 04.70                                   |               | - Cr - 4                           | 10.20141  |               | - 20122         | 2 - E2                                    | 51.05552 | ¢1.52           | + 739        |
| 540,65                         | 10 04633              | 02.38                                   | - 224         | Cu-<br>49m+3                       | TP.52TAD  | 20.91         |                 | 95 <sub>2b</sub> 4                        | 21.22801 | 72.15           |              |
| 54-65                          | 12 24551              | 03 32                                   | - 225         |                                    | 16.01096  | 02.51         | 7007            | 54 11 3                                   | 21.30932 | 01.03           | -5553        |
|                                |                       | 0,                                      |               | 33 <i>c</i> 2                      | 10.40191  | 27.01         |                 | 34 Zn3                                    | 21.30971 | E3 89           |              |
| >2Cr4                          | 12.93513              | 83.76                                   | - 713         | 532 54                             | 16.40575  | 00./5         |                 | 48 43                                     | 21.31020 | <u>ร</u> รุ วล์ | +4353        |
| 55 Cu <sup>5</sup>             | 12,98556              | 30.91                                   | - 731         | 50013                              | 10.54545  | V7•22         |                 | 36~ 1                                     |          |                 | • •          |
| зөКз                           | 12.98790              | 93.10                                   | - 841         | 50212                              | 16.64026  | 05.24         | 1057            |                                           | 21.47754 | 07.86           | -11E3        |
| <sup>2 6</sup> Vg <sup>2</sup> | 12.99130              | 11.17                                   | -1078         | Cr <sup>-</sup>                    | 10.54050  |               | ++02フ<br>よう1 マネ | - Caf                                     | 21.47939 | -00.146         |              |
| 13C                            | 13.00336              | 01.107                                  |               | 30 0+53                            | 16.64905  | 00.24         | キビエニン           | 39.0 <b>U</b> 3                           | 21.64259 | 20.91           |              |
| 12 CH                          | 13.00782              | 98,378                                  | +2916         | $-51^{-4}$                         | 10.05209  |               | 4-4 J.4         | 87 ~ 4                                    | 21.64650 | 75.10           | +2235        |
| <sup>13</sup> Li <sub>2</sub>  | 13.03112              | 13.74                                   | + 468         | ~'Zn*                              | TP.()T(Q  | 04.11         |                 | Sr                                        | 21.72725 | 09.36           | -27 E4       |
| -<br>55M-65                    | 13 18613              | 100 00                                  | - 265         |                                    | 10.000000 | 02.00         |                 |                                           | =1.72733 | 2(.35           |              |
| 867 <u>~</u> 5                 | 13 18501              | 27 81                                   | - 265         | -7₹e9 <b>*</b>                     | 15.35613  | 05.32         | キィラニク           | - SI32                                    | 21.73237 | 04.70           | +4311        |
| 5304                           | 13 03610              | 00 EE                                   |               | <sup>68</sup> Zn <sup>4</sup>      | 16,98122  | 18.57         | - 949           | <sup>66</sup> 7n <sup>3</sup>             | 21.97575 | 27-81           | -0157        |
| 4013                           | 13 30080              | 22.22                                   | -22 FL        | sı <sub>V</sub> 3                  | 16,98133  | 99.75         | - 955           | 39574                                     | 21.97650 | 82.56           | -1847        |
| 40 0 3                         | 13 30080              | 77.50                                   | - a a s = = = | 34 <sub>S</sub> 2                  | 16.98393  | ó4.22         | -1118           | 447,22                                    | 21.97775 | 02.06           |              |
| - ∪a<br>40-⁄-3                 | 13 30133              | 20.97                                   | 10823         | 170                                | 16,99913  | 00.037        |                 | 22110                                     | 21,99138 | 08.82           | +1612        |
| 30 C + 43                      | 17.76122              | 00.012                                  | +202J<br>1753 | 1 SOH                              | 17,00274  | 99.747        | +4709           | <sup>€</sup> 1.10                         | 22.00001 | 07.40           | + 683        |
| 244-53                         | 17.30500              | 78 70                                   | +3202         | 14NH2                              | 17.02655  | 99.593        | + 320           | 10 PC                                     | 22.01294 | 19.39           | + 625        |
| Mig                            | 12.2505               | 10.10                                   | TJEVE         |                                    |           | 100 000       |                 | 118                                       | 22.01861 | 64.63           | + 574        |
| <sup>67</sup> Zn <sup>5</sup>  | 13.38543              | 04.11                                   |               | <sup>&gt;</sup> Mn <sup>&gt;</sup> | 17.16814  | T00.000       |                 | =                                         |          |                 |              |
| 5 6 <sub>7</sub> e 65          | 13.42439              | 91.66                                   |               | 31p53                              | 17.20765  | 100.000       |                 | >0T143                                    | 22.19768 | 05.34           | - 773        |
| 54(Jr4                         | 13.48472              | 02.38                                   | -2230         | 23 Na32                            | 17.24234  | 100.000       |                 | SC Cr43                                   | 22.19824 | 04.31           | - 738        |
| 547e4                          | 13.48490              | 05.82                                   | -2298         | 52Cr <sup>3</sup>                  | 17.31350  | 83.75         |                 | Ca_53                                     | 22.20143 | _96.97          | - 339        |
| 27 A12                         | 13.49077              | 100.00                                  |               | 39K43                              | 17.31720  | 93.10         | +4579           | 8974                                      | 22.22643 | 100.00          |              |
| 18032                          | 13.49937              | 00.204                                  | +1569         | -                                  |           |               |                 | °′Zn <sup>3</sup>                         | 22.30905 | 04.11           |              |



| 90Zr4                                               | 22.47608             | 51.48           | -12E3          | <sup>50</sup> Ti <sup>53</sup><br>500753                        | 27.74710             | 05.34           | -39E3           | <sup>38</sup> Zn <sup>2</sup>                         | 32.96302             | 27.81           | -3907                   |
|-----------------------------------------------------|----------------------|-----------------|----------------|-----------------------------------------------------------------|----------------------|-----------------|-----------------|-------------------------------------------------------|----------------------|-----------------|-------------------------|
| 45 Sc <sup>2</sup><br>30 St 32                      | 22.47796             | 100.00          |                | 567 <u>6</u> 2                                                  | 27 267/17            | 04.51<br>01.88  |                 | 99 Ru3                                                | 32.96868             | 12.72           | -6812<br>-12E3          |
| 68 Zn3                                              | 22.64162             | 18.57           | 79524          | 63 Cu43                                                         | 27.96871             | 91.00<br>69.09  | -3404           | 335<br>13284                                          | 32.97146             | 00.76           |                         |
| <sup>91</sup> Zr <sup>4</sup><br>41 <sub>K</sub> 53 | 22.72633             | 11.22           |                | 84 Sr <sup>3</sup>                                              | 27.97050             | 56.90           | -4351           | 32 SH                                                 | 32.97989             | 95.0            | +3911                   |
| з9 <sub>Са</sub> з                                  | 22,97524             | 60.4            | -1581          | 2851                                                            | 27.97693             | 92.21           |                 | <sup>330</sup> 2                                      | 32.99405             | 00.075          | +1460                   |
| 92Zr4                                               | 22.97617             | 17.11           | -1689          | <sup>27</sup> AlH<br><sup>12</sup> CO                           | 27.98936             | 99.985          | +2251           | 100 Ru <sup>3</sup><br>100 Mo <sup>3</sup>            | 33.302/              | 12.62           | -20E4                   |
| *°T1 <sup>2</sup><br>45Ca <sup>2</sup>              | 22.97632             | 08.00           | -1708          | 14N2                                                            | 28,00615             | 90.66<br>99.269 | +1556<br>+ 957  | 87 Zn2                                                | 33.46357             | 04.11           |                         |
| 23 Na                                               | 22.98978             | 100.00          |                | <sup>12</sup> C <sub>2</sub> H <sub>4</sub>                     | 28.03130             | 97.75           | + 524           | <sup>13</sup> *Ba*<br>101 <sub>Bu</sub> 3             | 33.47606             | 02.42           | +2679                   |
| 23BC<br>7L10                                        | 23.00931             | 79.72           | +1177          | <sup>95</sup> Rb <sup>3</sup><br><sup>54</sup> 7n <sup>43</sup> | 28.30401             | 72.15           |                 | 135 Ba 4                                              | 33.72639             | 06.59           |                         |
| 52Cr43                                              | 23.08467             | 83.76           | 12009          | 57 Fe <sup>2</sup>                                              | 28.46770             | 02.19           |                 | <sup>68</sup> Zn <sup>2</sup>                         | 33.96243             | 18.57           | -6256                   |
| 93Nb4                                               | 23.22642             | 100.00          |                | esgr3                                                           | 28.63645             | 09.86           |                 | 102 Ru3                                               | 33.96786<br>33.96791 | 04.22<br>31.61  | +68E4                   |
| <sup>70</sup> Ge <sup>3</sup>                       | 23.30800             | 20.52           | +5955          | 52 Cr 53                                                        | 28.35584             | 83.76           | +50E)           | 102 Pd3                                               | 33.96829             | óo.96           | +79E3                   |
| <sup>70</sup> Zn <sup>3</sup><br>47m42              | 23.30845             | 00.62           | +52E3          | 590u*5                                                          | 28.35679             | 30.91           | +30E3           | 33SH                                                  | 33.97928             | 07.81           | $+412^{\circ}$<br>+2974 |
| 94Zr4                                               | 23.47691             | 17.40           | +23E3          | 58 Ni2                                                          | 28.96666             | 00.33<br>69.18  | -2948<br>-3289  | 3402<br>10PC                                          | 33.99408             | 00.407          | +1295                   |
| 53Cr43<br>7163                                      | 23.52918             | 09.55           |                | <sup>87</sup> Sr <sup>3</sup>                                   | 23.96966             | 07.02           | -4242           | DU2                                                   | 34.01294             | 19.10           | + 10-                   |
| 54 Cr 43                                            | 23.97283             | 02 38           | -1064          | 29 S1                                                           | 28.97649             | 04.70           | -4312           | 103 Rh3                                               | 34.30152             | 100.00          |                         |
| 54 Fe <sup>43</sup>                                 | 23.97316             | 05.82           | -2019          | <sup>28</sup> SiH                                               | 28.98475             | 92.20           | +3508           | <sup>69</sup> Ga <sup>2</sup><br>4 6 <sub>71</sub> 32 | 34.46286<br>34.46447 | 60.4<br>08.00   |                         |
| ′~Ge³<br>48∏12                                      | 23.97386             | 27.43           | -2145          | 12C170                                                          | 28.99910             | 00.037          | +1282           | 138 Ba4                                               | 34.47622             | 71.66           | +2580                   |
| 48 Ca2                                              | 23.97626             | 00.185          | -2731          | 12 CHO<br>29N                                                   | 29.00274             | 98.64           | +1104           | 104Pd <sup>3</sup><br>104 <sub>P1</sub> 3             | 34.63443<br>34.63474 | 10.97<br>18.58  | +11E4                   |
| 32 <sub>S</sub> 32                                  | 23.97733             | 02.80<br>95.0   | -3111          | 12 C2 H5                                                        | 29.03912             | 97.74           | + 463           | 139 La 4                                              | 34.72651             | 99.911          |                         |
| ² ⁴ Mg                                              | 23.98504             | 78.70           |                | зэкза                                                           | 29.22278             | 93.10           |                 | <sup>70</sup> Ge <sup>2</sup>                         | 34.96200             | 20.52           | -5105                   |
| <sup>23</sup> NaH<br><sup>12</sup> Ca               | 23.99760             | 99.985          | +1910<br>+1603 | 385r <sup>3</sup><br>536553                                     | 29.30200             | 82.56           |                 | 105 Pd3                                               | 34.96267<br>34.96827 | 22.23           | -5650<br>-60E3          |
| 73 <sub>Ge</sub> 3                                  | 24.30778             | 07.76           |                | 59 Co2                                                          | 29.46659             | 100.00          |                 | 35Cl                                                  | 34.96885             | 75.529          |                         |
| 55 Mn 43                                            | 24.41691             | 100.00          | -8690          | 89 Y3                                                           | 29.63524             | 100.00          |                 | <sup>140</sup> Ce <sup>4</sup>                        | 34.97560<br>34.97632 | 88.48           | +468]                   |
| **Ca>3<br>+9T12                                     | 24.41972             | 02.06           |                | <sup>60</sup> N1 <sup>2</sup><br>54Cr <sup>53</sup>             | 29.96538             | 26.23           | -3577           | 23NaC                                                 | 34.98978             | 98.89           | +1669                   |
| 74 Ge3                                              | 24.64033             | 36.54           |                | 54Fe <sup>53</sup>                                              | 29.96645             | 05.82           | -4100           | 3502                                                  | 34.99829             | 99.75<br>1.4E4  | +1188                   |
| 567e43                                              | 24.64085             | 00.87<br>91.66  | +47E3          | $^{90}Zr^{3}$<br>$^{40}Ca^{32}$                                 | 29.96881             | 51.48<br>96.97  | -5305<br>-16E3  | 35BC2                                                 | 35.00931             | 79.05           | + 861                   |
| <sup>so</sup> Ti <sup>2</sup>                       | 24.97239             | 05.34           | -1858          | 30Si                                                            | 29.97376             | 03.09           |                 | 47 T1 <sup>32</sup><br>108043                         | 35.21382             | 07.29<br>27.33  |                         |
| 50Cr <sup>2</sup><br>50772                          | 24.97302             | 04.31           | -1949          | <sup>20</sup> S1H<br><sup>14</sup> NO                           | 29.98451<br>29.99799 | 04.70<br>39.39  | +2841<br>+1237  | 10 °Cd 3                                              | 35.30198             | 01.215          | +35E3                   |
| <sup>75</sup> As <sup>3</sup>                       | 24.97390             | 100.00          | -2038          | 120180                                                          | 29.99916             | 00.202          | +1180           | <sup>71</sup> Ga <sup>2</sup><br>142 <sub>Ce</sub> 4  | 35.46241             | 39.6<br>11.07   | +2377                   |
| 25Mg                                                | 24.98584             | 10.13           |                | 15 N2                                                           | 30.00000             | 94.57           | +1133           | 107 Ag3                                               | 35.63495             | 51.35           |                         |
| 25 C2                                               | 25.00336             | 02.189          | +2559<br>+1426 | 12CH2O                                                          | 30.01056             | 99.63           | + 315           | <sup>72</sup> Ge <sup>2</sup><br>48m432               | 35.96080             | 27.43           | -5718                   |
| <sup>9</sup> BeŌ                                    | 25.00711             | 99.759          | +1175          | °L1C2<br><sup>12</sup> C2He                                     | 30.01500             | 97.73           | + 727           | 38 <u>5</u>                                           | 35.96709             | 00.014          |                         |
| 57⊐-43                                              | 25.00/02             | 91.100          |                | 91 <sub>Zr</sub> 3                                              | 30.30177             | 11.22           |                 | зед<br>108 рдз                                        | 35.96755             | 00.337<br>26.71 | +79E:<br>+49E3          |
| <sup>7 a</sup> Se <sup>3</sup>                      | 25.30643             | 02.19           | -38E3          | 81 <sub>N1</sub> 2<br>551-53                                    | 30.46554             | 01.19           |                 | 1H35C1                                                | 35.97568             | 75.52           | +3750                   |
| <sup>76</sup> Ge <sup>3</sup><br>51172              | 25.30710             | 07.76           |                | 69 Ga 4 3                                                       | 30.63365             | 60.4            | -25E3           | 23Na13C                                               | 35 <b>.</b> 90504    | 01.107          | +1378                   |
| 34532                                               | 25.47590             | 04.22           | +6515          | 92Zr <sup>3</sup><br>92Mo <sup>3</sup>                          | 30.63489             | 17.11<br>15.84  | <br>12483       | 3 # C3                                                | 36.00000             | 96.71           | +1097                   |
| 51 <sub>C4</sub><br>4377;53                         | 25.50502             | 5.4E4           | + 771<br>+ 445 | 41K32                                                           | 30.72137             | 06.88           | 14,47           | 109 <sub>A</sub> -3                                   | 36 30154             | 48.65           | + ) <b>)</b> -          |
| 77 Se <sup>3</sup>                                  | 25.64000             | 07.58           |                | 62 12                                                           | 30.96417             | 03.66           | -7230           | <sup>73</sup> Ge <sup>2</sup>                         | 36.46167             | 07.76           |                         |
| 58Fe43                                              | 25.74814             | 00.33           |                | 31p                                                             | 30.96855             | 100.00          | -5945           | 110 Cd 3<br>110 Pd 3                                  | 36.63443<br>36.63482 | 12.39<br>11.81  | +94E                    |
| 52Cr <sup>2</sup><br>78583                          | 25.97026             | 83.76           | -2107          | 30 SiH                                                          | 30.98158             | 03.09           | +3961           | 74762                                                 | 36,96050             | 36.54           | -6846                   |
| <sup>78</sup> Kr <sup>3</sup>                       | 25.97340             | 00.354          | -2927          | 15CE                                                            | 30.99840             | 98.893          | +1457           | 74 Se <sup>2</sup>                                    | 36.96127             | 60.87           | -7981                   |
| <sup>с 5</sup> Мд<br>25 Ман                         | 25.98259             | 11.17           | +2347          | 1300                                                            | 31.00251             | 00.002          | +1077           | 1117da                                                | 36.96809             | 12.75           | +17 E                   |
| 12 CN                                               | 26.00307             | 98.54           | +1269          | <sup>31</sup> L1C2                                              | 31.01600             | 90.70           | + 733           | <sup>а а</sup> зн<br>37 н С                           | 36.97491             | 00.014          | +5120                   |
| 10 BO                                               | 26.00571             | 19.56           | +1029          | <sup>12</sup> CH <sub>3</sub> O                                 | 31.01839             | 98.62<br>01.66  | + 694           | 773                                                   | 37.00336             | 03.25           | + 987                   |
| 12C2H2                                              | 26.01565             | 97.77           | + 786          | 94 <sub>M0</sub> 3                                              | 31.30198             | 09.04           | -55E3           | 12 Co H                                               | 37.00782             | 96.70           | + 882                   |
| <sup>47</sup> T1 <sup>53</sup><br>597-43            | 26.08431             | 07.29           | - 760          | 94Zr <sup>3</sup>                                               | 31.30255             | 17.40           |                 | 112Cd <sup>3</sup>                                    | 37.30102             | 24.07           |                         |
| 35C132                                              | 26.22664             | 75.529          |                | ea Ca                                                           | 31.50502             | 00.0013         | 3               | 50T132                                                | 37.45859             | 05.34           | -17E                    |
| <sup>79</sup> Br <sup>3</sup><br>53Cr <sup>2</sup>  | 26.30613             | 50.537          |                | 57 Fe53                                                         | 31.63078             | 02.19           | -7849           | 50Cr <sup>32</sup><br>7542                            | 37.45954             | 04.31           | -28E3                   |
| 60 Ni 43                                            | 26.63590             | 26.23           | -9123          | 64 M 4 2                                                        | 31.06308             | 01.08           | -3952           | <sup>113</sup> In <sup>3</sup>                        | 37.63477             | 04.28           |                         |
| <sup>so</sup> Se <sup>3</sup><br>so <sub>K</sub> ,3 | 26.63882             | 49.82           | +67E4          | <sup>84</sup> Zn <sup>2</sup>                                   | 31.96457             | <u>48.89</u>    | -4263           | 113Cd3<br>85Pb43                                      | 37.63482             | 12.26<br>72.15  | +75E4                   |
| 48T153                                              | 26.63775             | 73.98           | -25E3          | <sup>9 6</sup> Мо <sup>3</sup><br>9 6 <sub>В11</sub> 3          | 31.96832<br>31.9696  | 16.53           | -8526<br>-13£3  | 78 <sub>Se</sub> 2                                    | 37.95964             | 09.02           | -12E3                   |
| 54Cr <sup>2</sup>                                   | 26.96944             | 02.38           | -2230          | 9 SZr <sup>3</sup>                                              | 31.96977             | 02.30           | -14E3           | <sup>7 6</sup> Ge <sup>2</sup>                        | 37.96065             | 07.76           | -18E                    |
| STFe <sup>∠</sup><br>81 <sub>Br</sub> 3             | 26.96980<br>26.97214 | 05.82<br>49.463 | -2870          | зеS<br>зірн                                                     | 31.97207<br>31.98158 | 99.985          | +3362           | 114Cd <sup>3</sup>                                    | 21.96273<br>37.96785 | 28.86           | +7415                   |
| 27Ă1                                                | 26.98154             | 100.00          |                | 1802                                                            | 31.98983             | 99.52           | +1800           | 114 Sn <sup>3</sup><br>1 r <sup>37</sup> cn           | 37.9680              | 00.66           | +720                    |
| - ~ MgH<br>12 (15 N                                 | 26.99041             | 11.11<br>00.362 | +1453          | 12 <sub>CH4</sub> 0                                             | 32.00176<br>32.02613 | 01.11<br>99.60  | +1077<br>+ 591  | <sup>38</sup> MgC                                     | 37.98269             | 11.16           | +1910                   |
| 11B0                                                | 27.00422             | 80.20           | +1190<br>+1084 | 58 <sub>Fe</sub> 53                                             | 32.18517             | 00.33           |                 | <sup>25</sup> Mg <sup>13</sup> C<br>197_              | 37.98920             | 00.112          | +1434                   |
| 12 C2 Ha                                            | 27.00643             | 97.762          | + 643          | 97 MO3                                                          | 32.30207             | 09.46           |                 | 3873                                                  | 38,00670             | 00.036          | + 863                   |
| <sup>82</sup> Kr <sup>3</sup>                       | 27.30448             | 11.56           | -26E3          | 130 Ba4                                                         | 32.47656             | 00.101          | +2562           | $^{12}C_{2}$ <sup>14</sup> N                          | 38.00307             | 97.43           | + 943                   |
| 82 Se <sup>3</sup>                                  | 27.30554             | 09.19           |                | <sup>98</sup> Мо <sup>3</sup><br>98 р.,3 (С)                    | <b>University</b>    | of Pretor       | 1 <u>2</u> 2083 | 03 M2                                                 | JU-U1905             | 20.09           | <i>⊤ (</i> ⊥(           |
| <sup>83</sup> Kr <sup>3</sup>                       | 27.63802             | 11.55           |                | 74Ge43                                                          | 32.85378             | 36.54           | .2007           |                                                       |                      |                 |                         |
|                                                     |                      |                 |                |                                                                 |                      |                 |                 |                                                       |                      |                 |                         |



| 115 Sn <sup>3</sup><br>115 In <sup>3</sup><br>77 Se <sup>2</sup><br>118 Sn <sup>3</sup><br>118 Cd <sup>3</sup><br>52 Cr <sup>32</sup><br>78 Se <sup>2</sup><br>78 Kr <sup>2</sup><br>39 K<br>117 Sn <sup>3</sup><br>27 ALC<br>23 NaO<br>26 Mg <sup>13</sup> C | 38.30112<br>38.30120<br>38.45999<br>38.63406<br>38.63500<br>38.95530<br>38.95530<br>38.95810<br>38.96371<br>38.96371<br>38.96371<br>38.98154<br>38.988605<br>38.988605 | 00.35<br>95.530<br>14.55<br>07.530<br>07.55<br>03.55<br>03.62<br>97.68<br>97.68<br>90.12<br>90.28<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.12<br>90.1 | -48E4<br><br>+41E3<br>-4678<br>-7777<br>-11E3<br><br>+9765<br>+2190<br>+1856<br>+1748 | 43 Ca<br>42 CaH<br>129 Xe3<br>31 PC<br>27 AlO<br>30 S113 C<br>25 Mg180<br>12 C2 19 F<br>11 BO2<br>C 219 F<br>11 BO2<br>C 25 H7<br>130 Ba<br>130 Ba | 42.95373<br>42.96645<br>42.96825<br>42.97376<br>42.97711<br>42.997911<br>42.99884<br>42.999913<br>43.005477<br>43.30117<br>43.30208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00.146<br>00.64<br>26.44<br>93.76<br>00.021<br>97.00<br>97.50<br>97.57<br>00.03<br>97.58<br>00.101 | +5601<br>+42860<br>+2332<br>+1065<br>+1450<br>+1450<br>+1065<br>+ 748<br>-4853 | 3 6 SC<br>144 Nd3<br>24 Mg23<br>144 Sm3<br>35 Cl13 C<br>30 St13<br>26 O3<br>24 MgC2<br>12 C4<br>145 Nd3<br>97 Mo2<br>37 C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47.96709<br>47.967093<br>47.97055<br>47.972202<br>47.972202<br>47.972292<br>47.973200<br>47.973200<br>47.973200<br>47.973200<br>47.973200<br>47.938500<br>47.938500<br>48.0000<br>43.345311<br>48.50168 | 00.013<br>23.85<br>61.34<br>03.09<br>00.34<br>09.006<br>93.28<br>76.97<br>95.63<br>03.30<br>03.46<br>07.25 | +2505<br>+2167<br>+2122<br>+1977<br>+1914<br>+1294<br>+1294<br>+ 921           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| <sup>12</sup> C <sub>2</sub> <sup>15</sup> N<br><sup>7</sup> LiO <sub>2</sub><br><sup>13</sup> C <sub>3</sub><br><sup>12</sup> C <sub>3</sub> H <sub>3</sub><br><sup>38</sup> Sr <sup>43</sup>                                                                | 39.00011<br>39.00581<br>39.01005<br>39.02347<br>39.06934                                                                                                               | 00.362<br>92.13<br>01.4E4<br>96.70<br>82.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +1070<br>+ 926<br>+ 841<br>+ 652                                                      | 130 Te3<br>58 Fe32<br>87 Sr2<br>87 Rb2<br>131 Xe3<br>88 cm2                                                                                        | 43.30232<br>43.44999<br>43.45450<br>43.45465<br>43.63503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.48<br>00.33<br>07.02<br>27.85<br>21.18                                                          | +18E4<br>-9635<br><br>+29E4                                                    | 49Ti<br>98M02<br>48TiH<br>37C1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48.63756<br>48.69584<br>48.94787<br>48.95299<br>48.95577<br>48.95577                                                                                                                                    | 17.22<br>30.91<br>05.51<br>23.78<br>73.97<br>24 20                                                         | + 834<br>+9560<br>+6196<br>+2715                                               |
| <sup>118</sup> Sn <sup>3</sup><br><sup>79</sup> Br <sup>2</sup><br><sup>89</sup> Y <sup>43</sup><br><sup>119</sup> Sn <sup>3</sup><br><sup>53</sup> Cr <sup>32</sup><br><sup>90</sup> 7 x <sup>43</sup>                                                       | 39.30068<br>39.45920<br>39.51365<br>39.63438<br>39.70549                                                                                                               | 24.03<br>50.537<br>100.00<br>08.58<br>09.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7800                                                                                  | 44Ca<br>43CaH<br>132Ba3<br>132Xe3<br>28S10                                                                                                         | 43.95550<br>43.95550<br>43.966837<br>43.96837<br>43.96837<br>43.96835<br>43.97184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52.56<br>02.06<br>00.146<br>00.097<br>26.89<br>91.99                                               | -1885<br>+3960<br>+3415<br>+3502<br>+2690                                      | 49 SO<br>49 Mg2<br>147 Sm3<br>98 Ru <sup>2</sup><br>49 MgC <sub>2</sub><br>49 O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48.96540<br>48.97088<br>48.97150<br>48.9777<br>48.98584<br>48.98584                                                                                                                                     | 00.80<br>15.95<br>14.97<br>01.87<br>11.63                                                                  | +2641<br>+2127<br>+2071<br>+1680<br>+1290                                      |
| soSe2<br>soKr2<br>40A<br>40Ca<br>40K<br>120Sn <sup>3</sup><br>120Te <sup>3</sup>                                                                                                                                                                              | 39.95824<br>39.95824<br>39.95830<br>39.96239<br>39.96259<br>39.96250<br>39.96740<br>39.96740                                                                           | 49.82<br>02.27<br>99.60<br>96.97<br>00.012<br>320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -7320<br>-9187<br>-9315<br>-20E4<br><br>+28E3<br>+8308<br>+7175                       | 52 SC<br>31 p13 C<br>2 6 Mg 13 O<br>CO2<br>C2 H4 O<br>C3 H8<br>59 C0 32                                                                            | 43.97207<br>43.97711<br>43.98175<br>43.98983<br>44.02621<br>44.06260<br>44.19989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94.0<br>01.107<br>00.023<br>97.8<br>97.51<br>96.62<br>100.00                                       | +2653<br>+2026<br>+1674<br>+1280<br>+ 622<br>+ 410                             | 49 C4<br>12 C4 H<br>148 Sm <sup>3</sup><br>148 Nd <sup>3</sup><br>99 Ru <sup>2</sup><br>149 Sm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49.00336<br>49.00782<br>49.30481<br>49.30549<br>49.45303<br>49.63893                                                                                                                                    | 04.29<br>95.62<br>11.24<br>05.73<br>12.72<br>13.83                                                         | + 382<br>+ 316<br>+73E3                                                        |
| 39 KH<br>29 S1C<br>24 MgO<br>27 Al 13 C<br>12 C2 O<br>12 C3 H4                                                                                                                                                                                                | 39.97153           39.97693           39.97693           39.97996           39.98489           39.99491           40.03130                                             | 93.09<br>91.19<br>78.60<br>98.89<br>97.56<br>95.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +4470<br>+2993<br>+2301<br>+1791<br>+1236<br>+ 582                                    | 1330s <sup>3</sup><br>a9 y <sup>2</sup><br>134 Ba <sup>3</sup><br>134 Xe <sup>3</sup><br>a0 Xi <sup>32</sup><br>90 Zr <sup>2</sup>                 | 44.30171<br>44.45286<br>44.63475<br>44.63514<br>44.94808<br>44.95217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.00<br>100.00<br>02.42<br>10.44<br>26.23<br>51.46                                               | +1124<br>-5734<br>-1223                                                        | 50 Ti<br>50 Cr<br>50 V<br>100 Ru <sup>2</sup><br>100 M0 <sup>2</sup><br>49 TiH<br>34 SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49.94479<br>49.944605<br>49.94716<br>49.953<br>49.95326<br>49.955269<br>49.955569<br>49.955569                                                                                                          | 05.34<br>04.31<br>00.22<br>02.63<br>03.63<br>05.51<br>04.21                                                | +40E3<br>+21E3<br>+6083<br>+5897<br>+4582<br>+2776                             |
| 121503<br>54Cr32<br>54Fe2<br>31Br2<br>122Te3<br>122Sn3<br>52Kr2<br>32Sr2<br>41K                                                                                                                                                                               | 40.30124<br>40.45415<br>40.45471<br>40.45820<br>40.63449<br>40.634652<br>40.95832<br>40.95832<br>40.95833                                                              | 57.25<br>02.38<br>05.82<br>49.46<br>04.72<br>17.11<br>11.56<br>09.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -9965<br>-12E3<br>-21E4<br>-8032<br>-12E3                                             | 44 CaH<br>135 Ba3<br>29 SiO<br>45 SC<br>27 AlO<br>\$5 CO2<br>12 C2 HsO<br>136 Ba3<br>136 Ce3                                                       | 44.99675142<br>444.99675142<br>444.9967750<br>444.9969710<br>444.9969710<br>444.9969710<br>445.9997<br>445.9997<br>445.445<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.45<br>455.4545.45<br>455.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.45455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.4545.45<br>455.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.45<br>455.4545.4 | 02.06<br>06.59<br>04.69<br>01.80<br>00.204<br>01.175<br>97.50<br>07.81<br>00.193                   | +6075<br>+3568<br>+2902<br>+2305<br>+1314<br>+1207<br>+ 575<br>                | 50 Mg2<br>37 ClC<br>23 NaAl<br>130 Sm <sup>3</sup><br>150 Nd <sup>3</sup><br>50 MgC2<br>50 O <sub>3</sub><br>12 CF2<br>50 C4<br>12 C Ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49.9672301<br>49.977301<br>49.977301<br>49.977301<br>49.9988880<br>49.9988880<br>49.9988880<br>49.9988880<br>49.9988880<br>50.0055                                                                      | 18.61<br>00.27<br>100.00<br>07.44<br>05.62<br>11.16<br>00.61<br>98.89<br>00.61                             | +2187<br>+2041<br>+1883<br>+1815<br>+1733<br>+1321<br>+1320<br>+ 9806<br>+ 705 |
| 123 Sb <sup>3</sup><br>123 Te <sup>3</sup><br>40 CaH<br>40 KH<br>41 SiC<br>23 Na <sup>18</sup>                                                                                                                                                                | 40.96806<br>40.9681<br>40.97041<br>40.97182<br>40.97649                                                                                                                | 42.75<br>00.37<br>96.96<br>00.012<br>05.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +6575<br>+6533<br>+4774<br>+4100<br>+2792<br>+1508                                    | 136 Xe3 $91 Zr2$ $137 Ba3$ $92 Zr2$ $4 3Ti$                                                                                                        | 45.30240<br>45.45286<br>45.63519<br>45.95234<br>45.95234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08.87<br>11.22<br>11.32<br>17.11<br>03.00                                                          | +48E3                                                                          | 151 Eu3<br>101 Ru2<br>152 Sm3<br>152 Sd3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.30651<br>50.453<br>50.63979<br>50.63981                                                                                                                                                              | 47.32<br>17.07<br>26.72<br>00.20                                                                           | F . CJ                                                                         |
| 12 C2 17 0<br>12 C2 HO<br>9 BeO2<br>12 C3 H5<br>55 Mp 32                                                                                                                                                                                                      | 40.99910<br>41.00274<br>41.0020<br>41.0391                                                                                                                             | 00.037<br>97.55<br>99.52<br>96.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +1099<br>+1001<br>+1020<br>+ 530                                                      | 4 5 C 4<br>9 2 Mo 2<br>4 5 S C H<br>3 4 S C<br>1 3 5 E a 3                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03.7E3<br>15.84<br>99.935<br>04.17<br>71.66                                                        | +43625<br>+426360<br>+430625<br>+30625<br>+30655                               | 102 542<br>102 542<br>50 774<br>50 774<br>50 774<br>50 774<br>102 542<br>50 774<br>102 542<br>50 774<br>102 542<br>50 774<br>102 542<br>50 774<br>102 542<br>50 774<br>102 542<br>102 544<br>102 544<br>100 544<br>1000<br>1000<br>1000<br>100000000000000000000 | 50.45957<br>50.45957<br>50.455267<br>50.455267<br>50.45571                                                                                                                                              | 99.78<br>71.61<br>00.76<br>05.74<br>05.74<br>05.74                                                         | +6457<br>+6029<br>+5903<br>+5151<br>+2582                                      |
| 124Te3<br>124Sn3<br>124Sn3<br>124Xe3<br>33Kr2<br>125Te3<br>94Zr43                                                                                                                                                                                             | 41.30104<br>41.30175<br>41.30204<br>41.45703<br>41.63487<br>41.73673                                                                                                   | 04.61<br>05.94<br>00.096<br>11.55<br>06.99<br>17.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -58E3<br><br>+14E4                                                                    | 50 S10<br>135 Ce3<br>135 L18<br>25 S1<br>23 Na2<br>14 NO2<br>C2 H 60                                                                               | 45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.56800<br>45.568000<br>45.568000<br>45.568000<br>45.568000<br>45.5680000<br>45.56800000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03.08<br>00.25<br>00.089<br>00.138<br>100.00<br>99.15<br>97.49                                     | +2365<br>+2863<br>+2863<br>+1956<br>+1706<br>+1741<br>+ 515                    | <sup>33</sup> ClO<br><sup>24</sup> MgAl<br><sup>28</sup> SiNa<br><sup>51</sup> Mg2<br><sup>153</sup> Eu <sup>3</sup><br><sup>27</sup> AlC2<br><sup>19</sup> FO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.96376<br>50.966571<br>50.966743<br>50.96643<br>50.9735<br>50.96345<br>50.96542                                                                                                                       | - 70<br>- 70<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 2                                | +2576<br>+2254<br>+2241<br>+2034<br>+1726<br>+1358<br>+1152                    |
| 537632<br>34Kr <sup>2</sup><br>84Sr <sup>2</sup><br>42Ca<br>128Te <sup>3</sup><br>128Xe <sup>3</sup><br>41mu                                                                                                                                                  | 41.95120<br>41.95576<br>41.95663<br>41.95863<br>41.968363<br>41.968363<br>41.968363<br>41.968363                                                                       | 91.66<br>56.90<br>00.56<br>00.64<br>18.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -5647<br>-15E3<br>-20E3<br>-4497<br>+4497                                             | 139 La <sup>3</sup><br>93 Nb <sup>2</sup><br>140 Ce <sup>3</sup><br>47 Ti<br>94 Zr <sup>2</sup><br>94 Vo <sup>2</sup>                              | 46.30201<br>46.45283<br>46.53509<br>46.95176<br>46.95582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.911<br>100.000<br>33.48<br>07.29<br>17.40                                                       | +2323                                                                          | 13 CF2<br>51 C4<br>C4H3<br>154 Gd3<br>154 Sm3<br>103 5%2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51.00016<br>51.01005<br>51.02346<br>51.30698<br>51.30731                                                                                                                                                | 01.11<br>05.4E4<br>95.61<br>02.15<br>22.71                                                                 | + 207<br>+ 771<br>+ 641<br>-16E4                                               |
| <sup>42</sup> SiC<br><sup>26</sup> Mg0<br><sup>24</sup> Mg <sup>18</sup> 0<br><sup>12</sup> C <sub>2</sub> 180<br><sup>84</sup> C <sup>7</sup>                                                                                                                | 41.96965<br>41.97649<br>41.97751<br>41.98420<br>41.99916<br>42.00000                                                                                                   | 06.00<br>03.11<br>11.11<br>00.16<br>97.56<br>92.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +2766<br>+2222<br>+1641<br>+1035<br>+1014                                             | 4°TiH<br>31P0<br>35ClC<br>141Pr3<br>29Sii80                                                                                                        | 46.96045<br>46.96872<br>46.96885<br>46.96916<br>46.97565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09.04<br>08.00<br>99.76<br>74.69<br>100.00<br>00.01                                                | +5403<br>+2763<br>+2763<br>+2747<br>+26981<br>+1961                            | 208004<br>155043<br>89322<br>207 Fb4<br>5207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.49361<br>51.6409<br>51.69428<br>51.74397<br>51.94051                                                                                                                                                 | 23.6<br>14.73<br>60.4<br>22.6<br>83.76                                                                     | +1245<br>+ 967                                                                 |
| 12 BO2<br>12 C2H2O<br>12 C3H6<br>127 I3<br>85 Rb2<br>85 C2                                                                                                                                                                                                    | 42.00274<br>42.01056<br>42.04695<br>42.30155<br>42.45601<br>42.50168                                                                                                   | 19.52<br>97.54<br>96.64<br>100.00<br>72.15<br>07.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + 951<br>+ 808 \<br>+ 475                                                             | - NaC2<br>15NO2<br>- 3Cu <sup>32</sup><br>142Nd <sup>3</sup><br>142Ce <sup>3</sup><br>95M0 <sup>2</sup>                                            | 46.98978<br>46.98991<br>47.19720<br>47.30249<br>47.30310<br>47.45222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97.80<br>00.36<br>69.09<br>27.11<br>11.07<br>15.72                                                 | +1234<br>+1231<br>-78E3                                                        | 104Pd <sup>2</sup><br>51VH<br>104Ru <sup>2</sup><br>28SiMg<br>36SO<br>40CaC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51.95180<br>51.95180<br>51.95211<br>51.96197<br>51.96200<br>51.96259                                                                                                                                    | 10.97<br>99.935<br>13.53<br>72.57<br>00.014<br>95.90                                                       | +4667<br>+4601<br>+4478<br>+2420<br>+2417<br>+2352                             |
| 128 Xe <sup>3</sup><br>128 Te <sup>3</sup><br>57 Fe <sup>32</sup><br>88 Sr <sup>2</sup><br>86 Kr <sup>2</sup>                                                                                                                                                 | 42.63450<br>42.63518<br>42.70155<br>42.95468                                                                                                                           | 01.919<br>31.79<br>02.19<br>09.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -63E3<br>                                                                             | 14313<br>64Zn <sup>32</sup><br>48Ti<br>96Mo2<br>48Ca                                                                                               | 47.94686<br>47.94686<br>47.94795<br>47.95248<br>47.95253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.17<br>48.89<br>73.98<br>16.53<br>00.185                                                         | -44E3<br><br>+11E3<br>+10E3                                                    | <sup>2</sup> <sup>6</sup> Mg <sub>2</sub><br><sup>2</sup> <sup>5</sup> MgAl<br><sup>5</sup> <sup>2</sup> KC<br><sup>15</sup> <sup>6</sup> Dy <sup>3</sup><br><sup>15</sup> <sup>6</sup> Gd <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51.96518<br>51.96738<br>51.96706<br>51.971/<br>51.97409                                                                                                                                                 | 01.25<br>10.13<br>01.04<br>00.052<br>20.47                                                                 | +2105<br>+1933<br>+1956<br>+1704<br>+1547                                      |
| 43 Ca                                                                                                                                                                                                                                                         | 42.95878                                                                                                                                                               | 00.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       | <sup>96</sup> Ru <sup>2</sup><br><sup>95</sup> Zr <sup>2</sup><br>47TiH<br>32SO                                                                    | 47.9544<br><b>Univer:</b><br>47.95959<br>47.96699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 05.51<br>of Prefor<br>94.8                                                                         | +7434<br>147156<br>44123<br>+2518                                              | <sup>208</sup> Pb <sup>4</sup><br><sup>12</sup> C <sub>3</sub> O<br><sup>12</sup> C <sub>4</sub> H <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51.99416<br>51.99416<br>51.99492<br>52.03128                                                                                                                                                            | 90.18<br>52.3<br>96.48<br>95.60                                                                            | +1427<br>+ 968<br>+ 955<br>+ 572                                               |





173 Yb3

57.646/



UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

| SOVO                                         | 65.94207             | 00.24           | +4115         | 70                                            | 60 02700             | 20 52          |                | 57 5 61                        |                      |                 |                |
|----------------------------------------------|----------------------|-----------------|---------------|-----------------------------------------------|----------------------|----------------|----------------|--------------------------------|----------------------|-----------------|----------------|
| <sup>33</sup> S <sub>2</sub>                 | 65.94293             | 00.006          | +3906         | 70Zn                                          | 69.92534             | 00.82          | +5283          | 50 CmC                         | 71.95814             | 02.19           | +4323          |
| Jacris C                                     | 65.94401             | 00.106          | +3673         | <sup>70</sup> FeC                             | 69.23331             | 00.35          | +7503          | 74040                          | 72.04065             | 04.22           | +3762          |
| 43m+180                                      | 65.94525             | 93.10           | +3434         | 69 GaH                                        | 69.93353             | 60.4           | +7330          | 5851-0                         | 73 34560             | 05.04           | +3107          |
| 1221 2                                       | 65.94711             | 00.151          | +3132         | <sup>54</sup> CrO                             | 69.93379             | 02.38          | +7135          | 42 CaO-                        | 73 01813             | 00.21           | +2005          |
| 132p-2                                       | 65.95205             | 26.89           | +2533         | 54FeO                                         | 69.93452             | 05.31          | +6540          | 74Mg                           | 73 06268             | 37.18           | +2077          |
| 34 co                                        | 02·95256             | 00.097          | +2487         | 70 S2                                         | 69.93495             | 05.001         | +6380          | 148 m2                         | 73.95721             | 11 24           | +20/11         |
| 50102                                        | 02.95/69             | 104.20          | +2024         | 53NiC                                         | 69.93535             | 68.41          | +6155          | 148 <sub>Nd</sub> 2            | 73.95823             | 05 77           | +1086          |
| M320                                         | 07.96254             | 15.50           | +1809         | 35 CT_                                        | 69.93771             | 56.05          | +5097          | 2 6MgOs                        | 73.96732             | 11.00           | +1507          |
| 27 Mg20                                      | 65.96659             | 01.03           | +1626         | 57 Fe <sup>13</sup> C                         | 89.93 <u>976</u>     | 00.024         | +4734          | 74 Møn Ch                      | 73.96763             | 18.54           | +1585          |
| AL2C                                         | 65.96308             | 98.90           | +1780         | 52 Cr180                                      | 69.93967             | 00.171         | +4451          | 74 MgC                         | 73.93259             | 11.11           | +1200          |
| 138 243                                      | 65.97576             | 03.14           | +1381         | 7051-0                                        | 69.95069             | 05.95          | +2619          | 74Ce                           | 74.00670             | 00.176          | + 863          |
| 1981-3                                       | 65.97.58             | 0.4.51          | +1381         | 46080                                         | 63 95%69             |                | +035Å          | 12 CaHa                        | 74.01564             | 93.50           | +781           |
| 12 A2                                        | 65.90592             | 10.02           | +1049         | 4 6T1C2                                       | 69.95263             | 07.82          | +2442          | 149 0-2                        |                      | 17 07           |                |
| U11<br>C U                                   | 66.00000             | 85.45           | + 891         | 27 Å ] 2                                      | 69.95799             | 99.75          | +2053          | Sm                             | 74.45840             | 13.83           |                |
| CSH6                                         | 66.04692             | 94.50           | + 545         | 70 SC                                         | 69.96786             | 04.10          | +1592          | <sup>75</sup> As               | 74.92171 :           | 100.00          |                |
| 199 <sub>Hg</sub> 3                          | 66.32274             | 16.84           |               | CaHio                                         | 70.0782              | 94 45          | + 453          | <sup>59</sup> CoO              | 74.92809             | 99.76           | +12E3          |
| 133Cs <sup>2</sup>                           | 66.45257             | 100.00          |               | NapCp                                         | 69.97976             | 97.80          | +1254          | 7⁴GeH                          | 74.92882             | 36.53           | +11E3          |
| 133 3211                                     | 66.50168             | 10.90           | +1353         | 947.32                                        |                      |                | ,              | <sup>48</sup> TiAl             | 74.92949             | 73.98           | +9630          |
| 200 <sub>Hg</sub> 3                          | 66.65611             | 23.13           |               | 141p.2                                        | 70.40070             | 1/.40          |                | <sup>es</sup> CuC              | 74.92959             | 68.33           | +9506          |
| ອອ <sub>ບ</sub> ເຊ                           | 66.67929             | 105.05          | +2876         | - Pr                                          | 10.45274             | T00.00         | +9062          | SeH                            | 74.93036             | 00.87           | +8661          |
| 67 7                                         |                      | 01 77           |               | <sup>71</sup> Ga                              | 70.92482             | 39.6           |                | 57Fe <sup>18</sup> O           | 74.93457             | 00.004          | +5812          |
| 667nH                                        | 65.92714<br>66.03387 | 04.11           |               | <sup>70</sup> GeH                             | 70.93181             | 20.52          | +10E3          | 2 TAC <sup>5</sup>             | 74.94398             | 97.56           | +3364          |
| 551000                                       | 66 07805             | 27.01           | +9945         | <sup>55</sup> MnO                             | 70.93297             | 99.76          | +8702          | (PMgg                          | 74.95347             | 05.34           | +2359          |
| 5100                                         | 66.97005             | 93.09           | +6124         | 59 CoC                                        | 70.93318             | 98.89          | +8484          | <sup>25</sup> Mg3              | 74.95752             | 00.01           | +2092          |
| 57 5-                                        | 66 03033             | 99.52           | +5596         | 44CaAl                                        | 70.93654             | 02.06          | +6052          | 150 Sm <sup>2</sup>            | 74.95845             | 07.44           | +2039          |
| 28 a + 39 v                                  |                      | 00.054          | +5490         | 58Fe <sup>13</sup> C                          | 70.93666             | 03.7E3         | +5990          | <sup>43</sup> CaO <sub>2</sub> | 74.95858             | 00.145          | +2032          |
| 54 cm 13 c                                   | 66.94064             | 05.05           | +4950         | SeNi <sup>13</sup> C                          | 70.93370             | 00.766         | +5110          | 150Nd2                         | 74.96041             | 05.63           | +1936          |
| 54 m 13 c                                    | 66.94222             | 00.026          | ++++>0        | 530r130                                       | 70.93981             | 00.019         | +4735          | 35 KCa                         | 74.96371             | 90.04           | +1784          |
| 40002711                                     | 66.94296             | 00.064          | +4251         | °*FeOH                                        | 70.94231             | 05.81          | +4055          | 27A103                         | 74.96627             | 99.25           | +1681          |
| 49 ma 18 0                                   | 66.94440             | 90.97           | +2070         | ' TiC <sub>2</sub>                            | 70.95176             | 07.31          | +2633          | 2'AlC4                         | 74.98154             | 95.65           | +1253          |
| 1342,2                                       | 66 05013             | 00.011          | +>>/0         | KO2                                           | 70.95351             | 92.65          | +2472          | С <sub>в</sub> Нз              | 75.02346             | 93.48           | + 736          |
| 134 <sub>Vo</sub> 2                          | 66 05217             | 102.42          | +25(0         |                                               | 70.95374             | 27.11          | +2452          | <sup>isi</sup> Eu <sup>2</sup> | 75.45977             | 47.32           |                |
| 35010                                        | 50.952/1<br>66 05865 | 75 17           | +2010         | 11°Cer                                        | 70.95465             | 11.07          | +2378          | 760                            |                      |                 |                |
| 67 CaCa                                      | 66 05878             | 12.11           | +2124         | 23 NaO3                                       | 70.97451             | 36.72          | +1427          | 'SSe                           | 75.91925             | 09.02           | 0              |
| 31p7_                                        | 66 97376             | 06 72           | +2110         | - NaC4                                        | 70.98978             | 92.62          | +1091          | four o                         | 15.92019             | 07.76           | +2082          |
| 201473                                       | 65 92010             | 70.12           | +1063         | C5H11                                         | 11.02605             | 94.44          | + 440          | 54 N10                         | (5.92560             | 26.1/           | +1252          |
| 134 ~2                                       | 67.00336             |                 | + 879         | 143Nd <sup>2</sup>                            | 71.15479             | 12.17          |                | 647mC                          | 75.92190             | 18 25           | +0745          |
| $C = H_{\pi}^{\cup 11}$                      | 67.05474             | 00.011<br>04.40 | + 525         | 7200                                          | 71 00150             | 07 113         |                | 75 A o U                       | 75.92914             | 00.086          | +7107          |
| 202- 2                                       |                      |                 |               | 56500                                         | 71 00085             |                | 11/27          | 76701                          | 75.92952             | 27 08           | +7300          |
| 135502                                       | 67.52354             | 29.30           |               | 60 N 4 C                                      | 71 03077             | 91.77<br>05 04 | +7935          | 63 0, 13 0                     | 75 03202             | 00 765          | +5566          |
| 307.32                                       | 67.45278             | 06.59           |               | 720100                                        | 71 92071             | 4J•77<br>01 93 | +6956          | 52 CrC2                        | 75 94051             | 81.92           | +3576          |
| 203m-3                                       | 67.42025             | 51.46           |               | 71Gou                                         | 71 0306h             | 30 6           | +6500          | 32 S.C                         | 75.94414             | 39.25           | +3054          |
| - <u>-</u> -                                 | 01.0010              | 29.50           |               | 360_                                          | 71 03418             | 29.0<br>3 OF6  | +5713          | 44CaOa                         | 75.94529             | 02.05           | +2919          |
| <sup>88</sup> Zn                             | 67.92486             | 13.57           |               | 7201                                          | 71 37478             | 36.97          | +5461          | 7 SMZa                         | 75.95023             | 03.29           | +2453          |
| 5°FeC                                        | 67.93194             | 90.64           | +9594         | 590,130                                       | 71 03953             |                | 1,1817         | 152 Sm <sup>2</sup>            | 75.95968             | 26.72           | +1879          |
| <sup>87</sup> ZnH                            | 67.93496             | Q4.11           | +6725         | 540,130                                       | 71 07303             | 01.107         | -++OI4         | 152 Jd2                        | 75.95971             | 00.20           | +1878          |
| <sup>52</sup> CrO                            | 67.93543             | 33.56           | +6426         | 54 - 180                                      | 71 05377             |                |                | 28 S10a                        | 75.96166             | 91.54           | +1~91          |
| 58 S2                                        | 67.93573             | 00.204          | +6249         | 72040-                                        | 71 04705             | 72 50          | T0405          | <sup>40</sup> CaCa             | 75.96259             | 93.79           | +1753          |
| SiÇa                                         | 67.93979             | 39.42           | +4550         | 2951002                                       | 71 24977             | 74.33          | +2646          | 28SiC4                         | 75.97693             | 38.19           | +1318          |
| <sup>oo</sup> Mn <sup>1</sup> <sup>o</sup> C | 67.94140             | 01.107          | +4107         | 4º CaOo                                       | 71.25230             | 36.5 <u>0</u>  | +2335          | <sup>12</sup> CO4              | 75.97964             | 97.94           | +1259          |
| * KAI                                        | 67.94337             | C6.88           | +\$670        | 43 Ca.Ca                                      | 71.95253             | 00.181         | +2325          | 12CgH4                         | 76.03123             | 33+47           | + 378          |
| 50 T1 50                                     | 57.94/95             | 00.011          | +2553         | 144 Nd <sup>2</sup>                           | 71.35490             | 23.35          | +2154          | 1532                           | 78 - 203             | 52 13           |                |
|                                              | 67.94521             | 00.009          | +3339         | 24.23                                         | 71.05513             | 13.71          | +2144          |                                |                      | JC•10           |                |
| 1350-2                                       | 01.40219             |                 | +2405         | 144 Šm2                                       | 71. 5533             | 03.09          | +2101          | Se                             | <u>78.91998</u>      | 07.55           |                |
| 136v.2                                       | 01.92224             | 00.195          | +2000         | <sup>2 4</sup> MgO <sub>3</sub>               | 71.03977             | 78.13          | +1407          | <u>3</u> 1110                  | 73.92600             | 01.19           | ++;;;;;;       |
| 2804 0                                       | 01.90000<br>07.05780 | 31 00           | +2262         | <sup>2 4</sup> Mg <sub>2</sub> C <sub>2</sub> | 71,97003             | 30 <b>.</b> 53 | +1+35          | ~~tet                          | 10.15/10             |                 | +1122          |
| 44000                                        | 27 0 = = 00          | 02.015          | +22=2         | $^{24}$ MgC <sub>4</sub>                      | 71.93504             | 75.27          | +113-          | 7 âg au                        | 70.141.0             | 10.9.<br>17. Te | +9062          |
| 3290                                         | 67 07207             | 02.01           | +1430         | <sup>72</sup> Ca                              | 72.00000             | 93.52          | + 717          | 85 77                          | 79.92001             | 30.27           | 17260          |
| 204 Dh3                                      | 67 00103             | 91.93           | +1027         | 145 NJ2                                       | 70 15203             | 08 30          | _              | 647513 r                       | 70.22110             | 00 54           | +9062          |
| 204 <sub>Ur</sub> 3                          | 67 30116             | 06 35           | +1025         | 14502_                                        | 72 50188             | 11 78          | ±1637          | 53777                          | 76 34065             | 00.34           | +3709          |
| Ca Ha                                        | 63.06256             | <u>34</u> 44    | + 403         | ~12                                           |                      | ر. •مد<br>- مع | · ( ·          | 520,250                        | 76.04387             | 01.37           | +-220          |
| 205                                          |                      | 70 70           |               | - 3 Ge                                        | 72.92334             | 07.73          |                | 45 Sc0,                        | 73.94752             | 99.52           | +2793          |
| 137 D-2                                      | 55.5246              | /0.50           |               | JeH<br>570                                    | 72.92941             | 27.47          | +12E3          | 77.53                          | 76.95102             | 66. <u>3</u> 8  | +2475          |
| 20 6 m 3                                     | 67.492/9             | 11.52           |               | 7 3 X 4 9                                     | 72.05052             | 02.19          | +1022          | 1547,12                        | 76.26047             | 02.15           | +1900          |
|                                              | 00.00010             | 27.5            |               | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5         | 72.72107<br>70.52107 | 01.4/<br>01.5/ | オジャワト          | 154 5 2 2                      | 73.98097             | 22.71           | +1877          |
| <sup>69</sup> Ga                             | 63.92571             | 60.4            |               | 551180                                        | /2.35464<br>70 02701 | 00 00 h        | +0400<br>15001 | 29 SiOa                        | 76.96122             | 04.87           | +1865          |
| 92Zr <sup>32</sup>                           | 68.92850             | 17.11           | +25E3         | 73T*A                                         | 12.30121<br>70 01707 | 00.204         | 〒フビロ上<br>エンハママ | 41%Ca                          | 73.36183             | 36.65           | +1333          |
| <sup>68</sup> ZnH                            | 68.93268             | 18.57           | +9889         | 1102<br>7301_0                                | 12034101<br>70 04833 | 03.57          | +2019          | 77 SiC4                        | 76.27649             | 08.45           | +1361          |
| 5°Fe <sup>13</sup> C                         | 68.93529             | 01.015          | <b>+</b> 7194 | 41K0-                                         | 72 05163             | 16.35          | +2573          | 13C04                          | 76.)3300             | 01 <b>.1</b> 0  | +1221          |
| FeC                                          | 68.93541             | 02.166          | +7106         | 73 <sub>Mar</sub>                             | 72.05502             | 18-32          | +22=3          | 12C6H5                         | 77.03910             | 97.45           | + 643          |
| <sup>53</sup> CrO                            | 68.93556             | 09.53           | +6998         | 1461742                                       | 72,35635             | 17.22          | +2209          | 232mh3                         | 77 3480              | 100 00          |                |
| 69S2                                         | 65.93855             | 02.E4           | +5368         | 37 C1C2                                       | 72.23590             | 23.67          | +1713          | 1557,32                        | 77.4614              | 14.73           |                |
| <sup>138</sup> Ba <sup>2</sup>               | 69.95244             | 71.66           | +2579         | 25 <sub>M2</sub> 02                           | 72.97057             | 10.06          | +1544          |                                | it• ∘≎π⇒             | ш. • _ ́        |                |
| rae Ces                                      | 68.95302             | 00.25           | +2524         | 73 Mg Co                                      | 72.57088             | 16.96          | +1534          | /ªSe                           | 77.91739             | 27.52           |                |
| - <sup>35</sup> La <sup>e</sup>              | 65.95337             | 00.089          | +2487 `       | 73 MgCa                                       | 72.23584             | 13.07          | +1167          | / <sup>°</sup> Kr              | 77.92019             | 00.35-          | +2353          |
| Si2C                                         | 68.95342             | 09.50           | +2487         | 730 -                                         | 73.00336             | 06.29          | + 911          | N10                            | 17.92325             | 05.84           | +13 E3         |
| 3′C102                                       | 68,95570             | 24.35           | +2298         | 12CeH                                         | 73.00782             | 93.51          | + 363          | ~~ZnC<br>397                   | 11.92605             | 21.50           | +0999          |
| 45 ScC2                                      | 69.•95592            | 97 <b>.</b> 80  | +2282         | 147 -2                                        | 73 12705             | 1/1 017        | -              | 41x37 ~7                       | 77.92742             | 36.68           | +//60          |
| SCa                                          | 68.97542             | 03.83           | +1387         | 5m-                                           | 12.70120             | ⊥+•≯{          |                | 77 Satt                        | 11.927()             | 01.60<br>01.60  | +1500          |
| eu'Pb'                                       | 68.99196             | 22.6            | +1040         | 74Ge                                          | 73.92100             | 36.54          |                | 000<br>65 0,13 0               | 11.42/30             |                 | +1405          |
| CsHə                                         | 69.0704              | 94.46           | + 476         | ′_⁴Se                                         | 73.92254             | 00.87          | +4853          | 780m0                          | 11.49110<br>77 5207  | 00.54           | +25/1          |
| 208 <sub>Pb</sub> 3                          | 69.32555             | 52.3            |               | ⊃¤FeO                                         | 73.92822             | 00.33          | +10E3          | 54 240                         | 77 03041             | 05 50           | +3027<br>13507 |
| <sup>139</sup> La <sup>2</sup>               | 69.45302             | <u>99.911</u>   |               | ' NiC                                         | 73.92834             | 03.63          | +1053          | 785.0                          | 77 03003             | 07 05           | +2007<br>17160 |
| 209 <sub>Bi</sub> 3                          | 69.65978 :           | 100.00          |               | 2°NiQ                                         | 73.93026             | 69.01          | +7983          | 4 °T10~                        | ィイ・ブノブブフ<br>77、ロムクルド | 07 98           | +/*/<br>+3110  |
| 70 <sub>00</sub>                             | 69.02300             | 20 53           |               | 737 Fe <sup>18</sup> 0                        | 73.93110             | 00.137         | +7319          | 78 <sub>Møs</sub>              | 77.04777             | 00 14           | +2266          |
| 50                                           | ~~~ <i>~~~</i> /77   | 20.72           |               | GeH                                           | 73.93116             | 07.76          | +7276          | 15 6 Dv2                       | 77.957/              | 00.052          | +1967          |
|                                              |                      |                 |               | 39 v 21 🕜 🚺                                   | versityedf           | Pretoria       | +6838          | y                              | 11.02217             | 00.092          | F7201          |
|                                              |                      |                 |               | VCT                                           | 12.7256              | 10.52          | +0295          |                                |                      |                 |                |



| <sup>30</sup> SiO3<br><sup>42</sup> CaC3<br>15 <sup>6</sup> Gd <sup>2</sup><br><sup>31</sup> P <sub>2</sub> O<br><sup>27</sup> Al <sub>2</sub> C2<br><sup>23</sup> Na <sub>2</sub> O2 | 77.95849<br>77.95863<br>77.96113<br>77.96244<br>77.96308<br>77.96938             | 03.07<br>00.62<br>20.47<br>99.76<br>97.80<br>97.52            | +1895<br>+1889<br>+1781<br>+1730<br>+1705<br>+1499          | <sup>34</sup> SO <sub>3</sub><br><sup>4</sup> <sup>6</sup> TiC <sub>3</sub><br><sup>50</sup> Mg <sub>2</sub> O <sub>2</sub><br>164Dy <sup>2</sup><br>164Er <sup>2</sup> | 81.95261<br>81.95263<br>81.95745<br>81.9643<br>81.9649               | 04.19<br>07.74<br>18.53<br>28.18<br>01.56          | +2277<br>+2275<br>+2007<br>+1718<br>+1697                        | <sup>175</sup> Lu <sup>2</sup><br>56Fe <sup>32</sup> S<br>88Sr<br>40Ca <sup>48</sup> Ti<br>72Ge0                                                                                     | 87.471/<br>87.90401<br>87.90601<br>87.91081<br>87.91650                          | 97.41<br>87.08<br>82.56<br>71.74<br>27.37                   | -44E3<br><br>+18E3<br>+8372                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| 78 SiC4<br>14NO4<br>12C13<br>12C6H6<br>235U3                                                                                                                                          | 77.97376<br>77.98271<br>78.00000<br>78.04692<br>78.3476                          | 03.16<br>98.67<br>86.49<br>93.45<br>00.72                     | +1382<br>+1193<br>+ 943<br>+ 602                            | 165 <sub>H0</sub> 2<br>56FeA1<br>83Kr<br>26S155Mn                                                                                                                       | 81.96786<br>82.46455<br>82.91348<br>82.91405<br>82.91405             | 04.04<br>100.00<br>91.66<br>11.55<br>92.21         | +1599<br>-15E4<br>                                               | 88Ca2<br>87SrH<br>87RbH<br>76SeC<br>76GeC                                                                                                                                            | 87.91653<br>87.91681<br>87.91712<br>87.91928<br>87.92129                         | 00.40<br>07.02<br>27.85<br>08.92<br>07.67                   | +8348<br>+8139<br>+7912<br>+6624<br>+5753                   |
| 157 <sub>Gd</sub> 2<br>157 <sub>C13</sub><br>79 <sub>Br</sub>                                                                                                                         | 78.4621<br>78.50168<br>78.91839                                                  | 15.68<br>12.60<br>50.537                                      | +1982                                                       | <sup>67</sup> ZnO<br><sup>83</sup> Ca <sub>2</sub><br><sup>82</sup> SeH<br>71 GaC                                                                                       | 82.92205<br>82.92278<br>82.92445<br>82.92445                         | 04.10<br>00.28<br>09.19                            | +092)<br>+1023<br>+9498<br>+7973                                 | <sup>5 6</sup> FeO2<br><sup>88</sup> Si3<br><sup>64</sup> ZnC2<br><sup>64</sup> NiC2                                                                                                 | 87.92174<br>87.92445<br>87.92914<br>87.92796                                     | 91.22<br>00.28<br>47.81<br>01.06                            | +5505<br>+4767<br>+3801<br>+4003                            |
| <sup>52</sup> CrAl<br><sup>33</sup> CuO<br>78SeH<br>79ZnC<br>79K-                                                                                                                     | 78.92205<br>78.92451<br>78.92521<br>78.92714                                     | 83.76<br>68.92<br>23.52<br>04.42                              | +22E3<br>+13E3<br>+12E3<br>+9019                            | <sup>59</sup> CoC2<br><sup>51</sup> VO2<br><sup>83</sup> TiC3<br><sup>35</sup> ClO3                                                                                     | 82.93318<br>82.93378<br>82.95176<br>82.95355                         | 97.80<br>99.28<br>97.31<br>74.98                   | +4334<br>+4202<br>+2199<br>+2099                                 | 52 CrC3<br>28 Si202<br>32 S2C2<br>40 Ca03                                                                                                                                            | 87.94051<br>87.94368<br>87.94414<br>87.94414                                     | 81.01<br>84.62<br>88.26<br>96.27                            | +2547<br>+2333<br>+2305<br>+2114                            |
| <sup>55</sup> MnC <sub>2</sub><br><sup>47</sup> TiO <sub>2</sub><br><sup>31</sup> PO <sub>3</sub>                                                                                     | 78.92941<br>78.93805<br>78.94156<br>78.95849                                     | 00.31<br>97.80<br>07.25<br>99.28                              | +7168<br>+4014<br>+3406<br>+1968                            | <sup>188</sup> Er <sup>2</sup><br><sup>35</sup> ClC <sub>4</sub><br>167 <sub>Er<sup>2</sup></sub>                                                                       | 82.9644<br>82.96885<br>83.4653                                       | 33.41<br>72.24<br>22.94                            | +1647<br>+1513                                                   | <sup>2</sup> <sup>4</sup> MgO <sub>4</sub><br><sup>17</sup> <sup>8</sup> Hf <sup>2</sup><br><sup>17</sup> <sup>8</sup> Lu <sup>2</sup><br><sup>17</sup> <sup>8</sup> Lu <sup>2</sup> | 87.96468<br>87.9704<br>87.9710<br>87.97136                                       | 92.75<br>77.94<br>05.20<br>02.59<br>12.73                   | +1365<br>+1365<br>+1352<br>+1345                            |
| 79 CaC3<br>158 Dy2<br>158 Gd2<br>31 PC4                                                                                                                                               | 78.95878<br>78.96200<br>78.9622<br>78.97376                                      | 00.161<br>00.09<br>24.87<br>95.65                             | +1954<br>+1810<br>+1801<br>+1425                            | 84Kr<br>84Sr<br>57FeAl                                                                                                                                                  | 83.91325<br>83.91325<br>83.91695                                     | 56.90<br>00.56<br>02.19                            | -48E3<br>+23E3                                                   | <sup>12</sup> C7H4<br>177Hf <sup>2</sup><br>897                                                                                                                                      | 88.03128<br>88.4713<br>88.90572                                                  | 92.46<br>18.50<br>100.00                                    | + 702                                                       |
| 158 <sub>C</sub> 2<br>C <sub>6</sub> H <del>7</del><br>239 <sub>U</sub> 3                                                                                                             | 79.00335<br>79.05474<br>79.3495                                                  | 00.847<br>93.44<br>99.274                                     | + 929<br>+ 579                                              | <sup>68</sup> ZnO<br>72GeC<br>52CrO2                                                                                                                                    | 83.91808<br>83.91977<br>83.92159<br>83.93031                         | 18.53<br>27.13<br>83.36                            | +1785<br>+1383<br>+1083<br>+4919                                 | 57 Fe <sup>32</sup> S<br>88 SrH<br>73 GeO<br>89 SeC                                                                                                                                  | 88.90748<br>88.91383<br>88.91825<br>88.91998                                     | 02.08<br>82.55<br>07.73<br>07.60                            | +51E3<br>+11E3<br>+7095<br>+6235                            |
| <sup>ao</sup> Se<br><sup>so</sup> Kr<br><sup>28</sup> Si <sup>52</sup> Cr                                                                                                             | 79.46244<br>79.91647<br>79.91659<br>79.91744                                     | 100.000<br>49.82<br>02.27<br>77.24                            | + 703<br><br>+67E4<br>+82E3                                 | <sup>60</sup> NiC <sub>2</sub><br><sup>84</sup> TiC <sub>3</sub><br><sup>48</sup> CaC <sub>3</sub><br>168 Tr                                                            | 83.93079<br>83.93078<br>83.94795<br>83.95253<br>83.95253             | 78.40<br>25.65<br>71.79<br>00.18                   | +4784<br>+4787<br>+2418<br>+2136<br>+1609                        | 89 S13<br>57 FeO2<br>65 CuC2<br>89 CrC3                                                                                                                                              | 88.92401<br>88.92521<br>88.92778<br>88.94065                                     | 00.013<br>02.18<br>30.23<br>11.96                           | +4861<br>+4562<br>+4030<br>+2545                            |
| <sup>84</sup> N10<br><sup>84</sup> Zn0<br><sup>80</sup> ZnC<br><sup>40</sup> Ca <sub>2</sub>                                                                                          | 79.92287<br>79.92405<br>79.92486<br>79.925517                                    | 01.08<br>48.77<br>18.41<br>93.45                              | +13E3<br>+11E3<br>+9525<br>+9186                            | 168 <u>7</u> 62<br>12 <sub>C7</sub><br>169 <sub>Tm</sub> 2                                                                                                              | 83.96695<br>84.00000<br>84.46717                                     | 00.135<br>92.48<br>100.00                          | +1563<br>+ 967                                                   | <sup>3</sup> Si <sub>2</sub> O <sub>2</sub><br><sup>4</sup> KO <sub>3</sub><br><sup>4</sup> KC <sub>4</sub><br><sup>25</sup> MgO <sub>4</sub><br>178 Hf <sup>2</sup>                 | 88.94324<br>88.94563<br>88.96183<br>88.96548<br>88.9715                          | 08.62<br>06.83<br>06.58<br>10.03<br>27.14                   | +2370<br>+2228<br>+1584<br>+1488<br>+1352                   |
| H <sup>79</sup> Br<br><sup>5 5</sup> FeC2<br><sup>5 5</sup> Mn <sup>25</sup> C2                                                                                                       | 79.9252<br>79.92622<br>79.93194<br>79.94141                                      | 50.52<br>89.64<br>02.19                                       | +8197<br>+5166<br>+3204                                     | 85S1Fe<br>85Rb<br>58TeAl                                                                                                                                                | 84.90843<br>34.91202                                                 | 06.33<br>72.15                                     | -24E3                                                            | <sup>12</sup> C <sub>7</sub> H <sub>5</sub><br><sup>179</sup> Hf <sup>2</sup><br><sup>90</sup> 7r                                                                                    | 89.03910<br>89.4726<br>89.90433                                                  | 92.45<br>13.75<br>51.46                                     | + 667                                                       |
| $32 S_2 O$<br>$48 Ca O_2$<br>$28 Si_2 C_2$<br>$44 Ca C_3$<br>$32 SO_3$                                                                                                                | 79.93775<br>79.93905<br>79.94233<br>79.95386<br>79.95500<br>79.95602             | 90.03<br>90.184<br>83.16<br>01.99<br>94.32                    | +3735<br>+3539<br>+3090<br>+2137<br>+2074<br>+1981          | <sup>84</sup> SrH<br><sup>85</sup> GeC<br><sup>85</sup> Si <sub>3</sub><br><sup>53</sup> CrO <sub>2</sub><br><sup>85</sup> N1C2                                         | 84.92107<br>84.92334<br>84.93035<br>84.93045<br>84.93109             | 00.39<br>00.56<br>07.97<br>11.99<br>09.50<br>01.73 | +9383<br>+9383<br>+7501<br>+4632<br>+4607<br>-± <sup>44</sup> 53 | 45 SC2<br>89 YH<br>7 4 GeO<br>90 SeC<br>7 4 SeO<br>59 <b>B</b> 00                                                                                                                    | 89.91184<br>89.91354<br>89.91591<br>89.91591<br>89.91739<br>89.91745<br>89.92311 | 100.00<br>99.985<br>36.38<br>23.32<br>00.87                 | +12E3<br>+9762<br>+7764<br>+6884<br>+6852<br>+4787          |
| <sup>24</sup> Mg2O2<br>150Dy2<br>160Jd <sup>2</sup><br>32SC4<br>12CgHa                                                                                                                | 79.95990<br>79.9620<br>79.96361<br>79.97207<br>80.06256                          | 61.64<br>02.294<br>21.90<br>92.77<br>93.43                    | +1840<br>+1755<br>+1695<br>+1437<br>+ 547                   | <sup>37</sup> ClC <sub>3</sub><br><sup>37</sup> ClC <sub>4</sub><br>170Yb2<br>170Er <sup>2</sup><br><sup>85</sup> C7<br>12C7                                            | 84.94787<br>84.96590<br>84.967/<br>84.9678<br>85.00336               | 07.73<br>02.40<br>03.03<br>14.38<br>07.25          | +2369<br>+1576<br>+1544<br>+1522<br>+ 930                        | 58 NiO2<br>532nC2<br>39 K2C<br>90 CrC3<br>54 FeC3                                                                                                                                    | 89.92515<br>89.92605<br>89.92742<br>89.93887<br>89.93961                         | 68.85<br>27.20<br>85.72<br>02.61<br>05.63                   | +4318<br>+4139<br>+3894<br>+2602<br>+2548                   |
| <sup>161</sup> Dy <sup>2</sup>                                                                                                                                                        | 80.4629                                                                          | 18.88                                                         |                                                             | 171Yb <sup>2</sup>                                                                                                                                                      | 85.468/                                                              | 92.49<br>14.31                                     | + 505                                                            | <sup>90</sup> Si202<br><sup>28</sup> Mg04                                                                                                                                            | 89.94051<br>39.96223                                                             | 05.89<br>11.06                                              | +2485<br>+1553                                              |
| 54FeAl<br>65CuO<br>80SeH<br>69GaC<br>81FeC2                                                                                                                                           | 80.92115<br>80.92269<br>80.92269<br>80.92429<br>80.92571<br>80.93541             | 05.82<br>30.84<br>49.81<br>59.73<br>04.15                     | +17 E3<br>+13E3<br>+10E3<br>+8710<br>+4261                  | <sup>8</sup> <sup>6</sup> Sr<br><sup>8</sup> <sup>6</sup> Kr<br>54 Fe <sup>32</sup> S<br>70 GeO<br>85 RbH<br>79 70                                                      | 85.90935<br>85.91079<br>85.91168<br>85.91390<br>85.91984             | 09.86<br>17.37<br>05.53<br>60.3<br>72.14           | +60E3<br>+37E3<br>+8996<br>+3190                                 | <sup>27</sup> Al <sub>2</sub> C <sub>3</sub><br>180 W2<br>180 Ta <sup>2</sup><br>180 Hf <sup>2</sup><br>12 C <sup>2</sup> 5<br>12 C - H                                              | 59.96308<br>59.9723<br>59.973/<br>59.9731<br>90.00000<br>90.04692                | 96.72<br>00.135<br>00.012<br>35.24<br>84.58<br>92.43        | +1530<br>+1323<br>+1309<br>+1307<br>+ 940<br>+ 631          |
| <sup>27</sup> Al <sub>3</sub><br><sup>81</sup> S1 <sub>2</sub> C <sub>2</sub><br><sup>49</sup> Mg <sub>2</sub> O <sub>2</sub>                                                         | 80.93767<br>80.94462<br>80.95342<br>80.96070                                     | 05.48<br>100.00<br>12.12<br>15.87                             | +3808<br>+2869<br>+2187<br>+1827                            | 8 * GeC<br>7 * SeC<br>8 * Si3                                                                                                                                           | 85.92100<br>85.92254<br>85.92762                                     | 36.23<br>00.87<br>08.49                            | +7374<br>+6513<br>+4702                                          | $181Ta^{2}$<br>$181C^{2}_{15}$                                                                                                                                                       | 90.4729<br>90.50168                                                              | 99.988<br>14.22                                             | +3144                                                       |
| 162 Dy <sup>2</sup><br>162 Er <sup>2</sup><br>12 C <sub>6</sub> H9<br>163 Dy <sup>2</sup>                                                                                             | 80.9628<br>80.96436<br>81.07038<br>81.4639                                       | 25.53<br>00.136<br>93.41<br>24.97                             | +1745<br>+1688<br>+ 526                                     | 54 CrO2<br>54 CrO2<br>54 FeO2<br>8 STIC3<br>50 CrC3<br>27 AloO2                                                                                                         | 55.92594<br>85.92867<br>85.92941<br>85.94479<br>85.94065<br>85.95289 | 02.37<br>05.79<br>05.34<br>04.17<br>99.52          | +4924<br>+4446<br>+4283<br>+2424<br>+2341<br>+1973               | 90ZrH<br>75As0<br>79BrC<br>59CoC2<br>.91ZpCa                                                                                                                                         | 90.90592<br>90.91215<br>90.91662<br>90.91839<br>90.92298<br>90.922714            | 51.45<br>99.76<br>49.98<br>97.80<br>04.63                   | +13E3<br>+8045<br>+6955<br>+5148<br>+4166                   |
| <sup>28</sup> Si <sup>54</sup> Fe<br><sup>82</sup> Se<br><sup>55</sup> MnAl<br><sup>82</sup> ZnO<br><sup>82</sup> Caa                                                                 | 81.91345<br>81.91654<br>81.91663<br>81.91959<br>81.92096                         | 11.56<br>05.37<br>09.19<br>100.00<br>27.74                    | -26E3<br>-91E4<br>+28E3<br>+19E3                            | 172 YD2<br>$31 P_2 C_2$<br>$8 C_7$<br>$12 C_7 H_2$<br>173 YD2                                                                                                           | 85.9626<br>85.96753<br>86.00670<br>86.01564                          | 21.32<br>97.80<br>00.244<br>92.48                  | +1612<br>+1477<br>+ 382<br>+ 808                                 | 55MnC3<br>54Fe <sup>37</sup> C3<br>27AlO4<br>192W2<br>182C15                                                                                                                         | 90.93805<br>90.94297<br>90.96114<br>90.9730<br>91.00335                          | 96.72<br>00.189<br>99.04<br>26.41<br>01.115                 | +2777<br>+2414<br>+1629<br>+1343<br>+ 927                   |
| <sup>41</sup> K <sub>2</sub><br><sup>70</sup> GeC<br>H <sup>81</sup> Br<br><sup>70</sup> ZnC                                                                                          | 81.92366<br>81.92399<br>81.92425<br>81.92534                                     | 00.47<br>20.29<br>49.44<br>00.63                              | +12E3<br>+11E3<br>+11E3<br>+9405                            | 87 Sr<br>87 Rb<br>88 SrH<br>71 GaO                                                                                                                                      | 86.90899<br>86.90930<br>86.91717<br>86.91973                         | 07.02<br>27.85<br>09.86<br>39.50                   | +28E4<br>+11E3<br>+8092                                          | 183 <sub>W</sub> 2<br>40Ca <sup>52</sup> Cr<br><sup>92</sup> Zr<br><sup>46</sup> T12                                                                                                 | 91.4741<br>91.90337<br>91.90467<br>91.90526                                      | 14.40<br>81.22<br>17.11<br>00.64                            | -71E3<br><br>+16E4                                          |
| Ga+3C<br>82 FeC2<br>50 TiO2<br>58 NiC2<br>88 S2O<br>50 CrO2<br>82 SisCo                                                                                                               | 01.92906<br>81.93331<br>81.93459<br>81.93535<br>81.93585<br>81.93585<br>81.95069 | 00.669<br>00.368<br>05.31<br>67.66<br>08.00<br>04.29<br>05.98 | +6590<br>+4911<br>+4561<br>+4376<br>+4498<br>+4262<br>+2405 | 75ASC<br>74Ge13C<br>55MnO2<br>87S13<br>39KO3<br>174Yb2<br>38VC                                                                                                          | 86.92171<br>86.92436<br>86.92785<br>86.92718<br>86.94841<br>86.96287 | 98.89<br>00.40<br>99.52<br>00.81<br>92.43<br>31.84 | +6832<br>+5654<br>+4608<br>+4773<br>+2205<br>+1615               | 92 Mo<br>91 ZrH<br>78 SeO<br>76 GeO<br>80 SeC<br>80 SeC<br>80 N102<br>92 75 C                                                                                                        | 91.90855<br>91.91314<br>91.91419<br>91.91620<br>91.91620<br>91.92057<br>91.92057 | 15.84<br>11.22<br>09.01<br>07.75<br>49.27<br>26.10<br>18.25 | +24E3<br>+11E3<br>+9654<br>+7971<br>+7789<br>+5780<br>+4552 |
|                                                                                                                                                                                       |                                                                                  |                                                               | /                                                           | <sup>17 4</sup> Hf <sup>2</sup><br><sup>12</sup> C <sub>7</sub> H <sub>3</sub>                                                                                          | 87.02346                                                             | 92.47                                              | +1425<br>+ 759                                                   | 21102                                                                                                                                                                                | J =+ J = + 00                                                                    |                                                             |                                                             |

.

184

| 4°Ca <sub>2</sub> C                         | 91.92517          | 92.42             | +4483          | 967 rH                           | 26 21712             | 02 80          | 18882          | 539.0                           | 100 005-0  |                 |                |
|---------------------------------------------|-------------------|-------------------|----------------|----------------------------------|----------------------|----------------|----------------|---------------------------------|------------|-----------------|----------------|
| 44CaO3                                      | 91.94023          | 02.05             | +2584          | 65 CuOs                          | 96.91758             | 30.76          | +8523          | es curda                        | 100.92538  | 09.48           | +4951          |
| <sup>2</sup> Si <sub>2</sub> C <sub>3</sub> | 91.95386          | 32.24             | +1868          | 97GeC2                           | 96,92334             | ó8.19          | +5657          | 101020                          | 100.92775  | 29.09           | +4450          |
|                                             | 91.95550          | 01,97             | +1908          | <u>97</u> Si3Č                   | 96.93035             | 12.73          | +4014          | 202 Hg2                         | 100.98531  | 29.80           | +1256          |
| 184002                                      | 91.95657          | 91.35             | +1771          | , NiCs                           | 96.93109             | 02.00          | +3895          | C <sub>B</sub> H <sub>5</sub>   | 101.03910  | 91.42           | + 752          |
| 184 <sub>W2</sub>                           | 91.9745           | 30.84             | +1245          | 271103                           | 96.93257             | 05.47          | +3676          | 135 <sub>Ba</sub> 32            | 101.17216  | 06.59           |                |
| 185 0 2                                     |                   | 20.84             | +1010          | 97 T1 C                          | 96.99952             | 99.76          | +2908          | 203 m                           | 101.4360   | 29,50           |                |
| Re-                                         | 92.474            | 37.07             |                | 194p+2                           | 96.94/0/<br>96.9817/ | 32 3           | +2526<br>±1284 | 1020                            | 101 99050  | 27.00           |                |
| 93Nb                                        | 92.90566          | 100.00            |                | 194 ČŽ                           | 97.00335             | 01.26          | + 398          | 51m                             | 101.00695  | 07.22           | -0920          |
| 772rH                                       | 92.91249          | 17.11             | +14E3          | 97 Cs                            | 97.00335             | 08.20          | + 998          | 1025                            | 101.00795  | 39.54           | -0+50          |
| albrC                                       | 92.91489          | 07.57             | +10E3          | <sup>12</sup> C <sub>8</sub> H   | 97.00782             | 91.45          | + 954          | 3 5 C O                         | 101.90575  |                 |                |
| 61NtO                                       | 92.91642          | 40.92             | +5634          | 195 <sub>Pt</sub> 2              | 97,4831/             | 33.8           |                | 907rC                           | 101.90425  | 0 <b>9.</b> 04  | +1954          |
| <sup>69</sup> GaC2                          | 92.92571          | 59.07             | +6100          | 98m.                             |                      | 22.00          | 7790           | 102 pd                          | 101 20486  | 00.96           | +1, L,         |
| 93FeC3                                      | 92.93530          | 05.10             | +3134          | 98M0                             | 97.09273             | 05.20          | -7.589         | 89v13r                          |            |                 | +19F3          |
| 27AlgC                                      | 92.94462          | 98.89             | +2385          | 9 55rC                           | 97.90990             | 00 75          | ±29.53         | <sup>70</sup> Ge02              | 101.91379  | 20.42           | +10E3          |
| <sup>3</sup> P3                             | 92.95129          | 100.00            | +2036          | <sup>92</sup> SeO                | 97.91154             | 09.18          | +18E3          | 102 SeCa                        | 101.91739  | 23.15           | +7460          |
| 29 CI2C3                                    | 92.95342          | 11.14             | +1945          | <sup>97</sup> MoH                | 97.91403             | 09.46          | +12E3          | <sup>102</sup> Si30             | 101.92253  | 08.47           | +5420          |
| 18602                                       | 92.95613          | 04.65             | +1841          | 98S3.                            | 97.91201             | 11.43          | +16E3          | 54CrQ <sub>3</sub>              | 101.92360  | 02.36           | +5129          |
| 1850-2                                      | 92.9124           | 20.41             | +1352          | <sup>BS</sup> Rb <sup>13</sup> C | 97.91545             | 00.80          | +10E3          | °⁴FeO3                          | 101.92434  | 05.78           | +4944          |
| 187- 2                                      | 92.910/           | 01.59             | +1721          | <sup>33</sup> ZnO <sub>2</sub>   | 97.91585             | 27.68          | +9920          | <sup>CC</sup> ZnC <sub>3</sub>  | 101.92605  | 26.90           | +4566          |
| 1870-2                                      | 93.477/           | 62.93             |                | 745eC-                           | 97.92100<br>97.92100 | 25•91<br>00 85 | +6510          | 102 CrC4                        | 101.92025  | 07.51           | ++1)1          |
| 08-                                         | 92.4(0/           | 01.64             | +94 83         | 98SiaC                           | 37.92762             | 08.53          | +4524          | 54FeC4                          | 101.93961  | 05.57           | +2840          |
| 40 Ti2                                      | 93.90058          | 12.37             | -1353          | 98 NiCa                          | 97.92834             | 03.58          | +4379          | 27A1203                         | 101.94781  | 99 <b>.</b> 28  | +2312          |
| T <sup>o</sup> CaFe                         | 93.90247          | 05.64             | -13E3          | <sup>50</sup> TiO3               | 97.92952             | 05.30          | +4159          | 204 Pb2                         | 101.98654  | 01.48           | +1231          |
| 94/7m                                       | 93.90594          | 09.04             | -55E3          | 50 CrO3                          | 97.93078             | 04.28          | +3948          | 204 Hg <sup>2</sup>             | 101.98674  | Q6.85           | +1228          |
| 785e0                                       | 92.90764          | 17.40             | 100 53         | SOCIC4                           | 97.94479             | 05.35          | +2523          | 12C17                           | 102.00000  | 32.72           | +1059          |
| 93NbH                                       | 93.91348          | - <u>6</u> 0 - 97 | +2023          | 34co                             | 97.94605             | 04.12          | +2445          | Caris                           | 102.04692  | 91.41           | + 712          |
| 82 SeC                                      | 93.91663          | 09.09             | +10E3          | 98 <sub>21</sub> ,               | 91.94102<br>07 0541  | 01 87          | +2039          | 205T12                          | 102.4869_  | 70.50           |                |
| <sup>62</sup> N102                          | 93.91814          | 03.64             | +8944          | 31 P2Ca                          | 97.96753             | 96.72          | +1591          | 205C17                          | 102.50168  | 15.75           | +6934          |
| <sup>39</sup> K <sub>2</sub> O              | 93.92233          | 86.47             | +6393          | 196Hg2                           | 97.98291             | 00.146         | +1273          | 13'Ba32                         | 102.67918  | 11.32           |                |
| GeC2                                        | 93.92399          | 20.07             | +5744          | 19 SPt2                          | 97.9836              | 25.3           | +1261          | 103Cr2                          | 102.88670  | 00,82           | -5765          |
| 58 N# C                                     | 93.93331          | 00.39             | +3658          | 95Ca.                            | 98.00670             | 00.321         | + 972          | 87 SrO                          | 102.90390  | 07.00           | -16E4          |
| 4 <sup>6</sup> TtO <sub>2</sub>             | 92.92222          | 07 04             | +2209          | - Ce Hz                          | 98.01564             | 91.44          | + 893          | a7 RDO                          | 102.90421  | 27.78           | <b>-</b> 30 E4 |
| 94SiaCa                                     | 93,950.69         | 06.01             | +2181          | <sup>197</sup> Au <sup>2</sup>   | 98.4836              | 100.00         |                | 103Rh                           | 102.90455  | 100.00          |                |
| 46T1C4                                      | 93.95263          | 07.65             | +2087          | <sup>99</sup> Tia                | 38.89266             | 00.59          | -7387          | <sup>103</sup> Zr <b>C</b>      | 102.90532  | 11.67           | +13E4          |
| <sup>30</sup> SiO4                          | 93.95340          | 03.06             | +2052          | 99 Ru                            | 28.90605             | 12.72          |                | $\frac{71}{2}$ GaO <sub>2</sub> | 102.91462  | 39.41           | +10E3          |
| 31P202                                      | 93.95735          | 99.52             | +1890          | 99SrC                            | 98.90899             | 07.05          | +34 E3         | [BrC <sub>2</sub>               | 102.91839  | 49.42           | +7435          |
| -000s2                                      | 93.9785/          | 13.3              | +1325          | 87 RbC                           | 98.90930             | 27.54          | +30E3          | 103 grad                        | 102.92278  | 99.28           | +5645          |
| <sup>189</sup> 0s <sup>2</sup>              | 94.4793/          | 16.1              |                | <sup>9</sup> <sup>3</sup> MoH    | 98.91380             | 23.78          | +13E3          | 55Mm C                          | 102.92714  | 04,00           | ++>>>>         |
| 95 min                                      | a4 80070          | 11 67             | -2073          | ~' <u>1</u> n02                  | 98.91694             | 04.09          | +9082          | 3970.                           | 102.90000  | 92.21           | +2652          |
| 40 CaMn                                     | 94,90091          | 96.97             | -27 53         | 63 Cu C-                         | 38 32350             | 97.00          | +6216          | 20 6ph2                         | 102,98722  | 23.6            | +1245          |
| 95 <sub>Mo</sub>                            | 94.90444          | 15.72             |                | 35C104                           | 98,94849             | 74.80          | +2330          | CaH <sub>7</sub>                | 103.05474  | 91.40           | + 685          |
| <sup>79</sup> BrC                           | 94.91330          | 50.42             | +11E3          | 198 Pt2                          | 96.9823              | 07.21          | +1297          | 207 Dh2                         | 103 48704  | 22.6            |                |
| MoH                                         | 94.91376          | 09.04             | +10E3          | <sup>198</sup> Hg <sup>2</sup>   | 98.98337             | 10.02          | +1279          | 138 Ra 32                       | 103.42866  | 71.66           | 1746           |
| ZrH                                         | 94.91546          | 17.40             | +8615          | CsH3                             | 99.02346             | 91.43          | + 842          | 1040                            | 107 20100  | 70 37           | hees           |
| 40 ca Fa                                    | 25 80480          | 88 88             | -661)          | <sup>199</sup> Hg <sup>2</sup>   | 99.48411             | 16.34          |                | 38 G MO                         | 103.00102  | 30.36           | -4623          |
| 9eria                                       | 95.39539          | 56.38             | -7152          | 50m4.                            | 00 88058             | 00.00          | = =            | 104 DA                          | 107 20328  | 10 07           |                |
| 9 <sup>e</sup> Mo                           | 95.90496          | 16.53             | -2223          | 50 Cr2                           | 99.39210             | 00.19          | -4233          | 104 P11                         | 107,90422  | 13.58           | +1124          |
| <sup>9</sup> <sup>€</sup> Ru                | 95.9087           | 05.51             | -16E4          | 100 <sub>R11</sub>               | 99,905/              | 12.52          | -87 53         | 1047rC                          | 103, 20467 | 17.04           | +75Ë3          |
| 9 <sup>6</sup> Zr                           | 95.90930          | 02.30             |                | 100570                           | 99.90610             | 31.7×          | -25E4          | <sup>∋</sup> 2MoC               | 103.90355  | 15.66           | +20E3          |
| SeO                                         | 95.91138          | 49.71             | +46E3          | 100 <sub>Mo</sub>                | 99,90651             | 09.63          |                | 72 GeO2                         | 103.91139  | 27.30           | +13E3          |
| B4gnC                                       | 95.91226          | 15.72             | + ラビビラ         | <sup>84</sup> SrO                | 39.30816             | 00.56          | +60 E3         | 30 SeC2                         | 103.91647  | 48.72           | +7877          |
| 325                                         | 95.91622          | 85.74             | +1453          | a7 Rb13C                         | 99.91265             | 27.54          | +16E3          | Jereos                          | 103.91664  | 91.00           | +/////         |
| 64 NiO2                                     | 95 <b>.</b> 91776 | 01.07             | +1123          | <sup>co</sup> ZnO <sub>2</sub>   | 99.91266             | 18.43          | +1253          | 40 Ca - C-                      | 103.32517  | 21.30           | 44747          |
| 64Zn02                                      | 95.91896          | 48.65             | +9928          | Tage C2                          | 99.91928             | 08.52 .        | +7324          | 567eC4                          | 103.93194  | 37.67           | +3625          |
| $^{40}Ca_{2}O$                              | 95.92008          | 93.22             | +8397          | 52 CrO-                          | 29.92129             | 83 16          | +5/50<br>16340 | 28 Siz03                        | 103.93859  | 34.42           | +2943          |
| GeC <sub>2</sub>                            | 95.92159          | 26.83             | +7804          | 23 Sta0                          | 39.92521             | 78.21          | +5203          | <sup>40</sup> Ca04              | 103.94250  | 96.04           | +2649          |
| 28 Ci C                                     | 95.93077          | 25.40             | +4467          | 39 K2 C2                         | 99.92742             | 84.77          | +4778          | 208 Pb2                         | 103.93333  | 52.3            | +1222          |
| 48mi0-                                      | 95.95079          | ((・))<br>フェール5    | ++++02         | <sup>64</sup> NIC3               | <u>99</u> .92796     | 01.04          | +4655          | CsHa                            | 104.06256  | 91.39           | + 652          |
| <sup>32</sup> SaOa                          | 95.93396          | 89.82             | +3889          | <sup>34</sup> ZnC <sub>3</sub>   | 99.92914             | 47.28          | +4415          | <sup>139</sup> La <sup>32</sup> | 104.17952  | 99.911          |                |
| ∂°TiC4                                      | 95.94795          | 71.07             | +2481          | SecrC4                           | 99.94051             | 20.11          | +2938          | <sup>209</sup> 3i <sup>2</sup>  | 104.43967  | 100.000         |                |
| <sup>32</sup> S04                           | 95.95173          | 94.09             | +2260          | 200 <u>1 -</u> 2                 | 99.94414<br>00 08/12 | 01.29          | +2504          | 105 <sub>0-00</sub>             | 104.38159  | 16.00           | -4516          |
| +340s <sup>2</sup>                          | 95.9811/          | 41.0              | +1336          | C-H-                             | 100-03128            | 2/•1/<br>91.42 | + 801          | səyo.                           | 104.90063  | 99.76           | -25E3          |
| Pt <sup>e</sup><br>12 <i>0</i>              | 95.9824/          | 00.78             | +1312          | 201 2                            |                      | , <u> </u>     |                | 105 Pd                          | 104.90492  | 22.23           |                |
| U8<br>193- 2                                | 96.00000          | 91.46<br>         | +1057          | Hgf                              | 100.48515            | T2•55          |                | <sup>93</sup> NbC               | 104.90566  | 93.39           | +13E4          |
| <br>19362                                   | 96.4834/          | 62.7              |                | 101 Ru                           | 100.905/             | 17.07          |                | <sup>73</sup> Ge02              | 104.91314  | 07.72           | +13E3          |
| ∪īe                                         | 96.50168          | ⊥4•99             | +5278          | 39YC                             | 100.90572            | <u>9</u> 8.89  | +1424          | <sup>31</sup> BrC <sub>2</sub>  | 104.916-2  | 48.37           | +9044          |
| Tia                                         | 96.89581          | 08.93             | -9318          | ⇒ RbO                            | 100.90693            | 71.98          | +5253          | P FeO3                          | 104.92011  | 02.17           | +6861          |
| CaFe                                        | 96.89827          | 02.12             | -12E3          | 100                              | 100.90945            | 00.914         | +とうどう          | 105 mg/                         | 104.92896  | 30.40<br>0 = 02 | ++246          |
| MO<br>Blb-0                                 | 96.90621          | 09.46             |                | 69 COO                           | 100.91433            | 09.00<br>60 11 | +1772)         | 57 St - 0                       | 104.03815  | 08.60           | +7147          |
| -bru<br>35 brc                              | 70.71133          | 49.54             | +1983<br>±1753 |                                  | 100,01008            | 07 - 61        | +6736          | 27 41 - 0-                      | 104 044460 | 37.80           | +2636          |
| ● <sup>M</sup> OH                           | 96.91278          | 16-53             | +15E3          | 101Sia0                          | 100.92526            | 11.96          | +4981          | AT305                           | <u></u>    | -1 -            | ,20,0          |
| 97 Sg                                       | 96.91561          | 02.06             | +10E3          |                                  | 2 . 2                | -              | -              | 10 °Cr2                         | 105.37938  | 04.90           | -4501          |
|                                             |                   |                   |                |                                  |                      |                |                | <sup>2</sup> ZrO                | 105.59924  | 51.34<br>27 33  | -29E3          |
|                                             |                   |                   |                |                                  |                      |                |                | Pa                              | 100.90591  | e(•22           |                |



| 10 8 Pd                        | 105,90291                | 27.33          |           | 113-                                       |             |                                        |                               | 10 -                                       |             |                                        | 0                 |
|--------------------------------|--------------------------|----------------|-----------|--------------------------------------------|-------------|----------------------------------------|-------------------------------|--------------------------------------------|-------------|----------------------------------------|-------------------|
| 10602                          |                          | - 01 - 01 -    |           | Fe <sub>2</sub>                            | 112.86735   | 04.02                                  | -3056                         | * Ca <sub>3</sub>                          | 119.88776   | 90.34                                  | -8303             |
|                                | 102.90292                | 01.217         | +25522    | <sup>97</sup> MoO                          | 112.90112   | 00 46                                  | 3653                          | 88 Sr0a                                    | 119.89592   | 82.16                                  | -19F3             |
| <sup>9</sup> "MoC              | 105.90594                | 08.94          | +35E3     | 113 -                                      | 110 00 120  |                                        | - 7027                        | 104 740                                    |             |                                        | 30 53             |
| 947rC                          | 105,90764                | 17.21          | +2253     | 2 2 2 <sup>111</sup>                       | 112.90450   | 04:28                                  |                               | Pau                                        | 113.03013   | 10.94                                  | - 30 E 3          |
| 93 130                         |                          |                |           | 113Cd                                      | 112,90446   | 12.26                                  | +71E4                         | <sup>10</sup> * RuO                        | 119.89914   | 18.53                                  | -39E3             |
| NDC                            | 102.90901                | 01.10/         | +17 ビラ    | 119 <sub>Ru</sub>                          | 112 005     | 17 00                                  | 1.000                         | 120 cm                                     | 110 00000   | 30 85                                  |                   |
| <sup>106</sup> FeC₄            | 105.93331                | 00.41          | +3484     | 89                                         | 112.905     | 11.02                                  | +T0F4                         | Sn                                         | 119.90220   | 22.02                                  |                   |
| 58 NIC                         | 105 03525                | 66 17          | 12005     | YC <sub>2</sub>                            | 112.90572   | 97.80                                  | +80E3                         | <sup>100</sup> PdC                         | 119.90347   | 26.41                                  | +94E3             |
|                                | 105.92525                | 00.11          | +2265     | <sup>81</sup> BrOa                         | 112 00622   | 10 22                                  | LEO EZ                        | 108 040                                    | 110 00407   | 00 865                                 | LELES             |
| °°Si203                        | 105.93542                | 05.88          | +3258     | 65 2. 2                                    | 112.90022   | 77.22                                  | モンタニノ                         | 120-000                                    | 119.90.01   |                                        | +0+57             |
|                                |                          |                | . / _ / 0 | CuOs                                       | 112.91251   | 30.69                                  | +14E3                         | Te                                         | 119.90449   | 00.089                                 | +52E3             |
| 107 Cr <sub>2</sub>            | 106.87592                | 00.46          | -4224     | 49 T104                                    | 112,92751   | 05.46                                  | 14867                         | 120 MoCa                                   | 119.90496   | 16.41                                  | 14383             |
| 917.0                          | 106 00003                | 11 00          | 0777      | 65 m. m                                    |             |                                        | ++007                         | 960.0                                      |             |                                        |                   |
| 10410                          | 108.90025                | TT. 20         | -2555     | 27.0404                                    | 116.96110   | 29.56                                  | +4809                         | - RuC2                                     | 119.9007    | 05.29                                  | +10ピン             |
| 10' MoC                        | 106,90444                | 10.68          | -27 E4    | ~'Alg02                                    | 112.93444   | 99.52                                  | +3746                         | <sup>9</sup> <sup>6</sup> ZrC <sub>2</sub> | 119.90930   | 02.74                                  | +17E3             |
| 107 4                          | 100 00007                |                |           |                                            |             | ,,,, <u>,</u> _                        |                               | 5600                                       | 110 01168   | 00 78                                  | 11353             |
| Ag                             | 106.90403                | 51.35          |           | 114Fea                                     | 113.86525   | 00.66                                  | -2974                         | 37                                         | 119.91150   | 90.70                                  |                   |
| 947 n130                       | 106.01000                | 00 103         | ±17 🖬 3   | 57                                         |             | 00000                                  |                               | ≤′Al₄C                                     | 119.92616   | 98,89                                  | +5004             |
| 75 1 2                         | 100091099                |                |           | rez                                        | 112.01002   | 00.05                                  | -3481                         | 28 StaCa                                   | 119.93079   | 75.83                                  | +4104             |
| ' ASO2                         | 106.91151                | 99.52          | +16E5     | 9°MoQ                                      | 113.90089   | 23.72                                  | -43E3                         | 120-303                                    |             |                                        | 1.1.0.0           |
| 54                             |                          |                |           | 11401                                      | 117 00755   |                                        |                               | 010                                        | 150.00000   | 09.44                                  | +T556             |
| J <sup>T</sup> Cr <sub>2</sub> | 107.87774                | 00.06          | -4194     | Ca                                         | 113.90355   | 28.86                                  |                               | 1 3 1                                      |             |                                        | 0000              |
| 5400                           | 107 87000                | 00 74          |           | <sup>114</sup> RuC                         | 113,90373   | 31.45                                  | +63E4                         | <sup>121</sup> Ni2                         | 120.86186   | 00.62                                  | -2889             |
| C. Les                         | 101.01922                | 00.54          | -4450     | 114                                        | 117 0070    |                                        |                               | 1217                                       | 100 99777   | 07 70                                  | 7700              |
| J2r0                           | 107.89958                | 17.07          | -28E3     | ao_ <sup>on</sup>                          | 112.90.59   | 00.66                                  | +シンピ4                         | K3                                         | 120.00/2/   | 01.52                                  | -1,299            |
| 92 <sub>M00</sub>              | 107.00346                | 15.80          | -10 86    | <sup>3</sup> <sup>°</sup> ZrC <sub>2</sub> | 113.90433   | 50.33                                  | +15E4                         | eg XO2                                     | 120.89552   | 99.52                                  | -15E3             |
| 108-1                          | 1010/10                  | 1).00          | - 10 10   | 102 PAC                                    | 113,00486   |                                        | 18753                         | 105 040                                    | 120 80073   | 55 18                                  | _ ਤੁਹੇਸ਼ਤੇ        |
| - Pd                           | 107.90347                | 26.71          |           | 82 - 2                                     |             |                                        |                               | ruo                                        | 120.09917   | ~~• <u>1</u> 0                         |                   |
| 108 CA                         | 107 00407                | 00 875         | 18 FL     | Se02                                       | 113.90645   | 09.17                                  | +39E3                         | 121Sb                                      | 120.90371   | 57.25                                  |                   |
| 108.00                         | 101.30401                | 00.079         | -TO P-    | 5°T104                                     | 113,92443   | 05.29                                  | +5455                         | 109 100                                    | IZO OOLEI   | 18 11                                  | エコスアは             |
| + O o MoC                      | 107.90496                | 16.47          | +72E3     | 50 0 00                                    | 113 005 00  |                                        |                               | 121.000                                    | 120.90401   |                                        |                   |
| 96 <sub>Bu</sub> C             | 107 9087                 | 05 45          | 101 83    |                                            | 117.92009   | 04.21                                  | +2142                         | MCC2                                       | 120.90621   | 09.61                                  | +40ビン             |
| 782.0                          | 107.9001                 |                | +2107     | <u> </u>                                   | 113.92605   | 26.60                                  | +5062                         | <sup>57</sup> Fe0₄                         | 120.91505   | 02.17                                  | +11E3             |
| _ SeO₂                         | 107.90910                | 08.98          | +19E3     | 98 Ru0                                     | 113.040/    | 01.87                                  | 12452                         | 12104 0                                    | 120 03035   | 1 1 1 1 1                              | 11538             |
| 96ZrC                          | 107.90930                | 02.77          | +19E3     | 12 2                                       |             |                                        |                               | 1212130                                    | 3120.97075  | 14.14                                  | 77970             |
| 78000                          |                          | 07 70          | 11/177    | 019                                        | 114.00000   | 00.09                                  | +TTOT                         | 15_1C10                                    | 121.00335   | 10.02                                  | +1512             |
| deu2                           | 101.91111                | 01.12          | +1+0)     | 99                                         | 111 00000   | 10.00                                  | 1                             | 122                                        |             | 07 1.2                                 | 000               |
| °°SrC⊳                         | 107.91325                | 00.55          | +11E3     | Ruo                                        | 114.90096   | 12.69                                  | -43E3                         | 122 Ni2                                    | 121.85911   | 03.41                                  | -2784             |
| 27 41.                         | 107 02613                | 100 00         | 14762     | 115 Sn                                     | 114,90335   | 00.35                                  | -4464                         | 110 FeaC                                   | 121.87155   | 10.55                                  | -3888             |
| £0                             | 107.92017                | 100.00         | ++/02     | 115 -                                      |             |                                        |                               | 551 2                                      |             |                                        | jug ho            |
| ~~N1C₄                         | 107.93077                | 25.09          | +2953     | 10°° TU                                    | T14.2020T   | 22. (2                                 |                               | Mn2C                                       | TST.0( 010  | 70.09                                  | -4549             |
| 28 Sta Ca                      | 107.93079                | 76.67          | +3050     | <sup>103</sup> RhC                         | 114.90455   | 98.89                                  | +12E4                         | 122 Caa                                    | 121,88435   | 01.79                                  | -6572             |
| 440.0                          |                          |                |           | 1157 n.C.                                  | 174 00530   | 1210                                   | 6753                          | 907.0                                      |             |                                        | 1/1777            |
| -∵ca0₄                         | 107.93514                | 02.04          | +2411     | 90-2102                                    | 117.900022  | 12.10                                  | +0(1)                         | 2702                                       | 121.09412   | 51.21                                  | -1462             |
| <sup>12</sup> Ca               | 108.00000                | 90.44          | +1118     | ZrfSC                                      | 2114.90769  | 01.13                                  | +28E3                         | <sup>10 e</sup> PdO                        | 121.89782   | 27.26                                  | -24E3             |
| 09                             | 100.00000                |                |           | <b>F</b> 0                                 |             |                                        | -                             | 108040                                     |             |                                        | - 50 83           |
| 217 C2                         | 108.50168                | 16.50          |           | °°Ni2                                      | 115.87070   | 47.86                                  | -3681                         | - Cuu                                      | 121.90004   | UI•CI                                  | - 79-27           |
| 018                            | 100. 00100               | 10.00          |           | 58 80-                                     | 116 86662   | 00 001                                 | 3258                          | <sup>122</sup> Te                          | 121,90290   | 02.46                                  |                   |
| 93 mbo                         | 108 00057                | 00 76          | 07 E3     | P 4 5 5 5                                  | 119.00002   | 00.001                                 | - 72.50                       | 110                                        |             | 10.05                                  |                   |
| 108.00                         | 100.90097                | 22.10          | -2127     | °⁻Sr0₂                                     | 115.90305   | 00.56                                  | -14E4                         | ++ CaC                                     | 121.90329   | 15.52                                  | +ウエビ4             |
| 10° Ag                         | 108.90461                | 48.65          |           | 100 Bu                                     | 115,900     | 12.50                                  | -5383                         | 110 PdC                                    | 121,90447   | 11.68                                  | +78E3             |
| 109 100                        | 108 00621                | 00 51          | 16853     | 100100                                     |             |                                        |                               | 122120                                     |             | 07 117                                 | 1002              |
| 77                             | 100.90021                | 09.07          | +001      | MOO                                        | 115.90142   | 09.61                                  | -1554                         | - MOC2                                     | 121.90590   | 27.41                                  | +40 57            |
| ( SeO <sub>2</sub>             | 108,90980                | 07.54          | +21E3     | 118 <sub>Sn</sub>                          | 115,90219   | 14.30                                  |                               | <sup>e e</sup> SrC <sub>3</sub>            | 121,90935   | 09.54                                  | +19E3             |
| 85 RbCa                        | 108.91202                | 70.56          | +1583     | 104 010                                    |             | 10.02                                  |                               | 58 TAN.                                    | 121 01205   | 00 33                                  | +12E3             |
| 967                            | 100.01000                |                |           | Pac                                        | TT2+20,250  | T0.02                                  | +1154                         | 58.04                                      |             |                                        |                   |
| - Zrisc                        | 100.91265                | 00.051         | +1462     | 104 RuC                                    | 115.90422   | 18.37                                  | +57E3                         | <sup>30</sup> N104                         | 121.91499   | 60.52                                  | +10E2             |
| - <sup>IUS</sup> SiaC          | <pre>&gt;108.93035</pre> | 13.50          | +4231     | 1167.0                                     | 115 00467   | 16 66                                  | ルファス                          | 12251-0                                    | -121.92762  | 08.60                                  | +4931             |
| 109 ~                          | 100 00336                | 00 10          | 1103      | 110000                                     | 119.90407   | 10.90                                  |                               | 980.730                                    |             | 01.83                                  | 10386             |
| ⊂a                             | 109.000000               | 09.12          | +110)     | Cd                                         | 115.90499   | 07.58                                  | +41E3                         | , Ruce                                     | 121.95-7    | 01.07                                  | +2,000            |
| 110                            | 100 97155                | 10 67          | 7107      | 92MoCa                                     | 115,90855   | 15.49                                  | +18E3                         | 144C10                                     | 122.00670   | 00,505                                 | +1174             |
| re2                            | 109.07100                | 10.01          | -2462     | 522.0                                      |             | Số cố                                  |                               | 123                                        | 122 88678   | <u></u> Ω                              | -7063             |
| <sup>J J</sup> Mn <sub>2</sub> | 109.87611                | 100.00         | -4044     | -Cr04                                      | 115.92015   | 02.90                                  | +0+22                         | 91                                         | 122.00010   |                                        | 1 1 1 7 7         |
| 94Ma0                          | 100 00085                | 00 02          | 1653      | 28 Sta0a                                   | 115.92061   | 78.02                                  | +6298                         | <sup>2</sup> ZrO <sub>2</sub>              | 122.89512   | 11•1 <i>(</i>                          | -14E2             |
| MOU                            | 109.90005                | 09.02          | -4262     | 1167-0                                     | 115 02/86   | 17 04                                  | 16113                         | 107 AgO                                    | 122.89974   | 51.23                                  | -28E3             |
| ¶ 4Zr0                         | 109,90255                | 17.36          | -15E4     | ZnC4                                       | 112.92400   | 11.94                                  | モンエン                          | 100                                        |             |                                        | /                 |
| 110 04                         | 100 00300                |                | -         | * CapCa                                    | 115.92517   | 90.38                                  | +5044                         | ±≤ Sb                                      | 122.90418   | 42.75                                  |                   |
| ca                             | 103.30253                | 16.22          |           | 232mh2                                     | 116 0100    | 100.00                                 | +1185                         | 123 CAC                                    | 122.00428   | 12.75                                  | +1255             |
| <sup>110</sup> Pd              | 109.90447                | 11.81          | +93E3     | 111                                        | 110.0190    | 100.00                                 |                               | 1230                                       | 122.90420   |                                        | +12 10            |
| 110MoC                         | 100 00508                | 23 62          | ⊥น้ำ ธ่3  | 397                                        | 116 80113   | 80 70                                  | -9766                         | Te                                         | 122.9043    | 00.07                                  | +T0E2             |
| 78 2.0                         | 109.90590                |                |           | 1013                                       |             |                                        | 70.07                         | <sup>123</sup> RuC <sub>2</sub>            | 122.90605   | 12.48                                  | +66E3             |
| SeO2                           | 109.90721                | 22.42          | +20E2     | 101 RuO                                    | 116.9000    | 17.022                                 | -2052                         | 123 cmC-                                   | 122 20802   | 07 11                                  | +26F3             |
| <sup>ae</sup> SrC <sub>2</sub> | 109.90935                | 09.64          | +18E3     | 85 BDO2                                    | 116.90182   | 71.80                                  | -91E3                         | 2 DI 03                                    | 122.90099   | 01.11                                  |                   |
| 397                            |                          | 86.26          | 17878     |                                            | 110190100   |                                        |                               | <sup>e</sup> RbCa                          | 122.90930   | 26.94                                  | +24E3             |
| _ V505                         | 109.91/24                | 00.20          | +1010     | <sup>117</sup> Sn                          | 116.90310   | 07.61                                  |                               | 1230                                       | ີ 27 ຄຳຄໍຄິ | 05                                     | +1161             |
| <sup>110</sup> SiaC            | - 109 <b>.</b> 92763     | 08.55          | +4515     | 117010                                     | 110 00190   | 20 10                                  | 10953                         | <b>V10</b>                                 | 12/01000    | 00.01)                                 | 1 7 7 9 7         |
| 4 6 T 1 0                      | 100 03227                | 07.02          | ±3702     | Pac                                        | 116.90462   | 22.10                                  | +6052                         | 124.                                       | 103 35873   | 00 57                                  | -2664             |
| 31-04                          | 109.97221                |                |           | <sup>93</sup> NbCa                         | 116,90566   | 97.80                                  | +46E3                         | - N12                                      | 12/0000     | 00.57                                  | -2004             |
| - P203                         | T03.92555                | 99.20          | +2244     | 8501 0                                     | 116 02017   | 11 03                                  | <u>re848</u>                  | <sup>56</sup> FeaC                         | 123.86388   | 83.09                                  | -3000             |
| 98 RuC                         | 109.954/                 | 01.85          | +2167     | 01302                                      | 110.92011   |                                        | 10000                         | 12400                                      | 103 88070   | 05 70                                  | -5053             |
| 1100                           | 110 00670                |                | 1063      | <sup>53</sup> CrO₄                         | 116.92029   | 09.46                                  | +600T                         | a_3                                        | 122.000/2   | 02.19                                  | - 10 - 10         |
| C9                             | TT0.00010                | 00.409         | +106)     | 27 41-0-                                   | 116,94462   | 96.72                                  | +2816                         | <sup>92</sup> ZrO <sub>2</sub>             | 123.39447   | 17.03                                  | -12E3             |
| 1117                           | 110 97500                | 00 26          | 3700      | 23410                                      |             | 05 653                                 | 008                           | 92M00-                                     | 123.89835   | 15.76                                  | -18E3             |
| Fe2                            | TTO 01205                | 00.20          | -2790     |                                            | 111.0202    | 05.057                                 | ÷ 330                         | 108-10                                     |             |                                        | 1957              |
| 95MoO                          | 110.89935                | 10.73          | -23E3     | 2352                                       | 117 6014    | 00 70                                  |                               | PdO                                        | 142.09020   | <0.30                                  | -1053             |
| 11100                          |                          | 10 76          |           | <b>-</b> u-                                | 111 • 7414  | 00.12                                  |                               | TOB COO                                    | 123.89898   | 00.871                                 | -20E3             |
| <b>-</b> ua                    | TTO-20458                | 14.(5          |           | 118                                        | 117 96010   | 36 00                                  | -3081                         | 124 CAC                                    | 123.00306   | 23.04                                  | -57 E3            |
| 99 Run                         | 110.00605                | 12.58          | +6353     | °Ni2                                       | TT(*00015   | J0.29                                  | - <i>Je</i> 01                | 124~                                       |             | 51.37                                  | 25.22             |
| 79                             |                          |                |           | 59 Co-                                     | 117.86636   | 100.00                                 | -3304                         | ''e                                        | TSD•A09T5   | 04.6L                                  | - ウダ やう           |
| Br02                           | TTO . 20013              | 20.29          | +2017     | 102 5.0                                    | 117 8096    | 31 63                                  | - 35 57                       | 124 RuCo                                   | 123.905     | 12.32                                  | -50 E4            |
| <sup>111</sup> SrC-            | 110.90899                | 07.09          | +24E3     | HuO                                        | 111.02004   | 21.22                                  | -2222                         | 1240                                       | 107 0000    | OF OF                                  |                   |
| 87 02 7                        | 110 00030                | 27 34          | エククデネ     | <sup>ee</sup> Sr0,                         | 117.89915   | 09.81                                  | -4⊥E5                         | · Sn                                       | 122.90524   | UD•94                                  |                   |
| 63                             | TTO . 202.20             | - I •          |           | 102 040                                    | 117 80077   | 00.96                                  | -52E3                         | 1240-0                                     | 123 00010   | 80 08                                  | <u> ተ</u> ገ և ም ሥ |
| °° CuOa                        | 110.91432                | 68 <b>.</b> 59 | +11E3     | Fau                                        | TT1 . 02211 |                                        |                               | - SrUg                                     | T57.700T0   |                                        |                   |
| 63 0 1 0                       | 110 62050                | 86.08          | +4382     | 118 Sn                                     | 117.90205   | 24.03                                  |                               | ⁺≃⁴Xe                                      | 123.90612   | 00.01                                  | +14E4             |
| 47                             | 110 76707                |                | 11202     | 118                                        | 117 00001   | 07 00                                  | 11200                         | 100MAC-                                    | 123.00651   | 09.42                                  | +98E3             |
| T104                           | 110.93140                | 06.97          | +4089     | PdC                                        | 117.90291   | 21.28                                  | +1+54                         | 80                                         |             |                                        |                   |
| 111 <sub>Ca</sub>              | 111.01008                | 00.011         | +1048     | 10 0 CAC                                   | 117.90593   | 01.20                                  | +30 E3                        | °∼NiO₄                                     | 123.91041   | 25.90                                  | +2453             |
| ~ <b>9</b>                     |                          |                | · · -     | 841-0                                      | 117 00601   | 08 84                                  | +30 83                        | 27A1.0                                     | 123.92107   | 99.76                                  | +7827             |
| 112 Po-                        | 111.86388                | 84.0e          | -2856     | - MOU2                                     | 111.20274   |                                        |                               |                                            |             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                   |
| 112-22                         |                          |                | 27717     | ∃*ZrC>                                     | 117.90764   | 17.02                                  | +とエビク                         | 113 Fe- 0                                  | 124.86735   | 03.97                                  | -3351             |
| Fez                            | TTT.0(595                | 00.04          | -2(12     | 8801-0-                                    | 117,01744   | 08.45                                  | +7661                         | 93                                         |             |                                        | ייים ול ר         |
| 9 6MOO                         | 111 80087                | 16.40          | -35 83    | 542 2                                      |             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 17163                         | I NDO2                                     | 124.09546   | 72.25                                  | -14E3             |
| 1100                           | 102201                   |                | رشار ر    | _⁼Cr0₄                                     | 117.91851   | 02.00                                  | <b>*(</b> <u>+</u> <u>2</u> 2 | 109 AgÕ                                    | 124.89952   | 48.53                                  | -25E3             |
| TTE Cd                         | 111.90306                | 24.07          |           | 54Fe0.                                     | 117.91925   | 05.76                                  | +6855                         | 113720                                     | 104 00412   | 04 52                                  | - 30 11           |
| 9 6 BILO                       | 111 00361                | 05.50          | +2014     |                                            |             |                                        |                               | 128                                        |             | 37.57                                  |                   |
| 967 -                          |                          |                |           | 119 Ni-                                    | 118.86644   | 01.65                                  | -3239                         | ⁺f°CdC                                     | 124.90446   | 15.09                                  | -70E4             |
| <sup>o</sup> <sup>o</sup> ZrO  | 111.90421                | 02.19          | +91E2     | 110                                        |             |                                        | QEE II                        | 125 To                                     | 124 004A2   | 06.99                                  |                   |
| 112 RuC                        | 111.905                  | 12.62          | +58E3     | тт <sup>р</sup> Ка                         | 118.88925   | 17.09                                  | -0224                         | 125 - ~                                    | 10/ 000     | 16 07                                  | 12250             |
| 112                            |                          | 00.00          | 16553     | 87 Smn-                                    | 118.80870   | 06.99                                  | -27E3                         | RuC2                                       | 124.905     | 10.97                                  | キククビ4             |
| sn                             | TTT•202T                 | 20.30          | T2252     | 87                                         |             |                                        | -3053                         | an -                                       | 10F 0F0     | 1                                      | <u> </u>          |
| 112 SrCa                       | 111.9061                 | 80.89          | +37E3     | - RbO2                                     | TT0.02775   | < 1 • 1 Z                              |                               | os Cu2                                     | 125.85918   | 47.73                                  | -2017             |
| 80                             | 111 00000                | 40 36          | +3552     | 103 RhŌ                                    | 118.89946   | 99.76                                  | -32E3                         | 1235 0                                     | 125 86525   | 00.65                                  | -3260             |
| 100002                         | TTT. 20052               | 77.20          |           | 110-                                       |             | 00 -0                                  |                               | re20                                       |             |                                        |                   |
| +00MoC                         | 111.90651                | 09.52          | +2253     | ÷∸° Sn                                     | 110.90315   | 00.50                                  |                               | ° <sup>™</sup> MoO>                        | 125.89574   | 09.00                                  | -16E3             |
| 28 4                           | 111 00770                | 72-30          | +24E3     | 1194-0                                     | 118 00111   | 10.72                                  | +9283                         | 947-0                                      | 125 80711   | 17.32                                  | -20 83            |
| 40                             |                          | 72.52          | 10000     | MOU2                                       |             | ±2.15                                  |                               | 110102                                     |             | きん・イラ                                  |                   |
| ~~Ca202                        | 111.91554                | 92 <b>.5</b> 0 | +0901     | +0" AgC                                    | 118.90483   | 50.78                                  | +(155                         | ++°CdO                                     | 125.59820   | 12.36                                  | -2253             |
| 48 11 1 1                      | 111.92759                | 73.27          | +4562     | 55Mnn                                      | 118.01760   | 99.04                                  | +8178                         | 110 PAO                                    | 125.89938   | 11.78                                  | -28E3             |
| *64 7 ~ ~                      |                          | 16 70          | Lunn      | 238                                        |             | 66°                                    | - dei                         | 128                                        |             |                                        | - 20-2            |
| ~~ZnC4                         | TTT•75(ÃQ                | 40.0           |           | ~ J O U2                                   | LLY.0245    | 770214                                 | - 70I                         | ÷€°CdC                                     | 125.90355   | 20.60                                  | - 29 54           |
| <sup>32</sup> S=0a             | 111.92887                | 89.60          | +4336     | 120                                        |             | 11 01                                  | 2010                          | 128R1C-                                    | 125.90373   | 31.28                                  | -90E4             |
|                                |                          |                |           | - Niz                                      | 119.06154   | 11.94                                  | -2777                         | 12 8m-                                     | 125 00287   | 18 71                                  |                   |
|                                |                          |                |           | -                                          |             |                                        |                               | T.e                                        | 10/05+70/01 |                                        |                   |

© University of Pretoria

186



| 12 600                           | 125 00397  | 18 71           |                   | 1 4 -                                        | 177 25001    | 10 00          | 0510                                    | 14104                                        | 10 85031               | 02 63          | -2555  |
|----------------------------------|------------|-----------------|-------------------|----------------------------------------------|--------------|----------------|-----------------------------------------|----------------------------------------------|------------------------|----------------|--------|
| 114900                           | 125 20320  | 00 65           | 14025             | 87 m                                         | 122.35091    | 10.50          | -2510                                   | 9311-0                                       | 140.00204              | 20.22          | -2250  |
| 907-0                            | 125.90 00  | 10.77           | +0750             | ~ _n₂                                        | 137.35423    | 00.17          | -2680                                   |                                              | 140.59059              | 19.20          | 1153   |
| 12 Arts                          | 125.90435  | 49.11           | +27 5.4           | 110 7-2C2                                    | 133.87155    | 10.43          | -4094                                   | 125 AgU2                                     | 140.09441              | 40.42          | 1957   |
| 102 DIG                          | 125.90445  | 00.09           | +2224             | <sup>55</sup> Mn <sub>2</sub> C <sub>2</sub> | 133.87610    | 97.80          | -4757                                   | 141                                          | 140.59952              | 05.70          | -1052  |
| PdC2                             | 125.90406  | 00.94           | +1254             | 102 Ru02                                     | 133.89353    | 31.46          | -13E3                                   | f SnC2                                       | 140.9051               | 07.19          | -2422  |
| - J- C2 1                        | 125.00000  | (9•⊥4           | +1010             | <sup>36</sup> SrO <sub>3</sub>               | 133.89410    | 09.79          | -13E3                                   | 12 TeC                                       | 140.90555              | 21.44          |        |
| <sup>95</sup> MoO2               | 126.89424  | 10.71           | -12EB             | 118 SnO                                      | 133.39696    | 23.97          | -18E3                                   | SSN6C4                                       | 140.,0555              | 90.00          | -(10)  |
| 111CdO                           | 126.80919  | 12.72           | -23EF             | <sup>122</sup> TeC                           | 133.9029     | 02.43          | -99E3                                   | 141 Pr                                       | 140.90743              | 100.00         |        |
| 115 SnC                          | 126,90335  | 00.35           | - 27 मई           | 110 CdCa                                     | 133.90329    | 12.12          | -14E4                                   | 140CeH                                       | 140.91310              | 38.47          | +25E3  |
| 115 TnC                          | 126.00361  | 94.66           | -1274             | 122 SnC                                      | 133,00346    | 04.67          | $-17 \pm 4$                             | 142 7                                        | 141 34558              | 11 23          | -2227  |
| 103 BhCa                         | 126.90455  | 57. Sõ          | -7295             | 134 <sub>B2</sub>                            | 133 00425    | 02 12          |                                         | xe2                                          | 141.040                | -1             | -2227  |
| 127 7                            | 126 00466  | 100.00          |                   | 110 010                                      | 177 00427    | 11 55          |                                         | 144Ti3                                       | 141.54853              | 14.51          | -2335  |
| 127720                           | 126 00532  | 12 52           | 10F4              | Bee e                                        | 100.90447    | 11.55          | +6124                                   | ' <sup>1</sup> Ga <sub>2</sub>               | 141.84964              | 15.68          | -2379  |
| 63 0.00                          | 126 00023  | 68 <u>1</u> 3   | 12853             | sec. o                                       | 122.90925    | 09.42          | +2613                                   | 110 Fee0a                                    | 141.86137              | 10.62          | -2961  |
| 254 22                           | 127 00335  | 02 085          | 1296              | 1340                                         | 177.91275    | 00.45          | +1(E)                                   | <sup>55</sup> Mn <sub>2</sub> 0 <sub>2</sub> | 141.86592              | 99.52          | -3271  |
| 647n                             | 127 85502  | 23 21           | -2527             | 011                                          | 194.006/0    | 00.611         | +1207                                   | 107 AgCl                                     | 141.87368              | 38.78          | -3984  |
| 128 0.                           | 107 85737  | 20.91           | 0855              | 135~02                                       | 134.85200    | 01.53          | -2519                                   | <sup>94</sup> ZrÕ3                           | 141.89237              | 17.27          | -8382  |
|                                  | 127.05727  | 42.11           | -2000             | 87 SrO-                                      | 134 80372    | 06.07          | _1153                                   | 110 Cd02                                     | 141.89309              | 12.33          | -8754  |
| <sup>56</sup> Fe <sub>2</sub> O  | 127.35879  | 83.81           | -2735             | 87 800-                                      | 134 80403    | 27 65          | -1283                                   | <sup>110</sup> Pd0 <sub>2</sub>              | 141.89427              | 11.75          | -9442  |
| <sup>128</sup> Ca <sub>3</sub>   | 127.33053  | 00.64           | -5112             | 103 500-                                     | 134 80435    |                | -1253                                   | <sup>12 a</sup> TeO                          | 141.89878              | 13.65          | -14E3  |
| 52 Cr2 C2                        | 127.88102  | 68.61           | -5214             | 119 0-0                                      |              | 27•J2          | 1007                                    | 142 SnC2                                     | 141.00205              | 23.67          | -20E3  |
| <sup>9 6</sup> MoO <sub>2</sub>  | 127.89476  | 16.45           | -12E3             | 123010                                       | 174.09006    | 00.56          | -1057                                   | 130 BaC                                      | 141,90623              | 00.100         | -46E3  |
| 9 °Ru02                          | 127.8985   | 05.48           | -18E3             | 135616                                       | 124.90410    | 42.20          | -90E2                                   | 130 TeC                                      | 141,90695              | 34.10          | -60E3  |
| 112Cd0                           | 127.89797  | 23.95           | -17E3             | LOO CAC2                                     | 194.90420    | T5.90          | -1124                                   | 142 <sub>Nd</sub>                            | 141.90748              | 27.11          | -78E3  |
| <sup>9</sup> €ZrC₂               | 127.89910  | 02.79           | -20E3             | 135 Ea                                       | 134.90555    | 06.59          |                                         | 947rC4                                       | 141.90764              | 16.64          | -86E3  |
| 112 Sn0                          | 127.9000   | 00.95           | -23E3             | 27A15                                        | 134.90770    | 100.00         | +63E3                                   | 142                                          | 141.00030              | 11.07          |        |
| 116SnC                           | 127,90219  | 14.14           | -38E3             | 68 7                                         | 175 84070    | oz he          | 01.87                                   |                                              | 1 1. 0                 |                | - 1    |
| 104 PdCa                         | 127,90329  | 10.73           | -56E3             | 1127. 0                                      | 155.04912    | 02.45          | -2407                                   | IZ IO                                        | 142.89957              | 99.76          | -14E3  |
| 128 Xe                           | 127.90351  | 01.917          | -6323             | 40 0 - 0                                     | 2122.06000   | 02.20          | -2226                                   | 5 SnC2                                       | 142.90315              | 02.92          | -22E3  |
| 104 R110-                        | 127,90422  | 18.17           | -GÁES             | T CagO                                       | 1000267      | 90.12          | -0203                                   | 143Nd                                        | 142.90958              | 12.17          |        |
| 128 ZrCa                         | 127.00467  | 16.91           | -1554             | Se SrOg                                      | 125.39082    | ST.96          | -1083                                   | 142NdH                                       | 142.91530              | 27.11          | +25E3  |
| 116 <sub>040</sub>               | 127 00400  | 07.50           | -2354             | 10 FPdO2                                     | 135.89308    | 10.92          | -12E2                                   | <sup>142</sup> CeH                           | 142.91712              | 11.07          | +19E3  |
| 1280-                            | 107 00555  | 31 70           |                   | $104 \text{RuO}_2$                           | 135.89402    | 18.49          | -1353                                   | 7200                                         | 1/12 8/1218            | 07 50          | -2160  |
| 40 a - 0                         | 127.90000  | 21.19           | 100 23            | 120 Sn0                                      | 135.89711    | 32.77          | -19E <u>3</u>                           | 144m2                                        | 147.04710              | 11.17          | 2182   |
| 10 Ca203                         | T51.90330  | 92.10           | +2950             | <sup>120</sup> TeO                           | 135.89940    | 00.089         | -27 E3                                  | 1447.                                        | 142.04200              | 22 51          | -5105  |
| 97100                            | 108 80201  |                 | 1077              | 124TeJ                                       | 135.89898    | 04.56          | -25E3                                   | Je2                                          | 142.04499              | 22·91          | -2220  |
| 113700                           | 128 90001  | 00.07           |                   | 136CdC2                                      | 135.90306    | 23.82          | -10E4                                   | 3°Fe202                                      | 143.555/0              | 32.6L          | -2565  |
| 113240                           | 108 90027  | 10 07           | -2020             | <sup>136</sup> Ba                            | 135.90437    | 07.81          |                                         | AgCl                                         | 143.57346              | 12.57          | -2682  |
| 129 0. 0                         | 120.09997  | 12.20           | -2452             | ll2SnC2                                      | 135.9051     | 00.94          | +19 E4                                  | to Ca3C2                                     | 147.88776              | 38.35          | -6529  |
| 129                              | 120.9051   | 07.69           | -(942             | 124SnC                                       | 135.90524    | 05.87          | +16E4                                   | 112CdO2                                      | 143.39286              | 23.95          | -8495  |
| 129 D 10                         | 125.904/4  | 25.44           |                   | <sup>136</sup> SrC <sub>4</sub>              | 135.90610    | 79.26          | +79E3                                   | TeO                                          | 143.90046              | 31.70          | -15E3  |
| PaC2                             | 128.90482  | 51.98           | +1655             | <sup>136</sup> Ce                            | 135.90707    | 00.193         | +50E7                                   | 111 SnC2                                     | 143.9022               | 32.32          | -19E3  |
| NbCa                             | 128,90764  | 96.72           | +4523             | <sup>136</sup> Xe                            | 135.90721    | 08.87          | +48E3                                   | 13Z BaC                                      | 143.90512              | 00.096         | -31E3  |
| ~′Al <sub>3</sub> O <sub>3</sub> | 128,92935  | 99.23           | +5233             | 137                                          | 170 00075    |                | 7 7 7 0                                 | 144Nd                                        | 143.90980              | 23.35          |        |
| 130-                             | 100 Pellon | 07 00           | 01 50             | 101 Hez Ca                                   | 2106.06735   | 05.77          | -2535                                   | <u>1</u> 4 4 Sm                              | 143.91185              | 03.09          | +78E3  |
| EE.                              | 129.35401  | 27.20           | -2452             | ag Yog                                       | 136.39042    | 99.28          | -9037                                   | 27A14C3                                      | 143.92616              | 26.72          | +8800  |
| Jug                              | 129.35556  | 09.55           | -2228             | 105 Pd02                                     | 136.89462    | 22.12          | -13E3                                   | C15                                          | 100000                 | 57.46          | +1595  |
| <sup>3</sup> MoO <sub>2</sub>    | 129.39578  | 23.67           | -12E3             | 121SbO                                       | 136.89862    | 57.11          | -20E3                                   | 145710                                       | 144.24377              | 10.78          | -2122  |
| 114CdO                           | 129.39846  | 28.79           | -15E3             | <sup>113</sup> InC <sub>2</sub>              | 136.90430    | 04 <b>.1</b> 9 | -11E <sup>4</sup>                       | 145 200                                      | 144,84403              | 04.15          | -2159  |
| 114Sn0                           | 129.3983   | 00.66           | -18E3             | 137 CdC2                                     | 136.90446    | 12.52          | -1254                                   | 113 700-                                     | 122 83210              | 04 26          | -80.60 |
| <sup>130</sup> SnC               | 129.90205  | 23.92           | -27 E3            | 137 TeC                                      | 156.90462    | 06.96          | -14E4                                   | 113040-                                      | 100 37036              | 12 20          | -8141  |
| 130 Pd C2                        | 129.90291  | 27.22           | -32 E3            | 137 Ba                                       | 136.90557    | 11.32          |                                         | 121ch/2                                      | 122.0 220              | 55 00          | -1753  |
| <sup>130</sup> Хе                | 129.90350  | 04.08           | -37E3             |                                              |              |                |                                         | 133720                                       | 144 00513              | 22.22          | -2123  |
| 10 °CdC2                         | 129,90593  | 01.19           | -13E <sup>1</sup> | 59 Ga2                                       | 137.35142    | 36.48          | -2530                                   | - 45                                         |                        | 90.09          |        |
| <sup>130</sup> Ba                | 129.90823  | 00.1Ĉ1          | -13E4             | ZrOg                                         | 137.33906    | 51.09          | -3717                                   | = 10 IId                                     | 144.91208              | 05.30          |        |
| <sup>130</sup> Te                | 129.90695  | 34.43           |                   | - PdO <sub>2</sub>                           | 137.59271    | 27.20          | -1233                                   | 145 712                                      | 145.00335              | 11.78          | +1587  |
| 94ZrCa                           | 120.90764  | 13.83           | +19E4             | ty 20d0a                                     | 137.39573    | 01.21          | -15E3                                   | 148-1                                        | a 1 = 21 0 00          |                | 2007   |
| 131~                             | 170 37710  |                 | 0.000             | tffTeO                                       | 137.99781    | 02.45          | -20E3                                   | 1480-                                        | 1 2 . 2 . 0            | 07.04          | -2027  |
| 10 1                             | 100.00010  | JUZ             | -2519             | tffSn0                                       | 137.39837    | 04.71          | -21E3                                   | 1021227                                      | +-2· *-27              | 22.32          | -2001  |
| F RuO2                           | 130.39505  | 12.66           | -14E3             | 130CdC2                                      | 137.90355    | 23.49          | -10E4                                   | 114040                                       | - Teb. 105T            |                | -2-22  |
| 115 SnO                          | 130.39326  | 00.35           | -19E5             | 137TeC                                       | 137.90387    | 13.55          | -1-E-                                   | 132 - 0202                                   |                        | 20. 2          | -,2-2  |
| 113 InO                          | 170.39852  | 22.40           | -20E3             | -14SnC2                                      | 137.9039     | 00.65          | -14E4                                   | 1307-0                                       | 1-2.50130<br>1-2.50130 |                | -1222  |
| 131SnC                           | 130.90315  | 03.73           | -68E2             | $g_0 ZrC_4$                                  | 137.90433    | 49.22          | -25E4                                   | 122-00                                       | 142.90100              | 24.20          | -1422  |
| 131 AgC2                         | 130.90485  | 20.25           | -25252            | <sup>138</sup> Ba                            | 137.90488    | 71.66          |                                         | 122000                                       | 1 = 50352              | 02.41          | -1922  |
| Xe                               | 130.90508  | 21.13           |                   | <sup>138</sup> Ce                            | 137.90603    | 00.25          | +1254                                   | 1345.0                                       | 1-7.10.40              | 04.02          | -1020  |
| 1327n-                           | 131,35080  | 25 80           | -2522             | 138 La                                       | 137.90674    | 00.039         | +7+E3                                   | ==================================           | 1,5 01045              | 02+29<br>17 00 | -エ(コン  |
| 40 00 0                          | 131 92776  | 20.27           | -7508             | 317 0                                        | 170 20000    |                | 0.05.0                                  | d                                            | 1-2.41269              | T1.55          |        |
| 100 p                            | 171 8010   | J7•)4<br>10 = 0 | -1000<br>-1722    | - ZrOg                                       | T22.20005    | 11.14          | - : : : : : : : : : : : : : : : : : : : | 17512                                        | 1-8.00670              | 00.725         | +1552  |
| 100100                           | 121 80071  | 12.50           |                   | 123 AU02                                     | 158.89463    | 51.10          | -1422                                   | 147742                                       | 148.94081              | 01.30          | -1989  |
| 116002                           | 171 90710  |                 | -1027<br>1077     | 123500                                       | 138.89909    | 42.02          | -56.52                                  | 147 200                                      | 748, 2447E             | 05.57          | -2094  |
| 116040                           | 171 20000  | 14.21           |                   | 12°TeO                                       | 135.8992     | 00.87          | -20E2                                   | 115 Tr.O.                                    | 148.30741              | 25.26          | -69.69 |
| 1320-0                           | 171.099990 | 20 23           | 16722             | 1 SnC2                                       | 138.90335    | 00.25          | -52=2                                   | 123576                                       | 148.00419              | 41.B1          | -1423  |
| 108 040                          | 171 00220  | 22.50           |                   | 113 InCa                                     | 138.90361    | 93.61          | -57 E2                                  | 147 BaC                                      | 148.00555              | 06.55          | -1653  |
| 108 040                          | 131 20107  | 20.12           | -00 ±5            | 139 IC                                       | 138.90466    | 98.89          | -1024                                   | 134 ta 13                                    | d 46.20760             | 00.026         | -21E3  |
| 132V2                            | 131 00016  | 26.30           | -1/24<br>1//24    | 139 TC4                                      | 158.90532    | 12.94          | -20 E4                                  | 2741=C                                       | 146.00770              | 28.39          | -2253  |
| 120mar                           | 131 00000  | 20.09           | ーエッジャ<br>- フィント   | 139 La                                       | 120.90603    | 99.911         |                                         | 147 cm                                       | 146 01440              | 14 07          | /      |
| 132-                             | 1)1.90449  | 00.037          |                   | тгг∋ан                                       | 138.91540    | 71.65          | +20E3                                   | 147 0                                        | 1 7 01002              | 20.007         | . 1677 |
| Ba                               | 191.90512  | 00.097          |                   | <sup>70</sup> Gep                            | 139.34798    | 04.21          | -2442                                   | C12                                          | T+1:0T003              | 00.027         | +100%  |
| - S1303                          | 121.91552  | 77.33           | +15E3             | 140 345                                      | 139.35053    | 47.84          | -2555                                   | 148Tia                                       | 147.33752              | 00.68          | -1874  |
| - Al <sub>4</sub> C <sub>2</sub> | 191.92616  | 97.80           | +6269             | 140                                          | 139 85321    | 01.40          | -2697                                   | 148 Geo                                      | 147.34200              | 17.81          | -1987  |
| C <sub>11</sub>                  | T25.00000  | 80 <b>.</b> 45  | +1390             | 28312                                        | 139,88465    | 66 66          | -6733                                   | 5 6 7 6 2 Ca                                 | 147.86388              | 31.26          | -2317  |
| 1337n-                           | 132.85318  | 02.29           | -2558             | 923r0a                                       | 179,33040    | 16.00          | -8810                                   | 118Sn0a                                      | 1-7.39199              | 14.23          | -6045  |
| 1010.0                           | 130 8018   | 16.00           | <br>_1 3 5 3      | 103 240-                                     | 139, 99327   | 26 68          | -1253                                   | 1130405                                      | 147.39479              | 07.54          | -6826  |
| 85phA                            | 130 2069   | 10.77<br>71 67  | -1683             | 124TeO                                       | 139,89803    | 04 É8          |                                         | 124TeC-                                      | 147.39898              | 00.139         | -8462  |
| 117 0003                         | 132 80801  | 07 50           | -1057             | 1245n0                                       | 139,90015    | 05.03          | -1959<br>-2753                          | 132Ba0                                       | 147.90003              | 00.097         | -9000  |
| 13300                            | 132 00513  |                 | -1767             | 11eSnC-                                      | 139,90219    | 13.00          | -45 23                                  | 148 EaC                                      | 147.00437              | 07.79          | -12E3  |
| 109/ -7                          | 130 00/21  | 100.00<br>17 28 | -26Fh             | 1407-0                                       |              |                |                                         | 135 <sub>Ba</sub> ĭ3                         | c 47.90891             | 00.07          | -20E3  |
| B5 pr a                          | 130 01000  | -1.50<br>60 01  |                   | 116020                                       | 170 00467    | 16.34          | -23E4                                   | 124 SnC-                                     | 147.90524              | 05.81          | -13E3  |
| 85 0 4                           | 130 01608  | 11 00           |                   | 14000                                        | 130 00E0P    | 07.41<br>gg 10 | -4024                                   | 138CeC                                       | 147.90707              | 00.191         | -16E3  |
| 1337                             | 172 · 7100 |                 | +1353             | 128 Ter                                      | 130 00555    | 31 11          | 15050                                   | <sup>148</sup> Sm                            | 147.01442              | 11.24          | -73E3  |
| 611                              |            | 10.90           | 1-10-1            | 139 <sub>1.2</sub> H                         |              | 00 00          | T7254                                   | 148Nd                                        | 147.91646              | 05.73          |        |
|                                  |            |                 |                   | 27 41.00                                     | Louvaroite   | DProtori       | TLOL)                                   |                                              |                        | -              |        |
|                                  |            |                 |                   | ···⊥4∪29                                     | MIN MULDHY U | 110001         | いーエフトレフ                                 |                                              |                        |                |        |



| 149Ge2                          | 148.84463               | 01.20           | -2063          |                                            |               |           |             |                    |            |        |                |
|---------------------------------|-------------------------|-----------------|----------------|--------------------------------------------|---------------|-----------|-------------|--------------------|------------|--------|----------------|
| <sup>as</sup> Rb0₄              | 148.89170               | 71.46           | -5933          | 12.0                                       | 0.            |           |             | 144 cmC            | 167 01165  | 03 00  | 87.00          |
| 117 SnO2                        | 148.89290               | 07.57           | -6230          | TeO2                                       | 157.89367     | 18.62     | -5139       | 156D.C             | 167.91105  | 09.02  | -0169          |
| <sup>133</sup> CsO              | 148.90004               | 99.76           | -8885          | NdO                                        | 157.90239     | 27.04     | -7175       | 152 Sm()           | 167 01427  | 26 66  | -99990         |
| 149 TeC2                        | 148.90462               | 06.94           | -12E3          | 134 CeO                                    | 157.90421     | 11.04     | -7822       | 152040             | 167.01434  | 20.00  | -1057          |
| <sup>1</sup> <sup>3</sup> BaC   | 148.90557               | 11.28           | -13E3          | 158N4C                                     | 157.90425     | 02.37     | -7837       | 168GdC             | 167.92226  | 20.40  | -21E3          |
| 149 BaC                         | 148.90772               | 00.086          | -16E3          |                                            | 157.91269     | 17.12     | -14E3       | 168 Er             | 167.9308   | 27.07  |                |
| - + Sm                          | 148.91680               | 13.83           |                | 158 Qu                                     | 157.92401     | 00.09     | -4124       | 168 Yh             | 167.93390  | 00.135 | +54E3          |
| 150 Geo                         | 149.84229               | 05.67           | -1909          | 158 g                                      | 157.9244      | 24.87     |             | 12 C14             | 168.00000  | 85.55  | +2427          |
| 75A50                           | 149.84342               | 100.00          | -1937          | 13                                         | 150.000005    | 00.847    | +2000       | 1 49 -             |            |        |                |
| 865r04                          | 149.38899               | 09.77           | -4712          | 158 Cr3                                    | 158.82003     | 01.23     | -1516       | 137 Fea            | 168.79929  | 05.52  | -1251          |
| 134 BaO                         | 149.89916               | 02.35           | -6921          | <sup>159</sup> Se <sub>2</sub>             | 158.83661     | 01.39     | -1800       | 169 BaO2           | 168,89537  | 11.27  | -4225          |
| 150 TeCa                        | 149,90387               | 18.45           | -8845          | 143 NdO                                    | 158.90449     | 12.14     | -7794       | NdC2               | 168.91206  | 08.64  | -7582          |
| 150 BaC                         | 149.90488               | 71.00           | -0405          | 159 BaC2                                   | 158.90555     | 06.50     | -8221       | <sup>155</sup> EuO | 168.91551  | 52.05  | -8972          |
| 138 CeC                         | 149,90603               | 00.25           | -1053          | 147 SmC                                    | 158.91449     | 14.80     | -15E3       | + °° GdC           | 168.9241   | 15.74  | -17E3          |
| 138 LaC                         | 149.90674               | 00.088          | -1153          | 159 Tb                                     | 158.92488     | 100.00    |             | 105 Tm             | 168.93434  | 100.00 |                |
| 150 Sm                          | 149.91690               | 07.44           | -3883          | <sup>159</sup> C13                         | 159.01008     | 00.038    | +1865       | 189C14             | 169.00335  | 13.42  | +2448          |
| 150Nd                           | 149.92082               | 05.62           |                | 160 00                                     | 150 8300%     | 00 14     | 1000        | 170 Fea            | 169.80319  | 00.96  | -1283          |
| 87                              | 1,9,9,2002              | 0,02            |                | 160 0                                      | 159.02294     | 29.14     | -1696       | 170 Sra            | 169.82260  | 00.11  | -1504          |
| Sr04                            | 150.88863               | 06.95           | -4883          | 5 6 T 0                                    |               | 49.99     | -1751       | 85 Rh2             | 169.82404  | 52.06  | -1527          |
| ° (RbO <sub>4</sub>             | 150.88894               | 27.58           | -4932          | 1280.0                                     | 159.04061     | 02.41     | -20,55      | 138 BaOa           | 169.89468  | 71.32  | -4157          |
| <sup>119</sup> SnO <sub>2</sub> | 150.89295               | 08.54           | -5676          | 160 7-0                                    |               | 21.64     | -21/0       | 138 CeO2           | 169.89585  | 00.25  | -4275          |
| 135 BaO                         | 150.90046               | 06.57           | -7909          | 144 Mac                                    | 159.90457     | 07.70     | -7000       | 138 a0a            | 169.89654  | 00.089 | -4351          |
| 27A150                          | 150.90261               | 99.76           | -8914          |                                            | 159.90477     | 22.79     | -7127       | 134 Ba Ca          | 169,90425  | 02.34  | -5421          |
| IZ/IC2                          | 150.90466               | 97.80           | -10E3          | 136g.g                                     | 159.90656     | 05.00     | -7745       | 148NdCa            | 169.91269  | 16.84  | -7418          |
| 151BaC                          | 150.90824               | 00.79           | -13E3          | 160 CeC2                                   | 159.90707     | 00.109    | -7941       | 154640             | 169.91585  | 02.14  | -8604          |
| <sup>151</sup> Eu               | 150.91954               | 47.82           |                | 148 MAG                                    | 159.91442     | 11.29     | -1252       | 154 SmO            | 169.91684  | 22.66  | -9058          |
| 152 Cm                          | 151 83261               | 00 47           | -1751          | 1 60 D                                     | 159.91646     | 05.67     | -1552       | 158 DVC            | 169.924    | 00.089 | -15E           |
| 152 3                           | 151 93856               | 01 22           | -1880          | 1 60 0 1                                   | 159.9259      | 02.294    | -40E2       | 170640             | 169.9244   | 24.76  | -15E           |
| 40 Ca+0-                        | 151 87758               | 80 01           | -3636          | - Ga                                       | 159.92721     | 21.90     |             | 170 YD             | 169.934/   | 03.03  | -11E4          |
| 88570                           | 151 88574               | 81 77           | - 2020         | 161 BaCo                                   | 160,90557     | 11.36     | -7994       | 170 Er             | 169.9356   | 14.88  |                |
| 120000                          | 151 80200               | 32 60           |                | 145 NdO                                    | 160.90697     | 08.28     | -8592       | 170 Č. 4           | 170.00670  | 00.977 | +2390          |
| 1362-0                          | 151 80008               | 07 70           | - 7566         | <sup>1 61</sup> SmC                        | 160.9168      | 13.80     | -18E3       | 171-               |            |        |                |
| 1400-0                          | 151 005920              | 87 50           | -1300          | 181Dv                                      | 160.9257      | 18.88     |             | 135r2              | 170.82224  | 00.079 | -1503          |
| 1287-7                          | 151 00555               | 31 00           | -1157          | 81-                                        | 101 07004     | 01 1-     | a m h c     | 173 La02           | 170.89583  | 97.43  | -425           |
| 1521-0                          | +7+•90000               | JT.09           | -1553          | - Br2                                      | 161.00204     | 24.47     | -1/46       | - BaCa             | 170.90555  | 06.45  | -5614          |
| 152 cm                          | 151 01030               | 01.105          | -1959          | 130 Se2                                    |               | 09.15     | -1(51       | - SmC2             | 170.91449  | 14.64  | -7947          |
| 152 da                          | 151 01017               | 20.12           | 100 FE         | 130m                                       | 161.09603     |           | -54/6       | 153GdO             | 170.91761  | 14.69  | -9295          |
| Ga                              | 151.91945               | 00.20           | +20E5          | 27.1°TeO2                                  | 161.89675     | 34.31     | -5613       | To Los Loc         | 170.92488  | 98.89  | -15E3          |
| <sup>153</sup> Se2              | 152.83926               | 01.37           | -1880          | Ale -                                      | 161.88924     | 100.00    | -4452       | TTYD               | 170.936/   | 14.31  |                |
| S9Y04                           | 152.88536               | 99.04           | -4339          | 102 BaC2                                   | 161.90488     | 70.33     | -7815       | 171C14             | 171.01008  | 00.044 | +2307          |
| 121Sb02                         | 152.89351               | 56.97           | -5645          |                                            | 161.90603     | 00.245    | -8274       | 172 Sra            | 171.81935  | 01.90  | -1624          |
| <sup>137</sup> Ba0              | 152.90048               | 11.29           | -7600          | 1 of SmC                                   | 161.9169      | 07.51     | -19E3       | 172 Bh             | 171.82132  | 40.19  | -1655          |
| <sup>141</sup> PrC              | 152.90748               | 98.89           | -12E3          | LESSNAC                                    | 161.92082     | 05.56     | - 24 52     | 140 CeO2           | 171.89508  | 88.05  | -5708          |
| <sup>153</sup> CeC              | 152.90863               | 00.979          | -13E3          | 1 of Dy                                    | 161.9256      | 25.52     |             | 1 60 DVC           | 171.9239   | 02.27  | -13E4          |
| <sup>153</sup> Eu               | 152.9206                | 52.18           |                | + SE Er                                    | 161.92875     | 00.136    | +5253       | 172 BaCa           | 171.90437  | 07.76  | -8251          |
| 154 Cm-                         | 153 82707               | 00 07           | -1623          | 163 BaCz                                   | 162.90824     | 01.57     | -8330       | 156Dv0             | 171,909    | 00.052 | -11E3          |
| 15650-                          | 153 83667               | 05.68           | -1805          | 138 LaC2                                   | 162.90603     | 99.71     | -7884       | 172 SmCa           | 171.91442  | 11.31  | -1677          |
| 90720                           | 153 88307               | 50.07           | -4055          | 147 SmO                                    | 162.90940     | 14.93     | -8855       | 148NdC             | 171,91646  | 05.60  | -20E3          |
| 122 04                          | 153 8927                | 02.45           | -5266          | <sup>151</sup> EuC                         | 162.91954     | 47.29     | -20E3       | 158Gd0             | 171.91717  | 20.42  | -21E           |
| 122 SnO+                        | 153,8933                | 04.70           | -5376          | <sup>163</sup> Dy                          | 162.9278      | 24.97     |             | 1 80 GdC           | 171.92721  | 21.66  | -86E           |
| 138 BaO                         | 163.80070               | 71 40           | -6952          | 1641                                       | 1 CT 91/15    | 00 03     | 2 1 2 1     | 172Yb              | 171,9252/  | 21.82  |                |
| 138120                          | 153,90165               |                 | -7590          | 16 <b>4</b> 0-                             | 102.01412     | 00.99     | 1701        | 173 -              |            |        | - 1.1          |
| 138 CeO                         | 153,90094               | 00.25           | -7333          | 132 Boo.                                   | 163 80403     | 00.04     | -1882       | 141 D.0            | 172.01034  | 01.58  | -1445          |
| 130 BaCa                        | 153,90623               | 00.099          | -9804          | 140 000                                    | 163 00528     | 86 63     | -7060       | 173D-02            | 172.09720  | 99.52  | -424/          |
| 130 TeCa                        | 153.90695               | 33.72           | -10E3          | 148 cm0                                    | 163 00033     | 11 21     | -8661       | 1730-0             | 172.90557  | 11.20  | -5222          |
| 142NdC                          | 153.90748               | 26.81           | -11E3          | 148 140                                    | 167.90977     | 06 72     | -0575       | 157 C10            | 1/2.9100   |        | -0107          |
| 142CeC                          | 153,9093                | 10.95           | -12E3          | 152 SmC                                    | 163 01036     | 26.42     | -1853       | 1730.00            | 172.91901  | 12.04  | -9107          |
| 154Gd                           | 153,92094               | 02.15           | -16E4          | 152 CdC                                    | 163 91950     | 00 108    | -1853       | 17372              | 172 2397   | 10.70  | -1485          |
| 154Sm                           | 153.92193               | 22.71           |                | 164Dvr                                     | 163 9285      | 28 18     | -1019       | 10                 | 1/2.990/   | 10.12  |                |
| 1550                            |                         | 00.07           | 1 000          | 184 Fr                                     | 163.0208      | 01.56     | +13E3       | 58N13              | 173.80605  | 33.11  | -1455          |
| 155 c.                          | 154.52/21               | 02.07           | -1022          | 101°                                       | 10/09290      |           |             | 174Sr2             | 173.81545  | 16.77  | -1579          |
| 917-0                           | 154.00()()<br>151 22100 | 02.20           | -1010<br>-1010 | <sup>3</sup> <sup>Mn</sup> 3               | 164.81415     | 100.00    | -1435       | 174 Rb2            | 173.81860  | 07.76  | -1625          |
| 123 01 0                        | 151 20700               |                 | -+100          | 2 <sup>03</sup> CaO2                       | 164.89493     | 99.52     | -4827       | 142 NdO2           | 173.89728  | 26.98  | -614]          |
| 1397-0                          | 154.09090               | → <b>∠</b> • 24 | -2234          | <sup>1</sup> <sup>1</sup> PrC <sub>2</sub> | 164.90748     | 97.80     | -7629       | 142 CeO2           | 173.8991   | 11.02  | -6563          |
| 155 LaU                         | 154.90094               | 77.01           |                | - SmO                                      | 164.91171     | 13.80     | -9484       | ,, † BaC₃          | 173.90488  | 69.68  | -8394          |
| 1550-0                          | 154 01065               | 107 107         | -1583          | EuC                                        | T64•9506      | 51.60     | -1953       | 5 SmC2             | 173.9169   | 07.58  | -20E3          |
| 155 du                          | 154,91205               | 11:73           | -1007          | 185 CeCa                                   | 164,90864     | 01.94     | -8061       | T22DAO             | 173.919    | 00.09  | -26E3          |
| Dr                              | 174.9661                | 17.12           |                | 185HA                                      | 164.9291      | 100.00    |             | +==GdO             | 173.91931  | 24.81  | -58E3          |
| 158Cr3                          | 155.82153               | 59.40           | -1548          |                                            | <b>,</b> ,_,_ |           |             | 174 NdC2           | 173.92082  | 05.50  | - <u>36</u> E3 |
| 158Se2                          | 155.83575               | 14.68           | -1802          | <sup>166</sup> Fe <sub>3</sub>             | 165.80349     | 14.67     | -1325       | DyC                | 173.9256   | 25.46  | INF.           |
| 92Zr04                          | 155.88431               | 16.95           | -4108          | 134 BaO2                                   | 165.89405     | 02.41     | -4789       | +(*YЪ              | 173.9256   | 31.84  |                |
| 40 CaaCa                        | 155.88776               | 87.37           | -4519          | 142 NdC2                                   | 165.90748     | 26.51     | -7819       | + ° < ErC          | 173.92873  | 00.134 | +56E3          |
| 124TeO2                         | 155.88878               | 04.59           | -4657          | 142CeC2                                    | 165.90930     | 10.83     | -8553       | ⁺' <b>*</b> Hf     | 173.939    | 00.18  | +13E3          |
| 124 Sn02                        | 155.89504               | 05.91           | -5728          | 150 SmO                                    | 165.91181     | 07.42     | -9824       | 175 Sra            | 174.81509  | 11.59  | -1378          |
| 132 BaC2                        | 155.90512               | 00.095          | -9097          | 150 NdO                                    | 165.91573     | 05.61     | -13E3       | 143Nd0-            | 174 89938  | 12.11  | -4105          |
| 15 °NdC                         | 155.9098                | 23.72           | -13E3          | 154GdC                                     | 165.92094     | 02.13     | -21E3       | 139 LaC            | 174.90603  | 96.63  | -4864          |
| 144SmC                          | 155.91165               | 03.06           | -15E3          | 154SmC                                     | 165.92193     | 22.46     | -44E3       | 151 EuCa           | 174.91954  | 46.77  | -7789          |
| <sup>156</sup> Gd               | 155.92226               | 20.47           |                | <sup>188</sup> Er                          | 165.9287      | 33.41     |             | 159 Tb0            | 174.91979  | 99.76  | -7877          |
| <sup>156</sup> C13              | 156.00000               | 86.49           | +2006          | 1 87 For                                   | 166-80005     | 00.70     | -1385       | 175DyC             | 174.9278   | 24.97  | -12E3          |
| 157 m                           | 156,82167               | 20 10           | -1532          | 135 Ban-                                   | 166.89535     | 06.56     | -4749       | 175 Lu             | 174.942/   | 97.41  |                |
| 157 86-                         | 156,83616               | 07 55           | -1700          | 1 67 NAC-                                  | 166.90958     | 12.40     | -7979       | 17 8m.             | 175 90117  | 37 60  | 1010           |
| 93NDO                           | 156,88530               | aa 01           | -4044          | 167 CeC-                                   | 166.91265     | 00.242    | -9352       | 1760-              | 175 81000  | 21.00  | -1246          |
| 125 Ten-                        | 156, 80 <sup>±±</sup> 2 | 06 06           | -5287          | 151 EnO                                    | 166-91445     | 47.70     | -10E3       | -3r2<br>144m20     | 175 8000   | 00.10  | -1246          |
| 133 000                         | 156,00513               | 97.80           | -8272          | 1 67 GAC                                   | 166-9227      | 14 50     | -21E3       |                    | 175 001 15 | 2J.14  | -4000          |
| 141 0.502                       | 156.00230               | 90.76           | -7228          | 187 87                                     | 166.9305      | 22.04     | /           | 140 C- C           | 175 00500  |        | -4263          |
| 145 NAC                         | 156,01206               | 08.47           | -1583          | 1-201                                      |               |           | a. c. l. l. | 1607-0             | 175 01997  | 02.20  | -+099          |
| 157 14                          | 156,9241                | 15.68           |                | Feg                                        | 167.79582     | 77.12     | -1244       | 152 0-0            | 175 01070  | 02.29  | -1254          |
| 157 0 2                         | 157.00335               | 12.60           | +1980          | 5°517                                      | 167.86158     | 26.60     | -2426       | 52 CAC             | 175 01047  | 20.17  | -1002          |
| ~⊥3<br>158 <i>a</i> .           |                         | 07 77           | 1517           | 136D-0                                     | 167.07249     | 07.59     | -200U       | 180 3402           | 175,02212  | 21.85  | -8541          |
| 158 c -                         | 157 97799               | 01.21           | -1011          | 1360-0                                     | 101.09411     | 00.100    | -4000       | 17 5DVC            | 175.9285   | 28.15  | -1253          |
| 79 2                            | 157 93070               | 02.29<br>25 El  | -1800          | 168 M (P)                                  | 101.0700(     | F Dropow  |             | 164 ErC            | 175.9298   | 01.54  | -1483          |
| 947                             | 157 22700               | 40.04<br>17 07  | -1002          | IAOCA                                      | oneversity 0  | I FPCIOIT | a-1770      | <u> </u>           |            |        |                |
| <i>⊔Г</i> ∪4                    | -j1.00120               | 11 · C 7        | -マビン(          |                                            |               |           |             |                    |            |        |                |



|   | 17 SHf<br>17 SLu<br>17 SYb                                                                                                            | 175.92212<br>175.9419<br>175.94272                            | 05.20<br>02.59<br>12.73                   | -8541<br>-2223                            | 173 EuO2<br>185 BaC4<br>185 DyCa                                                                                        | 184.9140<br>184.90557<br>184.9257                            | 51.93<br>11.17<br>18.52                    | -4919<br>-4359<br>-8294                   | 193 <sub>CU3</sub><br>193 <sub>MO2</sub><br>181 <sub>DVO2</sub>    | 192.78515<br>192.81042<br>19 <b>2.</b> 9155                | 19.80<br>10.60<br>18.79                   | -1063<br>-1235<br>-3769                   |
|---|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
|   | <sup>59</sup> CO3<br>177Ni3<br>145NdO2                                                                                                | 175.79954<br>176.90179<br>176.90186                           | 100.00<br>01.71<br>08.26                  | -1238<br>-1257<br>-4354                   | 1 89 TmO<br>185 YbC<br>185 Re                                                                                           | 184.9292<br>184.938<br>184.948                               | 99.76<br>16.37<br>37.07                    | -9843<br>-19E3                            | 169 TmC2<br>177 HfO<br>181 TaC<br>193 Ir                           | 192.9343<br>192.9374<br>192.9458<br>192.9667/              | 97.80<br>18.46<br>98.88<br>62.7           | -5956<br>-6586<br>-9233                   |
|   | 161Dy0<br>165HoC<br>177Hf                                                                                                             | 176.9206<br>176.92061<br>176.9291<br>176.9425                 | 18.83<br>98.89<br>18.50                   | -5080<br>-8083<br>-13E3                   | <sup>185</sup> Ni <sub>3</sub><br><sup>93</sup> Nb <sub>2</sub><br><sup>186</sup> Zr <sub>2</sub><br><sup>186</sup> Mo2 | 185.78501<br>185.81132<br>185.81231<br>185.81449             | 00.09<br>100.00<br>08.83<br>02.86          | -1122<br>-1334<br>-1344<br>-1365          | 193C18<br>194Zn3<br>194M02                                         | 193.00335<br>193.78197<br>193.81094                        | 14.99<br>19.95<br>10.49                   | +5265<br>-1070<br>-1273                   |
|   | <sup>178</sup> N13<br>89Y2<br>146NdO2<br>162DYO<br>1542dC                                                                             | 177.79689<br>177.81144<br>177.90249<br>177.92051              | 19.53<br>100.00<br>17.14<br>25.47         | -1218<br>-1353<br>-4393<br>-7912          | 138 BaO3<br>188 BaC4<br>154 GdO2<br>154 SmO2<br>188 YbC                                                                 | 185.88961<br>185.90488<br>185.91074<br>185.91173<br>185.9256 | 71.14<br>70.03<br>02.14<br>22.60<br>31.67  | -3044<br>-4058<br>-4653<br>-4772<br>-7408 | 194 Ruz<br>162 DyOz<br>170 YbCz<br>170 ErCz<br>178 HfO             | 193.86270<br>193.9154<br>193.934<br>193.9356<br>193.9379   | 00.21<br>25.41<br>02.96<br>14.55<br>27.07 | -1928<br>-4049<br>-6620<br>-7002<br>-7636 |
|   | 154 SmC <sub>2</sub><br>162 ErO<br>166 ErC<br>178 U                                                                                   | 177.92193<br>177.92364<br>177.9287                            | 22.21<br>00.136<br>33.04                  | -8445<br>-9191<br>-12E3                   | 186DyC2<br>162ErC2<br>170Yb0<br>170Er0                                                                                  | 185.9256<br>185.92873<br>185.9290<br>185.9356                | 25,38<br>00,133<br>03,02<br>14,84          | -7408<br>-8464<br>-8569<br>-12E3          | 182WC<br>194Pt<br>194C16                                           | 193.9460<br>193.9633/<br>194.00670                         | 26.12<br>32.9<br>01.26                    | -11E3<br>+4469                            |
|   | 179 <sub>Ni3</sub><br>147 <sub>SmO2</sub><br>179 <sub>3dCa</sub>                                                                      | 178.79720<br>178.90429<br>178.9227                            | 27.14<br>01.30<br>14.90<br>14.73          | -1209<br>-4374<br>-7953                   | 174HfC<br>186W<br>186OS                                                                                                 | 185.939<br>185.9507<br>185.952                               | 00.18<br>28.41<br>01.59                    | -16E3<br>+14E4                            | 195 MO2<br>195 Ru2<br>183 DyO2<br>195 Yb C-                        | 194.73506<br>194.81219<br>194.81475<br>194.91760           | 02.95<br>07.53<br>01.40<br>24.85          | -1067<br>-1266<br>-1237<br>-4012          |
|   | 163 DyO<br>179 ErC<br>179 Hf                                                                                                          | 178.92271<br>178.9305<br>178.9452                             | 24.86<br>23.05<br>13.75                   | -7957<br>-12E3                            | 187 M02<br>187 Zr2<br>139 LaO3<br>155 GdOa                                                                              | 186.78738<br>186.81299<br>186.81462<br>186.89076             | 00.003<br>04.98<br>00.63<br>99.19<br>14.66 | -1129<br>-1335<br>-1351<br>-3004<br>-4516 | 179HfO<br>195WC<br>195Pt<br>195C18                                 | 194.9401<br>194.9401<br>194.9481<br>194.9662/<br>195.01008 | 14.08<br>13.72<br>14.53<br>33.8<br>00.066 | -9490<br>-7470<br>-11E3<br>               |
|   | 100 N13<br>90 Zr2<br>148 SmO2<br>148 NdO2<br>180 GdC2                                                                                 | 179.79446<br>179.80866<br>179.90422<br>179.9065<br>179.92226  | 07.37<br>26.48<br>26.48<br>05.70<br>20.34 | -1187<br>-1309<br>-4297<br>-4544<br>-7548 | 187 DyC2<br>171 Yb0<br>175 LuC<br>187 Re                                                                                | 186.9278<br>186.9310<br>186.942<br>186.953/                  | 24.98<br>14.28<br>96.33<br>62.93           | -7419<br>-8498<br>-17E3                   | 198Zn3<br>198M02<br>198Ru2<br>28S17                                | 195.78078<br>195.81196<br>195.31370                        | 24.65<br>08.84<br>01.43                   | -1052<br>-1263<br>-1277<br>-1524          |
|   | 164 DyO<br>164 ErO<br>180 ErC<br>168 YbC<br>180 W                                                                                     | 179.92341<br>179.92471<br>179.9308<br>179.9339                | 28.11<br>01.56<br>27.02<br>00.134         | -7931<br>-8413<br>-12E3<br>-15E3          | 188Nis<br>188Nis<br>188Zr2<br>188Mo2                                                                                    | 186.956/<br>187.78463<br>187.81528<br>187.81188              | 01.64<br>00.014<br>03.99<br>06.05          | +62E3<br>-1091<br>-1327<br>-1311          | 164 ErO2<br>164 DyO2<br>196 YbC2<br>180 WO                         | 195.91960<br>195.92340<br>195.9252<br>195.9394             | 01.55<br>23.04<br>21.35<br>00.135         | -4126<br>-4484<br>-4677<br>-7075          |
|   | 180 Ta<br>180 Hf<br>12 C15                                                                                                            | 179.945/<br>179.945/<br>179.9461<br>180.00000                 | 00.012<br>35.24<br>84.58                  | -16E4<br>-13339                           | 140 CeC4<br>156GdO2<br>172YbO<br>188 DyCa                                                                               | 187.90528<br>187.91206<br>187.9201<br>187.9285               | 84.63<br>20.37<br>21.76<br>28.11           | -2010<br>-3641<br>-4192<br>-5108<br>-6618 | 180 TaO<br>1840sC<br>196WC<br>196Hg                                | 195.9410<br>195.9399<br>195.946/<br>195.9489<br>195.96583  | 00.012<br>00.018<br>30.46<br>00.146       | -7205<br>-9288<br>-1123<br>-1524          |
|   | 1812r2<br>149SmO2<br>165H00<br>1813dC2                                                                                                | 130.79262<br>130.30965<br>130.9066<br>180.9241<br>180.9241    | 00.43<br>11.56<br>13.76<br>99.76<br>15.78 | -1181<br>-1329<br>-4616<br>-8339<br>-8339 | 164 ErC2<br>176HfC<br>188 LuC<br>176YbC                                                                                 | 187.9298<br>187.9408<br>187.9419<br>187.94272                | 01.53<br>05.14<br>03.64<br>12.59           | -6936<br>-12E3<br>-13E3<br>-13E3          | 19 SPt<br>197 Zn3<br>197 MO2<br>197 Ru2                            | 195.9671/<br>196.78115<br>196.81272<br>196.81370           | 25.3<br>03.35<br>01.82<br>02.36           | -1059<br>-1275<br>-1283                   |
|   | 169 TmC<br>181 Ta<br>181 C15<br>182 N4                                                                                                | 180.9343<br>180.9458<br>181.00335                             | 98.89<br>98.988<br>14.22                  | -16E3<br>+3144                            | <sup>63</sup> Cu <sub>3</sub><br><sup>189</sup> MO <sub>2</sub><br><sup>27</sup> Alz                                    | 187.9569<br>188.78877<br>188.81476<br>188.87078              | 02.59<br>32.98<br>05.84                    | -1113<br>-1315<br>-2154                   | <sup>197</sup> Si7<br>185H002<br>197 YbC2<br>181Ta0                | 196.83806<br>196.9189<br>196.938/<br>196.9407              | 20.22<br>99.52<br>15.24<br>99.747         | -1525<br>-4078<br>-6745<br>-7432          |
|   | 182Zr2<br>134BaO3<br>134BaC4<br>150SmO2                                                                                               | 191.90907<br>191.90900<br>181.88898<br>191.90425<br>191.90670 | 13.87<br>02.40<br>02.31<br>07.40          | -1328<br>-3191<br>-4358<br>-4630          | 157 GdO2<br>185 HOC2<br>173 YbO<br>189 HfC                                                                              | 188.91390<br>188.9291<br>188.9330<br>188.9425                | 15.60<br>97.30<br>16.09<br>18.36           | -4237<br>-6427<br>-7410<br>-1223          | 198 Zn3<br>198 Ru2                                                 | 196.9672<br>196.9672<br>197.77814<br>197.81243             | 100.00<br>17.99<br>05.57                  | -1062<br>-1298                            |
|   | 150 NdO2<br>165ErO<br>182 GdC2<br>170 YbC                                                                                             | 131.91062<br>181.92361<br>181.924<br>181.934/                 | 05.59<br>33.33<br>24.66<br>03.00          | -5143<br>-8126<br>-8270<br>-15E3          | <sup>190</sup> Nis<br>190Mo2<br>1907ra                                                                                  | 188.9585<br>189.78425<br>189.31453<br>189.81694              | 16.1<br>00.001<br>12.99                    | -1057<br>-1271<br>-1291                   | 198517<br>198517<br>134BaO4<br>185ErO2<br>199VbC-                  | 197.81249<br>197.83533<br>197.88390<br>197.9185            | 04.00<br>16.39<br>02.40<br>33.25          | -1301<br>-1531<br>-2453<br>-4294          |
|   | 182 <sub>0</sub><br>182 <sub>0</sub><br>183 <sub>2</sub><br>272                                                                       | 191.9356<br>191.9460<br>182.00670<br>182.80999                | 14.72<br>26.41<br>1.115<br>03.84          | -18E3<br><br>+2997<br>-1325               | 158Gd02<br>174Yb0<br>188ErC2<br>174Hf0                                                                                  | 189.9142<br>189.9205<br>189.9287<br>189.9339                 | 24.75<br>31.76<br>32.67<br>00.18           | -3815<br>-4367<br>-5381<br>-6311          | 174HfC2<br>182WO<br>186WC<br>186OSC                                | 197.939/<br>197.9409<br>197.9507<br>197.952/               | 00.75<br>26.65<br>28.10<br>01.57          | -7735<br>-8353<br>-1453<br>-1653          |
|   | 183 Nis<br>135 BaO3<br>182 BaC4<br>159 TbC2                                                                                           | 132.79019<br>182.89028<br>182.90555<br>182.92488              | 00.12<br>06.54<br>06.40<br>97.80          | -1159<br>-3164<br>-4300<br>-7879          | 190 HfC<br>190 Pt<br>191 Cu3                                                                                            | 189.9430<br>189.964<br>190.78696                             | 27.04<br>00.013<br>44.26                   | -9046<br>                                 | 198 Pt<br>198 Hg<br>199 Zng<br>199 Pul-                            | 197.9646<br>197.96675<br>198.77996                         | 07.21<br>10.02<br>03.19                   | +9253                                     |
|   | 187 ErO<br>183 YbC<br>183 W<br>183 C <sub>15</sub>                                                                                    | 182.92541<br>182.9360<br>182.9481<br>183.01008                | 22.88<br>14.18<br>14.40<br>00.054         | -8063<br>-15E3<br><br>+2952               | 159 TbO2<br>191 ErC2<br>175 LuO<br>191 HfC                                                                              | 190.80940<br>190.91468<br>190.9305<br>190.9369               | 06.91<br>99.52<br>23.16<br>97.18<br>13.90  | -1240<br>-3920<br>-5804<br>-7206<br>-1153 | 199 S17<br>135 BaO4<br>167 ErO2<br>175 LuC2                        | 198.83489<br>198.88519<br>198.9203<br>198.942/             | 04.33<br>06.53<br>22.83<br>95.27          | -1492<br>-2397<br>-4152<br>-7588          |
|   | <sup>184</sup> Ni <sub>3</sub><br><sup>184</sup> Zr <sub>2</sub><br><sup>184</sup> MO <sub>2</sub><br><sup>136</sup> BaO <sub>3</sub> | 183.78744<br>183.80934<br>183.31710<br>183.88910              | 00.49<br>20.83<br>02.51<br>07.75          | -1139<br>-1318<br>-1396<br>-3076          | <sup>64</sup> Zn <sub>3</sub><br><sup>192</sup> MO2                                                                     | 190.9634<br>191.78388<br>191.81192                           | 37.3<br>11.69<br>13.05                     | -1077<br>-1277                            | 193W0<br>187 ReC<br>187 OsC<br>199 Hg                              | 198.9430<br>198.953/<br>198.956/<br>198.96822              | 14.33<br>62.23<br>01.62<br>16.84          | -7889<br>-13E3<br>-16E3                   |
| • | 160 BaC4<br>160 DyC2<br>152 SmO2<br>184 YbC<br>168 FrO                                                                                | 183.90437<br>183.9239<br>183.90916<br>183.9252<br>183.9257    | 07.73<br>02.24<br>26.59<br>21.74<br>27.00 | -4131<br>-7358<br>-4629<br>-7762<br>-7932 | <sup>192</sup> Ru2<br><sup>160</sup> DyO2<br><sup>160</sup> GdO2<br><sup>192</sup> ErC2                                 | 191.81860<br>191.81740<br>191.9137<br>191.91703<br>191.9308  | 00.078<br>00.31<br>02.28<br>21.30<br>26.97 | -1337<br>-1326<br>-3958<br>-4250<br>-6113 | 200Zn3<br>200Ru2<br>200M02<br>200S17                               | 199.77696<br>199.81110<br>199.81302<br>199.83216           | 10.01<br>09.16<br>00.93<br>01.37          | -1045<br>-1263<br>-1288<br>-1469          |
|   | 160 GdC2<br>168 Yb0<br>1840s<br>184W                                                                                                  | 183.92721<br>183.9288<br>183.946<br>183.9489                  | 21.41<br>00.135<br>00.018<br>30.64        | -8481<br>-9156<br>-63E3                   | 168YbC2<br>176Hf0<br>176Lu0<br>176Yb0                                                                                   | 191.9339<br>191.9357<br>191.9368<br>191.9376                 | 00.132<br>05.19<br>02.58<br>12.70          | -6783<br>-7244<br>-7558<br>-7803          | <sup>136</sup> BaO4<br>168 ErO2<br>176 HfC2<br>200 LuC2<br>176 VLC | 199.88401<br>199.92060<br>199.9408<br>199.9419             | 07.73<br>26.94<br>05.09<br>04.56          | -2371<br>-4190<br>-7264<br>-7317          |
|   | 185Ni3<br>185Zr2<br>137BaO3                                                                                                           | 184.78776<br>184.81296<br>184.89030                           | 00.03<br>03.91<br>11.24                   | -1154<br>-1370<br>-3205                   | 180WC<br>180TaC<br>192HfC<br>192Os<br>192P <del>+</del>                                                                 | 191.9445<br>191.945<br>191.9461<br>191.9622                  | 00.134<br>00.012<br>35.00<br>41.0          | -11E3<br>-11E3<br>-12E3<br>-12E3          | -1002<br>1840s0<br>184W0<br>1880sC<br>200Hg                        | 199.9409<br>199.9409<br>199.9438<br>199.9569<br>199.96833  | 12.45<br>00.018<br>30.57<br>13.2<br>22.13 | -7290<br>-7290<br>-8152<br>-1823          |
|   |                                                                                                                                       |                                                               |                                           |                                           | <sup>12</sup> C <sub>18</sub>                                                                                           | 117561218 Ot                                                 | Riefdus                                    | +5078                                     | <b>-</b>                                                           |                                                            | -                                         |                                           |



| 201<br>201<br>137<br>169<br>201 | Zn <sub>3</sub><br>Ru <sub>2</sub><br>BaO <sub>4</sub><br>TmO <sub>2</sub><br>HfC <sub>2</sub> | 200.7780<br>200.80978<br>200.88521<br>200.9241<br>200.9425 | 5 01.36<br>3 12.35<br>1 11.21<br>99.52<br>18.20 | -1045<br>-1252<br>-2362<br>-4351<br>-7232 | 1860sCz<br>194Pt0<br>198PtC<br>211HgC     | 209.952<br>209.9582<br>209.9646<br>209.96675  | 01.55<br>32.8<br>07.13<br>16.76 | -34E3<br><br>+33E3<br>+25E3 | 232 Sn2<br>232 Cd2<br>232 PbC2<br>232 Th                                                            | 231.80638<br>231.80998<br>231.97665<br>232.0380 | 03.05<br>00.57<br>51.6<br>100.00 | -1002<br>-1018<br>-3782 |
|---------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------|---------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|-------------------------|
| 201<br>201                      | ReO<br>OsC<br>Hg                                                                               | 200.943/<br>200.9585<br>200.97209                          | 36.98<br>16.0<br>13.22                          | -7364<br>-17E3                            | 187 ReC2<br>195 PtO<br>199 HgC            | 210.80773<br>210.953<br>210.9611<br>210.96822 | 12.15<br>61.54<br>33.7          | -1376<br>-27E3              | <sup>233</sup> Sn <sub>2</sub><br><sup>209</sup> B1C <sub>2</sub><br><sup>234</sup> Sn <sub>2</sub> | 232.80529<br>232.97934<br>233.80424             | 02.46<br>97.80<br>08.04          | +1338<br>- 991          |
| 202                             | Zn <sub>3</sub><br>Ru <sub>2</sub><br>Ba04                                                     | 201.77577<br>201.8087<br>201.88452                         | 03.45<br>11.58<br>70.97                         | -1037<br>-1247<br>-2346                   | 212Pd2<br>180Hf02<br>196P+0               | 211.80582<br>211.9359                         | 13.55<br>35.07                  | -1357<br>-8121              | 234U<br>235 Sn2<br>23511                                                                            | 234.0403<br>234.80515<br>235.0428               | 00.0056                          | ; - <u>-</u> -<br>- 989 |
| 170                             | YbO2<br>ErOa                                                                                   | 201.9238<br>201.9254                                       | 03.03                                           | -4313                                     | 212HgC                                    | 211.96833                                     | 25.2                            | +34E3                       | 2365na                                                                                              | 235.80439                                       | 16.65                            | ,                       |
| 202<br>186                      | HfC <sub>2</sub>                                                                               | 201.9430                                                   | 26.95                                           | -7311                                     | 213Pd2                                    | 212.80829                                     | 11.88                           | -1385                       | 237 Sn2                                                                                             | 236.80530                                       | 09.16                            | -1497                   |
| 202<br>202                      | wo<br>OsC<br>Hg                                                                                | 201.9458<br>201.9548<br>201.97063                          | 20.35<br>26.3<br>29.80                          | -8071<br>-13E3                            | 197Au0<br>213HgC                          | 212.9556<br>212.9621<br>212.97029             | 99.51<br>99.76<br>13.33         | -8036<br><br>+26E3          | 205 T102<br>238 Sn2                                                                                 | 236.9636<br>237.80425                           | 70.20<br>17.95                   | - 974                   |
| 203                             | Zn3                                                                                            | 202.77685                                                  | 00.47                                           | -1041                                     | 214Pd2                                    | 213.80638                                     | 17.19                           | -1378                       | 238U                                                                                                | 237.96424<br>238.0486                           | 23.5<br>99.2739                  | -2022                   |
| 203                             | Ru2<br>Yb02                                                                                    | 202.8087/                                                  | 15.52                                           | -1244<br>-4403                            | 187 WO2                                   | 213.80966                                     | 26.37<br>26.28                  | -1408<br>-8274              | 239 Sna                                                                                             | 238.80535                                       | 06.40                            | -1490                   |
| 203<br>187                      | HfC <sub>2</sub>                                                                               | 202.9452                                                   | 14.04                                           | -7602                                     | <sup>198</sup> Pt0<br>198 <sub>Hg0</sub>  | 213,9595                                      | 02.19                           | -99E3                       | 207 Pb02                                                                                            | 238.96568                                       | 22.5                             |                         |
| 187                             | Os0                                                                                            | 202.940/                                                   | 62.78<br>01.64                                  | -8493<br>-9712                            | 214HgC                                    | 213.97063                                     | 29.62                           | +24E3                       | <sup>240</sup> Sn <sub>2</sub><br>208 PhOn                                                          | 239.80440                                       | 14.76<br>52.0                    | -1227                   |
| 203                             | IrC<br>Tl                                                                                      | 202.9634                                                   | 37.3<br>29.50                                   | -24E3                                     | 215 Pd2                                   | 214.80695                                     | 05.25                           | -1397                       | 240C20                                                                                              | 240.00000                                       | 79.99                            |                         |
| 204                             | Zna                                                                                            | 203.77451                                                  | 00.84                                           | -1027                                     | 199 HgO                                   | 214.96313                                     | 16.80                           | -0520                       | <sup>241</sup> Sn <sub>2</sub><br>241Coo                                                            | 240.80661                                       | 01.71                            | -1225                   |
| 204<br>140                      | Ru <sub>2</sub>                                                                                | 203.80746                                                  | 14.68                                           | -1232                                     | 203T1C                                    | 214.9719                                      | 29.17                           | +25E3                       | <sup>242</sup> Sn <sub>2</sub>                                                                      | 241.80566                                       | 05.96                            | -1204                   |
| 172                             | Yb02                                                                                           | 203.9150                                                   | 21.71                                           | -2514<br>-3512                            | 218Ag2                                    | 215.80944                                     | 49.96                           | -1134                       | 242C20                                                                                              | 242.00670                                       | 01.91                            |                         |
| 180                             | WC2<br>TaC2                                                                                    | 203.9445<br>203.9458                                       | 00.132                                          | -7137<br>-7477                            | <sup>184</sup> W02<br>200 Hg0             | 215.9387<br>215.96323                         | 30.49<br>23.07                  | -3524<br>-5874              | <sup>243</sup> Sn <sub>2</sub><br>243Cao                                                            | 242.80839                                       | 01.02                            | -1205                   |
| 204<br>192                      | $HfC_2$                                                                                        | 203.9461                                                   | 34.76                                           | -7560                                     | 204 PbC<br>204 HgC                        | 215.97308                                     | 01.46                           | -8024<br>-8142              | <sup>244</sup> Sn <sub>2</sub>                                                                      | 243.80692                                       | 04.13                            |                         |
| 192                             | PtC                                                                                            | 203.9648                                                   | 00.77                                           | -19E3<br>-25E3                            | 15 <sup>C18</sup>                         | 216.00000                                     | 81.80                           |                             | 232 ThC                                                                                             | 244.0380                                        | 98.89                            |                         |
| 204                             | Pb<br>Hg                                                                                       | 203.97308                                                  | 01.48<br>06.85                                  | <br>+52E4                                 | 217 Cd2<br>186WO                          | 216.81021                                     | 00.31                           | -1124                       | 232ThO<br>238UC                                                                                     | 248.0329<br>250.0486                            | 99.76<br>98.175                  |                         |
| 12C:                            | 17                                                                                             | 204.00000                                                  | 82.72                                           | +7577                                     | 205T1C                                    | 216.9738                                      | 69.72                           | -7344                       | 252C21                                                                                              | 252.00000                                       | 79.14                            |                         |
| 2052                            | Zng<br>Rug                                                                                     | 204.77505                                                  | 00.067                                          | -1031<br>-1245                            | 218 C18                                   | 217.00335                                     | 16.50                           |                             | 254Ca                                                                                               | 252.00555                                       | 02.09                            |                         |
| 173                             | rb0 <sub>2</sub>                                                                               | 204.9278                                                   | 16.05                                           | -4456                                     | 218 Pd2                                   | 217.80794                                     | 06.31                           | -1097                       | 238U0                                                                                               | 254.0435                                        | 99.035                           | +5930                   |
| 189                             | $1a0_2$<br>0s0                                                                                 | 204.9458                                                   | 97.79<br>16.1                                   | -7320<br>-10E3                            | <sup>218</sup> Ag2<br>202 <sub>Hg</sub> O | 217.80922                                     | 23.67<br>29.73                  | -1104<br>-5295              | <sup>232</sup> ThC <sub>2</sub><br>238UC <sub>2</sub>                                               | 256.0380<br>262.0486                            | 97.80<br>97.088                  |                         |
| 205                             | IrC<br>Fl                                                                                      | 204.9667<br>204.9738                                       | 62.0<br>70.50                                   | -29E3                                     | 20 8 PbC                                  | 217.97444                                     | 23.3                            | -6758                       | 232 ThO2                                                                                            | 264.0278                                        | 99.52                            | 9496                    |
| 205(                            | 317                                                                                            | 205.00335                                                  | 15.75                                           | +6937                                     | 219 Cdo                                   | 218.80835                                     | 00.52                           | -1086                       | <sup>264</sup> C <sub>22</sub>                                                                      | 264.00000                                       | 78.26                            |                         |
| 2062                            | Zna                                                                                            | 205.77505                                                  | 00.067                                          | -1033                                     | 203T10                                    | 218.9668                                      | 29.43                           | -5060                       | <sup>2</sup> <sup>66</sup> C22                                                                      | 265.00335                                       | 19.29<br>02.27                   |                         |
| 2061                            | Pd <sub>2</sub>                                                                                | 205.80814                                                  | 00.21                                           | -1239                                     | 219 <sub>C18</sub>                        | 219.01008                                     | 00.094                          | -6404                       | 238U02                                                                                              | 270.0384                                        | 98.796                           |                         |
| 174                             | Rh2<br>7b02                                                                                    | 205.80910                                                  | 100.00<br>31.69                                 | -1246<br>-3489                            | 220 Cd2                                   | 219.80658                                     | 02.66                           | -1363                       |                                                                                                     |                                                 |                                  |                         |
| 182 V<br>190                    |                                                                                                | 205.9460                                                   | 25.83                                           | -7242                                     | 204Pb0                                    | 219.80894                                     | 01.39<br>01.48                  | -1983                       |                                                                                                     |                                                 |                                  |                         |
| 194                             | PtC                                                                                            | 205.9633                                                   | 32.5                                            | -18E3                                     | <sup>204</sup> Hg0<br>220PhC              | 219.96838                                     | 06.83<br>52.0                   | +57 E4<br>+25 E3            |                                                                                                     |                                                 |                                  |                         |
| 2080                            | 20<br>217                                                                                      | 205.97444                                                  | 26.4<br>01,41                                   | +6385                                     | 2 <b>2</b> 1Cd2                           | 220.80757                                     | 03.37                           | -1371                       |                                                                                                     |                                                 |                                  |                         |
| 207 E                           | 2d2                                                                                            | 206.80968                                                  | 00.43                                           | -1245                                     | <sup>205</sup> T10<br>209B1C              | 220.9687<br>220.97934                         | 70.3<br>98.89                   | +2183                       |                                                                                                     |                                                 |                                  |                         |
| 207 M                           | LuO2<br>IC2                                                                                    | 206.9318<br>206.9481                                       | 96.94<br>14.66                                  | -4695<br>-7451                            | 222 <sub>Cd2</sub>                        | 221.80635                                     | 08.28                           | -1362                       |                                                                                                     |                                                 |                                  |                         |
| 191]<br>207 -                   | [r0<br>r0                                                                                      | 206.9583                                                   | 37.2                                            | -12E3                                     | <sup>206</sup> Pb0                        | 221.96935                                     | 23.5                            |                             |                                                                                                     |                                                 |                                  |                         |
| 207 F                           | γõ                                                                                             | 206.97588                                                  | 22.6                                            |                                           | 207 Pb0                                   | 222.80734<br>222.97080                        | 08.27<br>22.5                   | -1364                       |                                                                                                     |                                                 |                                  |                         |
| 2080                            | 17                                                                                             | 207.01008                                                  | 00.079                                          | +6052                                     | 224Cd2                                    | 223.80684                                     | 16.20                           | -1360                       |                                                                                                     |                                                 |                                  |                         |
| 208 F                           | d <sub>2</sub>                                                                                 | 207.80656                                                  | 01.73                                           | -1223                                     | <sup>224</sup> Sia<br>208Pb0              | 223.81544<br>223.97156                        | 52.27<br>52.1                   | -1435                       |                                                                                                     |                                                 |                                  |                         |
| 208F<br>176H                    | lu <sub>2</sub> :<br>If0 <sub>2</sub> :                                                        | 207.80844<br>207.9306                                      | 03.45<br>05.17                                  | -1236<br>-4516                            | 75A53                                     | 224.76513                                     | 100.00                          | -1076                       |                                                                                                     |                                                 |                                  |                         |
| 178<br>176v                     | .u02 /                                                                                         | 207.9317                                                   | 02.58                                           | -4627                                     | 20° B10                                   | 224,80783                                     | 13.26<br>99.76                  | -1352                       |                                                                                                     |                                                 |                                  |                         |
| 208 W                           |                                                                                                | 207.9489                                                   | 30.29                                           | -7495                                     | 228Cd2                                    | 225.80661                                     | 17.27                           |                             |                                                                                                     |                                                 |                                  |                         |
| 192 P                           | t0 2                                                                                           | 207.9571                                                   | 40.9                                            | -11E3<br>-13E3                            | <sup>227</sup> Cd <sub>2</sub>            | 226.80801                                     | 09.01                           |                             |                                                                                                     |                                                 |                                  |                         |
| 208 F                           | rtC 2<br>b 2                                                                                   | 207.9671                                                   | 25.37<br>52.3                                   | -22E3                                     | 228 Ud2<br>228 In2                        | 227.80710                                     | 08.19                           | -1188                       |                                                                                                     |                                                 |                                  |                         |
| soab                            | de 2                                                                                           | 208.80810                                                  | 04.88                                           | -1220                                     | 204 PbC2<br>228 C12                       | 227.97308<br>228.00000                        | 01.45<br>80.89                  | -8470                       |                                                                                                     |                                                 |                                  |                         |
| 177 H<br>185 p                  | $f\bar{0}_2$                                                                                   | 208.9323                                                   | 18.41                                           | -4443                                     | 229 Cd2                                   | 228.80945                                     | 01.86                           | -1181                       |                                                                                                     |                                                 |                                  |                         |
| 193 I<br>197 (                  | rO                                                                                             | 208.9616                                                   | 62.5                                            | -12E3                                     | <sup>229</sup> C <sub>19</sub>            | 229.00335                                     | 17.22                           |                             |                                                                                                     |                                                 |                                  |                         |
| 209B                            | uc 2<br>1 2                                                                                    | 200.9672<br>208.97934                                      | 98.89<br>100.00                                 | -17E3                                     | 230 In2<br>230 Cd2                        | 229.80722<br>229.80854                        | 91.62<br>04.38                  | -⊥153<br>-1161              |                                                                                                     |                                                 |                                  |                         |
| 210 p                           | d <sub>2</sub>                                                                                 | 209.80619                                                  | 11.45                                           | -1381                                     | 230C19<br>231D17                          | 230.00670                                     | 01.74                           |                             |                                                                                                     |                                                 |                                  |                         |
| 18 6W                           | $C_2$                                                                                          | 209.80964<br>209.9507                                      | 27.78                                           | -82 <b>66</b><br>-28E3                    | PDU2                                      | 230.9(500)                                    | cc.b                            | io                          |                                                                                                     |                                                 |                                  |                         |
|                                 |                                                                                                |                                                            |                                                 |                                           |                                           | · · · · · · · · · · · · · · · · · · ·         | PERCIPATION                     | 1 M M M                     |                                                                                                     |                                                 |                                  |                         |





### APPENDIX C

## COMPARISON OF EXPERIMENTAL ANALYTICAL DATA TO EXPECTED VALUES FOR SELECTED ELEMENTS USING VARIOUS ANALYTICAL TECHNIQUES

#### Laboratory

Analytical Method

| Α | Inductively | coupled   | plasma   | (ICP) | optical |
|---|-------------|-----------|----------|-------|---------|
|   | emission sp | ectroscop | oy (OES) | )     |         |

- B Spark-source mass spectrometry (SSMS)
- C Inductively coupled plasma (ICP) optical emission spectroscopy (OES)
- D Atomic absorption spectroscopy (AAS)
- E Arc emission spectroscopy (AES) (AgC1 buffer)
- F Arc emission spectroscopy (AES) (NaC1 buffer)
- G Direct current emission spectroscopy

Experimental and expected values are given in the units  $\mu$ gX/gU. The dotted lines depict expected concentrations.



































Dedicated to my wife

#### DENISE

and my children

### GAVIN, NICOLE AND EDWIN

for their love, support and understanding



#### CONTENTS

| ACKNOWLEDGEMENTS | i   |
|------------------|-----|
|                  |     |
| SUMMARY          | ii  |
|                  |     |
| OPSOMMING        | iii |

PAGE

#### CHAPTER ONE

#### INTRODUCTION

| 1.1 | Introductory review                | 1 |
|-----|------------------------------------|---|
| 1.2 | Motivation and scope of the thesis | 3 |

#### CHAPTER TWO

### THE FUNDAMENTALS OF SPARK-SOURCE MASS SPECTROMETRY

| 2.1 | The physics of plasma formation   | 5  |
|-----|-----------------------------------|----|
| 2.2 | Mass spectrometer design features | 8  |
| 2.3 | Ion detection and measurement     | 15 |



#### CHAPTER THREE

### EXPERIMENTAL

|       |                                               | PAGE |
|-------|-----------------------------------------------|------|
| 3.1   | Mass spectrometer operation                   | 17   |
| 3.1.1 | Operation of the instrument                   | 17   |
| 3.1.2 | Preparation of electrodes                     | 17   |
| 3.1.3 | Spark generator parameters                    | 18   |
| 3.1.4 | Exposure pattern selection                    | 21   |
| 3.1.5 | Detection                                     | 22   |
|       |                                               |      |
| 3.2   | Preparation of standards                      | 23   |
| 3.2.1 | Reagents                                      | 23   |
| 3.2.2 | Preparation of standards in a graphite matrix | 26   |
| 3.2.3 | Internal standard method                      | 28   |
|       |                                               |      |
| 3.3   | Sample preparation: dilution ratio's          | 30   |
|       |                                               |      |
| 3.4   | Data acquisition and processing               | 32   |
|       |                                               |      |
| 3.4.1 | Microdensitometer                             | 32   |
| 3.4.2 | Linearisation functions                       | 34   |



### CHAPTER FOUR

### QUALITATIVE SPECTRUM INTERPRETATION

|        |                                                                | PAGE |
|--------|----------------------------------------------------------------|------|
| 4.1    | U <sub>3</sub> O <sub>8</sub> /graphite matrix characteristics | 38   |
| 4.1.1  | General principles                                             | 38   |
| 4.1.2  | Selection of elements                                          | 42   |
| 4.1.3  | Boron (B)                                                      | 42   |
| 4.1.4  | Sodium (Na)                                                    | 43   |
| 4.1.5  | Magnesium (Mg)                                                 | 44   |
| 4.1.6  | Aluminium (Al)                                                 | 46   |
| 4.1.7  | Silicon (Si)                                                   | 47   |
| 4.1.8  | Phosphorus (P)                                                 | 49   |
| 4.1.9  | Calcium (Ca)                                                   | 50   |
| 4.1.10 | Potassium (K)                                                  | 52   |
| 4.1.11 | Titanium (Ti)                                                  | 53   |
| 4.1.12 | Vanadium (V)                                                   | 54   |
| 4.1.13 | Chromium (Cr)                                                  | 55   |
| 4.1.14 | Manganese (Mn) and cobalt (Co)                                 | 56   |
| 4.1.15 | Iron (Fe)                                                      | 57   |
| 4.1.16 | Nickel (Ni)                                                    | 58   |
| 4.1.17 | Copper (Cu)                                                    | 59   |
| 4.1.18 | Zinc (Zn)                                                      | 60   |
| 4.1.19 | Strontium (Sr)                                                 | 61   |
| 4.1.20 | Yttrium (Y)                                                    | 62   |
| 4.1.21 | Zirconium (Zr)                                                 | 62   |
| 4.1.22 | Niobium (Nb)                                                   | 63   |
| 4.1.23 | Molybdenum (Mo)                                                | 64   |
| 4.1.24 | Ruthenium (Ru)                                                 | 65   |
| 4.1.25 | Cadmium (Cd)                                                   | 66   |



## CHAPTER FOUR

### (CONTINUED)

### PAGE

| 4.1.26 Indium (In)                                   | 67 |
|------------------------------------------------------|----|
| 4.1.27 Antimony (Sb)                                 | 68 |
| 4.1.28 Barium (Ba)                                   | 69 |
| 4.1.29 Tungsten (W), bismuth (Bi) and thorium (Th)   | 70 |
| 4.1.30 Samarium (Sm)                                 | 72 |
| 4.1.31 Europium (Eu)                                 | 73 |
| 4.1.32 Gadolinium (Gd)                               | 73 |
| 4.1.33 Dysprosium (Dy)                               | 74 |
| 4.1.34 Selection of isotopes and charge states       | 75 |
|                                                      |    |
| 4.2 UF <sub>4</sub> /graphite matrix characteristics | 78 |
|                                                      |    |
| 4.2.1 General principles                             | 78 |
| 4.2.2 Selection of elements                          | 81 |
| 4.2.3 Aluminium (Al)                                 | 81 |
| 4.2.4 Phosphorus (P)                                 | 83 |
| 4.2.5 Calcium (Ca)                                   | 85 |
| 4.2.6 Silicon (Si)                                   | 87 |
| 4.2.7 Sulphur (S)                                    | 89 |
| 4.2.8 Chlorine (C1)                                  | 92 |
| 4.2.9 Zinc (Zn)                                      | 93 |
| 4.2.10 Yttrium (Y)                                   | 95 |
| 4.2.11 Uranium (U)                                   | 96 |
| 4.2.12 Selection of isotopes and charge states       | 97 |



### CHAPTER FIVE

## QUANTITATIVE ANALYSIS

|       |                                                       | PAGE |
|-------|-------------------------------------------------------|------|
| 5.1   | Calculation methods                                   | 98   |
| 5.2   | $U_{3}O_{8}/graphite$ matrix quantitation             | 102  |
| 5.2.1 | Blank correction                                      | 102  |
| 5.2.2 | Calibration curves                                    | 109  |
| 5.2.3 | Relative sensitivity factors (RSF's)                  | 115  |
| 5.3   | $\textit{UF}_4/\textit{graphite matrix quantitation}$ | 121  |
| 5.3.1 | Blank correction                                      | 121  |
| 5.3.2 | Calibration curves                                    | 126  |
| 5.3.3 | Relative sensitivity factors (RSF's)                  | 129  |
|       |                                                       |      |
| 5.4   | Semi-quantitative analysis                            | 130  |
|       |                                                       |      |
| 5.4.1 | 50% Transmission intercept method                     | 130  |
| 5.4.2 | Appearance level method                               | 132  |



#### CHAPTER SIX

#### **EVALUATION OF THE METHOD**

|       |                                                            | PAGE |
|-------|------------------------------------------------------------|------|
| 6.1   | Statistical significance of results                        | 137  |
| 6.1.1 | Statistical approach                                       | 137  |
| 6.1.2 | Propagation-of-errors approach                             | 140  |
| 6.1.3 | Precision                                                  | 143  |
| 6.1.4 | Confidence intervals - U <sub>3</sub> O <sub>8</sub>       | 148  |
| 6.1.5 | Confidence intervals - UF <sub>4</sub>                     | 152  |
| 6.2   | Comparative analyses                                       | 155  |
| 6.2.1 | International standard $U_3O_8$ No IAEA/SR-54              | 155  |
| 6.2.2 | Internal U <sub>3</sub> O <sub>8</sub> certified standards | 155  |
|       | CHAPTER SEVEN                                              |      |
|       |                                                            |      |

|            | GENERAL | COMMENTS | AND | CONCLUSIONS | 166 |
|------------|---------|----------|-----|-------------|-----|
| REFERENCES |         |          |     |             | 169 |
| APPENDIX A |         |          |     |             | 174 |
| APPENDIX B |         |          |     |             | 175 |
| APPENDIX C |         |          |     |             | 191 |



i

#### **ACKNOWLEDGEMENTS**

The author would like to express sincere thanks to:

PROFESSOR R G BÖHMER for his guidance, assistance and helpful comments.

DR W C A VAN NIEKERK for his motivation, guidance, unfailing support and many valuable discussions.

MR M T S BRITTON for his valuable comments.

MR J J VAN ROOYEN for his assistance and guidance.

MR P A SPIES for performing many of the supplementary analyses.

MRS S M SWART and MISS A M M OOSTHUIZEN for their patience in typing this script.

THE ATOMIC ENERGY CORPORATION OF SOUTH AFRICA LIMITED for the opportunity of conducting this study.

MY COLLEAGUES for their support.

AND THOSE who contributed in any way and who were involved in performing any of the supplementary analyses required for the completion of this dissertation.



ii

#### SUMMARY

Spark-source mass spectrometry is used exclusively for the analysis of metal samples and other solid-state materials. Non-conducting powders are mixed with either silver or graphite as conducting medium, and pelleted into electrodes which are then mounted in the ion source. The dc-spark forms a plasma from which the ions are extracted and accelerated down a flight tube. The ion beam is defined by an electrostatic analyser and recorded on a photographic plate, after passing through a magnetic field which separates the ions according to their mass-tocharge ratio. The line blackening on the photoplate is measured using a microdensitometer. The data is interpreted using specialised compu-A major advantage of photoplate detection in sparkter software. source mass spectrometry is that the entire periodic table of elements can be recorded from a single analysis.

Reference standards are not available in South Africa for uranium com-A method of spiking the conducting material with trace impuripounds. ties was developed after testing various graphite powders. Precision tests confirmed the homogeneity of the standards and the feasibility of using these for quantitative analyses. A comprehensive range of standards containing up to 34 elements, each using yttrium as an internal A complete set reference, were prepared and analysed quantitatively. of calibration graphs was compiled, providing relative sensitivity factors (RSF's) for these elements in a  $U_3O_a$ /graphite matrix. For most of these elements, both the singly and doubly charged states were considered so as to obtain a correlation between the various ion yields. The accuracy obtained at a concentration level of 10 µg/gU is better than 20% for most of the elements determined. The  $UF_4$ /graphite matrix was also studied.

This method was assessed by comparison with ICP, AA, spectrographic and spectrophotometric methods. Excellent agreement was confirmed.

KEYWORDS: spark-source mass spectrometry,  $U_3O_8$ /graphite matrix,  $UF_4$ / graphite matrix, uranium compounds, relative sensitivity factors, photoplate detection, low-voltage discharge.



iii

#### OPSOMMING

Vonkbronmassaspektrometrie word uitsluitlik vir die ontleding van metaalmonsters en ander vastestofmateriale gebruik. *Nie-geleidende* poeiers word met silwer of grafiet as geleidende medium vermeng en in elektrodes gedruk wat dan in die ioonbron gemonteer word. Die gelykstroomvonk vorm 'n plasma waaruit die ione uitgeneem en in 'n vlugbuis versnel word. Die ioonbundel word deur 'n elektrostatiese analiseerder gedefinieer en op 'n fotografiese plaat opgeneem nadat dit deur 'n magneetveld beweeg het, waar ione volgens die massa-tot-ladingsverhouding geskei is. Die lynverswarting op die fotoplaat word deur 'n mikroverswartingsmeter gemeet. Die data word met gespesialiseerde rekenaarprogrammatuur vertolk. Die hoofvoordeel van fotoplaatdeteksie in vonkbronmassaspektrometrie is dat die hele periodieke tabel van elemente met 'n enkele ontleding opgeneem kan word.

Verwysingstandaarde van uraanverbindings is nie in Suid-Afrika beskik-'n Metode van toevoeging van spooronsuiwerhede tot die geleibaar nie. dende materiaal is ontwikkel nadat verskeie grafietpoeiers uitgetoets is. Presisietoetse het die homogeniteit en die bruikbaarheid daarvan vir kwantitatiewe ontledings bevestig. 'n Omvattende reeks standaarde met tot 34 elemente, wat elk yttrium as interne verwysing bevat, is voorberei en kwantitatief ontleed. 'n Volledige stel kalibrasiegrafieke is opgestel, wat relatiewe sensitiwiteitsfaktore (RSF's) vir hierdie elemente in die U<sub>3</sub>O<sub>8</sub>/grafietmatriks verskaf het. Vir die meeste van hierdie elemente is beide die enkel- as dubbelgelaaide ladingstoestande beskou om 'n verband tussen die verskillende ioonopbrengste vas te stel. Die akkuraatheid wat by 'n konsentrasievlak van 10 µg/gU bereik is, is beter as 20% vir die meeste van die elemente wat bepaal is. Die UF4/grafietmatriks is ook ondersoek.

Die metode is deur vergelyking met IGP, AA, spektrografiese en spektrofotometriese metodes geëvalueer. Uitstekende ooreenstemming is bevestig.

SLEUTELWOORDE: Vonkbronmassaspektrometrie,  $U_3O_9/grafietmatriks$ ,  $UF_4/gra-fietmatriks$ , uraanverbindingsersityelapieweia sensitiwiteitsfaktore, foto-plaatdeteksie, laespanningontlading.



#### CHAPTER ONE

#### INTRODUCTION

#### 1.1 Introductory review

The double-focusing spark-source mass spectrometer Varian SM1B-F is well known for the analysis of trace impurities in solids such as conductors, semi-conductors and insulators. An electric discharge is generated between two electrically conducting electrodes which are made partly or wholly of the sample substance and mounted in a high vacuum. The electrode substance is evaporated and simultaneously ionised in the discharge. The ions emitted from this discharge are accelerated into the analyser, filtered according to their energy in the electrostatic analyser and analysed according to their mass-to-charge ratio, m/e, by deflection in the magnetic field. Ion-sensitive photographic plates are used to detect the ions and provide a permanent mass spectrum of the sample.

All elements with concentrations in the detection range may be analysed simultaneously in a single analysis. The complete mass range of interest is then recorded on a single photographic plate. This emphasises the selectivity and power of spark-source mass spectrometry in solid-state analysis. Very small sample The minimum mass of a non-conducting powder sizes are required. sample for a single analysis is only 0,1 grams which is then mixed with a conducting medium such as graphite powder. The physical size of a conducting metal or alloy sample for a single analysis is a piece one millimeter square with a ten millimeter length, which can be cut off from the bulk sample. The sensitivity with which a given element in a sample can be detected is in the same order of magnitude for almost all elements. Generally, it can be stated that the detection limit for almost all elements


is in the parts per billion (ppb) range. Some difficulties are, however, encountered in the quantitative determination of certain elements below the parts per million (ppm) concentration.

If a sample has a completely unknown composition, the sparksource mass spectrum allows the analyst to carry out a quick and standard-independent survey of the composition of the sample, qualitatively or semi-quantitatively. This survey analysis provides the concentrations of practically all elements in the sample to as far down as the ppb range, with a deviation from the absolute value not exceeding at the most, a factor of 3. A major advantage in the analysis at trace levels is the fact that samples can be analysed without any preliminary chemical treatment. This eliminates possible direct, as well as indirect, sources of contamination.

For many of the analysis problems in industry, particularly in trace analysis, a qualitative or semi-quantitative analysis of the sample is sufficient. If, however, a greater degree of accuracy is required, then the amount of endeavour required to carry through an analysis is correspondingly higher and the duration of the analysis that much longer. It is then necessary to measure the transmission factors of the spectral lines of the elements of interest. Concentration values relative to the concentration of one or several internal or external reference elements are hence obtained. The precision which may be achieved using graphical evaluation methods is in the order of approximately 20 per cent.

The work involved in high precision analyses is more arduous and exacting. The analyst must rigorously apply a precisely defined method of analysis in the evaluation of photographically recorded



mass spectra. The large amount of spectral information must then be fully utilized [1]. This can be achieved only with computerised data interpretation methods. The program provides spectral line transmission values along with the necessary corrections such as isotope abundances, line surfaces, photographic sensitivity, background and loss of sensitivity of the photoplates through background [2].

At present, the precision cannot be increased to values of better than approximately 20 per cent. This is largely due to the properties of commercially available photoplates. The statistical distribution of the silver grains on the photoplate surface as viewed through the microdensitometer slit gives the precision obtainable in mass spectrometric analyses of solids, an upper limit of 20 per cent. The percentage surface covering of the silver grains is a measure for the transmission factor for the relevant mass lines.

### 1.2 Motivation and scope of the thesis

Uranium compounds are produced to nuclear grade specifications by the Atomic Energy Corporation of South Africa Ltd. Maximum permissible levels are defined for a large number of elements in uranium oxide,  $U_3O_8$ . The spark-source mass spectrometer and various other techniques and methods are used to analyse these compounds. However, these techniques have limiting factors, such as sample treatment, standard addition and spectral interferences, which are not applicable to the spark-source mass spectrometer.

In order to perform quantitative analyses on the trace level impurities in uranium compounds, specifically  $U_3O_8$  and  $UF_4$ , making use of the internal reference standard method, the spark-source mass spectrometer first had to be characterised by deter-



mining relative sensitivity factors (RSF's) for these impurities in the particular matrices.

At the start of this characterisation stage of the project, no suitable standards were available. The existing standards were incomplete in that they did not contain all the relevant impurity elements. The non-availability of international  $U_3O_8$  standard reference material (SRM) further complicated the situation. Due to these limitations, graphite standards containing all the required impurity elements were prepared.

After this characterisation phase had been completed, the sparksource mass spectrometer was used to standardise a series of internal  $U_3O_8$  working standards. This technique can also be used in other applications in the nuclear industry where contamination must be controlled through a quality control programme.

This investigation had as its aim to conduct a comprehensive evaluation of the method of relative sensitivity factors for the determination of trace elements in  $U_3O_8$ . The project also afforded the opportunity to study the UF4 matrix where the effects of an excess of fluoride ions in the plasma had a marked effect on the ions recorded on the mass spectrum. This part has been studied in lesser detail. The evaluations were carried out to a point where routine analyses could be performed on the basis of the documented procedures. It was of prime importance to incorporate safeguards for reliable data acquisition and interpretation when doing routine analyses. This thesis should serve as a useful reference manual for the application of spark-source mass spectrometry in the nuclear industry. It contains extensive guide-lines for spectrum identification in uranium oxide and fluoride matrices. Data for fluoride matrices has never been published in the open literature.



### CHAPTER TWO

### THE FUNDAMENTALS OF SPARK-SOURCE MASS SPECTROMETRY

# 2.1 <u>The physics of plasma formation</u>

The most commonly used method of generating ions in the analysis of solids is with the radio frequency (RF) spark. However, this type of ion source has proved to be deficient in many respects as will be discussed below.

In the Varian SM1B-F spark-source mass spectrometer, the triggered low-voltage discharge (secondary spark) is used to generate ions. This low-voltage discharge is generated in turn by an external high-voltage impulse (primary spark) [3].

The major differences between the low-voltage spark and the RF spark can be summarized as follows:

The energy width of ions emitted from the triggered low-voltage discharge is much smaller than for the ions generated by the RF spark. This means that more ions pass through the entrance to the electrostatic analyser for the low-voltage spark. Due to this factor the time taken to determine an element in a sample at a given concentration with the same sample consumption is considerably reduced for the low-voltage spark compared to the RF spark.

When high-voltage electric spark-overs occur in the ion source due to too great a distance between the two electrodes, and also during the low-voltage discharge, some of the electrode substance is transferred from one electrode to the other. With the RF spark the polarity of the electrodes alters so that particles of



the electrode substrate flow in both directions. With the lowvoltage discharge, the polarity of the electrodes does not alter, therefore during each discharge a new amount of the cathode is evaporated, partly ionised and condensed on the anode so that the volume of the anode increases and that of the cathode decreases. The flow of electrode substrate particles in the same direction eliminates the possibility of some components of the electrode substance becoming preferentially evaporated, a process which happens in the RF spark.

The ratio of multiply charged ions to singly charged ions is not constant in the case of the RF spark. The constant ratio in the case of the low-voltage discharge offers an advantage in that the quantitative analysis of a sample is not restricted to evaluating lines of singly charged ions, but also multiply charged ions [1]. This is useful, especially in cases where the line of a singly charged elemental ion is interfered with by a line from another elemental ion such that the first element cannot be quantified. Then a multiply charged ion of the same element can be used to quantify.

Ions formed in the ignition phase (primary spark) of the impulse low-voltage spark exhibit characteristics making them unsuitable for quantitative analysis which resemble those obtained with the RF spark. By using time resolved mass spectrometry [4] with the SM1B-F, all these unwanted ions formed in the ignition phase are rejected and only ions generated during a.selected burning time interval of the low-voltage discharge arc are allowed to pass through the mass spectrometer where they are analysed according to their mass-to-charge ratio and detected photographically.



Various processes occur between the two electrodes in the ion source. The electrode material is first evaporated/volatilised. Thereafter the vapour is selectively atomised and subsequently ionised [5, 6]. This resulting collection of charged particles is called a plasma. The above processes occur during the lowvoltage arc discharges (secondary sparks) which are induced by high-voltage ignition pulses (primary sparks). Eventually the ions are accelerated into the mass spectrometer due to the 20 kV acceleration voltage. The plasma can thus be seen to be floating at this voltage. The formation of ions in this manner lead to ions found only in the elemental atomic stage. No molecular species are formed, except clusters which are formed due to recombinations within the plasma.

The primary and secondary sparks are controlled by pulse statistics and spark parameters. This means that the plasma created between the two electrodes in the ion source (and ultimately also the ion beam) can be controlled by the spark parameters.

Arc discharges are generated between the two electrodes in the ion source in order to evaporate the samples to be analysed. The spark repetition rate of individual discharges can be set in steps of 10, 30 or 100 Hz by adjusting the frequency. The voltage of this arc discharge is approximately 850 V and is set. Each discharge is induced by a high-voltage ignition impulse and subsequently maintained for a specified period of time as a lowvoltage discharge with a constant current. This discharge current of the low-voltage arc can be set in 10 equal stages between approximately 3 and 10 A. The high-voltage ignition impulse used to induce discharges has a maximum ignition voltage of approximately 64 kV with +32 kV on the one electrode and -32 kV on the other electrode. The energy of the ignition spark can be set to 3 different intensities.



The above spark parameters are directly related to the results obtained in respect of atomisation and ionisation of the electrode material.

Ions generated during the burning interval of the discharge and subsequently accelerated into the flight tube of the mass spectrometer can be deflected in front of the entry slit. This means that ions are only allowed to reach the entry slit during a certain pre-selected time in the burning interval and the ion current is completely cut out during selected dead times (impulse statistics). In this way the ion beam can be controlled.

### 2.2 Mass spectrometer design features

A simplified block diagram of the Varian SM1B-F spark-source mass spectrometer is given in Figure 2.1. The instrument makes use of a triggered low-voltage direct current (d.c.) discharge in the ion source region where ions are generated. The ion beam then undergoes double-focusing on entering the analyser, comprising the electrostatic analyser (ESA) and magnetic sector with Mattauch-Herzog geometry. A photographic plate is used to detect the ions.

The generation of ions in the ion source region of the mass spectrometer has been discussed in Section 2.1. All parts in close proximity of the actual spark i.e. the acceleration plate and the shield plate, are made of tantalum and can be cleaned easily by chemical or mechanical means. Electrical focusing is not possible because of the relatively large initial energy dispersion. The design of the ion source is therefore relatively simple, consisting only of the acceleration system and a deflection condenser.

 \* Varian MAT, now Finnigan MAT, GmbH, Postfach 14 40 62, D-2800 Bremen 14, Federal Republic of Germany.
© University of Pretoria





An important feature of the instrument is that all original tube electronic units have been replaced by units using solid-state electronic components. The vacuum system has also been updated. Two large turbo-molecular pumps are used to achieve a working vacuum of 10<sup>-4</sup> Pa in the ion source region of the mass spectrometer. Two ion-getter pumps are used in the analyser region (electrostatic analyser (ESA) and magnetic sector) to obtain a vacuum down to 10<sup>-7</sup> Pa. One small turbo-molecular pump is used to obtain a vacuum of 10<sup>-3</sup> Pa in the photoplate lock.

The ion optical system of the SM1B-F mass spectrometer is given in Figure 2.2, which shows the path of the ion beam. In the ion source, particles of the substance to be investigated are ionised, accelerated through a system of electrostatic lenses by means of a stable 25 kV Spellman<sup>\*</sup> high-voltage d.c. supply unit, and focused into a narrow beam. This ion beam must be so aligned that it hits the centre of the object slit (exit slit of the ion source). To achieve this, the ion source can be aligned in all three directions.

The object slit (entrance slit of the ion optical system) defines the width of the ion beam so that the desired resolution can be set. In order to meet the requirements of quantitative analysis and the separation of doublets, the ion source is equipped with a pair of slits having entry slit widths of 30 and 300  $\mu$ m. With a slit width of 300  $\mu$ m the aberrations of the ion optics is negligibly small. Since the slit is evenly illuminated at the same time, rectangular-shaped line blackenings are obtained with the wider slit width on the photoplate.

\* Spellman High Voltage Electronics Corporation, Plainview, New York, 11803, U.S.A.



UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA



spark-source mass spectrometer



The formula used to determine resolution (R) is given by:

$$R = \frac{M_o}{\Delta M}$$

where:

 $M_{\odot}$  is the nominal mass of the particular element, and  $\Delta M$  is the difference between the mass defect of the element under scrutiny and the mass defect of the interfering element (see also page 41).

The resolutional requirement is given in the fourth column of Appendix B on page 177. The resolving power is defined as that resolution required to resolve two mass spectral lines lying adjacent to each other as a doublet on a photoplate.

The resolving power of the SM1B-F mass spectrometer is up to 10 000 and depends on the position on the photoplate, the magnet strength setting as well as the object and exit slit settings. Practical resolving powers obtained during this investigation range between 2 000 and 5 000.

The electrostatic deflection field between the plates of the curved analyser produces an energy dispersion and a direction focusing. Ions of selected energy are thus directed in one parallel beam on emergence from the electrostatic analyser.



The potential difference between the ESA plates is kept very stable and is supplied by two 5kV Spellman high-voltage d.c. supply units. The energy band of ions leaving the ESA is defined by a narrow band within the Boltzman natural distribution of the energy population shown in Figure 2.3.



Figure 2.3: Shaded area represents energy band of ions selected on leaving the ESA

On leaving the ESA, the ion beam is defined vertically, called z-direction. The direction of the ion beam emerging from the the ESA can be controlled and correctly adjusted, so that the beam passes the monitor lens plates symmetrically and enters the magnetic field horizontally. The casing of the z-monitor acts as a shield against influences from the magnetic field as does the so-called Herzog lens. This lens creates a magnetic short circuit and ensures that the area within the z-lenses is not disturbed by the stray field of the separating magnet. At the end of the Herzog lens, the energy slit is mounted just in front of the magnet chamber. The energy-defining slit determines the point of entrance of the ion beam into the magnetic field and can be shifted horizontally, called the r-direction. The position



of the ion beam can also be controlled in the r-direction prior to its entrance into the magnetic field. The path of the ion beam through the Herzog lens and z-and-r-monitors is shown schematically in Figure 2.4.



<u>Figure 2.4</u>: Path of ion beam through Herzog lens and z- and r-monitors

The ion beam, which is defined in the r- and z-directions, enters the magnetic field produced by an electromagnet, whose current is supplied by a stable solid-state magnet power supply unit. The double-focusing plane (the plane in which ions of equal m/e



ratio are focused with respect to direction and energy) lies outside the magnetic field. Due to this location of the plane outside the field, it is possible to use a slit collector positioned in front of the photoplate for the measurement of the total ion current. The ions entering the magnetic field are bent according to their mass-to-charge (m/e) ratio and recorded on the photoplate.

## 2.3 <u>Ion detection and measurement</u>

In the quantitative analysis of solids, it is not only customary but necessary, in order to cover as large a concentration range as possible, to bring a staggered series of exposures of the same mass spectrum onto one photoplate. The selection of such an exposure pattern is discussed on page 21. Aspects of the ionsensitive photographic plates are discussed on page 22.

Since the ion current emitted from the ion source fluctuates with time, a slit aperture detector is used to record a fraction of the total ion current. This ion current is integrated over time to provide a measure of the total ion current falling onto the photoplate during each exposure.

In the SM1B-F spark-source mass spectrometer the electrodes of the slit aperture detector are positioned directly in front of the photoplate, i.e. at the exit boundary of the analyser's magnetic field. The ion current integrator permits the exact measurement of the charge down to 0,01 picocoulomb (pC).

There are a number of publications in existence on general measuring techniques used in conjunction with double-focusing mass spectrometers with a spark-source [1]. The measuring technique used in this work required specialised hardware and software



[7, 8] specifically designed and developed to evaluate spectral lines on ion-sensitive photoplates.

Besides photoplate recordings, ions can also be recorded with an ion collector utilizing a Faraday cage or a secondary electron multiplier (SEM) as electrical detection systems. Two focusing plates positioned behind the exit slit direct the ion beam onto the ion collector. Further plates located in front of the exit slit are connected to a saw-tooth generator. The ion beam can therefore be made to pass at intervals before the slit. Connected to the SEM of the ion collector, the ion beam can be displayed as a peak on an oscilliscope screen. Alternatively, the ion beam can be recorded with a Faraday cage which can be exchanged for the SEM.

The SM1B-F spark-source mass spectrometer used by this laboratory does not make use of electrical detection as this facility has been removed from the instrument.

The advantages of utilizing photoplate detection can be summarized as follows:

Photographic plates provide a permanent record of the spectrum obtained for a sample. Once the analyst has analysed the photoplate, it can be stored and re-used at a later stage to obtain additional information. The complete spectrum of impurity elements present in the sample is obtained on a photoplate. This helps the analyst when eliminating possible interferences on a specific spectral line.

Sophisticated hardware and software exist for the reading and interpretation of mass spectrographic ion-sensitive photoplates. The sensitivity of the emulsion layer on Ilford Q plates meets the requirements for the detection of ions of low concentration levels.



### CHAPTER THREE

### EXPERIMENTAL

# 3.1 <u>Mass spectrometer operation</u>

### 3.1.1 Operation of the instrument

The operation of the instrument, from the time the sample is loaded in the ion source of the mass spectrometer until the photoplate has been exposed and removed to the dark room for development, is comprehensively described in the operating manual [9] and will not be repeated in this thesis.

## 3.1.2 Preparation of electrodes

Solid-state compounds which are analysed with spark-source mass spectrometry can be divided into two groups: The first group, metals and alloys, are electrically conducting and analysis can be performed directly on a piece of the material. The second group, powders, can be divided into conducting and non-conducting materials. For powder samples, electrodes have to be pelleted. However, for non-conducting powders, a conducting medium such as silver or graphite must first be mixed with the sample before electrodes can be pelleted.

For non-conducting powder samples, these are first ground using an agate mortar and pestle to ensure homogeneity of the sample. Thereafter, the sample is weighed and combined with graphite in the appropriate dilution ratio, using yttrium as an internal standard. The preparation of graphite standards and the use of yttrium as an internal standard are discussed on pages 26 and 28, respectively.

Two or three glass beads are then placed into the polyethylene vial with the sample/graphite mixture to promote good mixing using a Retsch<sup>\*</sup> Type MM2 agitator/mixer or a Wig-L-Bug<sup>#</sup> mixer, serial no. Y56737. A cylindrical high-density polyethylene pill (called a slug), with two holes through it, is then placed into a stainless steel holder. This holder is specially manufactured to accommodate the pill and also has a sample loading facility. Using a small spatula, the sample mixture is carefully inserted into the holes of the pill through the sample loading facility of the holder. A plunger is used to compact the sample. The exercise requires gentle action in order to produce an electrode. The pill is then placed in a die and compacted to 22 - 25 tons using a Spex Industries 25 ton hydraulic bench press. The pill is subsequently placed on a perspex support and a stainless steel plunger is used to press out the two electrodes. The tips of each electrode are carefully broken off to expose a representative new surface for analysis. The electrodes are finally clamped in tantalum electrode holders and mounted in the ion source of the mass spectrometer.

#### 3.1.3 Spark generator parameters

It was important in this investigation to keep all the instrument parameters constant throughout the experiments so as to eliminate possible differences from one photoplate to the next. However, as a result of the wide concentration range employed in the graphite standards, certain parameters were changed slightly to suit the particular analysis. The various instrument parameters are given in Table 3.1.

- \* F. Kurt Retsch KG, 5657 Haan, Neuer Markt 25, Germany.
- # Wig-L-Bug, Crescent Dental MFG. Co., Chicago, Illinois, 60616, U.S.A.
- @ Spex Industries Inc., Metuchen, N.J., 08840, U.S.A.



Table 3.1: Instrument parameters

| Vacuum conditions:               |                       |  |  |
|----------------------------------|-----------------------|--|--|
| Electrostatic analyser           | 10-6 Pa               |  |  |
| Magnetic analyser                | 10-7 Pa               |  |  |
| Ion source (when sparking)       | 10-* Pa               |  |  |
| Photoplate lock                  | 10-3 Pa               |  |  |
| Slit settings:                   |                       |  |  |
| Object slit width                | 10 – 20 µm            |  |  |
| Analyser entrance slit width     | 0,6 mm                |  |  |
| Energy-defining slit width       | 0,8 mm                |  |  |
| Potentials:                      |                       |  |  |
| Ignition spark voltage           | 32 kV                 |  |  |
| Low d.c. discharge voltage       | 850 V                 |  |  |
| Electrostatic analyser voltage   | ± 750 V               |  |  |
| Accelerating voltage             | ± 20 kV               |  |  |
| Magnet settings:                 |                       |  |  |
| Magnetic field                   | 14 000 Gauss          |  |  |
| Magnet current                   | 4,6 A                 |  |  |
| Mass range covered               | 5 - 165 Daltons       |  |  |
| Spark parameters:                |                       |  |  |
| Low voltage discharge current    | 2 – 4 A               |  |  |
| Spark pulse duration             | 20 µsec               |  |  |
| Spark pulse repetition frequency | 30 Hz                 |  |  |
| Ignition voltage intensity       | Medium (No 2 setting) |  |  |



It is imperative to wait until the desired vacuum has been reached in the various sections of the mass spectrometer before starting with the analysis. Poor vacuum conditions could cause short circuiting in the ion source region and vacuum banding across the photoplate in the magnetic analyser region.

The various slit width settings of the mass spectrometer were unchanged throughout the investigation. The ignition spark and low d.c. discharge voltages were also kept constant. These two potentials are set and fixed in the pulse statistics unit. The electrostatic analyser voltage could be changed with a 2 - 3 volt tolerance, but the positive and negative voltages were kept in perfect balance so as not to deflect the ion beam passing through the two slits. The accelerating voltage could also be changed with a small tolerance as it was used to direct the ion beam through two ion source slits in order to balance the ion beam monitors.

The magnet settings of the mass spectrometer were kept constant throughout an experiment to ensure that the various exposure spectral lines were directly aligned beneath each other on the photographic plate. Adjustments can be made on the microdensitometer to correct skewness which results from slight misalignment of the photoplate mounting in the detection compartment.

Most of the spark parameters, as set out in Table 3.1, were kept constant. The spark pulse duration was fixed in the pulse statistics unit, whereas the other settings could be set externally. Whenever very short exposures were required, especially for samples with high concentration levels of impurity elements, use was made of beam chopping whereby only certain portions of the ion beam were allowed through the lenses, making it easy to capture short exposures on the photoplate. The low-voltage discharge



current was constantly changed in order to maintain the ion beam. This parameter has a direct influence on the ionisation that is taking place within the plasma generated in the ion source.

The polarity configuration of the two electrodes mounted in the ion source depends on the type of sample. The ion current differs from a metal sample to a powder sample. In order to achieve the optimum ion current the polarity must be changed to suit the sample type.

Possibly the single most important setting that must be constantly adjusted throughout an analysis is the spark gap between the two electrodes. The position of the two electrodes relative to the aperture of the ion source is also very critical. The positioning of the two electrodes during sparking is directly related to the ion current monitored. This spark gap must be kept constant throughout the analysis by repeated resetting of the gap as the electrode material is being depleted.

### 3.1.4 Exposure pattern selection

The exposure pattern to be used to analyse a sample depends on concentration range of impurity elements present. The ion the beam is recorded as a charge which is measured in picoCoulombs For unknown samples, a standard exposure pattern is (pC). However, for samples which have very high concenimplemented. tration levels of impurity elements, very short exposures must be selected to be able to obtain a workable transmission curve. Similarly, for samples that have very low concentration levels of impurity elements, very long exposures are needed to detect these low concentrations. The exposure pattern is based on a natural logarithmic scale due to the large range of the exposures (one to 20 000 pC). Three exposure patterns were compiled to cater for © University of Pretoria



the range of graphite standards prepared. These standards and preparation methods are discussed on pages 26, 103 and 122. The  $U_3O_8$  sample used for the acquisition of the blank data required a very long exposure pattern.

There are normally 32 positions which can be utilized on a photographic plate. The analysis time is totally dependent on the exposure pattern selected. For an exposure pattern of up to 20 000 pC, the average analysis time is of the order of two hours, depending on the spark parameters. However, replacing short exposures by long exposures, to ensure detection of very low concentrations, increased the analysis time up to seven hours using the same ion current and sparking parameters. Exposure patterns should be chosen in relation with the lifetimes of electrodes.

### 3.1.5 Detection

Ion-sensitive photographic plates Ilford<sup>\*</sup> Q plates, are used in the photographic detection system [10].

Silver bromide (AgBr) crystals embedded in a gelatine matrix, which is the emulsion layer covering the glass plate, are reduced to metallic silver (Ag) during the development stage. This takes place on the photoplate only where ions from impurity elements in the sample have fallen, forming clusters of silver atoms, called latent image centres. During the fixation stage, the remainder of the AgBr crystals are removed, leaving only the characteristic spectral lines on the emulsion with varying degrees of blackening, according to the exposure pattern and concentration of impurity element ions. The developing procedure for these Q plates is a standard method [7]. Whenever a photoplate

\* Ilford Limited, 14 - 22 Tottenham Str, London, W1POAH England.



has to be developed, it is a cardinal rule that fresh solutions of developer and fixer must be used. This is necessary to eliminate the possibility of under-developing the photoplate and also to remove all of the residual silver halide crystals so as to have a clear background transmission of light on the photoplate. A hardener is also added when rinsing the photoplate off, to aid image formation.

Hereafter, the photoplate is placed in a specially designed water tower with running demineralised water for half an hour. This step ensures that no fixing agents remain on the photoplate which, with time and light, darkens the background emulsion. Α wetting agent is finally added which aids rapid and uniform drying. The glass side of the photoplate is then dried off and the photoplate placed in a specially designed dust-free black box where the emulsion is allowed to dry before the photoplate is inspected under the microscope. It is very important to follow the standard developing procedure so as to minimise differences in photoplate data due to differences in the photographic development procedure. The sensitivity of the photoplates in a particular batch is very similar. Slight variations do not influence the results as an internal reference standard normalises the data.

### 3.2 Preparation of Standards

### 3.2.1 Reagents

The reagents used to prepare the standards consist of two parts, namely the graphite powder and the solution containing the impurity elements of known concentration.

Various graphite powders were evaluated for this application. The most important consideration was the number of and



concentration levels of impurity elements present. Graphite powder with the least background spectral lines should be selected to act as conducting medium in the spark-source mass spectro-Another prerequisite was that the powder should be meter. wettable and pelletable, wettable in the sense that it would be able to adsorb drops of the standard solution and pelletable in the sense that electrodes could be pressed from the graphite Ringsdorff \* spectrographic powder, Grade RW-A, has very powder. good pelletability, but is not very compatible with an aqueous Another graphite powder tested was a French spectrosolution. graphic carbon Ref 9900-208-17 387, from Le Carbone<sup>#</sup>, which was also not wettable. The only two graphite powders suitable were a spectroscopic powder from Union Carbide Corporation<sup>@</sup> (UCAR). Grade SP-1, Lot Number B92, Catalogue No. L 4100. and an Ultra 'F' purity electrode graphite from Ultra Carbon Corporation $^{\diamond}$ , Material UCP-1-200 powder, Lot Number 112-6-37. The Ultra 'F' graphite formed pellets (electrodes) which produced a better ion signal and had a cleaner background spectrum than UCAR SP-1 graphite, although it was slightly more difficult to wet. Both. however, were most suitable graphite powders to use in preparing standards.

The choice of impurity elements in  $U_3O_8$  matrix was limited to those listed for nuclear grade specification for trace impurities

- \* Ringsdorff Werke, GmbH, Bad Godesberg Mehlem.
- # Le Carbone, Lorraine, Paris, France.
- @ Union Carbide Corporation, Carbon Products Division, New York, N.Y., 10017, U.S.A.
- \$ Ultra Carbon Corporation, P.O. Box 747, Bay City, Michigan, 48706, U.S.A.



in uranium reactor fuels. The choice of impurity elements in a UF<sub>4</sub>/graphite matrix is discussed on page 81. Impurity elements whose isotopes interfered with other element isotopes in such a way that they could not be measured, could not be evaluated using this method.

It was possible to obtain  $Spex^*$  custom plasma standard solutions with concentrations of either 1 000 or 10 000 µg/ml for most of the selected impurity elements which are used in inductively coupled plasma (ICP) optical emission spectroscopy. These standards are referred to as "ICP standards" in the text below. It has been shown that the relative sensitivity factor for an impurity element is the same irrespective of a nitrate or oxide matrix [11]. Appropriate volumes of the standard solutions were added together to form a solution containing all the impurity elements, which was subsequently added to the graphite powder to prepare standards.

A set of Spex diluted powder standards, denoted G-7, containing 49 common elements over seven concentration ranges using In as internal standard, were also analysed with base  $U_3O_8$  material which contained very low levels of impurities (see Table 5.1 on page 106). These standards were found unsuitable for a number of reasons, of which the most important is their inhomogeneity. The concentration of the internal standard, In, is also too high for spark-source mass spectrometry applications. The powder does not form suitable electrodes when pelleted.

\* Spex Industries Inc., Metuchen, N.J., 08840, U.S.A.



# 3.2.2 Preparation of standards in a graphite matrix

The desired volume of a specific ICP standard was chosen depending on the final concentration and the total mass of graphite standard required. The approach is demonstrated by the following example:

- Final concentration of graphite standard for element X relative to uranium: 10 μg X /gU.
- Concentration expressed relative to graphite: 40 μg X /gC (ratio of U to graphite is 4:1).
- Total mass of graphite standard required: 5 grams.
- Concentration then becomes: 200 µg X /5gC.
- Concentration of ICP standard: 1 000 μg X /m1.
- Expressed in microlitres : 1 000 μg X /1 000 μ1.
- By extracting 200 μ1 from the ICP standard, the required concentration of 200 μg X /5gC is obtained.

The above procedure was adopted for each of the graphite standards prepared with the concentration range given on page 103 for  $U_3O_8$ , and on page 122 for UF<sub>4</sub>.

Approximately 1 ml of a 1 000  $\mu$ g/ml ICP standard for the various elements of interest was obtained in a clean pill vial. The necessary volume for each of the graphite standards was extracted from the pill vial using an appropriate Eppendorf<sup>\*</sup> Varipette and placed carefully in a clean 50 ml Erlenmeyer flask containing deionised water and methanol (which was used to break the surface tension of the resultant solution). The concentration levels of impurities in the methanol were very low. Pb and Sn are the only elements which could interfere with the spectrum interpretation (see page 51). This procedure was followed for each of the

 \* Eppendorf Gerätebou, Netheler & Hinz, GmbH, Postfach 65 06 70, 2000 Hamburg 65, Germany.
© University of Pretoria



impurity elements, each time using a clean nib on the varipette.

Five grams of graphite powder was weighed off into a clean platinum crucible large enough to take the volume of graphite, using a clean stainless steel vibration spatula and a Mettler<sup>\*</sup> HlOT mass balance.

The wet doping technique was used to prepare the graphite stan-The standard solution is added to the graphite powder dards. using a clean dropper until the powder is uniformily wet. Great care must be exercised when doing the addition, so as not to get any of the solution against the sides of the platinum crucible. as this could result in selective crystallisation during drying. The crucible is then placed under a 250W infrared lamp for about 20 to 30 minutes to dry the powder before the next addition is In total 15 to 20 such additions of the standard solution made. are made to the graphite powder with repeated washing down of the flask sides with a 30% methanol solution to ensure complete transfer from the flask to the platinum crucible. A glass rod is used after each drying to break up any lumps or crust that may have formed in the graphite powder and to mix the powder, in Once the standard solution has order to promote homogeneity. been completely transferred to the graphite powder, it is then dried in a vacuum oven at 80°C for 48 hours. After cooling down, the graphite standard is carefully transferred from the platinum crucible to a pill vial and capped. During the evaporation stage under the infrared lamp, the crucible is covered with a large-enough watchglass so as to prevent contamination from dust.

Mettler Analytical and Precision Balances, CH-8606,
Greifensee - Zurich, Switzerland.



# 3.2.3 Internal Standard Method

The general method used to quantify an unknown sample is to use the same photoplate for both the sample and a relevant standard [12]. In this way one eliminates slight differences from one photoplate to the next, e.g. photoplate response, differences in development, etc. A deciding disadvantage of such a method, especially if the sample turnover is great, is that the standard material becomes depleted. The time it takes to analyse both sample and standard is also impractical, especially when pumpdown time is also taken into account. For these reasons, the use of an internal standard [13, 14] is far more desirable.

Yttrium (Y) was included in the preparation of graphite standards as an internal reference standard whereby differences between photoplates could be monitored.

The choice of Y as an internal standard was based on the following properties:

- it is an element which is not present as an impurity in nuclear fuels;
- both the 1+ and the 2+ spectral lines fall within the mass range of interest;
- Y is a mono-isotopic element having a mass-to-charge ratio of 89 in the singly charged state and 44,5 in the doubly charged state.

The general formula used to express a relative sensitivity factor (RSF), as shown by equation (3) on page 99, is reproduced to include Y as the internal standard (IS):



 $\frac{\frac{x}{Q_{y}^{-}}}{\frac{C_{y}}{C}}$ RSF = -

where:

 $Q_y^-$  is the mean exposure value of Y for the charge states 1+ and 2+,  $C_y^-$  is the concentration of the internal standard Y added to the graphite standards,  $Q_x^-$  is the exposure value at 50% transmission of element X, and  $C_x^-$  is the concentration of an element X.

It can be shown, statistically, that it is advantageous to use the mean exposure value of two charge states,  $Q_y^-$ , when expressing an impurity element's exposure value relative to the internal standard, Y.

The internal standard is also used as a control for photoplate evaluation and possible rejection by using the ratio between singly and doubly charged species as well as the mean exposure value between singly and doubly charged species,  $Q_y^-$ . It has been found for Y in a  $U_3O_8$ /graphite matrix that the Y<sup>+</sup>/Y<sup>2+</sup> ratio lies between 3 and 4, with an average of 3,56 determined over 30 photoplates (n = 30). For a UF<sub>4</sub>/graphite matrix the Y<sup>+</sup>/Y<sup>2+</sup> ratio lies between 1 and 2, with an average of 1,57 determined over 46 photoplates (n = 46). The mean exposure value,  $Q_y^-$ , for Y in a  $U_3O_8$ /graphite matrix can be coupled to the Y concentration in the following manner:



 $\mu g$  Y /gC :  $Q_{y}^{-} = 4$  895 where n = 31 $\mu g$  Y /gC :  $Q_{y}^{-} = 7$  098 where n = 14 $\mu g$  Y /gC :  $Q_{y}^{-} = 9$  384 where n = 12 $\mu g$  Y /gC :  $Q_{v}^{-} = 20$  066 where n = 37

The Q- value for Y in a  $UF_4$ /graphite matrix is  $Q_- = 1$  386, determined over 46 photoplates, and the Y concentration 100  $\mu$ g Y/gC.

These values of  $Y^*/Y^{2*}$  ratio and  $Q_{\overline{y}}$ , for both  $U_3O_8$  and  $UF_4$  matrices, have been determined over a period of 10 months as the value of n indicates, and can be used to control the quality of analyses. Possible reasons for photoplate rejection are that the photoplate has not been developed properly, or that the sparking conditions used to analyse the sample are inadequate, or general instrument problems. This quality assurance approach is a new contribution to the methodology of spark-source mass spectrometry.

### 3.3 Sample preparation: dilution ratio's

Uranium compounds such as  $U_3O_8$  and  $UF_4$  are electrically non-conducting. For spark-source mass spectrometry analysis these have to be mixed with a conducting medium such as graphite or silver. The ratio between the conducting medium and the uranium compound determines the yield of impurity element ions. The mixing ratio depends on the conductance of the sample and is not subject to any generally applicable ruling.



Tests were conducted using different mixing ratios of Merck<sup>\*</sup> nuclear grade  $U_3O_8$ , LAB 6344513, and graphite powder, as well as for a stoichiometric UF<sub>4</sub> sample and graphite powder. The number of mass spectral lines on the photoplate, using the appearance level method, was counted for the same element isotopes and charge states using different dilution ratios of sample to graphite. This method is based on the number of spectral lines which can be observed on a photoplate according to a specific exposure pattern for a particular impurity element, and is discussed on page 132.

For  $UF_4$ , it was found that a ratio of 1:1 between  $UF_4$  and graphite by mass, yielded the most lines for the majority of the elements selected. Ratios up to 5:1 for  $UF_4$  and graphite by mass were also analysed, yielding fewer lines for certain elements.

For  $U_3O_8$  it was found that a ratio of 5:1 between  $U_3O_8$  and graphite, by mass, yielded the most lines for most of the elements selected. Ratios from 1:1 for  $U_3O_8$  and graphite, by mass, were also analysed. These ratios yielded fewer lines for all of the elements. The ratio of 4:1 for  $U_3O_8$  and graphite by mass yielded for certain elements more lines than for a ratio of 5:1. The ratio of 5:1 between  $U_3O_8$  and graphite implies a ratio of 4:1 between uranium (U) and graphite by mass as there is approximate-ly 85% U in  $U_3O_8$ . When preparing electrodes with  $U_3O_8$  and graphite the ratio of 5:1 by mass was used.

The different optimum dilution ratios between  $U_3O_8$  and  $UF_4$  can be ascribed to the fact that these compounds have different matrices resulting in different plasma conditions.

\* E Merck, Frankfurter Strasse 250, D-6100 Darmstadt 1, Federal Republic of Germany.



### 3.4 Data acquisition and processing

## 3.4.1 <u>Microdensitometer</u>

Once mass spectral lines have been identified on the photoplate as being solely representative of a particular impurity element in the sample, data capture is performed using a computer-controlled microdensitometer<sup>\*</sup>, Model MD 100 [15]. Operating procedures are fully documented [16]. Data acquisition is performed using a Zenith<sup>#</sup> Data Systems microprocessor with dual auxiliary floppy disk drives, colour monitor and an OKI<sup>®</sup> Microline 292 printer.

The microdensitometer settings are as follows:

| Slit  | width      | 15  | $\mu m$ |
|-------|------------|-----|---------|
| Slit  | height     | 1,0 | mm      |
| Scanr | ning speed | 1,0 | mm/sec  |

These settings are fixed from the outset and are determined by the characteristics of the spectral lines on the photoplate with regard to width and height.

- \* VEB Carl Zeiss JENA, DDR.
- # Fabriqué Par, Zenith Radio Corp., Springfield, Missouri, 65801, U.S.A.
- @ OKI Electric Industry Co. Ltd., Tokyo, Japan.



The basic function of the microdensitometer is to measure the percentage light from a photocell that passes through the mass spectral line on the photoplate. The 100% setting is done using two clear plate regions at the low and high mass ends of the photoplate. It is thus imperative that all the emulsion is removed from these two regions. Transmission curves are drawn up from these transmission values used on the mass spectrometer. A limiting factor with the standard microdensitometer software is that the data manipulation matrix is dependent on the number of exposures utilised and the number of spectral lines to measure. The large number of impurity elements in a  $U_3O_8$ / graphite matrix, and the fact that some elements were measured both in the singly and the doubly charged state, created the need to compile two matrices.

The most time consuming exercise is the preliminary setting up of the microdensitometer. This includes photoplate alignment on the carriage, obtaining relevant spectral line co-ordinates and the setting of windows around doublets and triplets. The last task is of utmost importance, especially for elements that occur only as doublets or triplets. This is discussed on page 45 for magnesium in a  $U_3O_8$ /graphite matrix.

The actual data acquisition is done rapidly, with the x- and y-motor drives activated under computer control. After each scan, the analyst must ensure that the y-motor has moved the carriage accurately from the preceding spectral line to the next and that the slit is correctly positioned over the spectral line on the photoplate. In this way, all the exposure spectral lines are scanned for the composition of a transmission curve.



The background noise correction transmission value is of extreme importance, especially for very light spectral lines. This value is subtracted from the emulsion background transmission which is measured on either side adjacent to the relevant spectral line of interest. If this background noise correction value is too high, it will result in the corrected emulsion background value being lower than the actual spectral line transmission value. This exposure point will then be rejected from the transmission curve.

Various factors affect the background noise correction value, amongst others, dust on the photoplate and ordinary electronic noise. The electronic units have to be kept well ventilated because if the analogue-to-digital converter gets warm, the background noise correction value becomes too large to work with. Ideally, this value should fall between 2 - 4%.

The data acquired is stored on floppy disk for further reduction and interpretation.

### 3.4.2 Linearisation functions

A second microcomputer and data processing software [7] are used for the data reduction and interpretation. The analyst is required to quantitatively determine the composition of the sample from the blackening of the mass spectral lines on the photographic plate. Plate blackening, which is measured by the light transmission through the emulsion, is not linearly related to the number of ions striking the emulsion. The plot of plate blackening against the natural logarithm of the number of ions striking the emulsion is an S-shaped curve dependent upon exposure conditions, ion momentum and plate development technique and is called the emulsion response curve or transmission curve.



The transmission curve is first investigated for possible outliers. Ideally, the curve should have a shape as in Figure 3.1 where there are a few saturated points as well as a few light points. The correct exposure pattern selected will ensure that such a transmission curve is obtained.



Figure 3.1: Typical good quality transmission curve

Transmission curves were linearised using the Hull function [8, 17]. Other functions that can also be used are the Seidel and Wagner functions [7]. However, these are more applicable to special applications and were not employed for this investigation. Although the semi-empirically derived Hull formula is not universally suitable for treatment of all data, it represents an approach which is adequate, provided that the exposure range is appropriate to the concentration of the particular element under investigation. For the Hull function plot, a gradient after



linearisation of between 0,7 and 1,7 is acceptable. Points far outside the effective range for the Hull function were removed. Transmission values between 10 and 75% best fitted the Hull function, providing straight lines having correlation coefficients near unity. This is best illustrated in Figure 3.2. The final choice of acceptable data points for the Hull function plot depends on the assessment of the analyst and is based on experience rather than on any firm statistical approach.



Figure 3.2: Typical Hull function plot

When quantifying, the intercept at a 50% transmission of the transmission curve gives an exposure value which is coupled to the concentration of that particular impurity element. Thus, the exposure value of an element, X, expressed as  $Q_X$ , at 50% transmission on the Hull function plot, is used as the intercept from which the concentration of element X is determined.



Natural logarithms are determined for the exposure values of element X and the internal standard, Y. A ratio of  $Q_x/Q_y^-$  is then calculated and used for calibration graphs to determine relative sensitivity factors (RSF's) [18]. (See pages 29 and 98).

Once relative sensitivity factors have been determined, these are stored in the software. The standard data reduction and interpretation software has been updated in this laboratory to perform the necessary calculations to determine concentrations using the relevant RSF's, exposure ratios and the internal standard concentration.


# CHAPTER FOUR

# QUALITATIVE SPECTRUM INTERPRETATION

# 4.1 U<sub>3</sub>O<sub>8</sub>/graphite matrix characteristics

# 4.1.1 General principles

Once a spectrum has been recorded on a photographic plate, each spectral line must be assigned a nominal mass. Thereafter, the lines must be related to the elements present in the sample as impurities.

The first step in assigning nominal mass values to the spectral lines is to identify the major elements. In the case of the  $U_3O_6$ /graphite matrix, majors are uranium, oxygen and carbon. A knowledge of the fingerprint spectrum of uranium is required, and is listed in Table 4.1.

| Table fill habb byccclum of dianta | <i>Table</i> | 4.1: | Mass | spectrum | of | uranium |
|------------------------------------|--------------|------|------|----------|----|---------|
|------------------------------------|--------------|------|------|----------|----|---------|

| Charge<br>state | Isotope           | m/e                        | Charge<br>state | Isotope           | m/e                     |
|-----------------|-------------------|----------------------------|-----------------|-------------------|-------------------------|
| 1+              | 238<br>235<br>234 | 238,00<br>235,00<br>234,00 | 4+              | 238<br>235<br>234 | 59,50<br>58,75<br>58,50 |
| 2+              | 238<br>235<br>234 | 119,00<br>117,50<br>117,00 | 5+              | 238<br>235<br>234 | 47,60<br>47,00<br>46,80 |
| 3+              | 238<br>235<br>234 | 79,33<br>78,33<br>78,00    | 6+              | 238<br>235<br>234 | 39,67<br>39,17<br>39,00 |



By examining the plate through a microscope, two distinct sets of spectral lines are observed in the upper half of the plate. These are distinguished as "A" and "B" in Figure 4.1. The major line of each set is due to the 238-isotope of uranium. The magnet range must be known in order to ascertain what charge state to relate to each set. In the case of Figure 4.1, the magnet range is from mass 10 to 165. Thus, from the data in Table 4.1, "A" can be assigned the mass 79,33 and "B" the mass 119,00.

At the lower end of the photoplate, a major line with dispersion due to over-saturation is noted. This line "C" is due to carbon, another major component, with mass 12. The line "D" in Figure 4.1 is due to oxygen, another major element, with mass 16.

The line marked "E" is due to the formation of the carbon dimer  ${}^{12}C_2^+$  with mass 24. The line marked "F" in Figure 4.1 is due to the formation of  ${}^{12}C^{16}O^+$ , the major isotopes of both carbon and oxygen, which are main components. The formation of such a species is not uncommon for a  $U_3O_8/graphite$  matrix.

Once the main elements have been identified on the photoplate and nominal masses assigned to these spectral lines, these are used as markers to calibrate the rest of the data simply by filling the masses in between. It is noted that the distance between two masses at the lower end of the photoplate is larger than that obtained between two masses at the upper end. This is due to the fact that the position of a spectral line relative to any arbitrary figure is proportional to the square root of the mass-tocharge ratio, m/e [19].

A fundamental principle in the identification of spectral lines on a photoplate is to eliminate the possibility of interference



UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI VA PRETORIA

Figure 4.1: Photoplate spectrum of a U<sub>3</sub>O<sub>8</sub>/graphite matrix

30

20

10

ander fan sender I - Die Der Parte



from other elements [19]. The photoplate must be thoroughly examined so as to gain an overall impression as to which elements are present in the sample. Each element is then identified in terms of its isotopes and charge states. To positively confirm if an element is present, it must be possible to assign spectral lines on the photoplate to the elements' isotopes, as well as the various charge states. Doublets and triplets on the photoplate can be resolved on the basis of mass-defect data.

The mass defect in milli-mass units (mmu) is defined as the difference between the accurate mass and the mass number or nominal mass of an isotope. Mass-defect values for all the isotopes of the elements are relative to carbon 12 having a mass defect of zero.

Bearing in mind that the ultimate purpose is to measure the transmission of spectral lines for the quantitative determination of the elements present, it is imperative to ascertain that a spectral line is totally representative of that particular element's concentration. The importance to rule out any interference from other elements cannot be over-emphasised.

The plasma generated in the ion source is such that primarily elemental ions are formed in the  $U_3O_8$ /graphite matrix. The formation of molecular species can largely be avoided. This simplifies matters as far as the spectrum is concerned.

The plasma temperature must be of such a magnitude so as to prevent the formation of oxide species of the various impurity elements. When the spectrum becomes more complicated as in the



case where 34 elements are present in the  $U_3O_{\theta}$ /graphite matrix, special care must be taken when assigning spectral lines with elemental names, eliminating all possibilities of interferences.

#### 4.1.2 <u>Selection of elements</u>

Thirty four elements were selected from nuclear fuel specifications and are listed in Table 4.2 (see page 75). These were added to graphite powder in various ranges of concentration. The method followed for the preparation of the standards is discussed in Chapter 3 on page 26. The procedure to ascertain, firstly, whether each of these elements is present on the photoplate and, secondly, at what mass line to measure the elements present quantitatively is discussed in the following paragraphs.

#### 4.1.3 <u>Boron (B)</u>

| Box               | ron | Isotopes |       |  |
|-------------------|-----|----------|-------|--|
| Maaa              | 1+  | 10       | 11    |  |
| Mass              | 2+  | 5        | 5,5   |  |
| Abundance (%      | ()  | 19,65    | 80,35 |  |
| Mass defect (mmu) |     | +12,9    | +9,3  |  |

B is positively identified at masses 10 and 11. These lines should also occur in the correct natural isotopic abundance ratios. Lines at masses 5 and 5,5 are unique to the doubly charged species of B. However, these lines are at the low-mass end of the spectrum and are not readily observed. The mass range is determined by the magnetic-field strength (H) and is selected so as to record a practical range on the photoplate.



Possible interferences at mass 10 could be the hydride species of beryllium 9 ('BeH'), the doubly charged gaseous neon 20 (''Ne'') species or the triply charged silicon 30 (''Si'') of small isotopic abundance (3,09%). If the concentration level of Ca is very high in the sample, the multiply charged 4+ ion of the major isotope \*°Ca can be detected at mass 10. However, each of these interferences appears as a doublet or triplet at mass 10, which can be resolved using the mass defect differences in milli-mass units.

Interferences at mass 11 could be the hydride species of  ${}^{10}B$ , the doubly charged gaseous Ne 22 species ( ${}^{22}Ne^{2+}$ ), the triply charged sulphur 33 ( ${}^{33}S^{3+}$ ) of low isotopic abundance, as well as the multiply charged 4+ ion of  ${}^{44}Ca$ . The mass defect of  ${}^{11}B$  and these interferences are sufficient to resolve any doublets or triplets at mass 11.  ${}^{11}B$  is the major isotope. The only interference of importance is the possibility that the background percentage transmission of light for the longer exposures of  ${}^{11}B$  could be affected by the clouding around the longest exposures of the major component,  ${}^{12}C$ , at mass 12. This is clearly manifested in Figure 4.1 at "C". To quantify B, mass 11 is the most suitable line to use.

4.1.4 <u>Sodium (Na)</u>

| Sodi              | um | Isotopes |
|-------------------|----|----------|
| Mass              | 1+ | 23       |
|                   | 2+ | 11,5     |
| Abundance (%)     |    | 100      |
| Mass defect (mmu) |    | -10,2    |



Na is very similar to K in that the element does not readily form multiply charged species. This is probably due to the fact that Na has only one valence electron to lose in its 3s orbital to reach the noble gas structure. Being mono-isotopic also has its disadvantages in that there is no way in which to positively identify the presence of Na other than the line at mass 23. Possible interferences could be the heterogeneous species ''B''2C or the **\***<sup>6</sup>Ca doubly charged isotope which has a low isotopic abundance (0,0037%). The most likely interference at mass 23 is the doubly charged isotope of titanium 46 (\*'Ti'). The presence of this isotope of Ti can be verified by the presence of a line at mass 23,5 due to the 4'Ti' ion of similar isotopic abundance. However, this doublet can be resolved using the mass-defect value.

# 4.1.5 <u>Magnesium (Mg)</u>

| Magne             | Isotopes |       |       |       |
|-------------------|----------|-------|-------|-------|
| Mass              | 1+       | 24 25 |       | 26    |
|                   | 2+       | 12    | 12,5  | 13    |
| Abundance (%)     |          | 78,84 | 10,08 | 11,09 |
| Mass defect (mmu) |          | -15,0 | -14,2 | -17,4 |

The only way to positively establish whether Mg is present as an impurity is the presence of a line at mass 12,5. This line is due to the doubly charged ion of <sup>25</sup>Mg and is unique for this isotope of Mg.

Figure 4.2 represents the typical spectral lines obtained on a photoplate with Al and Mg present as impurities in a  $U_3O_8/gra$ -phite matrix.





<u>Figure 4.2</u>: Triplet spectral lines where Mg and Al are, amongst others, present in a  $U_3O_8$ /graphite matrix (m/e 27 staggered to show overlapping).

All four spectral lines are triplets. The intensity of the blackening, which relates to the isotopic abundance of the various elemental isotopes, has also been shown. Using the reference table in Appendix B at page 180, the triplets can be resolved using the mass-defect values.

At mass 26, the light central line is due to  $^{26}Mg$ , an isotope of small abundance. The dark left-hand line is due to the major isotope of Cr, namely  $^{52}Cr^{2+}$ , and the dark right-hand line could be either the hydride species of the  $^{25}Mg$  isotope, the dimer  $^{13}C_2$ , or the hydrocarbon,  $^{12}C_2H_2$ .

At mass 25, the darker central line is due to the <sup>25</sup>Mg isotope of abundance similar to <sup>26</sup>Mg. The light left-hand line is due to the <sup>50</sup>Cr<sup>2+</sup> isotope of small abundance (4,38%). There are three possibilities for the darkest right-hand line: it could be the hydride species of the major isotope of Mg, namely <sup>24</sup>MgH (a strong possibility), or the C dimer <sup>12</sup>C<sup>13</sup>C, or the hydrocarbon <sup>12</sup>C<sub>2</sub>H.



A very strong triplet appears at mass 24. There are a number of species which could give rise to this line. The most noteworthy would be the dimer of  ${}^{12}C$ , the isotope of highest abundance, and the fact that C is one of the main components of the sample. The formation of C clusters is well known [20]. Other species are the doubly charged main isotope of  ${}^{*0}$ Ti, the main isotope of singly charged  ${}^{2*}Mg$ , or the doubly charged low abundance isotope of  ${}^{*0}Ca$ . When resolving this triplet, the central line is due to  ${}^{2*}Mg$ , the left-hand line due to the C dimer and the right-hand line due to  ${}^{*0}$ Ti<sup>2+</sup>.

All three isotopes of Mg appear as the central lines of the triplets at masses 24, 25 and 26. Because we are unable to measure the background transmission next to these lines of Mg, it is impossible to measure Mg in the singly charged state.

The close proximity of the <sup>25</sup>Mg<sup>2+</sup> line at mass 12,5 to the line of the main component, C, at mass 12, makes the measurement of Mg unreliable because of fogging of the plate at long exposures. This affects the background transmission readings for <sup>25</sup>Mg<sup>2+</sup> at mass 12,5.

4.1.6 Aluminium (A1)

| Aluminium         |    | Isotopes |
|-------------------|----|----------|
| Mass              | 1+ | 27       |
|                   | 2+ | 13,5     |
| Abundance (%)     |    | 100      |
| Mass defect (mmu) |    | -18,5    |



Similar to Mg, the only way to positively identify A1 as an impurity in the sample is the presence of a spectral line at mass 13,5. This line is due to the doubly charged ion of the mono-isotopic '7A1. In Figure 4.2 the spectral line m/e 27 represents '7A1 in the singly charged state. The dark central line is due to A1, the lighter left-hand line overlapping the A1 line is due to a combination of  $5 \cdot Fe^{2+}$  and  $5 \cdot Cr^{2+}$ , each isotope of low abundance. The lighter right-hand line is due to the hydride species of 26 Mg or the formation of the hydrocarbon  $1^{2}C_{2}H_{3}$ . In this instance, it will be impossible to measure the central A1 line because of interference from  $5 \cdot Fe^{2+}$  and  $5 \cdot Cr^{2+}$ , as well as the fact that the microdensitometer requires a clear region on either side of a spectral line in order to measure background transmission values.

The only way to measure the mono-isotopic Al would be at its doubly charged species at mass 13,5.

| Silicon           |    | Isotopes |       |       |  |
|-------------------|----|----------|-------|-------|--|
| Mass              | 1+ | 28       | 29    | 30    |  |
|                   | 2+ | 14       | 14,5  | 15    |  |
| Abundance (%)     |    | 92,23    | 4,68  | 3,09  |  |
| Mass defect (mmu) |    | -23,1    | -23,5 | -26,2 |  |

| 4 | ι. | 1 | 7 | Silicon | (Si) |
|---|----|---|---|---------|------|
|   |    |   |   |         |      |

The presence of Si is indicated by a line at mass 14,5 due to the <sup>29</sup>Si<sup>2+</sup> isotope. This line is unique to Si only if the Ni concentration in the sample is very small. The multiply



charged 4+ isotope of <sup>5</sup>Ni interferes with the <sup>2</sup>Si<sup>2+</sup> line at mass 14,5. The difference in mass defect of these elements is so small that the two lines cannot be resolved.

At mass 28 on the photoplate a triplet is observed. Each of these lines can be resolved. The left-hand line is due to the doubly charged species of <sup>56</sup>Fe, which is the major isotope of Fe. The central line is due to the singly charged species of '\*Si, also the major isotope of Si. The right-hand line is somewhat lighter than the adjacent two lines. Two possible species could give rise to this line. The hydride species of the mono-isotopic 'Al ion is the more probable, although the monoxide species of '2C should not be discounted as C and O are both major components in the sample.

At mass 29 a weak triplet is observed. The left-hand line is much darker than the other two lines. This line is due to the doubly charged species of <sup>5</sup> Ni, which is the major isotope of Ni. The central line is the singly charged isotope of <sup>2</sup> Si, with small isotopic abundance. The right-hand line is probably due to the hydride species of the major isotope of <sup>2</sup> Si, although various other species contribute to this line, such as <sup>13</sup>CO and <sup>12</sup>CHO.

The possibility of quantitatively measuring Si in the singly charged state arises at mass 30, where a doublet is observed. These two lines can be resolved. The left-hand line is due to two species, namely the doubly charged species of  $^{\circ}$ Ni, having an isotopic abundance of 26,78%, and the triply charged species  $^{9}$ Cr<sup>3+</sup>, which is from the major isotope of Zr. The difference in mass defect of these two elements is so small that these two lines making up the left-hand line cannot be resolved. The right-hand line of the doublet is due to the singly charged species of  $^{3}$ Si. It has been observed at times that a third



line at mass 30 appears on the upper side of the <sup>3</sup>°Si line, especially noticeable at very long exposures. This line could be the formation of a number of species involving C, O and H, for example  ${}^{12}C^{18}O^{+}$ , or the hydride species  ${}^{29}Si$  (see reference table in Appendix B at page 180).

In order to measure the <sup>3</sup>°Si line the area to the right of this line must be free of any interfering lines in order to be able to take background transmission readings. The third line does not hinder the measuring of the <sup>3</sup>°Si line as it is present only at the very long exposures where the line transmission of the <sup>3</sup>°Si line is in any case saturated. As the exposures get shorter, this third line fades out completely, hence enabling the measurement of the <sup>3</sup>°Si line.

4.1.8 Phosphorus (P)

| Phosphorus        |    | Isotopes |
|-------------------|----|----------|
| Maaa              | 1+ | 31       |
| Mass              | 2+ | 15,5     |
| Abundance (%)     |    | 100      |
| Mass defect (mmu) |    | -26,2    |

A line at mass 15,5 is unique to the doubly charged species of mono-isotopic <sup>31</sup>P. The singly charged species of P at mass 31 can be identified by a very dark line at long exposures. A doublet is observed, where the left-hand line is due to <sup>31</sup>P. The right-hand line, which is very low in intensity, is due to



the hydride species of <sup>3</sup>°Si. However, this line fades out as the exposures become shorter, as is the case at mass 30 with Si. The only possible interference with the <sup>3</sup>1P line could be from the triply charged species of the mono-isotopic Nb (<sup>9</sup>3Nb<sup>3+</sup>). The concentration of Nb in the sample would, however, have to be very high in order to interfere with the <sup>3</sup>1P line. Before measuring the line at mass 31 for P, the presence of Nb must first be positively identified.

4.1.9 <u>Calcium (Ca)</u>

| Calciu            | 1111 | Isotopes |       |       |       |        |       |
|-------------------|------|----------|-------|-------|-------|--------|-------|
| Maga              | 1+   | 40       | 42    | 43    | 44    | 46     | 48    |
| nass              | 2+   | 20       | 21    | 21,5  | 22    | 23     | 24    |
| Abundance (%)     |      | 96,94    | 0,65  | 0,14  | 2,08  | 0,0037 | 0,181 |
| Mass defect (mmu) |      | -37,4    | -41,4 | -41,2 | -44,5 | -46,3  | -47,6 |

There is no unique line for Ca on the photoplate. The only significant isotopes of Ca are at masses 40 and 44. The isotopic abundances of these isotopes are high enough, 96,94% and 2,08% respectively, to be used to identify the presence of Ca. However, interferences from other elements present in the sample hinder the measuring of these lines.

A triplet appears at mass 40. The left-hand line is the darkest in intensity and is due to the singly charged species of <sup>4</sup>°Ca, the isotope with the highest abundance. This line is not unique to Ca, especially if K is also present in the sample. The line



of the singly charged \*°K isotope overlaps with that of \*°Ca to the extent that the two lines cannot be resolved using the massdefect values. The central weak line is due to the formation of two possible species. Pb and Sn are added to the standards as impurity elements originating from the reagents used to prepare the standards. The triply charged species of the 120Sn isotope, which is also the isotope of highest abundance, is one of the possible species. The other is the hydride of 39K, which is also the isotope of the highest abundance. The right-hand line could be due to the formation of quite a few species, of which the main possibilities are 2°Si12C, 24Mg16O, 27A113C and 12C, 160. The presence of these species is verified by the fact that they are all present in the sample as impurities and that they are the major isotopes of these elements.

At mass 44 a strong doublet is observed. The intensity of the two lines is an indication that other elements are present. The left-hand line is due to two species, namely Sr and Ca. The line of the doubly charged <sup>\$e</sup>Sr isotope, which has the highest abundance, overlaps with that of <sup>44</sup>Ca to the extent that the two lines cannot be resolved. The right-hand line could be due to the formation of the monoxide species of <sup>28</sup>Si. However, the more likely species is <sup>12</sup>CO<sub>2</sub>, a matrix-derived component of the sample. It is thus not possible to measure Ca in the singly charged state.

When considering the doubly charged state of Ca, the only isotope of importance is the major isotope, <sup>4</sup>°Ca. The minor isotopes of Ca have such low abundances that they can be ignored in the doubly charged state. The line at mass 20 is due to the doubly charged species of <sup>4</sup>°Ca only if the concentration of Ni in the sample is relatively low. The triply charged species of <sup>6</sup>°Ni, having an isotopic abundance of 26,78%, could interfere



with the line obtained from \*°Ca<sup>2+</sup>. This interference can be verified by the presence of a line at mass 19,33 which is due to the triply charged <sup>5</sup> Ni, the major isotope of Ni (67,18%). If there is no line present at mass 19,33 it can be assumed with certainty that there is no interference at mass 20 by <sup>6</sup> Ni<sup>3+</sup>. Ca can hence be measured using the line at mass 20.

#### 4.1.10 <u>Potassium (K)</u>

| Potass            | sium | Isotopes |       |       |  |
|-------------------|------|----------|-------|-------|--|
| Magg              | 1+   | 39       | 40    | 41    |  |
| nass              | 2+   | 19,5     | 20    | 20,5  |  |
| Abundance (%)     |      | 93,26    | 0,012 | 6,73  |  |
| Mass defect (mmu) |      | -36,3    | -36,0 | -38,2 |  |

K is very similar to Na in that the element does not readily form multiply charged ions. The line obtained at mass 19,5 is very light in intensity and is unique to the doubly charged <sup>3</sup>, the major isotope of K (93,26%). This line serves as a positive identification of K in the sample.

At mass 39 a doublet is present. The left-hand line, which is dark in intensity, is due to the singly charged species of  $3^{9}K$ , also the isotope of highest abundance. However, the presence of Sn as an impurity interferes with this line due to the triply charged species of  $11^{7}Sn$ . The two lines cannot be resolved. The right-hand line is possibly due to the C cluster  $13C_{3}$  or,



if the concentration of the mono-isotopic Na and Al is very high in the sample, the formation of 27Al12C and 23Na16O species.

A poorly resolved triplet appears at mass 41. The left-hand line is due to the singly charged <sup>41</sup>K isotope with an isotopic abundance of 6,73%. The central line is the triply charged species <sup>123</sup>Sb<sup>3+</sup> and the right-hand line is the hydride species of the major isotope of <sup>40</sup>Ca. It is thus necessary to exercise extreme care when measuring the left-hand line for K so as not to measure the central line.

| Titan             | Isotopes |       |       |       |       |       |
|-------------------|----------|-------|-------|-------|-------|-------|
| Mass              | 1+       | 46    | 47    | 48    | 49    | 50    |
|                   | 2+       | 23    | 23,5  | 24    | 24,5  | 25    |
| Abundance (%)     |          | 7,99  | 7,42  | 73,63 | 5,56  | 5,40  |
| Mass defect (mmu) |          | -47,4 | -48,2 | -52,1 | -52,1 | -55,2 |

4.1.11 <u>Titanium (Ti)</u>

Ti has several isotopes which overlap with those of Ca. However, their abundances are higher, thus making Ti easier to detect. Elements which hinder the measuring of Ti in the singly charged state are Zr, Mo and Ru. The presence of these elements makes it extremely difficult to measure Ti, as their doubly charged species interfere with the lines of Ti to such an extent that they cannot be resolved. The line of \*6Ti has <sup>92</sup>Zr<sup>2+</sup>,



<sup>46</sup>Ca<sup>+</sup> and <sup>92</sup>Mo<sup>2+</sup> as interferences. The line of <sup>47</sup>Ti has <sup>94</sup>Zr<sup>2+</sup> and <sup>94</sup>Mo<sup>2+</sup> as its main interferences.

At mass 48 a doublet occurs. The left-hand line is that of \*\*Ti as well as of  $96Mo^{2+}$ ,  $48Ca^+$ ,  $96Ru^{2+}$  and  $96Zr^{2+}$ . The right-hand line is due to the possible formation of two cluster ions, namely  $12C_4$  and  $24Mg_2$ . 49Ti has  $98Mo^{2+}$ ,  $98Ru^{2+}$  and the hydride species of 48Ti as interferences. Similarly, the line of 50Ti has  $50Cr^+$ ,  $50V^+$ ,  $100Ru^{2+}$  and  $100Mo^{2+}$  as interferences.

The only way to positively identify the presence of Ti in the sample is to look for lines of the doubly charged species. Two isotopes of Ti, namely "Ti and "Ti, have lines at masses 23,5 and 24,5 respectively, which are unique to Ti. The only element which could possibly interfere with the line of "Ti at mass 23,5 is the multiply charged species of "Zr4". However, the probability of such an ion forming can be tested by looking for a line at mass 22,5, due to the multiply charged species of "Zr4", the major isotope of Zr. If no line is detected at mass 22,5, then the possibility of "Zr4" interfering at mass 23,5 is negligible. Thus, Ti can be quantitatively measured at either of these lines.

4.1.12 Vanadium (V)

| Vanac     | lium      | Isotopes |       |  |
|-----------|-----------|----------|-------|--|
| Maaa      | 1+        | 50       | 51    |  |
| Mass      | 2+        | 25       | 25,5  |  |
| Abundance | e (%)     | 0,26     | 99,74 |  |
| Mass defe | ect (mmu) | -52,8    | -56,0 |  |



V is positively identified by a line at mass 25,5 due to the doubly charged species of the major isotope of V, namely 51. The singly charged ion of V appears as a doublet at mass 51. The high intensity of the left-hand line is due to the <sup>51</sup>V isotope. The light right-hand line is that of the doubly charged  $10^2Ru^{2+}$  isotope. These two lines are only just resolved, thus care must be exercised when measuring the transmission of the V line so that no overlapping occurs.

#### 4.1.13 Chromium (Cr)

| Chromium          |    | Isotopes |       |       |       |  |
|-------------------|----|----------|-------|-------|-------|--|
| Mass              | 1+ | 50       | 52    | 53    | 54    |  |
|                   | 2+ | 25       | 26    | 26,5  | 27    |  |
| Abundance (%)     |    | 4,38     | 83,70 | 9,51  | 2,41  |  |
| Mass defect (mmu) |    | -53,9    | -59,5 | -59,3 | -61,1 |  |

Isotopes of Cr at masses 52 and 53 are used to identify and quantify Cr in the sample. The other two isotopes have interferences from Ti, V and Fe. The doubly charged species of  ${}^{53}$ Cr at mass 26,5 is used to positively identify Cr as no interferences are present at this line. At mass 52 a clearly resolved doublet is present. The dark left-hand line is due to the major isotope of Cr, namely at mass 52. The light right-hand line could be the hydride species of  ${}^{51}$ V or the doubly charged ion of  ${}^{104}$ Ru. Various other species could also be formed in the plasma, but their influence is so small that they can be ignored (see reference table in Appendix B at page 181). When the Cr



concentration is too high, the line at mass 52 is too dark to measure. The only other alternative would be to measure the <sup>53</sup>Cr line. This is not advisable due to the contribution of <sup>52</sup>CrH species.

| Manganese         |    | Isotopes | Cobalt            |    | Isotopes |
|-------------------|----|----------|-------------------|----|----------|
| Mass              | 1+ | 55       | Maga              | 1+ | 59       |
|                   | 2+ | 27,5     | mass              | 2+ | 29,5     |
| Abundance (%)     |    | 100      | Abundance (%)     |    | 100      |
| Mass defect (mmu) |    | -61,9    | Mass defect (mmu) |    | -66,8    |

4.1.14 Manganese (Mn) and cobalt (Co)

The mono-isotopic Mn and Co are both easily identified by their unique doubly charged ions at masses 27,5 and 29,5 respectively.

For the singly charged <sup>55</sup>Mn ion, the hydride species of <sup>54</sup>Cr and <sup>54</sup>Fe could interfere. However, the isotopic abundances of these two species are very small (2,41 and 5,90% respectively). A doublet at mass 55 is due to the doubly charged species <sup>110</sup>Cd<sup>2+</sup>, one of the numerous isotopes of Cd with a percentage abundance of only 12,46%.

Similarly, for the singly charged <sup>5</sup>°Co ion, the hydride species of <sup>5</sup>°Fe and <sup>5</sup>°Ni could interfere. A greater possibility of interference from <sup>5</sup>°NiH<sup>+</sup> exists as the <sup>5</sup>°Ni isotope is the major isotope for Ni. This species would result in a line that overlaps slightly with the Co line. Extreme care must therefore be



exercised when measuring the Co line so as to not include the contribution from the <sup>5</sup> NiH<sup>+</sup> species. A resolved doublet at mass 59 is the result of the doubly charged species of <sup>11</sup> Sn, one of the impurity elements added by means of the reagents used.

When the concentration level of Mn and Co is too high in the sample and the exposure pattern is such that a 50% transmission value cannot be obtained from the Hull function, the lack of other isotopes of these two elements necessitates the use of the doubly charged species to quantify Mn and Co in the sample.

4.1.15 Iron (Fe)

| Iron          |           | Isotopes |       |       |       |  |
|---------------|-----------|----------|-------|-------|-------|--|
| Mass          | 1+        | 54       | 56    | 57    | 58    |  |
|               | 2+        | 27       | 28    | 28,5  | 29    |  |
| Abundance (%) |           | 5,90     | 91,60 | 2,18  | 0,32  |  |
| Mass defe     | ect (mmu) | -60,4    | -65,1 | -64,6 | -66,7 |  |

Fe has only two isotopes of interest. The other isotopes overlap with those of Cr and Ni. The doubly charged ion of the <sup>5</sup>'Fe isotope is used to positively identify the presence of Fe in the sample. A line at mass 28,5 is unique to the isotope of this element. Unreliable results are obtained when measuring this line at mass 28,5 due to  $5'Fe^{2+}$ . This occurs when the Fe concentration in the sample is not very high due to the low isotopic abundance of this isotope, namely 2,18%. It is thus



preferable to measure the singly charged ions of Fe at mass 56, which is the major isotope. As in the case of <sup>5</sup>°Co<sup>+</sup>, the line of the hydride species of Mn overlaps slightly with the line of <sup>5</sup>°Fe. Thus extreme care must be exercised when measuring the transmission of the Fe line so as not to include the contribution from <sup>5</sup><sup>5</sup>MnH<sup>+</sup>.

A doublet at mass 56 is caused by the doubly charged species of <sup>112</sup>Cd and <sup>112</sup>Sn. When the concentration level of Fe in the sample is very high, the line at mass 56 will be oversaturated. The only alternative, as in the case of Cr, would be to measure the line at mass 57. This is, however, not advisable due to direct interference from the hydride species of <sup>56</sup>Fe namely FeH<sup>+</sup> at mass 57.

A doublet at mass 57 is due to the doubly charged species of <sup>114</sup>Cd and <sup>114</sup>Sn.

| Nicke             | 1  | Isotopes |       |       |       |       |
|-------------------|----|----------|-------|-------|-------|-------|
| Mass              | 1+ | 58       | 60    | 61    | 62    | 64    |
|                   | 2+ | 29       | 30    | 30,5  | 31    | 32    |
| Abundance (%)     |    | 67,18    | 26,78 | 1,24  | 3,80  | 1,01  |
| Mass defect (mmu) |    | -64,7    | -69,2 | -69,0 | -71,7 | -72,0 |

4.1.16 Nickel (Ni)

A line at mass 30,5 is unique for the doubly charged <sup>6</sup> <sup>1</sup>Ni isotope. However, this line can only be used when the concentra-



tion of Ni in the sample is very high, because of the very small percentage isotopic abundance, namely 1,24%. In most cases, the only method to analyse Ni would be to use the singly charged species. The isotopes at masses 58 and 64 interfere with Fe and Zn respectively. The isotopes at masses 61 and 62 are of very low abundance, making them impractical to use. Ni can be measured at mass 60 using the <sup>6</sup> Ni isotope with a relative abundance of 67,18%. As in the case of Fe and Co, the hydride species of <sup>5</sup> Co interferes with the line of <sup>6</sup> Ni. The slight overlap of the two lines can be resolved. A distinct doublet at mass 60 is due to the doubly charged species of <sup>12</sup> Sn, which is the major isotope of Sn.

## 4.1.17 Copper (Cu)

| Cop       | per        | Isotopes |       |  |
|-----------|------------|----------|-------|--|
| Mass      | 1+         | 63       | 65    |  |
|           | 2+         | 31,5     | 32,5  |  |
| Abundance | e (%)      | 69,14    | 30,86 |  |
| Mass dei  | fect (mmu) | -70,4    | -72,2 |  |

Cu can be positively identified if lines exist at masses 31,5 and 32,5. These lines are due to the doubly charged species of the two isotopes of Cu. No interferences occur at these masses. The singly charged species of Cu at masses 63 and 65 both have the hydride species of <sup>6</sup>2Ni and <sup>6</sup>4Ni respectively, as interfering species. However, the isotopic abundances of these two isotopes of Ni are very small (3,80% and 1,01% respectively),



thus lessening the effect their hydride species have on the Cu lines. The presence of Zn as an impurity in the sample could interfere with the line of <sup>65</sup>Cu, due to the formation of the hydride species of <sup>64</sup>Zn which is the major isotope of Zn. A doublet with slight overlapping occurs at mass 65, thus making the measuring of the Cu line unreliable. In this instance, the <sup>63</sup>Cu line should be used.

#### 4.1.18 Zinc (Zn)

| Zinc              |    | Isotopes   |       |       |       |       |
|-------------------|----|------------|-------|-------|-------|-------|
| Mass              | 1+ | 64         | 66    | 67    | 68    | 70    |
|                   | 2+ | 3 <i>2</i> | 33    | 33,5  | 34    | 35    |
| Abundance (%)     |    | 48,89      | 27,77 | 4,12  | 18,59 | 0,638 |
| Mass defect (mmu) |    | -70,9      | -74,0 | -72,9 | -75,1 | -74,7 |

The presence of Zn in the sample is positively identified if a line exists at mass 33,5 due to the doubly charged species of This isotope of Zn has a low isotopic abundance (4,12%). 67Zn. Therefore, when the concentration level of Zn in the sample is low, no lines are observed at this mass. The singly charged species of Zn will then have to be utilised to identify the pre-The <sup>6</sup><sup>4</sup>Zn isotope cannot be used due to interferensence of Zn. ce from <sup>6</sup> \*Ni. These two lines cannot be resolved. Another interference is the <sup>63</sup>Cu hydride whose line will overlap with that of <sup>6</sup> <sup>4</sup>Zn. This leaves only the isotopes at masses 66 and 68 to measure quantitatively as the isotopes at masses 67 and 70 have too low isotopic abundances (4,12% and 0,638% respec-



tively). The line at mass 66 has the hydride species of <sup>65</sup>Cu as interference. These two lines can be resolved using the mass-defect values. The mass-defect value for <sup>65</sup>Cu hydride is -64,4 mmu and for <sup>66</sup>Zn is -74,0 mmu. The line at mass 68 is a clearly resolved doublet. The right-hand line is due to the doubly charged species of <sup>136</sup>Ba.

| 4.1.19 Stronti | um (Sr) |
|----------------|---------|
|----------------|---------|

| Strontium         |    | Isotopes |       |       |       |  |
|-------------------|----|----------|-------|-------|-------|--|
| Mass              | 1+ | 84       | 86    | 87    | 88    |  |
|                   | 2+ | 42       | 43    | 43,5  | 44    |  |
| Abundance (%)     |    | 0,552    | 9,87  | 7,00  | 82,58 |  |
| Mass defect (mmu) |    | -86,6    | -90,7 | -91,1 | -94,4 |  |

The identification of Sr is quite elementary. A line at mass 43,5 is due to the doubly charged species of \*7Sr. However, if Rb is present in the sample, the doubly charged \*7Rb line interferes with that of \*7Sr to such an extent that the two lines cannot be resolved. If no line exists at mass 42,5 which can be uniquely assigned to the doubly charged \*5Rb which is the major isotope of Rb, then the line at mass 43,5 is unique to \*7Sr. The line at mass 88 is unique to the singly charged species of the major isotope of Sr. No interferences occur at this line.



# 4.1.20 <u>Yttrium (Y</u>)

| Yttı       | Isotopes |      |  |
|------------|----------|------|--|
| Magg       | 1+       | 89   |  |
|            | 2+       | 44,5 |  |
| Abundance  | 100      |      |  |
| Mass defec | -94,6    |      |  |

The choice of Y as the internal reference has been described on page 28. A line at mass 44,5 is unique for the doubly charged species of the mono-isotopic °9Y. Similarly, a line at mass 89 is unique for the singly charged Y. The hydride species of °°Sr could interfere with the line of Y at mass 89. This line of °°SrH<sup>+</sup> is, however, very weak in intensity and only occurs at the very long exposures.

| 4. | . 1 | 2 | 1 | Zir | coni | um | (Zr) |
|----|-----|---|---|-----|------|----|------|
|    |     |   |   |     |      |    |      |

| Zirconium         |    | Isotopes |       |       |       |       |
|-------------------|----|----------|-------|-------|-------|-------|
| Mass              | 1+ | 90       | 91    | 92    | 94    | 96    |
|                   | 2+ | 45       | 45,5  | 46    | 47    | 48    |
| Abundance (%)     |    | 51,45    | 11,12 | 17,18 | 17,46 | 2,82  |
| Mass defect (mmu) |    | -95,7    | -94,8 | -95,4 | -93,9 | -91,8 |

The presence of Mo and Ru in the sample makes the identification and measuring of Zr more complex as they have isotopes which overlap in mass. Furthermore, the doubly charged species of



W and Ta also interfere with the lines of these elements. The large number of isotopes, seven each for Mo and Ru and five for Zr, assists the analyst when assigning elemental names to these spectral lines.

Zr has a unique line at mass 45,5 due to the doubly charged ion of <sup>91</sup>Zr. This line serves to positively identify the presence of Zr in the sample. The singly charged <sup>92</sup>Zr and <sup>94</sup>Zr isotope lines interfere with the lines of <sup>92</sup>Mo and <sup>94</sup>Mo. Similarly, the <sup>96</sup>Zr line interferes with the lines of <sup>96</sup>Mo and <sup>96</sup>Ru. These isotope lines of Zr cannot be resolved. A line at mass 90 is, however, unique for the singly charged ion of <sup>90</sup>Zr which is the major isotope of Zr(51,45%).

A clearly resolved doublet at mass 90 is due to the doubly charged species of <sup>10</sup><sup>OW</sup> and <sup>10</sup><sup>OT</sup>a, or the hydride species of <sup>0</sup><sup>Y</sup>. The isotopic abundances of W and Ta are very small at these masses, thus their influence on the <sup>9</sup><sup>O</sup>Zr<sup>+</sup> line is negligible. A line at mass 90,5 is unique for the doubly charged species of <sup>10</sup><sup>T</sup>Ta which is the major isotope of Ta. The presence of this line on the photoplate originates from the Ta present in the electrode holders.

4.1.22 <u>Niobium (Nb)</u>

| Niol      | oium      | Isotopes |
|-----------|-----------|----------|
| Mass      | 1+        | 93       |
|           | 2+        | 46,5     |
| Abundance | e (%)     | 100      |
| Mass defe | ect (mmu) | -94,0    |



The mono-isotopic Nb has a unique line at mass 46,5 due to the doubly charged ion. No other lines appear at this mass, making it unique for Nb. A doublet at mass 93 indicates the presence of W in the sample. The dark left-hand line is due to the singly charged ion of °3Nb. The right-hand line is due to the doubly charged species of 1°6W. Another possible interference for the °3Nb line could be the hydride species of °2Zr, °2ZrH<sup>+</sup>. This line cannot be resolved by the mass-defect principle. However, the isotopic abundance of °2Zr is very small compared with that of the mono-isotopic Nb. Thus the °2ZrH<sup>+</sup> line will disappear as the exposures get shorter.

| Molybde           | enum          | Isotopes |       |       |       |       |       |       |
|-------------------|---------------|----------|-------|-------|-------|-------|-------|-------|
| Mass              | 1+            | 92       | 94    | 95    | 96    | 97    | 98    | 100   |
|                   | 2+            | 46       | 47    | 47,5  | 48    | 48,5  | 49    | 50    |
| Abundance         | Abundance (%) |          | 9,12  | 15,92 | 16,63 | 9,42  | 24,25 | 9,43  |
| Mass defect (mmu) |               | -93,9    | -95,3 | -94,3 | -95,5 | -94,3 | -94,5 | -92,4 |

## 4.1.23 Molybdenum (Mo)

Lines at mass 47,5 and 48,5 are unique for the doubly charged species of <sup>95</sup>Mo and <sup>97</sup>Mo. In their singly charged state these two isotopes have no interferences from other elements. As previously mentioned, <sup>92</sup>Mo, <sup>94</sup>Mo and <sup>96</sup>Mo interfere with <sup>92</sup>Zr, <sup>94</sup>Zr and <sup>96</sup>Zr; and <sup>96</sup>Mo, <sup>96</sup>Mo and <sup>100</sup>Mo interfere with <sup>96</sup>Ru, <sup>96</sup>Ru and <sup>100</sup>Ru. The isotopic abundance of <sup>95</sup>Mo is greater than that of



<sup>97</sup>Mo, thus the line at mass 95 is the more suitable to measure as there are more lines present. If there is no Ru present in the sample, then the line at mass 98 due to the major isotope of Mo can be measured.

4.1.24 Ruthenium (Ru)

| Ruther            |    |       | Is    | sotopes |       |       |       |       |
|-------------------|----|-------|-------|---------|-------|-------|-------|-------|
| Mass              | 1+ | 96    | 98    | 99      | 100   | 101   | 102   | 104   |
|                   | 2+ | 48    | 49    | 49,5    | 50    | 50,5  | 51    | 52    |
| Abundance (%)     |    | 5,55  | 1,96  | 12,75   | 12,64 | 17,05 | 31,54 | 18,50 |
| Mass defect (mmu) |    | -92,4 | -94,5 | -93,9   | -97,0 | -95,9 | -96,3 | -94,5 |

Ru can be positively identified by the presence of lines at masses 49,5 and 50,5 due to the doubly charged ions of "Ru and 101Ru respectively. No interferences occur at these masses. The isotopes of Ru at masses 96, 98 and 100 have Mo as interference in the singly charged state. These lines cannot be resolved. The same applies to the isotopes of Ru at masses 102 and 104, where the doubly charged ions of 204Pb and 200Pb interfere. However, these lines can be resolved using their mass-defect values. Therefore, the isotopes of Ru at masses 99, 101, 102 and 104 are unique and can be used to measure the singly charged ions of Ru.

The line at mass 102, which is from the major isotope of Ru (31,54%), gives a more reliable result because more exposure lines are present at this mass. The line due to <sup>204</sup>Pb<sup>2+</sup>, which has an isotopic abundance of only 1,5%, occurs only at the very long



exposures. The presence of Pd in the sample interferes with the lines of <sup>102</sup>Ru and <sup>104</sup>Ru. Thus the <sup>101</sup>Ru isotope would then be used to measure the concentration of Ru in the sample.

#### 4.1.25 <u>Cadmium</u> (Cd)

| Cadmi            | lum | n Isoto, |       |       |       | es    |       |        |       |
|------------------|-----|----------|-------|-------|-------|-------|-------|--------|-------|
| Mass             | 1+  | 106      | 108   | 110   | 111   | 112   | 113   | 114    | 116   |
|                  | 2+  | 53       | 54    | 55    | 55,5  | 56    | 56,5  | 57     | 58    |
| Abundance        | (%) | 1,219    | 0,863 | 12,46 | 12,81 | 24,04 | 12,26 | 28,85  | 7,50  |
| Mass defect(mmu) |     | -94,1    | -96,0 | -97,0 | -95,9 | -97,2 | -95,4 | -96,44 | -95,0 |

The difficulty of quantitatively determining Cd as an impurity at very low concentration levels is greatly compounded by the fact that Cd has no less than 8 isotopes, the highest abundance being that of <sup>114</sup>Cd at only 28,85%. Furthermore, most of the isotopes of Cd have other elements as interferences such that their lines cannot be resolved. Typically, the only isotope of Cd which can be used to positively identify the presence of Cd in the sample is the isotope at mass 111 with an abundance of only 12,81%. A line at mass 55,5 is unique for the doubly charged ion of this isotope of Cd. The line from the doubly charged ion of <sup>113</sup>Cd at mass 56,5 overlaps completely with the line of the doubly charged ion  $^{113}In^{2+}$ , also present in the sample. These two lines cannot be resolved using the mass-defect values.

For the singly charged species of Cd, the isotopes at masses 106, 108 and 110 have direct interference from the same isotopes of Pd



if Pd is present in the sample. These lines cannot be resolved at these masses. The same applies for the isotopes at masses 112, 114 and 116, where direct interference is encountered by isotopes of Sn, one of the elements added indirectly to the standards as an impurity during the preparative stage. These lines cannot be resolved. The doubly charged ion of the mono-isotopic Th (232Th2+) produces a line at mass 116, resulting in a doublet at this mass which can be resolved. The <sup>113</sup>Cd isotope has direct interference from the <sup>113</sup>In isotope, as In is also present in the sample. Of the eight isotopes of Cd, the only isotope unique to Cd (in the singly charged state) is at mass 111, with an isotopic abundance of only 12,81%. If it can be positively shown that no Sn is present in the sample, then the lines from the 112Cd and 114Cd isotopes can be used to measure Cd in the singly charged state. These isotopes have isotopic abundances of 24,04% and 28,85% respectively, giving a more reliable result than that obtained from <sup>111</sup>Cd.

4.1.26 Indium (In)

| Indiu      | 1111     | Isotopes |       |  |
|------------|----------|----------|-------|--|
| Mass       | 1+       | 113      | 115   |  |
|            | 2+       | 56,5     | 57,5  |  |
| Abundance  | (%)      | 4,24     | 95,76 |  |
| Mass defec | ct (mmu) | -95,7    | -95,9 |  |

The presence of In in the sample can be identified by a line at mass 57,5. This line is due to the doubly charged ion of the major isotope of In, namely <sup>115</sup>In. The contribution to this line



at mass 57,5 by the doubly charged ion of <sup>115</sup>Sn is negligible as the <sup>115</sup>Sn isotope has an isotopic abundance of only 0,35%. The line at mass 56,5 is due to the doubly charged ion of <sup>113</sup>Cd which interferes directly with the line of the doubly charged ion of <sup>113</sup>In. These two lines cannot be resolved. The isotopic abundance of <sup>113</sup>In is in any case too small for the doubly charged ion of this isotope of In to be detected at mass 56,5.

The only singly charged isotope of In which can be used to quantify In in the sample is <sup>115</sup>In. The line at this mass is dark in intensity, coinciding with the isotopic abundance of this isotope of In, namely 95,75%. However, the longest exposure lines have interference from the <sup>115</sup>Sn isotope, with an isotopic abundance of only 0,35%. The 50% transmission intercept obtained for this line at mass 115 is unique for <sup>115</sup>In and can be used to quantify In in the sample.

4.1.27 Antimony (Sb)

| Antimo     | ony     | Isotopes |       |  |
|------------|---------|----------|-------|--|
| Mass       | 1+      | 121      | 123   |  |
|            | 2+      | 60,5     | 61,5  |  |
| Abundance  | (%)     | 57,25    | 42,75 |  |
| Mass defec | t (mmu) | -96,3    | -95,9 |  |

Sb has only two isotopes, namely at masses 121 and 123, with abundances that are roughly the same (57,25 and 42,75% respectively). This facilitates the detection of Sb as an impurity



in the sample. The doubly charged ions of both isotopes of Sb yield lines at masses 60,5 and 61,5 which are unique for Sb. If Te is present in the sample, the contribution from the doubly charged ion of <sup>123</sup>Te at mass 61,5, with an isotopic abundance of only 0,88%, can be considered negligible.

In the singly charged state, it is preferable to use the line at mass 123 instead of the line at mass 121, both due to the isotopes of singly charged Sb, because of fogging caused by the major isotope of uranium, one of the main components in the sample. The doubly charged ion of  $^{230}U$  yields a very intense line at mass 119, causing the fogging. This is similar to what happens to  $^{11}B^{+}$  and  $^{25}Mg^{2+}$ , caused by the fogging of  $^{12}C$ . However, when Te is present and can be positively identified in the sample, there is no alternative but to measure the line at mass 121 in order to quantify Sb. The result so obtained would be more unreliable than that obtained if the line at mass 123 is measured.

4.1.28 Barium (Ba)

| Bar               |    | Isotopes |       |       |       |       |       |       |
|-------------------|----|----------|-------|-------|-------|-------|-------|-------|
| Mass              | 1+ | 130      | 132   | 134   | 135   | 136   | 137   | 138   |
|                   | 2+ | 65       | 66    | 67    | 67,5  | 68    | 68,5  | 69    |
| Abundance (%)     |    | 0,108    | 0,119 | 2,44  | 6,58  | 7,87  | 11,41 | 71,50 |
| Mass defect (mmu) |    | -93,8    | -94,9 | -95,7 | -94,4 | -95,6 | -94,4 | -95,0 |



Lines observed at masses 67,5 and 68,5 are unique for the doubly charged ions of 135Ba and 137Ba, respectively. No interferences occur at these masses. It is preferable to measure the line at mass 68,5 instead of at 67,5, as 137Ba has a higher isotopic abundance than <sup>135</sup>Ba, providing more exposure lines on the photoplate. The line at mass 138 is used to quantify Ba in the This line is due to the singly charged ion of the major sample. isotope of Ba at mass 138, with an isotopic abundance of 71,5%. If La and Ce were present in the sample, they would interfere with the line of 138Ba. However, these two isotopes of La and Ce have very small isotopic abundances of only 0,089% and 0,258%, respectively, and their influence can be ignored. They would probably only interfere at the longest exposure lines, which would then in any case be saturated for Ba.

## 4.1.29 <u>Tungsten (W)</u>, bismuth (Bi) and thorium (Th)

For the next three elements, namely W, Bi and Th, the only way to positively identify and quantify their presence in the sample is to consider only their doubly charged species. This restriction is imposed because the mass range of the magnet has been chosen so as to only go up to mass 165 for the purpose of this investigation.

| Tungst            | ten |       |       | Isotopes | 3          |       |
|-------------------|-----|-------|-------|----------|------------|-------|
| Mass              | 1+  | 180   | 182   | 183      | 184        | 186   |
|                   | 2+  | 90    | 91    | 91,5     | 9 <i>2</i> | 93    |
| Abundance (%)     |     | 0,137 | 26,22 | 14,32    | 30,66      | 28,66 |
| Mass defect (mmu) |     | -53,0 | -51,7 | -49,7    | -49,0      | -45,7 |



A line at mass 91,5 is unique for the doubly charged ion of <sup>103</sup>W. The isotopic abundance of this isotope is only 14,32%, making it unfavourable to use at low concentration levels in the sample. However, the other isotopes of W, at masses 182, 184 and 186, with isotopic abundances of 26,22%, 30,66% and 28,66% respectively, give clearly resolved doublets at masses 91, 92 and 93. These doublets can be resolved using their mass-defect values. As discussed earlier, the doublet at mass 91 would be <sup>91</sup>Zr, that at mass 92 would be a combination of both <sup>92</sup>Zr and <sup>92</sup>Mo and that at mass 93 would be the mono-isotopic Nb. By carefully setting up the microdensitometer, each line of the doublet can be measured simultaneously, without any uncertainty of the result so obtained.

| Bismut     | th       | Isotopes |
|------------|----------|----------|
| Mass       | 1+       | 209      |
|            | 2+       | 104,5    |
| Abundance  | (%)      | 100      |
| Mass defec | ct (mmu) | -19,6    |

The presence of Bi in the sample can be positively identified if a line appears at mass 104,5. This line is due to the doubly charged ion of the mono-isotopic <sup>209</sup>Bi and is unique for Bi.

| Thor       | ium      | Isotopes |
|------------|----------|----------|
| Mass       | 1+       | 232      |
|            | 2+       | 116      |
| Abundance  | (%)      | 100      |
| Mass defec | ct (mmu) | +38,2    |



A clearly resolved doublet at mass 116 indicates the presence of Th in the sample. The left-hand line is due to a combination of both the singly charged ion for <sup>116</sup>Cd and the singly charged ion of <sup>116</sup>Sn. The darker right-hand line is due to the doubly charged ion of the mono-isotopic <sup>232</sup>Th. This line is unique and can be measured to quantify Th.

| 4.1.30 Samaria | ım (Sm) |
|----------------|---------|
|----------------|---------|

| Samari                 | ım | Isotopes |       |       |       |       |       |       |
|------------------------|----|----------|-------|-------|-------|-------|-------|-------|
| Mass                   | 1+ | 144      | 147   | 148   | 149   | 150   | 152   | 154   |
|                        | 2+ | 72       | 73,5  | 74    | 74,5  | 75    | 76    | 77    |
| Abundance(%)           |    | 3,03     | 14,92 | 11,21 | 13,81 | 7,39  | 26,84 | 22,97 |
| Mass de-<br>fect (mmu) |    | -88,4    | -85,4 | -85,4 | -83,1 | -83,0 | -80,5 | -78,0 |

Lines at masses 73,5 and 74,5 are unique for the doubly charged Sm isotopes 147 and 149 respectively. No interference from other elements occurs at these masses. In the singly charged state, the only isotopes unique for Sm are at masses 147 and 149. The isotopes with masses 144, 148 and 150, of relatively low abundance, can have Nd as interference. Similarly, the isotopes with masses 152 and 154, both major isotopes of Sm, have Gd as interference. Of the remaining two isotopes unique for Sm, the <sup>147</sup>Sm isotope is used to measure quantitatively because of the higher abundance, namely 14,92%.



# 4.1.31 Europium (Eu)

| Europium   |          | Isotopes |       |  |  |
|------------|----------|----------|-------|--|--|
| Mass       | 1+       | 151      | 153   |  |  |
|            | 2+       | 75,5     | 76,5  |  |  |
| Abundance  | (%)      | 47,79    | 52,21 |  |  |
| Mass defec | ct (mmu) | -80,4    | -79,1 |  |  |

Both the isotopes of Eu are unique for this element. No interferences from other elements occur. The presence of Eu in the sample is positively identified by the presence of lines at masses 75,5 and 76,5. These two lines are due to the doubly charged ions of the two isotopes of Eu, namely <sup>15</sup>Eu and <sup>15</sup>Eu, respectively. For Eu in the singly charged state, either of the lines at masses 151 and 153 can be used to quantify Eu as the abundances of these two isotopes are very similar.

# 4.1.32 Gadolinium (Gd)

| Gadolinium        |    | Isotopes |       |       |       |       |       |       |  |
|-------------------|----|----------|-------|-------|-------|-------|-------|-------|--|
| Mass              | 1+ | 152      | 154   | 155   | 156   | 157   | 158   | 160   |  |
|                   | 2+ | 76       | 77    | 77,5  | 78    | 78,5  | 79    | 80    |  |
| Abundance (%)     |    | 0,20     | 2,16  | 14,87 | 20,56 | 15,70 | 24,77 | 21,79 |  |
| Mass defect (mmu) |    | -80,5    | -79,3 | -77,4 | -77,9 | -76,1 | -75,9 | -72,9 |  |


Gd is very similar to Sm in that it also has only two isotopes which are unique to it, namely <sup>155</sup>Gd and <sup>157</sup>Gd. The doubly charged ions of these two isotopes of Gd give lines at masses 77,5 and 78,5, respectively, which are used to identify the presence of Gd in the sample. No interference from other elements occurs at these masses.

When measuring the doubly charged state of Gd, it is preferable to use the line at mass 77,5, because the line at 78,5 is obscured by the line of  $235U^{3+}$  at mass 78,33 (U being one of the main components in the sample.) In the singly charged state, 152Gdand 154Gd, both of low abundance, have Sm as interference. The three major isotopes of Gd, namely 156Gd, 150Gd and 160Gd, have Dy as interference. The isotope suitable to quantify Gd in the singly charged state is the 157Gd which has a higher abundance than 155Gd.

| Dyspros     | sium    | Isotopes |       |       |       |       |       |       |
|-------------|---------|----------|-------|-------|-------|-------|-------|-------|
| Mass        | 1+      | 156      | 158   | 160   | 161   | 162   | 163   | 164   |
|             | 2+      | 78       | 79    | 80    | 80,5  | 82    | 81,5  | 82    |
| Abundance ( | (%)     | 0,058    | 0,098 | 2,33  | 18,87 | 25,46 | 24,93 | 28,25 |
| Mass defect | t (mmu) | -76,2    | -76,0 | -75,2 | -74,3 | -73,5 | -71,6 | -71,2 |

4.1.33 Dysprosium (Dy)

The doubly charged ions of Dy with masses 161 and 163 give lines at masses 80,5 and 81,5 which are unique for Dy. In the singly charged state the first three isotopes of Dy (namely at masses



156, 158 and 160), all with very low isotopic abundance, have Gd as interference. The remaining four isotopes of Dy, with abundances ranging from 18,87 % to 28,25%, can be used to quantify Dy in the singly charged state. However, the presence of Er in the sample would interfere at masses 162 and 164. <sup>163</sup>Dy would then be used as it is unique for Dy and has a higher abundance than <sup>161</sup>Dy.

## 4.1.34 Selection of isotopes and charge states

The choice of isotopes used to identify and quantify each of the 34 elements present in the  $U_3O_8$ /graphite matrix is summarised in Table 4.2.

<u>Table 4.2</u>: Isotopes and charge states used to quantify impurity elements in a  $U_3O_8$ /graphite matrix

| Element | Charge state | m/e        | Isotope  | Abundance<br>(%) |
|---------|--------------|------------|----------|------------------|
| В       | 1+           | 11         | 11       | 80,35            |
| Na      | 1+           | 23         | 23       | 100              |
| Mg      | 2+           | 12,5       | 25       | 10,08            |
| Aļ      | 2+           | 13,5       | 27       | 100              |
| Si      | 1+<br>2+     | 30<br>14,5 | 30<br>29 | 3,09<br>4,68     |
| Р       | 1+<br>2+     | 31<br>15,5 | 31<br>31 | 100<br>100       |
| Ca      | 2+           | 20         | 40       | 96,94            |
| K       | 1+<br>2+     | 41<br>19,5 | 41<br>39 | 6,73<br>93,26    |



# Table 4.2: Continued

| Element | Charge state | m/e  | Isotope | Abundance<br>(%) |
|---------|--------------|------|---------|------------------|
| Ti      | 1+           | 48   | 48      | 73,63            |
|         | 2+           | 23,5 | 47      | 7,42             |
| V       | 1+           | 51   | 51      | 99,74            |
|         | 2+           | 25,5 | 51      | 99,74            |
| Cr      | 1+           | 52   | 52      | 83,70            |
|         | 2+           | 26,5 | 53      | 9,51             |
| Mn      | 1+           | 55   | 55      | 100              |
|         | 2+           | 27,5 | 55      | 100              |
| Fe      | 1+           | 56   | 56      | 91,60            |
|         | 2+           | 28,5 | 57      | 2,18             |
| Со      | 1+           | 59   | 59      | 100              |
|         | 2+           | 29,5 | 59      | 100              |
| Ni      | 1+           | 60   | 60      | 26,78            |
| Cu      | 1+           | 63   | 63      | 69,16            |
|         | 2+           | 31,5 | 63      | 69,14            |
| Zn      | 1+           | 66   | 66      | 27,77            |
| Sr      | 1+           | 88   | 88      | 82,58            |
|         | 2+           | 43,5 | 87      | 7,00             |
| Zr      | 1+           | 90   | 90      | 51,45            |
|         | 2+           | 45,5 | 91      | 11,12            |
| Y       | 1+           | 89   | 89      | 100              |
|         | 2+           | 44,5 | 89      | 100              |
| Nb      | 1+           | 93   | 93      | 100              |
|         | 2+           | 46,5 | 93      | 100              |
| Мо      | 1+           | 95   | 95      | 15,92            |
|         | 2+           | 47,5 | 95      | 15,92            |
| Ru      | 1+           | 102  | 102     | 31,54            |
|         | 2+           | 50,5 | 101     | 17,05            |
| Cd      | 1+           | 111  | 111     | 12,81            |



## Table 4.2: Continued

| Element | Charge state | m/e   | Isotope | Abundance<br>(%) |
|---------|--------------|-------|---------|------------------|
| In      | 1+           | 115   | 115     | 95,76            |
|         | 2+           | 57,5  | 115     | 95,76            |
| Sb      | 1+           | 123   | 123     | 42,75            |
|         | 2+           | 61,5  | 123     | 42,75            |
| Ba      | 1+           | 138   | 138     | 71,50            |
|         | 2+           | 68,5  | 137     | 11,41            |
| Sm      | 1+           | 147   | 147     | 14,92            |
|         | 2+           | 73,5  | 147     | 14,92            |
| Eu      | 1+           | 153   | 153     | 52,21            |
|         | 2+           | 76,5  | 153     | 52,21            |
| Gđ      | 1+           | 157   | 157     | 15,70            |
|         | 2+           | 78,5  | 157     | 15,70            |
| Dy      | 1+           | 163   | 163     | 24,93            |
|         | 2+           | 81,5  | 163     | 24,93            |
| W       | 2+           | 93    | 186     | 26,66            |
| Bi      | 2+           | 104,5 | 209     | 100              |
| Th      | 2+           | 116   | 232     | 100              |



## 4.2 UF<sub>4</sub>/graphite matrix characteristics

## 4.2.1 <u>General principles</u>

The qualitative interpretation of a  $UF_4$ /graphite matrix spectrum is far more complex than that of a  $U_3O_8$ /graphite matrix. The over-abundance of fluoride ions generated in the plasma from UF, leads to fluorination and recombination of elemental ions present in the sample as impurities. When 0,004 moles of  $UF_4$  is used to prepare electrodes with graphite, this mass of UF, yields a concentration of fluorine of 320 000 µgF/gU, compared with the total concentration of impurities in the  $UF_4$  sample of perhaps up to 1 000 µg/gU. Because fluorine is so extremely reactive with other elements and, as indicated above, in total abundance, the chances of fluorination are greatly enhanced. This phenomenon complicates the interpretation of the mass spectrum of a UF₄/graphite matrix.

The procedures followed for assigning nominal mass values to the spectral lines on a photoplate exposed to a UF<sub>4</sub>/graphite matrix are very similar to those for a  $U_3O_8$ /graphite matrix. The major elements must first be identified. The fingerprint spectrum of uranium is given in Table 4.1 on page 38. By examining the photoplate through a microscope, several major lines are observed over the entire length of the photoplate. These lines are distinguished by A, B, C, D, E, F, G and H in Figure 4.3. The two distinct lines in the upper half of the photoplate, "A" and "B", are due to the major isotope of U, i.e. <sup>238</sup>U. The magnet range in Figure 4.3 is from mass 10 to mass 130. Thus, from the data given in Table 4.1, "A" can be assigned the mass 119 and "B" the mass 79,33, which corresponds with the ions 238U2+ and 238U3+ respectively.



UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA UNIBESITHI VA PRETORIA

Figure 4.3: Photoplate spectrum of a UF<sub>4</sub>/graphite matrix



At the lower end of the photoplate, the strong line with dispersion, marked "C", can be assigned the mass 12. This is due to another major component, C. Similarly, the line marked "D" can be assigned the nominal mass of 19, due to a main component, F.

The lines marked "E" and "F" in Figure 4.3 are due to the clusters  $C_2^+$  and  $C_3^+$  respectively, at masses 24 and 36. The formation of carbon clusters is well known [20].

The lines marked "G" and "H" are due to the formation of fluorinated carbon species,  $CF^*$  and  $CF_2^*$ , with nominal masses 31 and 50, respectively. The formation of such species is not uncommon for a  $UF_4$ /graphite matrix. By using the above markers on the photoplate, the rest of the lines can be assigned nominal mass values to calibrate the rest of the photoplate data.

The positive identification of an element as an impurity in a  $UF_4$ /graphite matrix is not always possible. A vast number of fluorinated species of other elements could interfere with the lines of the element under investigation. This limits the use of singly charged species to quantify an element, unless a doublet or triplet can be satisfactorily resolved using mass-defect values.

Each element (X) present in the UF<sub>4</sub> sample, with all its isotopes, forms fluorinated species of up to  $XF_{(n-1)}$ , where n is the number of fluorine atoms present in that element's stable state, e.g. where X=P, we get PF<sub>5</sub> and where X=S, we get SF<sub>6</sub> [21, 22]. When too many elements are present in the UF<sub>4</sub>, the qualitative interpretation of the spectrum obtained becomes too complicated as the interferences of fluorinated species do not permit the positive identification of a single line which is totally representative of a particular element. This is in stark contrast © University of Pretoria



to the analysis of a  $U_3O_8$ /graphite matrix discussed in Section 4.1, where 34 elements of interest could be positively identified and measured. This was possible because of the formation of primarily elemental ions in the plasma, hence avoiding the great number of possible molecular ion interferences.

## 4.2.2 Selection of elements

Seven elements were identified in the study of reactions in the uranium fuel production process. The  $UF_4$ -material had to be analysed qualitatively and quantitatively in the solid state, without prior chemical treatment. The spark-source mass spectrometer made a significant contribution to these studies.

The seven elements listed in Table 4.3 (see page 97) were added to graphite powder at five concentration levels. The method followed for the preparation of these standards is discussed in Chapter 3 on page 26.

## 4.2.3 Aluminium (A1)

| Alumin    | nium               | Isotopes |  |
|-----------|--------------------|----------|--|
| Maga      | 1+                 | 27       |  |
| Mass      | 2+                 | 13,5     |  |
| Abundance | (%)                | 100      |  |
|           | A1F+               | 46       |  |
| species   | A1F <sub>2</sub> + | 65       |  |
|           | AlF <sub>3</sub> + | 84       |  |



A line at mass 13,5 is unique for the doubly charged ion of the mono-isotopic <sup>27</sup>A1 and is used to measure A1 quantitatively. The singly charged ion at mass 27 appears as a triplet which can be resolved using the mass-defect values. Possible interferences at mass 27 are the doubly charged ions of <sup>54</sup>Cr and <sup>54</sup>Fe. The presence of these two elements in the sample can be verified by lines at masses 26,5 and 28,5 due to the doubly charged state of <sup>53</sup>Cr and <sup>57</sup>Fe respectively. Another possible interference could be the doubly charged ion of fluorinated chlorine (<sup>35</sup>Cl), namely <sup>35</sup>ClF<sup>2+</sup>. By using the mass-defect value, it can be shown that the central line at mass 27 is due to the singly charged ion of A1, which cannot be used for quantification.

The formation of AlF<sup>+</sup> is confirmed by a single line at mass 46. However, quite a few interferences could contribute to this line. The mono-isotopic ions of <sup>46</sup>Ca and <sup>46</sup>Ti could interfere, as well as the fluorinated species <sup>54</sup>FeF<sub>2</sub><sup>2+</sup> and <sup>35</sup>ClF<sub>3</sub><sup>2+</sup>.

A doublet is observed at mass 65. Possible interferences at this mass, resulting in a doublet, could be from the  ${}^{5}Cu^{+}$  ion, which must first be positively identified by the presence of lines at masses 31,5 and 32,5, due to the doubly charged ions of the two isotopes  ${}^{5}Cu$  and  ${}^{5}Cu$ , respectively. Other interferences could be the fluorinated species of A1, namely  ${}^{27}A1F_{2}^{+}$ , and of Ca, namely  ${}^{46}CaF^{+}$ .

A light single line at mass 84 could be due to the formation of <sup>27</sup>AlF<sub>3</sub><sup>+</sup>. This line could also be from the fluorinated species of <sup>65</sup>Cu, namely CuF<sup>+</sup>.



# 4.2.4 Phosphorus (P)

| Phosphoru     | Isotopes                 |      |
|---------------|--------------------------|------|
| Macc          | 1+                       | 31   |
| 11255         | 2+                       | 15,5 |
| Abundance (%) | 100                      |      |
|               | PF+                      | 50   |
| Fluorinatod   | PF 2 +                   | 69   |
| species       | <i>PF</i> <sub>3</sub> + | 88   |
| Species       | PF 4 +                   | 107  |
|               | PF 5 +                   | 126  |

The table below illustrates the fluorination of  ${}^{12}C$ , which helps to enlighten the interferences of these two elements.

| Carbon                    |        | Isotopes |  |
|---------------------------|--------|----------|--|
| Mass                      | 1+     | 12       |  |
| Abundance (%)             |        | 98,89    |  |
|                           | CF+    | 31       |  |
| Fluorinated               | CF 2 + | 50       |  |
| species CF <sub>3</sub> + |        | 69       |  |
|                           | CF 4 + | 88       |  |



The doubly charged ion of the mono-isotopic <sup>31</sup>P yields a doublet at mass 15,5. This doublet can be resolved using the massdefect values. The darker left-hand line is due to P<sup>2+</sup> and the light right-hand line due to the doubly charged ion of <sup>12</sup>CF<sup>2+</sup>. The only line of P which can be used to measure P in the sample is this left-hand line at mass 15,5.

The singly charged ion of P at mass 31 appears as a very dark unresolved doublet. The interference is due to the fluorinated species of C, namely <sup>12</sup>CF<sup>+</sup>. Another species which could interfere at this mass is the doubly charged ion of <sup>62</sup>Ni, which can be positively identified as being present in the sample if a line appears at mass 30,5, due to <sup>61</sup>Ni<sup>2+</sup>.

For the fluorinated species of P, lines are observed up to the formation of  $PF_4^+$ . No line is observed at mass 126 due to  $PF_5^+$ .

A doublet appears at mass 50, one line due to  $PF^+$  and the other due to  $CF_2^+$ . Similarly, a doublet appears at mass 69, one of the lines due to  $PF_2^+$  and the other due to  $CF_3^+$ . At masses 88 and 107, single lines are present. The line at mass 88 is due to the presence of  $PF_3^+$  and the line at mass 107 is due to  $PF_4^+$ . No interference from other fluorinated species occurs at these two lines, although the fluorinated carbon species,  $CF_4^+$ , with a mass of 88, does interfere with the  $PF_3^+$  ion.



## 4.2.5 <u>Calcium (Ca)</u>

| Calcium     |                    |       | Isotopes |      |      |        |       |
|-------------|--------------------|-------|----------|------|------|--------|-------|
| Mana        | 1+                 | 40    | 42       | 43   | 44   | 46     | 48    |
| 11455       | 2+                 | 20    | 21       | 21,5 | 22   | 23     | 24    |
| Abundance   | (%)                | 96,94 | 0,65     | 0,1  | 2,08 | 0,0037 | 0,181 |
| Fluorinated | CaF+               | 59    | 61       | 62   | 63   | 65     | 67    |
| species     | CaF <sub>2</sub> + | 78    | 80       | 81   | 82   | 84     | 86    |

The doubly charged ion of the major isotope of Ca, namely  ${}^{\circ}Ca^{2+}$ , appears as a doublet at mass 20. This doublet can be resolved using the mass-defect values. The strong right-hand line is due to the formation of HF<sup>+</sup>, a species which occurs readily in a UF<sub>4</sub>/graphite matrix. The left-hand line, due to  ${}^{\circ}Ca^{2+}$ , is used to measure Ca quantitatively.

The \*<sup>2</sup>Ca isotope is also used to measure Ca quantitatively. The result obtained is used as a guide to check whether the correct line of the doublet was selected at mass 20, as the two measurements should give the same result. It is not always possible to do this as the doubly charged ion of <sup>42</sup>Ca is only observed when the Ca concentration in the sample is fairly high. The isotopic abundance of <sup>42</sup>Ca is only 0,65%, yielding a very faint line at mass 21. However, this line is single and unique for <sup>42</sup>Ca. Lines at masses 21,5 and 22 can also be used to identify the presence of Ca in the sample. The line at mass 21,5 is too light



to measure (abundance 0,14%) and the line at mass 22 has interferences from  $^{25}MgF^{2+}$  and possibly  $^{12}C^{13}CF^{2+}$ , ( $C_2F^{2+}$ ), which cannot be resolved.

There are too many interferences to measure Ca in the singly charged state. For  ${}^{40}Ca$  there is interference from  ${}^{40}K$ , the presence of which is identified by a line at mass 19,5, due to the  ${}^{39}K$  doubly charged ion. For  ${}^{42}Ca$ , interference is in the form of  ${}^{65}CuF^{2+}$  and NaF<sup>+</sup>. The presence of Na in the sample is confirmed by a strong line at mass 23. At mass 43,  ${}^{43}Ca$  has interference from  ${}^{24}MgF^{+}$  and  ${}^{12}C_2F^{+}$ . The formation of  ${}^{24}MgF^{+}$  is confirmed by the presence of a line at mass 12,5 due to the doubly charged ion of  ${}^{25}Mg$ . Similarly, for  ${}^{4*}Ca$ , interferences are  ${}^{25}MgF^{+}$  and  ${}^{12}C^{13}CF^{+}$ .

The isotopic abundance of <sup>46</sup>Ca is so small that this isotope can be ignored, although possible interferences are <sup>27</sup>AlF<sup>+</sup> and <sup>46</sup>Ti<sup>+</sup>, the presence of which is confirmed by lines at masses 23,5 and 24,5 due to the doubly charged ions of <sup>47</sup>Ti and <sup>49</sup>Ti, respectively.

Furthermore, the interpretation of the Ca spectrum is made more complex by the fluorination of Ca to form CaF<sup>+</sup> species with all the isotopes. The interferences on the lines of the CaF<sup>+</sup> species is such that no line can be uniquely assigned. This is detailed below:

- The line at mass 59 is a doublet due to <sup>5</sup>°Co<sup>+</sup> and <sup>4</sup>° CaF<sup>+</sup>;
- that at mass 61 is also a doublet due to <sup>6</sup> Ni<sup>+</sup> and <sup>4</sup> CaF<sup>+</sup>;
- that at mass 62 a weak doublet due to <sup>6</sup><sup>2</sup>Ni<sup>+</sup> and <sup>4</sup><sup>3</sup>CaF<sup>+</sup>; and
- that at mass 63 a doublet due to <sup>63</sup>Cu<sup>+</sup> and <sup>44</sup>CaF<sup>+</sup>.



The line at mass 65 could be due to a combination of  ${}^{\circ}Cu^+$ ,  ${}^{\circ}CaF^+$ ,  ${}^{\circ}TiF^+$  and  ${}^{2}{}^{7}A1F_2^+$ . Similarly, the line at mass 67 could be due to a combination of  ${}^{\circ}{}^{7}Zn^+$ ,  ${}^{\circ}CaF^+$ ,  ${}^{\circ}TiF^+$  and  ${}^{2}{}^{9}SiF_2^+$ .

No line is observed at mass 78, which would indicate the formation of  $4 \circ CaF_2^+$ .

4.2.6 <u>Silicon (Si</u>)

| Silicon            |                    | Isotopes |      |      |  |  |
|--------------------|--------------------|----------|------|------|--|--|
| Magg               | 1+                 | 28       | 29   | 30   |  |  |
| 11455              | 2+                 | 14       | 14,5 | 15   |  |  |
| Abundance (%)      |                    | 92,23    | 4,68 | 3,09 |  |  |
|                    | SiF+               | 47       | 48   | 49   |  |  |
| <i>Fluorinated</i> | SiF <sub>2</sub> + | 66       | 67   | 68   |  |  |
| species            | SiF <sub>3</sub> + | 85       | 86   | 87   |  |  |
|                    | SiF <sub>4</sub> + | 104      | 105  | 106  |  |  |

The presence of Si in the sample can be positively identified by a single line at mass 14,5 due to the doubly charged ion of <sup>2</sup> <sup>9</sup>Si. This line cannot be measured to quantify Si, as it is very weak in intensity because of the <sup>2</sup> <sup>9</sup>Si abundance of only 4,68%.

In the singly charged state the lines of the various Si isotopes have interferences to contend with. At mass 28 there are four overlapping lines which cannot be resolved using mass-defect values.



Apart from the line for <sup>2</sup>°Si, other interferences are <sup>5</sup>°Fe<sup>2+</sup>, <sup>3</sup><sup>7</sup>C1F<sup>2+</sup> and <sup>6</sup><sup>5</sup>CuF<sup>3+</sup>. From the intensity of the central line it would appear as if this line is due to <sup>2</sup>°Si, the major Si isotope. At mass 29 an unresolved triplet is observed, made up of the interferences of <sup>5</sup>°Fe<sup>2+</sup>, <sup>5</sup>°Ni<sup>2+</sup> and possibly <sup>3</sup>°KF<sup>2+</sup>, with the line of <sup>2</sup>°Si. The presence of K in the sample can be verified by a line at mass 19,5 due to the doubly charged ion of <sup>3</sup>°K.

A resolved triplet is found at mass 30. The left-hand line is due to the doubly charged ion of <sup>6</sup> Ni. The central line is due to <sup>3</sup> Si and the right-hand line is due to either <sup>12</sup>C<sub>5</sub><sup>2+</sup> or <sup>4</sup> KF<sup>2+</sup>. The formation of <sup>4</sup> KF<sup>+</sup> is verified by the presence of a strong doublet at mass 60 due to <sup>6</sup> Ni<sup>+</sup> and <sup>4</sup> KF<sup>+</sup>. The righthand line of the triplet at mass 30 is weak in intensity, thus it does not affect the measuring of the <sup>3</sup> Si central line. Only the saturated exposures of <sup>3</sup> Si have any interference from this weak right-hand line. This is the only Si line which can be measured to quantify Si.

Silicon forms several fluorinated species. For the formation of SiF<sup>+</sup>species the following lines are obtained:

- A doublet at mass 47 due to <sup>2</sup> <sup>8</sup>SiF<sup>+</sup> and <sup>4</sup> <sup>7</sup>Ti<sup>+</sup>;
- a doublet at mass 48 due to several possible species, e.g. 2°SiF<sup>+</sup>, <sup>1</sup>2C<sub>4</sub><sup>+</sup>, <sup>4</sup>°Ti<sup>+</sup>, <sup>4</sup>°Ca<sup>+</sup>; and
- a doublet at mass 49 due to  ${}^{30}SiF^+$ ,  ${}^{49}Ti^+$  and  ${}^{12}C_3{}^{13}C^+$ .

For the formation of  $SiF_2^+$  species, the following lines are obtained which can be resolved using mass-defect values:

- A triplet at mass 66, where the left-hand line is due to 66Zn<sup>+</sup>:
- a weak central line due to 4'TiF'; and
- a strong right-hand line due to <sup>2</sup> <sup>s</sup>SiF<sub>2</sub><sup>+</sup>.



At mass 67 a triplet is present, where

- the weak left-hand line is due to <sup>6</sup><sup>7</sup>Zn<sup>+</sup> with small abundance;
- the strong central line is that of \*\*TiF\*, the major isotope of Ti combined with \*\*CaF\*; and
- the weak right-hand line is due to <sup>2</sup>SiF<sub>2</sub><sup>+</sup>.

Similarly, at mass 68, a weak triplet is observed, where

- the stronger left-hand line is due to <sup>6</sup><sup>2</sup>Zn<sup>+</sup>;
- the weak central line is due to \*'TiF'; and
- the weak right-hand line is due to <sup>3</sup>°SiF<sub>2</sub><sup>+</sup>.

For the formation of  $SiF_3^+$  species, the only line obtained is that of the major isotope of Si, which gives a single line at mass 85 due to the formation of  ${}^{2}{}^{8}SiF_3^+$ . No line is observed at mass 104 to confirm the presence of  $SiF_4^+$  species.

#### 4.2.7 Sulphur (S)

| Su1phur     |                   | Isotopes |      |      |      |  |
|-------------|-------------------|----------|------|------|------|--|
| Magg        | 1+                | 32       | 33   | 34   | 36   |  |
| nass        | 2+                | 16       | 16,5 | 17   | 18   |  |
| Abundance   | (%)               | 95,0     | 0,76 | 4,22 | 0,01 |  |
|             | SF+               | 51       | 52   | 53   | 55   |  |
|             | SF 2 +            | 70       | 71   | 72   | 74   |  |
| Fluorinated | SF <sub>3</sub> + | 89       | 90   | 91   | 93   |  |
| species     | SF 4 +            | 108      | 109  | 110  | 112  |  |
|             | SF 5 +            | 127      | 128  | 129  | 131  |  |
|             | SF 6 +            | 146      | 147  | 148  | 150  |  |



For the formation of fluorinated S species, the table below illustrates the fluorinated species of <sup>13</sup>C, and the interferences of these two elements.

| Carboi                                         | 2      | Isotopes |
|------------------------------------------------|--------|----------|
| Mass                                           | 1+     | 13       |
| Abundance                                      | (%)    | 1,10     |
|                                                | CF+    | 32       |
| Fluorinated                                    | CF 2 + | 51       |
| species CF <sub>3</sub> +<br>CF <sub>4</sub> + |        | 70       |
|                                                |        | 89       |

The doubly charged ion of the <sup>33</sup>S isotope gives a line at mass 16,5. However, no line is observed at this mass because the isotopic abundance of the <sup>33</sup>S is only 0,76%. This means that only the singly charged state of S can be used to quantify S in the sample.

At mass 32 there is a doublet which can be resolved. The main interference at this mass is from the major isotope of Zn, namely  ${}^{64}Zn^{2+}$ . Other possible interferences are  ${}^{13}CF^+$  and  ${}^{64}Ni^{2+}$ . The right-hand line of this doublet is due to  ${}^{32}S^+$ , which is used to measure S.

The <sup>33</sup>S and <sup>36</sup>S isotopes both have very small abundances, with the result that their lines at masses 33 and 36 are so faint that they cannot be used. This is apart from the fact that <sup>33</sup>S also has <sup>66</sup>Zn<sup>2+</sup> as interference and <sup>36</sup>S has the cluster <sup>12</sup>C<sub>3</sub><sup>+</sup> as interference.



A very weak doublet is obtained at mass 34 due to  ${}^{3+}S^+$  and  ${}^{6+}Zn^{2+}$ . These two lines overlap to such an extent that they cannot be resolved on the basis of the mass-defect values.

Only the <sup>3</sup>2S and <sup>3</sup>4S isotopes are used to illustrate the fluorination of S to form  $SF_n^+$  species, where n=1 and 2. For  $SF^+$  a doublet is obtained at mass 51 due to <sup>3</sup>2SF<sup>+</sup>, <sup>13</sup>CF<sub>2</sub><sup>+</sup> and <sup>51</sup>V<sup>+</sup>, the presence of which in the sample can be identified by a line at mass 25,5, which is unique for <sup>51</sup>V<sup>2+</sup>. Similarly, a doublet is obtained at mass 53 due to <sup>34</sup>SF<sup>+</sup> and <sup>53</sup>Cr<sup>+</sup>. For the formation of  $SF_2^+$  species, a doublet at mass 70 is due to <sup>32</sup>SF<sub>2</sub><sup>+</sup>, <sup>13</sup>CF<sub>3</sub><sup>+</sup> and the fluorinated species of V, namely <sup>51</sup>VF<sup>+</sup>, as interferences. A doublet at mass 72 originates from <sup>34</sup>SF<sub>2</sub><sup>+</sup> and <sup>53</sup>CrF<sup>+</sup>. In the same way that the fluorinated species of <sup>12</sup>C interfered with the fluorinated species of P, the fluorinated species of <sup>13</sup>C interfere with the fluorinated species of S up to the formation of <sup>13</sup>CF<sub>3</sub><sup>+</sup> species.

For the formation of further  $SF_n^+$  species where n = 3, 4 and 5, only the major isotope,  ${}^{32}S$ , will be considered. At mass 89 a clearly resolved doublet is obtained. The dark line is that of the internal standard, the mono-isotopic  ${}^{69}$ Y, and the very weak line is that of  ${}^{32}SF_3^+$  which does not interfere with the 50% transmission intercept obtained for  ${}^{69}$ Y, except at the longest exposures. A line at mass 108 is due to the formation of  ${}^{32}SF_4^+$  and/or the formation of YF<sup>+</sup>. Similarly, a line at mass 127 is a combination of  ${}^{32}SF_5^+$ ,  ${}^{69}YF_2^+$  and  ${}^{235}UF^{2+}$ . No line is obtained at mass 146 to confirm the presence of  $SF_6^+$  species.

#### UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA UNIBESITHI VA PRETORIA

92

## 4.2.8 Chlorine (C1)

| Chlorine      | 9                            | Isotopes |       |  |
|---------------|------------------------------|----------|-------|--|
| Mass          | 1+                           | 35       | 37    |  |
|               | 2+                           | 17,5     | 18,5  |  |
| Abundance     | (%)<br>                      | 75,72    | 24,28 |  |
|               | C1F+                         | 54       | 56    |  |
|               | C1F <sub>2</sub> +           | 73       | 75    |  |
| Fluorinated   | uorinated C1F <sub>3</sub> + |          | 94    |  |
| species C1F4+ |                              | 111      | 113   |  |
|               | C1F <sub>5</sub> +           | 130      | 132   |  |

No lines are readily observed at masses 17,5 and 18,5, which would be due to the doubly charged species of <sup>35</sup>Cl and <sup>37</sup>Cl respectively. The lines for Cl in the singly charged state are used to identify the presence of Cl in the sample, as well as to quantify Cl.

At mass 35 a weakly resolved doublet is observed. The strong left-hand line is due to <sup>35</sup>Cl, the major isotope of Cl. The faint right-hand line could be <sup>70</sup>Zn<sup>2+</sup>, or the species <sup>16</sup>OF<sup>+</sup>. These interferences do not affect the measuring of the <sup>35</sup>Cl line as they only occur at the very long exposures.

At mass 37 there is a clearly resolved doublet. The weaker lefthand line is due to  ${}^{37}C1^{+}$  and the strong right-hand line is due to the formation of the cluster  ${}^{12}C_2{}^{13}C$  (C<sub>3</sub>).

Both lines of Cl are measured, the <sup>37</sup>Cl line being used as a check for the <sup>35</sup>Cl line. The results obtained from each line should ideally be the same Diversity of Pretoria



The fluorination of C1 cannot be positively verified. This is a result of the numerous interferences of fluorinated species of Cr and Fe. The formation of C1F<sup>+</sup> species would give rise to lines at masses 54 and 56. Interferences at mass 54 are  $^{54}$ Cr<sup>+</sup> and  $^{54}$ Fe<sup>+</sup>, both elements having low abundance. At mass 56 the major isotope of  $^{56}$ Fe results in a doublet with the  $^{37}$ C1F<sup>+</sup> species.

The formation of  $C1F_2^+$  species would result in lines at masses 73 and 75. The single line at mass 73 could be due to  ${}^{35}C1F_2^+$ ,  ${}^{54}FeF^+$  or  ${}^{54}CrF^+$ . The doublet at mass 75 could be as a result of the formation of  ${}^{37}C1F_2^+$  and the fluorinated species of the major isotope of Fe, namely  ${}^{56}FeF^+$ .

Similarly, the formation of  $C1F_3^+$  species would result in faint lines at masses 92 and 94. Apart from  ${}^{35}C1F_3^+$ , the line at mass 92 could also be due to  ${}^{54}FeF_2^+$  and  ${}^{54}CrF_2^+$ . The line at mass 94 could be the result of a combination of  ${}^{37}C1F_2^+$  and  ${}^{56}FeF_2^+$ .

The formation of  $C1F_4^+$  species cannot be positively verified as no lines are observed at masses 111 and 113. No lines appear at masses 130 and 132 to confirm the presence of  $C1F_5^+$ .

### 4.2.9 Zinc (Zn)

| Zinc                |         | Isotopes |       |      |       |       |  |
|---------------------|---------|----------|-------|------|-------|-------|--|
| Mass                | 1+      | 64       | 66    | 67   | 68    | 70    |  |
|                     | 2+      | 32       | 33    | 33,5 | 34    | 35    |  |
| Abundance (%)       |         | 48,89    | 27,77 | 4,12 | 18,59 | 0,638 |  |
| Fluorinated species | ZnF+    | 83       | 85    | 86   | 87    | 89    |  |
|                     | ZnF 2 + | 102      | 104   | 105  | 106   | 108   |  |



The doubly charged state of Zn is used to confirm its presence in the sample. A line at mass 33,5 is due to the doubly charged species of <sup>67</sup>Zn. This line can, however, not be measured to quantify Zn as it is too light in intensity, because the abundance of <sup>67</sup>Zn is only 4,12%.

For Zn in the singly charged state, the line obtained for each of the isotopes appears as a doublet or a triplet which can be resolved. Most of the interferences at these masses are due to the fluorinated species of the other elements present in the sample.

The line at mass 64 is very dark in intensity and is due to the major isotope <sup>64</sup>Zn. The only possible interference is from <sup>64</sup>Ni<sup>+</sup>. Because this isotope of Ni has a low abundance (1,01%), it does not affect the measuring of the <sup>64</sup>Zn<sup>+</sup> line.

At mass 66 a resolved triplet is obtained. The left-hand line is due to  ${}^{6}Zn^{+}$  and the other two lines are due to  ${}^{2}{}^{6}SiF_{2}^{+}$  and  ${}^{4}{}^{7}TiF^{+}$  as interferences.

Similarly, for the line at mass 67, the left-hand line of the resolved triplet is due to  ${}^{\circ}7Zn^{+}$  and the other two lines are due to  ${}^{\circ}9SiF_{2}^{+}$ ,  ${}^{\circ}8TaF^{+}$  and  ${}^{\circ}8CaF^{+}$  as interferences.

The resolved triplet at mass 68 has one strong line and two weak lines. The left-hand line, which is the strong line, is due to <sup>6</sup><sup>9</sup>Zn<sup>+</sup>. The two weak lines are due to <sup>3</sup><sup>0</sup>SiF<sub>2</sub><sup>+</sup> and <sup>4</sup><sup>9</sup>TiF<sup>+</sup>, where the abundance of <sup>3</sup><sup>0</sup>Si and <sup>4</sup><sup>9</sup>Ti is very small.

It is apparent from the above discussion that Zn can be measured at any of its isotopes up to mass 68, as long as the upper window is carefully chosen so as not to include the interfering adjacent lines.



The doublet at mass 70 is due to a number of species, apart from  $^{70}Zn^+$ . These possible interferences are  $^{32}SF_2^+$ ,  $^{51}VF^+$  and  $^{13}CF_3^+$ .

A weak line is obtained at mass 83, which is due to the fluorinated species of the main isotope of Zn, namely  $^{64}ZnF^{+}$ . No line is observed at mass 102 to confirm the presence of  $ZnF_{2}^{+}$ .

## 4.2.10 <u>Yttrium (Y</u>)

| Yttriu      | Isotopes |      |
|-------------|----------|------|
| Mass        | 1+       |      |
| 11255       | 2+       | 44,5 |
| Abundance   | 100      |      |
| Fluoringtod | YF+      | 108  |
| sposios     | YF 2 +   | 127  |
| species     | YF 3 +   | 146  |

The single line at mass 44,5 is unique for the doubly charged ion of the mono-isotopic <sup>8</sup>'Y. In the case of the singly charged ion, a doublet is obtained at mass 89, which can be resolved using mass-defect values. The strong left-hand line is due to <sup>8</sup>'Y<sup>+</sup> and the weak right-hand line is due to the fluorinated species of S, namely <sup>3</sup>'SF<sub>3</sub><sup>+</sup>. The presence of this interference at mass 89 does not hinder the measuring of the Y line. Only the longest exposures are affected, which are in any case discarded



as saturated points. The 50% transmission intercept obtained for the Y line is thus a true value for Y in the singly charged state.

In a UF<sub>4</sub>/graphite matrix the internal standard, Y, also forms fluorinated species, i.e.  $YF^+$ . This is in contrast to the use of Y as an internal standard for a U<sub>3</sub>O<sub>8</sub>/graphite matrix. The difference obtained between the Y ratios, derived as the number of singly charged ions relative to the number of doubly charged ions, for the two types of matrices could be ascribed to the fact that Y also forms fluorinated species in a UF<sub>4</sub>/graphite matrix.

The line obtained at mass 108 is due to  ${}^{32}SF_4^+$  and  ${}^{89}YF^+$ . Similarly, the line at mass 127 is due to  ${}^{32}SF_5^+$ ,  ${}^{89}YF_2^+$  and  ${}^{235}UF^{2+}$ . No line is obtained at mass 146 to confirm the presence of  $YF_3^+$ .

#### 4.2.11 Uranium (U)

Apart from the normal fingerprint spectrum of uranium up to charge state 5, a number of other lines are also observed. The fingerprint spectrum of U is given in Table 4.1. on page 38. A strong line at mass 128,5 is due to the doubly charged ion of the fluorinated species of the major isotope of uranium, namely  $^{236}UF^{2+}$ . The line at mass 127 could be as a result of the combination of  $^{235}UF^{2+}$  with  $^{32}SF_5^+$  and  $^{89}YF_2^+$ . A weak line at mass 85,67 is due to the triply charged ion of fluorinated  $^{236}UF^{3+}$ .

The line observed at mass 125 is of interest as it can be related to the formation of a UC<sup>+</sup> species. It would appear that the UF<sub>4</sub> molecule is in this case totally stripped of its fluoride ions within the plasma, leaving the U<sup>+</sup> ion which recombines with a C<sup>+</sup> ion, forming a UC<sup>+</sup> species. At mass 125 the doubly charged species <sup>236</sup>UC<sup>2+</sup> is observed.



# 4.2.12 Selection of isotopes and charge states

A summary of the isotopes and charge states used to quantify each of the seven impurity elements in the  $UF_4$ /graphite matrix is given in Table 4.3.

<u>Table 4.3</u>: Isotopes and charge states used to quantify impurity elements in a UF<sub>4</sub>/graphite matrix

| Element | Charge state | m/e        | Isotope  | Abundance (%)  |
|---------|--------------|------------|----------|----------------|
| A1      | 2+           | 13,5       | 27       | 100            |
| Р       | 2+           | 15,5       | 31       | 100            |
| Ca      | 2+<br>2+     | 20<br>21   | 40<br>42 | 96,94<br>0,65  |
| Si      | 1+           | 30         | 30       | 3,09           |
| S       | 1+           | 32         | 32       | 95,0           |
| C1      | 1+<br>1+     | 35<br>37   | 35<br>37 | 75,72<br>24,28 |
| Zn      | 1+<br>1+     | 64<br>67   | 64<br>67 | 48,89<br>27,77 |
| Y       | 1+<br>2+     | 89<br>44,5 | 89<br>89 | 100<br>100     |