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Abstract

Real-world optimisation problems are often very complex. Population-based metaheuris-

tics, such as evolutionary algorithms and particle swarm optimisation (PSO) algorithms,

have been successful in solving many of these problems, but it is well known that they

sometimes fail. Over the last few decades the focus of research in the field has been

largely on the algorithmic side with relatively little attention being paid to the study

of the problems. Questions such as ‘Which algorithm will most accurately solve my

problem?’ or ‘Which algorithm will most quickly produce a reasonable answer to my

problem?’ remain unanswered.

This thesis contributes to the understanding of optimisation problems and what

makes them hard for algorithms, in particular PSO algorithms. Fitness landscape anal-

ysis techniques are developed to characterise continuous optimisation problems and it is

shown that this characterisation can be used to predict PSO failure. An essential feature

of this approach is that multiple problem characteristics are analysed together, moving

away from the idea of a single measure of problem hardness. The resulting prediction

models not only lead to a better understanding of the algorithms themselves, but also

takes the field a step closer towards the goal of informed decision-making where the most

appropriate algorithm is chosen to solve any new complex problem.

Keywords: Fitness landscape analysis, problem hardness measures, particle swarm

optimisation.
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“The real voyage of discovery consists not in seeking new landscapes but in

having new eyes.”

– Marcel Proust
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Chapter 1

Introduction

In many ways we strive for optimality in our lives: we want what is best at the minimum

cost. Optimisation is the name given to the mathematical discipline concerned with this

striving for optimality. Given a set of variables representing a solution to a problem,

optimisation involves finding the best solution: the values of the problem variables that

result in the minimum or maximum of the objective of the problem. Designing a concert

hall that maximises acoustics or an aircraft wing that minimises drag, finding a set of

trading rules that maximises profit or a route through a telecommunications network

that minimises delay are all examples of real-world optimisation problems.

Traditional mathematical optimisation techniques, such as gradient-based techniques,

use the derivative of the objective function to determine the exact maximum or minimum

point of a problem. Many optimisation problems are, however, not able to be solved

using such traditional techniques. For example, multimodal problems where gradient

information is not sufficient for finding the global optimum, problems with discontinuous

search spaces that are non-differentiable, or black-box optimisation problems where there

is no objective function in mathematical form to be differentiated. For these kinds of

problems, often the only feasible alternative is to use approaches that find approximate

solutions. Metaheuristics is the name given to such approximate optimisation techniques

that are general, in that they can be applied to solve any optimisation problem.

There are many different approaches within the field of metaheuristics. Some meta-

heuristics perform local search, usually with extensions to enhance exploration of the

1
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Chapter 1. Introduction 2

search space, such as simulated annealing [22, 77], iterated local search [82] and tabu

search [43, 44]. Other metaheuristics are population-based in that they work on a collec-

tion of solutions in parallel, such as evolutionary algorithms [5], ant colony optimisation

algorithms [30] and PSO algorithms [75]. Many of these population-based metaheuris-

tics are inspired by nature; the way that nature constructs elegant solutions to problems

within extremely complex systems has inspired scientists to capture some of this ‘magic’

in simple forms within algorithms and the results are often surprisingly good. Talbi [152]

provides a genealogy of metaheuristics as applied to optimisation from the 1940s to the

1990s containing no less than 24 different kinds of algorithms. Since then many more

algorithms have been proposed from bio-inspired algorithms like firefly [185] and krill

herd [40] algorithms to algorithms inspired by the interaction between magnetic particles

[154] and the way musicians improvise (harmony search) [42].

Real-world optimisation problems frequently involve real-valued variables and there

are many algorithms that were designed to work in these continuous spaces, such as PSO,

differential evolution [120], evolution strategies [128, 138] and cuckoo search [186]. Many

metaheuristics originally designed for discrete spaces have also been adapted to work in

continuous environments such as real-coded genetic algorithm (GA)s [60], evolutionary

programming [78], ant colony optimisation algorithms [11], estimation of distribution

algorithms [1] and scatter search [59]. Given this plethora of algorithms, the challenge of

choosing the most appropriate algorithm for solving a given problem can be a daunting

task. A metaheuristic algorithm can easily be described in terms of its properties, such

as the way in which search history is used, but due to stochastic elements, the result

of these algorithms is not easily predicted. The properties of an algorithm therefore

only have limited value in guiding the choice of an appropriate algorithm to solve a

problem. Questions such as ‘Which algorithm will most accurately solve my problem?’ or

‘Which algorithm will most quickly produce a reasonable answer to my problem?’ remain

unanswered. When the choice is between vastly different algorithms (such as a genetic

algorithm or a particle swarm optimisation algorithm) there is even less guidance and the

most common technique for choosing an appropriate algorithm is trial and error. If there

existed one algorithm that out-performed all others in solving optimisation problems,

then this ‘super-algorithm’ could be used in all cases. It is well known, however, that no
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Chapter 1. Introduction 3

such algorithm can exist as was proved by Wolpert and Macready with their famous ‘No-

Free-Lunch’ theorems for search/optimisation [180, 181]. The emphasis is therefore not

on finding the best optimisation algorithm in general, but on finding the most appropriate

optimisation algorithm for solving a particular problem. This challenge is expressed

aptly by Culberson [25]: “The researcher trying to solve a problem is then placed in the

unfortunate position of having to find a representation, operators and parameter settings

to make a poorly understood system solve a poorly understood problem. In many cases

he might be better served concentrating on the problem itself”. This research focuses on

ways of better understanding optimisation problems in the hope that this will guide

practitioners and researchers in the use of appropriate algorithms or avoiding the use of

inappropriate algorithms.

This introductory chapter starts in the following section by describing the algorithm

selection problem: what is involved in finding the most appropriate algorithm to solve

a problem in general. Given this framework, Section 1.2 introduces some of the factors

that can influence the difficulty of optimisation problems, while Section 1.3 summarises

some of the existing approaches to analysing problem difficulty. The overall objectives

of the research and the main contributions are described in Sections 1.4 and 1.5, while

the outline of the thesis is provided in Section 1.6.

1.1 The algorithm selection problem

The general problem of selecting an effective or good or best algorithm to solve a given

problem was formulated by Rice in the 1970s [132]. One of the models described by Rice

is the model where algorithm selection is based on features of the problem. This model

has four main characteristics:

• A set of problem instances (problem space P ),

• a set of algorithms for solving the problems (algorithm space A),

• measures for comparing the performance of algorithms on a particular problem

(performance measure space Y ), and

• measurable characteristics of the problem instances (feature space G).
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Chapter 1. Introduction 4

The relationship between these components is illustrated in Figure 1.1 (this diagram

is based on Rice’s Figure 3 [132] but includes an additional mapping for performance

prediction). A given algorithm a ∈ A can be applied to a problem instance p to pro-

duce performance measure(s) y(a(p)). In a trial-and-error approach to finding the best

algorithm to solve a problem, this process of applying algorithms to a problem is simply

repeated until the best algorithm from a set of algorithms is found, based on the given

performance measures. The algorithm selection problem, however, involves avoiding this

trial-and-error approach by achieving the following:

• Feature extraction: devising a mapping from problem space to feature space, so

that any problem instance p can be characterised by features g(p); and

• Algorithm selection: devising a mapping from problem feature space to algorithm

space, so that a given problem p, with extracted features g(p), can be matched to

the most appropriate algorithm a, such that performance y(a(p)) is maximised.

Figure 1.1 also illustrates the related problem of performance prediction, which involves

predicting the performance y(a(p)) of a given algorithm a applied to problem p based on

extracted features g(p). If a solution to the algorithm selection / performance prediction

problem is found, it becomes possible to take an unseen optimisation problem, extract

its features, and from these features select the most appropriate metaheuristic algorithm

from a subset of metaheuristics for solving the problem (the algorithm selection prob-

lem) or predict the performance of a given metaheuristic algorithm on the problem (the

performance prediction problem).

Rice’s model [132] aims to find the single most appropriate algorithm for solving a

given problem. Peng et al. [116] emphasise the inherent risk associated with algorithm

selection and propose a framework, called population-based algorithm portfolios, where

the problem is distributed among multiple different algorithms. This introduces a dif-

ferent perspective, but does not remove the essential problem of algorithm selection.

Instead, the problem changes to one of selecting an appropriate set of algorithms to

make up the portfolio.

Smith-Miles [143] used Rice’s model [132] to address the algorithm selection problem

for a subset of combinatorial optimisation problems, namely quadratic assignment prob-
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Chapter 1. Introduction 5

Figure 1.1: A framework for describing the general problems of algorithm selection and

performance prediction based on problem features (based Rice’s model [132]).

lems. In that study, 28 instances of the problem were used with three metaheuristics

(tabu search, iterated local search and min-max ant system). The features of the prob-

lem were a combination of measures quantifying the size of the quadratic assignment

problem with fitness-distance metrics based on local search runs (requiring knowledge of

the global optima). A neural network was used to solve the problem of mapping problem

features to performance measures. Although restricted to a specific class of optimisation

problems, the study by Smith-Miles demonstrated the potential relevance of using such

an approach. This thesis proposes how Rice’s model [132] can be applied to continuous

optimisation problems and PSO algorithms, where the features of the problem are based

on the analysis of fitness landscapes.

The following are prerequisites to solving the algorithm selection problem [144] in

general:

1. A large number of problem instances with different levels of difficulty;

2. A large number of different algorithms for solving these problem instances;

3. Metrics for evaluating the performance of algorithms; and
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4. The existence of features that can be used to suitably characterise the properties

of problems.

Considering the domain of real-encoded optimisation problems, item 1 above is ad-

dressed with the extensive range of benchmark problems in the literature. Some of these

benchmarks are described in Section 3.1 of the thesis. Focussing on PSO algorithms,

item 2 is met by the many different variations of the basic PSO algorithm, displaying

different search behaviours. The variations that are used in this study are described in

Section 3.2. Considering item 3 above, although there are metrics that are commonly

used for evaluating the performance of optimisation algorithms, there are problems with

using these metrics across the domain of different problems. This issue is addressed in

Section 3.3 of the thesis. The bulk of this research is focussed on item 4 above with

Chapter 2 providing the background to the features of optimisation problems and a

survey of existing techniques for measuring features and Chapters 4 and 5 proposing

techniques for approximating some of these features for continuous problems. Chapter

6 then attempts to find the link between problem features and performance using data

mining on a dataset of features extracted from a selection of benchmark problems and

solved using different PSO algorithms.

1.2 What makes an optimisation problem hard?

Although it is now known that a generic answer to the above question is unlikely to exist

[55], many have tried to predict problem difficulty based on the features of a problem.

This section discusses some of the properties or features of optimisation problems that

could influence the degree of difficulty in solving them. Consider the fitness1 landscapes

of simple one-dimensional continuous problems as illustrated in Figure 1.2, where x′ is a

candidate solution found by a search process and x∗ is the global optimum solution. A

search algorithm would use information from the search space to decide how to proceed

– information such as the gradient of the fitness function, or fitness values of solutions in

the neighbourhood of x′, or a whole population of alternative solutions with associated

1The term fitness is used to describe the objective of the function and is not restricted to the

evolutionary sense of ‘survival of the fittest’.
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(a) A simple smooth landscape (b) A rugged landscape

(c) A deceptive landscape (d) A neutral landscape

Figure 1.2: Simple one-dimensional fitness landscapes to be minimised where x′ is a candidate

solution to the problem, f(x′) the fitness of solution x′ and x∗ the optimal solution.

fitness values. Whichever approach is used, a simple function such as the one illustrated

in Figure 1.2(a), clearly provides good information to guide search towards the global

optimum.

In contrast, the rugged landscape (landscapes are described in Section 2.2) in Figure

1.2(b) provides very little useful information to guide search towards the global optimum.
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Chapter 1. Introduction 8

In addition, the vertical gradients in places (e.g. at point x′) make it difficult for some

search algorithms, either because the gradient is not defined or because the same solution

can have multiple fitness values. Ruggedness clearly affects problem difficulty and many

studies on problem hardness have focussed on ruggedness as the main determining factor

[80, 92, 149]. The ruggedness of a fitness landscape is, however, not the only factor

affecting problem hardness. Consider for example the problem in Figure 1.2(c). This

landscape would not be regarded as rugged compared with the landscape in Figure 1.2(b),

but presents misleading information for a local search algorithm. Starting at position

x′, a local search algorithm would typically be guided away from the global optimum

at x∗. Problems such as these that present an algorithm with misleading information

are known as deceptive problems and many studies on problem hardness have focussed

on deception as the main determining factor [15, 45, 46, 66]. Neutrality is yet another

factor that can have an influence on problem difficulty [114, 165, 167, 172, 174]. This

phenomenon is illustrated in Figure 1.2(d), where there is a lack of information around

the candidate solution x′ for guiding search towards the global optimum. These and

other characteristics that affect problem difficulty are explored further in Section 2.3.

1.3 Existing approaches to fitness landscape analysis

Much of the research in fitness landscape analysis over the last few decades has been fo-

cussed on finding measures for predicting general problem hardness. These attempts have

not been very successful and the general agreement in the literature seems to be that no

satisfactory problem difficulty measure for search heuristics has been found [50, 55, 65].

Although many proposed techniques have therefore been ‘shot down’ as difficulty mea-

sures, it is a premise of this study that such techniques can still be useful if viewed as

measures of particular problem characteristics, rather than of problem difficulty. This

view is supported by Müller and Sbalzarini when they used one proposed difficulty mea-

sure (fitness distance correlation) to characterise the CEC 2005 benchmark suite [150].

They concluded that ‘fitness-distance analysis can only provide one out of several useful

landscape descriptors that need to be combined in order to form discriminative landscape

fingerprints.’ With a shift in focus away from predicting hardness, each technique has
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Chapter 1. Introduction 9

its own place within a toolbox of techniques for characterising problems. For example,

the measure called negative slope coefficient [162, 164], originally proposed as a difficulty

measure, can be used as a measure of evolvability in combination with other measures

of ruggedness, neutrality and gradients.

There are other perceived problems with existing techniques. For example, some

techniques assume knowledge of the global optimum and some assume a discrete rep-

resentation and are not defined for continuous problems. Part of this research aims to

investigate existing techniques and to assess their suitability as measures of character-

istics of continuous optimisation problems. Although some measures are unsuitable for

continuous problems, others may require adaptations to be of practical use in charac-

terising problems. In addition, new measures are proposed where appropriate. In this

way, a whole host of characteristics can be analysed together to broadly characterise a

problem.

1.4 Research objectives

There are three main objectives of this research as described in the subsections below.

1.4.1 Objective 1: Survey of existing techniques for character-

ising optimisation problems

Despite numerous studies on fitness landscape analysis and a large number of developed

techniques, very few techniques are used in practice. This could be because fitness

landscape analysis in itself can be complex. With the aim of using a wide range of

fitness landscape techniques, the objective of this first part of the study was to describe

existing techniques and highlight the attributes important for practical implementation.

This objective is addressed in Chapter 2.
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1.4.2 Objective 2: Develop a characteriser for continuous op-

timisation problems

Given an understanding of existing techniques for characterising problems, the second

objective of this research was to develop a ‘problem characteriser’ that can take as input a

fitness function of a real-valued optimisation problem and produce as output a number of

characteristics or features of the problem. This objective is illustrated in Figure 1.3. The

aim was not to develop exact or complete techniques, but rather approximate measures

for partly characterising a problem, with the focus on the practical use of the techniques.

For the purposes of this study, the scope of the problems under investigation is limited

to optimisation problems that are static, bound-constrained, multivariate and continuous

(real-encoded) and it is assumed that problems are to be minimized. In general such a

problem can be defined as:

min f(x), f : Rn → R, x ∈ S ⊆ R
n

where x is an n-dimensional candidate solution vector and S defines the feasible subregion

of Rn as defined by the domains of the variables within x. For the purposes of this study,

it is assumed that S is defined by simple boundary constraints, which are the same for

all components of the solution vector; that is,

xmin ≤ xi ≤ xmax ∀x ∈ S, 1 ≤ i ≤ n

Each technique within the problem characteriser should have the properties as out-

lined below.

Properties of measures for characterising problems

1. Each technique should measure characteristics that are likely to correlate with

performance of algorithms. Without some correlation, a mapping from feature

space to performance space (as illustrated in Figure 1.1) will not be achievable.

2. For the technique to be useful on unseen problems, it is assumed that there is no

information on the nature of the problem beforehand other than the fitness function

and the domains of the variables of the problem. For example, a technique that

requires knowledge of the global optima would not be appropriate.
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Figure 1.3: One of the aims of the project is to develop a “Problem Characteriser”: software

that can take as input a real-encoded fitness function and produce as output a number of

approximate characteristics of fitness landscapes.

3. Each technique should be analytical and result in numerical output values to fa-

cilitate data mining of generated data.

4. The computational work required in executing the technique should be signifi-

cantly less than the computational work required to solve the problem using a

typical search algorithm. In other words, characterising a problem should be less

computationally intensive than solving the problem with multiple algorithms using

a trial and error approach.

Although requirement 4 above states that the numerical effort of probing and charac-

terising a problem in multiple ways should be significantly less than the numerical effort

in using a trial and error approach with multiple algorithms, one could argue that this

is not an essential feature. A trial and error approach to solving an unknown problem

has no guarantee of producing a good solution to the problem. On the other hand, char-

acterising a problem should lead to a deeper understanding of the problem and better

choices of algorithms and therefore have an increased chance of producing a solution of

higher quality than the uninformed application of multiple search algorithms.

Sub-objective 2.1: Adapting existing techniques to develop new measures

To meet the objective of developing a characteriser for continuous optimisation problems,

a sub-objective was to investigate whether existing techniques could be adapted to either

the context of continuous problems, or to meet the required properties of measures
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described above. Chapter 4 and 5 propose a number of adaptations to existing techniques

and conduct preliminary investigations into the suitability of the proposed measures.

Sub-objective 2.2: Proposing new techniques

A further sub-objective was to propose new measures for problem features not previ-

ously considered in literature. Chapter 4 proposes new techniques for characterising

the gradients of problems and Chapter 5 proposes a new technique for quantifying the

unpredictability of fitness-improving solution updates.

1.4.3 Objective 3: Develop prediction models for PSO perfor-

mance

Given a set of benchmark problems and a number of characteristics of those benchmarks,

the benchmarks could then be solved using different PSO algorithms to produce perfor-

mance metrics. The objective was to use data mining to develop prediction models based

on this data. The resulting models could then be used to predict the performance of a

given PSO algorithm on a new problem to decide whether the PSO algorithm would be

a suitable approach to solving the problem or not. In addition, the models could be used

to highlight what makes a problem difficult or easy for particular PSO algorithms.

Sub-objective 3.1: Failure prediction models for PSO

As a first step to solving main objective 3, the aim was to see if models could be developed

to predict whether a particular PSO algorithm would fail or succeed to solve a particular

problem.

Sub-objective 3.2: Performance prediction models for PSO

There are different levels of performance of algorithms for solving problems. An algo-

rithm may fail outright to find a reasonable solution in a reasonable time even when the

algorithm is tried many times, it may find a reasonable solution some of the time, or it

may find a reasonable solution every time it is tried. How quickly an algorithm finds

a solution is also a consideration. The second sub-objective was to see whether models
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could be developed to predict these different levels of success or outright failure of a

particular PSO algorithm in solving a particular problem.

1.5 Contributions

The main contributions of this research are as follows:

1. A comprehensive survey of fitness landscape analysis techniques has been published

[90] and appears in this thesis in Chapter 2. The survey highlights features of

proposed techniques that are important for practical implementation and includes

a new categorisation called the level of search independence. From the survey,

adaptations of existing techniques are described as possible ways forward.

2. Two new normalised performance metrics are proposed called QMetric, for quanti-

fying how close an algorithm came to finding an optimal solution to within a fixed

accuracy level, and SSpeed, for quantifying how fast an algorithm was able to find

the optimal solution. These measures are normalised to the range [0,1] and can be

used as an absolute measure of performance for comparing any problem/algorithm

combination with any other problem/algorithm combination. These metrics have

been published as part of a chapter of a book on fitness landscapes [91].

3. A new algorithm for random walks in multidimensional continuous spaces has been

developed, called a progressive random walk algorithm, described in Section 4.2.2.

It is shown that this walk provides better coverage of a search space than a simple

random walk algorithm. This approach is used to sample spaces when information

on the neighbourhood structure is required and is used as the basis of measures of

ruggedness and gradients described in Chapter 4.

4. An existing information theoretic technique for analysing the ruggedness of a fit-

ness landscape with respect to neutrality [170, 171, 172] was adapted to work in

continuous landscapes and to output a single measure of ruggedness. This pro-

posed single measure of ruggedness was published as a conference paper [87] and is

described in this thesis in Section 4.4.4. It is shown in Section 4.7 that the proposed
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ruggedness measure, when used with a fairly large step bound (10% of the problem

domain) has a strong correlation with the performance of a traditional global best

(gbest) PSO algorithm for a number of benchmarks in higher dimensions (15 and

30 dimensions).

5. A computationally inexpensive technique for approximating gradients in multidi-

mensional space has been developed, based on a variation of the progressive random

walk, called a Manhattan progressive random walk. The technique is described in

a conference paper [88] and it is shown in another paper that the measure can

be used as a part-predictor of PSO failure for four different variations of the PSO

algorithm [89]. The gradient estimation technique is described in Section 4.6 of

this thesis.

6. Fitness clouds [173], an existing technique for visualising evolvability of genetic

operators for discrete problems, has been adapted to visualise searchability of PSO

updates for real-values problems (described in Section 5.3). Three new measures

based on fitness clouds have been proposed for characterising problems with respect

to cognitive and social PSO updates and the unpredictability of both updates. It is

shown in Section 5.5 that the cognitive update and the unpredictability measures

have a strong correlation to the performance of a traditional gbest PSO algorithm

on a range of benchmark problems.

7. Negative slope coefficient (NSC) [162, 164], an existing measure of problem hard-

ness based on fitness clouds, has been applied to fitness clouds for visualising the

searchability of PSO updates (as described in point 6 above). It is shown in Section

5.4 that the NSC measure produces unpredictable results and does not show value

as a measure of the ability of PSO updates to improve fitness. Possible reasons for

this are investigated in Section 5.4.4.

8. Decision tree models have been produced for predicting failure for different vari-

ations on the PSO algorithm based on fitness landscape metrics. Based on a

dataset of 24 benchmark functions generating 116 problem instances with differ-

ent dimensions, decision trees were induced on 2/3 of the data and were tested
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with the remaining 1/3 of the data. Training and testing accuracies of over 90%

were achieved for the traditional gbest PSO, cognitive PSO, local best PSO, asyn-

chronous gbest PSO and modified barebones PSO algorithms. These models are

not only useful as predictors of algorithm failure, but also provide insight into the

algorithms themselves, especially when expressed as fuzzy rules in terms of fitness

landscape features. This contribution is described in Chapter 6 of the thesis.

1.6 Thesis outline

The remaining chapters of this thesis are as follows:

• Chapter 2 provides a background to the analysis of fitness landscapes, includ-

ing a summary of the kinds of features of fitness functions and landscapes that

distinguish problems from each other, a survey of techniques for analysing fitness

landscape, some possible ways forward, and a summary of related work on under-

standing the link between problems and algorithms.

• Chapter 3 describes a number of benchmark problems for real-valued optimisa-

tion, describes the variations on the PSO algorithms that are used in this study

and proposes a number of metrics for quantifying the performance of algorithms

on problems.

• Chapter 4 investigates a number of possible approaches to quantifying the fitness

landscape features of ruggedness, presence of funnels and gradients.

• Chapter 5 investigates a number of possible approaches to measuring searchability

(or evolvability as it is better known), both in general terms and in terms of PSO

updates.

• Chapter 6 uses the proposed fitness landscape measures from Chapters 4 and 5

with the performance measures proposed in Chapter 3 to investigate the possibil-

ity of predicting algorithm performance based on approximate fitness landscape

features.
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• Chapter 7 concludes the thesis by summarising the main points and providing

suggestions for future work.

The appendices include the following:

• Appendix A defines 24 benchmark functions used in the study and provides

graphical plots of the functions.

• Appendix B describes the ten proposed fitness landscape measures used in the

study.

• Appendix C provides the training and testing datasets used as the basis for the

final decision tree induction phase of the study.

• Appendix D provides a list of the important acronyms used in the thesis with

their definitions.

• Appendix E lists and defines the mathematical symbols used in this work, cate-

gorised according to the relevant chapter in which they appear.

• Appendix F lists the publications derived from this work.

An index including some of the important terms is provided starting on page 242 of

the text.
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Chapter 2

Background: Analysis of Fitness

Landscapes

2.1 Introduction

This chapter provides a background to the analysis of fitness landscapes and has been

published as an article in Information Sciences [90].

The aims of the chapter are to, firstly, discuss characteristics of problems that could

potentially make them hard to solve and, secondly, to provide an overview of existing

techniques for analysing these problem characteristics. The chapter then discusses ways

in which existing techniques can be adapted to be more practically useful. In addition, a

number of recent advances to understanding the link between problems and algorithms

are discussed.

The outline of the chapter is as follows: Section 2.2 starts with an overview of different

views of fitness landscapes. Although the term ‘fitness landscape’ is used frequently

in literature, it can have different meanings in different contexts and some of these

interpretations are described. Section 2.3 provides a summary of different features of

optimisation problems that could potentially affect the difficulty in solving the problem.

In Section 2.4 a survey is provided of existing techniques to characterise optimisation

problems from the 1980s to the present. Important features are highlighted such as the

focus, the level of search independence, assumptions on which the technique is based,

17
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and the result produced by the technique. Section 2.5 provides suggestions on possible

ways in which research in this area can move forward. Finally, Section 2.6 describes

related work in understanding the link between problem understanding and algorithm

performance.

2.2 Fitness landscapes

For most optimisation problems there is a fitness function1 that reflects the objectives of

the problem to be solved. (Problems that do not have a readily available fitness function

are excluded from this study.) Potential solutions to a problem are compared based on

their fitness values, which are determined using the fitness function. In some problem

cases, the function is expressed so that the aim is to find the solution that maximises

the fitness value and in other cases, the aim is to find the solution that minimises the

fitness value.

There are many ways of analysing fitness functions, such as epistasis variance [27]

and the density of states [136] and these are discussed further in Section 2.4. However,

more interesting analyses can be performed, when a fitness function is extended into a

fitness landscape, by introducing some form of topology onto the search space. Although

the term ‘fitness landscape’ with its associated notions of ‘peaks’ and ‘valleys’ is widely

used in many contexts and in academic writing, there is often a lack of understanding of

what precisely is meant by the term. This section summarises some of the contributions

towards understanding and formalising fitness landscapes.

2.2.1 Wright’s fitness landscape

Wright [182] introduced the notion of a fitness landscape (which he called a surface of

selective values) for genetic evolution back in 1932, with further invited commentary

on his seminal paper published 56 years later [183]. He proposed an abstract space

where genotypes are packed, side by side, in a two-dimensional space in such a way

1Note that this study does not restrict the notion of fitness and fitness function to the meaning of

fitness in the evolutionary sense, but rather to the broader notion of an objective and objective function

to be optimised by an algorithm.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2. Background: Analysis of Fitness Landscapes 19

that each is surrounded by genotypes that differ by only one gene replacement. He

used contour lines to indicate fitness values and in this way illustrated the peaks and

valleys in a two dimensional diagram, as shown in Figure 2.1. Notice that the ‘axes’

of the diagram are not real axes, as there are no defined units or labels. In his own

words, such a representation “is useless for mathematical purposes” [183]. Wright’s aim

with this representation was to provide an intuitive picture of evolutionary processes

taking place in high dimensional space and not to provide any kind of formal model for

analysis. Despite a lack of formal definition, this same basic fitness landscape metaphor

with its associated ‘valleys’, ‘peaks’, ‘ridges’ and ‘plateaus’ has been used extensively

within multiple disciplines to understand and explain complex systems.

2.2.2 Fitness landscape formalisations

An alternative, more formal view of a fitness landscape particular to search algorithms,

is to define a landscape as a directed graph, where nodes correspond to solutions. Two

nodes in the fitness landscape graph are neighbours if one solution can be reached from

the other through a single step of a search operator (such as mutation or crossover in

the case of a genetic algorithm). Jones [67] introduced such a model and argued for the

view of “one operator, one landscape”, where each search operator defines its own fitness

landscape. In his model, the fitness value (or ‘height’ in the fitness landscape metaphor)

is indicated as a label attached to each node in the graph and probabilities of the step

occurring are attached to edges of the graph.

In Jones’ [67] study of fitness landscapes it is assumed that the landscape is discrete

(or combinatorial). Stadler [148] provides a more general view of landscapes as consisting

of three elements:

1. A set X of configurations (solutions to the problem),

2. a notion X of neighbourhood, nearness, distance, or accessibility on X, and

3. a fitness function f : X → R.

This description can be used in the case of both discrete and continuous landscapes. For

example, in a discrete landscape, X could be described as a notion of neighbourhood
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Figure 2.1: Adaptation of Wright’s (1932) fitness landscape, which he called a two-dimensional

‘surface of selective values’.

specified using a crossover operator, or using a more generic notion of neighbourhood,

such as Hamming distance. For a continuous landscape, X can be described in terms

of a distance metric, such as Euclidean distance or using some gradient-based search

strategy for determining accessibility to a continuous subset of configurations.

In many studies, the term fitness landscape is used to refer to a problem encoding

in combination with a fitness function (elements 1 and 3 in Stadler’s description above).

In these cases it is usually assumed that the notion of neighbourhood/distance is based

on some ‘natural’ notion of order/distance. For example, in binary-encoded problems,

Hamming distance is often assumed as the neighbourhood relationship: any two points

are neighbours if their Hamming distance is 1. In real-encoded problems, Euclidean

distance is usually assumed as the metric on which the fitness landscape is defined. In

some representations, it is not as obvious to define neighbourhood. For example, when

solutions are in the form of trees, there is no obvious way of deciding when two tree

solutions are neighbours. In these cases, neighbourhood is often defined in terms of a

particular search operator/strategy: two solutions are regarded as neighbours if it is

possible to move from one to the other via a single application of the search operator.
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2.2.3 One function, many landscapes

Because a fitness landscape is defined using a particular notion of neighbourhood/distance,

the same fitness function can generate many different fitness landscapes. For example,

in Wright’s [182] fitness landscape, a genotype is a neighbour of another genotype if

they differ by a single gene. If instead, neighbourhood was defined based on a k-bit-flip

mutation operator, a very different fitness landscape may result. The number of different

possible fitness landscapes is dependent on the fitness distribution [13]. A constant fit-

ness function, for example, has only one possible fitness landscape. The fitness landscape

is therefore not a feature of the problem per se, but rather a feature of the encoding of

the problem, the fitness function, and of the notion of neighbourhood/distance used to

define the landscape.

In the same way, features such as ruggedness, deception or neutrality are not features

of a fitness function, but rather features of a fitness landscape. Consider for example the

Step benchmark function in D dimensions:

f(x) =
D
∑

i=1

(⌊xi + 0.5⌋)2 . (2.1)

The same function in one dimension is plotted in Figure 2.2 at different resolutions, ren-

dering a seemingly smooth landscape in the case of Figure 2.2(a) and a landscape with

high neutrality (many flat sections) in Figure 2.2(b). Similarly, a search process that

samples the Step function by taking bigger step sizes may result in a smooth landscape,

whereas a search process that samples the Step function by taking smaller steps may

result in a landscape with high neutrality. Therefore, viewing a continuous problem at

different levels of granularity, or exploring a multi-dimensional space in different ways,

can lead to very different fitness landscapes and hence potentially different views on fea-

tures such as ruggedness, deception or neutrality. Landscape theory serves as a reminder

that other possibilities may exist, beyond the obvious ones, for defining landscapes and

exploring and analysing optimisation problems.
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Figure 2.2: One-dimensional Step benchmark function viewed in at different resolutions ren-

dering two different fitness landscapes.

2.3 Features of fitness functions and landscapes

This section summarises a number of features of optimisation problems that could in-

fluence the ability of algorithms to solve the problems. The features listed are not in

any way exhaustive. There may be features not known or not mentioned here, which

could influence the behaviour of optimisation algorithms. The purpose is to summarise

those features that are commonly discussed in literature. Measuring or quantifying these

features is not always straight-forward and this is discussed further in Section 2.4. The

first three features (degree of variable interdependency, noise and fitness distribution)

are features of the fitness function alone (without any defined fitness landscape). The

remaining features are based on fitness landscapes. Although divided into separate sub-

sections, many of these features are related to one another.

2.3.1 Degree of variable interdependency (including epistasis)

In genetics, epistasis refers to the degree of dependency between genes in a chromosome

for expression [27]. If genes contribute independently to the overall fitness of the chromo-

some then the system has low epistasis. On the other hand, if the fitness contributions of

genes depends on the values of the other genes, the system has high epistasis. In general,

for optimisation problems, this characteristic can be referred to as the degree of interde-

pendency between variables (also known as non-linear separability). When variables in
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an optimisation problem are dependent on each other, this means that it is impossible

to tune one variable to find the optimal value independently of the others. For example,

if different variables in a mathematical expression of a fitness function are separated by

addition, then the variables contribute independently to the fitness. However, if differ-

ent variables are combined in a term through multiplication, then these variables must

cooperate in order to contribute to fitness; if either variable has a low value, then the

product may be low even if the other variable has a high value. It is seldom as simple

as in this example. For complex problems, the interactions between variables can take

many different forms. Studies have shown that linearly separable functions are easier

for genetic algorithms to solve than non-linearly separable functions [26, 137]. Naudts

and Naudts [108] argue that it is the type of interaction (functions with first and second

order dependencies) rather than the amount of higher order interaction that influences

the difficulty of the problem for search algorithms. Caamaño et al. [20] propose dividing

problems into three separability classes: linearly separable, non-linearly separable and

non-separable functions. Measures for quantifying epistasis include epistasis variance

[27] (Technique 5 in the survey), the site-wise optimisation measure [108], and bit-wise

epistasis [36] (Technique 12 in the survey).

2.3.2 Noise

Noisy objective functions are common in many real-world optimisation problems. Levi-

tan and Kauffman [79] studied the effect of noise on hill-climbing algorithms and found

that although certain types and levels of noise had a negative effect on the ability of the

algorithm to search well, small amounts of noise could help the algorithm to perform

better than in the absence of noise. It is a common belief that evolutionary algorithms

work well in noisy environments, but Beyer [10] has shown that this is not necessarily

the case. A common way of reducing the effects of noise during search is to resample

data points and average over a number of fitness evaluations [126]. Similarly, to detect

noise in a fitness function, data points can be resampled. Some measure of difference

(such as variance or standard deviation) could then be used to quantify the level of noise

in multiple sampled data points.
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2.3.3 Fitness distribution

A statistical analysis of fitness function values can provide some information on the

problem at hand. For example, the distribution of fitness values (the frequency with

which each fitness value occurs) can be used to provide a profile of the problem, as is done

with the density of states technique [136] (Technique 9 in the survey) and Borenstein

and Poli’s analysis of the properties of a problem’s fitness distribution [13]. In most

cases the fitness distribution of a problem cannot be exactly determined and has to be

estimated, based on some sampling and grouping strategy.

2.3.4 Fitness distribution in search space

Given a fitness landscape of a problem, a simple way of characterising the problem is to

measure, in some way, how the fitness values are distributed across the search space. This

differs from simple fitness value statistics, because the position of fitness values within

the search space is taken into account. Techniques for quantifying fitness distribution

layout in binary landscapes include the HDIL (Hamming Distance In a Level) and HDBL

(Hamming Distance Between a Level) measures [8] (Technique 13 in the survey).

2.3.5 Modality and the landscape structure of optima

Unimodal functions have only one local optimum, which is also the global optimum.

Multimodal functions have more than one local optimum. Horn and Goldberg [63]

define a local optimum as a point or region (a set of interconnected points with equal

fitness) with fitness function value greater than those of all its nearest neighbours. This

definition would consider flat plateaus and ridges as single optima. Local optima are

obstacles for local search algorithms in finding the global optimum because there is a

lack of information in the neighbourhood to direct search out of the local optima.

Other than the number of optima, the distribution of basin sizes and the depth (or

height) of the basins is a factor that may be more important in determining landscape

difficulty [69]. Local optima with relatively small basins of attraction are called isolated.

An extreme example of an isolated landscape could be a needle-in-a-haystack binary en-

coded maximisation problem, where the fitness value is 1 for one arbitrary bit string and
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0 elsewhere. A less extreme example would be a landscape where the local optima have

large basins of attraction and the global optima has a smaller basin of attraction. Rana

[125] studied the effect of multimodality on GA performance and found that although

the number of local optima did not always affect GA behaviour, highly fit local optima,

particularly with large basins of attraction, did present a problem for GA search. Kinn-

ear [76] found that in the case of genetic programming, landscape basin depths showed

a good correlation with problem difficulty over a range of problems.

Techniques related to modality and landscape structure of optima include: Garnier

and Kallel’s [41] technique for estimating the number and distribution of local optima

(extended for real-valued problems by Caamaño et al. [19]) and Merz’s [94] escape rate

measure for estimating the sizes of basins of local optima in the fitness landscapes of

combinatorial problems. In addition, Ochoa et al. [112] have proposed a technique

for compressing the essential landscape features for combinatorial optimisation prob-

lems into a graph called a local optima network. This graph-based model serves as a

characterisation of the structure of a landscape and the distribution of local optima.

2.3.6 Information to guide search and deception

Some problems result in fitness landscapes that are structured in such a way that they

guide search algorithms more easily towards the global optima. Both the quantity and

quality of information available is important [14]. In other words, for an algorithm to

perform well, the fitness landscape should not only provide sufficient information to

guide the search, but the information should also guide the search in the right direction.

The presence of misleading information is sometimes known as deception. Deception

is clearly related to the landscape structure of optima. The positions of sub-optima in

relation to the global optimum and the presence of isolation will have an effect on the

level of deception. Deception only has meaning with reference to a particular search

algorithm. A problem that is deceptive to a GA would not necessarily be deceptive to a

PSO algorithm. Measures of deception include GA-deception [29, 45, 46] (Technique 1

in the survey) and the deceptiveness coefficient [66]. Xin et al. [184] studied the notion

of deception for PSOs and concluded that the relative size of basins of attraction (local

versus global) was the most important factor related to deception for PSOs.
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2.3.7 Global landscape structure (funnels)

A funnel in a landscape is a global basin shape that consists of clustered local optima

[151]. Figure 2.3 shows two one-dimensional minimisation benchmark problems. Figure

2.3(a) shows the Rastrigin function as an example of a single-funnel landscape. Although

Rastrigin is clearly multimodal, there is a distinct underlying unimodal structure, indi-

cating the presence of a single funnel. Figure 2.3(b) illustrates the Schwefel 2.26 function,

which is an example of a multi-funnel landscape. The exact number of funnels in Schwe-

fel 2.26 would depend on the precise definition of a funnel. Multi-funnel landscapes can

present problems for search, particularly in the case of algorithms that rely on local in-

formation, as they may become trapped in sub-optimal funnels [151, 184]. A technique

for estimating the presence of funnels in a fitness landscape is Lunacek and Whitley’s

dispersion metric [84] (Technique 19 in the survey).

2.3.8 Ruggedness and smoothness

Ruggedness refers to the number and distribution of local optima. It therefore has to

do with the level of variation in fitness values in a fitness landscape. If neighbouring

points have very different fitness values, then the result is a rugged landscape. The

opposite of a very rugged landscape would be a landscape with a single large basin/peak

of attraction or a flat landscape with no features. In general, search algorithms struggle

to optimise very rugged landscapes, because the algorithms can get trapped in local

optima. Kauffman [70, 72] introduced a model of binary fitness landscapes with tuneable

ruggedness, called NK landscapes, where the value of N specifies the number of variables

and K can be set to determine the level of ruggedness. The NK landscapes have been

used extensively in studies of ruggedness and the link to problem difficulty. Techniques

for measuring ruggedness include adaptive walks [71], autocorrelation measures [92, 177]

(Techniques 2 and 3 in the survey), correlation length [80] (Technique 4 in the survey),

entropic measures [171, 172] (Technique 10 in the survey) and amplitude spectra [62]

(Technique 11 in the survey).

A smooth landscape is one where neighbouring points have nearly the same fitness

value [72]. Smoothness also relates to the size of the basins of attraction. A landscape
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Figure 2.3: Two sample minimisation benchmark problem landscapes with different funnel

characteristics.

is smooth if the number of optima is low and the optima have large basins of attraction

[172]. A technique for quantifying landscape smoothness is the second entropic measure

by Vassilev et al. [171, 172] (Technique 10 in the survey).

2.3.9 Neutrality

Neutrality is present in a landscape when neighbouring points have equal fitness values.

A discrete landscape is regarded as neutral if a substantial fraction of adjacent pairs of

solutions are neutral [131]. A neutral landscape therefore does not imply a flat landscape

(where the function is constant), but rather the presence of successive neutrality, which

can manifest in features such as plateaus and ridges in a landscape. Neutrality can also

feature in continuous fitness landscapes as regions of equal or nearly equal fitness (for

an investigation into this topic of neutrality in continuous domains, see [64]). Neutrality

is a feature which is often ignored, but can have a profound effect on the number and

distribution of local optima [37] and on the success of search algorithms [6, 114, 142].

During search when a population moves through a neutral portion of a fitness landscape,

this could be misinterpreted as convergence on a local optimum. Since the fitness values

are not changing, it may seem as if the population is stagnating, when in fact the

population is moving across a neutral area. In a study of neutral landscapes Beaudoin

et al. [7] found that neutrality had a smoothing effect on problem difficulty in that
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adding neutrality to a deceptive landscape made the problem easier, whereas adding

neutrality to an easy landscape made it harder (as measured by the fitness distance

correlation difficulty metric [68]). Artificial test-beds for studying the effect of neutrality

on search algorithms include the NKp family of binary landscapes [6] and the quantised

classic functions [114] for continuous landscapes. Techniques that measure landscape

neutrality include neutral walks [131] (Technique 14 in the survey) and neutral network

analysis [165, 167] (Technique 20 in the survey). Verel et al. [175] show how local optima

networks [112] can be extended to analyse the structure of neutral combinatorial fitness

landscapes, but this approach currently requires a full enumeration of the search space.

2.3.10 Symmetry

Symmetry in a fitness function or landscape leads to multiple points with the same

fitness values, so in some way partitions the search space into large equivalence classes

[178]. There are many different forms of symmetry. For example, if a fitness landscape

is symmetrical with respect to one of the axes this is known as axial bias. A fitness

landscape is symmetrical with respect to an optimum if the fitness value of all points a

set distance away from the optimum is the same regardless of the direction of the point.

Some forms of symmetry are a feature of the fitness function alone. Van Hoyweghen

and Naudts [161] define simple types of symmetry for discrete representations, such as

symmetry on string positions (where a permutation on string positions results in no

change to the fitness) and symmetry on the alphabet (e.g. spin-flip symmetry, where

a binary string and the binary complement have the same fitness value). There are

conflicting studies on the effect of symmetry on search. Whitley et al. [178] note several

research findings where the presence of symmetry in functions results in failure for certain

genetic algorithms. Naudts and Naudts [108] also show that the presence of symmetry

can have a negative effect on the ability of a simple GA to converge. This could be due to

the phenomenon where two dissimilar good (symmetrical) solutions, crossed over, result

in inferior children. Other studies have shown that genetic algorithms show improved

performance on landscapes with axial biases [26] and that a rotation of the coordinate

system for such problems (resulting in the loss of symmetry) causes severe algorithmic

performance loss [137].
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2.3.11 Evolvability/Searchability

Evolvability can be loosely defined as the capacity to evolve [158]. Altenberg [2] describes

evolvability with particular reference to genetic algorithms as the ability of a population

to produce offspring that are fitter than their parents. Although the notion of evolvability

is related to the algorithm’s ability to evolve the population and is therefore primarily

a performance measure of an algorithm, it can also be viewed as a characteristic of a

fitness landscape in terms of a particular search operator/strategy. The evolvability of a

fitness landscape is defined in this study as the ability of a given search process to move

to a place in the landscape of better fitness and is henceforth referred to as searchability.

Note that this definition broadens the scope of evolvability beyond evolutionary based

algorithms to encompass any search process. Searchability is a characteristic of problems

that only has meaning with reference to a particular search strategy. A problem that has

high searchability in terms of one algorithm, may exhibit low searchability with reference

to another algorithm. Fitness landscape analysis techniques that focus on evolvability

include fitness evolvability portraits [142] (Technique 15 in the survey), fitness clouds

[173] (Technique 16 in the survey), negative slope coefficient [162, 164] (Technique 17 in

the survey), fitness-probability clouds [83] (Technique 21 in the survey) and accumulated

escape probability [83] (Technique 22 in the survey).

2.3.12 Discussion

In the subsections above, a number of characteristics of fitness functions and landscapes

were discussed. Many of these characteristics are related to each other. For example,

modality and the structure of optima are clearly related to ruggedness, smoothness and

neutrality of the landscape. Also, if a function has a high degree of variable interdepen-

dency, then this will probably affect the ruggedness of an associated landscape. Vassilev

et al. [172] claim that the ruggedness, smoothness and neutrality alone can fully char-

acterise a fitness landscape. Although this may be true, there could still be value in

viewing a problem through a deception ‘lens’, or through a funnel ‘lens’ or through any

other viewpoint that could shed light on the nature of the problem to be solved. The aim

of this study is to work with a number of these characteristics together to form a more
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comprehensive view of the problem rather than limiting the focus to one viewpoint.

2.4 Measures and techniques for analysing fitness

landscapes

For low dimensional problems, the associated fitness landscape could be visualised. A

graphical representation could then give some indication of the features of the problem to

be solved. Two problem landscapes could be compared in terms of ruggedness, deception,

neutrality, etc. simply through visual inspection. In reality, however, problems are too

complex to be visualised, so some other way of analysing problem characteristics is

needed. The ideal would be to have a single numerical measure of difficulty for every

problem. Given the issue with problem ‘hardness’ as described in Section 2.1, it is

unrealistic to find such a single measure. Instead, it is proposed that problems should be

characterised through multiple viewpoints and that this hopefully will provide sufficient

insight into the problem so as to facilitate informed decisions regarding the approach

used to solve the problem.

This section provides an overview of techniques used to characterise optimisation

problems from the 1980s to the present. The techniques are summarised in Table 2.1,

sorted in chronological order. Before presenting the table, the kinds of measures not

included in this survey are described.

2.4.1 Types of measures not included in this survey

There are many reasons for characterising optimisation problems. Some measures are

performed during execution of algorithms with the aim of adapting the algorithms on the

fly. In other cases problems are studied and characterised to try to explain unexpected

algorithmic behaviour in retrospect. In yet other cases the motivation is to divide prob-

lems into theoretical complexity classes. Jansen [65] distinguishes between two types of

classifications of fitness functions: descriptive and analytical. A descriptive classifica-

tion is one where classes of fitness functions are defined with some common property,

whereas an analytical classification is a technique that takes a fitness function and pro-
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duces a classifying attribute as output. For example, Naudts and Kallel [107] provide

a precise definition for the class of site-wise optimisable fitness functions (a descriptive

classification) and also define the site-wise optimisation measure as a measure of epistasis

(an analytical classification). All techniques for classifying problems considered in this

study are analytical. The aim is to obtain a priori information on the problem to help

guide the choice of appropriate (or possibly not inappropriate) algorithms to solve the

problem, in a less computationally-intensive way than actually solving the problem. In

this section, three types of measures not included in this study are discussed. These are

termed theoretical measures, dynamic measures and retrospective measures.

Theoretical measures

There are some estimators of problem complexity or difficulty that are theoretical in

nature. Such measures, which cannot be practically implemented, are not discussed in

this overview. An example of this is Kolmogorov complexity (KC). KC, also known

as algorithmic information theory [49], is a measure of an object that relates to the

complexity of the computer program required to produce that object and then halt. A

discrete fitness function defined over a finite space can be described by a single binary

string consisting of all possible output values of the function. The KC of this string is

expected to capture the difficulty of the function [16]. Although this approach to using

KC to quantify function complexity has been used extensively in theoretical studies and

proofs, particularly in relation to the no-free-lunch theorems for search/optimisation, the

KC of a problem cannot be computed [16], and is therefore not studied further.

Dynamic measures

Dynamic measures are those that are measured during execution of an optimisation

algorithm and are typically used as a basis for adapting the search algorithm on the fly.

Examples of such measures include the following:

• The correlation coefficient by Manderick et al. [92], which measures the correlation

between two populations during execution,
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• Riopka’s average bit certainty measure [134], which is used to modify the behaviour

of a GA relative to the landscape being searched,

• Generation Rate of Better Solutions (GRBS) measure by Waeselynck et al. [176]

that monitors convergence, and

• Merz’s escape rate measure [94] performed during the run of a memetic algorithm.

Retrospective measures

There are some measures of problems that involve the actual execution of an optimisation

algorithm. By attempting to solve the problem (possibly using a number of approaches or

iterations of an algorithm), characteristics of the problem can be deduced in retrospect.

Examples of retrospective measures include the following:

• Kauffman and Levin’s adaptive walks [71]: This is a measure for estimating the

ruggedness of a landscape and involves determining the lengths of hill-climbing

walks.

• Ochoa’s consensus sequence plots [110], which involves running a GA on the prob-

lem multiple times with a decreasing mutation rate.

• Garnier and Kallel’s [41] method for estimating the number and distribution of

local optima, which involves performing a steepest ascent search from a random

sample of starting positions.

The measures considered in more detail in this study are all computed a priori and

although some measures are based on theories applicable to specific algorithms or on

particular search operators, the purpose is to obtain information on the problem without

actually executing a particular search algorithm.

2.4.2 Introduction to the survey

The aim of this survey was to obtain a better understanding of existing techniques for

characterising optimisation problems. For a survey of techniques to be useful, distin-

guishing characteristics needed to be highlighted, but it was not clear what these dis-
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tinguishing characteristics should be. Naudts and Kallel [107] distinguish between exact

and approximate measures. A measure is exact if it is computed using all solutions in the

search space, whereas an approximate measure is computed using a sample of the search

space. He et al. [55] further distinguish between predictive and non-predictive measures.

They define a predictive difficulty measure as one where the algorithm’s worst-case run-

ning time is bounded by a polynomial in n (the problem size). Exact computation of

many of the difficulty measures is in general exponential with respect to the problem

size [65], so although many of the techniques were originally defined as exact measures,

they are in practice used as approximate measures. Since the aim was not to divide

techniques into classes, but rather to understand techniques to be of practical use, more

descriptive distinguishing features are highlighted. These are described and motivated

below and correspond to the attributes used in Table 2.1.

1. Technique (with unique number): The first attribute gives the name of the tech-

nique and the reference to the authors that proposed the technique. The techniques

in the table appear in chronological order by the year of the first reference to the

technique. The reason for organising the survey in this way was to facilitate an un-

derstanding of how the techniques have evolved over the last two decades. Where

a technique was adapted in different ways by subsequent studies by the same or

different authors, citations to significant complementary research on the original

technique are listed as “extensions”. The year that the technique was first intro-

duced in published form is also given.

2. Focus: The overall focus of the technique is given as the second attribute. This

refers to what is measured or predicted by the technique. To explicitly tie each

technique to the features discussed in Section 2.3, the relevant subsection discussing

the feature is stated in parentheses.

3. Search independence (abbreviated to ‘Search Indep.’ in the table to save space):

This descriptor refers to the level with which a technique is bound to a particular

search algorithm. Four categories are used:

(a) Complete: A technique for characterising a problem is regarded as having

complete search independence when the technique is based on a fitness func-
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tion alone and not on any notion of neighbourhood/nearness between solu-

tions. In other words, there is no fitness landscape involved in the technique.

(b) High: A technique is regarded as having high search independence when it is

based on some generic or neutral notion of neighbourhood/distance between

solutions, such as Hamming distance or Euclidean distance, which defines the

fitness landscape. An example of a technique with high search independence

is one which is based on a random walk through the landscape, without any

significant biased direction.

(c) Medium: A technique is regarded as having medium search independence

when the sampling or analysis is based on, and therefore biased by, some

theory or notion particular to a given search algorithm.

(d) Low: A technique is regarded as having low search independence if it is based

on a sample generated by the actual execution of an optimisation algorithm.

The survey does not include any techniques with low search independence, as

these would be classified as retrospective measures (Section 2.4.1).

4. Assumptions: Where there are significant assumptions on which the technique is

based, these are mentioned.

5. Brief summary: A brief summary of how the technique works is provided.

6. Result: There are many different forms of output produced by the techniques

outlined in this survey. For example, some result in a single numerical output

value, while others produce visual output in the form of scatterplots, graphs or

charts. The Result attribute describes the output produced by the technique.

7. Application: Where applicable, some examples of applications of the technique in

literature are provided.

8. Critique: Where significant, references are provided to literature that points out

shortcomings or problems with the technique.
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Table 2.1: Techniques for characterising fitness functions and landscapes

Technique 1: GA-deception by Goldberg [45] with extensions [29, 46], 1987.

Focus: Deception with respect to a GA (Section 2.3.6).

Search Indep.: Medium: based on genetic operators and schemata, applicable to recombinative algorithms.

Assumptions: Assumes knowledge of global optima. Assumes a binary representation.

Description: A binary fitness function is expressed as a Walsh polynomial. The Walsh coefficients are then used to calculate

schema average fitness values. A set of schema with relatively high fitness are determined and the effect of

genetic operators on the fitness of the schema are analysed.

Result: Decision on level of GA-deception (strictly deceptive, deceptive, simple, strictly simple).

Critique: Grefenstette [48] presents counterexamples of functions that are highly deceptive and easy for GAs to optimize

and functions that have no deception and are nearly impossible for GAs to optimize.

Technique 2: Autocorrelation function by Weinberger [177] with extensions [61, 92], 1990.

Focus: Ruggedness (Section 2.3.8).

Search Indep.: High: based on random walks through a binary fitness landscape.

Assumptions: Assumes a discrete landscape and that the landscape is statistically isotropic, meaning that the statistics of a

random walk on a landscape will be the same, regardless of the starting position.

Description: From a sequence of fitness values, obtained from a random walk through the fitness landscape, calculate the

correlation with the same sequence of values a small distance away. Do this for all possible landscapes.

Result: Plot of autocorrelation ρ(s) against step size s (distance between sequences being correlated). The value of ρ(s)

is in the range (−1, 1) where |ρ(s)| = 1 indicates maximal correlation and a value close to 0 indicates almost no

correlation.

Continued on Next Page. . .
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Table 2.1 – Continued

Application: Autocorrelation is perhaps the most widely used fitness landscape analysis technique. Example applications

include: travelling salesman problem [149], graph-partitioning problem [145], RNA folding [37], multidimensional

knapsack problem [153], heuristic search for hyper-heuristics [111] and the problem of learning robot soccer goal-

scoring behaviour [133].

Critique: Kinnear [76] found that in the case of genetic programming, autocorrelation was a weak indicator of difficulty.

Another criticism is that it does not consider neutrality in the landscape [37, 127, 172].

Technique 3: Correlation length by Weinberger [177] with extensions [61, 92, 146], 1990.

Focus: Ruggedness (Section 2.3.8).

Search Indep.: High: based on random walks through a binary fitness landscape.

Assumptions: As for Technique 2. Also assumes that the autocorrelation function is a decaying exponential.

Description: Using the autocorrelation function ρ(s) for step size s, calculate the correlation length using the formula:

τ = −1/ln(ρ(1)).

Result: A single value (the distance beyond which the majority of points become uncorrelated: a smaller value indicates

a more rugged landscape).

Critique: As for Technique 2.

Technique 4: Correlation length by Lipsitch [80], 1991.

Focus: Ruggedness (Section 2.3.8).

Search Indep.: High: based on random walks through a binary fitness landscape.

Assumptions: Assumes the problem has a binary representation.

Description: Given 600 random initial points in the search space, calculate the standard correlation coefficient (ci) between

the fitness of points and the fitness of each of 30 i-mutant neighbours of the points. The correlation length is

one less than the value of i at which ci first becomes non-positive.

Result: A single value (from 0 to 30, inclusive), where smaller values are indicative of a more rugged landscape.

Continued on Next Page. . .
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Table 2.1 – Continued

Technique 5: Epistasis variance by Davidor [27] with extensions [106, 109, 130], 1991.

Focus: Epistasis (Section 2.3.1).

Search Indep.: Complete: based on fitness function alone.

Assumptions: Assumes a binary representation.

Description: A measurement of epistasis is calculated based on a linear composition of a string solution from its bits. The

level of inaccuracy (the epistasis variance) of the linear decomposition of the function is used as an estimate of

the amount of non-linearity in the function.

Result: A single value (from 0 to a non-normalized positive number), where 0 indicates no dependency between genes.

Critique: Criticisms of epistasis variance are that it detects the absence rather than the presence of epistasis, requires the

use of all solutions in the problem space, is computationally intensive (O(n2) to compute the exact value [65])

and that it has limited value as a measure of GA-Hardness [65, 69, 106, 107, 129, 130].

Technique 6: Formae variance by Radcliffe and Surry [123], 1995.

Focus: Fitness variance of formae (Section 2.3.3).

Search Indep.: Medium: based on evolutionary notion of formae.

Assumptions: Assumes a discrete representation.

Description: Given a discrete fitness function and a sample of randomly generated formae (generalised schemata) at each

order, calculate the variance of fitness values for each forma order. The premise is that lower variance will

provide more exploitable information for evolutionary search algorithms.

Result: Plot of fitness variance of formae against forma order, where a plot in which variance falls more quickly is

indicative of more exploitable information.

Continued on Next Page. . .
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Table 2.1 – Continued

Technique 7: Fitness distance correlation and scatter plots by Jones and Forrest [68] with extensions [3, 67, 162], 1995.

Focus: Deception with respect to local search (Section 2.3.6).

Search Indep.: High: uses Hamming distance as basis of measure.

Assumptions: Requires knowledge of global optima. Assumes the existence of a measure of distance between solutions.

Description: Given a random sample of points in the search space, each point i generates a pair (fi, di), where fi is the fitness

of point i and di is the distance of point i to the nearest global optimum. The fitness distance correlation is

calculated as the correlation coefficient of this set of (fitness, distance) pairs.

Result: A single correlation value r (between -1 and +1, inclusive), where for maximisation problems, low values

(r ≤ −0.15) are easy, values around 0 (−0.15 < r < 0.15) are difficult and higher values (r ≥ 0.15) are

misleading. A scatter plot of fitness against distance is used when r is insufficient as a measure of the relationship

between fitness and distance.

Application: Fitness distance correlation has been widely used to study problems for different purposes including analysing

neural network error surfaces [39], investigating the effect of different representations on the multidimensional

knapsack problem [153], analysing the fitness landscape of heuristics to be used by hyper-heuristics [111], char-

acterising the CEC 2005 benchmark suite [104] and with other landscape features for predicting the performance

of covariance matrix adaptation evolution strategy (CMA-ES) algorithms [101]. Fitness distance correlation is

investigated further in Section 5.1.1 of this thesis.

Critique: A significant limitation of fitness distance correlation is that the optimal solution(s) must be known beforehand.

It is also computationally intensive to compute (O(n2) [65]) and many have shown that it is not a reliable

predictor of problem difficulty [3, 65, 106, 107, 121, 129].

Continued on Next Page. . .

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



C
h
ap
ter

2.
B
ackgrou

n
d
:
A
n
alysis

of
F
itn

ess
L
an
d
scap

es
39

Table 2.1 – Continued

Technique 8: Static-φ metric by Whitley et al. [179] with extensions [57, 125], 1995.

Focus: GA deception (Section 2.3.6).

Search Indep.: Medium: based on schemata, applicable to recombinative algorithms.

Assumptions: Requires knowledge of global optima. Restricted to binary representations.

Description: Given a binary fitness function with all hyperplane partitions, the static-φ metric calculates the degree of

consistency between a ranking of schemata within hyperplane partitions based on average fitness values and a

ranking based on the distance from the global optimum (using a form of match counting).

Result: A single value, from 0 to a positive value (could be normalized).

Technique 9: Density of states by Rosé et al. [136], 1996.

Focus: Fitness distribution (Section 2.3.3).

Search Indep.: Complete: based on fitness function alone.

Assumptions: None.

Description: Given a sample of points (the Boltzmann ensemble method of sampling was used in the original study), the

density of states quantifies the number of solutions with a given fitness value. The shape of the density of states

graph (when plotted over a range of fitness values) can serve as a classifier of fitness functions. For example,

maximisation problems with a fast decay of the density of states graph is indicative of the fast decay of the

probability of finding a better solution, so should be harder to solve [136].

Result: A plot of the number of solutions per fitness value.

Application: Examples of problems that have been studied using density of states include maximal constraint satisfaction

problems [8] and road network optimisation problems [139].

Critique: Reeves [129] criticizes the density of states measure in that it gives no information about how the fitness values

are topologically related to each other.

Continued on Next Page. . .
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Table 2.1 – Continued

Technique 10: First entropic measure (FEM) and second entropic measure (SEM) by Vassilev et al. [169, 170, 171,

172], 1997.

Focus: Ruggedness and smoothness with respect to neutrality (Section 2.3.8 and Section 2.3.9).

Search Indep.: High: based on a random walk through the fitness landscape.

Assumptions: Assumes a discrete representation.

Description: Based on a random walk, a sequence of three-point objects are generated. These objects are classified as

rugged, smooth or neutral, based on the change in fitness values between neighbouring points. The rugged-

ness/smoothness of the landscape is estimated using a measure of entropy with respect to the probability

distribution of the rugged/non-rugged elements within the sequence.

Result: A graph illustrating how ruggedness/smoothness changes with an increase in landscape neutrality. Rugged-

ness/Smoothness values are in the range [0, 1] where 1 indicates maximal ruggedness/smoothness.

Application: Example applications of FEM and SEM include analysis of the problem of learning robot soccer goal-scoring

behaviour [133] and characterisation of continuous optimisation problems sampled during the search process

[105]. FEM is investigated further in Section 4.4.1 of this thesis.

Technique 11: Amplitude Spectra by Hordijk and Stadler [62], 1998.

Focus: Ruggedness (Section 2.3.8).

Search Indep.: High: based on any notion of neighbourhood.

Assumptions: Assumes a discrete representation.

Description: Using a form of Fourier analysis, the fitness landscape is decomposed into elementary landscapes. The resulting

amplitude spectrum provides a summary of the properties of a landscape.

Result: A graph of amplitude values for different interaction orders.

Continued on Next Page. . .
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Table 2.1 – Continued

Technique 12: Bit-wise epistasis by Fonlupt et al. [36], 1998.

Focus: Epistasis (Section 2.3.1).

Search Indep.: Complete: based on fitness function alone.

Assumptions: Assumes a binary representation.

Description: For each bit position i calculate the variance of the fitness differences at that position by comparing the fitness

values of the genotypes with 0 in bit position i and 1 in bit position i, with the other bit position values staying

the same. The computation is based on a full enumeration of the search space if feasible. If not, bit-wise

epistasis is approximated on a sample of schemata.

Result: A plot of bit-wise epistasis values (in range [0, 1]) for each bit position, where a value of 0 for all bit positions

indicates no dependency between variables.

Critique: Jansen [65] shows that bit-wise epistasis is in general extremely computationally expensive and that estimates

are unpredictable.

Technique 13: HDIL and HDBL by Belaidouni and Hao [9], 2000.

Focus: Fitness distribution layout (Section 2.3.4).

Search Indep.: High: uses Hamming distance as basis of measure.

Assumptions: Assumes a binary representation.

Description: Iso-cost levels are defined (sets of solutions with the same fitness values). The HDIL (Hamming Distance In a

Level) measures the similarity of solutions within a given iso-cost level, based on the average Hamming distance

between solutions in the set corresponding to that iso-level. The HDBL (Hamming Distance Between a Level)

quantifies the distance between two iso-cost level sets C and C ′, based on the average Hamming distance required

for solutions from C to reach any solution in set C ′.

Continued on Next Page. . .

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



C
h
ap
ter

2.
B
ackgrou

n
d
:
A
n
alysis

of
F
itn

ess
L
an
d
scap

es
42

Table 2.1 – Continued

Result: A single HDIL value for each iso-cost level, where a low value indicates that solutions with the same fitness value

are clustered together in the search space and a high value that the solutions are spread out. A single HDBL

value for each pair of iso-cost levels, where a low value indicates that on average a small Hamming distance has

to be covered to move from a solution in one iso-cost level to a solution in the other iso-cost level.

Technique 14: Neutral walk by Reidys and Stadler [131], 2001.

Focus: Neutrality (Section 2.3.9).

Search Indep.: High: based on generic notion of neighbourhood.

Assumptions: Assumes a discrete representation.

Description: From a random starting position x0 in the search space, perform a neutral walk as follows: generate all neutral

neighbours of x0. Find one neutral neighbour for which the total distance from the starting point will increase

with the step. This process is continued until there are no neutral neighbours that result in the total distance

increasing.

Result: A single value (the number of steps in the neutral walk).

Technique 15: Fitness evolvability portraits by Smith et al. [142], 2002.

Focus: Evolvability (Section 2.3.11).

Search Indep.: Medium: quantifies evolvability of a solution with reference to a particular operator (mutation in the original

study).

Assumptions: Assumes a discrete representation.

Description: For all solutions in a sample, calculate the evolvability metrics (such as the expected fitness of the top Cth

percentile of offspring fitnesses). Determine the average metrics for solutions with the same (or similar) fitness

values.

Result: Plots of average evolvability metrics against fitness.

Continued on Next Page. . .
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Table 2.1 – Continued

Technique 16: Fitness cloud by Verel et al. [173] with extensions [164], 2003.

Focus: Evolvability (Section 2.3.11).

Search Indep.: Medium: illustrates evolvability with reference to a particular search operator.

Assumptions: Assumes the existence of a neighbourhood function.

Description: For every solution x in the search space S of all possible solutions, determine a neighbour x′ ∈ S based on some

search operator and plot the points (f(x), f(x′)) for every x ∈ S, where f is the fitness function.

Result: Scatterplot showing the relationship between fitness values of parents and offspring.

Application: Fitness clouds are investigated further in Section 5.1.3 of this thesis.

Critique: Lu, Li an Yao [83] show that the neighbourhood sample size has a drastic influence on the fitness cloud generated

and so argue that fitness clouds are an unreliable characterisation of evolvability.

Technique 17: Negative slope coefficient by Vanneschi et al. [162, 164] with extensions [118, 166], 2004.

Focus: Evolvability (Section 2.3.11).

Search Indep.: Medium: based on evolvability with reference to a particular search operator.

Assumptions: Assumes the existence of a neighbourhood function.

Description: Given a fitness cloud (Technique 16) partitioned into discrete bins, line segments are defined between the

centroids of adjacent bins. The negative slope coefficient is the sum of all negative slopes between segments.

Result: A single value (in the range (-∞,0], where 0 indicates an easy problem and smaller values indicate more difficult

problems).

Application: Negative slope coefficient was shown to be a reliable indicator of problem difficulty in a real world pharmaceutical

application [163]. Negative slope coefficient is investigated further in Section 5.1.4 of this thesis.

Critique: Problems with the negative slope coefficient are that the result is not normalized [162], the measure is highly

influenced by the choice of parameters (it has been shown that the NSC measure tends to zero as the minimum

number of points in a bin increases [168]) and is not always a reliable measure of problem difficulty [117, 156, 157].

Continued on Next Page. . .
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Table 2.1 – Continued

Technique 18: Information landscape hardness measure by Borenstein and Poli [14, 15] with extensions [17], 2005.

Focus: Deception in terms of difference from a landscape with perfect information for search (Section 2.3.6).

Search Indep.: High: based on a comparison to an optimal landscape, which assumes the same neighbourhood structure.

Assumptions: Requires knowledge of global optima. Assumes a discrete representation.

Description: Given a discrete problem, compute the information landscape (matrix of probabilities of superiority of every

solution with respect to every other solution). Determine an optimal information landscape, which presents

perfect information to guide search. Calculate the distance between the optimal information landscape and the

information landscape of the problem.

Result: A single value in the range [0, 1], where a value of 0 indicates no misleading information and 1 indicates maximal

misleading information (difference from the optimal information landscape).

Application: Information landscape hardness measure is investigated further in Section 5.1.2 of this thesis.

Technique 19: Dispersion metric by Lunacek and Whitley [84], 2006.

Focus: Global topology or presence of funnels (Section 2.3.7).

Search Indep.: High: requires the calculation of distances in the solution space.

Assumptions: Assumes the existence of a measure of distance between solutions.

Description: Given a sample of points below a fitness threshold: if a decrease in threshold (assuming a minimisation problem)

results in an increase in the dispersion of the points from the sample that are below the threshold, then this

indicates the presence of multiple funnels in the landscape. Dispersion is calculated as the average pairwise

distance in solution space between all points in a sample. The dispersion metric is calculated as the dispersion

of a sample of points subtracted from the dispersion of a subset of the fittest points from the same sample.

Result: A single value where smaller values (negative values) indicate a simpler global topology and larger values

(positive values) indicate the presence of funnels. The magnitude of the dispersion metric is dependent on the

scale of the distances in the search space.

Continued on Next Page. . .
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Table 2.1 – Continued

Application: Muñoz et al. [101] used dispersion metric as one of the landscape features for predicting the peformance of

CMA-ES algorithms. Dispersion metric is investigated further in Section 4.5.1 of this thesis.

Critique: Müller et al. [103] showed that dispersion metric was not always a reliable predictor of the presence of multi-

funnels in a landscape.

Technique 20: Measures on neutral networks by Vanneschi et al. [165] with extensions [167], 2006.

Focus: Neutrality (Section 2.3.9).

Search Indep.: Medium: based on a notion of neighbourhood as defined by a search operator.

Assumptions: Assumes a discrete representation.

Description: Given a discrete fitness landscape, determine the set of all neutral networks (plateaus formulated as connected

graphs of solutions with equal fitness neighbours). Measures are defined based on this set: average neutrality

ratio, average fitness gain, non-improvable and “non-worsenable” solutions ratios.

Result: Scatterplots of measures with respect to fitness values of neutral networks.

Technique 21: Fitness-probability cloud by Lu, Li and Yao [83], 2011.

Focus: Evolvability (Section 2.3.11).

Search Indep.: Medium: based on evolvability with reference to a particular search operator.

Assumptions: Restricted to problems with a discrete representation since the technique is based on the notion of an escape

rate [94], which assumes discrete steps through the search space.

Description: Using a sample of n solution points (Metropolis-Hastings sampling used in the original study) with associated

fitness values f1, . . . , fn, generate a sample set of neighbours for each point through one application of a given

search operator. Calculate the proportion Pi of neighbours with improved fitness for each fi. The fitness-

probability cloud is the set of (fi, Pi) points.

Result: A plot of (fi, Pi) pairs, where fi is a fitness value and Pi is the estimated escape probability of the sampled

point i.

Continued on Next Page. . .
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Table 2.1 – Continued

Technique 22: Accumulated escape probability by Lu, Li and Yao [83], 2011.

Focus: Evolvability (Section 2.3.11).

Search Indep.: Medium: based on evolvability with reference to a particular search operator.

Assumptions: As for Technique 21.

Description: Given a fitness-probability cloud as defined in Technique 21: fpc = (f1, P1), . . . , (fn, Pn), the accumulated escape

probability is defined as the mean of all Pi values in fpc.

Result: A single value in the range [0, 1], where a higher value indicates higher evolvability.
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2.5 Discussion of survey of fitness landscape analysis

techniques

The aim of this study was to make sense of the body of work outlined in Table 2.1 in

order to better utilise these techniques in practical ways. This section highlights what

the survey reveals: where the focus has been, where the gaps are and possible ways in

which techniques can be adapted to be more usable or relevant. The main points of the

discussion in this section are summarised as possible ways forward in Table 2.2.

2.5.1 The focus of techniques

Scanning the Focus attribute in Table 2.1 reveals how the techniques for characterising

problems have evolved over time. Studies starting in the late 1980s through to the 90s

had a strong focus on ruggedness, with some focus on other themes including deception,

epistasis and fitness variance/distribution. The late 90s saw the emergence of neutrality

as one of the new focus areas, with a number of studies highlighting the fact that there

were problems that were not rugged and yet were hard to solve and many of these had

high neutrality. The 2000s see evolvability emerge as a new focus of many techniques,

with other themes including global topology and fitness statistics.

The many different factors on which the techniques focus highlight the wide range of

features that can influence problem difficulty. Each factor is clearly important to some

degree and it opens the question: Are there characteristics which are also important, but

are missing from the list of available techniques? For example, symmetry is known to

influence problem difficulty [26, 108, 137, 178], but to the authors’ knowledge there are

no known techniques for measuring symmetry in fitness landscapes. Another example

is the degree of variable interdependency. Although there are techniques for measuring

epistasis that appear in the survey, these all only apply to discrete representations. These

and other potential factors point to possible areas for future work.

There are four techniques in Table 2.1 that focus on measuring deception, Goldberg’s

GA-deception (Technique 1), Jones and Forrest’s fitness distance correlation (Technique

7), Whitley et al.’s static-φ metric (Technique 8), and Borenstein and Poli’s information

landscape hardness measure (Technique 18). These four techniques are also the only
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Chapter 2. Background: Analysis of Fitness Landscapes 48

ones listed that require knowledge of the global optima. This is because it only makes

sense to talk of deception in reference to finding the optimal solution(s). Characterising

a problem based on deception is not useful in practice for two reasons:

• If the aim is to obtain a priori information on the problem, the global optima will

not be known.

• In many cases it may be infeasible to expect an algorithm to find a global optimum

and if a problem guides an algorithm to a reasonable solution, then this may be

sufficient.

Assuming a broader notion of success and failure than finding an optimal solution, an

alternative aim could be to measure the ease or difficulty with which a search process

will progress towards a place of better fitness. This is equivalent to a shift in focus

from optimality to searchability (or evolvability as it is more commonly known). If this

position is taken, it becomes possible to use techniques such as fitness distance correla-

tion (Technique 7) even when the global optimum is not known. The fitness distance

correlation measure was based on the premise that if the fitness function correlates well

with the distance to the optimum, then search will be easier (assuming a minimisation

problem). If the measure is changed to focus on searchability, rather than deception or

problem difficulty, and the premise is re-stated as: if the fitness function correlates well

with the distance to a position of higher fitness, then search will progress more easily,

then the technique can be used with the most fit value from a sample in place of the

optimum. For example, given an unknown problem, a random sample of solutions can

be generated and the fitness values determined. From this sample, the most fit solution

is determined and is used as the basis for the fitness distance correlation calculation of

Technique 7. The result would no longer be a measure of deception for local search, but

would instead be a measure of how easy or hard it would be for a local search algorithm

to progress to a place of better fitness. In this way, a technique for measuring deception

or problem difficulty is converted into a technique for measuring problem searchability.

This idea is pursued further in Section 5.2 where the fitness distance correlation and

information landscape hardness measures are adapted to measures of searchability.
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Table 2.2: Summary of some possible ways forward

Way forward 1: New techniques for features not covered by existing techniques.

Description: There are features that are known to influence problem difficulty,

but for which there are no known predictive measures that can be

used to obtain a priori information on the problem.

Examples: Symmetry (Section 2.3.10) and variable interdependency for con-

tinuous functions (Section 2.3.1).

Way forward 2: Shifting focus from optimality to searchability (or evolvability).

Description: Techniques which measure deception assume knowledge of the

global optima, which is not known for unseen problems. These

techniques can be converted to instead measure searchability (or

evolvability), by basing the analysis or calculation on the fittest

solution from a sample, instead of the global optimum.

Examples: This approach could apply to GA-deception (Technique 1), fitness

distance correlation (Technique 7), static-φ metric (Technique 8),

or information landscape hardness measure (Technique 18). Tech-

nique 7 and 18 are adapted in this way in Chapter 5.

Way forward 3: Generalising the notion of neighbourhood.

Description: Techniques with medium search independence can be adapted to

work with more general notions of neighbourhood and in this way

be adapted to techniques with high search independence.

Examples: Fitness cloud (Technique 16) and associated negative slope coef-

ficient (Technique 17) could be adapted to work with a generic

distance measure as a neighbourhood function.

Way forward 4: Specialising the notion of neighbourhood.

Description: Techniques with high search independence can be adapted to have

medium independence by working with more specific notions of

neighbourhood for a given search algorithm.

Continued on Next Page. . .

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2. Background: Analysis of Fitness Landscapes 50

Table 2.2 – Continued

Example: Correlation length (Technique 3), based on random walks, can be

adapted to measure ruggedness of a search path of a particular

search algorithm.

Way forward 5: Adapting techniques for different representations.

Description: Techniques that are defined for one representation (e.g. discrete)

can possibly be adapted to be used for problems with a different

representation (e.g. continuous representation).

Example: Information landscape hardness measure (Technique 18) defined for

discrete problems could be adapted for continuous problems based

on a random sample of solutions and this is investigated in Section

5.2.2.

Way forward 6: Scalarizing visual outputs.

Description: Techniques that produce plots or graphs can form the basis for new

numerical measures to facilitate automated analysis.

Examples: Density of states (Technique 9), which results in a visual plot, could

be condensed into a single measure that in some way captures the

shape of the graph.

2.5.2 Search independence

Each technique in Table 2.1 is characterised as having complete, high, or medium search

independence. Depending on the purpose and context, different kinds of techniques will

be more suitable. On the one hand, where the choice of algorithm is set, an appropriate

technique with medium search independence could be used to better understand the

given problem with reference to that algorithm. For example, assuming an evolutionary

algorithm is being used, the accumulated escape probability (Technique 22) could be used

to guide the choice of appropriate parameters for the algorithm on the given problem.

On the other hand, where the purpose is to choose an appropriate algorithm for a

given problem, techniques for characterising the problem with complete or high search

independence will be more useful.

In some cases a technique that is based on a particular search operator and therefore
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regarded as having medium search independence could be adapted to use a generic

notion of neighbourhood, so that the analysis could apply to different algorithms. For

example, the negative slope coefficient (Technique 17) is described as having medium

search independence because the neighbourhood is defined in terms of a particular search

operator (subtree mutation for genetic programming in the original study). If instead,

the neighbourhood was defined using some generic notion of distance, such as Euclidean

distance for a continuous problem, then the technique will be used with high search

independence. Conversely, a technique with high search independence can be adapted

into a technique with medium search independence. For example, the correlation length

technique (Technique 3) originally based on random walks, could be instead based on

the trajectory of a particle within a PSO swarm. In this way, the technique would be

used to measure ruggedness from the particular viewpoint of a PSO search process.

2.5.3 Further proposed work

Many of the techniques outlined in the survey assume the fitness function (f) is a map-

ping from the binary space to real space (f : {0, 1}n → R), or from some discrete al-

phabet to real space. In some cases this is a restriction, because there is no obvious

way of using the technique for other representations, such as continuous representations

(where f : Rn → R). In other cases, although the technique is described in terms of

one representation, this is not necessarily a restriction. For example, the information

landscape hardness measure (Technique 18) is defined for discrete representations and

involves constructing a matrix of fitness superiority values of all solutions with respect

to all other solutions. This approach could be adapted to a continuous representation

by using a random sample of solutions. Without knowledge of the global optimum the

technique would also have to be adapted in the way described in Way forward 2 of Table

2.2. This is investigated further in Section 5.2.2 of this thesis.

The Result attribute of Table 2.1 also presents opportunities for further work. Some

of the techniques produce plots or graphs as results. While visual output is useful for

human analysis, numerical output is more useful for facilitating automated analysis. An

example of a numerical measure that is based on an existing technique is Vanneschi

et al.’s negative slope coefficient (Technique 17), which is a numerical output measure
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based on Verel et al.’s fitness cloud scatterplot (Technique 16). In Section 4.4 a single

measure of ruggedness is proposed based on the first entropic measure output graph by

Vassilev et al. (Technique 10).

In similar ways, other measures with non-numerical output could form the basis of

new numerical measures. For example, the result of the density of states technique

(Technique 9) is a plot of the number of solutions against fitness. The tail end of the

graph closer to optimal fitness values is the more significant part in terms of assessing the

difficulty for search. A possible single measure of fitness distribution could in some way

quantify the proportion of solutions at better fitness values in contrast to the number of

solutions at other less fit fitness values.

2.6 The link between problems and algorithms

Other than developing new techniques or adapting existing techniques for fitness land-

scape analysis, there is also further research required in understanding the link between

problem characteristics and algorithm performance. Although there has been exten-

sive research into the development of new algorithms for solving optimisation problems,

there has been relatively little focus on understanding how these new algorithms behave

with respect to particular problems. When a publication introduces a new algorithm or

variation on an existing algorithm, the approach is typically to demonstrate empirically

that the algorithm out-performs other algorithms on a number of selected benchmark

problems. The proposers of a new algorithm will usually neglect to provide any analysis

of problems on which the proposed algorithm will perform poorly and why.

There have been some recent studies attempting to address this gap in understand-

ing of algorithm behaviour on problems. These include: analysing the link between

known problem features (such as modality and separability) and algorithm performance

[18]; analysing which problems are hard for particular algorithms [23, 56, 113]; analysing

the correlation between problem difficulty measures and hybrid evolutionary algorithms

[115]; analysing problem attraction basins to understand the behaviour of differential

evolution and covariance matrix adaptation algorithms [19]; and analysing which prob-

lems require smaller population sizes in evolutionary algorithms [24]. An interesting
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recent approach to understanding algorithms and their behaviour on problems, pro-

posed by Morgan and Gallagher [100], is to generate two dimensional problem instances

that maximise the performance difference between two algorithms. The problems can

then be visualised to try to better understand algorithm behaviour.

In addition, a number of studies have used problem characteristics to guide algorithm

choices. Examples include: the use of correlation length and fitness distance correlation

to design memetic algorithms [95]; the use of a ruggedness coefficient with dominance

to guide the choice of algorithm for the quadratic assignment problem [4]; and using the

negative slope coefficient to choose the most appropriate genetic programming configu-

ration to solve real life applications [163].

This thesis extends this work by proposing a wider range of measures and investigat-

ing the possibility of predicting algorithm performance (PSO performance in particular)

based on multiple characteristics. The next two chapters propose a number of mea-

sures for approximating problem characteristics and Chapter 6 investigates predicting

algorithm performance based on considering multiple characteristics together.

2.7 Summary

This chapter provided a survey of existing techniques for characterising problems. Each

technique was described in terms of the focus (what is measured), the level of search

independence, assumptions on which the technique is based, and the result produced.

The survey reveals how the focus has changed over the last two decades. Some char-

acteristics, such as ruggedness, are the focus of many different techniques, but others,

such as symmetry, are not well represented. Suggestions are made for ways in which

existing techniques can be adapted to be more usable or relevant. Techniques that re-

quire knowledge of the global optima can be used without this knowledge by shifting

the focus from optimality to searchability. The same fitness analysis technique can also

be used in multiple ways by changing the search independence and in effect analysing

different fitness landscapes for the same problem. In addition, fitness landscape analysis

techniques that are based on the assumption that the search space is discrete can be

adapted to also apply to continuous representations. A further suggested way forward
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is to find ways of scalarizing visual outputs.

The following two chapters investigate some of these suggested ways forward. In

Chapter 4 an existing fitness landscape analysis technique (Technique 10), defined for

discrete spaces and producing graphical output, is adapted to work in continuous spaces

and to produce a single numerical approximation of ruggedness. Chapter 4 also inves-

tigates measures for gradients, which is a feature not covered by existing techniques.

Chapter 5 adapts two existing measures (Techniques 7 and 18) by shifting focus from

optimality to searchability and investigates ways of scalarizing fitness clouds (Technique

16) based on PSO updates.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3

Benchmarks, Algorithms and

Performance

Section 1.1 described the algorithm selection problem and stated the prerequisites for

solving the algorithm selection problem [144]:

1. A large number of problem instances with different levels of difficulty;

2. A large number of different algorithms for solving these problem instances;

3. Metrics for evaluating the performance of algorithms; and

4. The existence of features that can be used to suitably characterise the properties

of problems.

This chapter focuses on the first three prerequisites. Section 3.1 describes a number of

continuous benchmark problems with different characteristics and hence different levels

of difficulty. Section 3.2 describes seven variations of the PSO algorithm, which have

different search behaviours. Section 3.3 addresses the third requirement of evaluating

performance of algorithms on problems and proposes a number of metrics that can be

used to contrast algorithm performance across different known problems. Chapters 4

and 5 then focus on the last requirement by proposing feature metrics for characterising

continuous problems.

55
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3.1 Benchmarks

Before a new optimisation algorithm or variation on an existing algorithm can be shown

to be successful, the performance of the algorithm is usually tested on a range of prob-

lems and contrasted with the performance of some other algorithm(s) on the same set of

problems. In these empirical comparative studies, knowledge of the true optima of the

problem is not normally needed, because the best solutions found are sufficient for show-

ing whether one algorithm performed significantly better than another. For the purposes

of this study, however, knowledge of the optimum is needed, so that performance of an

algorithm can be quantified for different problems to be used as the basis for training a

performance predictor.

A number of papers have summarised existing benchmark problems or have proposed

new problems that could serve as suitable benchmarks. Some useful sources of benchmark

functions include Whitley et al. [178], Yao et al. [187], Suganthan et al. [150], Price et

al. [119], Mishra [96, 97] and Rahnamayan et al. [124]. A selection of functions from

these sources are listed in Appendix A in Table A.1. Only functions with known global

optima are included. In selecting functions, the aim was to cover a wide range of different

characteristics. Most functions are defined for different dimensions, but some are only

specified for two dimensions. In each case, the optimum value is specified for the given

domain.

Figures A.1 to A.3 in Appendix A provide visual plots of the functions. Plots are

either of one-dimensional or two-dimensional versions of the functions. In some cases

more than one plot is provided for a single function to provide additional insight into

the function. In many cases, the 1D or 2D plots reveal characteristics of the problems,

but these characteristics sometimes differ in higher dimensions.

From the visual plots it can be seen that some functions are unimodal, whereas

others are multimodal. Examples of unimodal functions include Beale, Quadric, Quartic,

Schwefel 2.22 and Spherical. Although functions like Bohachevsky may appear unimodal

from the plot of the full domain, a plot of a smaller domain shows that the function

is multimodal. The multimodal functions differ in the degree of multimodality. Some

functions have only a few local optima, such as Goldstein-Price, Michalewicz (in 2D) and

Six-hump camel-back. Others have many more local optima with a rugged landscape for
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the given domain, such as Alpine, Rastrigin and Schwefel 2.26. Still others have huge

numbers of local optima with an extremely rugged landscape, such as Ackley, Griewank

and Salomon.

In many cases, the 1D or 2D plots reveal characteristics of the functions which are

similar for higher dimensions, but in some cases, the characteristics are known to differ

in higher dimensions. For example, Griewank is very rugged on a micro scale in low

dimensions, but the function becomes relatively easier to solve as D increases, because

the underlying unimodal shape begins to dominate the local optima created by the cosine

term [81]. Another example is the Rosenbrock function, which is unimodal up to 3D,

but shown to have a local (non-global) minimum for 4 ≤ D ≤ 30 [140].

The benchmarks in Appendix A, Table A.1 are revisited a number of times in sub-

sequent sections and chapters of the thesis. Some of the problems are solved using PSO

algorithms in Section 3.3 to illustrate the use of proposed performance metrics. Chapters

4 and 5 use selected problems to test proposed fitness landscape metrics. Finally, the

full set of function are used in Chapter 6 to generate data sets for training and testing

PSO performance predictors.

3.2 PSO algorithms

Particle swarm optimisation (PSO) [31, 75] is a stochastic population-based optimisation

technique. Starting with a random swarm of solutions, called particles, the positions

of particles in the search space are adjusted at each iteration of the algorithm. The

adjustment has random elements, but is largely determined by the distance to the best

solution found in the neighbourhood of the particle (called the neighbourhood best) and

the distance from best solution found by the particle itself during the search process

(called the personal best or pbest). In this way, the swarm of particles move around,

exploring the search space, in time hopefully converging on a good solution. There are

many different varieties of PSO algorithms. This section describes seven basic variations

that differ in their exploration and exploitation behaviours [35]. These seven variations

are used later in Chapter 6 when the link between fitness landscapes characteristics and

PSO performance is investigated.
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3.2.1 Traditional global best PSO

Traditional global best PSO model (gbest PSO for short) [31, 75], also known as ‘vanilla’

PSO, determines the multidimensional position of a particle, xi, at time step t + 1 by

adding a multidimensional step size (called the velocity of the particle), vi, at time step

t+ 1, to the position of the particle at time t, using the equation:

xi(t+ 1) = xi(t) + vi(t+ 1) (3.1)

The velocity at time step t+ 1 is given as:

vi(t+ 1) = w · vi(t) + c1 · r1(t)⊙ (yi(t)− xi(t)) + c2 · r2(t)⊙ (ŷ(t)− xi(t)) (3.2)

where w is the inertia weight (introduced by Shi and Eberhart [141]), vi(t) is the velocity

of particle i at time stamp t, c1 and c2 are the cognitive and social acceleration constants,

respectively, r1(t), r2(t) ∼ U(0, 1)D where D is the dimension of the problem, ⊙ denotes

element-by-element vector multiplication, yi(t) refers to particle i’s personal best position

and ŷ(t) refers to the global best position at time step t, being the best solution from

the set of personal best positions of all particles.

Equation 3.2 shows that the position of a particle is influenced by three terms: the

particle’s previous velocity, the relative position of the pbest particle (cognitive compo-

nent) and the relative position of the swarm’s gbest (social component). Since the gbest

is determined from the fittest pbest of all particles, the neighbourhood of each particle is

the entire swarm. This is known as a star topology, because all particles are ‘connected’

(share information) with all other particles. The behaviour of the traditional gbest PSO

is influenced by the relative weights of these three terms, set using the constants w, c1

and c2. The choice of values of these constants has to be made together to ensure conver-

gence of the swarm [160]. While the social terms pull particles towards the same point,

the cognitive terms pull particles in potentially different directions. When the cognitive

and social acceleration constants are given the same values, the traditional gbest PSO

model results in a balance of exploration and exploitation behaviour, but this depends

on the value of w. Although the optimal choice of parameters is problem dependent, a

common choice that works reasonably well for many problems is 0.7298 for w and 1.496

for both acceleration constants [32].
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3.2.2 Cognitive PSO

The position update of the cognitive PSO variation [73] is the same as for the traditional

PSO (Equation 3.1), but the social component is removed from Equation 3.2, giving:

vi(t+ 1) = w · vi(t) + c1 · r1(t)⊙ (yi(t)− xi(t)) (3.3)

The cognitive PSO variation results in higher exploration than the traditional PSO

model, since each particle is pulled in the direction of its own best position, resulting in

essentially a swarm of individual local search optimizers (hill climbers).

3.2.3 Social PSO

The position update of the social PSO variation [73] is the same as for the traditional

PSO (Equation 3.1), but the cognitive component is removed from Equation 3.2, giving:

vi(t+ 1) = w · vi(t) + c2 · r2(t)⊙ (ŷ(t)− xi(t)) (3.4)

The social PSO variation results in faster exploitation than the traditional and cognitive

variations, since all particles are pulled in the direction of the same global best particle

at each time step.

3.2.4 Local best PSO

The traditional gbest PSO model uses a star neighbourhood structure where all parti-

cles share knowledge with all other particles in the form of the position of the global

best particle. In an alternative model, called local best PSO (lbest PSO for short)

[31] each particle is part of a smaller neighbourhood and each neighbourhood has its

own neighbourhood best particle. In its simplest form, the membership of particles to

neighbourhoods is determined using particle indices, which forms a ring structure. For

example, for a neighbourhood size of two, a particle xi will be in a a neighbourhood with

xi+1 and xi−1.

The position update of particle xi, at time step t + 1 is the same as Equation 3.1,

but the velocity update is given as:

vi(t+ 1) = w · vi(t) + c1 · r1(t)⊙ (yi(t)− xi(t)) + c2 · r2(t)⊙ (ŷi(t)− xi(t)) (3.5)
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where ŷi(t) is the best particle in the neighbourhood of particle xi at time step t.

Lbest PSO with a ring structure has overlapping neighbourhoods and all neighbour-

hoods are indirectly connected to all other neighbourhoods. This means that the global

best position will affect the positions of all particles, but this will be a delayed effect,

promoting more exploration than the gbest PSO model.

3.2.5 Asynchronous global best PSO

In the case of the traditional gbest PSO model, at the end of each iteration (or the start

of the next iteration) of the algorithm, the personal best positions of all particles and

the global best position of the swarm are determined, after which the new velocities and

positions of all particles are updated. In the asynchronous global best PSO model [21],

the personal best and global best positions are updated after the position update and

new fitness evaluation of each particle. This means that when there is an improvement

in the gbest this information is immediately known to the next particle to be updated.

Information on the position of the current gbest is therefore shared faster than with

synchronous updates.

3.2.6 Bare bones PSO

The bare bones PSO variation [74], instead of a two-step process of calculating the

velocity, then adding it as a step size to the previous position of the particle, updates

the new position as a single step. The new position of each component j of xi at time

stamp (t+ 1) is sampled from the following Gaussian distribution:

xij(t+ 1) ∼ N

(

yij(t) + ŷj(t)

2
, σ

)

(3.6)

with deviation σ = |yij(t) − ŷj(t)|. This means that instead of particles moving in the

direction of the global best or personal best particle (or somewhere inbetween), particles

‘jump’ to a random position centred around the point half-way between the personal and

global best position (the position yi+ŷ

2
has been proven to be the point of convergence

for particles in the traditional gbest PSO model [155, 159]). As the distance between the
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personal and global best reduces, so the deviation of the Gaussian distribution reduces,

resulting in more exploitation.

3.2.7 Modified bare bones PSO

The modified bare bones PSO [74] is a variation on the barebones PSO model, with extra

exploration abilities. As with the bare bones PSO, the model has only a position update,

but the new position of each component j of xi at time stamp (t + 1) is calculated as

follows:

xij(t+ 1) =







yij(t) if U(0, 1) < 0.5

N
(

yij(t)+ŷj(t)

2
, σ

)

otherwise
(3.7)

Equation 3.7 implies that there is a 50% chance of each component of the new position

being set to the equivalent component of the personal best position, otherwise it is set to

a random position centred around the point half-way between the equivalent components

of the personal and global best positions. This results in more exploration than in the

bare bones PSO, particularly early on, since personal best positions are initially widely

spread throughout the search space.

3.3 Measuring algorithm performance

Solving the algorithm selection problem in general requires suitable metrics for evaluating

the performance of algorithms on a given set of known problems. The performance

metrics are used to generate a data set that can be used as the basis for finding a

mapping from feature space to algorithm or performance space, as illustrated in Figure

1.1. For any two problems, the metrics should distinguish the relative difficulty of solving

the problems by a given algorithm. Equally, given two algorithms, the metrics should

distinguish the relative difficulty of the algorithms solving the same problem. This section

reviews some existing approaches to measuring performance of optimisation algorithms

and then proposes the use of three normalised metrics that can be used for quantifying

the performance of algorithms on different problems.
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3.3.1 Existing approaches to measuring performance

The most common way of measuring the performance of an optimisation algorithm is in

terms of the quality of the solution found in comparison to the quality of the solution

found by some other algorithm. Given sufficient independent runs of both algorithms,

it is reported whether there is a statistically significant difference in the quality of the

solutions found by the algorithms. In the case of benchmark problems with known

optimal solutions, the measure of the quality is usually simply the difference in fitness

value between the solution found by the algorithm and the optimal solution (sometimes

called the fitness error value). To ensure reasonably fair comparisons between different

algorithms, the fitness error value is usually based on the best or average solution found

after a set number of function evaluations by the algorithm. Using an absolute fitness

error value as a measure of performance is suitable when comparing algorithms on the

same problem, but cannot be used when comparing the performance of algorithms on

different problems with varying fitness ranges. For example, a mean fitness error value

of 0.08 on one problem could be regarded as a high performance result, whereas a mean

fitness error value of 0.0003 may be regarded as a low performance result for a different

problem.

Another common approach to measuring performance is to quantify the percentage of

successful runs over a number of runs (frequently called success rate). What constitutes

a ‘successful run’ has to be properly defined. Some arbitrary cut-off like “within 10−8 of

the global optimum” could be sensible in the case of a problem with a fitness range of

[0, 1], but would not make sense in the case of a problem with a fitness range of [0, 1030]

(such as with the Schwefel 2.22 benchmark function in 30 dimensions). In some cases

a fixed accuracy level is specified for each benchmark function [119, 150]. For example,

Suganthan et al. [150] define fixed accuracy levels for each benchmark function, such as

10−6 for F1 (Shifted Sphere Function) and 10−2 for F6 (Shifted Rosenbrock’s Function).

They define a successful run as one during which “the algorithm achieves the fixed

accuracy level within the Max FES for the particular dimension”[150], where Max FES

specifies the maximum number of function evaluations and is defined as 10000 ×D. In

this way, functions with higher dimensions are given more function evaluations to reach

the fixed accuracy level.
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Yet another approach to measuring performance is to quantify how quickly an al-

gorithm is able to find an acceptable solution. For example, the average number of

evaluations to a solution (AES) measure, defined over those runs that reach a solution

to within a given fixed accuracy level [34].

3.3.2 Proposed performance metrics

This section proposes the use of three normalised algorithm performance measures. Note

that the purpose of these measures is to generate data on known problems to be used for

the training of a predictor or classifier of algorithm performance on unknown problems.

The measures quantify solution quality, rate of success and speed of reaching a solution

and can be used to contrast the performance of a single algorithm on multiple problems

or multiple algorithms on the same problem. All three measures require knowledge of

the range of fitness values of a problem so that the measures can be normalised across

different problems.

Estimating fitness range

The range of fitness values for benchmark problems is not always known. In the case

of simple functions like the Spherical function, it is obvious that the maximum values

lie on the boundaries of the search space. The range of fitness values is then simply

the difference between the fitness values on the boundary and the fitness of the known

optimal solution. In the case of many other benchmark problems, however, the maximum

point is somewhere else in the search space. For example, Figure 3.1 illustrates two

common benchmark functions in one dimension. A simple visual inspection of a plot

of the functions in one dimension can be used to estimate the range of fitness values

of the function. However, in higher dimensions it is not as easy to estimate the fitness

range, as the position of the maximum point cannot be assumed to be at the same x

position as for the one dimensional version of the function. A simple way of estimating

the maximum fitness value of a benchmark problem is to optimise the minimisation

problem as a maximisation problem using a suitable optimisation algorithm. The result

of the optimisation is the estimated maximum fitness value, called f̂ . It is important that

during the maximisation, the algorithm be confined to the bounds of the search space,
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Figure 3.1: Example one-dimensional minimisation benchmark functions.

because many of the benchmark functions (like those illustrated in Figure 3.1) continue

increasing outside the bounds of the problem domain. For a benchmark function, given

an estimated maximum fitness f̂ and a known minimum fitness value, f ∗, the estimated

range of fitness values is then defined as f̂ − f ∗.

Definition of a successful run and determining fixed accuracy levels

A run of an algorithm on a problem is a single execution of the algorithm with a given

maximum number of fitness evaluations (MaxFES) as the stopping condition. For all

runs in this study, the MaxFES was set to 10000×D (dimension), equivalent to 200×D

iterations using a swarm of 50 particles. A successful run of an algorithm on a problem

is a run that finds a solution with a fitness value that is within a set fixed accuracy level

from the objective function value of the global optimum.

Similar to [119] and [150], fixed accuracy levels are specified for different problems.

A function with a smaller range of fitness values should have a smaller fixed accuracy

level than a function with a larger fitness range. However, rather than using a single

fixed accuracy level for each benchmark function (as in [119, 150]), it is proposed that a

fixed accuracy level be defined for each function/dimension combination. If the range of

fitness values of the same benchmark function increases as the dimension increases, then

the fixed accuracy level should also increase. The proposed method for determining the

fixed accuracy level of a given benchmark function and dimension is as follows:

1. The estimated fitness range of the problem (f̂−f ∗) is rounded down to the nearest
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10n (called the fitness range order), where n is an integer. Rounding the fitness

range down (rather than up) results in a smaller fixed accuracy level and hence

higher requirement in terms of accuracy of solution.

2. The fixed accuracy level is computed as the fitness range order multiplied by 10−8

up to a maximum fixed accuracy level of 10−3. The use of 10−8 is specifically

chosen to align with error values in other sources [119, 150].

For example, the Ackley benchmark function in one dimension with domain [−32, 32]

has a rounded down fitness range of 101, resulting in a fixed accuracy of 10−7. Some

example benchmark problems with proposed fixed accuracy levels are listed in Table 3.1.

The definition of these functions is given in Appendix A, Table A.1. Notice how with

some functions, such as Ackley, the fixed accuracy levels stays the same as the dimension

increases, but in the case of other functions, such as Griewank, the fitness range increases

with an increase in dimension, resulting in a decrease in the fixed accuracy level.

QMetric

Given a run of an optimisation algorithm on benchmark function f with resulting best

fitness found fmin, the difference in fitness between the best found solution and the

optimal solution is quantified as fmin − f ∗. This difference is an absolute measure of

fitness error, where 0 is the minimum error and corresponds with the highest possible

solution quality. To convert the fitness error into a positive measure of quality, the

found solution, fmin, is subtracted from the estimated maximum, f̂ and scaled by the

estimated range of the problem as follows:

q =
f̂ − fmin

f̂ − f ∗
. (3.8)

The normalized measure q is a value in the range [0, 1] where 1 indicates the highest

quality, where the fitness of the found solution exactly matches the fitness of the known

optimal solution, and 0 indicates the worst possible solution quality of finding the max-

imum fitness. In order to better distinguish between q values closer to 1, the value of q

is scaled exponentially to produce the proposed QMetric measure as follows:

QMetric = 2q
10

4

− 1 . (3.9)
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Table 3.1: Some example benchmark problems (defined in Appendix A, Table A.1) in different

dimensions with estimated maximum fitness (f̂), known minimum (f∗), fitness range order and

fixed accuracy level.

Function Dimension f̂ f ∗ Fitness

Range Order

Fixed Accuracy

Level

Ackley 1 22.31 0 101 10−7

Ackley 15 22.31 0 101 10−7

Ackley 30 22.31 0 101 10−7

Griewank 1 92.00 0 101 10−7

Griewank 15 1351.00 0 103 10−5

Griewank 30 2701.00 0 103 10−5

Rosenbrock 2 3905.93 0 103 10−5

Rosenbrock 15 54682.97 0 104 10−4

Rosenbrock 30 113271.86 0 105 10−3

Schwefel 2.26 1 418.98 -418.98 102 10−6

Schwefel 2.26 15 6284.74 -6284.74 104 10−4

Schwefel 2.26 30 12569.49 -12569.49 104 10−4

Figure 3.2 illustrates the relationship between q and QMetric.

For example, given a problem with a fitness range of [0, 1] (with associated fixed

accuracy level of 10−8) and global optimum of 0, a best found solution of 10−8 would be

regarded as a successful run. The resulting QMetric value would be 1.000 (rounded to

3 decimal places), indicating the highest rounded solution quality. On the other hand,

a solution of 10−5 would result in a q value of 0.99999 and an associated QMetric value

of 0.872, indicating a lower solution quality. Any solution with fitness 0.001 and larger

will result in a QMetric value of 0 (rounded to 3 decimal places).

SRate

To compare the rate of success of different algorithms on different problems, each prob-

lem/algorithm combination is run using MaxFES as the terminating condition. The

success rate (SRate) is defined as the number of successful runs that reach a solution
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Figure 3.2: Function used to scale fitness quality measure q to QMetric.

within the fixed accuracy level of the global optimum divided by the total number of

runs [150]. Like the QMetric, SRate is a value in the range [0, 1] where 1 indicates the

highest possible rate of success.

SSpeed

The number of function evaluations taken to reach the global optimum (within the fixed

accuracy level) for a given run r is known as FESr. A proposed metric called the success

speed of a run r (SSpeedr) is defined as:

SSpeedr =

{

0 if the run is not successful
MaxFES−(FESr−1)

MaxFES
otherwise.

(3.10)

The metric SSpeedr is a value in the range [0, 1]. The highest value for SSpeedr can

only be obtained if the global minimum is reached in the first function evaluation (if

FESr is 1) and this would indicate the highest possible performance in terms of speed.

The success speed (SSpeed) over ns successful runs, is defined as:

SSpeed =

{ ∑ns
r=1

SSpeedr
ns

if ns > 0

0 if ns = 0 .
(3.11)
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3.3.3 Performance metrics applied to PSO

To illustrate the use of the proposed three performance metrics, Table 3.2 shows the

results of minimizing a number of benchmark functions using a traditional gbest PSO

algorithm (Section 3.2.1). The final column in the table refers to the performance class

and is described in Section 3.3.4.

The following parameter values were used: 50 particles, 1.496 for both the cognitive

and social acceleration constants and 0.7298 for the inertia weight [32]. Benchmark

functions and dimensions were selected to illustrate features of the metrics. For each

benchmark function/dimension combination, 30 independent runs of the algorithm were

performed. The QMetric values are the means of the 30 runs and the value for MaxFES

was set at 10000×D, or 200×D iterations for 50 particles.

In Table 3.2, the easiest function to minimize is the simple unimodal Spherical func-

tion and this is reflected in the high values for all performance metrics. The PSO algo-

rithm achieved a QMetric mean value of 1 in dimensions 1, 15 and 30, indicating that

the average of the best fitness values found was of the highest possible quality. Similarly,

the SRate of 1 indicates that the algorithm found the optimal solution (to within the

fixed accuracy level) in all 30 runs. The high SSpeed values indicate that the algorithm

found the solution quickly (needing relatively few function evaluations). Recall that

the SSpeed metric is a measure of how quickly the solution is found in relation to the

maximum number of function evaluations (MaxFES), which increases with dimension

(MaxFES is set at 10000 ×D). For example, an SSpeed value of 0.941 for Spherical in

15 dimensions does not imply that the solution was found in fewer iterations than for 1

dimension (with an SSpeed of 0.845), but rather that the solution was found in a smaller

percentage of the maximum number of iterations allowed for that dimension.

From the results, it can be seen that the Spherical problem did not become harder for

the PSO algorithm as the dimensions increased. In contrast, the PSO algorithm found

it harder to minimize the multimodal Ackley function as the dimensions increased. In

30 dimensions, the algorithm was only able to find the optimal solution in 9 out of the

30 runs (SRate of 0.3).

In many cases the QMetric and SRate have the same value. This indicates that the

quality of the solutions and the success rate are essentially reflecting the same informa-
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Table 3.2: Results of minimizing a number of benchmark problems using a traditional gbest

PSO algorithm, based on 30 runs.

Function Dimension QMetric SRate SSpeed Class

Ackley 1 1.000 1.000 0.471 S+

Ackley 15 0.933 0.933 0.855 S

Ackley 30 0.300 0.300 0.862 S

Griewank 1 1.000 1.000 0.721 S++

Griewank 10 0.352 0.033 0.019 S

Griewank 15 0.691 0.100 0.910 S

Griewank 30 0.902 0.367 0.921 S

Rosenbrock 2 1.000 1.000 0.843 S++

Rosenbrock 5 0.931 0.067 0.321 S

Rosenbrock 15 0.888 0.000 0.000 S–

Rosenbrock 30 0.482 0.000 0.000 S–

Salomon 1 1.000 1.000 0.574 S++

Salomon 5 0.000 0.000 0.000 F

Schwefel 2.26 1 1.000 1.000 0.816 S++

Schwefel 2.26 5 0.400 0.400 0.826 S

Schwefel 2.26 15 0.000 0.000 0.000 F

Spherical 1 1.000 1.000 0.845 S++

Spherical 15 1.000 1.000 0.941 S++

Spherical 30 1.000 1.000 0.940 S++

tion. If the quality of the solution is low, it will result in a QMetric value of 0 and this

will also be reflected in an unsuccessful run. There are cases, however, where the QMet-

ric differs from the SRate measure. Consider for example the Rosenbrock function in 15

dimensions. None of the 30 runs of the PSO algorithm found the optimal solution, but

a QMetric value of 0.888 indicates that the best solutions found were still of a relatively

good quality (relatively close to the global optimum fitness value).

It is interesting to notice that, in the case of the Griewank benchmark function,

the performance metrics are high in 1 dimension, decrease in 10 dimensions, but then
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increase in 15 dimensions and increase further in 30 dimensions. This indicates that

the problem becomes easier in higher dimensions, which is a known characteristic of the

Griewank benchmark function [81].

3.3.4 Performance classes

The three normalized metrics proposed in this section make it possible to compare data

from different benchmarks and algorithms. When viewed together the three values pro-

vide information on the accuracy, predictability and speed of the algorithm in solving

the given problem. In some cases, it is convenient to have a simpler indication of perfor-

mance. For example, when a number of algorithms and problems are considered together

and data mining is used to investigate the link between problem features and algorithm

performance (as is done in Chapter 6), it is easier to extract meaning when there is a

single performance class for a given problem/algorithm combination. When it is desir-

able to have a single performance class, the QMetric, SRate and SSpeed values are used

to allocate performance into one of the following classes:

• Always solved and fast (class symbol S++): problems with an SRate of 1, indicating

that the solution was found for all 30 runs of the algorithm, and an SSpeed > 0.5,

indicating that the algorithm was able to find the solution in less than half of the

allowable time (maximum number of function evaluations) on average.

• Always solved (class symbol S+): problems with an SRate of 1 and an SSpeed

≤ 0.5, indicating that the solution was found for all 30 runs of the PSO algorithm,

but that more than half of the allowable function evaluations were used to find the

solution on average.

• Sometimes solved (class symbol S): problems with an SRate less than 1, but greater

than 0, indicating that the solution was found for some of the runs.

• Almost solved (class symbol S–): problems with an SRate of 0, but a QMetric

value greater than 0, indicating that although none of the runs found the solution

to within the required fixed accuracy level, a solution was sometimes found that

was very close to the optimum.
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• Not solved (class symbol F): problems with all performance metric values equal to

0.

The final column of Table 3.2 gives the relevant performance class of the examples listed.

The class information provides a very quick way of assessing which problems were easy

for the algorithm, which were harder and on which problems the algorithm failed.

3.4 Summary

This chapter filled in a number of components of the algorithm selection model as de-

picted in Figure 1.1 applied to optimisation problems solved using PSO algorithms. The

benchmark problems described in Section 3.1 provided a set of problems to define the

problem space P . The set of seven PSO algorithms described in Section 3.2 define the

algorithm space A and the performance metrics proposed in Section 3.3 define the per-

formance space Y . Given these three components, an algorithm a can be applied to

a problem p to produce performance measure y. The remaining aspects of the model

include feature extraction (address in Chapters 4 and 5) and algorithm selection / per-

formance prediction (addressed in Chapters 6).
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Chapter 4

Ruggedness, Funnels and Gradients

4.1 Introduction

The modality of a fitness function refers to the number of optima and is frequently

mentioned in relation to the difficulty of a problem. However, rather than the absolute

number of optima, it is the distribution of basin sizes in the fitness landscape and the

depth (or height) of the basins that may be more important factors to consider in deter-

mining problem difficulty [69]. Consider, for example, the two simple fitness functions

illustrated in Figure 4.1. Both functions have three optima (two local and one global),

but in the case of the top landscape, the basin containing the global optimum is larger

than the two basins containing the local optima, which is not the case with the lower

landscape. In the case of a PSO algorithm, if two particles are positioned as illustrated,

the social velocity in the top function will pull the righmost particle towards the global

optimum, whereas the social velocity in the bottom function will pull the leftmost parti-

cle away from the global optimum. The bottom landscape would therefore be regarded

as more deceptive for PSO search, because the information from the landscape is pulling

the search in the wrong direction. This is supported by Xin et al. [184] who studied the

notion of deception for PSOs and concluded that the relative size of basins of attraction

(local versus global) was the most important factor related to deception for PSOs.

Given an unknown multidimensional optimisation problem, there is no computa-

tionally cheap way of determining the relative sizes of basins of attraction. Instead,

72
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Figure 4.1: Sample fitness landscapes illustrating how the landscape structure can result in

deception for a PSO algorithm.

approximate measures based on samples from the search space are used to predict par-

ticular features of the landscape, such as ruggedness, in the hope that this will in some

way capture the level of deception of the landscape for a search algorithm. Techniques

for measuring ruggedness include adaptive walks [71], autocorrelation measures [92, 177],

correlation length [80], entropic measures [171, 172] and amplitude spectra [62]. All of

these techniques assume a discrete representation. This chapter proposes an adaptation

of Vassilev et al.’s [171, 172] entropic measures for continuous problems and a method

for approximating a single measure of ruggedness from a fitness landscape.

The presence of funnels is related to a different aspect of the distribution of local

optima that considers the ruggedness of the underlying landscape on a macro scale. A

funnel is a global basin shape that consists of clustered local optima [151] (see Section
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2.3.7). Sutton et al. [151] have shown empirically that PSO algorithms tend to stagnate

early on multi-funnel landscapes. A technique for estimating the presence of funnels in

a fitness landscape is Lunacek and Whitley’s dispersion metric [84], which is described

and implemented in this chapter.

A feature which is not normally considered in fitness landscape analysis is the steep-

ness of gradients. Where ruggedness refers to whether there are variations in neighbour-

ing fitness values or not, the steepness of gradients takes into account the magnitude of

fitness changes of neighbouring points. The motivation for considering gradients is that

a landscape with steep gradients should have a higher probability of being deceptive to

search (as is the case in the bottom landscape of Figure 4.1). This chapter also proposes

a technique for estimating gradients.

The outline of the chapter is as follows: Section 4.2 discusses algorithms for per-

forming random walks in continuous spaces. Random walks are needed as a basis for

ruggedness and gradient measures. Section 4.3 describes the one-dimensional bench-

mark problems that are used for testing the different techniques in the chapter to see

if results are consistent with a visual inspection of the plotted functions. Section 4.4

describes a proposed approach to quantifying ruggedness of a fitness landscape based on

entropy, Section 4.5 discusses a measure for predicting the presence of funnels and Section

4.6 explores gradient measures. Section 4.7 tests the techniques on higher dimensional

benchmark problems and also investigates the link to PSO performance.

4.2 Random walk algorithms

Some fitness landscape analysis techniques are based on a random walk through the

search space to capture a sequence of neighbouring solutions, such as autocorrelation

techniques [177], correlation length [80] and entropic measures of ruggedness and smooth-

ness with respect to neutrality [172]. Adapting these for real-valued problems requires

a method for performing a random walk in a continuous space. This section proposes a

random walk algorithm for continuous spaces with the following aims:

1. The points in a walk should be ordered based on some generic notion of neighbour-

hood, such as Euclidean distance.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Ruggedness, Funnels and Gradients 75

2. Unlike a sample generated by a search algorithm, a random walk should be unbiased

in that it should not use fitness information to direct the walk. This differs from

the aim of other sampling strategies that use a particular search operator to define

neighbourhood (as is the case with techniques that measure evolvability such as

fitness clouds [173], negative slope coefficient [164], fitness-probability clouds [83]

and accumulated escape probability [83]).

3. The set of walks used to sample the search space should attempt to provide as

wide a coverage of the search space as possible within the constraints of acceptable

computational cost. If the purpose of analysing a problem is to obtain informa-

tion to guide the choice of an appropriate algorithm, then the computational cost

of sampling should be significantly less than solving the problem with multiple

algorithms using a trial-and-error approach.

This section looks at a simple random walk algorithm and shows that the coverage of

the search space is not adequate. Section 4.2.2 proposes an alternative algorithm called

a progressive random walk algorithm.

4.2.1 Simple random walk

A walk through a search space requires a notion of neighbourhood for any point in the

space. For binary problems, a random walk could be implemented as follows [172]: start

from a randomly chosen point, generate all neighbours of the current point by mutation

(bit flip), choose randomly one neighbour as the next point, generate all neighbours

of the new point, and so on. In the case of continuous search spaces, however, there

is no equivalent set of all possible neighbours of any point. The neighbourhood of a

multidimensional point x is normally defined as the set of points within the hypersphere

with some small radius and centre x [152]. However, this approach requires Euclidean

distance calculations to ensure that one point is in the neighbourhood of another point.

To simplify the computational complexity of neighbourhood checking, a neighbourhood

based on hypercubes is proposed. Formally, the neighbourhood set N(xk) of an n-

dimensional point xk is defined as follows:

xj ∈ N(xk) ⇐⇒ |xki − xji| < s, ∀i ∈ [1, . . . , n] (4.1)
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where s is half of one length of the hypercube specifying the neighbourhood size. Note

that this definition assumes that the neighbourhood size is equal in all dimensions. In

some cases it may be desirable to define s, not as a scalar value, but as a multidimensional

vector s. For example, consider a two-dimensional search space where variables x1 and

x2 have domains of [0, 100] and [0, 1], respectively. The neighbourhood could be specified

with s = [10, 0.1], so that although the neighbourhood is technically a rectangle, it is a

square relative to the search space, since each side of the neighbourhood is 10% of the

domain.

Given the definition of neighbourhood in Equation 4.1, a simple approach to a ran-

dom walk through a continuous space could be the following: start at a random position

within the bounds of the multi-dimensional search space; take a step of random size and

direction within the bounds of the multi-dimensional hypercube defining the neighbour-

hood, always ensuring that the walk stays within the outer bounds of the search space,

until the required number of steps are reached. This simple random walk algorithm is

expressed more formally in Algorithm 4.1 and Figure 4.2 plots the position vectors of

sample runs for a two-dimensional space using different values of s. As can be seen,

taking steps in random directions has a tendency for the points of a walk to be clustered

in limited areas of the search space, which becomes more pronounced as the value of s

decreases. This can result in poor coverage of the search space.
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Figure 4.2: Plots of the position vectors of sample simple random walk runs for a two-

dimensional space with differing values of s (step bound). Each sub-figure shows four indepen-

dent sample walks of 50 steps each.
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Algorithm 4.1 Simple Random Walk Algorithm

1: Let p be the problem on which to base the walk, which encapsulates the number of

dimensions, n, and domain for each dimension [xmin
1 , xmax

1 ], . . . , [xmin
n , xmax

n ]

2: Let numSteps specify the number of steps in the walk

3: Let s specify the bound on the step size for each dimension

4: Create an array of n-dimensional vectors for storing the walk (called walk) of size

numSteps+ 1

5: for all dimension i of n do

6: Generate a random number r in the range [xmin
i , xmax

i )

7: Set walk[0]i to r

8: end for

9: for all step s from 1 to numSteps do

10: for all dimension i in n do

11: repeat

12: Generate a random number, r, in the range [−s,+s)

13: until walk[s− 1]i + r is in bounds of search space

14: Set walk[s]i = walk[s− 1]i + r

15: end for

16: end for

4.2.2 Progressive random walk

An alternative approach to a simple random walk, called a progressive random walk is

proposed with the following basic idea: A walk starts on the edge of the multi-dimensional

search space, progresses in a random way, but with a bias in direction towards the oppo-

site side of the search space. If a search space boundary is reached, the bias is changed

to the opposite direction. Multiple walks are generated from different random starting

positions on the outer boundaries of the search space. The details of the approach are

specified below.
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Starting zones for progressive random walks

For a one-dimensional search space, there are only two possible starting positions on

the edge of the search space: the minimum and maximum points defining the problem

domain. In two dimensions, there are four lines of boundary points; in three dimensions

there are six planes of boundary points; and so on. In an attempt to provide a wide

coverage of the search space, the set of points on the boundary is divided into non-

overlapping zones, so that multiple random walks can start in different portions of the

outer boundary. The proposed approach to dividing the boundary points into zones is

described in Table 4.1, where the domain for each dimension i is specified as [xmin
i , xmax

i ].

The starting zones for two-dimensional and three-dimensional spaces are illustrated in

Figures 4.3 and 4.4, respectively.

Figure 4.3: Four starting zones for a two-dimensional search space.
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Table 4.1: Proposed starting zones of progressive random walks for different dimensions.

Description of starting zones and random walk progression

1-D Two starting zones, which are the single points (xmin), starting zone 0, and

(xmax), starting zone 1.

2-D Four starting zones, corresponding to each corner of the rectangular search

space. Each starting zone is defined as the set of points falling on the two lines

extending from the corner point up to the midpoints of the ranges along the

axes, as illustrated in Fig. 4.3. Starting zone 00 refers to the lines extending

from corner (xmin
1 , xmin

2 ). Similarly, zones 01, 10 and 11 refer to the lines ex-

tending from corners (xmin
1 , xmax

2 ), (xmax
1 , xmin

2 ), and (xmax
1 , xmax

2 ), respectively.

3-D Eight starting zones (identified as zones 000 to 111 in binary) corresponding to

the eight corners of the cuboid defining the search space. Each starting zone

is defined as the set of points on the planes falling on the outer boundaries of

the search space extending from the given corner up to the midpoints of the

ranges of the axes, as illustrated in Figure 4.4.

n-D 2n starting zones corresponding with the 2n corner points, where each corner

point is of the form (c1, . . . , cn), such that ∀i ∈ [1, . . . , n], ci ∈ {xmin
i , xmax

i }.
Each starting zone is defined as the set of points falling on the outer boundary

of the search space extending from the given corner point up to the midpoints

on the ranges of the axes.

Figure 4.4: One of the eight starting zones for a three-dimensional search space.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Ruggedness, Funnels and Gradients 80

As described in Table 4.1, for an n-dimensional search space, there are 2n non-overlapping

starting zones. Each starting zone is identified using an n-bit string b1 . . . bn, which

specifies the corner point (c1, . . . , cn) of the starting zone as follows:

ci =

{

xmin
i if bi = 0

xmax
i if bi = 1

(4.2)

A point (x1, . . . , xn) is defined as being in the starting zone identified by the binary

number b1 . . . bn with corner point (c1, . . . , cn) when the following hold:

∀i ∈ [1, . . . , n], |xi − ci| < xmax
i −xmin

i

2
, and

∃i ∈ [1, . . . , n], where xi = ci
(4.3)

Progressive random walk algorithm

Given a binary number specifying the starting zone, a random progressive walk starts

by generating a random position in the specified starting zone. Steps are then based

on random offsets in each dimension, within the neighbourhood, in the direction of the

opposite boundaries. The algorithm is expressed more formally in Algorithm 4.2, while

Figure 4.5 plots the position vectors generated by sample runs of the algorithm for a

two-dimensional space using different values of s. The computational time complexity

of Algorithm 4.2 (a single progressive random walk) is simply linear with respect to

the number of steps in the walk. However, if multiple walks are performed in multi-

dimensional space, where the number of walks equals the number of starting zones,

then the time complexity of multiple walks increases exponentially with the dimension.

An alternative approach to multiple walks with linear complexity with respect to the

dimension is proposed in the next section.

It can be seen in Figure 4.5, in contrast to Figure 4.2, that a better coverage is obtained

by the progressive random walks than the simple random walks in two dimensions.

It can also be seen that a step bound of 20 (10% of the range of the domain on a

single dimension) provides a better coverage of the space than smaller bounds, while

still maintaining a reasonably close proximity between points on the walk. Figure 4.6

contrasts sample runs from simple random walks and progressive random walks for a

three-dimensional problem space.
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Algorithm 4.2 Progressive random walk algorithm

1: Let p be the problem on which to base the walk, which encapsulates the number of

dimensions, n, and domain for each dimension [xmin
1 , xmax

1 ], . . . , [xmin
n , xmax

n ]

2: Let numSteps specify the number of steps in the walk and s the bound on the step

size for each dimension

3: Let startingZone be a binary array of size n (a bit for each dimension) specifying

the starting zone of the walk and how the walk should progress

4: Create an array of n-dimensional vectors for storing the walk (called walk) of size

numSteps+ 1

5: for all dimension i of n do

6: Generate a random number r in the range [0,
xmax
i −xmin

i

2
)

7: if startingZonei equals 1 then set walk[0]i to xmax
i − r

8: else set walk[0]i to xmin
i + r

9: end if

10: end for

11: Generate a random dimension, rD, in range [0, . . . , n]

12: if startingZonei equals 1 then set walk[0]rD to xmax
i

13: else set walk[0]rD to xmin
i

14: end if

15: for all steps s from 1 to numSteps do

16: for all dimension i in n do

17: Generate a random number, r in the range [0, s)

18: if startingZonei equals 1 then set r to −r

19: end if

20: Set walk[s]i = walk[s− 1]i + r

21: if walk[s]i is out of bounds then

22: Set walk[s]i to mirrored position inside boundary

23: Flip bit startingZonei

24: end if

25: end for

26: end for
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Figure 4.5: Plots of the position vectors of sample progressive random walk runs for a two-

dimensional space with differing values of s (step bound). Each sub-figure shows four sample

walks of 50 steps each, each starting in a different starting zone. Wider coverage of the search

space is obtained than in the case of the simple random walks, as illustrated in Figure 4.2.

4.2.3 Testing coverage of walks

This section proposes a technique for quantifying the coverage of a sample in continuous

space in terms of deviation from the distribution of a uniform sample. A histogram is

a standard technique for visualising and estimating the distribution of a sample. For

example, Figure 4.7 shows the distributions of three samples of 10 000 points in a two-

dimensional space with domain [−100, 100]. The frequencies are based on 100 (10 × 10)

bins of equal size, resulting in a mean of 100 points per bin. Figure 4.7(a) shows the

distribution of a uniform random sample of the space. It can be seen that the frequencies

deviate slightly from the mean of 100. Figures 4.7(b) and 4.7(c) show the distributions

of samples resulting from simple random and progressive random walks respectively. In

both cases the samples were generated from four equal-length walks with a step bound of

20 (10% of the domain), with the progressive random walks starting in different starting

zones. As can be seen, the distribution of samples produced by the progressive random

walks is more similar to a uniform distribution than the simple random walks. The

problem of clustering of points in the search space is clearly evident in the histogram of

the simple random walks.

To test the coverage of the random walk algorithms in higher dimensions, experiments

were conducted on search spaces with domain [−100, 100] for dimensions (D) 1, 2, 3, 4, 6

and 10. Sample sizes were chosen to be in the order of 10000×D (the maximum number of
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Figure 4.6: Sample random walks in a three-dimensional space contrasting the coverage of

simple random walks with progressive random walks. In both cases eight walks were generated

of 50 steps each and with a maximum step size of 20.

function evaluations sometimes used in real-parameter optimisation competitions [150]),

but adjusted to allow for a set mean of 100 points in a bin, while also ensuring equal

sized bins (kD for some integer k). The number of points and bins for each dimension is

given in Table 4.2.

For the two random walk algorithms, 30 samples were generated through independent

runs of the algorithm for each dimension. Each run consisted of 2D walks using a step

bound of 20 (10% of the domain). For the progressive random walk each walk of a sample
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(b) Simple random walks
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(c) Progressive random walks

Figure 4.7: Histograms showing the distribution of samples of 10 000 points in a two-

dimensional space. Frequency is in terms of numbers of points in 10 × 10 equal-sized bins.

started in a different starting zone. For each run in a sample, the standard deviation of

the frequency in the bins was calculated and the mean of the standard deviations over

the 30 runs was calculated. The deviations based on uniform random samples were also

calculated and the results are given in Table 4.2. As can be seen, a uniform random

sample on average deviates by approximately 10 points in a bin from the mean of 100 in

all dimensions. A sample generated by a simple random walk has much higher average

deviations, ranging from approximately 20 in 1 dimension to over 30 in 10 dimensions.

Samples generated by progressive random walks have significantly smaller deviations on

average than simple random walks.

The results in Table 4.2 show that a progressive random walk sample is more uni-

formly distributed than a simple random walk sample, but not as uniformly distributed

as a uniform random sample. The advantage of progressive random walk samples over

uniform random samples is that additional information is provided in the form of the

neighbourhood captured in the sequence of points in the sample.

Multiple random walks in multi-dimensional space

In multi-dimensional spaces, the size of the search space increases exponentially as the

dimension increases. When performing a random walk, larger search spaces require more

walks to sample the space. When sampling an n-dimensional space using a random walk,

the number of walks should ideally be equal to the number of starting zones, that is 2n,

as described in Table 4.1. This is clearly infeasible for high dimensions (for example, for
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Table 4.2: Quantifying coverage of a sample using average standard deviations from the mean

frequency in a bin (mean equals 100). Values are based on 30 runs, with standard deviations

shown in brackets. D is the dimension of the space.

D Number

of points

in sample

Number

of bins

Average standard deviations from the mean of 100

Uniform random

sample

Simple random

walk

Progressive ran-

dom walk

1 10 000 100 10.21 (±0.55) 20.02 (±4.34) 9.59 (±0.69)

2 19 600 196 (142) 10.03 (±0.64) 24.75 (±2.48) 12.75 (±2.33)

3 34 300 343 (73) 10.06 (±0.40) 26.36 (±1.88) 16.47 (±2.57)

4 62 500 625 (54) 9.93 (±0.27) 26.56 (±1.35) 18.34 (±1.59)

6 72 900 729 (36) 10.07 (±0.25) 31.07 (±1.47) 23.86 (±1.17)

10 102 400 1024 (210) 9.98 (±0.26) 33.61 (±0.89) 19.67 (±0.62)

a 30-dimensional space 230 = 1073741824 walks), especially since the aim is to provide a

characterisation of a problem that is less computationally expensive than actually solving

the optimisation problem.

To keep within a limit of 103 × n sample points as the basis for fitness landscape

measures (10 times less than the maximum number of function evaluations commonly

used in real-parameter optimisation competitions), the following approach is proposed

for n-dimensional space:

• The number of walks performed is equal to the number of dimensions, so n inde-

pendent walks are performed with each walk starting in a different starting zone.

This ensures a linear growth in computation time as the dimension increases.

• To distribute different walks across the starting zones, every ( 2
n

n
)th starting zone is

used as the starting point for a walk. For example, for a 4-dimensional space with

16 starting zones, 4 walks will be performed starting in zones 0000, 0100, 1000 and

1100.
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Note that any sampling of a high dimensional space will provide inadequate coverage of

the search space. The aim is to have a random sampling technique that can be used as

the basis of measures that are reasonably reliable (that is, the resulting characterisation

measures do not have very large standard deviations).

4.3 Simple benchmark problems

The one-dimensional benchmark problems used to test the proposed measures for the

remainder of this chapter are defined in Table 4.3 and are plotted in Figure 4.8. The nine

functions exhibit different characteristics in terms of ruggedness, gradients and funnels.

For example, the Table Legs function was constructed as a problem with high neutrality

and therefore very little ruggedness. Despite two points with infinite gradients, these are

offset by zero gradients for the rest of the domain. The two minimum plateaus at the

extremes of the domain make the Table Legs function multi-funnelled. The functions

and their characteristics are discussed in the relevant sections where they are used to

test the proposed measures.

4.4 Ruggedness measures

Aspects of this section were published as a paper in the proceedings of the IEEE Congress

on Evolutionary Computation [87].

4.4.1 Measuring ruggedness using entropy

Ruggedness refers to the number and distribution of local optima. Entropy is a measure

of the uncertainty involved in sampling from a source [135]. Given a sample of fitness

values resulting from a random walk on a problem landscape, and using a suitable

encoding, an estimate of entropy of this sample could form the basis for an estimate of

the ruggedness of the problem landscape. Vassilev et al. [170, 171, 172] propose such an

information theoretic technique for studying the structure of discrete landscapes in terms

of their smoothness, ruggedness and neutrality. This study is limited to discussing their

approach to estimating ruggedness (and not smoothness) with respect to neutrality.
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Table 4.3: One-dimensional benchmark functions for ruggedness, gradients and funnels. Plots

of these functions are shown in Figure 4.8.

Table Legs f(x) = 0, where x ∈ [−5,−4.5)

= 1, where x ∈ [−4.5, 4.5]

= 0, where x ∈ (4.5, 5]

Straight f(x) = x, x ∈ [0, 100]

Half Spherical f(x) = x2, x ∈ [0, 100]

Spherical f(x) = x2, x ∈ [−100, 100]

Griewank f(x) = 1
4000

x2 − cos
(

x√
1

)

+ 1, x ∈ [−600, 600]

Step f(x) = (⌊x+ 0.5⌋)2, x ∈ [−20, 20]

Rastrigin f(x) = x2 − 10 cos(2πx) + 10, x ∈ [−5.12, 5.12]

Ackley f(x) = −20 exp
(

−0.2
√
x2
)

− exp (cos(2πx)) + 20 + e, x ∈ [−32, 32]

Schwefel 2.26 f(x) = −(x sin(
√

|x|), x ∈ [−500, 500]

The basic idea is to obtain a landscape path by performing a random walk on the

landscape. This path is represented as an ensemble of three-point objects, where each

object is a point on the path together with its neighbours. Each three-point object is

classified as one of the following:

• neutral (a point together with its neighbours has equal fitness values);

• smooth (the fitness differences between the three points changes in one direction:

a slope);

• rugged (the fitness differences between the three points changes in two directions:

a peak, valley or step).

Table 4.4 gives all possible shapes of three-point objects with their classification.

Deciding whether a given three-point object is neutral, smooth or rugged would depend
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Figure 4.8: One-dimensional benchmark functions for testing the ruggedness, dispersion and

gradient measures. Definitions of these functions are given in Table 4.3.

on the margin of error used to determine whether two values are ‘equal’ or not. By

increasing this margin of error, a larger number of objects (such as very small steps, or

very shallow valleys) could be regarded as neutral.

Given a sample of three-point objects obtained from a random walk through the

search space and a classification as described in Table 4.4, an information function is

used to estimate the entropy of the subset of objects that are rugged. By increasing

the margin of error used to determine whether two fitness values are ‘the same’ or not,
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Table 4.4: Classification and encoding of three-point objects (a point on a path together with

its neighbours) as neutral, rugged or smooth based on relative fitness values.

Object shape Classification Encoding

r r r neutral 0 0

r r✟✟
r

rugged 0 1

r r

❍❍ r rugged 0 1

r✟✟
r r

rugged 1 0

r✟✟
r✟✟

r

smooth 1 1

r✟✟
r

❍❍ r rugged 1 1

r

❍❍r r rugged 1 0

r

❍❍r✟✟
r

rugged 1 1
r

❍❍r

❍❍ r smooth 1 1

the information function is used to reveal how the measure of entropy changes as the

neutrality of the landscape is increased. The following section provides a formalisation

of this approach.

Formalisation of approach

This section describes Vassilev et al.’s [172] approach to estimating ruggedness with re-

spect to neutrality. Assume that a random walk on a landscape generates the time series

of fitness values {ft}nt=0. This time series is represented as a string, S(ε) = s1s2s3...sn,

of symbols si ∈ {1, 0, 1}, obtained by the function:

si = Ψft(i, ε) = 1, if fi − fi−1 < −ε

= 0, if |fi − fi−1| ≤ ε

= 1, if fi − fi−1 > ε (4.4)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Ruggedness, Funnels and Gradients 90

The parameter ε is a real number that determines the accuracy of the calculation of

string S(ε). A low value for ε would result in a high sensitivity to the differences

between neighbouring fitness values. Based on this definition of the string S(ε), an

entropic measure H(ε) is defined as follows:

H(ε) = −
∑

p 6=q

P[pq]log6P[pq] (4.5)

where p and q are elements from the set {1, 0, 1}, P[pq] is defined as

P[pq] =
n[pq]

n
(4.6)

and n[pq] is the number of sub-blocks pq in the string S(ε).

The formula for H(ε) is an instance of the more general b-ary entropy [135]. The

result is a value in the range [0, 1] and is an estimate of the variety of ‘shapes’ in the

walk [171]. Note that Equation 4.5 only considers the subset of elements that are rugged

(sub-blocks pq in the string S(ε) where p 6= q). The base of the logarithmic function is

6, because there are 6 possible rugged shapes (see Table 4.4). For each rugged element,

Equation 4.6 calculates the probability of that element occurring. Therefore, the higher

the value of H(ε), the more the variety of rugged shapes in the walk and so the more

rugged the landscape.

The parameter ε determines how sensitive Ψft (Equation 4.4) is to differences in

fitness values. By increasing the value of ε the neutrality of the landscape is increased.

The smallest value of ε for which the landscape becomes flat (i.e. for which S(ε) is

a string of 0’s) is called the information stability and is denoted by ε∗. The value of

ε∗ would therefore equate to the largest difference in fitness values between any two

successive points on the path.

Unlike other statistical approaches to measuring ruggedness (such as correlation func-

tions [147, 177]), H(ε) is not a measure of the ruggedness of the landscape, but rather

an indication of the relationship between the ruggedness and neutrality.

4.4.2 Modifications for continuous landscapes

The calculation of entropic measure H(ε) is based on a random walk through the land-

scape resulting in a sequence of fitness values. The progressive random walk as described
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in Section 4.2.2 is proposed as the basis for the entropic ruggedness measure. The random

walk generates a time series of fitness values {ft}nt=0. This time series can be represented

as a string S(ε) of symbols taken from {1, 0, 1}. In Vassilev et al.’s definition [171], the

string S(ε) is considered with periodic boundary conditions (based on the assumption

that the landscape is statistically isotropic). This means that a walk of n steps results

in a string S(ε) of n symbols, because the last fitness value in the walk is compared

back with the first fitness value of the walk to determine the final symbol of S(ε). For

continuous landscapes, the definition of S(ε) was modified to not ‘wrap around’ in this

way. A walk of n steps would therefore result in a string S(ε) of n− 1 symbols.

4.4.3 Testing entropic measure on one-dimensional functions

The approach proposed in Section 4.4.2 was tested on seven of the one-dimensional

benchmark functions defined in Section 4.3 (the Straight and Half Spherical functions

were left out due to similar levels of ruggedness to the Spherical function). The following

summarises the expected levels of ruggedness of the seven functions:

• Table Legs function: This benchmark is mostly neutral, so should give the lowest

values for ruggedness.

• Spherical function: This function is very smooth, so should give relatively low

values for ruggedness.

• Step function: This function has high neutrality (due to the flat sections) and high

ruggedness.

• Rastrigin and Schwefel 2.26: Both of these functions have fairly high ruggedness.

• Griewank and Ackley: These functions are both extremely rugged on a fine scale.

For each of these seven one-dimensional benchmark problems the following was done:

• A progressive random walk (using Algorithm 4.2) of 1000 steps of size xRange
100

was

performed, where xRange is the difference between the maximum and minimum x

values.
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• The information stability measure (ε∗) for the given walk was estimated by trying

increasingly smaller values of ε up to a precision of 0.001. Recall that ε∗ is the

smallest value of ε for which the landscape (as represented by the walk) becomes

flat. For each function this estimated value of ε∗ was used as the upper bound on

the range of sensible values for ε.

• H(ε) was calculated for increasing values of ε from 0 to ε∗ with intervals of 0.05×ε∗.

A graph showing H(ε) for different values of ε is shown in Figure 4.9. This graph

illustrates the trend of how ruggedness changes with respect to neutrality. The use of

relative ε-values that depend on the value of ε∗ for each function allows for comparisons

between benchmarks occupying very different fitness ranges. The following observations

can be made on the behaviour of H(ε):

• The value of ε∗ is defined as the smallest value of ε for which the landscape becomes

flat. This is when S(ε) is a string of 0’s. As can be seen on the graph in Figure

4.9, the value of H(ε∗) for all functions is 0, which is as expected.

• In the case of all benchmark functions, except for Table and Step, H(ε) is an

increasing function for small values of ε. The least rugged and most neutral of the

functions is the Table Legs function, which has a low value for H(0) and maintains

this value until just before ε∗. The only other function with high neutrality is

the Step function, which has its highest value for H(ε) where ε = 0. Figure 4.10

illustrates, using a very simple example, how the value of H(ε) can increase with

an increase in ε. Assume a straight walk on function f(x) = x2 produces the

time series of fitness values: f(−2) = 4, f(−1) = 1, f(0) = 0, f(1) = 1, f(2) = 4.

The value of S(ε = 0) = 1 1 1 1 (a landscape with a single rugged element 1 1).

This results in a value for H(0) of −1
3
log6

1
3
= 0.204. When ε increases to 2,

S(ε = 2) changes to 1 0 0 1, since the difference between f(−1) and f(0) and the

difference between f(0) and f(1) are less than ε, so are regarded as no change.

The increase in neutrality (by increasing ε) has resulted in a landscape with more

‘difference’ than the landscape represented by S(ε = 0) and hence the value of

H(ε) increases. It is therefore only in the case of functions with low neutrality

that H(ε) is an increasing function for small values of ε. If a function has low
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Figure 4.9: H(ε) over different values of ε for seven different 1-dimensional functions, where

the values of ε depend on ε∗

.

neutrality, increasing the neutrality (i.e. increasing the value of ε) introduces more

rugged elements (steps) which were present in low proportions (or even absent) for

lower values of ε.

• In the case of all functions with low neutrality, the value of H(ε) peaks at a

particular value for ε and then decreases after that. To understand this behaviour,

consider the Spherical function: For small values of ε the path represented by S(ε)

is smooth except for the part where the progressive walk reaches the minimum

point of the function. With larger values of ε the magnifying glass with which the

discrete path through the landscape is investigated zooms out. Some successive

points which previously were regarded as having different fitness values are now
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Figure 4.10: A simple illustration of how the value of H(ε) can increase with an increase in ε

regarded as having the same fitness values. This results in the introduction of

rugged elements (in the form of step shapes) into the analysis with a corresponding

increase in the value of H(ε). For greater values of ε, more and more neutral shapes

are introduced until the path becomes perfectly neutral.

4.4.4 Proposed single measure of ruggedness

As discussed in Section 1.4.2, one of the requirements of each technique is that the result

is numerical to facilitate data mining of generated data. For the characterisation of

the ruggedness of a landscape as illustrated in Figure 4.9 to be useful, it needs to be

reduced to a single scalar value. On inspection of the behaviour of H(ε) for different

values of ε, as shown in Figure 4.9, it would seem that a significant value for each

function is the maximum value of H(ε). The point at which the maximum of H(ε) occurs

would correspond to the level of magnification that produces the most ‘difference’ in the

landscape in the form of the maximum number of rugged elements. To characterise the

ruggedness of a function, the following single value measure of ruggedness, called FEM
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(first entropic measure) is proposed for a fitness landscape:

FEM = max
∀ε∈[0,ε∗]

{H(ε)}

To approximate the theoretical value of FEM, the maximum of H(ε) is calculated for

all ε values in the set of values from 0 to ε∗ at discrete intervals of (0.05× ε∗), resulting

in 21 values of ε (or 20 values, excluding the final value of ε∗, since H(ε∗) = 0). The

detailed algorithm for FEM is given in Algorithm 4.3.

Algorithm 4.3 Algorithm for computing FEM based on the search space of a problem

1: Perform a progressive random walk through the search space of the problem with ns

steps using a step bound s

2: Set εCurrent and εNext to 0

3: repeat

4: Set εCurrent to εNext

5: Determine the string S(εCurrent) using Equation 4.4

6: Increase εNext by some increment

7: until the string S(εCurrent) is all zeros (i.e. the landscape is flat)

8: Set ε∗ to εCurrent

9: for all ε from 0 to ε∗ (non-inclusive) in increments of (0.05× ε∗) do

10: Determine the string S(ε) using Equation 4.4

11: Compute H(ε) using Equation 4.5

12: end for

13: Return the maximum of all H(ε)

4.4.5 The influence of the step bound parameter on FEM

To investigate the influence of the step bound on the FEM measure, 30 independent

runs of the FEM algorithm were performed for six different step bounds on each of the

seven one-dimensional problems used before (in Section 4.4.3). The results are shown in

Table 4.5 and the mean values are plotted in Figure 4.11. From Table 4.5 and Figure

4.11 it can be seen that two of the functions, Ackley and Griewank, have the highest

mean FEM values at the smallest step bound of 0.01 (1% of the domain). These are
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Table 4.5: Mean FEM ruggedness values for one-dimensional benchmark functions using

different step bounds. Standard deviations are shown in parentheses below the means.

Function Mean FEM values for different step bounds (proportion of range)

0.01 0.025 0.05 0.075 0.1 0.25

Table Legs 0.059 0.122 0.206 0.276 0.331 0.403

(±0.004) (±0.000) (±0.003) (±0.004) (±0.005) (±0.018)

Spherical 0.463 0.479 0.501 0.522 0.546 0.664

(±0.013) (±0.015) (±0.010) (±0.012) (±0.009) (±0.011)

Griewank 0.785 0.619 0.528 0.528 0.545 0.669

(±0.014) (±0.015) (±0.014) (±0.010) (±0.012) (±0.010)

Step 0.512 0.691 0.596 0.547 0.549 0.671

(±0.005) (±0.006) (±0.011) (±0.012) (±0.010) (±0.012)

Rastrigin 0.543 0.705 0.879 0.901 0.881 0.863

(±0.009) (±0.007) (±0.007) (±0.008) (±0.007) (±0.008)

Ackley 0.876 0.837 0.796 0.786 0.767 0.754

(±0.010) (±0.013) (±0.011) (±0.011) (±0.010) (±0.015)

Schwefel 2.26 0.486 0.577 0.709 0.782 0.820 0.862

(±0.010) (±0.010) (±0.008) (±0.008) (±0.010) (±0.008)

the functions that display the most ruggedness on a micro scale (evident in the plots

of Figure 4.8). Other functions, such as Rastrigin and Schwefel 2.26 have higher FEM

values at larger step bounds and these are the functions that display ruggedness on a

more macro scale. It is interesting to observe in Figure 4.11 how the FEM values of the

three functions Step, Griewank and Spherical converge on the same FEM value from

step bound 0.1 (10% of the domain). It is very clear from the plots in Figure 4.8 that

these three functions have identical macro shapes. The values of FEM at step bounds of

0.01 and 0.1 therefore capture different information on the ruggedness of the functions.

To capture these different levels of detail of ruggedness, it is proposed that two FEM

measures are used: one for estimating micro ruggedness and the other for estimating

macro ruggedness. These two measures are summarised in Table 4.6.
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Figure 4.11: Plot of mean FEM ruggedness values for one-dimensional benchmark functions

using different step bounds.

Table 4.6: Proposed measure of ruggedness based on random walks

Proposed Measure Parameters Result: range

and

interpretation

Efficiency

FEM0.01

FEM0.1

First entropic

measures of

micro and

macro

ruggedness.

Number of steps in

the random walk, ns.

Step bounds of 1%

and 10% of the range

of the domain used

for FEM0.01 and

FEM0.1, respectively.

[0, 1]: where 0

indicates a flat

landscape and 1

indicates

maximal

ruggedness.

ns+ 1 function

evaluations and

20 entropy

calculations

(for each

discrete ε).
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4.5 Estimating the presence of funnels

If one views the entire range of the fitness landscape of a one-dimensional problem, such

as those illustrated in Figure 4.8, many of the standard benchmark functions have an

underlying unimodal structure with a single funnel. A funnel in a landscape is a global

basin shape that consists of clustered local optima [151]. Of the functions illustrated in

Figure 4.8, only the Table Legs and Schwefel 2.26 functions have more than one funnel.

This section investigates a measure of funnels.

4.5.1 Dispersion metric

Lunacek and Whitley [84] introduced the dispersion metric as a way of estimating the

global topology of fitness landscape (and indirectly, the presence of multi-funnels). The

dispersion of a sample of points refers to how spread out the points are (calculated as the

average pair-wise distance between all points in the subset), while the dispersion function

is based on the way in which the dispersion changes between a sample of solutions and

a subset of solutions that are better [84]. A low dispersion function is one where the

dispersion of a sample of points from the search space is larger than the dispersion of a

subset of better solutions. This phenomenon is illustrated through the Rastrigin function

in Figure 4.12. In the top left graph, a subset of the search space is considered below

some threshold fitness value (horizontal line). A sample of points in this subset will have

a larger dispersion (that is, they will be more spread out), than a sample of points below

some lower threshold value (graph on the top right), being a sample of better solutions.

On the other hand, a high dispersion function is one where the dispersion of a sample

of points is the same or less than the dispersion of a subset of better solutions. The

two lower graphs in Figure 4.12 illustrate the Schwefel 2.26 function as an example of a

high dispersion function. In the bottom left graph, a sample of points below the fitness

threshold (horizontal line) will have a lower dispersion than a sample of points below

the decreased fitness threshold in the bottom right graph. A low dispersion function is

one which probably has a single funnel (an underlying unimodal structure), while a high

dispersion function is one which is probably a multi-funnelled landscape (an underlying

multimodal structure).
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Figure 4.12: Replication of Figure 1 from [84] illustrating how a decrease in fitness threshold

will result in a decrease in dispersion in the case of the Rastrigin function (top graphs) and an

increase in dispersion in the case of the Schwefel 2.26 function (bottom graphs).

4.5.2 Proposed dispersion metric

The dispersion metric is a measure which captures the change in dispersion as the fitness

threshold is decreased (assuming a minimisation problem). Algorithm 4.4 outlines the

proposed approach to determine the dispersion metric of a problem and the properties of

the measure are summarised in Table 4.7. The main difference from Lunacek and Whit-

ley’s [84] formalisation is that solution vectors are normalised to allow for comparison

of dispersion metric values of problems with different domains. Note that step 6 of the

algorithm and the result in Table 4.7 refer to a pre-determined constant value (dispD)

for the dispersion of a large uniform sample of a search space normalised to [0, 1] in all

dimensions. For example, the constant for a 1-dimensional space, disp1 is approximately

0.33, while disp30 is approximately 2.22. In the most extreme single-funnel scenario, the

s best points are at the same position, so have a dispersion of 0, resulting in a dispersion

metric (DM) value of −dispD. In the most extreme multi-funnel scenario, s consists of
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Algorithm 4.4 Algorithm for computing dispersion metric (DM)

1: Draw a uniform random sample S of n points (position vectors) from the D-

dimensional search space of the problem.

2: Determine the fitness values of all n points in S.

3: Determine the subset S∗ of the best s points in S based on fitness values.

4: Normalise the position vectors of the points in S∗, so that the domain of the search

space is [0, 1] for all dimensions D.

5: Calculate disp(S∗) as the average pair-wise distance between the normalised position

vectors in the subset S∗.

6: Return DM = disp(S∗)−dispD, where dispD is a pre-determined constant value for

the dispersion of a large uniform random sample in a D-dimensional search space,

normalised to [0, 1] in all dimensions.

only two points and these best points are positioned on two diagonally opposite points

of the search space (any additional points in s will reduce the average pairwise distance).

The length of the largest diagonal of a unit hypercube is
√
D, so the largest possible DM

value is
√
D − dispD.

Table 4.7: Proposed dispersion metric (DM)

Proposed

Measure

Parameters Result: range and

interpretation

Efficiency

DM Dispersion

metric.

(1) Size of

sample, n, (2)

Size of

sub-sample of

best solutions,

s.

[−dispD,
√
D − dispD]: where

dispD is the dispersion of a

large uniform random sample

of a D-dimensional space

normalised to [0, 1] in all

dimensions. A positive value

for DM indicates the presence

of multiple funnels.

n fitness

evaluations,

sorting of n

elements

(nlog(n)) and
s2−s
2

Euclidean

distance

calculations.
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4.5.3 Testing dispersion metric

Initial experiments were conducted on five of the one-dimensional benchmark functions

illustrated in Figure 4.8, namely Table Legs, Spherical, Rastrigin, Ackley and Schwefel

2.26. The algorithm in Figure 4.4 was run using a sample size of 1000 with different

values of s (the size of the subset of best solutions) from 0 to 1000. For each value

of s the algorithm was run 30 times on each benchmark function and the mean DM

values were calculated. The results are plotted in Figure 4.13. Notice how the value for

DM converges on 0 when the percentage of the sample is 100 (s=1000, the full sample).

From Figure 4.13 it can be seen that when the subset is above 10%, the DM value of the

Table Legs and Schwefel 2.26 functions is positive. This is indicative of multiple funnels.

All of the other functions have negative values for DM, which is as expected. When

the percentage of the subset is too small, the multiple funnels of Schwefel 2.26 are not

detected, as all the best solutions will be in the single funnel containing the global best

(see Figure 4.12).
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Figure 4.13: Mean DM values for one-dimensional benchmarks, showing the influence of s

(the subset of best points in the sample).
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Initial experiments on one-dimensional functions show that a sensible value for parameter

s is approximately 10% of the full sample. This value is used in Section 4.7 when the

proposed measures from the chapter are evaluated on higher dimensional benchmark

problems.

4.6 Gradient measures

This section describes a proposed technique for estimating the steepness of gradients

in a fitness landscape based on a particular form of random walk, called a Manhattan

Progressive Random Walk, proposed in this study.

4.6.1 Proposed gradient measures

A walk through a multidimensional search space of a problem with fitness function f ,

starting at solution vector x(t) with T steps of equal size will result in the following

sequence of T + 1 points: x(t),x(t+ 1), ...,x(t+ T ). The norm of the gradient in fitness

space between steps t and t+ 1 can be estimated by:

g(t) =
f(x(t+ 1))− f(x(t))

dist(x(t+ 1),x(t))
. (4.7)

where dist(x(t+ 1),x(2)) is the Euclidean distance between points x(t+ 1) and x(t).

A walk of T steps gives T gradients:

g(t), g(t+ 1), ..., g(t+ (T − 1)).

Given this sequence of gradient measures, a number of values can be calculated: The

mean of all g(t) values would give an indication of the average estimated gradient between

neighbouring points on the walk, the standard deviation of g(t) values from the mean

would give an indication of how much variation there is in gradient estimations of the

walk, and the maximum of all g(t) values would quantify the biggest jump in fitness

between neighbouring points. The definitions of these are as follows:

• The average estimated gradient within the walk is defined as:

Gavg =

∑T−1
t=0 |g(t)|

T
(4.8)
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The absolute value of each g(t) is used, since the purpose is to quantify steepness,

regardless of the direction of the slope. If the absolute values were not used,

then negative slopes would cancel out positive slopes. If the walk provides a good

sample of neighbouring points in the search space, the Gavg measure will provide

an estimation of the gradient between neighbouring points across the whole search

space.

• The standard deviation of gradient measures from the mean would give an indi-

cation of how much gradient measures on a walk differ from the average and is

defined as:

Gdev =

√

∑T−1
t=0 (Gavg − |g(t)|)2

T − 1
(4.9)

The Gdev measure would be low if Gavg is a good estimator of the gradient on the

walk. If, however, the Gdev measure is high, then it would be indicative of ‘cliffs’

or sudden steep ‘valleys’ or ‘peaks’ that stand out in contrast to the rest of the

fitness landscape, or the presence of neutral areas that differ from the rest of the

fitness landscape.

• The highest estimated gradient within the walk is defined as:

Gmax = max{|g(t)|}, for t = 0, ..., T − 1 (4.10)

If the value of Gmax is much larger than the value of Gavg, it would be indicative of

cliffs or sudden steep valleys/peaks that stand out from the rest of the landscape.

If both Gmax and Gavg are high, then this would be indicative of a highly rugged

landscape where the fitness jumps are large.

Considered together, these three measures would provide some insight into the gradients

of a fitness landscape as they could be experienced by an optimisation algorithm.

4.6.2 Manhattan progressive random walk

The gradient estimation measures require a random walk with steps of equal size. En-

forcing steps of equal size across dimensions would involve computationally expensive
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Euclidean distance calculations. A simple approach to ensuring a walk with steps of

equal size is to take steps dimension-by-dimension, since a fitness change experienced

by a step across dimensions would be made up of the individual fitness changes experi-

enced in the individual dimensions. The progressive random walk proposed in Section

4.2.2 is based on steps of varying size. A modification of the progressive random walk is

proposed, called a Manhattan progressive random walk with the following general idea:

each step in a walk involves an offset of a predefined step size in only a single dimen-

sion, but this dimension is chosen randomly. The proposed algorithm for a Manhattan

progressive random walk is given in Algorithm 4.5 and Figure 4.14 shows sample walks

for a two-dimensional space. As with progressive random walks, Manhattan progressive

random walks change direction when they ‘hit’ a boundary of the search space.

-100

-50

 0

 50

 100

-100 -50  0  50  100

Figure 4.14: Plots of position vectors for four sample Manhattan progressive random walks

starting in different starting zones. All walks are 100 steps long of step size 10.

Using steps of equal size in only a single random dimension at a time, Equation 4.7

can be replaced by:

g(t) =
f(x(t+ 1))− f(x(t))

s
, (4.11)

where s is the parameter defining the size of all steps in the Manhattan progressive

random walk.
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Algorithm 4.5 Manhattan progressive random walk algorithm
...

The first 14 steps of the algorithm match the progressive random walk algorithm in

Algorithm 4.2
...

15: for all steps s from 1 to numSteps do

16: Generate a random dimension, rD, in range [0, . . . , n].

17: for all dimensions i in n do

18: if i equals rD then

19: if startingZonei equals 1 then

20: Set inc = −1

21: else

22: Set inc = +1

23: end if

24: Set walk[s]rD = walk[s− 1]rD + (inc ∗ s)
25: if walk[s]rD is out of bounds then

26: Set walk[s]rD = walk[s− 1]rD − (inc ∗ s)
27: Flip bit startingZonerD

28: end if

29: else

30: Set walk[s]i = walk[s− 1]i

31: end if

32: end for

33: end for

4.6.3 Normalising gradient measures

When calculating the gradient measure between any two points on a walk, it would be

desirable for two functions with the same shape within the search space to give the same

gradient measures. Consider the functions plotted in Figure 4.15. Although f1 in Figure

4.15(a) has a larger domain and smaller fitness range compared with Figure 4.15(b),

the gradient measures should give the same values for these two functions. To prevent
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Figure 4.15: Two functions with identical landscape shapes, but different search space do-

mains and ranges of fitness values.

.

gradient measures from being influenced by fitness ranges and function domains, fitness

differences and distances between points are normalised before calculating the gradient

measures. The fitness difference is divided by the range of fitness values as encountered

on the walk and the s is divided by the total Manhattan distance between the position

vectors defining the bounds of the search space. Equation 4.7 is therefore replaced by

the following:

g(t) =
(f(x(t+ 1))− f(x(t)))/(fmax − fmin)

s/(
∑n

i=1(x
max
i − xmin

i ))
(4.12)

where fmax and fmin are the maximum and minimum fitness values, respectively, as

encountered on the walk and xmax
i and xmin

i are the bounds of the search space for

dimension i.

4.6.4 Testing gradient measures on one-dimensional problems

To investigate the proposed gradient measures and the effect of the step size, the algo-

rithm was run on the one-dimensional functions defined in Table 4.3 and illustrated in

Figure 4.8. For each function the following was done:

• For the given function, eight step sizes of exponentially decreasing size were deter-

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Ruggedness, Funnels and Gradients 107

mined based on the range of x values, xRange = xmax − xmin, as follows:

xRange

211
,
xRange

210
,
xRange

29
,
xRange

28
,
xRange

27
,
xRange

26
,
xRange

25
,
xRange

24

A step size of xRange
211

implies that 2048 steps could fit into a single walk from the

minimum x value to the maximum x value, while a step size of xRange
24

implies that

only 16 steps would fit into a single walk across the one-dimensional space.

• For each of the eight step sizes, a walk was performed starting at the minimum x

value and the measures of Gavg, Gdev and Gmax were calculated for each walk.

The results are shown in Tables 4.8 to 4.10 and illustrated in Figures 4.16 to 4.18.

Table 4.8: Values of Gavg for the one-dimensional benchmark functions illustrated in Figure

4.8 for decreasing step sizes.

Function Gavg

xRange
211

xRange
210

xRange
29

xRange
28

xRange
27

xRange
26

xRange
25

xRange
24

Table Legs 2 2 2 2 2 2 2 2

Straight 1 1 1 1 1 1 1 1

Half Spherical 1 1 1 1 1 1 1 1

Spherical 2 2 2 2 2 2 2 2

Griewank 8.32 7.98 6.69 3 2.52 2 2 2

Step 2 2 2 2 2 2 2 2

Rastrigin 10.03 10.03 10.03 9.99 9.93 9.78 8.46 4.61

Ackley 13.8 13.77 13.75 13.63 13.57 2 2 2

Schwefel 2.26 5.85 5.85 5.85 5.85 5.84 5.79 5.86 5.81

For some functions, the step size has no effect on the Gavg measure. These are

the functions that do not have changes in gradient on a small scale, such as Table

Legs, Straight, Half Spherical and Spherical. For the rest of the functions, there is a

sufficiently small step size below which the Gavg measure ‘levels out’ (as seen on Figure

4.16), indicating that the step size is small enough to capture the fine changes in gradient.

The Gdev and Gmax measures (Figures 4.17 and 4.18) show a similar trend of ‘levelling
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Table 4.9: Values of Gdev for the one-dimensional benchmark functions illustrated in Figure

4.8 for decreasing step sizes.

Function Gdev

xRange
211

xRange
210

xRange
29

xRange
28

xRange
27

xRange
26

xRange
25

xRange
24

Table Legs 63.98 45.23 31.97 22.58 15.94 11.22 7.87 5.47

Straight 0 0 0 0 0 0 0 0

Half Spherical 0.58 0.58 0.58 0.58 0.58 0.58 0.59 0.6

Spherical 1.15 1.16 1.16 1.16 1.16 1.16 1.17 1.18

Griewank 4.32 4.16 3.63 2.05 1.69 1.14 1.14 1.16

Step 16.4 11.51 8.02 5.5 3.63 2.14 1.42 1.27

Rastrigin 4.99 5 4.99 4.99 5.04 4.71 4.19 2.81

Ackley 8.94 8.75 7.88 6.94 3.22 2.99 2.99 2.96

Schwefel 2.26 3.65 3.65 3.65 3.66 3.66 3.65 4.08 3.3

Table 4.10: Values of Gmax for the one-dimensional benchmark functions illustrated in Figure

4.8 for decreasing step sizes.

Function Gmax

xRange
211

xRange
210

xRange
29

xRange
28

xRange
27

xRange
26

xRange
25

xRange
24

Table Legs 2048 1024 512 256 128 64 32 16

Straight 1 1 1 1 1 1 1 1

Half Spherical 2 2 2 2 1.99 1.98 1.97 1.94

Spherical 4 4 3.99 3.98 3.97 3.94 3.88 3.75

Griewank 16.74 15.98 13.7 7.07 6.66 3.85 3.79 3.68

Step 199.68 99.84 49.92 24.96 12.48 6.24 5.76 4.44

Rastrigin 18.1 18.09 18.09 18.03 17.78 17.56 14.44 8.37

Ackley 37.33 36.91 34.64 30.9 24.4 11.62 10.57 8.83

Schwefel 2.26 13.24 13.24 13.24 13.24 13.22 13.15 13.76 11.75
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Figure 4.16: The effect of step size on the Gavg measure for the one-dimensional functions

defined in Table 4.3 and illustrated in Figure 4.8.

out’ below a given step size, with the exception of the functions that have vertical slopes

(Table Legs and Step). For these functions the maximum gradient continues to increase

as the step size decreases, moving closer to the true gradient, which is infinite. Due to

these high values, the graphs in Figures 4.17 and 4.18 are cut off at a maximum of 10 and

40, respectively, so that the differences between the values of the remaining functions

can be seen.

The Table Legs function was constructed as an extreme case and the gradient mea-

sures therefore take on unusual values. The Gavg measure is always exactly 2 and the

Gmax measure equals the number of steps taken in the walk. This is because every

gradient calculation on the walk will be zero except for the gradients in the two cases

where the function is vertical. At these intervals, the gradient will be equal to 1
s/xRange

.

For a general step size of xRange
2n

, the gradient will therefore be 2n, which is the number

of steps taken on the walk. The average gradient for the Table Legs function will be
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Figure 4.17: The effect of step size on the Gdev measure for the one-dimensional functions

defined in Table 4.3 and illustrated in Figure 4.8.

(2n ∗ 2)/(numberSteps), which for a number of steps of 2n, will result in a Gavg measure

of 2.

In viewing the effect of step size on the gradient measures, it is clear that the ideal

step size for capturing detailed gradient estimations is problem dependant. For the

Rastrigin function a step size of xRange
27

is small enough, but Griewank requires a much

smaller size around xRange
211

. For the suite of nine functions considered here a step size

of xRange
210

is sufficient for distinguishing between the detailed gradient estimations of the

problems. The Gdev measure shows a very similar profile to the Gmax measure as can

be see in Figures 4.17 and 4.18, with the main difference being that the Gmax quantities

are higher. It would therefore seem that either of these measures would be sufficient

for obtaining gradient information on a function, and that using both would not add

significant information. Considering only the Gavg and Gdev measures at step size xRange
211

,

the following is observed: where functions have vertical gradients with neutral segments
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Figure 4.18: The effect of step size on the Gmax measure for the one-dimensional functions

defined in Table 4.3 and illustrated in Figure 4.8.

between them (Table Legs and Step), the Gdev measure is greater than the Gavg measure.

For all other functions, the value of Gdev is less than Gavg. The relationship between

Gavg and Gdev therefore seems to be a significant factor in understanding gradients of

functions.

The final proposed gradient measures are summarised in Table 4.11. The next section

tests all of the proposed measures from this chapter on higher dimensional problems and

investigates the link to PSO performance.

4.7 Linking to PSO performance on higher dimen-

sional problems

The measures proposed in this chapter give results for one-dimensional functions that

are consistent with a visual inspection of the plotted functions. This section investigates
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Table 4.11: Proposed gradient estimation measures based on Manhattan random walks

Proposed Measure Parameters Result: range

and

interpretation

Efficiency

Gavg Average

estimated

gradient.

(1) Number of steps in

the Manhattan

progressive random

walk, ns, (2) step size,

s (a proportion of the

range of the domain).

A positive real

number, where a

higher value

indicates higher

average gradients.

ns + 1 function

evaluations and

ns gradient

estimations

(Equation 4.12).

Gdev Standard

deviation from

the average

estimated

gradient.

(1) Number of steps in

the Manhattan

progressive random

walk, ns, (2) step size,

s (a proportion of the

range of the domain).

A positive real

number, where a

higher value

indicates higher

deviations from

average gradients.

ns + 1 function

evaluations and

ns gradient

estimations

(Equation 4.12).

the proposed techniques on higher dimensional functions and also investigates the link

to PSO performance in terms of a traditional gbest PSO algorithm.

4.7.1 Experimental setup

This section describes the experimental setup in terms of the benchmark functions used,

the parameters for the performance landscape metrics and for the PSO algorithm.

Benchmark functions

A selection of the benchmark functions defined in Appendix A were used to test the

fitness landscape measures proposed in this chapter. Ackley, Griewank, Quadric, Rana,

Rastrigin, Rosenbrock, Salomon, Schwefel 2.26, Spherical and Step were used for dimen-

sion (D) 1 (not applicable for Rana and Rosenbrock), 2, 5, 15 and 30. The selected

functions exhibit different landscape profiles. Quadric and Spherical are both smooth,
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unimodal functions with low gradients. Rosenbrock is a smooth, relatively flat func-

tion, widely believed to be unimodal, but has been shown to have a local (non-global)

minimum for 4 ≤ D ≤ 30 [140]. Ackley, Griewank, Rana, Rastrigin, Salomon, Schwe-

fel 2.26 and Step are all rugged, although Griewank and Step are rugged on more of

a micro scale than the others. The only multi-funnel landscapes are Schwefel 2.26 and

Rana. Griewank, Rana, Rastrigin and Schwefel 2.26 have medium gradients, whereas

Ackley and Salomon have very steep gradients. Step has vertical gradients, but these

are interspersed by sections with zero gradients, so the average gradient is low.

Fitness landscape measures setup

The FEM0.01 and FEM0.1 were used to estimate micro and macro ruggedness of the

benchmark problems and were based on D progressive random walks of 1000 steps. The

DM measure was used to estimate the presence of funnels in the problem landscapes. DM

values were based on uniform random samples of 1000 points and involved subtracting

the dispersion of all solutions in the sample from the dispersion of the subset of 10%

fittest solutions. Gradients were estimated based on D Manhattan progressive random

walks of 1000 steps each with step size (xmax−xmin)∗D
1000

. The Gavg and Gdev measures were

calculated across all walks. Thirty independent runs of each fitness landscape measure

algorithm were performed on each function/dimension combination. Mean values over

the 30 runs were calculated and are reported in Table 4.12.

PSO performance

Each of the problem instances (function and dimension combinations) was solved using

the traditional gbest PSO algorithm (described in Section 3.2). The values for QMetric,

SSpeed and SRate (described in Section 3.3) were determined based on 30 independent

runs of each algorithm on each problem instance. The parameter values used for the

PSO algorithm were as follows: 50 particles, 0.72 inertia weight (w) and 1.496 for the

cognitive and social acceleration constants (c1 and c2). Results are shown in the last

three columns of Table 4.12.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Ruggedness, Funnels and Gradients 114

4.7.2 Results

This section discusses the results presented in Table 4.12 and assesses the value of the

fitness landscape metrics as predictors of PSO performance.

Fitness landscape metrics

The FEM ruggedness estimation values are in the range [0, 1], where 1 indicates maximal

ruggedness. Considering the values of FEM0.01 in Table 4.12, Ackley and Salomon have

the highest values, whereas Rana, Rastrigin and Schwefel 2.26 have the highest values

for FEM0.1, which is as expected. The dispersion metric (DM) is a measure of the

presence of funnels. Negative values for DM indicate a simpler global topology, while

larger values (positive values) are indicative of multi-funnels. All DM values in Table

4.12 are negative except for Rana and Schwefel 2.26 (above one dimension), which are

the only two multi-funnelled benchmark functions. Considering the average gradient

estimation values (Gavg), the following is observed:

• Spherical and Step functions have average gradients of approximately 2 in all di-

mensions, indicating that the basic shape of the function is the same even when

the search space becomes much larger.

• Salomon has the highest values for Gavg, while Quadric and Rosenbrock have the

lowest values indicating relatively flat landscapes.

• Griewank has fairly high average gradients in 1 dimension, but this decreases as

the dimension increases. This indicates a simpler landscape in higher dimensions

(explained in [81]).
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Table 4.12: Landscape measures alongside PSO performance metrics for selected bench-

mark functions f defined in Appendix A, Table A.1 in different dimensions (D). All

landscape measures are means over 30 independent runs and standard deviations are

shown in parentheses.

f D Landscape measures Performance metrics

FEM0.01 FEM0.1 DM Gavg Gdev QMetric SRate SSpeed

fack 1 0.874 (±0.008) 0.769 (±0.012) -0.296 (±0.003) 13.703 (±0.000) 8.870 (±0.000) 1.000 1.000 0.471

fack 2 0.858 (±0.008) 0.780 (±0.019) -0.357 (±0.008) 33.562 (±15.963) 22.058 (±10.451) 1.000 1.000 0.634

fack 5 0.867 (±0.004) 0.832 (±0.017) -0.333 (±0.017) 35.314 (±9.921) 20.681 (±5.808) 1.000 1.000 0.782

fack 15 0.870 (±0.003) 0.849 (±0.005) -0.288 (±0.018) 3.505 (±0.573) 2.969 (±0.388) 0.933 0.933 0.855

fack 30 0.870 (±0.002) 0.846 (±0.007) -0.270 (±0.018) 3.818 (±0.361) 3.094 (±0.267) 0.300 0.300 0.862

fgrw 1 0.788 (±0.012) 0.550 (±0.013) -0.289 (±0.003) 7.962 (±0.000) 4.152 (±0.000) 1.000 1.000 0.721

fgrw 2 0.652 (±0.046) 0.606 (±0.019) -0.358 (±0.011) 4.499 (±0.302) 3.209 (±0.215) 0.915 0.767 0.669

fgrw 5 0.478 (±0.032) 0.644 (±0.011) -0.358 (±0.012) 2.148 (±0.056) 1.312 (±0.035) 0.560 0.067 0.211

fgrw 15 0.343 (±0.009) 0.644 (±0.007) -0.338 (±0.013) 2.048 (±0.020) 1.206 (±0.012) 0.691 0.100 0.910

fgrw 30 0.286 (±0.006) 0.641 (±0.005) -0.328 (±0.015) 2.009 (±0.021) 1.201 (±0.012) 0.902 0.367 0.921

fqad 1 0.467 (±0.011) 0.543 (±0.010) -0.297 (±0.003) 2.000 (±0.000) 1.155 (±0.000) 1.000 1.000 0.942

fqad 2 0.519 (±0.065) 0.597 (±0.031) -0.329 (±0.010) 1.373 (±0.228) 0.963 (±0.128) 1.000 1.000 0.893

fqad 5 0.452 (±0.044) 0.567 (±0.021) -0.213 (±0.019) 0.906 (±0.093) 0.863 (±0.051) 1.000 1.000 0.906

fqad 15 0.355 (±0.020) 0.482 (±0.027) -0.087 (±0.021) 0.726 (±0.028) 0.739 (±0.028) 1.000 1.000 0.869

fqad 30 0.297 (±0.015) 0.379 (±0.025) -0.058 (±0.021) 0.597 (±0.020) 0.609 (±0.013) 1.000 1.000 0.711

fran 2 0.470 (±0.077) 0.816 (±0.014) 0.051 (±0.014) 12.801 (±3.403) 19.217 (±5.663) 0.187 0.000 0.000

Continued on Next Page. . .
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Table 4.12 – Continued

f D Landscape measures Performance metrics

FEM0.01 FEM0.1 DM Gavg Gdev QMetric SRate SSpeed

fran 5 0.692 (±0.014) 0.867 (±0.004) 0.069 (±0.017) 18.150 (±1.186) 19.740 (±1.684) 0.000 0.000 0.000

fran 15 0.730 (±0.005) 0.871 (±0.003) 0.044 (±0.021) 17.465 (±0.451) 16.779 (±0.430) 0.000 0.000 0.000

fran 30 0.739 (±0.003) 0.870 (±0.004) 0.032 (±0.021) 14.198 (±0.240) 12.613 (±0.238) 0.000 0.000 0.000

fras 1 0.542 (±0.009) 0.881 (±0.007) -0.212 (±0.010) 10.030 (±0.000) 4.996 (±0.000) 1.000 1.000 0.814

fras 2 0.591 (±0.020) 0.871 (±0.005) -0.224 (±0.015) 11.871 (±1.887) 5.925 (±0.943) 1.000 1.000 0.792

fras 5 0.602 (±0.014) 0.865 (±0.005) -0.239 (±0.016) 14.190 (±0.951) 7.078 (±0.474) 0.533 0.533 0.731

fras 15 0.596 (±0.008) 0.864 (±0.003) -0.232 (±0.014) 16.765 (±0.848) 8.395 (±0.423) 0.000 0.000 0.000

fras 30 0.591 (±0.005) 0.865 (±0.002) -0.227 (±0.016) 16.894 (±0.364) 8.387 (±0.179) 0.000 0.000 0.000

fros 2 0.372 (±0.073) 0.507 (±0.027) -0.220 (±0.015) 1.340 (±0.104) 1.700 (±0.203) 1.000 1.000 0.843

fros 5 0.467 (±0.022) 0.640 (±0.009) -0.311 (±0.014) 1.157 (±0.058) 1.378 (±0.066) 0.931 0.067 0.321

fros 15 0.411 (±0.012) 0.687 (±0.005) -0.280 (±0.014) 1.061 (±0.017) 1.199 (±0.019) 0.888 0.000 0.000

fros 30 0.350 (±0.008) 0.694 (±0.005) -0.273 (±0.014) 1.030 (±0.011) 1.134 (±0.010) 0.482 0.000 0.000

fsal 1 0.891 (±0.007) 0.802 (±0.011) -0.277 (±0.005) 61.860 (±0.000) 34.228 (±0.000) 1.000 1.000 0.574

fsal 2 0.888 (±0.005) 0.802 (±0.012) -0.346 (±0.007) 64.260 (±6.982) 41.572 (±7.486) 1.000 1.000 0.592

fsal 5 0.890 (±0.003) 0.807 (±0.007) -0.350 (±0.016) 51.397 (±2.504) 32.287 (±2.013) 0.000 0.000 0.000

fsal 15 0.889 (±0.002) 0.805 (±0.005) -0.324 (±0.011) 24.737 (±0.832) 18.815 (±0.616) 0.000 0.000 0.000

fsal 30 0.885 (±0.001) 0.802 (±0.004) -0.318 (±0.013) 20.055 (±0.565) 14.220 (±0.390) 0.000 0.000 0.000

fsch2.26 1 0.485 (±0.010) 0.822 (±0.008) -0.003 (±0.030) 5.853 (±0.000) 3.649 (±0.000) 1.000 1.000 0.816

fsch2.26 2 0.537 (±0.022) 0.846 (±0.007) 0.035 (±0.018) 7.640 (±0.848) 4.765 (±0.524) 0.967 0.967 0.819

fsch2.26 5 0.564 (±0.019) 0.852 (±0.005) 0.038 (±0.017) 9.731 (±1.122) 6.079 (±0.701) 0.400 0.400 0.826

Continued on Next Page. . .

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



C
h
ap
ter

4.
R
u
gged

n
ess,

F
u
n
n
els

an
d
G
rad

ien
ts

117
Table 4.12 – Continued

f D Landscape measures Performance metrics

FEM0.01 FEM0.1 DM Gavg Gdev QMetric SRate SSpeed

fsch2.26 15 0.576 (±0.010) 0.855 (±0.002) 0.021 (±0.017) 12.611 (±1.048) 8.028 (±0.664) 0.000 0.000 0.000

fsch2.26 30 0.577 (±0.007) 0.855 (±0.002) 0.024 (±0.022) 13.502 (±0.828) 8.927 (±0.553) 0.000 0.000 0.000

fsph 1 0.467 (±0.012) 0.543 (±0.012) -0.296 (±0.002) 2.000 (±0.000) 1.155 (±0.000) 1.000 1.000 0.845

fsph 2 0.509 (±0.068) 0.598 (±0.022) -0.358 (±0.010) 2.078 (±0.113) 1.199 (±0.065) 1.000 1.000 0.890

fsph 5 0.477 (±0.036) 0.643 (±0.013) -0.355 (±0.011) 2.059 (±0.048) 1.194 (±0.029) 1.000 1.000 0.916

fsph 15 0.347 (±0.011) 0.647 (±0.008) -0.338 (±0.010) 2.045 (±0.025) 1.204 (±0.015) 1.000 1.000 0.941

fsph 30 0.288 (±0.006) 0.642 (±0.006) -0.328 (±0.014) 2.004 (±0.016) 1.197 (±0.009) 1.000 1.000 0.940

fstp 1 0.515 (±0.006) 0.549 (±0.012) -0.293 (±0.003) 2.000 (±0.000) 11.375 (±0.000) 1.000 1.000 0.994

fstp 2 0.703 (±0.025) 0.618 (±0.025) -0.359 (±0.010) 2.110 (±0.140) 8.345 (±0.556) 1.000 1.000 0.988

fstp 5 0.812 (±0.017) 0.664 (±0.012) -0.357 (±0.015) 2.085 (±0.043) 4.955 (±0.102) 1.000 1.000 0.977

fstp 15 0.702 (±0.009) 0.662 (±0.007) -0.336 (±0.011) 2.073 (±0.018) 2.299 (±0.018) 1.000 1.000 0.972

fstp 30 0.614 (±0.007) 0.657 (±0.006) -0.330 (±0.012) 2.012 (±0.023) 1.441 (±0.017) 0.924 0.900 0.857
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• Rastrigin and Schwefel 2.26 show an increase in Gavg in higher dimensions, but

the average gradient measure for Ackley decreases in 15 and 30 dimensions. A

possible explanation is that the fitness range of Ackley stays the same regardless

of the dimension. In 30 dimensions, the fitness range is therefore the same as in

1 dimension and yet the search space has increased enormously. This results in

a relative “flattening” of the function compared to the other functions where the

fitness range grows with the increase in search space.

For most problems, there is a strong correlation between the Gavg and Gdev values. This

is illustrated in Figure 4.19(b). One exception is in the case of the Step function in

lower dimensions, where the vertical jumps in fitness result in high deviations, but low

averages. Another exception is for the Rana function, which has a higher deviation value

than average in dimensions 2 and 5, which is indicative of very steep gradients in places.

Figure 4.19 shows scatter diagrams of some of the landscape metrics visually illus-

trating the correlation (or lack of correlation) between different measures. There is only

a moderate correlation between FEM0.01 and FEM0.1 (Figure 4.19(a)), with some prob-

lems having high micro ruggedness and medium macro ruggedness and some having high

macro ruggedness and medium micro ruggedness. This diagram confirms that there is

value in having two measures of ruggedness as the measures capture different information

on problems. There is a much stronger correlation between the Gavg and Gdev measures

(Figure 4.19(b)), with only a few problems having relatively higher Gdev values than Gavg

values. More data is needed to confirm whether both measures are necessary to predict

PSO performance.

Figures 4.19(c) and 4.19(d) show the relationship between the two ruggedness mea-

sures and dispersion metric. There is a moderate correlation between macro ruggedness

and dispersion metrics, which is a measure of global structure. It is interesting to see

that there seem to be three distinct clusters: in the top right is the cluster of prob-

lems with high macro ruggedness and positive DM values (indicating multi-funnels). In

the bottom right are problems with high macro ruggedness and low DM values (simple

global structure), and in the bottom middle is a group of problems with medium macro

ruggedness and simple global structure.
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Figure 4.19: Scatter diagrams showing the correlation between some of the fitness landscape

measures. Spearman’s correlation coefficient values are given in parentheses in the sub-captions.
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Figures 4.19(e) and 4.19(f) show the ruggedness measures against gradient average.

In both cases there is a strong correlation. In general, problems with low ruggedness

have low gradient averages. What the scatter diagrams show (for macro ruggedness

in particular) is that the gradient average provides a way of distinguishing between

problems that have a high ruggedness. The gradient measures therefore provide different

information that could be useful in understanding PSO behaviour.

4.7.3 The link to PSO performance

This subsection investigates the link between the fitness landscape measures and PSO

performance. Figure 4.20 shows scatter plots of the ruggedness measures against QMetric

for the dataset in Table 4.12. Lower dimensional problems (1, 2 and 5D) are grouped into

a single plot and higher dimensional problems (15 and 30 D) are grouped into a second

plot. The correlation with QMetric ranges from weak for FEM0.01 in lower dimensions to

moderate for FEM0.01 in higher dimensions and FEM0.1 in lower dimensions, to strong

for FEM0.1 in higher dimensions. The correlations are not straight-forward, but there

are clusters of points in places. For example, in Figure 4.20(b), the instances with low

micro ruggedness (below 0.5) all have reasonable QMetric values (above 0.4).

In Figure 4.20(d), all instances with QMetric values of 0 (indicating algorithm failure)

have high macro ruggedness values (above 0.8). QMetric on its own only captures part

of the picture of performance. An alternative approach is to allocate each instance

into a performance class using a combination of QMetric, SRate and SSpeed values (as

described in Section 3.3.4). Figure 4.21 plots these classes against FEM measures with

each instance grouped according to dimension. The legend gives the class symbols in the

order in which they should appear (from worst to best performance) in each dimension

column if the measure is negatively correlated with performance. Although there are

exceptions, the triangles (always solved and fast) mostly appear lower than the circles

(not solved) in Figure 4.21, particularly in Figure 4.21(b).

Figure 4.22 shows the scatterplots of DM, Gavg and Gdev against QMetric. The plots

of DM show distinct clusters. For example, in the top left corner of Figure 4.22(a) there

is a group of problems that have low DM values (indicating simple global structure) and

have high QMetric values (mostly with value 1). In the higher dimensional plot, there
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Figure 4.20: PSO performance (measured as QMetric) plotted against FEM micro and macro

ruggedness measures for functions with low dimension and higher dimensions (D).

is a small cluster of problems that have positive DM values (indicative of multi-funnels)

and have a QMetric value of 0 (indicating algorithm failure). Both Gavg and Gdev have

strong correlations with QMetric in higher dimensions. It is very clear from Figures

4.22(d) and 4.22(f) that the PSO failed to solve higher dimensional problems with high

Gavg or Gdev values.

Figures 4.23 and 4.24 show the discretised performance classes against DM and gra-

dient measures. The circles in general appear higher in the diagram than the triangles,

particularly in the higher dimensions with the gradient measures.

These results show that there is some value in each of the fitness landscapes mea-

sures as part-predictors of PSO performance. Although all provide some information,
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Figure 4.21: Performance of a traditional PSO algorithm on benchmark problems plotted

against ruggedness measures.

none provide sufficient information to be used as a single measure for predicting PSO

performance.

4.8 Summary

This chapter proposed a number of fitness landscape metrics for continuous spaces: two

ruggedness measures based on entropy, a dispersion measure for predicting the presence

of funnels, and two fitness gradient estimation measures. These metrics were considered

alongside performance measures of a traditional PSO algorithm on a range of benchmark

functions. Results show that all measures show some correlation to PSO performance

and can therefore be used as part-predictors of PSO performance. To properly predict

PSO performance, more landscape features should be considered alongside these features

of ruggedness, funnels and gradients. The following chapter investigates measures related

to the searchability (evolvability) of a fitness landscape.
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Figure 4.22: PSO performance (measured as QMetric) plotted against dispersion metric and

gradient measures for functions with low dimension and higher dimensions (D).

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Ruggedness, Funnels and Gradients 124

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

1D 2D 5D 15D 30D

D
M

 (
di

sp
er

si
on

 m
et

ric
)

Dimension

Not solved
Almost solved

Sometimes solved
Always solved

Always solved and fast

Figure 4.23: Performance of a traditional PSO algorithm on benchmark problems plotted

against dispersion metric.
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Figure 4.24: Performance of a traditional PSO algorithm on benchmark problems plotted

against gradient measures.
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Chapter 5

Searchability

Research from this chapter has been submitted as an article to Swarm Intelligence journal

[86].

The notion of the evolvability of a fitness landscape with respect to a particular search

algorithm was discussed in Section 2.3.11. The term searchability was introduced to

broaden the scope of evolvability to encompass non-evolutionary based search techniques

and is defined as the ability of a given search process to move to a place in the landscape of

better fitness. This chapter further investigates techniques for analysing the searchability

of fitness landscapes. Section 5.1 describes some existing techniques for quantifying or

visualising evolvability. Two general techniques for measuring searchability are proposed

in Section 5.2. These techniques are general in that they do not assume a particular

search algorithm. Section 5.3 describes a technique for visualising searchability, called

fitness clouds, adapted to be based on particle swarm updates. A number of measures

based on fitness clouds are then proposed. Experimentation on the proposed techniques

on one-dimensional benchmarks is performed in Section 5.4 and Section 5.5 investigates

the link between searchability measures and PSO performance on higher dimensional

benchmark problems.

125
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5.1 Existing techniques for measuring evolvability

There are fitness landscape measures that were originally conceived as a way of quan-

tifying problem difficulty. Two such examples are Jones and Forrest’s fitness distance

correlation [68] and Borenstein and Poli’s information landscape hardness measure [15].

Both these techniques require knowledge of the global optima, and so cannot be used as

predictive measures of algorithm performance on unknown problems when used in their

original form. An alternative is to base the measure on a sample of the search space

and to use the fittest point from the sample in the place of the global optimum. This

implies a shift in focus away from measuring hardness to measuring searchability, since

the aim is no longer to quantify how well or badly the problem guides search towards the

optimum, but rather to quantify how well or badly the problem guides search towards a

place of better fitness.

There are also techniques that were specifically designed to visualise or quantify

evolvability. Three such techniques include fitness evolvability portraits [142], fitness

clouds [173] and fitness-probability clouds [83]. These all produce visual plots as output

(average evolvability metrics against fitness in the case of fitness evolvability portraits, a

scatterplot showing the relationship between the fitness values of parents and offspring

in the case of fitness clouds and a plot of fitness values against escape probability [94]

in the case of fitness-probability clouds). Although visual plots are potentially useful for

human analysis, numerical output is more useful for facilitating automated analysis of

problem features for performance prediction. The negative slope coefficient [162, 164] is

a numerical output measure that quantifies the evolvability of a fitness landscape and is

based on Verel et al.’s fitness cloud [173]. Similarly, accumulated escape probability [83]

is a numerical output measure that quantifies evolvability based on a fitness-probability

cloud, but is restricted to problems with a discrete representation.

This section describes fitness distance correlation [68], information landscape hard-

ness [15], fitness clouds [173] and negative slope coefficient [162, 164]. Sections 5.2 and

5.3 propose ways of adapting these techniques to be used to measure searchability of

continuous problems in the context of particle swarm optimizers.
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5.1.1 Fitness distance correlation

Fitness distance correlation (FDC) was introduced by Jones and Forrest [68] as a way of

predicting the performance of a GA on problems with known global optima and measures

the correlation between the fitness of solutions and the distance to the nearest optimum.

The basic premise is that for a landscape to be easy to search, fitness values should

decrease (increase) as distance to the optimum decreases in the case of minimisation

(maximisation) problems. This phenomenon in a landscape would provide local search

algorithms with information to guide search in the right direction.

Given a set of n points with associated fitness values F = {f1, . . . , fn} and distances

of each point to the nearest optimum in search space Dist = {d1, . . . , dn}, the FDC

is calculated as the covariance of F and Dist divided by the product of the standard

deviation of F and standard deviation of Dist, or:

FDC =
1
n

∑n
i=1(fi − f)(di − d)

σ(F )σ(Dist)
(5.1)

where f , d, σ(F ) and σ(Dist) are the means of F and Dist and the standard deviations

of F and Dist, respectively.

The FDC measure takes on values from –1 (perfect anti-correlation) to +1 (perfect

correlation), where low values are regarded as desirable for maximisation problems and

high values desirable for minimisation problems.

In the original study by Jones and Forrest [68], Hamming distance was used as the

measure of distance, but a number of subsequent studies have proposed alternatives,

such as the use of crossover to determine distance [3] and distance metrics between trees

for genetic programming problems [162]. Jones and Forrest [68] showed empirically that

the FDC measure is a reliable indicator of GA performance on a wide range of problems.

A significant limitation of the FDC technique is that the optimal solution(s) must be

known beforehand. It is also computationally intensive to compute (O(n2) [65]) and does

not reliably predict the difficulty of optimising the problem [3, 65, 106, 107, 121, 129].

Section 5.2.1 proposes a modified FDC measure to quantify searchability with respect

to local search, rather than problem hardness.
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5.1.2 Information landscape measures

Borenstein and Poli [14, 15] introduced the concept of an information landscape: a

matrix of all possible comparisons between solutions based on fitness values. Given

a fitness function f of a maximisation problem and a set X of discrete solutions, an

information matrix M is defined as having |X| × |X| entries mi,j = t(xi, xj), where

t(xi, xj) =















1 if f(xi) > f(xj)

0.5 if f(xi) = f(xj)

0 otherwise

(5.2)

For a minimisation problem, the definition changes to

t(xi, xj) =















1 if f(xi) < f(xj)

0.5 if f(xi) = f(xj)

0 otherwise

(5.3)

Figure 5.1 shows an example of the one-dimensional Rastrigin minimisation problem:

the fitness landscape is plotted in (a), with a sample of points and fitness values in

(b), and the associated information landscape in (c). Only a subset of the elements in

the information matrix (the bolded cells in Figure 5.1(c)) are necessary to define the

information landscape for the following reasons:

• The diagonal entries, being comparisons between the same solutions, are all 0.5,

so can be ignored.

• The matrix has symmetries with respect to the diagonal (since t(xi, xj) = 1 −
t(xj, xi)), so half of the matrix is unnecessary.

• The row and column of the optimal solution can be ignored, since it is known that

this point is better than all others.

In this way, the information matrix can be reduced to a vector to store only the relevant

entries in the matrix:

V = (v1, v2, . . . , vn)

where the elements of V represent all the elements of the information matrix, excluding

the unnecessary elements described above and |V | = n = (|X| − 1)(|X| − 2)/2.
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Figure 5.1: Rastrigin function in 1 dimension with associated information landscape based

on a sample of nine solutions, including the optimum at position 0. Only the bolded cells are

necessary to define the information landscape.

Borenstein and Poli [14, 15] proposed a number of calculations that can be performed

on information landscapes to estimate the quality and quantity of information available

to search algorithms. These are based on a measure called the distance between two

information landscapes V1 and V2, defined as

D(V1, V2) =
1

n

n
∑

i=1

|V1i − V2i| (5.4)
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A measure of GA hardness is then proposed based on the distance between the infor-

mation landscape of a problem and the information landscape of an ‘optimal’ landscape

(referred to as Vmax). An optimal landscape is one which is known to be easy for a

given search algorithm, or on which the algorithm will perform maximally. A modified

version of this information landscape hardness measure to quantify searchability, based

on a sample from a continuous search space, is proposed in Section 5.2.2.

5.1.3 Fitness cloud

Verel et al. [173] introduced a technique, the fitness cloud, for visualizing evolvability of

evolutionary search. The fitness cloud is a scatterplot showing the relationship between

fitness values of parents and offspring. For each string x in the search space, a neighbour

of x, called x′, is determined based on some genetic search operator. The fitness cloud

is then a scatterplot of all points (f(x), f(x′)) where f is the fitness function. The line

f(x) = f(x′) in the scatterplot forms the division between points with good evolvability

and points with bad evolvability. Points falling on the line are indicative of neutrality in

a fitness landscape, where two neighbouring points have the same fitness. For example,

the fitness cloud in Figure 5.2(a) gives a picture of better evolvability than the fitness

cloud in Figure 5.2(b) since the majority of the points are above the f(x) = f(x′) line

(dashed line on the graph). The shape of the fitness cloud scatterplot gives an indication

of the evolvability of the given search operator on the given problem, and so provides

some information on the difficulty of the problem.

Implementing a fitness cloud for a problem involves the following considerations:

• Sampling methodology: In the original study of fitness clouds [173] an exhaustive

enumeration of the discrete search space was used as the basis for the fitness clouds.

In most cases, it is not feasible to consider all possible solutions, so a methodology

for sampling the space is required. A uniform random sample can be drawn, or

some biased sampling methodology can be used, such as the Metropolis-Hastings

technique [85] for discrete search spaces, that gives more weight to solutions with

higher fitness, as proposed by Vanneschi et al. [164].

• Definition of neighbourhood: Neighbours of a sample of solutions could be defined

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5. Searchability 131

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

fit
ne

ss
 o

f n
ei

gh
bo

ur
s

fitness

(a) Good evolvability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

fit
ne

ss
 o

f n
ei

gh
bo

ur
s

fitness

(b) Bad evolvability

Figure 5.2: Fitness cloud examples. Fitness values are normalised to range [0, 1] where 0 is

the worst and 1 is the best fitness.

using a heuristic-independent notion such as Hamming distance, or could be based

on a particular search operator. If a definition of neighbourhood produces a num-

ber of possible neighbours, there is a further consideration of which neighbour to

choose as the basis for the fitness cloud. For example, Vanneschi et al. [164] used

fitness clouds in the context of genetic programming, where the neighbour was

chosen using tournament selection on a sample generated using a subtree mutation

operator. An alternative approach using fitness proportional selection was pro-

posed by Poli and Vanneschi [118]. Lu et al. [83] showed that the neighbourhood

sample size has a drastic influence on the fitness cloud generated and so argued

that fitness clouds are an unreliable characterisation of evolvability.

A technique using particle swarm optimisation updates for determining neighbours as

the basis of fitness clouds is proposed in Section 5.3.

5.1.4 Negative slope coefficient

Vanneschi et al. [162, 164] proposed a measure of problem difficulty called the negative

slope coefficient (NSC), which is based on the fitness cloud [173]. The NSC is a single

value that quantifies the ability of genetic operators to produce offspring that are fitter
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than the parents. The NSC is calculated by partitioning the fitness cloud into discrete

bins. Line segments are then defined between the centroids of adjacent bins. The

negative slope coefficient is calculated as the sum of all negative slopes between segments.

Vanneschi et al. [162, 164] hypothesised that the NSC measure could be used as a

predictive difficulty measure for problems: if NSC=0 the problem is easy, but if NSC<0,

the problem is difficult and smaller values indicate increased difficulty. The algorithm

for calculating NSC is given in Algorithm 5.1. Vanneschi et al.’s proposed NSC measure

was defined in the context of genetic programming, but a similar approach could be used

in other algorithmic contexts, and this is investigated further for PSO in Section 5.3.2.

A significant aspect of computing the NSC measure involves deciding on the bin

partitioning strategy (step 1 of Algorithm 5.1). In his thesis, Vanneschi [162] discussed

the following strategies:

• Bins of equal size: This strategy involves an arbitrary decision on the number of

bins and division of the range of fitness values into equal bin sizes. Figure 5.3(a)

illustrates this approach where 10 bins of size 0.1 are used. A problem with this

approach is that it can lead to bins containing too few points (bins with no points

are even possible). The centroids of the bins (averages) would then lack statistical

significance [162]. In a later study, Vanneschi et al. [166] showed experimentally

that this approach resulted in misleading NSC values for some well-known genetic

programming benchmark problems.

• Bins containing equal numbers of points: In this strategy, a decision is made on

the minimum number of points in a bin. The bisection algorithm is used to recur-

sively divide the bins into two bins containing the same number of points, until

the threshold minimum number of points in a bin is reached. This approach is

illustrated in Figure 5.3(b). A problem with this approach is that it can lead to

bins of a very small size, sometimes resulting in the slopes between centroids of

very small adjacent bins taking on very large values.

• Size-driven bisection: This approach divides the fitness cloud into bins taking both

the size of the bins and the number of points they contain into account. The

starting point is to partition the fitness cloud into two bins with equal numbers of
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(b) Bins containing equal numbers of points

Figure 5.3: Strategies for binning of fitness clouds.

points. After that, the bin with the larger size is partitioned in the same way. This

process is continued until a bin contains fewer points than a threshold number of

points or a bin becomes smaller than a minimum size. Vanneschi et al. showed that

size-driven bisection resulted in NSC values that were reliable indicators of problem

difficulty in the case of a number of genetic programming benchmark problems

[166] and real world pharmaceutical applications [163]. Poli and Vanneschi [118]

also provided a theoretical analysis of NSC (using fitness proportional selection of

neighbours and size-driven bisection) that suggests that the measure can broadly

discriminate between easy and hard genetic algorithm problems.

Although the usefulness of NSC with size-driven bisection has been demonstrated in

the context of genetic programming, there are a number of drawbacks. One difficulty

with the measure is the choice of parameters (the minimum number of points in a bin and

the minimum size of a bin), which can dramatically influence the measure. In particular,

it has been shown that the NSC measure tends to zero as the minimum number of points

in a bin increases [168]. A further major drawback of the NSC measure is that no way

has been found to normalise NSC values [162, 163, 166].

Section 5.3.2 proposes two NSC measures based on fitness clouds originating from

PSO updates, but in Section 5.4 it is shown that the proposed measures are not reliable

indicators of searchability.
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Algorithm 5.1 Algorithm for calculating the NSC measure based on a fitness cloud.

1: Partition the horizontal axis of the fitness cloud (the f(x) axis) into m segments

I1, I2, . . . , Im.

2: Partition the vertical axis of the fitness cloud (the f(x′) axis) into m segments

J1, J2, . . . , Jm so that each segment Ji contains all the f(x′) values corresponding

to the f(x) values in Ii.

3: For each partition Ii, compute the average fitness value, Mi.

4: For each partition Ji, compute the average fitness value, Ni.

5: Define segments S1, S2, . . . , Sm−1, such that Si is the segment from point (Mi, Ni) to

point (Mi+1, Ni+1).

6: For each segment Si, calculate the slope Pi using:

Pi =
Ni+1 −Ni

Mi+1 −Mi

7: Calculate the negative slope coefficient measure as:

NSC =
m−1
∑

i=1

ci

where

∀i ∈ [1,m) : ci =

{

Pi if Pi < 0

0 otherwise

5.2 Proposed general searchability measures

The FDC measure [68] was originally proposed as a measure of problem difficulty based

on the premise that search will be easier if there is high correlation between fitness val-

ues and the distance to the optimum in the case of minimisation problems and high

anti-correlation between fitness values and distance to the optimum in the case of max-

imisation problems. If the measure instead quantifies the correlation between fitness

values and the distance to the most fit value from a sample in place of the optimum,

then the focus of the measure is changed to searchability, rather than problem difficulty.
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In a similar way, Borenstein and Poli’s information hardness measure [15], originally con-

ceived as a measure of difficulty/deception, can be adapted to a measure of searchability

if used with the fittest value from a sample instead of the optimal value.

5.2.1 Fitness distance correlation as a searchability measure

The following adapted FDC measure is proposed for continuous problems. Given a

sample of n points, {x1, . . . ,xn}, from the search space, with associated fitness values

F = {f1, . . . , fn}, the fittest point in the sample is determined and denoted x∗. The

Euclidean distances of every point xi from x∗ are calculated and denoted as Dist∗ =

{d∗1, . . . , d∗n}. The fitness distance correlation searchability (FDCs) measure is defined as

the covariance of F and Dist∗ divided by the product of the standard deviation of F

and standard deviation of Dist∗. Since these are samples, this can be estimated as

FDCs =
1

n−1

∑n
i=1(fi − f)(d∗i − d∗)

√

1
n−1

∑n
i=1(fi − f)2

√

1
n−1

∑n
i=1(d

∗
i − d∗)2

(5.5)

which can be simplified to:

FDCs =

∑n
i=1(fi − f)(d∗i − d∗)

√

∑n
i=1(fi − f)2

√

∑n
i=1(d

∗
i − d∗)2

(5.6)

where f and d∗ are the means of F and Dist∗, respectively.

5.2.2 Information landscape negative searchability measure

Borenstein and Poli’s information landscape hardness measure [15] is based on the differ-

ence between the information landscape vector of a problem and a reference landscape

vector (called Vmax in the original study, but denoted using vr in this study). Using

a reference landscape to estimate hardness of a problem p with information landscape

vector vp requires the following:

• Calculation of the distance between vr and vp requires that the number of elements

in the two vectors must be the same. This means that the number of points in

solution space used to calculate the information landscape of the problem and the

optimal landscape must be equal.
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• The locations of solutions within the problem space of problem p and the reference

problem must coincide.

• The position of the optimum must be the same for both information landscapes,

otherwise the distance between the landscapes will not make sense as a measure of

hardness.

Implementing the information landscape hardness measure for continuous problems re-

quired a reference landscape that could match any problem in terms of dimensionality

and the domain of the solution space. In addition, the position of the global optimum

of the reference landscape should be able to be set to coincide with the estimated op-

timum of the problem landscape. The well-known Spherical function in D dimensions
(

f(x) =
∑D

i=1 x
2
i

)

can serve the purpose of such a reference landscape for the following

reasons:

• The Spherical function is an ‘optimal’ landscape in that it presents no negative

information for search: if any point xi has a lower fitness value than another point

xj, then xi will be closer to the optimum than xj, and this is true whatever the

domain.

• The Spherical function can be defined up to any dimension and is defined for all

values of x, so the domain can be set to match the domain of any real-encoded

problem.

• The Spherical function can be shifted so that the optimum is positioned anywhere

in the search space, so that it coincides with the estimated optimum of the problem

landscape. Given a point s = (s1, s2, ..., sD) in D-dimensional problem space, the

Spherical function with the optimum point shifted to position s is defined as:

f(x) =
D
∑

i=1

x2
i − 2sixi + si

2

Given the above, it is proposed that Borenstein and Poli’s information landscape hard-

ness measure [15] be adapted to an information landscape negative searchability measure

(ILns) using the approach outlined in Algorithm 5.2. The measure is referred to as a
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Algorithm 5.2 Algorithm for computing the ILns (information landscape negative

searchability) measure for a minimisation problem.

1: Generate a sample of n random points x1, . . . ,xn from a uniform distribution of the

search space of problem p with dimension D.

2: Determine the position of the fittest solution in the sample, x∗.

3: Construct vector vp representing the information matrix of the problem using Equa-

tion 5.3.

4: Define reference function fr as fr(x) =
∑D

i=1 x
2
i − 2x∗

ixi + x∗
i
2.

5: Using the same sample of points x1, . . . ,xn, and based on fr, construct vector vr

representing the information matrix of the reference landscape.

6: Compute ILns as the difference between vp and vr using Equation 5.4.

negative searchability measure because high values are indicative of bad information for

search.

5.2.3 Summary of proposed general searchability measures

The proposed general searchability measures are summarised in Table 5.1. Both measures

have linear time efficiency with respect to the size of the sample, but the ILns has

polynomial memory requirements with respect to the sample size.

5.3 Proposed PSO searchability measures

Fitness clouds and the NSC measure originated in the context of discrete problems solved

using evolutionary algorithms. This section investigates the notion of fitness clouds for

continuous problems solved using PSOs. Single-valued measures based on fitness clouds

are proposed, including a version of NSC based on PSO updates.
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Table 5.1: Proposed general measures of searchability

Proposed Measure Parameters Result: range and

interpretation

Efficiency

FDCs Fitness distance

correlation

searchability

measure.

size of

sample, n.

[−1, 1]: For a

minimisation problem,

1 indicates the highest

measure of

searchability (perfect

correlation between

fitness values and

distance to the fittest

solution).

n fitness evaluations

and n distance

calculations in

solution space.

ILns Information

landscape

negative

searchability

measure.

size of

sample, n.

[0, 1]: A value of 0

indicates maximum

searchability (no

difference from the

reference landscape

vector vr).

2n fitness evaluations

for problem and

reference landscape;

(n− 1)(n− 2)

memory requirement

for both information

landscape vectors.

5.3.1 Determining neighbours for fitness clouds using PSO

Constructing a fitness cloud for a given problem requires a sample of solutions and neigh-

bours of those solutions. In the original fitness cloud publication [173] two solutions are

regarded as neighbours if there is “a transformation related to a local search heuristic

or an operator which allows it to pass” from one solution to another. For PSO algo-

rithms, the search operators are in the form of position update equations. The two most

contrasting position update models in terms of exploration/exploitation would be the

cognitive-only model (using only the personal best as a guide) and the social-only model

(using only the global best as a guide). These two models are proposed for calculating

neighbours to be used as the basis for generating fitness clouds.

Given a problem in multi-dimensional floating-point space, the position of each par-
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ticle i at iteration t of the algorithm can be represented as xi(t). For the PSO models

used in this study, the swarm of particles at t = 0 are initialised with random positions

and at each iteration of the algorithm, the positions of particles are updated as follows:

xi(t+ 1) = xi(t) + vi(t+ 1) (5.7)

where vi(t+ 1) is the velocity of particle i at time (t+ 1). The two contrasting velocity

update models used for determining neighbours are as follows:

1. Cognitive-only PSO update [73]:

vi(t+ 1) = w · vi(t) + c1 · r1(t)⊙ (yi(t)− xi(t)) (5.8)

where w is the inertia weight, c1 is the cognitive acceleration constant, r1(t) ∼
U(0, 1)D where D is the dimension of the problem, ⊙ denotes element-by-element

vector multiplication, yi(t) refers to particle i’s personal best position, and yi(0) 6=
xi(0). The cognitive-only PSO update results in high exploration, since each par-

ticle is pulled in the direction of its own best position, resulting in essentially a

swarm of individual local search optimizers.

2. Social-only PSO update [73]:

vi(t+ 1) = w · vi(t) + c2 · r2(t)⊙ (ŷ(t)− xi(t)) (5.9)

where c2 is the social acceleration constant, r2(t) ∼ U(0, 1)D, and ŷ(t) refers to the

global best position at time step t, being the best solution from the personal best

positions of all particles. The social-only update model results in faster exploitation

than the cognitive-only update model, since all particles are pulled in the direction

of the same global best particle at each time step.

The approach used for constructing the fitness cloud of a minimisation problem using

PSO updates for determining neighbours is given in Algorithm 5.3. The basic idea is to

perform two PSO updates on the initial swarm of solutions to determine the neighbours.

The reason for two updates is that the initial velocity of all particles is zero. This means

that the inertia term (w ·vi(t) in Equations 5.8 and 5.9) will be zero for the first update

and will only come into effect on the second iteration of the algorithm. Note that steps
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Algorithm 5.3 Algorithm for constructing a fitness cloud of a minimisation problem

using PSO updates to determine neighbours of a sample.

1: Generate a sample swarm of n random solution vectors for iteration 0:

x1(0), . . . ,xn(0) from a uniform distribution of the search space of the problem.

2: Determine the fitness values of all solutions, f(x1(0)), . . . , f(xn(0)).

3: for each solution, xi(0), generate a personal best position, yi(0) as follows:

4: Generate a new position vector, z, a small distance from xi(0), but still in the

domain of the problem, by adding Gaussian noise with a standard deviation equal

to 10% of the range of the problem to each component of xi(0).
5: Determine the fitness value of the new position vector, f(z).

6: If f(z) < f(xi(0)), then set yi(0) = z.

7: Else set yi(0) = xi(0) and set xi(0) = z.

8: end for

9: Determine the global best solution of iteration 0, ŷ(0), selected from the personal

best positions yi(0).

10: Set all initial velocities vi(0) to zero.

11: For each xi(0), determine the velocity update vi(1) using the relevant PSO update

equation and calculate the iteration 1 positions: x1(1), . . . ,xn(1).

12: Determine the iteration 1 personal best solutions y1(1), . . . ,yn(1) and the global

best solution ŷ(1), only considering points in bounds as personal best and global

best candidates.

13: For each xi(1), determine the 2nd iteration velocity update using the relevant PSO

update equation and calculate xi(2) to form the neighbours of the initial sample.

14: Determine the fitness values of all neighbours, f(x1(2)), . . . f(xn(2)).

15: Normalise the fitness values of all points, f(x1(0)), . . . , f(xn(0)), and the fitness

values of all neighbours, f(x1(2)), . . . f(xn(2)), to the range [0, 1], where 0 is the

worst fitness and 1 is the best fitness.

16: Considering only those points that stayed within the bounds of the domain of the

problem in the 2nd position update, generate the fitness cloud from the normalised

fitness values.
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3 to 8 of Algorithm 5.3 is to ensure that the personal best particle is not the same as the

current particle in the first iteration. If this was not done, then both the first and second

terms of Equation 5.8 for the cognitive-only model will be zero, resulting in no particles

moving. The strategy used to prevent this is to generate a new random solution a small

distance from the initial solution (by adding Gaussian noise) and to swap these points

if the new solution is not better than the initial solution. In this way a personal best is

generated for each individual and the particles are able to build up some velocity.

Steps 9 to 14 are self-explanatory. In step 15, the fitness values of all initial points

and neighbours are normalised to the range [0, 1], where 0 is the worst fitness and 1 is the

best fitness (note that the best and worst fitnesses are as encountered during execution

of the algorithm, so that the algorithm can be run on unknown problems). Normalis-

ing the fitness values in this way effectively converts the minimisation problem into a

maximisation problem for the purposes of the fitness cloud visualisation and allows for

comparisons between fitness clouds of different problems. If the fitness cloud scatterplot

is drawn with the original fitness values of a minimisation problem, it will have to be

interpreted in the opposite way to the original fitness cloud approach. Points below the

diagonal would be regarded as having good searchability, rather than bad searchability.

This ‘upside down’ fitness cloud causes problems later with the computation of the neg-

ative slope coefficient measure, since a negative slope would indicate good searchability,

rather than bad searchability. To avoid this confusion and need to redefine terminology,

the fitnesses are converted to behave as for a maximisation problem.

Step 16 of Algorithm 5.3 highlights an issue particular to continuous domain problems

with boundary constraints. When optimizing such problems using PSO algorithms, there

is a good chance that particles will leave the search space, even in the first iteration of

the algorithm. This was proved theoretically to be the case even when initial velocities

are set to zero [58], particularly in the case of high-dimensional search spaces. To avoid

the fitness cloud containing fitness values corresponding to points outside the domain of

the problem, particles that leave the search space in the second iteration of the algorithm

are ignored. This means that the final fitness cloud could contain fewer fitness pairs than

the initial number of points in the sample.

Figure 5.4 shows two sample fitness clouds produced as a result of running Algo-
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Figure 5.4: Fitness clouds from sample runs of Algorithm 5.3 on two different 2D functions

based on cognitive PSO updates.

rithm 5.3 using the PSO cognitive updates on two-dimensional functions Spherical and

Rastrigin. Figure 5.4(a) clearly shows that for the Spherical function, in most cases, the

fitness improved when particles moved in the direction of their personal best position

for two iterations. In the case of the Rastrigin function, there were more particles that

decreased in fitness, as is evident by the larger number of points below the diagonal in

Figure 5.4(b).

5.3.2 Proposed measures based on fitness clouds

The first proposed single-valued measure based on a fitness cloud is simply the proportion

of fitness improving points in the cloud. This is termed the fitness cloud index (FCI)

and is calculated as follows: Given an initial sample of random solutions, and after

determining the neighbours given some algorithm operator/update strategy, the set of

valid points with neighbours are determined, where valid in the PSO context implies that

the points remain within the bounds of the search space after the update operations. The

FCI is defined as the proportion of fitness-improving elements in the valid set of points

and neighbours. More precisely: given a minimisation problem with a fitness function

f and a sample S = {x1, . . . ,xn} of n points with associated neighbours {x′
1, . . . ,x

′
n},

determine the subset Sv ⊆ S of nv valid points, such that Sv consists of all xi ∈ S where
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x′
i is within the bounds of the search space. The FCI measure is then defined as:

FCI =

∑nv

i=1 g(xi)

nv

(5.10)

where

g(xi) =

{

1 if f(x′
i) < f(xi)

0 otherwise
(5.11)

Note that the FCI measure is based on a simple comparison of neighbouring fitness values,

so does not require normalisation of the fitness values or conversion to a maximisation

problem (step 15 of Algorithm 5.3). By definition of being a proportion, the FCI measure

is normalised to the range [0, 1], where 0 indicates the worst possible searchability and 1

indicates perfect searchability of the problem with respect to the given search operator.

The two variations of FCI based on cognitive and social PSO updates are summarised

in Table 5.2.

The NSC measure, described in Section 5.1.4 is also a single measure based on a fitness

cloud, but involves a more intricate extraction of evolvability of different segments of the

fitness cloud. The cloud is divided into vertical bins, representing bands of fitness values.

A negative slope in a line segment from the centroid of one fitness band to another is

indicative of negative evolvability in that segment. The NSC measure therefore quantifies

the evolvability of portions of the fitness cloud, one at a time, and then adds the results,

ignoring portions with positive evolvability (positive slopes). Given a fitness cloud based

on PSO updates, Algorithm 5.1 can be used to compute the NSC measure. The notations

NSCcog and NSCsoc are used to denote the NSC measures derived using the cognitive and

social PSO update strategies, respectively. Features of these measures are given in Table

5.2. Disadvantages of the NSC measures are the many parameters and the unbounded

range of possible resulting values.

5.4 Experimentation on one-dimensional problems

This section performs experiments on the proposed measures of searchability summarised

in Tables 5.1 and 5.2. Simple one-dimensional benchmarks are used to see if the proposed
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Table 5.2: Proposed measures of searchability based on fitness clouds

Proposed Measure Parameters Result: range and

interpretation

Efficiency

FCIcog

FCIsoc

Fitness cloud

index based on

cognitive or

social PSO

updates.

(1) size of sample, n,

(2) inertia weight, w,

(3) acceleration

constants, c1 (for

FCIcog) or c2 (for

FCIsoc).

[0, 1]: indicating the

proportion of fitness

improving solutions

after two PSO updates.

3n fitness

evaluations,

2n solution

updates.

NSCcog

NSCsoc

Negative slope

coefficient

with

neighbourhood

defined using

cognitive or

social PSO

updates.

(1) size of sample, n,

(2) inertia weight, w,

(3) acceleration

constants, c1 (for

NSCcog) or c2 (for

NSCsoc), (4) minimum

number of points in a

bin, (5) minimum size

of a bin.

(−∞, 0]: A value of 0

indicates maximum

searchability (no

negative slopes between

centroids of bins in the

fitness cloud). Smaller

values indicate

decreased searchability.

3n fitness

function

evaluations,

2n solution

updates.

measures give expected results, based on a visual inspection of functions. Section 5.5

experiments with higher dimensional problems.

5.4.1 Benchmark functions

Five simple benchmark functions were selected with expected decreasing searchability.

These functions are defined and illustrated in Table 5.3. The expected results of each

of the proposed measures listed in Tables 5.1 and 5.2 on the benchmark functions are

discussed in this section.

The FDCs metric quantifies the correlation between fitness values and distance to the

fittest solution of the sample. For both the Straight and Absolute Value benchmarks,

this value should be at the maximum (+1) because the functions are linear. For the

Spherical function the value should be close to 1, because there is a positive correlation,
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Table 5.3: One-dimensional benchmark functions with different searchability characteristics.

Straight f(x) = x,

where x ∈ [0, 100]
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but not a perfect linear correlation between fitness and distance. Rastrigin should give

a lower FDCs value than Spherical, but still an overall positive correlation due to the

underlying spherical shape of Rastrigin. It is expected that Hole-in-Mountain give a

negative value for FDCs due to the deceptive structure of the function.

The ILns measure quantifies the difference in the information landscape between the

benchmark and the shifted Spherical function. For the Straight, Absolute Value and

Spherical benchmarks, the ILns measure should be close to 0, as the information is iden-

tical to the shifted spherical function (recall that the information landscape captures

information on whether there are fitness differences between points or not, not the mag-

nitude of the difference). Since the optimum of the Spherical function is shifted to the

position of the fittest solution from a sample of the benchmark (and not necessarily the

optimum of the benchmark), there may be slight differences in the information land-

scapes, but these should be small. The ILns measure should increase for Rastrigin and

be closer to 1 for Hole-In-Mountain.

The FCI measures simply quantify the proportion of fitness improving elements in

the fitness cloud. Both FCI measures should yield values of 1 for the Straight function,

since if any particle is pulled in the direction of a better particle, regardless of whether

it is a global or personal best guide, the fitness can only improve. The Absolute Value

and Spherical functions should give good FCI values (close to 1). Some points may be

below the diagonal in the fitness cloud, since the fitness of a particle can deteriorate

if it moves in the direction of a better particle, but overshoots the global minimum

and moves to a position higher than the original position. In the case of the Rastrigin

function, due to the ruggedness, there are many opportunities for the fitness of a particle

to deteriorate if pulled in the direction of a better particle, regardless of whether it is a

global or personal best guide, so lower FCI values are expected. The Hole-in-Mountain

function should result in low searchability for the social-only PSO model (lower FCI

values) and relatively high searchability for the cognitive-only PSO model. For the

social-only model, assuming one of the initial random points was positioned in the ‘hole’

(the global minimum plateau), all particles will be pulled towards the centre, resulting

in an increase (deterioration) of fitness for many particles. Although this is the desired

behaviour for a search algorithm (moving towards the global optimum), the measure

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5. Searchability 147

predicts searchability, not optimality. In the case of the cognitive-only model, the simple

linear slopes that define most of the Hole-in-Mountain function should give a similar,

but slightly worse, searchability profile to the Absolute Value benchmark.

For the same reasons as described above, both NSC measures should result in 0

for the Straight function (perfect searchability), values close to 0 (small negative) for

Absolute Value and Spherical, and smaller values (larger negative) for Rastrigin. The

Hole-in-Mountain should have a smaller (larger negative) NSCsoc value than the other

functions, but a reasonably good NSCsoc value.

5.4.2 Experimental setup

For each benchmark problem, 30 independent runs of the algorithms for computing each

measure were performed. The calculations of all measures were based on sample sizes

of 500 points (randomly sampled from a uniform distribution). For the PSO updates,

the inertia weight (w), cognitive acceleration (c1) and social acceleration (c2) were set to

the popular values of 0.7298, 1.496, and 1.496, respectively [32], a parameter choice that

guarantees convergence [160]. For the NSC measures, size-driven bisection was used for

partitioning the fitness clouds with the minimum number of points in a bin set to 30 and

the minimum size of a bin set to 5% of the range of the problem.

5.4.3 Results and discussion

Table 5.4 lists the mean measures over 30 runs for each benchmark function with standard

deviations shown below the means in parentheses. A study of the values reveals the

following:

• The values for the FDCs and ILns measures are in line with the expected values

as discussed in Section 5.4.1. Relatively low standard deviations for these first two

measures also indicate that the measures are fairly reliable.

• The values for the FCIcog are in line with the expected values. Slightly lower FCIsoc

values for the Absolute Value and Spherical functions indicate that more particles

overshot the minimum to higher fitness values, most probably due to the higher
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Table 5.4: Values of the FDCs, ILns, FCI and NSC measures for the one-dimensional problems

shown in Table 5.3. Values are averages over 30 runs, each with 500 random initial points.

Standard deviations are given below each value in parentheses.

Function FDCs ILns FCIcog FCIsoc NSCcog NSCsoc

Straight 1 0 1 1 -2.272 -0.235

(±0) (±0) (±0) (±0) (±2.382) (±0.312)

Absolute 1 0.002 0.962 0.897 -6.833 -12.777

Value (±0) (±0.002) (±0.008) (±0.015) (±4.287) (±5.292)

Spherical 0.968 0.002 0.965 0.897 -11.587 -19.832

(±0.002) (±0.001) (±0.010) (±0.016) (±6.004) (±5.998)

Rastrigin 0.709 0.254 0.781 0.800 -8.509 -13.974

(±0.018) (±0.011) (±0.023) (±0.017) (±5.180) (±7.999)

Hole-in- -0.401 0.795 0.918 0.405 -0.622 -2.914

Mountain (±0.052) (±0.031) (±0.016) (±0.047) (±0.862) (±1.589)

velocities (based on larger distances to the global best compared to the personal

best). As predicted, the Hole-in-Mountain function has high searchability for the

cognitive-only PSO model (0.918) and low searchability for the social-only PSO

model (0.405). To see this difference visually, the fitness clouds of sample runs

on the Hole-in-Mountain function are plotted in Figure 5.5. It is clear from the

plots that the cognitive PSO updates result in high levels of searchability, while

the social PSO updates result in low levels of fitness improvement.

• All of the NSC values are negative, which is not in line with the expected values.

For example, the Straight function should have perfect PSO searchability and yet

the mean NSC values are negative, which is supposed to indicate areas of negative

searchability. It is also unexpected that the Spherical function have the lowest

NSC measures across all problems. The reasons for these unexpected results are

investigated further in Section 5.4.4.
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(b) Social PSO updates

Figure 5.5: Fitness clouds from sample runs on Hole-in-mountain function for different PSO

update strategies.

5.4.4 Investigation into NSC measure for PSO updates

The experiments on simple one-dimensional problems show that the NSC values did not

give results as predicted. This section investigates possible reasons why.

Variable sizes of samples

A possible reason for the unexpected NSC values could be the variable sample size. As

discussed in Section 5.3, many particles can leave the search space even during the first

few iterations. Step 16 of Algorithm 5.3 for constructing a fitness cloud, simply ignored

all points outside the search space after the second position update. To illustrate the

impact of this, fitness clouds of sample runs of the algorithm on the Straight function

are plotted in Figure 5.6. The scatterplots highlight the high variability in the number

of points that remain within the boundaries of the search space. In the case of the

social-only PSO only 84 out of the initial 500 points stayed within the bounds after

two iterations and could be used in the fitness cloud. The reason more particles leave

the search space in the case of the social-only model is that the velocities are based on

the difference between the positions of each particle and the global best particle. Since

these distances are in most cases large with respect to the search space in the first few
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(b) Social PSO (84)

Figure 5.6: Fitness clouds from sample runs on the Straight function for different PSO update

strategies starting with 500 initial points. Number of points remaining in the search space are

given in brackets.

iterations of the algorithm, the velocities will be high. This problem of variable numbers

of fitness cloud pairs could be a reason for the unpredictable NSC values.

To investigate this further, a simplified example is used to illustrate how the NSC

measure can be affected by a slight change in the number of points on which the calcula-

tion is based. Consider the one-dimensional Rastrigin benchmark function with domain

[−3, 3] as illustrated in Figure 5.7. In the figure, the fitness values have been normalised

to the range [0, 1], where 1 is the best fitness and 0 is the worst fitness. A sample of ten

x positions are shown as black dots on the graph. The global best position is the particle

with a normalised fitness of 0.9. Assuming a social-only PSO model for determining

neighbours, all particles will be pulled in the direction of the the global best particle.

Due to the acceleration coefficient and the random factor, this could result in small or

large velocity updates. If the velocity update is small, a particle will be pulled a short

distance in the direction of the global best particle, but if the velocity update is large a

particle will be pulled a large distance in the direction of the global best particle, some-

times overshooting the global best particle’s position. In some cases particles will move

beyond the boundaries of the search space, in which case these particles are ignored in

the calculation of the NSC measure. Assume that the ten particles move to new positions
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Figure 5.7: Rastrigin function with domain [−3, 3] as an illustrative example. The initial

random sample of solutions are indicated by black dots. New positions are indicated by dashed

arrows and grey dots.

after the PSO updates, as illustrated with the dashed arrows and grey dots in Figure

5.7. The grey dots therefore represent the neighbours of the initial points to be used as

the basis for the fitness cloud. Note that the global best particle from the initial sample

in this case did not move.

The fitness values of the initial points with the neighbours will result in the (f(x), f(x′))

pairs as given in Table 5.5 (sorted in ascending order based on the fitness of the initial

points (f(x))). Using size-driven bisection, the points are first divided into two bins with

equal numbers of points. After that, the largest bin is repeatedly divided into two bins

with equal numbers of points until some threshold minimum number of points or range.

In this simplistic example, the threshold number of points is 2 and the range is 0.1. As
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Table 5.5: Fitness pairs corresponding to the points and neighbours as illustrated in Figure

5.7 with resulting bins and midpoints.

f(x) f(x′) 1st bin partitioning 2nd bin partitioning bin centroids

0.1 0.6 1 (range = 0.15) 1 (range = 0.15) (0.18, 0.56)

0.15 0.7

0.2 0.2

0.2 0.4

0.25 0.9

0.4 1 2 (range = 0.5) 2 (range = 0.2) (0.5, 0.57)

0.5 0.3

0.6 0.4

0.7 0.5 3 (range = 0.2) (0.8, 0.7)

0.9 0.9

shown in Table 5.5, this sample of points will result in three bins when the process of bin

partitioning stops as the first largest bin (bin 2) cannot be partitioned further due to the

minimum threshold of 2 points in a bin. The centroids of each of the three bins are then

calculated. The NSC measure is calculated as the sum of all negative slopes between

the centroids of adjacent bins. The slopes are illustrated in Figure 5.8(a), resulting in

an NSC value of 0.

In a slightly different scenario, one of the points leaves the search space and its

associated fitness pair (0.2, 0.4) is not part of the fitness cloud. This results in completely

different bin partitioning as shown in Table 5.6. The slopes associated with the new bin

centroids are illustrated in Figure 5.8(b), resulting in an NSC value of -2.67.

This simple example shows how the same problem on two different runs can take on

very different NSC values and could explain the unpredictable results of Table 5.4.

Fitness cloud modification: keeping particles in bounds

To avoid the situation where fitness clouds have variable numbers of points, a modifica-

tion to Algorithm 5.3 is proposed, where particles leaving the search space are repaired
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Table 5.6: Sorted fitness pairs corresponding to the points and neighbours as illustrated in

Figure 5.7 with one fewer fitness pair (0.2, 0.4), illustrating the effect on bin partitioning.

f(x) f(x′) 1st bin partition-

ing

2nd bin parti-

tioning

3rd bin partition-

ing

bin centroids

0.1 0.6 1 (range = 0.3) 1 (range = 0.3) 1 (range = 0.1) (0.15, 0.5)

0.15 0.7

0.2 0.2

0.25 0.9 2 (range = 0.15) (0.325, 0.95)

0.4 1

0.5 0.3 2 (range = 0.4) 2 (range = 0.1) 3 (range = 0.1) (0.55, 0.35)

0.6 0.4

0.7 0.5 3 (range = 0.2) 4 (range = 0.2) (0.8, 0.7)

0.9 0.9

by setting them at the boundary. The modified algorithm for constructing a fitness cloud

is given in Algorithm 5.4.

Given this change in the algorithm for constructing a fitness cloud, the definition of

the fitness cloud index (given in Equation 5.11) also changes slightly as follows: Given

a minimisation problem with a fitness function f and a sample S = {x1, . . . ,xn} of n

points with associated neighbours {x′
1, . . . ,x

′
n}, the FCI measure is defined as:

FCI =

∑n
i=1 g(xi)

n
(5.12)

where

g(xi) =

{

1 if f(x′
i) < f(xi)

0 otherwise
(5.13)

Revised experimentation on FCI and NSC with particles kept in search space

Based on the modified algorithm for constructing a fitness cloud, the experiments on the

one-dimensional problems were re-run and the results are summarised in Table 5.7.
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(a) Fitness cloud with 10 points (NSC = 0).
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(b) Fitness cloud with 9 points (NSC = -2.67).

Figure 5.8: Fitness clouds of 10 and 9 points. Filled in diamonds give the centroids of bins.

One less point (0.2, 0.4) in (b) results in more bins introducing a negative slope between the

2nd and 3rd centroids.

Algorithm 5.4 Modified algorithm for constructing a fitness cloud of a minimisation

problem using PSO updates to determine neighbours of a sample.

Steps 1 to 10 are the same as Algorithm 5.3.
...

11: For each xi(0), determine the velocity update vi(1) using the relevant PSO update

equation and calculate the iteration 1 positions: x1(1), . . . ,xn(1), repairing any po-

sitions outside the bounds of the search space on any dimension to be set on the

boundary for that dimension.

12: Determine the iteration 1 personal best solutions y1(1), . . . ,yn(1) and the global best

solution ŷ(1), selected from the set of personal best positions yi(1).

13: For each xi(1), determine repaired positions xi(2) based on calculated vi(2) velocity

updates (as in step 11).

14: Determine the fitness values of all iteration 2 positions, f(x1(2)), . . . f(xn(2)).

15: Normalise the fitness values of all initial points, f(x1(0)), . . . , f(xn(0)), and final

neighbours, f(x1(2)), . . . f(xn(2)), to the range [0, 1], where 0 is the worst fitness

and 1 is the best fitness, and generate the fitness cloud from the normalised fitness

values.
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Table 5.7: Values of the FCI and NSC measures for one-dimensional problems shown in Table

5.3, based on revised fitness clouds (with particles that leave the search space being repaired

by setting them at the boundary). Values are averages over 30 runs, each with 500 random

initial points. Standard deviations are given below each value in parentheses.

Function FCIcog FCIsoc NSCcog NSCsoc

Straight 1 1 -1.575 -4.874

(±0) (±0) (±1.602) (±2.460)

Absolute Value 0.963 0.878 -2.210 -4.634

(±0.008) (±0.014) (±2.190) (±4.345)

Spherical 0.963 0.881 -5.339 -11.099

(±0.008) (±0.011) (±2.751) (±5.181)

Rastrigin 0.776 0.799 -1.553 -2.828

(±0.018) (±0.017) (±1.813) (±2.186)

Hole-in-Mountain 0.929 0.410 -0.684 -4.588

(±0.011) (±0.047) (±2.136) (±11.253)

Considering the results in Table 5.7, the following can be observed:

• The FCI values are very similar to the previous values (shown in Table 5.4). This

indicates that the FCI values are not significantly affected if particles are allowed

to leave the search space or not.

• In contrast, the NSC values are very different from previous values. For example,

for the Straight function, the mean NSCsoc value decreased from -0.235 to -4.874.

To explain this, fitness clouds of sample runs on the Straight function are shown

in Figure 5.9. Figure 5.9(a) shows that there are a number of points that are

fairly high above the diagonal. This would cause the centroids of some segments to

be higher than neighbouring segments, resulting in negative slopes. This is more

evident in Figure 5.9(b) with many fitness cloud points with neighbouring fitness

1 (due to the high velocities in social PSO updates, many points end up at the

boundary minimum point).

It is clear from these results that the NSC measure is not a meaningful measure of
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(a) Cognitive PSO (NSCcog = -2.741)
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(b) Social PSO (NSCsoc = -4.712)

Figure 5.9: Fitness clouds from sample runs on the Straight function for different PSO update

strategies, where particles are kept in bounds. Both clouds result in FCI values of 1, but

negative values for NSC.

searchability for fitness clouds generated by PSO updates, even when the number of

points in the fitness cloud is kept constant. For this reason the measure is not used

further in this study.

5.5 Linking to PSO performance on higher dimen-

sional problems

Results in the previous section show that the FDCs, ILns and FCI measures are meaning-

ful indicators of different aspects of searchability for the simple one-dimensional functions

given in Table 5.3. This section evaluates the measures on higher dimensional benchmark

problems. The performance of a standard PSO algorithm on the same benchmarks is

evaluated and the link between the searchability measures and actual algorithm perfor-

mance is investigated.
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5.5.1 Benchmark problems and expected results

A selection of the benchmark functions defined in Appendix A were used to test the

fitness landscape measures proposed in this chapter. Ackley, Griewank, Quadric, Rana,

Rastrigin, Rosenbrock, Salomon, Schwefel 2.26, Spherical and Step were used for dimen-

sions 1 (not applicable for Rana and Rosenbrock), 2, 5, 15 and 30. These functions cover

a range of characteristics. All functions are multimodal, except for Spherical, Quadric,

and Rosenbrock for dimensions 1 to 3. (Note that although the Rosenbrock function

is widely stated as unimodal, it has been shown to be multimodal for dimensions of 4

and higher [140].) Although Quadric (also known as Schwefel 1.2) is unimodal and is

equivalent to Spherical in 1 dimension, it has been shown to have a weak fitness distance

correlation (to the known optimum) in higher dimensions [104]. Functions Griewank

and Step are rugged, but the underlying shapes match the Spherical function, so the

fitness distance values should be similar to Spherical in higher dimensions. Likewise, the

underlying shape of Salomon is the same as the Absolute Value function, so should also

give relatively high fitness distance values. Rana and Schwefel 2.26 are multi-funnelled

and so should give lower fitness distance values in higher dimensions. The ILns measure

quantifies the difference between the information landscape of the problem and the in-

formation landscape of Spherical. Any problem that shares the same basic underlying

shape as Spherical should therefore have a low ILns measure. All functions that have

high (or low) FDCs values, should therefore have low (or high) ILns values. For the

FCI values, it is difficult to predict the effect of just two PSO updates on fitness values,

particularly in higher dimensions.

5.5.2 Experimental setup

For the FDCs calculations, uniform random samples of 500×D were used. This involves

500×D fitness calculations and 500×D Euclidean distance calculations. The ILns cal-

culations were based on samples of 5000 points in all dimensions. The size of the sample

was chosen to be constant due to the polynomially increasing memory requirements and

was set as the same sample size as FDCs in 10 dimensions. For the FCI measures,

samples of size 500 were used. For the PSO updates, the inertia weight (w), cognitive
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acceleration (c1) and social acceleration (c2) were set to the values of 0.7298, 1.496, and

1.496, respectively and particles leaving the search space were repaired by setting them

at the boundary (Algorithm 5.4).

For the performance metrics, each of the problem instances (function and dimension

combinations) was solved using the traditional gbest PSO algorithm (described in Sec-

tion 3.2). The values for QMetric, SSpeed and SRate (described in Section 3.3) were

determined based on 30 independent runs of each algorithm on each problem instance.

The parameter values used for the PSO algorithm were as follows: 50 particles, 0.7298

inertia weight (w) and 1.496 for the cognitive and social acceleration constants (c1 and

c2).

5.5.3 Searchability measures results

The results are summarised in Table 5.8. For each problem / dimension combination, the

four searchability measures, FDCs, ILns, FCIcog, and FCIsoc, are reported as mean values

based on 30 runs of the algorithm and the standard deviations are given in parentheses.

The values of FDCs in Table 5.8 range from values close to 1 for Spherical in low

dimensions, to as low as 0.005 for Rana in 30 dimensions. For most functions the value of

FDCs decreases as the dimension increases. For example, Spherical reduces from 0.968 in

1D to 0.566 in 30D. The fitness distance correlation coefficient of the Spherical function

based on the true optimum should stay close to 1 for any dimension [104]. Estimating

the optimum can, however, lead to lower FDCs values, if the estimated optimum is not

close to the true optimum. As a simplified example, consider the Spherical function in

1D with an inadequate sample of three points: x0 = −2, x1 = 1, x2 = 2, with associated

fitness values f0 = 4, f1 = 1, f2 = 4. The estimated minimum of this sample is therefore

at x1 and the associated distance values to x1 are d0 = 3, d1 = 0, and d2 = 1. The

resulting FDCs value is 0.756, which is not a reflection of the perfect bowl shape of the

Spherical function. In a similar way, a sample of 500× 30 points in 30 dimensions is an

inadequate sample and results in FDCs values that are lower than the true FDC values.
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Table 5.8: Searchability landscape measures alongside PSO performance metrics for

benchmark functions f defined in Appendix A, Table A.1 in different dimensions (D).

All searchability measures are means over 30 independent runs and standard deviations

are shown in parentheses.

f D Searchability measures Performance metrics

FDCs ILns FCIcog FCIsoc QMetric SRate SSpeed

fack 1 0.793 (±0.008) 0.152 (±0.003) 0.804 (±0.018) 0.876 (±0.012) 1.000 1.000 0.471

fack 2 0.774 (±0.010) 0.191 (±0.004) 0.770 (±0.014) 0.907 (±0.015) 1.000 1.000 0.634

fack 5 0.701 (±0.025) 0.243 (±0.012) 0.737 (±0.018) 0.935 (±0.012) 1.000 1.000 0.782

fack 15 0.506 (±0.025) 0.336 (±0.012) 0.727 (±0.019) 0.899 (±0.029) 0.933 0.933 0.855

fack 30 0.431 (±0.018) 0.367 (±0.009) 0.716 (±0.020) 0.853 (±0.044) 0.300 0.300 0.862

fgrw 1 0.967 (±0.002) 0.017 (±0.003) 0.929 (±0.011) 0.862 (±0.015) 1.000 1.000 0.721

fgrw 2 0.966 (±0.007) 0.037 (±0.015) 0.904 (±0.014) 0.906 (±0.014) 0.915 0.767 0.669

fgrw 5 0.903 (±0.034) 0.118 (±0.024) 0.843 (±0.015) 0.935 (±0.022) 0.560 0.067 0.211

fgrw 15 0.653 (±0.024) 0.276 (±0.018) 0.769 (±0.019) 0.840 (±0.062) 0.691 0.100 0.910

fgrw 30 0.567 (±0.027) 0.313 (±0.007) 0.703 (±0.018) 0.705 (±0.113) 0.902 0.367 0.921

fqdr 1 0.968 (±0.002) 0.000 (±0.000) 0.963 (±0.008) 0.875 (±0.015) 1.000 1.000 0.942

fqdr 2 0.648 (±0.012) 0.227 (±0.004) 0.906 (±0.012) 0.857 (±0.013) 1.000 1.000 0.893

fqdr 5 0.342 (±0.030) 0.376 (±0.008) 0.876 (±0.013) 0.828 (±0.018) 1.000 1.000 0.906

fqdr 15 0.115 (±0.013) 0.460 (±0.006) 0.861 (±0.015) 0.806 (±0.031) 1.000 1.000 0.869

fqdr 30 0.071 (±0.010) 0.476 (±0.005) 0.859 (±0.016) 0.802 (±0.019) 1.000 1.000 0.711

fran 2 0.017 (±0.063) 0.484 (±0.017) 0.727 (±0.018) 0.610 (±0.278) 0.187 0.000 0.000

Continued on Next Page. . .
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Table 5.8 – Continued

f D Searchability measures Performance metrics

FDCs ILns FCIcog FCIsoc QMetric SRate SSpeed

fran 5 0.012 (±0.035) 0.500 (±0.011) 0.701 (±0.022) 0.665 (±0.157) 0.000 0.000 0.000

fran 15 0.008 (±0.019) 0.499 (±0.007) 0.696 (±0.021) 0.645 (±0.102) 0.000 0.000 0.000

fran 30 0.005 (±0.011) 0.501 (±0.007) 0.698 (±0.017) 0.645 (±0.119) 0.000 0.000 0.000

fras 1 0.708 (±0.015) 0.252 (±0.003) 0.775 (±0.014) 0.795 (±0.016) 1.000 1.000 0.814

fras 2 0.641 (±0.062) 0.259 (±0.016) 0.743 (±0.020) 0.827 (±0.022) 1.000 1.000 0.792

fras 5 0.499 (±0.077) 0.317 (±0.024) 0.731 (±0.023) 0.807 (±0.060) 0.533 0.533 0.731

fras 15 0.393 (±0.042) 0.373 (±0.010) 0.714 (±0.020) 0.766 (±0.073) 0.000 0.000 0.000

fras 30 0.358 (±0.023) 0.381 (±0.009) 0.711 (±0.020) 0.675 (±0.107) 0.000 0.000 0.000

fros 2 0.546 (±0.022) 0.287 (±0.004) 0.894 (±0.012) 0.674 (±0.027) 1.000 1.000 0.843

fros 5 0.687 (±0.063) 0.249 (±0.023) 0.846 (±0.016) 0.806 (±0.055) 0.931 0.067 0.321

fros 15 0.555 (±0.081) 0.301 (±0.035) 0.756 (±0.018) 0.757 (±0.056) 0.888 0.000 0.000

fros 30 0.477 (±0.074) 0.335 (±0.022) 0.668 (±0.017) 0.615 (±0.101) 0.482 0.000 0.000

fsal 1 0.971 (±0.002) 0.076 (±0.000) 0.824 (±0.017) 0.870 (±0.014) 1.000 1.000 0.574

fsal 2 0.960 (±0.009) 0.083 (±0.004) 0.799 (±0.015) 0.900 (±0.014) 1.000 1.000 0.592

fsal 5 0.872 (±0.048) 0.162 (±0.024) 0.770 (±0.024) 0.929 (±0.021) 0.000 0.000 0.000

fsal 15 0.627 (±0.037) 0.285 (±0.016) 0.710 (±0.021) 0.840 (±0.061) 0.000 0.000 0.000

fsal 30 0.534 (±0.017) 0.323 (±0.008) 0.655 (±0.022) 0.673 (±0.077) 0.000 0.000 0.000

fsch2.26 1 0.317 (±0.032) 0.397 (±0.007) 0.821 (±0.013) 0.520 (±0.022) 1.000 1.000 0.816

fsch2.26 2 0.300 (±0.057) 0.405 (±0.005) 0.783 (±0.017) 0.523 (±0.036) 0.967 0.967 0.819

fsch2.26 5 0.171 (±0.113) 0.447 (±0.025) 0.771 (±0.018) 0.629 (±0.077) 0.400 0.400 0.826

Continued on Next Page. . .
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Table 5.8 – Continued

f D Searchability measures Performance metrics

FDCs ILns FCIcog FCIsoc QMetric SRate SSpeed

fsch2.26 15 0.080 (±0.078) 0.475 (±0.017) 0.770 (±0.016) 0.638 (±0.061) 0.000 0.000 0.000

fsch2.26 30 0.065 (±0.043) 0.485 (±0.016) 0.771 (±0.018) 0.643 (±0.070) 0.000 0.000 0.000

fsph 1 0.968 (±0.001) 0.000 (±0.000) 0.965 (±0.008) 0.874 (±0.013) 1.000 1.000 0.845

fsph 2 0.971 (±0.003) 0.012 (±0.005) 0.907 (±0.012) 0.913 (±0.013) 1.000 1.000 0.890

fsph 5 0.900 (±0.031) 0.124 (±0.023) 0.845 (±0.015) 0.939 (±0.027) 1.000 1.000 0.916

fsph 15 0.666 (±0.024) 0.281 (±0.009) 0.770 (±0.019) 0.842 (±0.053) 1.000 1.000 0.941

fsph 30 0.566 (±0.016) 0.316 (±0.008) 0.711 (±0.024) 0.712 (±0.066) 1.000 1.000 0.940

fstp 1 0.966 (±0.002) 0.029 (±0.004) 0.849 (±0.015) 0.829 (±0.019) 1.000 1.000 0.994

fstp 2 0.967 (±0.005) 0.024 (±0.006) 0.883 (±0.014) 0.904 (±0.017) 1.000 1.000 0.988

fstp 5 0.894 (±0.038) 0.134 (±0.019) 0.839 (±0.018) 0.935 (±0.024) 1.000 1.000 0.977

fstp 15 0.665 (±0.045) 0.280 (±0.013) 0.769 (±0.017) 0.863 (±0.060) 1.000 1.000 0.972

fstp 30 0.564 (±0.014) 0.311 (±0.010) 0.701 (±0.019) 0.691 (±0.093) 0.924 0.900 0.857
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The question then is whether there is value in the FDCs measure if the value is far

from the true FDC value. Investigating the values in Table 5.8, it would seem that

the relative FDCs values within each dimension are consistent. For example, the 1D

functions with high FDCs values (> 0.9) are Griewank, Quadric, Salomon, Spherical

and Step. In 30D, the group of functions with the highest FDCs values (> 0.5) are

Griewank, Salomon, Spherical and Step. The only function that is in the first group

and not in the second group is Quadric, which is equivalent to Spherical in 1D, but

has been shown to have a weak FDC in higher dimensions [104]. The functions with

the lowest FDCs values in 30D are Schwefel 2.26 (0.065) and Rana (0.005), which are

both multi-funnelled landscapes, so are expected to have the lowest values. It would

seem, therefore, that there is value in the relative FDCs values in the different dimension

groups.

In lieu of discussing the ILns values in Table 5.8, Figure 5.10(a) shows a scatterplot

of the FDCs values against the ILns values. It is clear that there is a very strong neg-

ative correlation between the FDCs and ILns values (Spearman’s correlation coefficient

of -0.990). This shows that although the two measures use very different approaches,

they are capturing essentially the same information on the fitness landscape: high fit-

ness distance correlation seems to imply an information landscape that is similar to the

Spherical landscape. Alternatively, an information landscape that is very different from

the Spherical landscape seems to imply low fitness distance correlation.

Figure 5.10(c) shows that there is also a strong correlation between the FDCs and

FCIsoc measures (Spearman’s coefficient of 0.799), but that this is not as strong as with

the ILns measure. This means that there is a link between these measures: when the

fitness and distance are highly correlated, PSO social updates will probably result in

fitness improvement. Figures 5.10(b) and 5.10(d) show that there is only a moderate

correlation between FDCs and FCIcog (Spearman’s coefficient of 0.546) and between

FCIcog and FCIsoc (Spearman’s coefficient of 0.454), reflecting that there is some limited

overlap in the information captured by these measures, but that each measure captures

something different.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5. Searchability 163

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1

IL
ns

 m
ea

su
re

FDCs measure

(a) FDCs and ILns measures (-0.990).
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(b) FDCs and FCIcog measures (0.546).
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(c) FDCs and FCIsoc measures (0.799).
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(d) FCIcog and FCIsoc measures (0.454).

Figure 5.10: Scatter diagrams showing the correlation between the different searchability

measures. Spearman’s correlation coefficient values are given in parentheses in the sub-captions.

5.5.4 PSO performance and searchability measures

The last three columns of Table 5.8 give the performance metrics, based on 30 runs of

the PSO algorithm. For a feature metric to be useful it should show some correlation

(or negative correlation) to performance. However, as discussed in Section 2.1, no one

technique can serve as a predictor of hardness. Figures 5.11(a) to 5.11(d) show the scatter

plots of the four searchability measures against the QMetric performance measure. All

measures show a moderate correlation or negative correlation to QMetric. The measure

that provides the strongest correlation is the FCIcog measure (Spearman’s correlation
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(a) FDCs measure (0.545).
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(b) ILns measure (-0.561).
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(c) FCIcog measure (0.662).
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(d) FCIsoc measure (0.466).

Figure 5.11: Scatter diagrams showing the correlation between the performance of a tradi-

tional PSO algorithm (as quantified by QMetric) and different searchability measures. Spear-

man’s correlation coefficient values are given in parentheses in the sub-captions.

coefficient of 0.662). The scatterplots in Figure 5.11 have a large proportion of values

at the top and at the bottom with a few points scattered in between. This is indicative

of distinct groups of problems based on success or failure of the algorithm in solving

the problem. QMetric on its own only captures part of the picture of performance,

not considering, for example, how quickly a solution is found. An alternative approach

to plotting a single performance measure is to allocate each problem instance solved

by the algorithm into a performance class using a combination of QMetric, SRate and
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SSpeed values (as described in Section 3.3.4). Figure 5.12 plots these classes against the

searchability measures with each instance grouped according to dimension.
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(c) FCIcog measure.
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(d) FCIsoc measure.

Figure 5.12: Performance of a traditional PSO algorithm on benchmark problems plotted

against different searchability measures.
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In Figure 5.12, if a given searchability measure is a good predictor of PSO perfor-

mance, then the order of symbols in a dimension column should match the order of

symbols in the legend. Note that for the ILns measure in Figure 5.12(b), the symbols in

the legend are displayed in reverse order, because the measure is a negative searchabil-

ity measure. In the one-dimensional case, all problems were solved in all cases and all

except one were solved fast. The problem that took longer than the others to solve on

average is the Ackley function. This could be because of the high level of ruggedness of

that function. For the two-dimensional case there is one function that was almost solved

(Rana) and two functions that were sometimes solved (Griewank and Schwefel 2.26).

The measures that provide the best predictive value for the 2D case are the FDCs and

ILns measures. The order of all symbols in the plot, except for one cross (Griewank),

match the legend. For the 5D problems, there are two problems that are not solved

(Rana and Salomon), indicated by the two circles. For the Rana function, all the search-

ability measures are mostly in line with this failure (the highest circle in Figure 5.12(b)

and the lowest circle in 5.12(a) and 5.12(c)). However, for the Salomon function, the

searchability measures are not indicative of the failure. The steepness of the gradients

for the Salomon function could be an alternative indicator of the failure in this case. For

the higher dimensional problems (15 and 30D), all searchability measures provide some

value as predictors of algorithm failure, although none predict all cases correctly. These

examples illustrate that the four searchability measures provide some insight into the

difficulty of problems for PSO algorithms, but that they do not provide the full picture

of what makes a problem hard for a PSO.

Unpredictability of FCI measures

Studying the data in Table 5.8 it can be seen that in some cases although the actual FCI

value does not correlate with performance, the standard deviation of the FCI measures

seems to capture some aspect of the difficulty of the problem. For example, considering

Rastrigin in 30 dimensions and, just below it in the table, Rosenbrock in 2 dimensions:

the algorithm fails completely on Rastrigin 30D, but very successfully solves Rosenbrock

2D. These two functions have very similar FCIsoc values (0.675 and 0.674), but the

standard deviation of the FCIsoc for Rastrigin 30D is almost four times the value of the
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standard deviation of the FCIsoc for Rosenbrock 2D. Similarly, in the case of the Salomon

function in 2 and 5 dimensions, the the FCIcog and FCIsoc values are very similar, but

the standard deviations are much larger for the 5D function, where the algorithm failed.

It would seem that the unpredictability of the FCI measures could be a part-indicator of

the difficulty of the problem. In other words, if multiple runs of two iterations of a PSO

algorithm result in highly variable searchability profiles, then this could be indicative of

a harder problem to solve for a PSO. A simple way of combining the standard deviations

of the FCI values of both update strategies is to take the mean. A proposed additional

measure is therefore the mean of the standard deviation of both FCI measures and

is referred to as the fitness cloud mean standard deviation or FCIσ. The measure is

summarised in Table 5.9. The parameters are the same as for FCIcog and FCIsoc, but the

range of the result is different. Given a sample of points in the range [0,1] (as for the FCI

measures), the minimum standard deviation is 0 and the maximum standard deviation

is approximately 0.509. In terms of computational efficiency, the FCIσ measure requires

a big enough sample in order to calculate the mean and standard deviation and this

value is set at 30.

Figure 5.13 shows the relationship between the proposed FCIσ measure and PSO

performance. The measure shows a strong negative correlation to QMetric (Spearman’s

correlation coefficient of -0.705). From Figure 5.13(b), the symbols in each dimension

column matches the legend for most cases, indicating that instances of the same dimen-

sion with higher FCIσ values in most cases perform worse than instances with lower

FCIσ.

Table 5.9: Additional proposed measure of searchability based on fitness clouds

Proposed Measure Parameters Result: range and

interpretation

Efficiency

FCIσ Fitness cloud

index mean

standard

deviation.

(1) size of sample, n,

(2) inertia weight, w,

(3) acceleration

constants, c1 and c2.

[0, 0.509]: indicating

the level of deviation

from the FCI mean

for both update

strategies.

30 × (3n fitness

evaluations, 2n

solution updates).
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(a) FCIσ against QMetric.
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Figure 5.13: Link between the performance of a traditional PSO algorithm and the FCIσ

measure on benchmark problems. The Spearman’s correlation coefficient between FCIσ and

QMetric is -0.705, indicating a strong negative correlation.

5.5.5 Discussion

The proposed FDCs and ILns measures can be used to quantify the general searchability

of an unknown optimisation problem. Results on a set of benchmark problems show

that there is a very strong negative correlation between these measures, which indicates

that the measures capture similar information. Both measures are based on initial ran-

dom samples, require a single parameter (the size of the sample) and have linear time

efficiency with respect to the size of the sample. The memory requirement of the ILns

measure, however, is polynomial with respect to the sample size, so it may not be a

suitable measure for higher dimensional problems that require large sample sizes. For

the benchmark problems considered, the FDCs and ILns values were moderately corre-

lated and negatively correlated with performance of a traditional gbest PSO algorithm
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(as measured by QMetric).

The FCIcog and FCIsoc measures quantify the searchability of a problem with respect

to cognitive and social updates in the initial stages of PSO search. For the benchmark

problems considered, both FCI measures were moderately correlated with performance

of a traditional gbest PSO algorithm (as measured by QMetric), with FCIcog showing

a stronger correlation than FCIsoc. The measure FCIσ quantifies the unpredictability

of the FCIcog and FCIsoc measures and showed a strong negative correlation to PSO

performance.

It is a premise of this study that no single problem feature on its own can serve

as a predictor of problem difficulty. Instead, a range of different features need to be

considered together to attempt to predict algorithm performance on an unseen problem.

In this scenario, the searchability measures proposed above all show potential value as

part-predictors of PSO performance if used with other measures for features such as

ruggedness, presence of funnels and gradients.

5.6 Summary

This chapter investigated a number of possible measures of searchability for continuous

landscapes. Two general measures of searchability are proposed as adaptations of mea-

sures previously quantifying deception for local search (fitness distance correlation and

information landscape hardness measure). In addition, a number of measures derived

from fitness clouds based on PSO updates are proposed. All measures were evaluated on

simple one dimensional functions to see if results were consistent with a visual inspec-

tion of the functions. Results of the negative slope coefficient based on PSO updates

were not consistent with expected results and this measure was therefore abandoned.

The remaining searchability measures were tested on higher dimensional problems and

all measures showed some relation to the performance of a traditional gbest PSO algo-

rithm. The proposed fitness landscape measures from this chapter and from Chapter 4

are summarised in Appendix B. The following chapter combines all the proposed fitness

landscape metrics with performance of different PSO algorithms and investigates the

possibility of predicting PSO performance based on these metrics.
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Chapter 6

Predicting PSO Performance

This chapter investigates the link between problem characteristics, as measured by the

feature metrics proposed in Chapters 4 and 5, and PSO algorithm performance. The

chapter starts by introducing the topic and summarising recent related work on the

general topic of linking optimisation problem characteristics to algorithm performance.

Section 6.2 then describes how the training and testing datasets were generated to serve

as the basis for the data mining exercise that follows. Section 6.3 presents the results of

predicting failure for the different PSO variations and Section 6.4 presents the results of

attempting to predict PSO performance.

6.1 Introduction

Predicting population-based stochastic algorithm behaviour on unknown problems is a

difficult task. Some algorithms even behave in an unpredictable way on known problems.

For example, in one early study of GAs, Mitchell et al. [98] attempted to understand

the GA by developing a class of simplistic functions designed to match GA behaviour.

These functions, called ‘Royal Road’ functions were based on the GA notion of building

blocks [47] and could be varied in different ways to tune the difficulty of the problem

for a GA. Despite the Royal Road functions being tuned into landscapes on which GAs

should perform well, experiments in a later study showed that a hill-climbing algorithm

significantly outperformed the GA on these functions [38]. Based on these unexpected

170
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results and further investigation into the behaviour of the GA, a new Royal Road func-

tion was designed on which an ‘idealised’ GA performed as expected [99]. This extended

study over a number of years by Forrest, Holland and Mitchell [38, 98, 99] highlights the

difficulty in understanding evolutionary and other population-based stochastic optimi-

sation algorithms and the problems that they are trying to solve. If a carefully designed

simplistic problem tailor-made to be solved by a GA results in unpredictable behaviour

when solved by a GA, then it is surely even harder to predict behaviour of a given

algorithm on a complex unknown problem?

Early work on the link between problem characteristics and algorithm performance

was not successful. In 1997, Eiben and Bäck [33] attempted to find a link between

the performance of an evolutionary algorithm (with differing recombination strategies)

and the characteristics of functions. The function characteristics they considered were

modality, separability, and (ir)regularity of the arrangement of local optima. Experi-

mental results showed no relation between these characteristics and the performance of

the algorithm. They concluded that “This is actually part of a bigger problem. At the

moment the evolutionary computation community does not have the appropriate ways to

describe and distinguish objective functions, or more generally problem types . . . it seems

that the presently maintained vocabulary does not capture those aspects of test functions

that are significant for the behavior of evolutionary algorithms.”[33].

Recent work in the field is showing more promising results. Some contributions

towards establishing links between problem characteristics and algorithm behaviour in-

clude:

• Smith-Miles [143] investigated the link between problem characteristics and algo-

rithm performance for the quadratic assignment problem (QAP). Neural networks

were successfully trained to predict the performance of three metaheuristics (tabu

search, iterated local search and min-max ant system) using QAP specific features

and fitness-distance metrics based on local search runs.

• Bischl et al. [12] used low-level problem features based on exploratory landscape

analysis (proposed by Mersmann et al. [93]) of the BBOB test suite [52] and then

successfully used one-sided support vector regression to predict which algorithms

(from a portfolio of algorithms) would perform well.
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• Muñoz et al. [101] developed a model using a neural network to predict perfor-

mance (measured in terms of function evaluations to find a solution) of a CMA-ES

algorithm [54]. The inputs to the model were a number of landscape features as

well as algorithm parameters. In this way the model could be used to select the

best predicted algorithm configuration of the problem.

The studies mentioned above have shown that links can be found between problem char-

acteristics and algorithm performance and that problem characteristics can be used to

predict or select the most appropriate algorithm from a set of possible algorithms. The

prediction models used are, however, black boxes that do not help in understanding the

link between problems and algorithms. A distinguishing feature of this study is that the

aim is not only to predict algorithm failure or performance, but also to understand the

algorithms better. By using decision tree induction, the kinds of problems that the algo-

rithms struggle with are highlighted and the resulting models therefore provide insights

into the algorithms themselves. Although this study is restricted to PSO algorithms, the

same techniques can be applied to studying other optimisation algorithms.

Another distinguishing feature of this study is that the techniques used to charac-

terise problems are based on general fitness landscape concepts, such as ruggedness and

searchability and are therefore widely applicable to any real-valued optimisation prob-

lems. In addition, because the techniques are based on general landscape features (rather

than low-level statistical features), most of the measures can be described in language

that relates back to fitness landscapes. For example, the FEM0.01 measure can be re-

ferred to as micro ruggedness. This means that the learning models that are generated

can be re-expressed in fuzzy language that can be reasoned about in fitness landscape

terms. This is demonstrated in Section 6.3.2.

6.2 Dataset generation

The 24 benchmark functions defined and illustrated in Appendix A were used as the

basis for building a dataset for investigating the link between fitness landscape features

and PSO performance. The functions were used as follows:
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• Functions Ackley, Alpine, Griewank, Quadric, Quartic, Rastrigin, Salomon, Schwe-

fel 2.22, Schwefel 2.26, Skew Rastrigin, Spherical, Step and Weierstrass were used

to define six problem instances for 1, 2, 5, 10, 15 and 30 dimensions for each of the

functions.

• Functions Bohachevsky, Levy, Pathological, Rana, Rosenbrock and Zakharov (not

defined for 1 dimension) were used in 2, 5, 10, 15 and 30 dimensions.

• Function Michalewicz was used to define instances for 2, 5, 10 and 30 dimensions

(the optimum value for other dimensions is not reported in literature).

• Functions Beale, Egg Holder, Goldstein-Price and Six-hump camel-back were used

for only 2 dimensions.

This resulted in a total of 116 problem instances.

The fitness landscape features were determined for each problem instance using the

ten proposed fitness landscape measures summarised in Appendix B, Table B. The fol-

lowing parameter values were used:

• For the FEM0.01 and FEM0.1 measures, D walks were performed each with 1000

steps. The total number of steps on all walks was therefore equal to 1000×D.

• For the DM measure, the total size of the sample was set at 1000 points, with the

sub-sample of best solutions set at 10% (100 points).

• For the Gavg and Gdev measures, D walks were performed each with 1000 steps.

The total number of steps on all walks was therefore equal to 1000×D. The step

size was set at (xmax−xmin)∗D
1000

, where xmax and xmin define the bounds of the search

space. The Gavg and Gdev measures were calculated across all walks.

• For the FDCs measure, the size of the sample was set at 500×D and for the ILns

measure, the size of the sample was set at 5000.

• For the FCIcog, FCIsoc and FCIσ measures, the size of the sample was set at 500.

For the PSO updates, the inertia weight (w), cognitive acceleration (c1) and social

acceleration (c2) were set to the values of 0.7298, 1.496, and 1.496, respectively.
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For each fitness landscape measure, 30 independent runs of the relevant algorithm was

performed and the mean value was calculated. The FCIσ measure is an exception, which

is the mean of the standard deviations of the 30 runs of the FCIcog and FCIsoc measures.

In this way, each problem instance was characterised by the dimension and ten fitness

landscape measures in the form of the following 11-valued characteristic vector:

(D,FEM0.01,FEM0.1,DM,Gavg,Gdev,FDCs, ILns,FCIcog,FCIsoc,FCIσ)

To determine the actual difficulty of the problems, each of the 116 problem instances

was solved using the seven PSO variations described in Section 3.2. The values for

QMetric, SSpeed and SRate (described in Section 3.3) were determined based on 30

independent runs of each algorithm on each problem instance. For all of the PSO varia-

tions 50 particles were used and the inertia weight and acceleration constants were the

same as for the FCI measures. For the local best PSO, a neighbourhood size of 2 was

used. The performance of each algorithm on each problem instance was discretised into

the five performance classes as described in Section 3.3.4, namely:

• S++: always solved and fast,

• S+: always solved,

• S: sometimes solved,

• S–: almost solved,

• F: not solved.

The full dataset was then divided into a training set consisting of 2/3 of the patterns

(77 patterns) and a testing set of 1/3 of the patterns (39 patterns). To ensure a similar

distribution of performance classes in the training and testing set, the dataset was divided

as follows: the full dataset was sorted by all performance classes and every third pattern

from the sorted list was selected for the testing dataset. The resulting training and

testing datasets are listed in Appendix C in Tables C.1 and C.2 respectively (re-sorted

by problem and dimension). In this way, the same function can appear in both the

training and the testing set, but in different dimensions. For example, Ackley appears in

dimensions 2, 5, 10 and 30 in the training set and in dimensions 1 and 15 in the testing

dataset, but Pathological appears only in the training set.
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6.3 Predicting algorithm failure

A simplified version of the performance prediction problem is to predict algorithm failure.

For the purposes of this study, failure is regarded as the F performance class, meaning

that the algorithm was not able to find the solution to within the fixed accuracy level

of the problem in any of the runs and was not able to almost find the solution, either

(as measured by QMetric). In this simplification of the problem, the classes S++, S+, S

and S– are regarded together as a single class, indicating some level of success, denoted

as S* (in the regular expression sense, where S* matches any of the success classes).

6.3.1 Decision tree induction

The C4.5 decision tree induction algorithm [122] was used to derive classification models

for algorithm failure. Decision trees were built using the WEKA tool [51], in particular

the WEKA version 3.6.9 J48 implementation of the C4.5 algorithm. The parameter

values used were a confidence threshold of 25% (the default) and a minimum number of

instances per leaf node of 5 (default in WEKA is 2). The confidence threshold affects

the level of pruning, where smaller values incur more pruning. Increasing the minimum

number of instances per leaf node in general has the effect of reducing the tree size and

possibly producing a more general model. The results are shown in Tables 6.1 to 6.2.

In each case, the entire training set (77 patterns) was used to generate the tree after

which the model was tested for accuracy using the testing set (39 patterns). For each

tree the resulting training and testing accuracies are reported below the tree. In the

visualisations of the tree models, the splitting values of real attributes are rounded off

to three decimal places. The total number of instances that reach each leaf node is

indicated in parentheses below the node. The number of instances that are incorrectly

classified by the node, if any, are indicated after a slash in the parentheses. For example,

the tree predicting failure for traditional gbest PSO in Table 6.1 can be interpreted as

follows:

• The model predicts that problems with a dimension of 1, 2 or 5 will be of class S*.

Thirty-seven of the training patterns fall into this category and all of these are in
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Table 6.1: PSO failure prediction models for four PSO variations.

Traditional gbest PSO Cognitive PSO

Training accuracy: 93.5% Training accuracy: 94.8%

Testing accuracy: 92.3% Testing accuracy: 92.3%

Social PSO Local best PSO

Training accuracy: 93.5% Training accuracy: 96.1%

Testing accuracy: 76.9% Testing accuracy: 92.3%
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Table 6.2: PSO failure prediction models for asynchronous gbest PSO, barebones PSO and

modified barebones PSO.

Asynchronous gbest PSO Barebones PSO

Training accuracy: 97.4% Training accuracy: 96.1%

Testing accuracy: 92.3% Testing accuracy: 87.2%

Modified barebones PSO

Training accuracy: 96.1%

Testing accuracy: 94.9%
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the class S*.

• The model predicts that problems with a dimension of 10, 15 or 30 and a Gdev

value ≤ 7.790 will be of class S*. Twenty-five of the training patterns fall into

this category and two of these are not of the class S* (incorrectly classified by the

model).

• The model predicts that problems with a dimension of 10, 15 or 30 and a Gdev value

> 7.790 will be of class F. Fifteen of the training patterns fall into this category

and three of these are not of the class F (incorrectly classified by the model).

Given the total number of training patterns of 77 and a total of five incorrectly classified

patterns by this model, this leaves 72 training patterns correctly classified, resulting in a

training accuracy of 93.5%. The accuracy of the testing data was 92.3% indicating that 36

out of the 39 testing patterns were correctly classified by the model. Before investigating

the particular failure prediction models for each algorithm, a general observation can be

made: The training and testing accuracies achieved by the models in Tables 6.1 to 6.2

show that it is possible to predict PSO failure based on fitness landscape features with

a fairly high degree of accuracy. In all cases, models were constructed with training

accuracy levels above 90%. For most algorithms, the testing accuracy was also above

90%, except for the social PSO and barebones PSO algorithms, with accuracies of 76.9%

and 87.9%, respectively. Further work would need to confirm whether these results can

be validated with other functions not used in this study. Section 7.2.1 elaborates on this

point.

Another general observation is that different fitness landscape metrics feature in the

failure prediction tree models of the different algorithms. This supports the idea that a

single feature cannot be used to predict problem difficulty. Of particular interest are the

attributes appearing higher up in the trees, as these features were chosen by the C4.5

algorithm as contributing the most to the information regarding the final class of S* or F.

For example, Gdev (deviation from the average gradient) featured as the most significant

factor in predicting failure for local best PSO, whereas FEM0.1 (macro ruggedness) was

the most significant in predicting failure for asynchronous global best PSO. It is worth

noting the prominence of the gradient measures (Gdev and Gavg) in many of the models,
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indicating that the PSO algorithm is strongly influenced by steep gradients.

When viewing the models, it is important to bear in mind that many of the landscape

measures are related. For example, the data in Section 4.7.2 showed that there was a

strong correlation between the FEM ruggedness measures and the gradient measures.

It is therefore possible that in the absence of one measure (say Gdev), another related

measure (such as Gavg or one of the FEM measures) would instead feature in the decision

tree models. This is an area of further work discussed in Section 7.2.

6.3.2 Fuzzy rule extraction

To understand specific decision trees, insight into the data for each feature metric is

required. For example, considering the traditional gbest PSO failure prediction model,

what does it mean if a Gdev value is greater than 7.790? The Gdev measure estimates

the deviation from the average gradient based on random walks. A large value would

therefore indicate very steep gradients in places and shallow gradients elsewhere, differing

from the average gradient. Without an understanding of the range of Gdev values, it is,

however, still not clear what it means if Gdev is greater than 7.790, because it is not

known whether 7.790 is a high value or not.

Table 6.3 lists summary statistics on the fitness landscape values from the full dataset.

These values are helpful for putting meaning to the splitting values in the decision trees.

Considering the summary statistics for Gdev, it can be seen that the distribution of

values is skewed to the left. Half of the instances have Gdev values below 3.207, despite

an overall range of values from 0 to 82.369. The splitting value in the traditional gbest

PSO decision tree, 7.790, is closest to the upper quartile, so a value greater than 7.790

could be regarded as covering the range of mostly high values for Gdev. The traditional

gbest PSO failure prediction model can therefore be interpreted in fuzzy terms as: failure

is predicted when the dimension is high (10,15 or 30) and there are high deviations in

the gradient. Using similar reasoning, Table 6.4 provides fuzzy rules for each of the

failure prediction decision trees. For each fitness landscape measure, the range of values

between the minimum and the lower quartile are regarded as ‘low’, values between the

lower quartile and median as ‘fairly low’, values between the median and upper quartile

as ‘fairly high’ and between the upper quartile and the maximum as ‘high’.
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Table 6.3: Summary statistics of the fitness landscape measure values from the full dataset.

Minimum Lower quartile Median Upper quartile Maximum

FEM0.01 0.237 0.390 0.533 0.738 0.891

FEM0.1 0.288 0.596 0.682 0.824 0.881

DM -0.359 -0.330 -0.287 -0.168 0.119

Gavg 0.000 2.000 2.901 11.377 64.260

Gdev 0.000 1.365 3.207 8.714 82.369

FDCs 0.002 0.315 0.567 0.766 1.000

ILns 0.000 0.210 0.307 0.377 0.506

FCIcog 0.614 0.727 0.774 0.854 0.965

FCIsoc 0.509 0.713 0.831 0.901 0.993

FCIσ 0.008 0.017 0.028 0.047 0.148

In some cases, although the trees differ slightly, the resulting failure classification

rules are the same. For example, in the case of both the traditional gbest PSO and the

barebones PSO models, the rules are logically equivalent.

6.3.3 Discussion

This section discusses the derived rules in Table 6.4. The question that is addressed is

whether the rules make sense in terms of the algorithm models.

In the case of the traditional gbest PSO, steep gradients can result in deception,

which can lead to algorithm failure. This is was explained in Section 4.1 and illustrated

in Figure 4.1, where a landscape with steep gradients has narrower basins of attraction

and a global attractor can pull particles away from the global optimum. The fuzzy rule

for traditional gbest PSO, however, predicts that failure only occurs when the dimension

is high and there are high deviations in the gradient. The reason that steep gradients

do not lead to failure in lower dimensions could be because of the size of the search

space. In lower dimensions, there is a higher chance of one of the 50 particles of the

swarm being initialised in the global optimum basin, or discovering that basin during

the search process. In higher dimensions, with the larger search space, this chance is
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Table 6.4: Fuzzy rules for predicting algorithm failure derived from each of the decision trees

in tables 6.1 and 6.2

PSO algorithm The algorithm is predicted to fail . . .

Traditional gbest PSO . . . if the dimension is high (10, 15, 30) and there are high

deviations in the gradient.

Cognitive PSO . . . if the dimension is medium to high (5, 10, 15, 30) and

the macro ruggedness is not very low.

Social PSO . . . if the average gradient is not low and the dimension is

high (10, 15, 30) and (the macro ruggedness is not high or

(the macro ruggedness is high and the dispersion metric

is very high)).

Local best PSO . . . if there are high deviations in the gradient and the

dimension is medium to high (5,10,15,30) and FCIcog is

low (many cognitive updates result in a deterioration in

fitness).

Asynchronous gbest PSO . . .macro ruggedness is high and the dimension is high (10,

15, 30) and (dispersion metric is high or (the dispersion

metric is not high and the average gradient is high)).

Barebones PSO . . . if there are high deviations in the gradient and the

dimension is high (10, 15, 30).

Modified barebones PSO . . . if FCIcog is low (many cognitive updates result in a de-

terioration in fitness) and micro ruggedness is fairly high

to high.

reduced, assuming that the swarm size remains the same.

The fuzzy rule for cognitive PSO failure is similar to the one for gbest PSO, but

instead focuses on macro ruggedness. This makes sense, because cognitive PSO does

away with the global attractor and is essentially a population of local search optimisers

(hill climbers). Even a low level of ruggedness could result in each particle being trapped

in its own local optimum. Recall that cognitive PSO has a previous velocity term, which

could help particles to escape small local optima. This could be a reason why macro
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ruggedness, rather than micro ruggedness, features as the main determiner of failure for

cognitive PSO.

For the social PSO failure prediction, the first part of the rule is ‘if the average

gradient is not low’. For the same reasons that traditional gbest PSO struggles with

steep gradients, it makes sense that social PSO struggles even more with high gradients,

because the model does not have the exploration component that comes with the personal

best attractor. The remainder of the fuzzy rule, however, cannot be explained logically.

Part of the rule states that the algorithm will fail ‘if the macro ruggedness is not high’,

which does not make sense. This illogical portion of the tree could be a reason for the

low testing accuracy of the model, compared with the other models.

In the case of the local best PSO fuzzy rule, the gradient deviation and dimension

feature as the top two factors, as is the case for traditional gbest PSO. The last part

of the rule, however, brings in FCIcog, which is a measure of the proportion of cognitive

updates that improve fitness. Local best PSO is similar to traditional gbest PSO in that

it incorporates both a neighbourhood attractor and a local attractor. The difference is

that the neighbourhood of lbest PSO is much smaller than for gbest PSO, so it is affected

by a smaller number of particles with each update. It therefore makes sense that if many

cognitive updates (which are local in nature) result in a deterioration in fitness, that

lbest PSO updates could also struggle to improve fitness and therefore progress towards

an area of improved fitness.

For the asynchronous gbest PSO the combinations that are predicted to result in

failure are either:

• high dimensional functions with high macro ruggedness and a high dispersion met-

ric (indicating the possibility of multiple funnels), or

• high dimensional functions with high macro ruggedness and high average gradients.

This means that for high dimensional problems, high macro ruggedness on its own is

not a problem, but when combined with multiple funnels or high average gradients, it is

predicted to be a problem for the algorithm. It is not understood why these particular

combinations are significant for asynchronous gbest PSO, but it is interesting that the

features that are important in other algorithms are combined for this algorithm.
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The fuzzy rule for barebones PSO failure is equivalent to the rule for traditional

gbest PSO. Both algorithms have a balance between exploration (in the form of the

gbest attractor) and exploitation (in the form of the pbest attractor), so it makes sense

that they are affected by the same fitness features.

For the modified barebones PSO, the combination of a low FCIcog value and fairly

high micro ruggedness is predicted to result in failure. The modified barebones PSO

algorithm puts more emphasis on the personal best position in a particle’s position

update than the barebones PSO algorithm. Both the FCIcog and micro ruggedness can

be seen as measures more focussed on the measurement of local neighbourhood, since the

FCIcog quantifies the fitness-improving ability of cognitive updates and FEM0.01 measures

ruggedness on a small scale. It therefore makes sense that these measures feature in the

decision tree for modified barebones PSO.

6.3.4 Summary

The data mining results for predicting PSO failure based on fitness landscape metrics

are very promising. Most of the resulting decision trees not only show value as predictors

of failure on unknown problems, but also provide insight into the algorithms themselves.

These insights are captured in fuzzy rules derived from the decision trees. For example,

one general observation is that the traditional gbest PSO and barebones PSO have a high

probability of failing on high dimensional problems that have steep gradients. Estimating

the gradient deviation metric is a computationally inexpensive task and could therefore

serve as a valuable pre-optimisation probe into an unknown problem.

6.4 Predicting algorithm performance

This section investigates the possibility of predicting algorithm performance based on

fitness landscape measures using decision tree induction, where performance is in terms

of the five performance classes (S++, S+, S, S–, F) described in Section 3.3. As with the

failure prediction, the training set was used to generate a decision tree for each algorithm,

which was then tested for accuracy using the testing dataset. The default parameters for

the J48 algorithm resulted in large trees, so parameters were selected to reduce the size
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of the trees and the occurrence of overfitting (15% confidence threshold and 5 minimum

number of instances per leaf node). The results are shown in Figures 6.5 to 6.11. For

each algorithm, the decision tree model is given with the associated training and testing

accuracies. The confusion matrix of the testing data is also given, which gives the actual

classes in the final column and the predicted classes in the first row. For example, for the

traditional gbest PSO performance prediction model in Figure 6.5, the confusion matrix

shows that there were 22 instances in the S++ class (19 + 3); 19 of these were correctly

predicted as S++ and 3 were incorrectly predicted as being in the S class.

Considering the training and testing accuracies of the models in Figures 6.5 to 6.11,

there is only one model, the cognitive PSO model, that achieved good accuracy on both

the training and testing data. This model is essentially an extension of the cognitive

PSO failure prediction model from Figure 6.1, where the left-most S* leaf node is split

to distinguish between the success classes S++, S and S–. The confusion matrix shows

that only 4 instances in the testing dataset were incorrectly classified: 1 instance of class

S was predicted as S–, 1 instance of class S– was predicted as F and 2 instances of class

F were predicted as S–. The entire tree is expressed using the following fuzzy rules:

• If the dimension is 1, then the problem is always solved and fast.

• If the dimension is 2 and the micro ruggedness is fairly low, then the problem is

sometimes solved.

• If the dimension is 2 and the micro ruggedness is fairly high, then the problem is

almost solved.

• If the dimension is medium to high (5, 10, 15, 30) and the macro ruggedness is

very low, then the problem is almost solved.

• If the dimension is medium to high (5, 10, 15, 30) and the macro ruggedness is not

very low, then the algorithm fails to solve the problem.

The final rule above corresponds to the rule for cognitive PSO failure in Table 6.4.

The only other performance prediction model that achieved reasonable testing ac-

curacy results is the modified barebones PSO model shown in Table 6.11. The tree is

expressed in the following fuzzy rules:
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Table 6.5: Global best PSO performance prediction model

Traditional gbest PSO performance prediction

Training accuracy: 77.9%

Testing accuracy: 66.7%

Confusion matrix (testing data)

Predicted classes

S++ S+ S S – F

19 0 3 0 0 S++

1 0 0 0 0 S+

4 0 3 0 1 S

2 0 0 0 0 S–

1 0 1 0 4 F

Table 6.6: Cognitive PSO performance prediction model

Cognitive PSO performance prediction

Training accuracy: 90.9%

Testing accuracy: 89.7%

Confusion matrix (testing data)

Predicted classes

S++ S+ S S – F

5 0 0 0 0 S++

0 0 0 0 0 S+

0 0 3 1 0 S

0 0 0 6 1 S–

0 0 0 2 21 F
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Table 6.7: Social PSO performance prediction model

Social PSO performance prediction

Training accuracy: 74%

Testing accuracy: 46.2%

Confusion matrix (testing data)

Predicted classes

S++ S+ S S – F

11 0 4 0 1 S++

1 0 0 0 0 S+

6 0 3 0 2 S

0 0 2 0 0 S–

2 0 3 0 4 F

Table 6.8: Local best PSO performance prediction model

Local best PSO performance prediction

Training accuracy: 75.3%

Testing accuracy: 64.1%

Confusion matrix (testing data)

Predicted classes

S++ S+ S S – F

20 0 3 0 0 S++

3 0 0 0 0 S+

2 0 1 0 0 S

2 0 0 0 1 S–

3 0 0 0 4 F
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Table 6.9: Asynchronous global best PSO performance prediction model

Asynchronous gbest PSO performance prediction

Training accuracy: 84.4%

Testing accuracy: 61.5%

Confusion matrix (testing data)

Predicted classes

S++ S+ S S – F

17 0 3 3 0 S++

1 0 0 0 0 S+

4 0 2 0 0 S

2 0 0 0 0 S–

1 0 1 0 5 F

• If FCIcog is low (many cognitive updates result in a deterioration in fitness) and

micro ruggedness is fairly low, then the problem is sometimes solved.

• If FCIcog is low and micro ruggedness is fairly high, then the algorithm fails to

solve the problem. (This rule corresponds with the rule for modified barebones

PSO failure in Table 6.4.

• If FCIcog is not low and ILns is not very high (the information landscape is not

very different from the information landscape of Spherical), then the problem is

always solved and fast.

• If FCIcog is not low and ILns is very high (the information landscape of the problem

is very different from the information landscape of Spherical), then the problem is

sometimes solved.

From the diagonal of the confusion matrix, 24 of the testing instances were correctly

predicted as S++, 1 was correctly predicted as S, and 3 were correctly predicted as F.

There were 11 incorrectly predicted instances.
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Table 6.10: Barebones PSO performance prediction model

Barebones PSO performance prediction

Training accuracy: 79.2%

Testing accuracy: 59%

Confusion matrix (testing data)

Predicted classes

S++ S+ S S – F

17 0 3 3 0 S++

1 0 0 0 0 S+

4 0 2 0 0 S

2 0 0 0 0 S–

1 0 1 0 5 F

The detail of the other performance prediction models are not discussed further due

to the low testing accuracy rates and the questionable validity of the models. The low

accuracy rates are probably due to insufficient data to cover all performance classes with

under-representation of certain performance classes in the training data. For example,

for the traditional gbest PSO, there are only two instances falling into performance class

S+ and six instances falling into performance class S–. This is insufficient data for

building models and for generalising well on unseen data. This issue is discussed further

in Section 7.2

6.5 Summary

This chapter investigated the feasibility of developing prediction models for PSO per-

formance. Using 24 benchmark functions with different dimensions, a dataset of 116

problem instances was generated. For each problem instance the algorithms for the ten
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Table 6.11: Modified barebones PSO performance prediction model

Modified barebones PSO performance prediction

Training accuracy: 77.9%

Testing accuracy: 71.8%

Confusion matrix (testing data)

Predicted classes

S++ S+ S S – F

24 0 1 0 1 S++

0 0 0 0 0 S+

4 0 1 0 2 S

0 0 2 0 0 S–

1 0 0 0 3 F

proposed fitness landscape measures were run. The fitness landscape metrics in addi-

tion to the dimension of the problem resulted in 11 features characterising each problem

instance. The 116 problem instances were then solved using the seven PSO variations

to result in seven actual performance classes for each instance. The dataset was divided

into a training dataset of 77 problem instances (2/3) and a testing dataset of 39 problem

instances (1/3).

The C4.5 decision tree induction algorithm was used to firstly produce prediction

models for algorithm failure or success (where success was defined as some level of success,

including finding a solution fairly close to the actual solution). Models with over 90%

accuracy for both the training and the testing data were achieved for the traditional

gbest PSO, cognitive PSO, local best PSO, asynchronous PSO and modified barebones

PSO. The two models that had lower testing accuracies were the barebones PSO model

that achieved a training accuracy of 96.1% and a testing accuracy of 87.2% and the social

PSO model with a training accuracy of 93.5% and a lower testing accuracy of 76.9%.

In addition to the value of the models as predictors of PSO failure, the models also
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provide insight into the algorithms themselves. Each decision tree was re-expressed as

fuzzy rules for predicting algorithm failure. For example, for the traditional gbest PSO

algorithm and the barebones PSO, the most important factors affecting algorithm failure

is the combination of problems with high deviations in the gradient and high dimensions.

While for the cognitive PSO, problems with medium to high dimensions that also have

medium to high macro ruggedness are predicted to fail. Although the accuracy of these

rules would need to be evaluated on ‘unseen’ problems (functions that were not part of

the study), these initial results provide valuable insights into the PSO algorithm. One

general observation that is evident from the models is that PSO performance is strongly

influenced by gradients. Understanding the kinds of problems that are difficult for an

algorithm makes it possible for each algorithm to be used on the problems that are

appropriate to the algorithm. In theory this means that every algorithm should have

its own set of problems on which to perform well, which essentially ties in with the

no-free-lunch theorems for search/optimisation [180, 181].

Secondly, the C4.5 algorithm was used to produce models for predicting five different

performance classes (one outright failure and four degrees of success) for each PSO

algorithm. The performance prediction models were less successful than the failure

prediction models. A possible reason for this is that the dataset was not big enough

and the success classes were not adequately represented in the training and testing

datasets. The one model that achieved good training and testing accuracy levels was

for the cognitive PSO algorithm (90.9% accuracy for training data and 89.7% for the

testing data). Future work is needed to ascertain whether a larger dataset with better

representation of all success classes will be able to produce better prediction models for

the other algorithms.
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Conclusions

This chapter summarises the main findings of the research. The objectives are revisited

and discussed and a number of areas for future work are outlined.

7.1 Summary of conclusions

The first objective of this research was to conduct a survey of existing techniques for a

priori characterisation of optimisation problems. To link the survey to fitness landscapes,

each technique was categorised in terms of the fitness landscape feature measured (called

the ‘Focus’ of the technique in the survey). For some techniques, the focus was not

obvious. For example, fitness distance correlation (Technique 7) is described by the

authors as a difficulty measure. Although the description of fitness distance correlation

is fairly straight-forward, it is not obvious what this translates to in fitness landscape

terms (with ‘difficulty’ not sufficient for capturing the focus). By tying each technique

to a fitness landscape feature, it became possible to identify gaps in terms of features

that do not have associated techniques for measuring them. In addition to the focus,

the ‘Search Independence’, ‘Assumptions’ and ‘Result’ descriptors all proved valuable in

terms of highlighting ways in which the existing techniques could be adapted for practical

use in different contexts.

The second objective was to develop a characteriser for continuous optimisation prob-

lems. Various techniques were investigated and the following fitness landscape metrics

191
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were proposed for characterising problems:

• The first entropic measures of micro and macro ruggedness: The adaptation of an

existing technique [170, 171, 172] for discrete landscapes required a random walk

in continuous spaces. A new algorithm was developed, called a progressive random

walk algorithm, that resulted in better coverage of the search space than a simple

random walk algorithm. The proposed walk used a neighbourhood structure based

on hypercubes rather than the usual hyperspheres. The implication of using a

hypercube-based neighbourhood is that computationally expensive Euclidean dis-

tances are avoided. In addition, a single measure of ruggedness was proposed based

on the maximum point of the entropy graph over different ε values (specifying the

level beyond which fitness values are regarded as different). Based on experiments

with different random walk step sizes, two ruggedness measures were proposed with

step sizes of 1% (micro ruggedness) and 10% (macro ruggedness) of the domain of

the problem.

• A dispersion metric for approximating the global landscape structure, or presence

of funnels: The only adaptation from the original metric [84] was to normalise the

distances for comparison between problems with different domains.

• Gradient average and deviation measures: These were new measures based on a

random walk with equal-sized steps in multi-dimensional space, called a Manhattan

progressive random walk.

• A fitness distance correlation searchability measure: The existing fitness distance

correlation measure [68] was used with the fittest solution from a sample instead

of the known optimum.

• An information landscape negative searchability measure: An existing measure

of hardness based on information landscapes [14, 15] was adapted for continuous

spaces using a shifted Spherical function as the reference landscape (a known easy

problem).

• A fitness cloud index based on cognitive or social PSO updates: The existing fitness

cloud technique [173] was implemented using PSO cognitive and social updates for
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determining neighbours. The fitness cloud index single measure was proposed as

the proportion of fitness-improving elements in the cloud.

• The fitness cloud index mean standard deviation: The final proposed measure

quantifies the average unpredictability of fitness-improving social and cognitive

updates.

All of the measures above meet the required properties as outlined in Section 1.4.2. Each

measure was shown to correlate in some way to PSO algorithm performance (possibly

only in some dimensions) and therefore show potential value as a part-predictor of PSO

performance. All measures can be used on unknown problems, only requiring a fitness

function and domain for each variable. The output of each measure is a single numerical

value and, finally, the computational work required to execute the algorithm for each

measure is significantly less than the computational work required to solve the problem

using multiple algorithms.

The third objective of this research was to develop prediction models for PSO per-

formance, with a first sub-objective of predicting PSO failure. Using the proposed mea-

sures in addition to the dimension of the problem on a range of benchmark functions

and dimensions, decision trees were induced for predicting failure for seven different PSO

algorithms. For most PSO models, very high levels of accuracy were achieved for pre-

dicting failure. The decision trees are not only valuable as predictors of failure, but also

provide valuable insight into the algorithms themselves in terms of the kinds of problems

that the algorithm would potentially struggle to solve. The objective of predicting dif-

ferent degrees of algorithm performance was less successful. The different performance

classes were not adequately represented in the dataset, providing insufficient patterns

for inducing accurate decision trees.

7.2 Future work

There are a number of areas of future work that have emerged as a result of this study.

These are briefly discussed below.
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7.2.1 Validating failure prediction models with other functions

The PSO failure prediction models presented in this study were the result of a preliminary

investigation into the feasibility of using fitness landscape measures to predict algorithm

performance and were based on a limited number of benchmark functions. Although one

set of problem instances was used to induce the decision trees and another set was used

to test the models, these two sets used the same set of functions to produce instances of

different dimensions. Further work should validate whether the models are accurate for

other functions not used in this study.

7.2.2 Predicting PSO performance with a larger dataset

As discussed in Section 7.1, the PSO performance prediction models did not achieve

adequate levels of accuracy. A more extensive dataset of additional problems with better

representation of the different performance classes is required to properly test whether

reasonable PSO performance prediction can be achieved. Although there are many

functions defined in literature, not all are suitable. Suitable functions would have known

optima, pose different levels of difficulty for PSO algorithms, and ideally be defined for

multiple dimensions. Although knowledge of the optima is not needed to generate the

fitness landscape measures, it is needed to generate performance data for the decision

tree induction.

7.2.3 Further analysis of proposed fitness landscape measures

There are a number of ways in which the proposed fitness landscape measures in this

thesis can be studied further. For example, it was shown in Chapter 5 that there was

a very strong negative correlation between the FDCs and ILns measures. If these two

measures are so closely linked, then one could be redundant, but further investigation

is needed to confirm this. Another issue not addressed in this thesis is the minimum

computational workload required for each measure to provide just enough information to

sufficiently characterise a problem. For example, in this study, the ruggedness measures

were based on D walks with 1000 steps (a sample size of 1000×D). Future work could

analyse the effect of a range of sample sizes on the micro and macro ruggedness measures.
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In this way the estimated minimum workload for adequately characterising problems can

be determined. Future work could also include investigating the value of the measures

as predictors of performance for other real-parameter optimisation algorithms, such as

differential evolution or CMA-ES.

7.2.4 Measuring other landscape features

There are a number of landscape features that have not been investigated in this thesis.

The level of variable interdependency (or lack of separability) in a problem affects the

fitness landscape. One of the landscape features that can arise due to dependency be-

tween variables are ridges [100]. Finding ways of estimating variable interdependency in

a function or ridges in a landscape is an area of future work. Other important landscape

features that have not been investigated include neutrality and symmetry. Future work

could include finding computationally inexpensive ways of approximating these features

for continuous problems.

7.2.5 Further adaptations of existing fitness landscape analysis

techniques

In Table 2.2, Way forward 4 described the possibility of adapting existing fitness land-

scape analysis techniques by generalising the notion of neighbourhood. For example,

fitness clouds (Technique 16 in the survey of Table 2.1) is based on a sample of points

and neighbours from the application of a search operator. This thesis investigated the

use of PSO updates as the basis for fitness clouds and found that the resulting mea-

sures were useful for predicting PSO failure. An additional avenue worth investigating

is the use of fitness clouds where neighbours are determined using a generic notion of

neighbourhood, such as Euclidean distance. The result would be a fitness cloud index

measure that is not specific to PSOs.

7.2.6 Automating algorithm selection

There is potential for taking this work further into the automated selection of algorithms

for optimisation, where the fitness landscape analysis techniques are part of a larger
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system. Possible frameworks for such a system include:

• Population-based algorithm portfolios (or PAPs) [116] where multiple algorithms

are run in parallel with communication between them. An essential part of PAP

is selecting a set of algorithms to make up the portfolio. Failure prediction models

such as those developed in this work could form part of a measure of risk associated

with selecting a particular algorithm.

• An extension of the algorithm selection framework by Muñoz et al. [102] where

on-line fitness landscape analysis is executed in parallel with an optimisation loop,

using a portfolio of algorithms. Of particular relevance are the FCI fitness land-

scape measures as these are based on the effect of search operators on fitness. As an

algorithm starts searching, information can be extracted to predict the likelihood

of later failure.

7.2.7 Applying techniques to real-world problems

Finally, a rich area of future work is in applying the proposed fitness landscape analysis

techniques to probe and better understand real-world problems. Real-world optimisation

problems do not suffer from the limitations of artificial benchmark functions and could

potentially raise different challenges not encountered in this thesis.
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[82] H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover

and G. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of Inter-

national Series in Operations Research & Management Science, pages 321–353.

Kluwer Academic Publishers, 2002.

[83] G. Lu, J. Li, and X. Yao. Fitness-Probability Cloud and a Measure of Problem

Hardness for Evolutionary Algorithms. In Evolutionary Computation in Combi-

natorial Optimization, volume 6622 of Lecture Notes in Computer Science, pages

108–117, Berlin, Heidelberg, 2011. Springer-Verlag.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Bibliography 206

[84] M. Lunacek and D. Whitley. The dispersion metric and the CMA evolution strat-

egy. In Proceedings of the 8th Annual Genetic and Evolutionary Computation

Conference, pages 477–484, 2006.

[85] N. Madras. Lectures on Monte Carlo Methods. Fields Institute monographs. Amer-

ican Mathematical Society, 2002.

[86] K. M. Malan and A. P. Engelbrecht. Fitness landscape evolvability metrics for

part-prediction of pso performance. Swarm Intelligence, Under Review, Submitted

September 2013.

[87] K. M. Malan and A. P. Engelbrecht. Quantifying Ruggedness of Continuous Land-

scapes using Entropy. In Proceedings of the IEEE Congress on Evolutionary Com-

putation, pages 1440–1447, 2009.

[88] K. M. Malan and A. P. Engelbrecht. Ruggedness, Funnels and Gradients in Fitness

Landscapes and the Effect on PSO Performance. In Proceedings of the IEEE

Congress on Evolutionary Computation, pages 963–970, 2013.

[89] K. M. Malan and A. P. Engelbrecht. Steep Gradients as a Predictor of PSO

Failure. In Proceedings of the Fifteenth International Conference on Genetic and

Evolutionary Computation Conference, Companion, pages 9–10, 2013.

[90] K. M. Malan and A. P. Engelbrecht. A survey of techniques for characterising

fitness landscapes and some possible ways forward. Information Sciences, 241:148–

163, 2013.

[91] K. M. Malan and A. P. Engelbrecht. Fitness Landscape Analysis for Metaheuristic

Performance Prediction. In H. Richter and A. P. Engelbrecht, editors, Recent

advances in the theory and application of fitness landscapes, volume 6 of Emergence,

Complexity and Computation, pages 103–132. Springer, 2014.

[92] B. Manderick, M. K. de Weger, and P. Spiessens. The Genetic Algorithm and the

Structure of the Fitness Landscape. In R. K. Belew and L. B. Booker, editors,

Proceedings of the Fourth International Conference on Genetic Algorithms, pages

143–150, 1991.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Bibliography 207

[93] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph.

Exploratory landscape analysis. In Proceedings of the 13th Annual Conference on

Genetic and Evolutionary Computation, pages 829–836, 2011.

[94] P. Merz. Advanced fitness landscape analysis and the performance of memetic

algorithms. Evolutionary Computation, 12:303–325, September 2004.

[95] P. Merz and B. Freisleben. Fitness Landscape Analysis and Memetic Algorithms

for the Quadratic Assignment Problem. IEEE Transactions on Evolutionary Com-

putation, 4(4):337–352, November 2000.

[96] S. K. Mishra. Performance of Repulsive Particle Swarm Method in Global Opti-

mization of Some Important Test Functions: A Fortran Program. Technical report,

Social Science Research Network (SSRN), August 2006.

[97] S. K. Mishra. Some new test functions for global optimization and performance

of repulsive particle swarm method. Technical Report 2718, University Library of

Munich, Germany, August 2006.

[98] M. Mitchell, S. Forrest, and J. H. Holland. The Royal Road for Genetic Algorithms:

Fitness Landscapes and GA Performance. In Proceedings of the First European

Conference on Artificial Life, pages 245–254, 1992.

[99] M. Mitchell, J. H. Holland, and S. Forrest. When Will a Genetic Algorithm Out-

perform Hill Climbing? In Advances in Neural Information Processing Systems 6,

pages 51–58, 1994.

[100] R. Morgan and M. Gallagher. Using Landscape Topology to Compare Continuous

Metaheuristics: A Framework and Case Study on EDAs and Ridge Structure.

Evolutionary Computation, 20(2):277–299, June 2012.
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[105] M. A. Muñoz, M. Kirley, and S. K. Halgamuge. Landscape characterization of

numerical optimization problems using biased scattered data. In IEEE Congress

on Evolutionary Computation, pages 1–8, June 2012.

[106] B. Naudts and L. Kallel. Some Facts About So Called GA-Hardness Measures.

Technical Report 379, CMAP, Ecole Polytechnique, France, 1998.

[107] B. Naudts and L. Kallel. A Comparison of Predictive Measures of Problem Diffi-

culty in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computa-

tion, 4(1):1, April 2000.

[108] B. Naudts and J. Naudts. The Effect of Spin-Flip Symmetry on the Performance

of the Simple GA. In Proceedings of the 5th International Conference on Parallel

Problem Solving from Nature, pages 67–76, 1998.

[109] B. Naudts, D. Suys, and A. Verschoren. Epistasis as a Basic Concept in Formal

Landscape Analysis. In Proceedings of the 7th International Conference on Genetic

Algorithms, pages 65–72, 1997.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Bibliography 209

[110] G. Ochoa. Consensus Sequence Plots and Error Thresholds: Tools for Visualising

the Structure of Fitness Landscapes. In Proceedings of the 6th International Con-

ference on Parallel Problem Solving from Nature, pages 129–138. Springer-Verlag,

London, UK, 2000.

[111] G. Ochoa, R. Qu, and E. K. Burke. Analyzing the landscape of a graph based

hyper-heuristic for timetabling problems. In Proceedings of the 11th Annual Ge-

netic and Evolutionary Computation Conference, pages 341–348, 2009.
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Appendix A

Benchmark Functions

This appendix defines 24 real-valued benchmark functions used in this study. The func-

tion definitions are listed alphabetically in Table A.1. Each function includes a reference

to an existing source where the function is defined. The mathematical formula is pro-

vided with the domain and the known global optimum. Graphical plots of each function

are provided in Figures A.1 to A.3.
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Table A.1: Benchmark Functions (D is the dimension of the problem)

Function Definition, domain and global optimum (f ∗)

Ackley [187] fack(x) = −20 exp

(

−0.2
√

1
D

∑D
i=1 x

2
i

)

− exp
(

1
D

∑D
i=1 cos(2πxi)

)

+ 20 + e,

xi ∈ [−32, 32], f ∗
ack = fack(0, . . . , 0) = 0.

Alpine [124] falp(x) =
∑D

i=1 |xi sin(xi) + 0.1xi|, xi ∈ [−10, 10], f ∗
alp(0, . . . , 0) = 0.

Beale [96] fbea(x1, x2) = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2 + (2.625− x1 + x1x
3
2)

2,

xi ∈ [−4.5, 4.5], f ∗
bea(3, 0.5) = 0.

Bohachevsky [53] fboh(x) =
∑D−1

i=1

(

x2
i + 2x2

i+1 − 0.3 cos(3πxi)− 0.4 cos(4πxi+1) + 0.7
)

, D ≥ 2,

xi ∈ [−15, 15], f ∗
boh = fboh(0, . . . , 0) = 0.

Egg Holder [97] fegg(x1, x2) = −(x2 + 47) sin
(

√

|x2 + x1/2 + 47|
)

+ sin
(

√

|x1 − (x2 + 47)|
)

(−x1),

xi ∈ [−512, 512], f ∗
egg = fegg(512, 404.23181) ≈ −959.640662720823.

Goldstein-Price [187] fgp(x1, x2) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)],

xi ∈ [−2, 2], f ∗
gp(0,−1) = 3.

Griewank [187] fgrw(x) =
1

4000

∑D
i=1 x

2
i −

∏D
i=1 cos

(

xi√
i

)

+ 1,

xi ∈ [−600, 600], f ∗
grw = fgrw(0, . . . , 0) = 0.

Continued on Next Page. . .
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Table A.1 – Continued

Function Definition, domain and global optimum (f ∗)

Levy 13 [97] flvy(x) =
∑D−1

i=1

(

sin2(3πxi) + (xi − 1)2
[

1 + sin2(3πxi+1)
]

+ (xi+1 − 1)2
[

1 + sin2(2πxi+1)
])

,

D ≥ 2, xi ∈ [−10, 10], f ∗
lvy = flvy(1, . . . , 1) = 0.

Michalewicz [96] fmic(x) = −∑D
i=1 sin(xi) (sin(ix

2
i /π))

2p
, xi ∈ [0, π],

for p = 10,
f ∗
mic ≈ −1.8013 (D = 2), f ∗

mic ≈ −4.6877 (D = 5),

f ∗
mic ≈ −96602 (D = 10), f ∗

mic = −29.6309 (D = 30).

Pathological [124] fpth(x) =
∑D−1

i=1

(

0.5 +
sin2

√
(100x2

i
+x2

i+1
)−0.5

1+0.001(x2
i
−2xixi+1+x2

i+1
)2

)

, D ≥ 2,

xi ∈ [−100, 100], f ∗
pth = fpth(0, . . . , 0) = 0.

Quadric (Schwefel 1.2)[187] fqdr(x) =
∑D

i=1

(

∑i
j=1 xj

)2

, xi ∈ [−100, 100], f ∗
qdr = fqdr(0, . . . , 0) = 0.

Quartic [187] fqrt(x) =
∑D

i=1 ix
4
i , xi ∈ [−1.28, 1.28], f ∗

qrt = fqrt(0, . . . , 0) = 0.

Rana (expanded) [119] fran(x) =
∑D

i=1 xi sin(α) cos(β) +
(

x(i+1)modD + 1
)

cos(α) sin(β), D ≥ 2,

where α =
√

|xi+1 + 1− xi| and β =
√

|xi + xi+1 + 1|,

xi ∈ [−512, 512], f ∗
ran = fran(−512, . . . ,−512).

Rastrigin [187] fras(x) =
∑D

i=1 (x
2
i − 10 cos(2πxi) + 10) , xi ∈ [−5.12, 5.12], f ∗

ras = fras(0, . . . , 0) = 0.

Rosenbrock [187] (generalized) fros(x) =
∑D−1

i=1 (100(xi+1 − x2
i )

2 + (xi − 1)2) , D ≥ 2,

xi ∈ [−2.048, 2.048], f ∗
ros = fros(1, . . . , 1) = 0.

Continued on Next Page. . .
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Table A.1 – Continued

Function Definition, domain and global optimum (f ∗)

Salomon [119] fsal(x) = − cos
(

2π
∑D

i=1 x
2
i

)

+ 0.1
√

∑D
i=1 x

2
i + 1,

xi ∈ [−100, 100], f ∗
sal = fsal(0, . . . , 0) = 0.

Schwefel 2.22 [187] fsch2.22(x) =
∑D

i=1 |xi|+
∏D

i=1 |xi|, xi ∈ [−10, 10], f ∗
sch2.22 = fsch2.22(0, . . . , 0) = 0.

Schwefel 2.26 [187] fsch2.26(x) = −∑D
i=1

(

xi sin(
√

|xi|)
)

,

xi ∈ [−500, 500], f ∗
sch2.26 = fsch2.26(420.9687, . . . , 420.9687).

Six-hump camel-back [187] f6h(x1, x2) = 4x2
1 − 2.1x4

1 +
1
3
x6
1 + x1x2 − 4x2

2 + 4x4
2,

xi ∈ [−5, 5], f ∗
6h(0.08983,−0.7126) = f ∗

6h(−0.08983, 0.7126) = −1.0316285.

Skew Rastrigin [53] fskr(x) = 10D +
∑D

i=1 (y
2
i − 10 cos(2πyi)) , where yi =







10xi if xi > 0,

xi otherwise,

xi ∈ [−5, 5], f ∗
skr = fskr(0, . . . , 0) = 0.

Spherical [28] fsph(x) =
∑D

i=1 x
2
i , xi ∈ [−100, 100], f ∗

sph = fsph(0, . . . , 0) = 0.

Step [187] fstp(x) =
∑D

i=1 (⌊xi + 0.5⌋)2 , xi ∈ [−20, 20], f ∗
stp = fstp(0, . . . , 0) = 0.

Weierstrass [96] fwei(x) =
∑D

i=1

∑20
k=0

[

0.5k cos(2π3k(xi + 0.5))
]

−D
∑20

k=0

[

0.5k cos(2π3k0.5)
]

,

xi ∈ [−0.5, 0.5], f ∗
wei = fwei(0, . . . , 0) = 0.

Zakharov [96] fzak(x) =
∑D

i=1 x
2
i +

[

∑D
i=1 ixi/2

]2

+
[

∑D
i=1 ixi/2

]4

, D ≥ 2,

xi ∈ [−5, 10], f ∗ = f(0, . . . , 0) = 0.
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Figure A.1: Graphical plots of the benchmarks defined in Table A.1. Functions that are not

defined for 1D are plotted in 2D. When the landscape structure is not clear for the defined

domain, the function is also plotted with a reduced domain. Selected functions are plotted in

1D and 2D. Plots are continued in Figures A.2 and A.3.
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Figure A.2: Graphical plots of the benchmarks defined in Table A.1. Functions that are not

defined for 1D are plotted in 2D. When the landscape structure is not clear for the defined

domain, the function is also plotted with a reduced domain. Selected functions are plotted in

1D and 2D. This figure is a continuation of Figure A.1 and is continued in Figure A.3.
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Figure A.3: Graphical plots of the benchmarks defined in Table A.1. Functions that are not

defined for 1D are plotted in 2D. When the landscape structure is not clear for the defined

domain, the function is also plotted with a reduced domain. Selected functions are plotted in

1D and 2D. This figure is a continuation of Figures A.1 and A.2.
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Appendix B

Proposed Fitness Landscape Metrics

Based on the investigation into fitness landscape measures for continuous problems in

Chapters 4 and 5, ten fitness landscape metrics are proposed for characterising the

ruggedness, gradients, presence of funnels, general searchability and searchability with

respect to PSO search. Table B.1 summarises these metrics in terms of the parameters

required, the result produced and the efficiency.
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Table B.1: Summary of proposed fitness landscape metrics

Proposed Measure Parameters Result: range and interpretation Efficiency

FEM0.01

FEM0.1

First entropic

measures of micro

and macro

ruggedness.

Number of steps in the random

walk, ns. Step bounds of 1%

and 10% of the range of the

domain used for FEM0.01 and

FEM0.1, respectively.

[0, 1]: where 0 indicates a flat

landscape and 1 indicates maximal

ruggedness

ns+ 1 function

evaluations and 20

entropy calculations

(for each discrete ε).

DM Dispersion metric. (1) Size of sample, n, (2) Size of

sub-sample of best solutions, s.

[−dispD,
√
D − dispD]: where dispD is

the dispersion of a large uniform

random sample of a D-dimensional

space normalised to [0, 1] in all

dimensions. A positive value for DM

indicates the presence of multiple

funnels.

n fitness evaluations,

sorting of n elements

(nlog(n)) and s2−s
2

Euclidean distance

calculations.

Gavg Average estimated

gradient.

(1) Number of steps in the

Manhattan progressive random

walk, ns, (2) step size, s (a

proportion of the range of the

domain).

A positive real number, where a higher

value indicates higher average

gradients.

ns + 1 function

evaluations and ns

gradient estimations

(Equation 4.12).

Continued on Next Page. . .
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Table B.1 – Continued

Proposed Measure Parameters Result: range and interpretation Efficiency

Gdev Standard deviation

from the average

estimated gradient.

(1) Number of steps in the

Manhattan progressive random

walk, ns, (2) step size, s (a

proportion of the range of the

domain).

A positive real number, where a higher

value indicates higher deviations from

average gradients.

ns + 1 function

evaluations and ns

gradient estimations

(Equation 4.12).

FDCs Fitness distance

correlation

searchability

measure.

size of sample, n. [−1, 1]: For a minimisation problem, 1

indicates the highest measure of

searchability (perfect correlation

between fitness values and distance to

the fittest solution).

n fitness evaluations

and n distance

calculations in solution

space.

ILns Information

landscape negative

searchability

measure.

size of sample, n. [0, 1]: A value of 0 indicates maximum

searchability (no difference from the

reference landscape vector vr).

2n fitness evaluations

for problem and

reference landscape;

(n− 1)(n− 2) memory

requirement for both

information landscape

vectors.

FCIcog

FCIsoc

Fitness cloud index

based on cognitive

or social PSO

updates.

(1) size of sample, n, (2) inertia

weight, w, (3) acceleration

constants, c1 (for FCIcog) or c2

(for FCIsoc).

[0, 1]: indicating the proportion of

fitness improving solutions after two

PSO updates.

3n fitness evaluations,

2n solution updates.

Continued on Next Page. . .
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Table B.1 – Continued

Proposed Measure Parameters Result: range and interpretation Efficiency

FCIσ Fitness cloud index

mean standard

deviation.

(1) size of sample, n, (2) inertia

weight, w, (3) acceleration

constants, c1 and c2.

[0, 0.509]: indicating the level of

deviation from the FCI mean for both

update strategies.

30 × (3n fitness

evaluations, 2n

solution updates).
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Appendix C

Training and Testing Datasets

Tables C.1 and C.2 list the training and testing datasets used as the basis for the decision

tree induction described in Chapter 6. The column headings are as follows:

• f indicates the function as defined in Appendix B, Table A.1.

• D indicates the dimension of the problem.

• Columns FEM0.01 to FCIσ are the fitness landscape metrics as described in Table

B.1.

• The last seven columns provide the performance class (described in Section 3.3.4)

resulting from solving the problem with the applicable PSO algorithm. The algo-

rithms are abbreviated as follows: ‘gbest’ for global best PSO, ‘cog’ for cognitive

PSO, ‘soc’ for social PSO, ‘lbest’ for local best PSO, ‘async’ for asynchronous

global best PSO, ‘bb’ for barebones PSO and ‘mbb’ for modified barebones PSO.

Section 6.2 gives the detail of how the dataset was generated and split into testing and

training sets.
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Table C.1: Training data set

f D FEM0.01 FEM0.1 DM Gavg Gdev FDCs ILns FCIcog FCIsoc FCIσ gbest cog soc lbest async bb mbb

fack 2 0.858 0.780 -0.357 33.562 22.058 0.774 0.191 0.770 0.907 0.015 S++ S- S++ S++ S++ S++ S++

fack 5 0.867 0.832 -0.333 35.314 20.681 0.701 0.243 0.737 0.935 0.015 S++ F S++ S++ S++ S++ S++

fack 10 0.869 0.839 -0.300 21.925 11.971 0.572 0.341 0.728 0.927 0.024 S++ F S S++ S++ S++ S++

fack 30 0.870 0.846 -0.270 3.818 3.094 0.431 0.367 0.716 0.853 0.032 S F F S++ S S S++

falp 1 0.488 0.849 -0.151 7.897 6.216 0.608 0.279 0.827 0.835 0.016 S++ S++ S++ S++ S++ S++ S++

falp 10 0.605 0.861 -0.178 10.940 8.774 0.300 0.405 0.742 0.777 0.057 S++ F S++ S++ S++ S++ S++

falp 15 0.606 0.861 -0.179 10.712 8.693 0.295 0.415 0.730 0.771 0.059 S++ F S S++ S++ S++ S++

falp 30 0.601 0.862 -0.172 9.686 7.790 0.266 0.416 0.714 0.641 0.068 S++ F S- S++ S++ S++ S++

fboh 2 0.522 0.581 -0.353 2.071 1.425 0.922 0.101 0.913 0.906 0.014 S++ S- S++ S++ S++ S++ S++

fboh 5 0.473 0.635 -0.341 2.068 1.447 0.850 0.206 0.852 0.931 0.018 S++ F S S++ S++ S++ S++

fboh 15 0.354 0.645 -0.331 2.043 1.290 0.637 0.302 0.775 0.848 0.038 S F S S++ S S S++

fboh 30 0.290 0.643 -0.331 2.011 1.243 0.559 0.334 0.702 0.694 0.048 S- F S- S S- S S

fegg 2 0.557 0.846 0.119 11.315 11.753 0.006 0.506 0.749 0.688 0.101 S F S S S S S

fgp 2 0.271 0.350 -0.269 1.647 2.929 0.521 0.244 0.887 0.689 0.018 S++ S S++ S++ S++ S++ S++

fgrw 1 0.788 0.550 -0.289 7.962 4.152 0.967 0.017 0.929 0.862 0.013 S++ S++ S++ S++ S++ S++ S++

fgrw 5 0.478 0.644 -0.358 2.148 1.312 0.903 0.118 0.843 0.935 0.018 S F S- S- S- S S

fgrw 10 0.387 0.646 -0.347 2.065 1.205 0.728 0.272 0.804 0.898 0.029 S- F S- S S- S S

fgrw 30 0.286 0.641 -0.328 2.009 1.201 0.567 0.313 0.703 0.705 0.066 S F S S S S S

flvy 2 0.761 0.766 -0.354 16.227 25.702 0.916 0.097 0.812 0.925 0.015 S++ S S++ S++ S++ S++ S++

flvy 5 0.822 0.807 -0.348 23.811 30.063 0.845 0.210 0.767 0.946 0.021 S++ F S++ S++ S++ S++ S++

flvy 15 0.829 0.820 -0.314 4.993 5.749 0.641 0.305 0.730 0.889 0.034 S F S S++ S S S++

Continued on Next Page. . .
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Table C.1 – Continued

f D FEM0.01 FEM0.1 DM Gavg Gdev FDCs ILns FCIcog FCIsoc FCIσ gbest cog soc lbest async bb mbb

flvy 30 0.830 0.816 -0.301 4.434 4.118 0.545 0.334 0.701 0.755 0.047 S F S S++ S S S++

fmic 2 0.313 0.575 -0.162 4.010 6.568 0.432 0.309 0.877 0.876 0.013 S++ S- S++ S++ S++ S++ S++

fpth 2 0.415 0.405 -0.065 18.061 82.369 0.023 0.504 0.704 0.639 0.057 S+ S S++ S S++ S++ S

fpth 5 0.490 0.641 -0.013 11.034 31.148 0.011 0.498 0.692 0.703 0.056 S- F F F S- S- S-

fpth 10 0.678 0.783 -0.006 10.520 29.025 0.002 0.501 0.687 0.784 0.050 F F F F F F F

fpth 15 0.751 0.818 -0.001 8.980 22.655 0.005 0.501 0.686 0.821 0.048 F F F F F F F

fpth 30 0.820 0.849 0.005 4.050 8.554 0.003 0.500 0.687 0.878 0.043 F F F F F F F

fqdr 2 0.519 0.597 -0.329 1.373 0.963 0.648 0.227 0.906 0.857 0.012 S++ S S++ S++ S++ S++ S++

fqdr 5 0.452 0.567 -0.213 0.906 0.863 0.342 0.376 0.876 0.828 0.015 S++ S- S++ S++ S++ S++ S++

fqdr 10 0.374 0.521 -0.133 0.685 0.734 0.186 0.456 0.864 0.797 0.023 S++ F S++ S++ S++ S++ S++

fqdr 15 0.355 0.482 -0.087 0.726 0.739 0.115 0.460 0.861 0.806 0.023 S++ F S++ S+ S++ S++ S+

fqrt 1 0.334 0.435 -0.296 2.000 2.269 0.867 0.002 0.963 0.880 0.012 S++ S++ S++ S++ S++ S++ S++

fqrt 15 0.419 0.699 -0.287 1.859 2.636 0.519 0.337 0.742 0.724 0.052 S++ F S++ S++ S++ S++ S++

fqrt 30 0.371 0.707 -0.277 1.729 2.528 0.459 0.358 0.666 0.509 0.057 S++ F S++ S++ S++ S++ S++

fran 2 0.470 0.816 0.051 12.801 19.217 0.017 0.484 0.727 0.610 0.148 S F S S S S S-

fran 10 0.717 0.869 0.055 18.589 18.431 0.003 0.496 0.698 0.650 0.074 F F F F F F F

fran 15 0.730 0.871 0.044 17.465 16.779 0.008 0.499 0.696 0.645 0.061 F F F F F F F

fras 5 0.602 0.865 -0.239 14.190 7.078 0.499 0.317 0.731 0.807 0.041 S F F S S S S++

fras 15 0.596 0.864 -0.232 16.765 8.395 0.393 0.373 0.714 0.766 0.047 F F F F F F S

fras 30 0.591 0.865 -0.227 16.894 8.387 0.358 0.381 0.711 0.675 0.063 F F F F F F F

fros 2 0.372 0.507 -0.220 1.340 1.700 0.546 0.287 0.894 0.674 0.020 S++ S S++ S++ S++ S++ S++

fros 5 0.467 0.640 -0.311 1.157 1.378 0.687 0.249 0.846 0.806 0.035 S S- S S S- S- S-

Continued on Next Page. . .

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



A
p
p
en
d
ix

C
.
T
rain

in
g
an
d
T
estin

g
D
atasets

232
Table C.1 – Continued

f D FEM0.01 FEM0.1 DM Gavg Gdev FDCs ILns FCIcog FCIsoc FCIσ gbest cog soc lbest async bb mbb

fros 10 0.444 0.679 -0.291 1.162 1.324 0.630 0.306 0.785 0.811 0.036 S- F S S- S- S- S-

fros 15 0.411 0.687 -0.280 1.061 1.199 0.555 0.301 0.756 0.757 0.037 S- F S S- S- S- S

fsal 10 0.889 0.803 -0.336 33.673 23.190 0.709 0.286 0.733 0.884 0.035 F F F F F F F

fsal 15 0.889 0.805 -0.324 24.737 18.815 0.627 0.285 0.710 0.840 0.041 F F F F F F F

fsal 30 0.885 0.802 -0.318 20.055 14.220 0.534 0.323 0.655 0.673 0.049 F F F F F F F

fsch2.22 1 0.589 0.638 -0.297 2.000 0.000 1.000 0.003 0.964 0.878 0.011 S++ S++ S++ S++ S++ S++ S++

fsch2.22 2 0.528 0.606 -0.329 2.069 0.988 0.864 0.135 0.891 0.955 0.011 S++ S- S++ S++ S++ S++ S++

fsch2.22 5 0.318 0.431 -0.244 0.830 1.174 0.569 0.286 0.836 0.959 0.017 S++ S- S++ S++ S++ S++ S++

fsch2.22 15 0.249 0.377 -0.230 0.025 0.078 0.150 0.376 0.774 0.861 0.037 S++ S- S S++ S++ S++ S++

fsch2.22 30 0.270 0.382 -0.230 0.000 0.000 0.048 0.382 0.751 0.797 0.075 S++ S- S- S++ S++ S++ S++

fsch2.26 2 0.537 0.846 0.035 7.640 4.765 0.300 0.405 0.783 0.523 0.027 S S- S S++ S S++ S++

fsch2.26 5 0.564 0.852 0.038 9.731 6.079 0.171 0.447 0.771 0.629 0.048 S F S S S S S++

fsch2.26 15 0.576 0.855 0.021 12.611 8.028 0.080 0.475 0.770 0.638 0.038 F F F F F F S

fsch2.26 30 0.577 0.855 0.024 13.502 8.927 0.065 0.485 0.771 0.643 0.044 F F F F F F S

f6h 2 0.374 0.529 -0.346 1.992 3.107 0.778 0.138 0.914 0.817 0.021 S++ S S++ S++ S++ S++ S++

fskr 1 0.439 0.355 -0.242 1.266 1.605 0.552 0.288 0.877 0.633 0.019 S++ S++ S++ S++ S++ S++ S++

fskr 2 0.527 0.468 -0.298 2.133 2.650 0.732 0.209 0.889 0.732 0.037 S S- S S S S S++

fskr 5 0.545 0.593 -0.333 2.232 2.395 0.828 0.187 0.888 0.918 0.030 S F S- S S S S

fskr 15 0.460 0.636 -0.261 2.132 2.255 0.801 0.235 0.823 0.970 0.018 S- F F S- S- S- S-

fskr 30 0.386 0.643 -0.235 2.297 2.482 0.683 0.308 0.773 0.954 0.024 F F F S- S- S- S-

fsph 1 0.467 0.543 -0.296 2.000 1.155 0.968 0.000 0.965 0.874 0.011 S++ S++ S++ S++ S++ S++ S++

fsph 2 0.509 0.598 -0.358 2.078 1.199 0.971 0.012 0.907 0.913 0.013 S++ S S++ S++ S++ S++ S++

Continued on Next Page. . .
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Table C.1 – Continued

f D FEM0.01 FEM0.1 DM Gavg Gdev FDCs ILns FCIcog FCIsoc FCIσ gbest cog soc lbest async bb mbb

fsph 5 0.477 0.643 -0.355 2.059 1.194 0.900 0.124 0.845 0.939 0.021 S++ F S++ S++ S++ S++ S++

fsph 10 0.385 0.649 -0.345 2.060 1.212 0.732 0.271 0.799 0.900 0.028 S++ F S++ S++ S++ S++ S++

fsph 15 0.347 0.647 -0.338 2.045 1.204 0.666 0.281 0.770 0.842 0.036 S++ F S++ S++ S++ S++ S++

fstp 1 0.515 0.549 -0.293 2.000 11.375 0.966 0.029 0.849 0.829 0.017 S++ S++ S++ S++ S++ S++ S++

fstp 5 0.812 0.664 -0.357 2.085 4.955 0.894 0.134 0.839 0.935 0.021 S++ F S++ S++ S++ S++ S++

fstp 15 0.702 0.662 -0.336 2.073 2.299 0.665 0.280 0.769 0.863 0.039 S++ F S S++ S++ S++ S++

fwei 1 0.790 0.799 -0.294 9.801 6.275 0.911 0.138 0.832 0.832 0.017 S+ S+ S+ S+ S+ S++ S++

fwei 15 0.764 0.797 -0.284 4.933 3.391 0.526 0.338 0.688 0.778 0.053 S F F S++ S S S

fwei 30 0.738 0.788 -0.288 3.792 2.421 0.464 0.359 0.614 0.523 0.070 F F F S++ F S F

fzak 5 0.305 0.310 -0.138 0.895 1.747 0.535 0.300 0.905 0.898 0.015 S++ S- S++ S++ S++ S++ S++

fzak 10 0.284 0.306 -0.124 0.646 1.466 0.462 0.331 0.907 0.934 0.013 S++ S- S++ S++ S++ S++ S++

fzak 30 0.237 0.288 -0.080 0.728 1.274 0.407 0.361 0.913 0.993 0.008 S++ S- S S+ S++ S S
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Table C.2: Testing data set

f D FEM0.01 FEM0.1 DM Gavg Gdev FDCs ILns FCIcog FCIsoc FCIσ gbest cog soc lbest async bb mbb

fack 1 0.874 0.769 -0.296 13.703 8.870 0.793 0.152 0.804 0.876 0.015 S+ S++ S+ S+ S+ S++ S++

fack 15 0.870 0.849 -0.288 3.505 2.969 0.506 0.336 0.727 0.899 0.024 S F S S++ S S S++

falp 2 0.539 0.855 -0.170 9.490 7.454 0.444 0.352 0.781 0.818 0.053 S++ S- S++ S++ S++ S++ S++

falp 5 0.594 0.861 -0.189 10.368 8.430 0.342 0.392 0.753 0.764 0.068 S++ F S++ S++ S++ S++ S++

fbea 2 0.248 0.313 -0.225 0.888 1.624 0.308 0.345 0.901 0.713 0.022 S++ S S S++ S++ S++ S++

fboh 10 0.391 0.646 -0.334 2.064 1.326 0.707 0.277 0.804 0.905 0.030 S F S S++ S++ S S++

fgrw 2 0.652 0.606 -0.358 4.499 3.209 0.966 0.037 0.904 0.906 0.014 S S- S S S S S++

fgrw 15 0.343 0.644 -0.338 2.048 1.206 0.653 0.276 0.769 0.840 0.040 S F S S S S S

flvy 10 0.824 0.819 -0.329 16.521 19.860 0.705 0.278 0.741 0.923 0.022 S++ F S S++ S++ S++ S++

fmic 5 0.503 0.812 -0.131 8.368 15.553 0.222 0.436 0.767 0.793 0.028 S F S S S S S++

fmic 10 0.648 0.863 -0.114 14.991 28.817 0.159 0.452 0.713 0.699 0.036 F F F F F F S

fmic 30 0.802 0.869 -0.093 18.611 25.859 0.126 0.460 0.692 0.581 0.033 F F F F F F F

fqdr 1 0.467 0.543 -0.297 2.000 1.155 0.968 0.000 0.963 0.875 0.012 S++ S++ S++ S++ S++ S++ S++

fqdr 30 0.297 0.379 -0.058 0.597 0.609 0.071 0.476 0.859 0.802 0.017 S++ S- S S- S++ S S-

fqrt 2 0.416 0.548 -0.356 1.987 2.469 0.849 0.092 0.919 0.889 0.013 S++ S S++ S++ S++ S++ S++

fqrt 5 0.452 0.643 -0.339 1.959 2.643 0.763 0.235 0.847 0.873 0.017 S++ S- S++ S++ S++ S++ S++

fqrt 10 0.439 0.685 -0.301 1.911 2.665 0.589 0.314 0.781 0.809 0.036 S++ F S++ S++ S++ S++ S++

fran 5 0.692 0.867 0.069 18.150 19.740 0.012 0.500 0.701 0.665 0.089 F F F F F F F

fran 30 0.739 0.870 0.032 14.198 12.613 0.005 0.501 0.698 0.645 0.068 F F F F F F F

fras 1 0.542 0.881 -0.212 10.030 4.996 0.708 0.252 0.775 0.795 0.015 S++ S++ S++ S++ S++ S++ S++

fras 2 0.591 0.871 -0.224 11.871 5.925 0.641 0.259 0.743 0.827 0.021 S++ S- S S++ S++ S++ S++

Continued on Next Page. . .
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Table C.2 – Continued

f D FEM0.01 FEM0.1 DM Gavg Gdev FDCs ILns FCIcog FCIsoc FCIσ gbest cog soc lbest async bb mbb

fras 10 0.600 0.866 -0.245 16.185 7.926 0.432 0.370 0.726 0.765 0.039 F F F F F S S

fros 30 0.350 0.694 -0.273 1.030 1.134 0.477 0.335 0.668 0.615 0.059 S- F S- S- S- S- S-

fsal 1 0.891 0.802 -0.277 61.860 34.228 0.971 0.076 0.824 0.870 0.016 S++ S++ S++ S++ S++ S++ S++

fsal 2 0.888 0.802 -0.346 64.260 41.572 0.960 0.083 0.799 0.900 0.014 S++ F S S+ S++ S S

fsal 5 0.890 0.807 -0.350 51.397 32.287 0.872 0.162 0.770 0.929 0.022 F F F F F F F

fsch2.22 10 0.239 0.369 -0.238 0.171 0.396 0.276 0.352 0.794 0.939 0.023 S++ S- S++ S++ S++ S++ S++

fsch2.26 1 0.485 0.822 -0.003 5.853 3.649 0.317 0.397 0.821 0.520 0.018 S++ S++ S++ S++ S++ S++ S++

fsch2.26 10 0.572 0.855 0.021 11.563 7.413 0.111 0.478 0.770 0.606 0.051 S F F F F F S

fskr 10 0.504 0.632 -0.291 2.063 2.140 0.827 0.202 0.848 0.977 0.017 S- F F S- S- S- S

fsph 30 0.288 0.642 -0.328 2.004 1.197 0.566 0.316 0.711 0.712 0.045 S++ F S++ S++ S++ S++ S++

fstp 2 0.703 0.618 -0.359 2.110 8.345 0.967 0.024 0.883 0.904 0.015 S++ S S++ S++ S++ S++ S++

fstp 10 0.742 0.666 -0.348 2.099 3.204 0.724 0.261 0.797 0.892 0.030 S++ F S S++ S++ S++ S++

fstp 30 0.614 0.657 -0.330 2.012 1.441 0.564 0.311 0.701 0.691 0.056 S F F S++ S S S++

fwei 2 0.789 0.792 -0.297 9.539 6.812 0.875 0.163 0.800 0.905 0.015 S++ F S++ S+ S++ S++ S++

fwei 5 0.781 0.797 -0.293 6.957 4.832 0.728 0.283 0.760 0.902 0.034 S++ F S++ S++ S++ S++ S++

fwei 10 0.773 0.797 -0.289 5.462 3.581 0.575 0.328 0.712 0.815 0.054 S F S- S++ S S S

fzak 2 0.291 0.332 -0.334 1.270 2.103 0.670 0.182 0.917 0.918 0.013 S++ S S++ S++ S++ S++ S++

fzak 15 0.252 0.296 -0.110 0.747 1.497 0.454 0.348 0.907 0.964 0.011 S++ S- S++ S++ S++ S++ S++
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Appendix D

Acronyms

This appendix provides a list of acronyms frequently used in this thesis. Acronyms are

listed alphabetically, typeset in bold, with the meaning alongside.

CMA-ES Covariance Matrix Adaptation Evolution Strategy

DM Dispersion metric

FCI Fitness cloud index

FDC Fitness distance correlation

FEM First Entropic Measure

GA Genetic Algorithm

MaxFES Maximum Number of Function Evaluations

NSC Negative slope coefficient

PSO Particle Swarm Optimisation

SEM Second Entropic Measure

SRate Success rate

SSpeed Success speed
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Appendix E

Symbols

This appendix lists and defines the commonly-used symbols in the thesis. Each symbol

is listed under the chapter in which they first appear.

E.1 Chapter 1

x′ A candidate solution found by a search process

f(x′) Fitness of candidate solution x′

x∗ Global optimum solution of a problem

x An n-dimensional candidate solution vector

S Feasible subregion of Rn

xmin Minimum boundary constraint (the same for all xi in x)

xmax Maximum boundary constraint (the same for all xi in x)

E.2 Chapter 3

D Dimension of a problem

f ∗ Fitness of global optimum

xi(t) Position of particle i at time step t

vi(t) Velocity of particle i at time step t

237
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Appendix E. Symbols 238

w Inertia weight

c1 Cognitive acceleration constant

c2 Social acceleration constant

yi(t) Particle i’s personal best position at time step t

ŷ(t) The global best position at time step t

ŷi(t) The best particle in the neighbourhood of particle

U(a, b) Random number between a and b sampled from a uniform distribution

f̂ Estimated maximum fitness value

fmin Best fitness found by the search

MaxFES Maximum number of fitness evaluations

FESr Number of function evaluations to reach the global optimum for run r

SSpeedr Success speed of a run r

ns Number of successful runs

S++ Class symbol for problems that are always solved and fast

S+ Class symbol for problems that are always solved

S Class symbol for problems that are sometimes solved

S– Class symbol for problems that are almost solved

F Class symbol for problems that are not solved

E.3 Chapter 4

N(x) Neighbourhood set of x

ε Sensitivity margin for deciding when fitness values are different

H(ε) Measure of entropy

e∗ Information stability

FEM0.01 First entropic measure of micro ruggedness

FEM0.1 First entropic measure of macro ruggedness

DM Dispersion metric

Gavg Average estimated gradient within a walk

Gdev Standard deviation of gradient measures from the mean

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix E. Symbols 239

E.4 Chapter 5

Vmax Reference information landscape vector

FDCs Fitness distance correlation searchability measure

ILns Information landscape negative searchability measure

FCIcog Fitness cloud index based on cognitive updates

FCIsoc Fitness cloud index based on social updates

NSCcog Negative slope coefficient based on cognitive updates

NSCsoc Negative slope coefficient based on social updates

FCIσ Fitness cloud index mean standard deviation
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Appendix F

Derived Publications

The following are the publications derived from this study:

1. K. M. Malan and A. P. Engelbrecht. Quantifying Ruggedness of Continuous Land-

scapes using Entropy. In Proceedings of the IEEE Congress on Evolutionary Com-

putation, pages 1440-1447, 2009.

2. K. M. Malan and A. P. Engelbrecht. A survey of techniques for characterising

fitness landscapes and some possible ways forward. Information Sciences, 241:148–

163, 2013.

3. K. M. Malan and A. P. Engelbrecht. Ruggedness, Funnels and Gradients in Fit-

ness Landscapes and the Effect on PSO Performance. In Proceedings of the IEEE

Congress on Evolutionary Computation, pages 963–970, 2013.

4. K. M. Malan and A. P. Engelbrecht. Steep Gradients as a Predictor of PSO

Failure. In Proceedings of the Fifteenth International Conference on Genetic and

Evolutionary Computation, Conference Companion, pages 9–10, 2013.

5. K. M. Malan and A. P. Engelbrecht. Fitness Landscape Analysis for Metaheuristic

Performance Prediction. In Hendrik Richter and Andries P. Engelbrecht, editors,

Recent advances in the theory and application of fitness landscapes, Emergence,

Complexity and Computation, volume 6, pages 103–132. Springer, 2014.
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6. K. M. Malan and A. P. Engelbrecht. Fitness landscape evolvability for part-

prediction of PSO performance. Swarm Intelligence, Submitted September 2013.
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Index

FCIσ, 166, 228

FCIcog, 144, 227

FCIsoc, 144, 227

FDCs, 135, 227

FEM0.01, 97, 226

FEM0.1, 97, 226

Gavg, 102, 112, 226

Gdev, 103, 112, 227

ILns, 136, 227

NSCcog, 144

NSCsoc, 144

accumulated escape probability, 46

Ackley function, 57, 219

adaptive walks, 26, 32

algorithm run, 64

Alpine function, 57, 219

amplitude spectra, 40

asynchronous global best PSO, 60

autocorrelation function, 35

average bit certainty measure, 32

bare bones PSO, 60

Beale function, 56, 219

benchmarks, 56

bit-wise epistasis, 41

Bohachevsky function, 56, 219

C4.5 algorithm, 175

cognitive PSO, 59

complete search independence, 33

consensus sequence plots, 32

correlation coefficient, 31

correlation length, 36

coverage measure, 82

dataset generation, 172

deception, 25, 47

deception for PSO, 72

deceptiveness coefficient, 25

decision tree induction, 175

density of states, 39

dispersion metric, 44, 98, 100, 226

dispersion of a sample, 98

DM, 100, 226

dynamic measures, 31

Egg Holder function, 219

entropic measure, 40, 90

entropy, 86

epistasis, 22

epistasis variance, 37

escape rate measure, 25, 32

evolvability, 29, 48
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Index 243

F performance class, 71

FCI, 142

FDC, 127

FEM, 40, 95

FEM algorithm, 95

fitness cloud, 43, 130

fitness distance correlation, 38, 127

fitness distribution, 24

fitness evolvability portraits, 42

fitness function, 18

fitness landscape, 18

fitness range, 63

fitness range estimation, 64

fitness range order, 65

fitness-probability cloud, 45

fixed accuracy level, 62, 64

formae variance, 37

funnels, 26, 98

GA-deception, 35

global landscape structure, 26

Goldstein-Price function, 56, 219

Griewank function, 57, 219

HDBL, 41

HDIL, 41

high search independence, 34

information landscape, 128

information landscape hardness measure, 44

information stability, 90

Kolmogorov complexity, 31

Levy 13 function, 220

local best PSO, 59

local optima network, 25

low search independence, 34

Manhattan progressive random walk, 103

MaxFES, 64, 66

medium search independence, 34

metaheuristics, 1

Michalewicz function, 56, 220

modality, 24

modified bare bones PSO, 61

negative slope coefficient, 14, 43, 131

neighbourhood set, 75

neutral network measures, 45

neutral walk, 42

neutrality, 27

NKp landscapes, 28

noise, 23

non-linear separability, 22

normalisation of fitness, 63

NSC, 131

optimisation, 1

particle swarm optimisation, 57

Pathological function, 220

performance classes, 70

performance measures, 61

performance metric, 63

progressive random walk, 77

progressive random walk algorithm, 81
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Index 244

PSO, 57

QMetric, 65

Quadric function, 56, 220

Quartic function, 56, 220

Rana function, 220

random walk, 74

random walk coverage, 82

Rastrigin function, 26, 57, 64, 99, 220

retrospective measures, 32

Rosenbrock function, 57, 157, 220

ruggedness, 26

ruggedness measures, 86

run of an algorithm, 64

S performance class, 70

S+ performance class, 70

S++ performance class, 70

S– performance class, 70

Salomon function, 57, 221

Schwefel 1.2 function, 220

Schwefel 2.22 function, 56, 221

Schwefel 2.26 function, 26, 57, 64, 99, 221

search independence, 33, 50

searchability, 29, 48, 125

SEM, 40

separability, 23

simple random walk, 75

simple random walk algorithm, 77

site-wise optimisation measure, 23, 31

Six-hump camel-back function, 56, 221

Skew Rastrigin function, 221

smoothness, 26

social PSO, 59

solution accuracy, 65

solution quality, 62, 65

Spherical function, 56, 221

SRate, 66

SSpeed, 67

static-φ metric, 39

Step function, 22, 221

success rate, 62, 66

success speed, 67

successful run, 64

symmetry, 28, 47

testing data, 229

theoretical measures, 31

traditional global best PSO, 58

training data, 229

variable interdependency, 22

Weierstrass function, 221

WEKA tool, 175

Wright’s fitness landscape, 18

Zakharov function, 221
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