
A graph-based framework for
comparing curricula

by
Linda Marshall

Department of Computer Science
University of Pretoria

Submitted in partial fulfillment of the requirements for the degree
Doctor of Philosophy in Information Technology

in the
Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

February 2014

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



A graph-based framework for comparing curricula

by

Linda Marshall
E-mail: lmarshall@cs.up.ac.za

Abstract

The problem addressed in this thesis was identified in a real life context in
which an attempt was made to re-constitute a BSc Computer Science degree
programme. The curriculum was modelled on the ACM/IEEE Computing
Curriculum of 2001. It was further required to comply with accreditation
requirements as defined by ABET’s Computing Accreditation Commission.
Relying on a spreadsheet, the curriculum was iteratively and manually evalu-
ated against the ACM/IEEE curriculum specification. A need was identified
to automate or at least semi-automate this process.

In this thesis a generalisation of the problem is presented. Curricula are
modelled as directed graphs (digraphs) in which graph vertices represent
curriculum elements such as topics, knowledge areas, knowledge units year-
levels or modules. Edges in the graph represent dependencies between these
vertices such as belonging to grouping or pre-requisites. The task of cur-
riculum comparison then abstracts to a task of digraph comparison.

A framework, the Graph Comparison Framework, is proposed. The frame-
work comprises of components which are used to guide the digraph compar-
ison process. The so-called Graph Trans-morphism algorithm component is
the only component in the framework which is mandatory. The algorithm
converts the information from one of the digraphs being compared into the
structure of the other. This conversion enables the graphs to be compared
as graph isomorphisms. All digraphs are modelled as sets of triples, making
it possible to subtract one digraph from another using the set minus oper-
ator. The resultant difference sets are used by components defined in the

i

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

mailto:lmarshall@cs.up.ac.za


framework to quantify and visualise the differences.

By modelling curricula as digraphs and applying the framework to the di-
graphs, it is possible to compare curricula. This application of the framework
to a real-world problem forms the applications research part of the thesis.
In this part, domain knowledge of curriculum design is necessary to apply
to the curriculum being developed in order to improve it.

ACM Categories and Subject Descriptors: G.2.2 [Discrete Mathe-
matics]: Graph Theory - Graph algorithms; K.3.2 [Computing Milieux]:
Computers and Education - Computer and Information Science Education
- Curriculum

Supervisor : Prof Derrick Kourie
Department : Department of Computer Science
Degree : PhD IT

ii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Contents

1 Introduction 1
1.1 Research proposal . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research approach . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research description . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Significance of the study . . . . . . . . . . . . . . . . . . . . . 3
1.5 Scope of the study . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Structure of the document . . . . . . . . . . . . . . . . . . . . 4

I Theory 7

2 Graph Theory 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Graph types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Undirected graph . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Directed graph . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Directed acyclic graph . . . . . . . . . . . . . . . . . . 14

2.3 Graph matching . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Graph isomorphism . . . . . . . . . . . . . . . . . . . 16
2.3.2 Graph homomorphism . . . . . . . . . . . . . . . . . . 20

2.4 Graph transformation . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Complexity Theory 24
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Big-O notation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Decision problems . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Complexity classes . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Implementing Digraphs 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Implementation techniques . . . . . . . . . . . . . . . . . . . 33

iii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4.2.1 Adjacency matrix . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Adjacency list . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Set of triples . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Problems and algorithms . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Finding paths and traversal . . . . . . . . . . . . . . . 41
4.3.2 Matching . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Graph Trans-morphism Algorithm 44
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Algorithm overview . . . . . . . . . . . . . . . . . . . 46
5.3.2 Possible outcomes of algorithm T . . . . . . . . . . . . 46
5.3.3 Algorithm detail . . . . . . . . . . . . . . . . . . . . . 48
5.3.4 Discussion in terms of graph theory . . . . . . . . . . 50
5.3.5 Discussion with reference to complexity theory . . . . 53

5.4 Explanation of the algorithm using a toy application . . . . . 54
5.4.1 Derivation of C using M and I by inspection . . . . . 55
5.4.2 Building C with algorithm T . . . . . . . . . . . . . . 57
5.4.3 By inspection vs. algorithmic computation . . . . . . 57

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Graph Comparison Framework 59
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Framework overview . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Comparison component . . . . . . . . . . . . . . . . . . . . . 60

6.3.1 Difference comparison component . . . . . . . . . . . . 61
6.3.2 Other comparison components . . . . . . . . . . . . . 69

6.4 Visualisation component . . . . . . . . . . . . . . . . . . . . . 70
6.4.1 Graph visualisation component . . . . . . . . . . . . . 70
6.4.2 Difference visualisation component . . . . . . . . . . . 71
6.4.3 Other visualisation components . . . . . . . . . . . . . 75

6.5 Applying the framework to the toy application . . . . . . . . 75
6.5.1 Visual representation of the graphs . . . . . . . . . . . 75
6.5.2 Results of the difference combinations . . . . . . . . . 76
6.5.3 Determining the ratios . . . . . . . . . . . . . . . . . . 78
6.5.4 Plotting the ratios on a radar chart . . . . . . . . . . 79
6.5.5 Considering the graph edit distance . . . . . . . . . . 81
6.5.6 Interpretation . . . . . . . . . . . . . . . . . . . . . . . 84

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

iv

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



7 Analysis of the Outcomes of T 86
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Outcome 1 - Parallel edges . . . . . . . . . . . . . . . . . . . 87
7.3 Outcome 2 - Disjoint digraphs . . . . . . . . . . . . . . . . . . 89
7.4 Outcome 3 - Empty resultant digraph . . . . . . . . . . . . . 94
7.5 Outcome 4 - Exact copy of the ideal . . . . . . . . . . . . . . 98

7.5.1 Representation 1: M and I are identical . . . . . . . . 98
7.5.2 Representation 2 - adequate coverage given by M . . . 99

7.6 Outcome 5 - Subgraph of the ideal . . . . . . . . . . . . . . . 100
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

II Application 105

8 Computing Curricula Specifications 106
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.2 ACM/IEEE Computing Curricula series . . . . . . . . . . . . 106

8.2.1 Disciplines in the series . . . . . . . . . . . . . . . . . 107
8.2.2 Series from 1991 to 2013 . . . . . . . . . . . . . . . . . 108

8.3 ACM/IEEE curriculum structure . . . . . . . . . . . . . . . . 110
8.4 ACM/IEEE Computer Science Curriculum . . . . . . . . . . 111

8.4.1 A brief history . . . . . . . . . . . . . . . . . . . . . . 111
8.4.2 Changing Knowledge Areas (KAs) . . . . . . . . . . . 112
8.4.3 Core hour requirements . . . . . . . . . . . . . . . . . 114
8.4.4 Excerpts from the curricula . . . . . . . . . . . . . . . 115

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 University Degree Programme Requirements 118
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.2 Qualification structures . . . . . . . . . . . . . . . . . . . . . 118

9.2.1 United States of America, Canada and parts of Australia119
9.2.2 Europe . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2.3 United Kingdom . . . . . . . . . . . . . . . . . . . . . 120
9.2.4 South Africa . . . . . . . . . . . . . . . . . . . . . . . 120
9.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.3 Accreditation structures . . . . . . . . . . . . . . . . . . . . . 122
9.3.1 Accreditation for transfer reasons in South Africa . . . 122
9.3.2 Accreditation of disciplines . . . . . . . . . . . . . . . 124

9.4 Institutional requirements . . . . . . . . . . . . . . . . . . . . 127
9.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.5.1 Economic . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.5.2 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.5.3 Semester hours versus notional hours . . . . . . . . . . 130
9.5.4 Four years into three . . . . . . . . . . . . . . . . . . . 131

v

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10 Modelling Curricula using Digraphs 133
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.2 Curricula volumes as digraphs . . . . . . . . . . . . . . . . . . 133
10.3 Real-word curricula as digraphs . . . . . . . . . . . . . . . . . 134
10.4 Capturing topic data . . . . . . . . . . . . . . . . . . . . . . . 136
10.5 Modelling equivalences . . . . . . . . . . . . . . . . . . . . . . 137
10.6 Improving representations . . . . . . . . . . . . . . . . . . . . 141
10.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

11 Application of the Framework to Computing Curricula 144
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
11.2 Scenario 1: Comparing the core aspects of the curricula volumes145

11.2.1 Scenario overview . . . . . . . . . . . . . . . . . . . . 145
11.2.2 Graph visualisation . . . . . . . . . . . . . . . . . . . . 146
11.2.3 Difference comparison . . . . . . . . . . . . . . . . . . 146
11.2.4 Difference visualisation . . . . . . . . . . . . . . . . . 151
11.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 154

11.3 Scenario 2: Details regarding the Human Computer Interac-
tion KA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.3.1 Scenario overview . . . . . . . . . . . . . . . . . . . . 155
11.3.2 Graph visualisation . . . . . . . . . . . . . . . . . . . . 155
11.3.3 Difference comparison . . . . . . . . . . . . . . . . . . 155
11.3.4 Difference visualisation . . . . . . . . . . . . . . . . . 162
11.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 164

11.4 Scenario 3: Application to a real-world curriculum . . . . . . 164
11.4.1 Scenario overview . . . . . . . . . . . . . . . . . . . . 164
11.4.2 Overview of the BSc CS degree programme . . . . . . 165
11.4.3 Changes require re-evaluation . . . . . . . . . . . . . . 165
11.4.4 Graph visualisation . . . . . . . . . . . . . . . . . . . . 166
11.4.5 Difference comparison . . . . . . . . . . . . . . . . . . 168
11.4.6 Difference visualisation . . . . . . . . . . . . . . . . . 175
11.4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 181

11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

III Future Work and Conclusion 183

12 Future Work 184
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
12.2 Digraph related projects . . . . . . . . . . . . . . . . . . . . . 184

12.2.1 Set theory . . . . . . . . . . . . . . . . . . . . . . . . . 185
12.2.2 Algorithm improvements . . . . . . . . . . . . . . . . . 186

vi

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



12.2.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
12.3 Knowledge representations . . . . . . . . . . . . . . . . . . . . 187
12.4 Framework extensions . . . . . . . . . . . . . . . . . . . . . . 188

12.4.1 Framework for comparison . . . . . . . . . . . . . . . 188
12.4.2 Framework for the domain expert . . . . . . . . . . . . 189

12.5 Computer Science curriculum development . . . . . . . . . . 189
12.5.1 Curriculum comparison and design . . . . . . . . . . . 190
12.5.2 Accreditation comparison . . . . . . . . . . . . . . . . 191

12.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

13 Conclusion 192
13.1 Attainment of objectives . . . . . . . . . . . . . . . . . . . . . 192
13.2 Summary of contributions . . . . . . . . . . . . . . . . . . . . 194
13.3 Suggestions for applications . . . . . . . . . . . . . . . . . . . 196

Bibliography 197

IV Appendices 204

A Algorithm Execution 205
A.1 Algorithm trace . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.2 Results tranformation . . . . . . . . . . . . . . . . . . . . . . 210

B Algorithm Output 212
B.1 Output - Outcome 2, Section 7.3 . . . . . . . . . . . . . . . . 213
B.2 Output - Outcome 4, Section 7.5 . . . . . . . . . . . . . . . . 214
B.3 Output - Outcome 5, Section 7.6 . . . . . . . . . . . . . . . . 215

C Significance of Ratios 216

D Excerpts from the ACM/IEEE CS Curriculum Volumes 222
D.1 CC2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
D.2 CS2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
D.3 CS2013 Strawman . . . . . . . . . . . . . . . . . . . . . . . . 227
D.4 CS2013 Ironman . . . . . . . . . . . . . . . . . . . . . . . . . 228

E Application Scenarios - Cardinalities and ratios 229
E.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
E.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

F BSc Computer Science Degree 239

vii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



G Scenario 3 - Vertices of difference sets 242
G.1 CC2001 (I) and BSc CS (M) . . . . . . . . . . . . . . . . . . 242
G.2 CS2013I (I) and BSc CS with CC2001 topics (M) . . . . . . . 244
G.3 CS2013I (I) and BSc CS with CS2013I topics (M) . . . . . . 251

viii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



List of Figures

2.1 Example of graph G . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Example of digraph G . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Example of DAG G . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Visual representation of example graph GA . . . . . . . . . . 17
2.5 Visual representation of example graph GB . . . . . . . . . . 17
2.6 An edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 An edge subdivision . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Visual representation of example DAG GC . . . . . . . . . . . 19
2.9 Visual representation of example DAG GD . . . . . . . . . . . 19
2.10 Visual representation of subdivided DAGs G′C and G′D . . . . 19
2.11 Initial graph G before transformation . . . . . . . . . . . . . . 22
2.12 G after Rule 1 has been applied iteratively . . . . . . . . . . . 22
2.13 G after Rule 2 has been applied iteratively . . . . . . . . . . . 22
2.14 Final G after Rule 3 has been applied iteratively . . . . . . . 23
2.15 Alternative final G after Rule 3 has been applied iteratively . 23

3.1 Common Big-O notation execution times . . . . . . . . . . . 25
3.2 Relationship between polynomial time-based complexity classes 32

4.1 Adjacency list: source . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Adjacency list: destination . . . . . . . . . . . . . . . . . . . 36
4.3 An arrow (source, label, destination) . . . . . . . . . . . . . . 37

5.1 Example Ideal — I ∈ D . . . . . . . . . . . . . . . . . . . . . 56
5.2 Example Model — M ∈ D . . . . . . . . . . . . . . . . . . . . 57
5.3 Example Complier — C ∈ D . . . . . . . . . . . . . . . . . . 57

6.1 High-level view of the Graph Comparison Framework . . . . . 61
6.2 Examples of digraph layouts generated by GraphViz . . . . . 72
6.3 Manipulating using dot layout . . . . . . . . . . . . . . . . . 73
6.4 Radar chart illustrating a perfect match of ratios in relation

to I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5 Radar chart illustrating a worst case of ratios in relation to I 74
6.6 Radar chart illustrating a perfect match of ratios R(M\C,M)

and R(C \M,C) . . . . . . . . . . . . . . . . . . . . . . . . . 74

ix

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



6.7 Visual comparison of I, M and C using dot . . . . . . . . . . 76
6.8 Visual comparison of I, M and C using twopi . . . . . . . . 77
6.9 Radar chart - Toy application, R(I,I) to R(C \M, I) . . . . . 80
6.10 Radar chart - Toy application, R(M,I), R(C,I), R(M \C,M)

and R(C \M,C) . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.11 Graph edit distance ratios for the toy application . . . . . . . 83

7.1 Outcome combinations of algorithm T . . . . . . . . . . . . . 87
7.2 Outcome 1 - I . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3 Outcome 1 - M . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4 Outcome 1 - C . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5 Outcome 2 - I . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.6 Outcome 2 - M . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.7 Outcome 2 - C . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.8 Outcome 2 - C updated . . . . . . . . . . . . . . . . . . . . . 91
7.9 Outcome 2 - Radar charts . . . . . . . . . . . . . . . . . . . . 92
7.10 Outcome 3 - M . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.11 Outcome 3 - C updated . . . . . . . . . . . . . . . . . . . . . 96
7.12 Outcome 3 - Radar charts . . . . . . . . . . . . . . . . . . . . 97
7.13 Outcome 4 - M . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.14 Outcome 4 - Radar chart . . . . . . . . . . . . . . . . . . . . 100
7.15 Outcome 4 - Radar chart - vertices . . . . . . . . . . . . . . . 101
7.16 Outcome 5 - Comparison of I, M and C . . . . . . . . . . . . 102
7.17 Outcome 5 - Radar chart . . . . . . . . . . . . . . . . . . . . 103
7.18 Outcome 5 - Radar chart for R(M \ C,M) and R(C \M,C) 104

8.1 Computing Curricula Series [Joint Task Force for Computing
Curricula, 2005, page 7] . . . . . . . . . . . . . . . . . . . . . 109

8.2 Computing Curricula Series 1991 to 2013 . . . . . . . . . . . 110
8.3 CS2013 Strawman Software Engineering KA, Software Pro-

cesses KU [The Joint Task Force on Computing Curricula
Association for Computing Machinery IEEE-Computer Soci-
ety, 2012, Page147] . . . . . . . . . . . . . . . . . . . . . . . . 112

8.4 Core content of curricula . . . . . . . . . . . . . . . . . . . . . 115
8.5 Core hour requirements . . . . . . . . . . . . . . . . . . . . . 116

9.1 Accreditation Accords [Signatories in September 2013] . . . . 125
9.2 Sydney Accord [Signatories in September 2013] . . . . . . . . 126
9.3 Seoul Accord [Signatories in August 2013] . . . . . . . . . . . 126

10.1 Modelling a curriculum volume . . . . . . . . . . . . . . . . . 134
10.2 Modelling a real-world curriculum in terms of year-levels . . . 135
10.3 Modelling a real-world curriculum in terms of prerequisites . 135
10.4 Example of a spreadsheet used to model the BSc CS degree

programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

x

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



10.5 Representation of the KU representing requirements . . . . . 139
10.6 Or-subgraph for the KU representing requirements . . . . . . 140
10.7 Linking Or-subgraph 13 into the digraph . . . . . . . . . . . . 142

11.1 Respective sizes of the curricula volume digraphs . . . . . . . 149
11.2 Scenario 1: Original - Radar charts . . . . . . . . . . . . . . . 151
11.3 Scenario 1: Equivalences CC2001 and CS2008 . . . . . . . . . 153
11.4 Scenario 1: Equivalences CC2013S(I) and CS2013I(M) . . . . 154
11.5 Representation of the Human Computer Interaction (HC and

HCI in 2013I) KA . . . . . . . . . . . . . . . . . . . . . . . . 156
11.6 Scenario 2: Compliers for CC2001 as I and CS2008 as M and

vice versa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.7 Scenario2: Complier for CC2001 and CS2008 with or-subgraph 157
11.8 Or-subgraph for HC/HCI KA . . . . . . . . . . . . . . . . . . 158
11.9 Scenario 2: Compliers for CS2013S and CS2013I . . . . . . . 159
11.10Representation of the Human Computer Interaction (HC and

HCI in 2013I) with topic equivalences . . . . . . . . . . . . . 161
11.11Scenario 2: Equivalences in the HC/HCI KA . . . . . . . . . 163
11.12Real-world BSc CS . . . . . . . . . . . . . . . . . . . . . . . . 166
11.13Complier of the BSc CS as model and CC2001 as ideal . . . . 167
11.14Complier of the BSc CS as model and CS2013I as ideal - BSc

CS topics defined in CC2001 . . . . . . . . . . . . . . . . . . 169
11.15Complier of the BSc CS as model and CS2013I as ideal - BSc

CS topics defined in CS2013I . . . . . . . . . . . . . . . . . . 170
11.16Scenario 3: Vertex set cardinalities in terms of KAs, KUs and

Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
11.17Scenario 3: Radar Charts - BSc CS (taken as M) compared

to CC2001 and CS2013I Curriculum volumes (taken as I in
each respective case). . . . . . . . . . . . . . . . . . . . . . . . 176

11.18Scenario 3: Venn diagram of common topic vertices between
comparisons of curricula volumes with a real-world curricu-
lum for quantity I \ C . . . . . . . . . . . . . . . . . . . . . . 177

11.19Scenario 3: Venn diagram of common topic vertices between
comparisons of curricula volumes with a real-world curricu-
lum for quantity M \ C . . . . . . . . . . . . . . . . . . . . . 179

11.20Scenario 3: U0117 topics for CC2001 and CS2013I . . . . . . 180
11.21Scenario 3: or-subgraph for or se 4 . . . . . . . . . . . . . . 180

D.1 Overview of Knowledge Areas- CS2001 BoK [ACM/IEEE-
Curriculum 2001 Task Force, 2001, Page 85] . . . . . . . . . . 223

D.2 Example of the CS2001 Programming Fundamentals KA, Data
Structures KU [ACM/IEEE-Curriculum 2001 Task Force, 2001,
Page 90] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

xi

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



D.3 Overview of Knowledge Areas - CS2008 BoK [ACM/IEEE-
Curriculum CS2008 Joint Task Force, 2008, Appendix A] . . 225

D.4 Example of the CS2008 Programming Fundamentals KA, Data
Structures KU [ACM/IEEE-Curriculum CS2008 Joint Task
Force, 2008, Appendix B] . . . . . . . . . . . . . . . . . . . . 226

D.5 Overview of the CS2013 Strawman SDF BoK [The Joint Task
Force on Computing Curricula Association for Computing
Machinery IEEE-Computer Society, 2012, Page 139] . . . . . 227

D.6 Example of the CS2013 Strawman Software Development Fun-
damentals KA, Data Structures KU [The Joint Task Force on
Computing Curricula Association for Computing Machinery
IEEE-Computer Society, 2012, Page141] . . . . . . . . . . . . 227

D.7 Overview of the CS2013 Ironman SDF BoK [The Joint Task
Force on Computing Curricula Association for Computing
Machinery IEEE-Computer Society, 2013, Page 163] . . . . . 228

D.8 Example of the CS2013 Ironman Software Development Fun-
damentals KA, Data Structures KU [The Joint Task Force on
Computing Curricula Association for Computing Machinery
IEEE-Computer Society, 2013, Page165] . . . . . . . . . . . . 228

xii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



List of Tables

2.1 In- and Out-degrees of vertices of GC and GD . . . . . . . . . 20

3.1 Common Big-O notation function orders . . . . . . . . . . . . 26

4.1 Adjacency matrix for digraph in Figure 2.2 . . . . . . . . . . 34
4.2 Incidence matrix for digraph in Figure 2.2 . . . . . . . . . . . 35
4.3 Comparison of graph operations with regards to the imple-

mentation technique . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 Summary of the significance of the ratios R(X ,Y) . . . . . . 68
6.2 Vertex and edge sets for the quantities . . . . . . . . . . . . . 77
6.3 Set quantity cardinalities and ratio calculation results for the

toy application . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Graph edit distance for the toy application . . . . . . . . . . 83

7.1 E′ difference sets for outcome 2 . . . . . . . . . . . . . . . . . 93
7.2 Graph edit distance for outcome 2 . . . . . . . . . . . . . . . 93
7.3 Graph edit distance for outcome 3 . . . . . . . . . . . . . . . 94

8.1 Comparison of Computing Curricula [Joint Task Force for
Computing Curricula, 2005, page 12] . . . . . . . . . . . . . . 109

8.2 Knowledge Areas . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.1 NQF categories . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.2 HEQF exit levels . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.3 Higher education qualification summary . . . . . . . . . . . . 123
9.4 Minimum ABET requirements . . . . . . . . . . . . . . . . . 128

10.1 Set quantity cardinalities for CS2013S and CS2013I . . . . . . 143

11.1 Core aspects of the curriculum volumes . . . . . . . . . . . . 147
11.2 Zoomed into CC2001 and CS2013I HC/HCI in Table 11.1 . . 148
11.3 Values showing the respective cardinalities of the curriculum

volume digraphs . . . . . . . . . . . . . . . . . . . . . . . . . 150
11.4 Cardinality of vertices in the difference sets M \C and C \M

for CC2001(I) and CS2008 (M) . . . . . . . . . . . . . . . . . 153

xiii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



11.5 Scenario 2: Vertex sets for selected quantities . . . . . . . . . 158
11.6 Scenario 2: Set cardinalities for selected quantities . . . . . . 160
11.7 Scenario 3: Set cardinalities for the comparison of the BSc

CS with CC2001 and CS2013I . . . . . . . . . . . . . . . . . . 168

12.1 Summary of set representations of Table 11.5 . . . . . . . . . 185

E.1 Scenario 1 - CC2001(I) and CS2008(M) . . . . . . . . . . . . 230
E.2 Scenario 1 - CC2001(I) and CS2013S(M) . . . . . . . . . . . . 231
E.3 Scenario 1 - CC2001(I) and CS2013I(M) . . . . . . . . . . . . 232
E.4 Scenario 1 - CS2013S(I) and CS2013I(M) . . . . . . . . . . . 233
E.5 Scenario 2 - CC2001(I) and CS2008(M) . . . . . . . . . . . . 235
E.6 Scenario 2 - CS2008(I) and CC2001(M) . . . . . . . . . . . . 236
E.7 Scenario 2 - CS2013S(I) and CS2013I(M) . . . . . . . . . . . 237
E.8 Scenario 2 - CS2013I(I) and CS2013S(M) . . . . . . . . . . . 238

xiv

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



List of Definitions

2.1 Definition (Graph definition 1 - Bondy and Murty, 1976) . . . 9
2.2 Definition (Graph definition 2 - Diestel, 2005) . . . . . . . . . 10
2.3 Definition (Loop) . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Definition (Undirected graph) . . . . . . . . . . . . . . . . . . 11
2.5 Definition (Directed graph - Digraph) . . . . . . . . . . . . . 13
2.6 Definition (Walk) . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Definition (Cycle) . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Definition (Path) . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Definition (Exact graph matching - Graph isomorphism) . . . 15
2.10 Definition (Identical graphs - Graph automorphism) . . . . . 15
2.11 Definition (Subgraph) . . . . . . . . . . . . . . . . . . . . . . 17
2.12 Definition (Subgraph isomorphism) . . . . . . . . . . . . . . . 18
2.13 Definition (Edge subdivision) . . . . . . . . . . . . . . . . . . 18
2.14 Definition (Graph homeomorphism) . . . . . . . . . . . . . . 19
2.15 Definition (Homomorphism) . . . . . . . . . . . . . . . . . . . 20
2.16 Definition (Graph transformation) . . . . . . . . . . . . . . . 21

3.1 Definition (Deterministic Turing machine) . . . . . . . . . . . 27
3.2 Definition (Nondeterministic Turing machine) . . . . . . . . . 28
3.3 Definition (Time complexity classes) . . . . . . . . . . . . . . 29
3.4 Definition (Space complexity classes) . . . . . . . . . . . . . . 29
3.5 Definition (Complexity classes P and NP) . . . . . . . . . . . 30
3.6 Definition (Complexity class NP-Complete (NPC)) . . . . . . 30
3.7 Definition (Polynomial time reducibility) . . . . . . . . . . . . 31
3.8 Definition (Complexity class NP-Hard) . . . . . . . . . . . . . 31

4.1 Definition (Adjacency matrix) . . . . . . . . . . . . . . . . . . 34
4.2 Definition (Incidence matrix) . . . . . . . . . . . . . . . . . . 35
4.3 Definition (Digraph - Set of triples) . . . . . . . . . . . . . . . 37

5.1 Definition (V , E and E′ for a set of triples) . . . . . . . . . . 48

6.1 Definition (Set-theoretic difference) . . . . . . . . . . . . . . . 62
6.2 Definition (Labelled graph isomorphism — set of triples (i)) . 64
6.3 Definition (Difference sets) . . . . . . . . . . . . . . . . . . . . 66

xv

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



6.4 Definition (Unlabelled graph isomorphism — set of triples (ii)) 66
6.5 Definition (Ratio formulae in terms of I) . . . . . . . . . . . . 67
6.6 Definition (Ratio formulae in terms of the first operand) . . . 67

xvi

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



List of Transformation Rules

2.1 Rule (Edge subdivision) . . . . . . . . . . . . . . . . . . . . . 21

5.1 Rule (Add a path to digraph G) . . . . . . . . . . . . . . . . 46
5.2 Rule (Remove parallel edges from digraph G) . . . . . . . . . 47
5.3 Rule (Find a path between vi and vj in digraph G) . . . . . . 51
5.4 Rule (Join a path to graph G) . . . . . . . . . . . . . . . . . 51
5.5 Rule (Transform a set of sets of triples to a set of triples) . . 51
5.6 Rule (Transfer the label of an edge from digraph G to digraph

H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.7 Rule (Convert a path to a set of triples) . . . . . . . . . . . . 58

10.1 Rule (Vertex equivalence - or-subgraph) . . . . . . . . . . . . 140
10.2 Rule (Linking the or-subgraph) . . . . . . . . . . . . . . . . . 140

xvii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 1

Introduction

Many problems in the world exist where it is necessary to compare a given
implementation with a specification and to provide some quantification as
to whether the implementation complies with the specification. An example
of such a problem is determining whether a given curriculum complies with
a specification as stipulated by a professional body such as the ACM/IEEE
curriculum for Computing. This thesis addresses such a problem.

The problem was identified when in a real life context an attempt was
made to re-design a BSc Computer Science degree programme. The re-
quirements for this degree programme were that it should comply with the
ACM/IEEE Computing Curriculum for Computer Science and the require-
ments as stipulated by ABET’s Computing Accreditation Commission. The
development of the BSc Computer Science degree programme was initiated
when the ACM/IEEE Computing curriculum 2001 was the most recent spec-
ification for Computer Science degree programme content[Joint Task Force
for Computing Curricula, 2005]. The 2008 Review of the Computer Sci-
ence curriculum was also imminent, but had not been released [ACM/IEEE-
Curriculum CS2008 Joint Task Force, 2008].

Development of the curriculum relied on a spreadsheet. The rows of
the spreadsheet represented the ACM/IEEE Computer Science curriculum
2001 and the columns, existing modules being presented in a degree that
was to become the re-designed BSc Computer Science degree programme.
The content of the existing modules was mapped onto the the ACM/IEEE
curriculum specification by indicating for each module (column), the topics
it addressed (rows). From this information a gap analysis between the ex-
isting modules content and the requirement of the ACM/IEEE curriculum
2001 was carried out. Development of the BSc Computer Science curricu-
lum thereafter was iteratively carried out and each iteration was manually
evaluated against the curriculum specification. A need was identified to
semi-automate this process.

1

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



1.1 Research proposal

The research proposal under consideration is to investigate the extent to
which the processes used to compare and develop curricula can be auto-
mated. To achieve this it is necessary to model the curricula and to use
these models as input to the comparison process. The process for compari-
son is semi-automated and guided by the application of a framework.

1.2 Research approach

The research approach to be followed is to develop and verify a framework
for digraph comparison. The framework will be illustrated in the domain of
curriculum comparison and development. In such a comparison, curricula
are modelled as digraphs in which vertices represent curricula elements (such
as topics, knowledge untis, knowledge areas, year-levels, modules, etc.) and
edges represent dependencies between these elements (such as belonging to
a group, prerequisites, etc.).

An algorithm for comparing digraphs was developed by Marshall and
Kourie [2010]. This algorithm will be refined and included in the frame-
work. The framework will first be verified using toy applications. These
applications will focus on the possible outcomes of the algorithm. Compar-
ison techniques and the visualisation of the results will be proposed.

Verifying the framework using a real-world application will form the
second part of the work presented. The real-world applications that will be
verified include: the comparison of the ACM/IEEE curriculum volumes; and
the comparison of the real-world BSc Computer Science degree programme
to the curriculum volumes.

1.3 Research description

In this thesis a generalisation of the proposal will be presented. Curricula
are modelled as directed graphs (digraphs). The vertices of the digraph rep-
resent the curriculum elements. The edges between the vertices represent
the relationships between the curriculum elements. For the ACM/IEEE cur-
ricula volumes these are elements such as knowledge areas, knowledge units
and topics. For the degree programme, these elements are represented by
elements such as year-levels, modules and topics. The digraphs are repre-
sented as a set of triples [Barla-Szabo et al., 2004; Koopman, 2009]. Each
triple is of the form (source, destination, label). The source is the start ver-
tex of the directed edge and the destination the end vertex of the directed
edge. Each edge has a label associated with it.

Modelling curricula as digraphs abstracts the process of curriculum com-
parison to one of comparing digraphs. The results of the digraph compar-

2

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



ison are used to facilitate the process of curriculum development in which
the digraph models of the curricula are updated accordingly. The processes
referred to in the proposal are guided by a framework which will be referred
to as the Graph Comparison Framework.

The Graph Comparison Framework comprises of components which are
logically related. The so-called Graph Trans-morphism Algorithm is used by
the framework and is the entry point to all processes guided by the frame-
work. The algorithm transforms the information in one of the digraphs to
be compared into the structure of the other. This conversion enables the
graphs to be compared as graph isomorphisms. The fact that the digraphs
are represented as sets makes it possible to subtract one digraph from an-
other using the set minus operator. The resulting difference sets are used
by other components in the framework to quantify the comparison of the
digraphs and to visualise the digraphs and/or the comparison quantification.

By modelling curricula as digraphs and applying the framework to the
digraphs, it is possible to compare curricula. This application of the frame-
work to a real-world problem forms the applications research part of the
thesis. In this part, domain knowledge of curriculum design is necessary to
apply to the curriculum being developed in order to improve it.

1.4 Significance of the study

The framework presented in this thesis contributes to the computer science
body of knowledge. It proposes an algorithm for comparison that gener-
ates a subgraph isomorphism of a digraph in terms of the structure of one
graph being compared using the information of the other. Comparison of
the subgraph isomorphism is carried out by quantifying and visualising the
differences and similarities between the subgraph isomorphism, the digraph
representing the structure and the digraph representing the information.

The contribution made in the context of the application of the framework
to curriculum comparison and development allows for curricula to be com-
pared in a semi-automated fashion. The task of comparison can be repeated
more frequently as the time taken to setup and execute the comparison is
shortened.

1.5 Scope of the study

The curriculum comparison and development discussed in the thesis will be
limited to the core elements defined in the ACM/IEEE Curriculum volumes.
Using the core elements will adequately illustrate the use of the framework.
The addition of elective elements as defined in the ACM/IEEE Curriculum
volumes is a decision to be made by the curriculum expert. The choice of
comparing only the core, or only the electives, or the core and electives is

3

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



currently a manual process. It is envisaged that this kind of choice will
be included in a tool that makes use of the framework and will no longer
be a manual process. The digraph representation already makes provision
for the inclusion of meta-information using the label element of the set of
triples. This enables the label to be further expanded to include additional
meta-information such as whether the element is core/elective, as well as
time and credit constraints. The framework needs to be extended to make
provision for these constraints.

In the introductory paragraph reference was made to the comparison
of a curriculum with accreditation requirements. To implement accredita-
tion comparison will require the framework to be extended. Accreditation
requirements in general are not as specific as curriculum requirements. In
many cases a general requirement such as “data structures and algorithms”
is given. In general this maps onto the Knowledge Units specified in the
ACM/IEEE Curriculum volumes. The details with regards to the topics
relating to the Knowledge Units is not provided by the accreditation speci-
fication. A preprocessing step is therefore required to compare a real-world
curriculum with an accreditation specification. This pre-processing step will
need to extract the required topics for the accreditation structure from the
curriculum volume from which he curriculum was designed. This process
will not be discussed in this thesis.

The representation that will be used to model the curricula is digraphs.
Digraphs are based on mathematical principles and modelling digraphs as
a set of triples increases the expressiveness of the representation for com-
parisons. Digraphs are not the only representation. There are other more
expressive representations that exist such as concept lattices and ontologies
that could conceivably also have been used to represent the curricula. Tech-
niques exist to convert between these representations and digraphs. It is
therefore possible to extend the framework to include these representations.

Extensions to the scope presented in this thesis will be addressed in
more detail in Chapter 12, Future Work. The Future Work chapter further
expands on how the framework can be improved to facilitate curriculum
comparison and development. It should be noted, that the framework will
in all probability never fully automate the curriculum comparison process.
Human intervention and domain expertise will continually be required. It
will however provide some sort of automation of the process.

1.6 Structure of the document

The document comprises of an introductory chapter – which is this chapter,
and four parts. Parts I, II and III form the main body of the thesis. Each
part comprises of a number of chapters. Part IV groups the appendices.

Part I, referred to as Theory, presents a literature review of relevant

4

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



graph theory and algorithms. It introduces an algorithm to facilitate di-
graph comparison. A framework, which incorporates the algorithm is also
presented. Part II of the thesis presents an overview of an application do-
main, curricula, for applying the comparison framework. A few non-trivial
scenarios are presented to illustrate how the framework is applied to a real-
world application. The third part, Part III, presents a chapter on future
work before concluding. More detail regarding Part I, Part II and Part III
will briefly be discussed in the paragraphs that follow.

Overview of Part I - Theory

Part I considers the theoretical background required for the framework. It
presents an overview of relevant graph theory in Chapter 2 as this is the
non-generative model1 that is to be used to present the curricula being
modelled in the Application part of the dissertation. The models specifically
make use of directed graphs, or digraphs. Therefore Chapter 4 introduces
implementation techniques for digraphs as well a brief overview of algorithms
used to manipulate digraphs. Because algorithms are characterised by their
complexity, and because algorithms presented here therefore require such
characterisation, an overview of complexity theory is presented in Chapter 3.

Chapters 5 and 6 present an algorithm and framework for digraph com-
parison. The algorithm is based on the notion that two digraphs are to
be compared. One of these digraphs represents what is being aspired to.
This could be, for example, a specification. In Part II where the applica-
tion is discussed the specification could refer to the ACM/IEEE Computer
Science curriculum volume. The other digraph represents an implementa-
tion. In many cases, these two digraphs are not directly comparable due
to structural differences between the digraphs. The algorithm presented in
Chapter 5 builds a third digraph using the information presented in the
implementation and found in the structure of the specification. This third
digraph is used to determine how well the digraphs compare when applying
the framework for comparison presented in Chapter 6.

Examples of the application of the algorithm and framework presented
in this part makes use of toy applications.

Overview of Part II - Application

Part II introduces the application domain relating to Computer Science
curricula and the application of the framework for comparing curricula as a
means of refining (perhaps iteratively) a curriculum.

1A generative model is a model that provides both syntax and semantics. An ontology
is an example of a generative model. It provides the structure as well as a concept language
to query the structure. A non-generative model is a model that only provides the structure
[Andreasen et al., 2003].

5

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The first two chapters of the part provide background to curricula specifi-
cations and requirements for real-world curricula. In Chapter 8, an overview
is presented of the curricula specifications defined by the ACM/IEEE joint
task groups related to Computer Science. Chapter 9 considers the legisla-
tive and institutional requirements placed on a real-world curriculum. It also
briefly presents the challenges faced when developing a Computer Science
curriculum in the South African context.

Chapter 10 provides the link between Part I and the application do-
main. The modelling of curricula in terms of digraphs, both with respect
to the ACM/IEEE Curriculum volumes and with respect to a real-world
BSc curriculum, is presented. The challenges of capturing topic data when
comparing and developing a real-world curriculum is briefly discussed. Once
a curriculum has been modelled as a digraph, its integrity has to be checked
and the possibility needs to be considered of equivalences between topics
in the respective curricula in order to improve the integrity of the digraph
comparison. These aspects are also highlighted in this chapter.

The final chapter of the part, Chapter 11, presents areas in which the
framework can be applied in the application domain of curriculum com-
parison and development. Two of the identified areas are illustrated using
non-trivial scenarios and the results thereof are presented.

Overview of Part III - Future Work and Conclusion

The third part comprises of two chapters. Chapter 12 discusses shortcom-
ings of the work presented in the thesis. It also presents what needs to be
completed in order to develop a tool that can be used to assist in curriculum
comparison and development.

The final chapter of this part and of the thesis is the Conclusion.

6

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Part I

Theory

7

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2

Graph Theory

2.1 Introduction

Graphs are a well known and well researched branch of mathematics with
applications in many areas. Graphs are used to model systems and the
relationships between system parts. Graphs are particularly well suited for
systems that require the modeling of rules [Andries et al., 1999] and require
a structure of the system to be maintained [Heckel, 2006], conceptually,
behaviourally or both.

The graph theory presented in this chapter is by no means complete. It
provides an overview of the fundamentals of graphs and basic definitions so
that the topics can be discussed or expanded on in later chapters.

The chapter is divided into three sections devoted to discussing types,
matching and the transformation of graphs. Graph types, Section 2.2, in-
troduces the notation to be used in the dissertation when specifying graphs.
Section 2.3 discusses graph matching techniques. These techniques fall into
two categories, they are either exact or inexact. The exact matching tech-
nique that solves the subgraph isomorphism problem is of particular interest
later in the thesis and therefore the definition of a subgraph isomorphism
is discussed. A definition and example for graph transformation is given in
Section 2.4.

2.2 Graph types

All graphs can be seen as having vertices and edges connecting the vertices.
How these vertices and edges are specified dictate the properties the defined
graphs have. In this section, three basic graph types are presented, beginning
with the most general form of a graph, the undirected graph where edges
are bidirectional. More specialised graph types, with directional edges are
also defined, namely the directed graph and the directed acyclic graph.

8

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2.2.1 Undirected graph

Many mathematics-based definitions for (undirected) graphs have been pub-
lished. These graph definitions vary in detail, but each definition essentially
relies on the fact that a graph comprises of a set of vertices, a set of edges
and a way of specifying the edges between the vertices. As illustration,
two definitions are presented with a publication span of just under 30 years
between them.

The first definition, reproduced in Definition 2.1, was published in 1976
by Bondy and Murty. The definition views a graph as a 3-tuple (or triple).
The first element of the triple represents a set of vertices. According to the
definition, a graph is defined by at least 1 vertex. The second triple element
represents the set of edges. Each edge is defined using the third element of
the triple, which associates an edge with a pair of vertices. According to
the definition, this is an unordered pair. However, since a pair is normally
regarded as ordered, it would probably be better to regard the incidence
function as mapping to a set of cardinality 2.

Definition 2.1 (Graph definition 1 - Bondy and Murty, 1976)

A graph G is defined as an ordered triple (V (G), E(G), ψG), where:

i V (G) is a non-empty set of vertices

ii E(G) is a set disjoint from V (G) of edges, and

iii ψG is an incidence function that associates with each edge of G an
unordered pair of vertices of G.

An example of a specification of a graph using the definition presented
in Definition 2.1 is given by:

V (G) = {a, b, c, d, e, f}
E(G) = {e1, e2, e3, e4, e5, e6, e7, e8}
ψ(e1) = (a, b),

ψ(e2) = (a, c),

ψ(e3) = (a, f),

ψ(e4) = (b, c),

ψ(e5) = (c, d),

ψ(e6) = (d, e),

ψ(e7) = (b, f),

ψ(e8) = (b, e)

From the specification, it should be noted that the definition implicitly
labels the edges using the elements of the set E(G) to represent the labels.

9

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The label for the edge between vertices c and d, is e5.
The second definition of a graph, defined by Diestel in his book on Graph

Theory, is reproduced in Definition 2.2. In this case a graph is defined as a
pair comprising of a set of vertices and a set of edges. Each element in the
set of edges is a subset of V comprising of two elements. In this definition
it is possible to have an empty set of vertices, which implies an empty set
of edges.

Definition 2.2 (Graph definition 2 - Diestel, 2005)

A graph G is defined as a pair of the form (V,E), where V is a set of
vertices of graph G and E a set of edges. The set E is a 2-element subset
of V (E ⊆ [V ]2). It is further assumed that V ∩ E = ∅.

The assumption that V ∩E = ∅ ensures that the graph does not contain
loops. A loop is defined by Definition 2.3. To illustrate the need for this
assumption, consider the following specification for a graph that adheres to
this definition:

V = {a, b, c}
E = {{a, b}, {b, b}, {b, c}}

The edge {b, b} ∈ E, according to set theory, will reduce to {b} ∈ E,
which is in V resulting in V ∩ E = {b}.
Definition 2.3 (Loop)

A loop is an edge that connects a vertex to itself.

An example of a specification of a graph using the definition presented
in Definition 2.2 that results in the same graph as the specification given for
Definition 2.1 is given by:

V = {a, b, c, d, e, f}
E = {{a, b}, {a, c}, {a, f}, {b, c}, {c, d},

{d, e}, {b, f}, {b, e}}

From the example above, it can be seen that the definition does not make
provision for labeling of the edges.

Both definitions presented by Definition 2.1 and 2.2 have a similar struc-
ture. Both define a set of vertices and a set of edges and in both the set of
edges is defined in terms of a function that is applied to the set of vertices.
Definition 2.1 allows for loops, but not an empty graph. Definition 2.2 does

10

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



allow for a graph to be defined as empty, it does not allow for loops or the
explicit labeling of edges.

For the thesis, a graph is required to have the following properties:

• A graph can be empty implying that there are no vertices for the
graph, yet the graph is defined to exist. This property is necessary for
the discussion of the algorithm proposed in Chapter 5.

• A graph edge must be able to carry a label along with the possibility
of additional meta-data associated with the edge.

• The graph does not contain loops.

A definition, which takes the above properties into account for an undi-
rected graph, is given by Definition 2.4 using a notation that represents
operations which take parameters. These operations are analogous to func-
tions in computer programming languages. Assigning the result of an oper-
ation to a variable indicates that the execution of the operation will give a
resultant value that will be assigned to the variable. The general form of an
operation is given by:

var = operation(parameterlist)

Definition 2.4 (Undirected graph)

A graph, defined by G = G(V,E), comprises of:

i V = V (G), a set of elements, called vertices of G.

ii E = E(G), a set of edge pairs of G. Each edge pair, (E ,L), comprises
an edge (E) and a label (L). E is a two element subset of V (i.e. E =
{v1, v2}, where v1 6= v2 and v1, v2 ∈ V ) and L is an n-tuple of which
the first element enumerates the label (label, ...) of the corresponding
edge.

Definition 2.4 satisfies all the desired properties,

• V = ∅ is valid. It follows that if V = ∅ then E = ∅.

• Edge pairs in E incorporate an n-tuple representation for a label.

• The definition of the edge as a two element subset of V ensures that
the elements in the subset cannot be the same with v1 6= v2, otherwise
it would reduce the subset to one element making it invalid.

A graph defined using Definition 2.4 is represented by two sets, a set of
vertices (V ), and a set of edges (E). Each pair in E comprises of a set of

11

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a b
(e1)

c
(e2)

f

(e3)

(e4)

(e7)

d
(e5)

e

(e6)

(e8)

Figure 2.1: Example of graph G

two elements of V and an n-tuple representing the label. The following is
a textual representation of a graph G comprising of 5 vertices and 8 edges
that represents the same graph as for the specifications used to illustrate
Definitions 2.1 and 2.2.

V = {a, b, c, d, e, f}
E = {({a, b}, (e1)),

({a, c}, (e2)),
({a, f}, (e3)),
({b, c}, (e4)),
({c, d}, (e5)),
({d, e}, (e6)),
({b, f}, (e7)),
({b, e}, (e8))}

For a visual representation of G, a vertex v ∈ V , is represented by an
oval. An edge of an edge pair is represented by an arc connecting v1 and v2
and the label is placed on the corresponding arc. The visual representation
of the textual representation given above is presented in Figure 2.1.

2.2.2 Directed graph

A directed graph (also referred to as a digraph) G, is a graph in which the
edges have direction. Each edge begins at a source vertex and ends at a
destination vertex [Diestel, 2005]. For there to be an edge in the opposite
direction it needs to be specifically defined as an edge of the graph. It
is permissible to have an edge in the opposite direction as well so that
the source of one edge is the destination of the other, and vice versa. A
formal definition, in the notation of the Definition 2.4 of a graph, is given
by Definition 2.5.

12

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Definition 2.5 (Directed graph - Digraph)

A digraph, defined by G = G(V,E), comprises of:

i) V = V (G), a set of elements, called vertices of G.

ii) E = E(G), a set of edge pairs ofG. Each edge pair, (E ,L), comprises
an edge (E) and a label (L). E is an ordered pair comprising elements
of V (i.e. E = (v1, v2), where v1 6= v2 and v1, v2 ∈ V ) and L is an
n-tuple of which the first element enumerates the label (label, ...) of
the corresponding edge.

iii) Each edge (E) is defined by two mappings, namely

source : E −→ V

and
destination : E −→ V

representing the edge, E = (source, destination), showing the direc-
tion of the edge from source to destination.

If the digraph has several edges between the same two vertices then these
edges are called multiple edges. If these edges have the same direction they
are referred to as parallel. The definition of a digraph allows for cycles. A
cycle is defined in terms of a walk. The definitions of a walk and a cycle are
given by Definitions 2.6 and 2.7 respectively [Bondy and Murty, 1976]. The
term distinct used in the definition of a cycle means that the vertex is not
repeated in the sequence.

Definition 2.6 (Walk)

A walk in G is a finite non-empty sequence of alternating vertices and
edges, WG = [v0 e1 v1 ... ek vk]. For an edge, ei ∈ E, 1 ≤ i ≤ k, the
vertices ( vi ∈ V, 1 ≤ i ≤ k) on either side are vi−1 and vi. v0 and vk
are referred to the origin and the terminus of the walk respectively. ei
is either represented in E or L.

Definition 2.7 (Cycle)

A cycle in G is a walk in which v0 = vk, k ≥ 1 and v1 to vk−1 are distinct,
CG = [v0 e1 v1 ... ek v0].

The graph for V and E as defined below, is given in Figure 2.2. The
graph contains a cycle given by the sequence CG = [b (e4) c (e5) d (e6) e (e8) b].

13

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a b
(e1)

c
(e2)

f

(e3)

(e4)

(e7)

d
(e5)

e

(e6)

(e8)

Figure 2.2: Example of digraph G

V = {a, b, c, d, e, f}
E = {((a, b), (e1)),

((a, c), (e2)),

((a, f), (e3)),

((b, c), (e4)),

((c, d), (e5)),

((d, e), (e6)),

((b, f), (e7)),

((e, b), (e8))}

Not only are cycles defined in terms of walks, but so are paths. A path
can be seen a specialisation of a cycle. A path beginning at a specific vertex
in a graph and ending at another vertex of the same graph is given by
Definition 2.8.
Definition 2.8 (Path)

A path in G is a walk in which both the vertices, v0 to vk , and
edges, e1 to ek , of the walk are distinct. A path in G is written as
PG = [v0 e1 v1 ... ek vk].

The length of the path is the number of edges that the path comprises
of. An example of a path in digraph G presented in Figure 2.2 is given by
PG = [b (e4) c (e5) d (e6) e]. The length of PG is 3.

2.2.3 Directed acyclic graph

A Directed Acyclic Graph (DAG) is a digraph without cycles [Bang-Jensen
and Gutin, 2007]. To convert the digraph in Figure 2.2 into a DAG, one
of the edges in the cycle would have to be excluded from the graph. For
example, if the edge labelled (e8) was excluded, a DAG would result with a
representation as given in Figure 2.3.

14

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a b
(e1)

c
(e2)

f(e3)

(e4)

(e7)

d
(e5)

e
(e6)

Figure 2.3: Example of DAG G

2.3 Graph matching

The notion of graph matching entails the use of techniques to determine
the similarity between two graphs. Bengoetxea [2002] and Zaslavskiy [2010]
differentiate between exact and inexact graph matching. With exact graph
matching the graphs are said to be isomorphic, while with inexact graph
matching the graphs are homomorphic. Definition 2.9 defines exact graph
matching.

Definition 2.9 (Exact graph matching - Graph isomorphism)

Consider two graphs, GA(VA, EA) and GB(VB, EB) where the number of
vertices in VA is the same as the number of vertices in VB, | VA |=| VB |.
Suppose there exists a one-to-one mapping

F : VA −→ VB

such that
{v1, v2} ∈ E′A ⇐⇒ {F(v1),F(v2)} ∈ E′B

where, for n = A,B
E′n = {e|(e, l) ∈ En}

Then F is referred to as an isomorphism, and GA is said to be isomor-
phic to GB.

The most extreme case of similarity is when the graphs are identical,
defined by Definition 2.10. This is also referred to as a graph automorphism
[Diestel, 2005].

Definition 2.10 (Identical graphs - Graph automorphism)

Two graphs, GA and GB, are identical if:

i) the set of vertices of GA is equal to the set of vertices of GB, that
is VA = VB; and

ii) the set of edges extracted from the set of edge pairs of GA (E′A) is
equal to the set of edges extracted from the edge pairs of GB (E′B),

15

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



that is E′A = E′B.

Identical graphs will have the same diagrammatic representation [Bondy
and Murty, 1976]. Non-identical graphs may have the same diagrammatic
representation and may be found to be isomorphic if the graph matching
property of the number of vertices of the two graphs are the same and there
exists a bijective mapping function F .

When the graph matching property of | VA |=| VB | does not hold, no
graph isomorphism can be determined and the problem changes from finding
exact matches between vertices to finding the best match between vertices.
These problems belong to the class of problems known as inexact graph
matching. In such cases, a non-bijective relationship between GA and GB
is sought [Bengoetxea, 2002], also referred to as a graph homomorphism.

In the sections that follow, the graph matching techniques are discussed
in more detail. The graph comparing algorithm presented in Chapter 5
makes use of the notions presented by these techniques for building a sub-
graph isomorphism.

2.3.1 Graph isomorphism

A graph isomorphism (iso - equal, morphism - shape), which holds for both
undirected and directed graphs, is a 1-to-1 mapping of the vertices in the
graph GA onto the vertices in the graph GB such that the edges of the ver-
tices are preserved. The definition for exact graph matching (Definition 2.9)
is equivalent to the definition of a graph isomorphism [Bondy and Murty,
1976; Diestel, 2005; Bang-Jensen and Gutin, 2007].

The notation used to denote that graph GA is isomorphic to graph GB
is given by GA ∼= GB.

Consider the following two textual representations and their respective
graphical representations (given in Figures 2.4 and 2.5) of graphs GA and
GB.

VA = {a, b, c, d, e}

EA = {({a, b}, ()), ({b, c}, ()), ({c, d}, ()), ({d, a}, ()), ({a, e}, (), ({e, d}, ())}

VB = {g, h, i, j, k}

EB = {({k, g}, ()), ({g, h}.()), ({h, i}, ()), ({i, j}, ()), ({j, k}, ()), ({k, i}, ())}

From their respective figures, GA and GB look different. By applying
Definition 2.9 it can be shown that GA and GB are isomorphic. The first
part of the definition states that the number of vertices in each of the graphs
must be equal, GA has 5 vertices and so does GB. The second requirement
of the definition requires that some mapping F between the vertices can

16

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a

b

e

c

d

Figure 2.4: Visual representation of example graph GA

j

i

kg

h

Figure 2.5: Visual representation of example graph GB

be found such that the edges of GA are preserved in GB and vice versa.
There exists such a mapping, F(a) = i,F(b) = h,F(c) = g,F(d) = k and
F(e) = j. The set of edges extracted from GA is given by:

E′A = {{a, b}, {b, c}, {c, d}, {d, a}, {a, e}, {e, d}}

By applying the mapping F to E′A, the following set of edges result:

E′B = {{F(a),F(b)}, {F(b),F(c)}, {F(c),F(d)}, {F(d),F(a)},
{F(a),F(e)}, {F(e),F(d)}}

= {{i, h}, {h, g}, {g, k}, {k, i}, {i, j}, {j, k}}

The edges of E′A map directly onto E′B; therefore GA ∼= GB.
A graph isomorphism therefore compares the structures of graphs. The

vertex “names” and labels of the edges are merely used for referral purposes.

Subgraphs and graph isomorphisms

The definition of a subgraph is given by the Definition 2.11 [Diestel, 2005;
Bondy and Murty, 1976].

Definition 2.11 (Subgraph)

A graph GA is a subgraph of GB if VA ⊆ VB and E′A ⊆ E′B.

The notation used to show that GA is a subgraph of GB is given by,
GA ⊆ GB.

17

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a b
(e1)

Figure 2.6: An edge

a c
(e1_1)

b
(e1_2)

Figure 2.7: An edge subdivision

Definition 2.12 (Subgraph isomorphism)

Graph GA is a subgraph isomorphism of GB if VA ⊂ VB and there exists a
mapping F : VA −→ VB such that {v1, v2} ∈ E′A ⇐⇒ {F(v1),F(v2)} ∈
E′B.

The subgraph isomorphism mapping needs only to preserve the edges of
the vertices defined in the subgraph (graph GA). Any edges that may exist
between vertices in GA and those only, need to be preserved in GB.

Graph homeomorphism

A graph homeomorphism (homeo - similar, morphism - shape) is a topolog-
ical graph isomorphism. This means that if vertices can be added to one
graph to get another graph, then the graph is homeomorphic. The defini-
tion, given by Definition 2.14, adds vertices by using a technique called edge
subdivision (Definition 2.13) [Alekseev, 2013].

Definition 2.13 (Edge subdivision)

A subdivision of an edge {v1, v2} ∈ E′ of graph G results in the addition
of a vertex, say u, to graphG resulting in two edges {v1, u}, {u, v2} ∈ E′.

Consider the edge given in Figure 2.6. The subdivision of the edge will
result in:

• the edge, (e1), being removed from the graph,

• a vertex, c, being added to the graph, and

• the addition of two edges linking the additional vertex to the origi-
nal vertices that were linked by the original edge. Edge (e1 1) links
vertices a and c and (e1 2) links vertex c to vertex d.

Refer to Figure 2.7 for the result of the edge subdivision described above. It
is important that edge subdivision preserves edge direction in digraphs and
DAGs.

18

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a

b

c

d

e

h

f

Figure 2.8: Visual representation of example DAG GC

a

d

c
f

h

g

Figure 2.9: Visual representation of example DAG GD

Definition 2.14 (Graph homeomorphism)

Suppose that GA, GB, G
′
A, G

′
B are graphs that conform to the following:

i) G′A (G′B) is derived from GA (GB respectively) by a sequence of zero
or more edge subdivisions.

ii) G′A
∼= G′B

Then GA and GB are said to be homeomorphic

The notation used to denote that two graphs GA and GB are homeo-
morphic is GA ≈ GB.

Consider the two DAGs in Figures 2.8 and 2.9. Note that the vertex
naming need not have been the same, but for ease of discussion they have
been made to match.

For each of the digraphs in the figures, for each vertex in the graphs, the
in-degree and out-degree of the vertex can be determined. The in-degree
of a vertex is the number of edges entering the vertex and the out-degree

a

c

b d

h

e f g

Figure 2.10: Visual representation of subdivided DAGs G′C and G′D

19

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



the number of edges leaving the vertex. This information is summarised in
Table 2.1. Vertices that do not have values in the table are not in their
respective graphs. This means that there is no vertex g in graph GC and
graph GD does not have vertices b and e. Applying a subdivision in the
respective graphs for these vertices will result in the graph given in Fig-
ure 2.10 which represents G′C (edge subdivision denoted in blue) and G′D
(edge subdivisions denoted in green) with G′C

∼= G′D. It then follows that
GC and GD are homeomorphic, GC ≈ GD.

a b c d e f g h

GC 0 2 1 1 1 3 2 1 1 1 2 1 2 0

GD 0 2 1 3 2 1 2 1 1 1 2 0

Table 2.1: In- and Out-degrees of vertices of GC and GD

2.3.2 Graph homomorphism

In the mathematical field of graph theory a graph homomorphism (homo
- same, morphism - shape) is a mapping between two graphs that respects
their structure. More concretely it maps adjacent vertices to adjacent ver-
tices by preserving the edges. A homomorphism is defined in Definition 2.15
[Bang-Jensen and Gutin, 2007].

Definition 2.15 (Homomorphism)

Consider two graphs GA and GB. If there exists a mapping F : VA −→
VB, such that {v1, v2} ∈ E′A =⇒ {F(v1),F(v2)} ∈ E′B then F is re-
ferred to as a graph homomorphism between GA and GB, GA is said to
be homomorphic to GB.

The notation used to denote that the graph GA is homomorphic to GB
is GA → GB.

2.4 Graph transformation

Graph transformation, also referred to as graph rewriting or graph reduction,
is a technique used to transform one graph to another by following a set
of rules, or algorithm [Heckel, 2006]. Graph transformations are used to
generate, manipulate and evaluate graphs [Andries et al., 1999].

Definition 2.16 provides a general definition for a graph transformation
[Andries et al., 1999]. The basic idea of the graph transformation process is
to iteratively apply a rule, from a set of rules or as defined by an algorithm,
to a graph, thereby transforming the original graph to a new graph.

20

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Definition 2.16 (Graph transformation)

A graph transformation comprises of a set of graph rewriting rules of
the form L −→ R.

L is the left-hand or pattern side of a particular rule. It may
represent a vertex, an edge or a subgraph of G, L ⊆ G.

R is the right-hand or replacement side of a particular rule. As
with L it may represent a vertex, an edge or a subgraph to
be inserted into G.

A rule is applied to G by finding an (all) occurrence(s) of L in G and
replacing it (them) with R thereby transforming G.

Each rule in the set is applied to G.

The process of inserting R into graph G requires the vertices in R to
be connected to what is left of G when L has been removed. After a
graph transformation rule has been applied to a graph G, the graph will be
rewritten as G = (G−L ) + R.

To illustrate a graph transformation, consider the following set of graph
rewriting rules for a digraph G:

Rule 1: (L) −→ (L, update), where (L) ∈ L

Rule 2: {((a, b), L)} −→ {((a, c), (e1 1)), ((c, b), (e1 2))}, where L ∈ L

Rule 3: {((X,Y ), L1), ((Y,X), L2)} −→ {((X,Y ), L1 +L2)}, where X,Y ∈
V and L1, L2 ∈ L

Rule 1 is a general rule for updating the edge n-tuple of all edges in G
represented by a single label to a pair including the original label as first
element of the pair and “updated” as the second element.

Rule 2 is an example of edge subdivision as illustrated by Figures 2.6
and 2.7. It is also defined to find a specific occurrence specified by L and
replace it with a specific R in G. The rule could have been written in a
general form to cater for all edge subdivisions. A general version of the rule
is given by Rule 2.1.

Rule 2.1 (Edge subdivision)

{((X,Y ), L)} −→ {((X,Z), L1), ((Z, Y ), L2)}, where X,Y ∈ V , L ∈ L

In the edge subdivision rule, Z after transformation becomes an element
of V , V = V +Z and the edge pair represented by L is removed from E and
the two edges represented by R are included in E, E = E + ((X,Z), L1) +
((Z, Y ), L2)−((X,Y ), L). This general transformation will need to be guided

21

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a

b(e1)

f

(e3)
d

(e2)

(e4)

(e5)

Figure 2.11: Initial graph G before transformation

a

b(e1,update)

f

(e3,update)
d

(e2,update)

(e4,update)

(e5,update)

Figure 2.12: G after Rule 1 has been applied iteratively

by specific values for X,Y, Z, L, L1 and L2 such as in the example given by
Rule 2 above.

Rule 3 represents a general rule for removing cycles from G which com-
prises of two vertices and two edges.

An example digraph to which the set of graph rewriting rules is to be
applied is given in Figure 2.11. A sequence of figures will be presented
showing how the rules when applied in the order given and iteratively for
the particular rule will transform the graph G. After application of Rule 1,
which updates the labels, to G, the graph transforms to the digraph given in
Figure 2.12. The second rule, Rule 2, subdivides the walk [a (e1, update) b]
to the walk [a (e11) c (e12) b] as shown in Figure 2.13. Application of Rule
3 could result in two final graphs if there is no specification as to what the
specific values of the variables in the rule should be. These final graphs are
given in Figures 2.14 and 2.15.

a

c(e1_1)

f

(e3,update)

b
(e1_2)

d

(e2,update)

(e4,update)

(e5,update)

Figure 2.13: G after Rule 2 has been applied iteratively

22

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a

c(e1_1)

f

(e3,update)

b
(e1_2)

d

(e2e5,updateupdate)

(e4,update)

Figure 2.14: Final G after Rule 3 has been applied iteratively

a

c(e1_1)

f

(e3,update)
b

(e1_2)

d
(e4,update)

(e5e2,updateupdate)

Figure 2.15: Alternative final G after Rule 3 has been applied iteratively

2.5 Conclusion

This chapter has provided a basic overview and definitions for concepts that
are to be discussed or expanded on in further chapters of the thesis. Con-
cepts to define basic graph types, graph matching and graph transformations
were discussed.

The most important definition is the definition of an undirected graph,
given by Definition 2.4, which defines a graph taking the desired properties
of a graph into account as required in future chapters. This definition and
the properties are then slightly modified to define a digraph as a special
type of graph. The definition of a digraph will be used for specifying the
algorithm defined in Chapter 5.

A broad overview of graph matching was given, defining both exact and
inexact graph matching. The exact graph matching techniques are more
relevant in this thesis, and therefore the discussion concentrated on these,
only mentioning the inexact graph matching notion of a homomorphism
for purposes of comparison. Exact graph matching includes determining
whether two graphs are isomorphic and more specifically whether one is a
subgraph isomorphism of the other. The special case of a graph isomor-
phism, referred to as a graph homeomorphism is presented as well in order
to introduce the technique of edge subdivision which is to be used by the
graph transformation algorithm in Chapter 5.

23

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3

Complexity Theory

3.1 Introduction

This chapter presents an overview of complexity theory. It contains well-
known results in computer science and is provided to contextualise and
present arguments in chapters that follow.

According to Black [2004a], complexity is defined as:

“The intrinsic minimum amount of resources, for instance, mem-
ory, time, messages, etc., needed to solve a problem or execute
an algorithm.”

Complexity in this chapter will focus on time complexity, or processor
usage, than it will on space complexity, or memory usage. Complexity will
be discussed in terms of the Big-O notation in Section 3.2 and complexity
classes in Section 3.5. As a precursor to complexity classes a decision prob-
lem will be defined and a discussion of Turing machines will be presented.

3.2 Big-O notation

Big-O is the notation most commonly used in mathematics to specify asymp-
totic complexity, or the rate at which a function, f(n), grows [Drozdek,
2008]. In computer science, the Big-O notation is mostly used to classify
the time complexity of an algorithm in terms of its execution time. The
notation can also be effectively used to represent the space complexity of a
data structure or algorithm in terms of its memory usage during execution.

The classification of algorithms and data structures in terms of the Big-O
notation presents the worst-case time or space complexity for the algorithm
or data structure [Harel, 1992]. Comparing the classifications of algorithms
enables comparison between the algorithms to take place. These compar-
isons are typically on algorithms that perform similar functions, possibly
with different underlying data structures either in terms of execution time

24

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 3.1: Common Big-O notation execution times

or memory usage during execution. In many cases, the algorithms perform
adequately under normal conditions and the Big-O notation should be used
taking the application in which the algorithm is used into consideration.

Common Big-O notation orders are given in Table 3.1. The notations are
ordered beginning with the slower growing functions [Drozdek, 2008; Harel,
1992; Preiss, 1998]. The descriptions in the table explain the notation with
respect to time and space complexities respectively.

A comparison of the execution times of the Big-O notation orders is given
in Figure 3.1. As can be seen from the figure, moving through the execution
order drastically influences the execution time. The further down the order
the longer the execution time that is required for fewer elements. The classi-
fication of algorithms according to execution time for specific function orders
relate directly to the complexity classes to which algorithms belong. These
complexity classes will be discussed in Section 3.5. Space based complexities
present a similar figure, with the vertical access representing memory usage
instead of execution time.

3.3 Decision problems

A decision problem is a problem that can be answered with either a “yes” or
a “no” as answer. The purpose of a decision problem to determine whether

25

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Notation O(f(n)) Name Description

O(1) Constant Time: The execution time remains the same for
any number of input elements.
Space: The memory used is independent of the
size of the input.

O(log n) Logarithmic Time: The execution time initially rapidly in-
creases and then flattens off as the number of
input elements increases.
Space: The memory usage stabilises for a large
number of input elements.

O(n) Linear Time: The execution time of the algorithms
increases at the same rate as the number of input
elements increases.
Space: The memory used is directly propor-
tional to the number of input elements.

O(n2) Quadratic Time: The execution time of the algorithm is
directly proportional to the square of its number
of input elements.
Space: The memory usage is the number of
input elements squared.

O(nk), k > 1 Polynomial Time: The execution time reaches an upper
bound for a polynomial expression in relation
to the number of input elements.
Space: The amount of memory needed to solve
a problem is polynomial.

O(kn), k > 1 Exponential Time: The execution time of the algorithm will
increase by k for each additional input element.
Space: The memory required to solve the prob-
lem will increase by kp(n) where p(n) is a poly-
nomial function of the space requirement for the
input elements.

Table 3.1: Common Big-O notation function orders

26

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a certain property holds or not. [Drozdek, 2008; Harel, 1992]
Specific instances of the problem require specific values as parameters

and variables to be specified. A problem is decidable if there is a solu-
tion that answers the question for each instance, otherwise it is undecidable
[Homer and Selman, 2011]. Problems are referred to as tractable, if there
is an algorithm that will admit a solution in reasonable time, otherwise it
is intractable [Harel, 1992]. The only difference between a problem being
decidable or tractable is related to time. For a problem to be tractable,
every instance must be solvable in polynomial time. For a problem to be
decidable, it must be solvable for every instance with no time specification
given.

A deterministic algorithm defines a unique sequence of steps that must
be followed to achieve the result for the specified input. A nondetermin-
istic algorithm is an algorithm that uses operations that take a “guess” at
what decision is to be made. A nondeterministic algorithm solves a decision
problem if there is a path in the decision tree that leads to a solution that
answers the question. The algorithm is polynomial if it reaches a solution in
the decision tree in O(nk), where n is the size of the problem space [Drozdek,
2008].

3.4 Turing machines

A Turing machine, described by Alan Turing, is a theoretical model of a
computing machine. A Turing machine consists of a read/write head and a
linear tape comprising of cells in which symbols are written and read [Homer
and Selman, 2011]. A Turing machine can be viewed as a computer with a
fixed algorithm [Harel, 1992] and therefore the terms Turing machine and
algorithm will be used interchangeably.

The definition for a deterministic single tape Turing machine is given by
Definition 3.1 which has been adapted from definitions by Rayward-Smith
[1986], Bovet and Crescenzi [2006] and Homer and Selman [2011].

Definition 3.1 (Deterministic Turing machine)

A deterministic Turing machine is a 6-tuple withM = (Q,
∑
, I, P, q0, F ),

where:

1. Q is a finite set of states,

2.
∑

is a finite set of symbols called the tape alphabet, of which the
blank symbol, , is always an element,

3. I is the set of input symbols with I ⊆
∑
\{ }

4. P is the program defined by the partial function

P : (Q\F )×
∑
→ Q×

∑
×{L,R, 0},

27

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



5. q0 is the initial state,

6. F ⊆ Q is the set of final states.

In the set {L,R, 0}, the L denotes a one cell move to the left by the
Turing machine read/write head, R one cell move to the right and 0 no
move. The program, P in state q ∈ {Q\F} taking a symbol s ∈

∑
, written

as P (q, s) is either undefined or a unique element of Q×
∑
×{L,R, 0}. For

P (q, s) = (q′, s′, x) with q′ ∈ Q, s′ ∈
∑

and x ∈ {L,R, 0}, the 5-tuple
(q, s, q′, s′, x) will then appear in the program listing.

Intuitively, it would be expected that a multi-tape Turning machine
would be more efficient than a single-tape Turing machine. In order to
define a multi-tape Turing machine, with k tapes, the function defined in
Definition 3.1 needs to be replaced by the following function [Bovet and
Crescenzi, 2006; Homer and Selman, 2011]:

P : (Q\F )×
∑k → Q×

∑k×{L,R, 0}k,

Whether a multi-tape or single-tape Turing machine is used, complexity
classes, including polynomial time classes, remain unaffected. Furthermore,
every multi-tape Turing machine also has an equivalent single-tape Turing
machine [Homer and Selman, 2011].

The definition of a nondeterministic Turing machine is given by Defini-
nition 3.2 [Rayward-Smith, 1986; Homer and Selman, 2011].

Definition 3.2 (Nondeterministic Turing machine)

A nondeterministic Turing machine is defined by the same 6-tuple as with
a deterministic Turing machine except that the program P is defined by
the function:

P : (Q\F )×
∑
→P(Q×

∑
×{L,R, 0})

There is a distinction between a deterministic and a nondeterministic
Turing machine [Bovet and Crescenzi, 2006]. In a deterministic Turing ma-
chine at most one action can be performed when in a particular state and
taking a specific symbol, while in a nondeterministic Turing machine more
than one action may exist for the state taking the specific symbol. In the
function of a nondeterministic Turing machine, P(Q×

∑
×{L,R, 0}) defines

the power set of Q×
∑
×{L,R, 0}. The power set represents all subsets of

Q×
∑
×{L,R, 0}, which can be written as:

P (q, s) = {(q′1, s′1, x1), (q′2, s′2, x2), ..., (q′n, s′n, xn)} for n ≥ 1

If n = 1 or P (q, s) = ∅, then the Turing machine is deterministic [Rayward-
Smith, 1986; Homer and Selman, 2011].

28

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3.5 Complexity classes

A complexity class is a collection of problems that can be accepted by a
Turing machine with the same resources. The two most common complexity
measures used to represent the resources used by the Turing machine are
time and space [Homer and Selman, 2011].

TIME is the number of steps it takes a Turing machine to execute for
input n. SPACE denotes the amount of Turing machine cells used by the
Turing machine to execute for input n [Bovet and Crescenzi, 2006].

Definition 3.3 defines the time complexity classes for the time required
by a deterministic Turing machine and a nondeterministic Turing machine
to solve a decision problem [Homer and Selman, 2011]. Definition 3.4 defines
deterministic and nondeterministic space complexity [Bovet and Crescenzi,
2006].

Definition 3.3 (Time complexity classes)

A decision problem, with an input of size n and a time-constructible
function t taking time t(n) steps before halting, belongs to the complexity
class:

• DTIME(t(n)), if it is solved by a (deterministic) Turing machine
in time O(t(n)), and

• NTIME(t(n)), if it is solved by a nondeterministic Turing machine
which runs in time O(t(n))

Definition 3.4 (Space complexity classes)

A decision problem, with input n and a space-constructible function
s that uses exactly s(| n |) tape cells before halting, belongs to the
complexity class:

• DSPACE(s(n)), if it is solved by a (deterministic) multitape Turing
machine using O(s(| n |)) memory, and

• NSPACE(s(n)), if it is solved by a nondeterministic multitape Tur-
ing machine which uses memory of O(s(| n |))

Further discussions in this thesis relate to time-bound complexity. Def-
inition 3.3 defines two general time-bound complexity classes, DTIME and
NTIME, for solving by a Turing machine.

Two common complexity classes in polynomial time, t(n) = nk, k ≥
1, k ∈ N, are P and NP respectively. P is the abbreviation for “polynomial
time”, while NP is the abbreviation for “nondeterministic polynomial time”.
Definition 3.5 provides a formal definition of P and NP respectively in terms

29

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



of the time complexity classes given by Definition 3.3 [Homer and Selman,
2011; Drozdek, 2008].

Definition 3.5 (Complexity classes P and NP)

• P = ∪{DTIME(nk)|k ≥ 1, k ∈ N} and

• NP = ∪{NTIME(nk)|k ≥ 1, k ∈ N}

From Definitions 3.3 and 3.5 it can be deduced that a decision problem
belongs to complexity class P, if it can be solved in polynomial time by
a deterministic Turing machine (algorithm). Likewise, a problem belongs
to complexity class NP if it is solvable by a nondeterministic Turing ma-
chine (algorithm) in polynomial time. Furthermore, a deterministic Turing
machine and therefore P is contained in NP, that is P ⊆ NP [Drozdek, 2008].

It is still an open question whether P = NP or whether P ⊂ NP. Ac-
cording to [Drozdek, 2008; Harel, 1992], there is evidence suggesting that
no single member of a certain subclass of NP problems can be solved deter-
ministically in polynomial time—i.e. that only nondeterministic polynomial
solutions are possible. This is the so-called NP-Complete complexity class
of problems. A formal definition for the NP-Complete complexity class is
given in Definition 3.6 [Drozdek, 2008; Homer and Selman, 2011]. This def-
inition also provides a means by which a decision problem can be shown to
be NP-Complete [Bovet and Crescenzi, 2006].

Definition 3.6 (Complexity class NP-Complete (NPC))

A decision problem is NP-Complete, if:

• it is in NP; and

• every problem in NP can polynomially be reduced to this problem.

From the definition of NP-Complete, it is clear that :

• NP-Complete problems are contained in NP; and

• if a polynomial time algorithm were to be found for one NP-Complete
problem, then there would be a polynomial time algorithm for all
problems in the NP-Complete complexity class by using polynomial
reduction [Harel, 1992; Drozdek, 2008]. Refer to Definition 3.7 for an
explanation of polynomial reducibility.

An alternative definition for NP-Complete is to state that a decision
problem is NP-Complete if it is in NP and also in the set of NP-Hard prob-
lems. Further discussion regarding NP-Hard decision problems will be pre-
sented when the definition of NP-Hard is given in Definition 3.8.

30

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The notion of a problem being NP-Complete is very important, as many
examples of problems exist that are classified as NP-Complete [Homer and
Selman, 2011]. Examples of such problems are those concerned with schedul-
ing and matching [Harel, 1992].

Polynomial time reducibility defines how one decision problem can be
transformed to another decision problem in such a way that the results
of the two decision problems are the same [Bang-Jensen and Gutin, 2007;
Homer and Selman, 2011; Bovet and Crescenzi, 2006]. The definition is
presented by Definition 3.7.

Definition 3.7 (Polynomial time reducibility)

A decision problem D1 is polynomially reducible to a decision problem
D2, D1 ≤P D2, if a polynomial time Turing machine (algorithm) exists
that transforms each instance of decision problem D1 to an instance of
D2

If D1 ≤P D2 and if the complexity of D2 is polynomial or worse, then
the complexity of D1 is no worse than that of D2. If complexity of D2 is
less than polynomial, then D1’s complexity may be worse than that of D2,
but it will be at worst, polynomial—as per the transformation.

Nondeterministic polynomial time hard (NP-Hard) problems are at least
as hard as the hardest problems in NP. The formal definition for the NP-
Hard complexity class is given by Definition 3.8 . The definition makes use
of the notion of polynomial reducibility of decision problems in NP [Homer
and Selman, 2011; Bang-Jensen and Gutin, 2007].

Definition 3.8 (Complexity class NP-Hard)

A decision problem D is NP-Hard if and only if all NP problems are
polynomially reducible to D.

It can be shown that if the problem is NP-hard and also belongs to NP,
then it is NP-Complete [Bang-Jensen and Gutin, 2007]. It can also be shown
that all NP-Complete problems are NP-Hard problems, but not all NP-Hard
problems are NP-Complete.

Efficient methods to solve NP-Complete and NP-Hard problems have
not as yet been found. These problems are therefore classed as intractable.
Many techniques have been developed to deal with algorithms that are in-
tractable, including the use of approximation algorithms. An approximation
algorithm is an inexact way of solving the problem, that may offer guaran-
teed performance with close to optimal solutions [Harel, 1992; Homer and
Selman, 2011].

From the discussion of complexity classes presented in this section, the
following facts are known for polynomial time Turing machine (algorithms)
decision problems:

31

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 3.2: Relationship between polynomial time-based complexity classes

• P ⊆ NP

• NP-Complete ⊆ NP

• A decision problem D is NP-Complete if D is in NP and D is in NP-
Hard

From these facts, the relationship between the polynomial time complexity
classes can be diagrammatically presented as given in Figure 3.2.

3.6 Conclusion

This chapter has presented a brief overview of complexity theory in terms
of the Big-O and complexity classes. The contents of the chapter is by no
means an in-depth study of complexity theory, but provides an overview to
understand the classification of the algorithms in the chapters that follow.

32

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4

Implementing Digraphs

4.1 Introduction

There are different techniques to implement digraphs and algorithms that
can be applied to digraphs. As this chapter will be discussing the imple-
mentation of digraphs in terms of computer science concepts, it is necessary
to specify the terminology to be used. Some people talk about nodes and
arcs when talking about implementations of digraphs on a computer. These
terms relate to vertices and edges respectively as already defined in Chap-
ter 2. For the purposes of consistency, the mathematical terminology of ver-
tices and edges will be used in the thesis when referring to both the graph
theory and the implementation of the digraphs in a computer language.

The chapter will present an overview of implementation techniques and
algorithms used in the implementation of the Graph Trans-morphism Al-
gorithm, which is introduced in Chapter 5, and the Graph Comparison
Framework, introduced in Chapter 6. The Graph Trans-morphism Algo-
rithm makes use of a set-based representation of a graph to build a subgraph
isomorphism of one graph in terms of the other. This subgraph isomorphism
is used by the framework along with the original graphs for graph matching.

The implementation techniques presented in Section 4.2 will be con-
trasted in terms of their basic operations taking only time complexity into
account. On the other hand, the algorithms and graph-based problems pre-
sented in Section 4.3 will be specified in terms of their time complexity, their
space complexity and the respective complexity classes in which they fall.

4.2 Implementation techniques

There are two well-known techniques for implementing a digraph for comput-
ing purposes. The first is as an adjacency matrix and the second, by using
adjacency lists [Bang-Jensen and Gutin, 2007]. Other techniques exist which
take into consideration the disadvantages of the common techniques and try

33

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



vj
a b c d e f

vi

a 0 1 1 0 0 1
b 0 0 1 0 0 1
c 0 0 0 1 0 0
d 0 0 0 0 1 0
e 0 1 0 0 0 0
f 0 0 0 0 0 0

Table 4.1: Adjacency matrix for digraph in Figure 2.2

to mitigate these for a particular situation. The majority of these techniques
still rely on a basic matrix or list structure (or both) for representation.

A third technique, proposed by Barla-Szabo et al. [2004] is based on the
notion of digraphs being represented as a set of triples. The technique has
successfully been implemented in a toolkit called GraTe-Tk [Koopman, 2009]
and will also be discussed as an implementation technique for digraphs.

4.2.1 Adjacency matrix

The adjacency matrix for a digraph, as defined in Definition 2.5, is given
in Definition 4.1 [Bang-Jensen and Gutin, 2007; Diestel, 2005], with E′ de-
fined as a set of all the edge pairs of E. E′ has been formally defined in
Definition 2.9.

Definition 4.1 (Adjacency matrix)

For a digraph, G = G(V,E), the adjacency matrix is an n × n matrix,
where n represents the number of vertices in G (n =| V |). The matrix
is given by MA(G) = [mAi,j ], 1 ≤ i, j ≤ n where:

mAi,j =

{
1 if (vi, vj) ∈ E′
0 otherwise

The digraph given in Figure 2.2, is represented as an adjacency matrix in
Table 4.1. The resulting matrix is a 6×6 matrix with the rows representing
the source vertices, vi ∈ V , and the columns the destination vertices, vj ∈
V . If there is an edge (vi, vj) ∈ E′, then mAi,j = 1. If there is no edge
between the vertices then mAi,j = 0. Note that the principal diagonal of the
adjacency matrix (that is mAi,j where i = j) will always be 0 as the digraph
definition does not allow for loops.

The problem with this representation is that for a sparse digraph with
many vertices, many entries in the matrix will be 0 thereby wasting space

34

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



ej
(a, b) (a, c) (a, f) (b, c) (c, d) (d, e) (b, f) (e, b)

vi

a -1 -1 -1 0 0 0 0 0
b 1 0 0 -1 0 0 -1 1
c 0 1 0 1 -1 0 0 0
d 0 0 0 0 1 -1 0 0
e 0 0 0 0 0 1 0 -1
f 0 0 1 0 0 0 1 0

Table 4.2: Incidence matrix for digraph in Figure 2.2

in the data structure representation. Even the example given in Table 4.1
only covers 8 out of the potential (6× 6) = 36 edges. This includes the six
edge representations along the principal diagonal which are 0.

Incidence matrix

The adjacency matrix should not be confused with an incidence matrix,
which can be used as yet another matrix-based representation. The def-
inition of an incidence matrix is given in Definition 4.2 [Bang-Jensen and
Gutin, 2007; Diestel, 2005; Drozdek, 2008]. The rows of the matrix represent
the vertices in V and the columns the edges in E′.

Definition 4.2 (Incidence matrix)

For a digraph, G = G(V,E), the incidence matrix is an m × n matrix
given by MI(G) = [mIi,j ] where m =| V |, n =| E′ |, 1 ≤ i ≤ m, 1 ≤ j ≤
n and:

mIi,j =


−1 if ej = (vi, x) ∈ E′, x ∈ V
1 if ej = (x, vi) ∈ E′, x ∈ V
0 otherwise

A directed edge leaving a vertex vi, the source, is represented by −1 in
the matrix. An incoming edge to a destination vertex vi is represented by
1 and if there is no edge for the combination (vi, x) or (x, vi), a 0 is used.
The incidence matrix representation of the digraph given in Figure 2.2 is
presented by the incidence matrix in Table 4.2.

4.2.2 Adjacency list

An adjacency list is represented by an array of size n (n is the number
of vertices of the digraph) of lists. In the majority of representations, the
array represents the source vertex of the edge and the corresponding list all

35

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 4.1: Adjacency list: source
Figure 4.2: Adjacency list: destina-
tion

the destination vertices from that source vertex, (source, destination) ∈ E′.
This maps directly to the entries with a −1 in the incidence matrix for
the same graph. A second adjacency list representing the 1 entries of the
incidence matrix for the particular graph will also adequately represent the
graph [Bang-Jensen and Gutin, 2007]. The digraph in Figure 2.2 translates
to the the adjacency list representation given in Figure 4.1 where the array
of vertices represents the source vertices of an edge and the elements in
the corresponding linked list the destination vertices. Figure 4.2 is the
representation of destination vertices in the array and their corresponding
source vertices in the lists.

4.2.3 Set of triples

Barla-Szabo [2002] defines a digraph as a set of arrows. Each arrow is repre-
sented by a triple comprising of the elements: source, label and destination.
The source represents the start vertex of the arrow, destination the end
vertex, and label the arrow nomenclature. The order of the elements of
the triple are important in the definition of an arrow. An arrow begins at
the source, has a label and ends at the destination as shown in Figure 4.3
[Barla-Szabo, 2002; Barla-Szabo et al., 2004]. The digraph in Figure 2.2

36

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



source destination
label

Figure 4.3: An arrow (source, label, destination)

translates to the following set of arrows:

G = {(a, (e1), b),

(a, (e2), c),

(a, (e3), f),

(b, (e4), c),

(c, (e5), d),

(d, (e6), e),

(b, (e7), f),

(e, (e8), b)}

For the purposes of the discussions to be presented in this thesis, the
representation of a digraph in terms of triples will be standardised to comply
with the definition as presented by Definition 4.3.

Definition 4.3 (Digraph - Set of triples)

A digraph is characterised by a set of triples, G = {t1, t2, ..., tn}.
Each triple, ti = (source, destination, label), 1 ≤ i ≤ n, represents an
edge of the graph, with source 6= destination.
The source and destination elements represent the start and end ver-
tices of the edge respectively. Each edge is identified by a label.

From this definition, the graph representation of the digraph in Fig-
ure 2.2 is given as:

G = {(a, b, (e1)),

(a, c, (e2)),

(a, f, (e3)),

(b, c, (e4)),

(c, d, (e5)),

(d, e, (e6)),

(b, f, (e7)),

(e, b, (e8))}

37

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



These two representations, (source, label, destination) and (source,
destination, label), of a digraph are isomorphic and can therefore be used
interchangeably as shown by the taxonomy of directed graph representations
presented by Barla-Szabo et al. [2004, page 263].

The set of triples definition of a digraph can also be mapped onto the
digraph definition presented in Definition 2.5. From Definition 4.3 it can be
deduced that:

• The number of edges defined in the digraph is n. This means that
| E | for E as defined in Definition 2.5 must also be n.

• The set of all vertices in the graph is the union of all the source and
destination vertices for all triples. The resultant set is equivalent to V
as defined in Definition 2.5.

• A triple of the form (source, destination, label) can be rewritten in
the form ((source, destination), label) without loosing meaning by ap-
plying the left associative operator [Barla-Szabo et al., 2004] . This
representation can subsequently be mapped to the form defined by
Definition 2.5 for an edge pair in E. The first element of the pair
represents the edge, (source, destination) ∈ E . The second element of
the pair represents the label, label ∈ L.

• The definition does not allow for loops due to the requirement source 6=
destination.

• A graph may be empty, G = {} = ∅. This was one of the required
properties specified in Section 2.2.

It follows that the “Set of triples” representation of a digraph given by
Definition 4.3 is an equivalent representation to the digraph representation
as presented by Definition 2.5.

An advantage of defining a digraph as a set of triples is that well defined
and behaved set operations, such as ∪,∩,− can be performed on the set.
A minor disadvantage of the set of triple representation is that a graph
comprising of one or more unconnected vertices cannot be represented. Each
vertex needs to be connected to at least one other vertex. An empty graph
can however be represented using the set of triple notation.

4.2.4 Comparison

This comparison between the three implementation techniques is on the
data structure level. The focus is on the construction, initialisation and de-
struction of the digraph as well as on inserting, deleting and finding vertices
and edges in the respective data structures. Algorithms for graph traversal,
searching, matching are discussed in Section 4.3.

38

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



For the purposes of comparison a digraph comprises of υ vertices and ε
edges. Any digraph cannot have more than υ2 edges, that is 0 ≤ ε ≤ υ2.
It is assumed that the implementation of the set data structure, used to
implement the set of triples, is based on a data structure defined within the
binary tree data structure classification hierarchy. Drozdek [2008] mentions
that implementing a set as a red-black tree speeds up insertion and deletion
to O(log n). According to The C++ Resources Network [2013], the order
for these two operations in the C++ STL is O(log n), leading one to believe
that the C++ STL makes use of some binary tree representation.

Table 4.3 presents the time complexity of data structure specific oper-
ations for each of the implementation techniques. A distinction is made
between the construction of the data structure and the initialisation of the
data structure. The construction of the data structure results in memory
for the data structure to be allocated. The initialisation of the data struc-
ture is the action of giving the memory allocated during construction initial
values. A distinction is also made between operations for inserting, deleting
and finding a vertex and the operations for finding an edge [Preiss, 1998;
Drozdek, 2008].

It should be noted that the table presents general Big-O notation orders
for the different operations. It is possible to improve on the Big-O-notation
order by applying clever tweaks when implementing the algorithm. For
example, finding the adjacent list of vertices in an adjacency list is O(1),
finding a specific vertex will be O(υ/ε). The order sequence in which the
vertices are specified within the data structure also plays a role, for example
finding an edge between two vertices in an adjacency list is O(υ/ε) if the
vertices in the vertex array are unsorted and O(log(υ/ε)) is they are sorted.

From the time complexity orders presented in Table 4.3 it can clearly be
seen that the majority of the operations exhibit O(n) time complexity. All
operations in the adjacency list implementation technique are of O(n) time
complexity, except finding a vertex which performs in constant time. Most
adjacency matrix representation operations require O(n) or less. Insertion,
deletion and finding of edges in the adjacency matrix is a constant time
lookup. It is only initialisation and destruction that performs worse and
in polynomial time. If the data structure is not continuously deleted and
reinstated, this performance is not a problem as it will only take place
at system startup and system shutdown. The set of triples implementation
fares well, since the majority of the operations are in linear time, while those
that will be used the most in the basic manipulation of the data structure are
in logarithmic time, O(log n). Insertion and deletion of individual vertices
in the set of triple implementation does not apply. Overall, the set of triple
implementation technique performs better than the other two techniques
for basic operations of creation, destruction, deletion, insertion and finding
specific elements.

The space usage in memory of each of the implementation techniques

39

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Graph implementation technique

Operation Adjacency Adjacency Set of
matrix list triples

construction O(1) O(υ) O(1)

destruction O(υ2) O(υ + ε) O(ε)

initialisation O(υ2) O(υ) O(ε)

insertion vertex: O(υ) O(υ) n/a
edge: O(1) O(ε/υ) O(log ε)

deletion vertex: O(υ) O(ε) n/a
edge: O(1) O(ε/υ) O(log ε)

find vertex: O(υ) O(1) O(ε)
edge: O(1) O(υ/ε) O(log ε)

next vertex: O(υ) O(υ) O(ε)
edge: O(υ) O(υ + ε) O(ε)

Table 4.3: Comparison of graph operations with regards to the implemen-
tation technique

can also be compared. Space used by an adjacency matrix is O(υ2) while an
adjacency list uses O(υ+ε). The space used by a set of triples is O(3×υ). In
summary, adjacency lists and set of triples implementations exhibit a linear
space usage order, O(n). The adjacency matrix implementation exhibits a
quadratic space usage order, O(n2).

For sparse graphs, an implementation technique with a linear space order
is better. A sparse graph is a graph in which ε tends to be less than O(υ) in
terms of space usage [Diestel, 2005]. The situation for dense graphs, in which
ε tends to be closer to υ2 [Preiss, 1998], the adjacency matrix implementation
technique already makes provision for representation for exactly υ2 elements.
The adjacency list implementation may be at worst having a space usage
that is polynomial in order, while the set of triples would still be quadratic,
but on average be worse off than the adjacency matrix implementation.

4.3 Problems and algorithms

This section mentions problems commonly associated with digraph-based
structures and briefly introduces algorithms for solving those problems. The
problems and algorithms are specified in terms of their space and time com-
plexity as well as the complexity class they belong to. The algorithms under
consideration are those that enable finding paths between vertices, travers-
ing the digraphs and finding a match between two digraphs . The categories
are presented in the sections that follow. Within each is a list of problems
or algorithms that relate to the category.

40

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



As in the previous section, υ will represent the number of vertices in the
digraph and ε the number of edges.

4.3.1 Finding paths and traversal

Breadth First Search (BFS) - BFS is based on the notion of beginning
at a vertex and visiting all vertices that are siblings of the vertex before
visiting its children. [Bang-Jensen and Gutin, 2007; Korf, 1985].

Time complexity: O(υ + ε)

Space complexity: O(υ)

Complexity Class: P

Depth First Search (DFS) - DFS is based on the notion of beginning
at a vertex and visiting all vertices directly reachable from the vertex
before the visiting the siblings of the vertex. The algorithm makes use
of backtracking [Drozdek, 2008; Bang-Jensen and Gutin, 2007; Korf,
1985].

Time complexity: O(ε)

Space complexity: O(υ)

Complexity Class: P

DFS with iterative deepening (DFSID) - The DFSID algorithm re-
quires as parameters the source and destination vertices, as well as
the digraph in which the paths are to be searched for. The output of
DFSID is the set of paths between the specified source and destination
vertices [Luger, 2009; Korf, 1985].

Time complexity: O(ε)

Space complexity: O(υ)

Complexity Class: P

Graph accessibility problem (GAP) - The GAP algorithm answers the
question: “Is there is path between two vertices?” [Homer and Selman,
2011; Kriegel, 1986]

Time complexity: The complexity of the find edge operation was
presented in Table 4.3 and is dependent on the implementation
of the digraph.

Space complexity: O(log2υ)

Complexity Class: P

Shortest path (SP) - Find the shortest path between two given vertices
in the graph.

41

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Time complexity: O(υ + ε)

Space complexity: O(υ2)

Complexity Class: P

Dijkstra’s shortest path - The algorithm finds the distances from a given
vertex of a weighted graph to the other vertices in the graph [Bang-
Jensen and Gutin, 2007; Drozdek, 2008].

Time complexity: O(υ2), but when using fibonacci heaps it reduces
to O(ε+ υ log υ)

Space complexity: O(υ)

Complexity Class: P

Travelling Salesman Problem (TSP) - Finds a hamiltonian cycle in a
weighted graph with minimal cost [Bang-Jensen and Gutin, 2007;
Harel, 1992; Sutcliffe, 2009].

Time complexity: O(υ!). An approximation algorithms exist ofO(υ3)

Space complexity: O(υ) when bounded by conditions.

Complexity Class: The classic TSP is NP-Complete, variations ex-
ist that are NP-Hard.

4.3.2 Matching

In Section 2.3 definitions for graph matching were discussed in terms of
graph theory. These definitions included graph isomorphisms, graph auto-
morphisms and subgraph isomorphisms. This section looks at graph match-
ing problems. Graph matching problems are decision problems which ask the
question whether one graph is an isomorphism, automorphism or subgraph
automorphism of another. The graph automorphism problem is similar to
the graph isomorphism problem in that the graphs are identical.

The subgraph isomorphism problem is a decision problem for which the
question is: For two graphs G and H, does G contain a subgraph that is
isomorphic to H?. This problem is known to be NP-Complete [Black, 2004b;
Bang-Jensen and Gutin, 2007; Harel, 1992].

The graph isomorphism problem is a generalisation of the subgraph iso-
morphism problem and is conjectured to be NP-Complete [Aaronson et al.,
2013]. This, however, is an open problem since no-one has been able to prove
that is it NP-Complete [Johnson, 2005; Bang-Jensen and Gutin, 2007]. Nev-
ertheless, it is known that the problem is contained in NP [Aaronson et al.,
2013]. There are no known polynomial time algorithms that can solve the
problem. There are, however, polynomial-time algorithms which are not NP-
Complete that solve the problem when certain restrictions are placed on the
graphs [Homer and Selman, 2011, Section 10.5]. The best time complexity

42

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



algorithm to date to solve the graph isomorphism problem is based on an
algorithm by Babai and Luks [1983]. By adapting this algorithm, Zemly-
achenko was able to achieve a time complexity upper bound of 2O(

√
υ log υ)

[Johnson, 2005; Monroe, 2012].

4.4 Conclusion

This chapter provided an overview of techniques used to implement digraphs
as well as algorithms and problems associated with digraphs that have a
bearing on the study presented in this thesis. The techniques for digraph
implementation namely, adjacency matrix, adjacency list and set of triples,
were compared with each other taking both space and time complexities into
account. Algorithms and problems relating to graph traversal and matching
were presented along with their respective space and time complexities as
well the complexity classes to which they belong.

Forthcoming chapters will show how a variant of the graph matching
problem will be solved, relying on graphs represented as a set of triples and
the DFSID algorithm. The variant is not an NP-Complete problem and will
be solved in polynomial time. This enables the result of this study to be
applied to real world contexts.

43

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5

Graph Trans-morphism
Algorithm

5.1 Introduction

The subgraph isomorphism problem, discussed in Section 2.3.1, answers the
question whether a particular graph is a subgraph isomorphism of another
graph. The solution to this problem is classified as NP-Complete, thereby
classifying it as a problem that is unsolvable in polynomial time. Refer to
Chapter 3 for a discussion on Complexity Theory and Section 4.3.2 for a
classification of the subgraph isomorphism matching algorithm.

This chapter proposes an algorithm to derive a subgraph isomorphism
for a given digraph using the specifications as presented by another digraph.
Instead of asking the question, “Is digraph GM a (subgraph) isomorphism of
digraph GI?”, a problem which is known to be NP-Complete, the algorithm
derives a (subgraph) isomorphism. This (subgraph) isomorphism, digraph
GC , is derived using the information presented in digraph GM and GM is
transformed to build digraph GC using the structure of GI as a template.
The question then becomes a statement or assertion: “Digraph GC is a
(subgraph) isomorphism of digraph GI , where GC was derived by applying
a transformation on GM to structurally represent GI .”.

Prior to presenting an overview of the algorithm in Section 5.3, the ter-
minology used when referring to the specific digraphs used by the algorithm
is presented. A more detailed view of the algorithm is also presented, after
which the application of the algorithm and its results are discussed in Sec-
tion 5.4 by applying the algorithm to a toy application. The toy application
is solely used for the purpose of explanation.

44

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



5.2 Terminology

In the introduction, three digraphs were mentioned, GI , GM and GC . These
digraphs are referred to as the “Ideal”, “Model” and “Complier” respec-
tively and will be written as I, M and C which correspond to GI , GM
and GC . The ideal represents a specification to which an implementation
(or approximation) of the specification, referred to as the model, should
adhere. In a perfect world, the model should exactly match the ideal. In
terms of graph theory, the model is then isomorphic to the ideal. In a less
than perfect world, the model may be a subgraph isomorphism of the ideal.
Unfortunately this is not always realistic, as the model does not necessarily
represent the information of the ideal in a similar format. A transforma-
tion applied to the model, to mould it into the format as presented by the
ideal, is therefore required in order for the comparison to take place. The
transformed model is referred to as the complier.

The ideal, I, and the model, M , digraphs are defined within a domain
of the universal set of all digraphs D, that is I,M ∈ D. As the complier, C,
is a transformation of M to a representation of I in terms of structure, it
follows that C is also in domain D, that is C ∈ D.

5.3 Algorithm

The algorithm provides a means to facilitate digraph matching of digraph
M and digraph I. By definition digraph matching requires common vertices
and a mapping, F : (vi, vj) ∈ E′M −→ (F(vi),F(vj)) ∈ E′I , between the
edges of the digraphs. This means that to enable matching with regards to
the algorithm, at least the condition VM ⊂ VI must be true. If this condition
is not true, then there is no possibility of a match between I and M . If
this condition is true and there is a F then M is a subgraph isomorphism
of I. Refer to Definition 2.12. In many cases, due to the nature of M ,
there is no such obvious F between the edges of M and those of I. The
algorithm provides a means to build this mapping by applying a series of
transformations on M to build C such that it is directly comparable to I.
The outcome of the algorithm is a complier for which VM ⊂ VC and VC ⊂ VI
and it is guaranteed that there is a mapping between the edges of C and
those of I. In fact this mapping results in E′C ⊂ E′I making C a subgraph
isomorphism of I. The representation of M in terms of C is now directly
comparable to I.

The purpose of the algorithm is therefore to transform the digraph rep-
resenting the model to a digraph referred to as the complier by taking the
structure of the ideal into account. The premise of the algorithm is that
for digraphs I,M ∈ D there exists a function T : D × D −→ D, such that
C = T (I,M), C ∈ D. The algorithm therefore takes two digraphs, I and

45

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



M , as parameters and returns a third digraph, the derived complier C.

5.3.1 Algorithm overview

A high-level representation of the Graph Trans-morphism algorithm (T ) is
provided by Algorithm 1.

Algorithm 1 Graph Trans-morphism Algorithm (T ) — Overview

Require: I,M ∈ D
Ensure: C ∈ D

1: C = ∅
2: for every source and destination vertex combination in M do
3: determine all paths in I for this combination
4: if paths are found in I then
5: add the paths to C
6: end if
7: end for
8: return C

Line 1 of the algorithm initialises digraph C to the empty graph. This
is a valid assignment as per Definition 2.4, a generalisation of Definition
2.5. The for-loop defined by lines 2 to 7, iterates through every possible
combination of source and destination vertices that have been defined in
M . Using this source and destination vertex combination from M , line 3
computes all paths in I from the source vertex to the destination vertex.

Lines 4 to 6 include the paths into C if found in I. This can be achieved
by applying the transformation given by Rule 5.1 for each path found to
digraph C.

Rule 5.1 (Add a path to digraph G)

[v1 L1 v2 L2 v3 . . . vi−1 Li−1 vi] −→
VG = VG ∩ {v1, v2, . . . , vi−1, vi} and
EG = EG ∩ {((v1, v2),L1), ((v2, v3),L2), . . . , ((vi−1, vi),Li−1)}

Once all combinations of source and destination in M have been ex-
hausted, C represents a digraph, possibly disjoint, of the information repre-
sented by M in terms of the representation defined by I. C is also in domain
D.

5.3.2 Possible outcomes of algorithm T

One or more identifiable outcomes of algorithm T exists with regards to
the resultant complier, C. Details of these outcomes will be presented in
Chapter 7 where the outcomes will be illustrated using examples. In this

46

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



section the possible outcomes will be mentioned and a short description of
each will be presented.

Outcome 1: C may have parallel edges
Using the definition of a digraph as given by Definition 2.5, it is pos-
sible that C contains multiple edges which may even be parallel. It
is guaranteed that parallel edges will not have the same edge labels
due to the set theoretic nature of the definitions of digraphs, both in
terms of Definition 2.5 and the set of triples definition presented in
Definition 4.3.

Transformation Rule 5.2 can be applied to C to remove parallel edges
by concatenating the labels. If this transformation is done after the
algorithm has been run, it must also be applied to I. Applying the
transformation to I prior to running the algorithm, will eliminate the
need to apply it to both I and C after the execution of the algorithm.

Rule 5.2 (Remove parallel edges from digraph G)

(vi, vj , L1), (vi, vj , L2) −→ (vi, vj , (L1, L2))

It is now guaranteed that C will not contain any parallel edges. The
resultant digraph of C, after rewriting, will still comply with both
Definition 2.5 and the set of triples digraph definition as presented in
Section 4.2.3.

Outcome 2: C may comprise of disjoint digraphs
There is no guarantee that C is fully connected, implying that the
complier may comprise of a number of disjoint digraphs. In many cases
this problem can be solved by inserting a vertex into either or both I
and M and linking them accordingly for each of the digraphs so that
there is a guaranteed common vertex between the ideal and the model.
If this addition of what will referred to as a “grounding vertex” does
not fully resolve the complier from comprising of disjoint graphs then
the model is not sufficiently commensurate1 with the ideal. Further
details regarding graph comparisons will be discussed in Chapters 6
and will be applied in Chapter 7.

Outcome 3: C may be the empty set
A complier that is an empty set, that is C = ∅, means that there are
no common edges between I and M . In this case the test, as defined
by graph matching in Definition 2.9, of E′I ∩E′M producing the empty
set could have been used as an indication thereof before running the
algorithm. This test naturally does not take the graph labels into
account and is solely based on the matching of graph shape in terms

1commensurate means corresponding in size or degree; in proportion.

47

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



of connected vertices. A stronger indication of incompatibility between
I and M is if VI ∩VM = ∅, this would mean that there are no common
vertices, let alone edges between the two digraphs.

Outcome 4: C may be an exact copy of I
A resultant complier that is an exact copy of the ideal, that is VC = VI
and EC = EI , indicates that M is fully compliant with I.

It does not follow that if C is an exact copy of I that M is an exact
copy I, because:

i there might be vertices, and therefore possibly edges as well, in
M that are not in I and therefore not in C either; and

ii the labels of edges in M may be different from those in I and by
inference C.

Other than M being fully compliant with I, very little more can be
said about M until the comparison framework has been introduced in
Chapter 6. If however the following conditions were true, VM = VI and
E′M = E′I , M would be an exact copy of I, except for the possibility
of a difference in edge labels. It would also not have been necessary
to execute the algorithm to derive C in this case.

Outcome 5: C may be contained in I
The resultant digraph C is a subset of I, that is VC ⊂ VI and EC ⊂ EI .
The compliance of M to I is dependent on the overlap between C
and I. The quantification of this overlap will be discussed further in
Chapter 6. A similar argument as with Outcome 4 holds in that it
cannot be inferred that M is contained in I.

5.3.3 Algorithm detail

For this presentation of the algorithm, the graphs I, M and C are repre-
sented as a set of triples. Refer back to Section 4.2.3 for a detailed discussion
of the set of triple representation for digraphs. The derivation of the sets
V , E and E′ used in the previous definitions for digraphs represented by
Definition 2.5 are given in Definition 5.1 for the set of triple representation
of a digraph defined by Definition 4.3.

Definition 5.1 (V , E and E′ for a set of triples)

For any digraph G, represented as a set of triples, the sets V , E and E′

can be determined by applying the respective formula that follow.

V = {u, v | (u, v,L) ∈ G}
E = {((u, v),L) | (u, v,L) ∈ G}
E′ = {(u, v) | (u, v,L) ∈ G}

48

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



A more detailed version of the algorithm is presented by Algorithm 2.
The algorithm comprises of two components:

i the nested loops, presented in lines 4 and 5 which generate all combina-
tions of vertices source and destination in M ; and

ii the search strategy algorithm, called in line 9, that determines all paths
between the source and destination vertex combinations in I.

Algorithm 2 Graph Trans-morphism Algorithm (T ) — C = T (I,M)

Require: I,M ∈ D
Ensure: C ∈ D

1: Pset = ∅
2: sourceSet = {u | (u, v, w) ∈M}
3: destinationSet = {v | (u, v, w) ∈M}
4: for i = 1 to | sourceSet | do
5: for j = 1 to | destinationSet | do
6: source = sourceSet[i]
7: destination = destinationSet[j]
8: if source 6= destination then
9: Pset = Pset ∪DFSID(source, destination, I)

10: end if
11: end for
12: end for
13: C = T (Pset)
14: return C

Line 1 of the algorithm is equivalent to line 1 of Algorithm 1. In this
case Pset is a placeholder for the resultant complier graph. Pset is a set of
sets of triples. Each set of triples in Pset represents a path. Line 1 initialises
the set of all paths Pset to the empty set so that each set of triples that are
found to represent a path in I can be inserted into Pset by applying the set
union, ∪, operator.

Lines 2 and 3 determine sets of unique vertices representing the source
vertices and destination vertices of M respectively.

Lines 4 and 5 setup all combinations of source and destination vertices
of M using the sourceSet and the destinationSet. Each loop iterates from 1
to the size, or cardinality, of the respective set.

The respective source and destination vertex assignments in lines 6 and 7
use the ith vertex in the sourceSet and combines it with the jth vertex in
the destinationSet to ensure that all combinations of source and destination
are covered by the search algorithm when searching through I for possible
paths representing the information given by the two vertices.

49

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Line 8 ensures that the source and destination vertices are not the same.
By definition, it is not necessary to check for loops as the digraphs are
defined not to have loops. This test eliminates at most | VM | calls to the
search algorithm in line 9.

The search strategy applied in line 9 is Depth-First Search with Itera-
tive Deepening (DFSID) [Luger, 2009]. A description of the algorithm was
presented in Section 4.3.1. The DFSID algorithm requires as parameters
two vertices, the source (s) and destination (d) vertices derived from M ,
as well as the digraph in which the paths are to be searched for, namely I.
The output of the DFSID algorithm is a set of sets of triples with each set
of triples representing a path between the specified source and destination
in I. The output is unified with all previously found paths in Pset. Any
duplicate paths will not be included in the updated Pset due to the nature
of sets not allowing duplicate entries.

Once the execution of both for-loops has completed, the set of all paths
found, Pset, is transformed in Line 13 from a set of sets of triples to a set of
triples by applying function, T . Function T is discussed in Section 5.3.4 as
a graph transformation. The resultant, C, set of triples representation of a
digraph is returned. This digraph is a representation of the information in
M that has been found in I and moulded into I’s form. The model in the
form of the complier is now directly comparable to the ideal. The results of
this comparison will be presented in Chapter 6.

5.3.4 Discussion in terms of graph theory

The discussion of the algorithm in terms of the graph theory, presented in
Chapter 2, focusses on graph transformations and graph matching. The
fundamental requirement is to be able to match I and M . In many cases,
even though both digraphs are within the same domain, they are impossible
to match sensibly. The algorithm, T , derives a third digraph C which is
a transformation of the information represented by M into the shape, or
structure, as represented by I.

Graph transformations

The graph transformation rules being applied, do not come from a fixed set
of rules. The rules are guided by the source and destination vertices defined
in M and the DFSID algorithm which takes these vertices and searches for
paths in I in which these vertices define the source and the destination of
the path.

The most fundamental of the rules applied is to calculate the path
between two given vertices in a given digraph. Multiple applications of
Rule 5.3, which finds a single path between two vertices, to find all paths
between the vertices matches the post-condition of the DFSID algorithm

50

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



called in Line 9 of Algorithm 2.

Rule 5.3 (Find a path between vi and vj in digraph G)

(vi, vj , ∅) −→ {(vi, v1, L1), (v1, v2, L2), ..., (vn, vj , Ln)}

The application of this rule to digraphs I and M , with vi, vj ∈ V (M),
results in a path in I, such that PI = [vi, L1, v1, L2, ..., vn, Ln, vj ] with
vi, vj , v1, ..., vn ∈ VI and L1, ..., Ln ∈ LI ,LI ∈ EI . The length of PI ,
denoted by | PI |, is n where n > 0. This is only true if a path between the
two vertices in digraph I exists. If there is no path in I between vi and vj ,
then | PI |= 0. Rule 5.3 can also be seen as a recursive application of the
edge subdivision rule given by Rule 2.1.

Once all paths have been found by the DFSID algorithm, they are con-
catenated to Pset. This is represented by the set union operation in Line 9
of Algorithm 2. Rule 5.4 gives this concatenation in terms of a graph trans-
formation rule. With the digraphs being represented as sets, concatenating
an empty set onto an existing set will have no effect on the existing set.

Rule 5.4 (Join a path to graph G)

G, {(vi, v1, L1), (v1, v2, L2), ..., (vn, vj , Ln)} −→
G ∪ {(vi, v1, L1), (v1, v2, L2), ..., (vn, vj , Ln)}

Function T , which is called in Line 13 of Algorithm 2, can be represented
by the transformation given by Rule 5.5. This transformation converts a set
of sets of triples to a set of triples. Any duplicate tijk triples are automati-
cally removed from the resulting set. Rule 5.5 can be seen as a set of triple
version of the general rule given by Rule 5.1.

Rule 5.5 (Transform a set of sets of triples to a set of triples)

{{t11k1 , t12k1 , . . . , t1jk1}, {t21k2 , t22k2 , . . . , t2jk2}, . . . , {ti1ki , ti2ki , . . . , tijki}} −→
{t11k1 , t12k1 , . . . , t1jk1 , t21k2 , t22k2 , . . . , t2jk2 , . . . , ti1ki , ti2ki , . . . , tijki},
with tijki = (vijki , uijki , (L)ijki )
where:
i represents the ith set of triples in the set of sets of triples; and
jki represents the jth triple in the set of triples of ki triples.

Due to the nature of sets, it will not be necessary to apply Rule 5.2 to
remove parallel edges from the resultant graph, in this case to digraph C.
All labels for the edges in C have been derived from I only and therefore a
duplicate triple cannot be inserted. It may however be necessary to include
the labels of corresponding edges in M with those in C. Rule 5.6 presents
a graph transformation rule to update labels of edges. This rule is similar
to the first example rule presented in Section 2.4 used to illustrate graph
transformations. It is more specific in the requirements with regards to the
edge specifications.

51

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Rule 5.6 (Transfer the label of an edge from digraph G to digraph H)

(vi, vj , L1) ∈ G, (vi, vj , L2) ∈ H −→ (vi, vj , (L2, L1)) ∈ H

Application of the rule to the results of algorithm T would mean that
the labels of digraph C are augmented with the labels of digraph M . It is
not necessary for them to be augmented with digraph I as well, since the
algorithm preserves the labels of I in C.

Graph matching

Assume that I and M are representations of digraphs in the same domain.
If it were to be found that E′I = E′M , then M and I would be identical
except for possible differences in the labels of their respective edges. It
would also follow that the two graphs I and M are isomorphic to each
other, I ∼= M . Similarly, if E′M ⊂ E′I then M is a subgraph isomorphism
of I. Unfortunately, as stated before, I and M may be in the same domain
and may represent similar concepts, but structurally they are completely
different and therefore cannot be directly matched using an exact matching
technique.

The application of algorithm T facilitates the matching of M to I by
building a digraph C which represents the information of M in terms of the
structure of I. The digraphs C and I are now directly comparable using the
exact graph matching techniques of isomorphism and subgraph isomorphism
presented in Section 2.3. The resultant digraph C is either, the empty set,
isomorphic to I or a subgraph isomorphism of I. These possible resultants
of C were previously stated in Section 5.3.2 as Outcomes 3, 4 and 5 to
Algorithm 1 respectively. Each resultant of C will be individually discussed
in the sections that follow.

C is the empty set
If C = ∅ then there are no paths between each source and destination
pair from digraph M in digraph I. There is therefore no comparison
possible between M and I as neither a subgraph isomorphism nor an
isomorphism of M in terms of I could be built.

C is isomorphic to I
Recall from Definition 2.9 that C is isomorphic to I if | VC |=| VI |
and there exists a function F : VC −→ VI such that (v1, v2) ∈ E′C ⇐⇒
(F(v1),F(v2)) ∈ E′I . As discussed in Section 4.2.3, VC and VI can be
derived from C and I as the union of all vertex elements in E′C and
E′I respectively. Outcome 4 states that C may be an exact copy of
I and therefore | VC |=| VI |. The function F that maps a vertex
of C onto a vertex of I exists and for vi ∈ VC and F(vi) ∈ VI , vi =
F(vi). For (v1, v2) ∈ E′C ⇐⇒ (F(v1),F(v2)) ∈ E′I it follows that
(F(v1),F(v2)) = (v1, v2). C is therefore isomorphic to I, C ∼= I.

52

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



C a subgraph isomorphism of I
As C was derived from I using the information presented in M , the
edges in C may form a subset of those in I, Outcome 5 in Section 5.3.2.
It can now be established that if E′C ⊂ E′I then VC ⊂ VI . It has
already been established that if C was isomorphic to I then a function
F exists with (v1, v2) ∈ E′C ⇐⇒ (v1, v2) ∈ E′I . From Definition 2.12
it therefore follows that under the circumstances where VC ⊂ VI . and
a function F exists, C is a subgraph isomorphism of I.

From Definition 2.15, it can also be said that C is homomorphic to its
equivalent subgraph in I. Algorithm T effectively builds C to be homomor-
phic by preserving the edges in I in the complier. Furthermore, it can be
said that C is homeomorphic, according to Definition 2.14, to a subgraph of
M . This subgraph is the graph that contains the vertices that are both in
C and M .

Digraph M in the form of digraph C is now directly comparable with
digraph I. The comparison of digraph C with digraph I and other com-
parisons of interest, such as digraph M with digraph C will be discussed in
Chapter 6.

5.3.5 Discussion with reference to complexity theory

It is known, as shown in Section 4.3.2, that the graph isomorphism and
subgraph isomorphism problems belong to the NP-Complete or NP-Hard
complexity class. This means that there is no efficient means to solve these
problems.

The decision problem,“Is M a (subgraph) isomorphism of I?”, has no
efficient solution and an alternative technique needs to be developed to deal
with the problem. In this case, algorithm T , builds a digraph C which
represents M in such a way that C is a (subgraph) isomorphism of I. The
problem now becomes “C, which represents M , is a (subgraph) isomorphism
of I.”, if C is not the empty digraph. This problem is related to the orig-
inal decision problem. The asymptotic time and space complexities of the
algorithm is given in the paragraphs that follow:

The asymptotic time complexity of the algorithm presented by Algo-
rithm 2 is given by O(n6 log n) which is the worst of all the different parts
that make up the algorithm. This can be calculated as follows. As before, ε
denotes the number of edges and υ the number of vertices:

Source and destination set initialisation — lines 2 and 3: The ini-
tialisation of each of the sets is O(υ), the number of vertices in the
sourceSet and destinationSet.

Nested loops — lines 4 and 5: These present the highest order of time
complexity of O(υ2).

53

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



DFSID — line 9: The complexity of the DFSID algorithm is given in
Section 4.3.1 and is O(ε), where ε =| G |, the number of triples in
digraph G.

Assignment and comparison — lines 1 to 3, 6 to 9, and 13: are neg-
ligible with a time complexity of O(1).

Union — line 9: Using the set union algorithm in C++ STL would
result in a time complexity of O(ε). The actual implementation of the
algorithm appends the result of the algorithm using an iterator and
the set insert operator which has a time complexity of O(log ε) as
shown in Table 4.3. Inserting multiple times results in a complexity
of O(ε log ε) to simulate a union operation.

Function T : There are εPset =
∑j

i=1 ki edges in total in Pset, using the
notation from Rule 5.5. This gives a time complexity of constructing
the set of triples from the set of sets of triples as O(εPset) which is at
worst a constant.

The overall complexity of the algorithm is derived by taking all the com-
plexity contributions and multiplying them together. The result of this
calculation is:

Complexity of T = O(υ · υ2 · ε · 19 · ε log ε · εPset)

= O(υ3ε3 log ε)

≡ O(n3+3 log n)

= O(n6 log n)

As the algorithm exhibits polynomial asymptotic time complexity, the
algorithm will run on a deterministic Turing Machine in polynomial time
and is therefore in class P.

The asymptotic complexity of algorithm T in terms of space is dependent
on the implementation of the underlying set data structure. The represen-
tation used by the algorithm is a a set of triples in which case there are
always ε edges specified for the graph and each edge has a constant size k.
The space complexity is given by O(εk) which is equivalent to O(n).

5.4 Explanation of the algorithm using a toy ap-
plication

To illustrate how the algorithm works, consider the following two digraph
specifications for I and M in domain D respectively.

54

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



I = {(a, b, (e1)), (a, c, (e2)),

(a, f, (e3)), (b, c, (e4)),

(c, d, (e5)), (d, e, (e6)),

(b, f, (e7)), (f, g, (e8)),

(g, h, (e9)), (h, i, (e10)),

(h, e, (e11)), (i, d, (e12))}

M = {(a, b, (e1)), (a, d, (e2)),

(d, f, (e3)), (b, f, (e4)),

(b, j, (e5))}

5.4.1 Derivation of C using M and I by inspection

For this toy example, the matching can easily be done by inspection. Firstly
by considering all edges in M and determining whether there are correspond-
ing edges in I. There are exactly two edges that can be considered to match
in terms of the definition of a subgraph isomorphism given by Definition 2.12,
namely: (a, b, (e1)) in both I and M ; and (b, f, (e7)) in I to (b, f, (e4)) in M .
These matches are shown as green edges on the graphical representations of
both I and M in Figures 5.1 and 5.2 respectively.

Just matching corresponding edges is not necessarily fully representative
of all possible matches. So a second consideration is to calculate all com-
binations of source and destination vertices in M and to then inspect I to
determine whether, by a process of applying consecutive edge subdivisions,
there are paths between these vertices. From the graphical representations
this type of inspection is easy for a human to do. It is done by finding paths
between pairs of vertices. Writing down this process requires the pairs of
vertices to be well defined. The discussion that follows provides a way in
which a human will derive a matching graph to I for M .

The set of all source vertices in M is given by {a,d,b} and {b,d,f,j} for
the destination vertices of M . The set of all combinations of source and
destination pairs of vertices of M is given by the following set of pairs.

{(a,b),(a,d),(a.f),(a,j),(d,b),(d,d),(d,f),(d,j),(b,b),(b,d),(b,f),(b,j)}

The loops may be eliminated as per the definition of a digraph in Defi-
nition 4.3, leaving the following set of pairs.

{(a,b),(a,d),(a.f),(a,j),(d,b),(d,f),(d,j),(b,d),(b,f),(b,j)}.

55

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a b(e1)

c
(e2)

f(e3)

(e4)

(e7)

d

(e5)

g
(e8) e

(e6)

h
(e9) (e11)

i(e10)
(e12)

Figure 5.1: Example Ideal — I ∈ D

For each pair in the set, the respective paths between the pairs in digraph
I can be determined and is given by the following list of paths. The edges
making up these paths are highlighted in blue in Figure 5.1.

(a, b): PI(a,b) = [a (e1) b], an exact match.

(a, d): There are 4 paths between a and d in I. These are given by:

P 1
I(a,d)

= [a (e2) c (e5) d], one edge subdivision.

P 2
I(a,d)

= [a (e1) b (e4) c (e5) d], two edge subdivisions.

P 3
I(a,d)

= [a (e1) b (e7) f (e8) g (e9) h (e10) i (e12) d], five edge

subdivisions.

P 4
I(a,d)

= [a (e3) f (e8) g (e9) h (e10) i (e12) d], four edge subdivisions.

(a, f): P 1
I(a,f)

= [a (e1) b (e7) f ], one edge subdivision; and P 2
I(a,f)

=

[a (e3) f ], an exact match.

(a, j): No path, j is not in VI .

(d, b): No path, d is a successor vertex in I to b.

(d, f): No path, d is a successor vertex in I to f .

(d, j): No path, j is not in VI .

(b, d): There are 2 paths from b to d in I. These are given by:

P 1
I(b,d)

= [b (e4) c (e5) d], one edge subdivision.

P 2
I(b,d)

= [b (e7) f (e8) g (e9) h (e10) i (e12) d], four edge subdivisions.

(b, f): PI(b,f) = [b (e7) f ], an exact match.

(b, j): No path, j is not in VI .

56

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a

b(e1)

d

(e2)
f

(e4)

j(e5)

(e3)

Figure 5.2: Example Model — M ∈ D

a b
(e1)

c

(e2)

f
(e3)

(e4)

(e7)

d

(e5)

g
(e8)

h
(e9) i

(e10)

(e12)

Figure 5.3: Example Complier — C ∈ D

5.4.2 Building C with algorithm T

To illustrate how algorithm, T defined by Algorithm 2, can be applied to
digraphs I and M in order to be able to compare the information repre-
sented in M with that of I, the algorithm is called in the following manner:
Cresult = T (I,M), with I and M as defined above and represented by Fig-
ures 5.1 and 5.2. An iteration-by-iteration execution of the algorithm can
be found in Appendix A, Section A.1. The resultant complier, Cresult, af-
ter successful completion of the algorithm is defined by the following set of
triples and represented graphically in Figure 5.3.

Cresult = {(a, b, (e1)), (a, c, (e2)), (a, f, (e3)), (b, c, (e4)), (b, f, (e7)),

(c, d, (e5)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}

By comparing the set of triple representations of the ideal and complier
as well the respective figures for these graphs, Figures 5.1 and 5.3, it can
clearly be seen that VC ⊂ VI and E′C ⊂ E′I . There is also a direct mapping, a
function F , between the edges of C and those of I. The graph in Figure 5.3
representing the complier, matches the blue highlighted edges of the ideal
in Figure 5.1 exactly. It can therefore be concluded that C is a subgraph
isomorphism of I.

5.4.3 By inspection vs. algorithmic computation

When viewing graphs, most people think of them as a collection of paths
rather than edges and vertices. This is especially true when looking for a
way to “move” from one vertex to another. A possible thought process for
viewing graphs in terms of paths and doing manual matching using these

57

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



paths was presented in Section 5.4.1. This method is only feasible when the
graphs are small. Larger graphs of around 50 and more edges, become more
complex for a human to process and an automated method, such as using
an algorithm, is required.

While humans are more likely to recognise patterns that repeat easier and
therefore not determine the solution again, algorithms tend to recalculate
similar answers over and over again unless they have been programmed
otherwise. The paths presented in Section 5.4.1 can easily be changed using
a transformation to the set of triples representing the complier presented in
Section 5.4.2. A transformation rule to convert a path to a set of triples is
given by Rule 5.7.

Rule 5.7 (Convert a path to a set of triples)

[v1 L1 v2 L2 v3...vn Ln vn+1] −→ {(v1, v2, L1), (v2, v3, L2), ..., (vn, vn+1, Ln)},
for n > 1

Applying this rule to each of the paths that were determined by inspec-
tion and calculating the union of all the resultant sets of triples results in
the following digraph.

{(a, b, (e1)), (a, c, (e2)), (a, f, (e3)), (b, c, (e4)), (b, f, (e7)),

(c, d, (e5)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}

This is the same result as what the algorithm calculates for the complier
Cresult given in Section 5.4.2. The calculations showing the transformations
using Rule 5.7 and the union of the results are available in the Appendix,
Section A.2, of Appendix A.

5.5 Conclusion

In this chapter an algorithm, given by Algorithm 2, has been presented which
builds a (subgraph) isomorphism of an ideal given a model. A discussion
regarding the possible outcomes of the Graph Transformation Algorithm
which returns a (subgraph) isomorphism, referred to as the complier, was
presented which will be discussed in more detail with examples in Chapter 7.

The execution of the algorithm has been illustrated using a toy appli-
cation. A trace of the execution of the algorithm has been presented along
with a method of solving the problem by inspection to illustrate how the al-
gorithm works along with the results given by the algorithm. The resultant
complier of the algorithm will be used for the comparison of the digraphs
which will be discussed in Chapter 6.

58

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 6

Graph Comparison
Framework

6.1 Introduction

In Chapter 5 an algorithm, the Graph Trans-morphism Algorithm (T ), was
presented which takes two digraphs, the ideal and model, as input and pro-
duces a digraph referred to as the complier. The complier is a representation
of the information in the model in terms of the structure of the ideal. This
chapter introduces a way in which these three digraphs can be compared
in order to determine to what extent the model represents the ideal. To
facilitate the comparison a framework is presented which is referred to as
the Graph Comparison Framework.

There are many nuances to the meaning of what a framework is. The
Oxford English Dictionary [OED Online, 2013] defines a framework as:

a. A structure made of parts joined to form a frame; esp. one
designed to enclose or support; a frame or skeleton.
b. In extended use: an essential or underlying structure; a pro-
visional design, an outline; a conceptual scheme or system

From this definition, it can be deduced that a framework is a structure
that comprises of parts. For the purposes of the thesis, a framework will
be viewed as a structure which can be traversed from its start-point to its
end-point by visiting specific parts, which will be referred to as components.
This traversal will take place in a predefined order. Each traversal of the
structure will result in a specific way in which the ideal, model and complier
digraphs are viewed and/or manipulated. By applying multiple traversals to
the digraphs and analysing the outcomes of each, different aspects regarding
the comparison of the graphs can be seen and a holistic comparison can be
built.

59

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The Graph Comparison Framework consists of two primary components:
the visualisation component and the comparison component. Both these
components rely on ideal and model input to the Graph Trans-morphism
Algorithm, presented in Chapter 5, and the complier output calculated by
the algorithm.

In the sections that follow, a high-level overview of the framework will
be given. After this, a detailed discussion of each of the components will be
presented. To illustrate how the framework can be used, the toy application
that was introduced in Section 5.4 will be used. The application of the
framework in this context will be discussed.

6.2 Framework overview

The Graph Comparison Framework makes use of the results of the Graph
Trans-morphism Algorithm, T , presented in Chapter 5. The algorithm
therefore is the entry point into the framework. Both the inputs and the
output of the algorithm are either further manipulated or used as is by
the components, defined after T , in the framework. Each component can
therefore be seen as an entity that receives inputs and produces output. Fig-
ure 6.1 provides a high-level view of the framework showing the components
of the framework and how the components are related to one another.

The components labelled Visualisation and Comparison, with the broken
border, are high-level descriptors for the functionality represented by their
respective child components. These function in a similar manner to inter-
faces in Java and virtual classes in C++ and will be referred to as virtual
components.

Each of the paths through the framework provides another view of the
inputs and output of the Graph Trans-morphism Algorithm. These views,
independently or as a combination provide insights into the similarities and
differences between digraphs I and M .

6.3 Comparison component

The comparison component of the framework presents the digraphs in such
a way that they can be compared by the application of an algorithm or
algorithms to the digraph representations. Application of algorithms will
highlight features in the digraphs that may not be apparent by inspecting
the digraph representations either visually or in their raw data form. The
component can further be used to inspect and confirm or refute what may
have been seen in the data or visual representation of the digraph.

The sections that follow discuss different digraph comparison techniques.
The first is a way of quantifying and identifying the similarities and differ-
ences between the digraphs called the difference comparison component in

60

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 6.1: High-level view of the Graph Comparison Framework

the proposed Graph Comparison Framework. It is discussed in Section 6.3.1.
Section 6.3.2, leaves room for other possible comparison components that
could be applied to the digraphs before presenting an overview of another
possible comparison component for digraphs, referred to as the graph edit
distance.

6.3.1 Difference comparison component

The difference comparison component considers quantities related to
both I, M and C as well as to a relevant selection of differences between
these digraphs. The first category of quantities only considers the sets of
triples for each of the digraphs. The second considers the relationships be-
tween these digraphs in order to determine to what extent they are similar
or different. The difference comparison component therefore quantifies dif-
ferent aspects of the digraphs to enable determining the extent to which the
model on the one hand, and the complier representation of the model on the
other, matches the ideal.

None of the quantities take the labels of edges into account. This means
that for each triple representing an edge of the digraph the label tuple is
removed, leaving the edge to be characterised by a (source,destination) pair.

61

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The quantities are classified further into two categories, a quantity for the
edges and quantity for the vertices representing each digraph.

Quantifying I, M and C

For any digraph G, the number of vertices and the number of edges of the
digraph can be determined by calculating the cardinality of the respective
sets. That is, the number of vertices in the digraph is given by | V | and
the number of edges by | E′ |, where V and E′ are determined as per
Definition 5.1. Both these formulae will result in the number of distinct
vertices and edges being calculated due to the nature of sets. Two or more
parallel edges will be reckoned as a single edge. This is due to the label
entity of the triple not being taken into account when determining the set
of pairs, represented by E′, for which the cardinality is calculated.

Applying the formulae to I, M and C will result in six cardinality-based
quantities, a vertex and edge quantity per digraph. These quantities can be
compared with each other to give an indication of the similarities in term
of magnitude between the digraphs for vertices and edges. Cardinality-
based quantities only consider relative size of the digraphs with each other
in terms of vertices and edges. It it conceivable that two digraphs may have
exactly the same number of vertices and/or edges and not be similar to each
other at all. In order to quantify the possible matching between digraphs,
it is necessary to consider the differences between the digraphs and quantify
these.

Quantifying differences between I, M and C

Quantifying the difference between digraphs represented as a set of triples
will make use of the set-theoretic difference of one set to another, also
referred to as the relative compliment. A general definition for the set-
theoretic difference between two sets is presented in Definition 6.1. Set-
theoretic difference is denoted by the backslash (\), that is the set theoretic
difference of A and B is given by A\B. An alternative notation is to use the
minus-sign (−). This notation however gets confused with other differences
and therefore the backslash will be used instead.

Definition 6.1 (Set-theoretic difference)

If A and B are two sets, then the set-theoretic difference of A and B is
the set of elements in A, but not in B.

x ∈ A \B ⇐⇒ x ∈ A, x /∈ B

To illustrate the application of Definiton 6.1, consider sets A and B of
positive integers and the resulting set-theoretic difference sets. A is the set

62

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



of all positive integers less than 10. B the set of all positive even integers,
up to and including 10.

A = {1, 2, 3, 4, 5, 6, 7, 8, 9}
B = {2, 4, 6, 8, 10}

A \B = {1, 3, 5, 7, 9}
B \A = {10}

The set of all elements in A but not in B, A \ B, is the set of all odd
positive integers less than 10. The set of B \ A is the set of all elements in
B which are not in A. There is only one such element, which is 10.

The set-theoretic difference when applied to two digraphs can be applied
either directly on the digraph definitions when represented as a set of triples
or by applying the difference on individual sets derived from the set of
triple representation. Application of the set-theoretic difference on the set
of triples directly is discussed in the section described as Application A
below. Individual application of the set-theoretic difference on vertices and
unlabeled edges is represented by Application B.

Application A: Set-theoretic difference on the digraph level
The set-theoretic difference applied to the set of triple representation of

digraphs will determine all the edges in one digraph which are not in the
other. When considering three digraphs, there are six possible difference
combinations to take into account. Not all combinations are significant or
relevant. Those of lesser significance or relevance will not be used to deter-
mine the match of the model to the ideal. The six difference combinations
will be described in order to establish which are the most significant and
will be used by the Difference Comparison Component.

I \M : Represents all the information in I that is not covered by M . The
closer the resultant set represents I, the less likely it is that C will
provide a favourable comparison with I. If the set theoretic difference
between I and M is the empty set, that is I \M = ∅, then M and I
are automorphic. As graph automorphism, refer to Definition 2.10, is
a more extreme case of graph isomorphism, it can also be said that I is
isomorphic to M . The converse is not necessarily true. If I ∼= M then
according to Definition 2.9 for graph isomorphism, only the cardinality
of the vertex sets of I and M need to be the same. This does not mean
that the vertex sets of each of the graphs are identical in terms of their
vertices as well.

For the purposes of the application of graph isomorphism in the frame-
work, the graph isomorphism is refined and made more specific. To

63

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



determine graph similarities and differences using the set of triples,
not only the vertex set cardinalities are compared, but the content of
the sets as well. A partial definition for digraph isomorphism using
set-theoretic differences for digraphs implemented as a set of triples, is
given by Definition 6.2. If by Definition 2.9, GA ∼=` GB, then it cannot
be inferred that GA \GB = ∅. Definition 6.2 explicitly caters for when
the vertex sets are exactly the same and not for the cardinalities of
the sets being the same.

Definition 6.2 (Labelled graph isomorphism — set of triples (i))

For two digraphs GA and GB, both represented by a set of triples,

GA \GB = ∅ =⇒ GA ∼=` GB

I \ C: Represents the information in I that is not in C. This will give an
indication of what is in I and not represented by M . If this is the
empty set, then I and C match 100% and are automorphic to each
other. It further follows that M matches the information presented in
I.

M \ I: All extraneous (or additional) information in M that is not required
for a comparison with I. This quantity is similar to M \ C in results.
The latter quantity is deemed more informative for reasons given below
and therefore M \ I will not be used.

M \ C: All extraneous (or additional) information in M that is not required
for a comparison with C. It is not necessary to look at both M \C and
M \ I, one of the difference quantities should suffice. As C is derived
from M , the most significant of the two quantities is the difference
between M and C. This is because it will give an indication of what
information in M is not required to build C.

C \ I: As C is derived as a (subgraph) isomorphism of I, this should always
be the empty set. For comparison purposes, this difference quantity is
insignificant and will be excluded.

C \M : Information that has been added to C from I that is not reflected
in M . The result here gives an indication of what could be inferred to
be in M but not explicitly defined.

The difference combinations, in the order of significance, are:

I \ C, I \M , M \ C1 and C \M2

64

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



I \ C is the most significant difference combination because it will give
the best indication of how well M , in terms of C complies with I. If the
result of the difference is the empty set, then C is isomorphic to I and M
complies with I. If this is not the case, then C is a subgraph isomorphism
of I and the difference quantity will represent the extent to which C is a
subgraph isomorphism of I.

The difference combination of I \M on its own only gives an indication
of what has not been covered in M that is in I. This information is by
no means insignificant and should not be ignored and may be used in an
application domain to guide adjustments that need to be made to the model.
The comparison of I \ C with I \M however, will show to what extent the
algorithm T transformed M to I in the form of C.

The difference combination of M \C represents the information in M and
not in C and therefore not in I. This information in M is extraneous to what
is in I and may need to be considered in an application domain when in the
process of developing a model. Similarly, C \M represents the information
in C (and therefore also in I) but not in M . The information represented by
the resultant set of the difference combination has been inferred in C from
the information present in M .

The differences for the combination I \M can be calculated before the
execution of algorithm T . All the other difference combinations of relevance
here rely on the result of the complier.

Application B. Set-theoretic difference applied to sets of vertices
and edges without labels

On a finer level of granularity, if the set-theoretic difference was applied to
vertices and edges without labels independently, the results should be more
interesting and useful. The set difference combinations discussed in the
paragraphs referred to as Application A are still relevant and the meanings
remain the same. These will be used and applied to sets of vertices and
edges independently.

For each difference combination, two quantities of the difference will be
calculated. The first is the difference between the vertices of each set and the
second is in terms of the edge pairs which exclude the labels. Definition 6.3

1The difference combination M \C represents the information in M that is not reflected
in C. This information is also not in I. As the information is neither used in C or I,
it may be that it is not necessary that it is in M . This result could incorrectly be seen
as overfitting. For the purposes of the thesis, the term extraneous will be used when
referring to the information that is in M but not in C.

2The difference combination C \M represents the information in C that is not in M .
For the information to be included in C there must have been a path between vertices in I
beginning and ending at a vertex in M that included the additional information not in M
in C. This result may incorrectly be referred to as underfitting of M in relation to both I
and C. For the purposes of this thesis, the term inferred will be used when referring to
the additional information that has been included in C that is not in M .

65

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



provides the formulae used to determine the sets of vertices and edges that
are used to compute the respective difference quantities. This definition
makes use of the vertex and edge sets of digraph G, that is, it makes use
of V and E′ respectively. When GA (GB respectively) is defined as a set
of triples, then Definition 5.1 shows how to derive VA and E′A (VB and E′B
respectively).

Definition 6.3 (Difference sets)

For two digraphs, GA and GB, the set-theoretic difference sets for ver-
tices and edges are given by:

VGA\GB
= VA\B = VA \ VB

E′GA\GB
= E′A\B = E′A \ E′B

The cardinality of the resultant difference sets from Definition 6.3 pro-
vides a quantification of the difference, referred to as a difference quantity,
for each of the difference combinations in terms of vertices and edges.

The definition of graph isomorphism for digraphs represented as sets of
triples given by Definition 6.2 can be adapted not to include edge labels as
is the case in Definition 2.9. The updated definition, which is a generalised
version of Definition 6.2, is presented in Defintion 6.4. From these two
definitions it follows that (GA ∼=` GB) =⇒ (GA ∼=u` GB).

Definition 6.4 (Unlabelled graph isomorphism — set of triples (ii))

For two digraphs GA and GB, if

i VA \ VB = ∅; and

ii E′A \ E′B = ∅

=⇒ GA ∼=u` GB.

Quantifying the difference sets requires taking the cardinality of each of
the resultant difference sets, that is | VA \ VB | for vertices and | E′A \ E′B |
for edges.

Significance of the quantities

The quantities, calculated by taking the cardinality of the specific sets, pro-
vide size-based values for each of the sets. A comparison of set size only does
not give a clear indication of the similarities and differences between the dif-
ferent quantities due to the varying magnitudes of the quantities. With the
ideal, I, being what is being strived for, a relative quantity in terms of the
ideal can be calculated, This relative quantity, referred to as a ratio, will

66

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



enable effective comparison of the quantities. Each ratio is uniquely identi-
fied by a ratio descriptor, R(X ,Y). X represents the quantity or difference
quantity for which the ratio is being described and Y the digraph relative
to which the ratio is being calculated. The ratio is calculated by dividing
the cardinality of X with the cardinality of Y.

For ratios where a distinction is made between vertices and edges, the
ratio descriptor comprises of two ratios, one for vertices (V ratio

X ) and one for
edges (EratioX ). Equations 6.1 and 6.2 of Definition 6.5 provide the formulae
to calculate each of the quantities of I, M and C in relation to I, that is for
ratio descriptors R(I, I), R(M, I) and R(C, I). Equations 6.3 and 6.4, pro-
vide the formulae for calculating the ratios for the significant set difference
quantities previously discussed in relation to I.

Definition 6.5 (Ratio formulae in terms of I)

Formula for a single quantity in relation to I - For a digraph G,
the ratios for the vertex and edge quantities are given by:

V ratio
G = | VG | / | VI | (6.1)

EratioG = | E′G | / | E′I | (6.2)

Formula for a set difference quantity in relation to I - For digraphs
GA and GB, the ratios for the vertex and edge difference quantities
are given by:

V ratio
A\B = | VA\B | / | VI | (6.3)

EratioA\B = | E′A\B | / | E
′
I | (6.4)

The difference sets C \M and M \C may also reveal interesting results
when their respective vertex and edge cardinalities are compared in terms
of a ratio of the first set specified in the combination, that is for ratio
descriptors R(C\M,C) and R(M \C,M), as shown in Equations 6.5 and 6.6
in Definition 6.6.

Definition 6.6 (Ratio formulae in terms of the first operand)

Formula for the difference quantity in relation to the set itself
- For digraphs GA and GB, the ratios for the vertex and edge dif-
ference quantities are given by:

V ratio
A\B = | VA\B | / | VA | (6.5)

EratioA\B = | E′A\B | / | E
′
A | (6.6)

67

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The calculated values for all ratios, R(X ,Y), will all be greater than or
equal to 0. In most cases the value will be in the range from 0 to 1. Ratios
greater than 1 could indicate that over-specification exists. For each ratio,
details regarding the significance of the ratio in terms of its result is given
in Appendix C. A summary of this detail is presented in Table 6.1.

Descriptor Description Summary

R(I, I) I relative to I The ratios for both vertices and edges will always
be 1.

R(M, I) M relative to I Relative cardinality of M to I. A ratio of 1 does
not necessarily mean that I and M match. It does
mean that relative to one another, they are the
same size.

R(C, I) C relative to I The ratio is always less than or equal to 1. If it is
equal to 1 then C is isomorphic to I, otherwise C
is a subgraph isomorphism of I.

R(I \ C, I) I \ C relative to I C is a subgraph isomorphism of I. The resultant
set will provide information regarding what C does
not cover with regards to the content of I. The
ratios will always be less than or equal to 1.

R(I \M, I) I \M relative to I The ratios will always be less than or equal to 1.

R(M \ C, I) M \ C relative to I A ratio that tends towards 0 is desirable. It indi-
cates to what extent M is compatible with C and
therefore I.

R(C \M, I) C \M relative to I The ratio will always be less than or equal to 1.
It should tend towards 0, thereby indicating the
extent to which inferences have been made to the
information in M with building C.

R(M \ C,M) M \ C relative to M The ratio will always be less than or equal to 1. As
the ratio tends to 0, the better the representation
of M in terms of C.

R(C \M,C) C \M relative to C C 6= ∅ must hold. A ratio closer to 0 means that C
is a good representation of M . A ratio that tends
towards 1 indicates the level of inference of elements
in C that has taken place.

Table 6.1: Summary of the significance of the ratios R(X ,Y)

Ratios R(M \C, I) and R(C \M, I) provide an indication of how well M
morphs to C and also whether and where any necessary adjustments should
be made to M . The resultant vertex and edge sets of M \ C provide infor-
mation regarding what is in M that is not being used for the comparison.
C \M provides information about what has been inferred as being in M

68

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



and this can be checked for validity.

6.3.2 Other comparison components

There are many other possible comparison components that can be applied
to the results of the Graph Trans-morphism Algorithm. These components
can easily be included in the framework thereby extending the framework.
One such other component is a component that measures the number of
‘edits’ necessary to transform the digraph.

Graph edit distance comparison component

Graph edit distance is a generalisation of string edit distance, also referred
to as Levenshtein distance [Myers et al., 2000]. Graph edit distance is an
inexact graph matching technique [Zaslavskiy, 2010]. This is in contrast to
the outcomes of algorithm T which provides a mechanism for exact matching
of C and I by building a subgraph isomorphism, C, of M in terms of I.

The Levenshtein distance algorithm considers inserts, deletions and changes
to characters of the source string, resulting in the target string. The appli-
cation of the edit distance technique to graphs, requires inserts, deletions
and changes to vertices and edges. It is also necessary to encode the graph.

Different encodings of graphs exist. Wilson and Hancock [2004] make
use of a weighted adjacency matrix to encode graphs to strings. Using
an adjacency matrix for two graphs, GA and GB in order for them to be
comparable, will result in two adjacency matrix representations each of size
s×s where s =| VA∪VB |. For sparse graphs, this encoding results in a lot of
computational overhead. An alternative encoding is to consider converting
vertices, edges or connections to strings [Gao et al., 2010]. This encoding
will work well for sparse graphs. Fiscus et al. [2006] make use of the graph
edit distance to align words of sentences where the sentences are represented
by DAGs with specified begin and end vertices.

The application of the Levenshtein distance algorithm to digraphs I, M
and C could give an indication of the matching properties of the combina-
tions I with M , I with C, and C with M . A distance of 0 between two
digraphs that have been encoded as strings, represents an exact match. The
closer the distance is to 0, the smaller the number of inserts, deletes and
changes that need to be done to change one digraph to another.

The graph edit distance component, being a tried and tested technique
for matching graphs, has been included for completion of the study. The
technique is an inexact matching technique and provides an indication of
whether graphs match or not. This information can be used to determine
whether it is necessary to consider a more exact technique or not, specifically
when the graph edit distance results in a bad match. For the purposes of
this study a more expressive technique is required which can pinpoint at a

69

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



finer level of granularity whether there is a match and what constitutes the
match.

6.4 Visualisation component

The visualisation component of the framework presents the digraphs in such
a way that they can be visually compared. In many cases, as the size of the
graph increases, the less likely it is to pick up similarities and differences by
comparing visual representations of the entire digraph. Visualising smaller
sections of the graphs is possible. As an alternative to direct graph visuali-
sation, visualisation of the results presented in Section 6.3, the Comparison
component, can be applied.

In many cases, existing graph visualisation tools can be used and will
present adequate results. More specialised visualisations will require more
specialised algorithms which will need to be custom written. In this sec-
tion the focus is on using existing tools to visualise graphs or results from
calculations applied to the graphs.

6.4.1 Graph visualisation component

The graph visualisation component makes extensive use of GraphViz which
is an open source graph visualisation software suite of layout programs
[AT&T Labs Research and Contributors, 2013]. Each GraphViz layout pro-
gram takes as input a graph representation. The output of the program is
a visual representation of the graph as specified by the layout program in
a graphical file format such as: Enhanced Postscript (eps), Portable Docu-
ment Format (pdf), and many more.

The layout programs in GraphViz most commonly used by the graph
visualisation component are those that represent graphs in a hierarchical
structure on the one hand, and those that rely on so-called “spring models”
to represent graphs, on the other.

The layout program used specifically for digraphs in a hierarchical rep-
resentation is called dot

A “spring model” views each edge as a spring and assigns it a specific
strength value. This value is used to determine the length of the edge place-
ment of the corresponding source and destination vertices. neato or fds are
two layout programs in GraphViz that rely on spring models. neato makes
use of a global energy function which needs to be minimised to determine
the placement of vertices and edges in the graph. fds uses a force reduction
function for placement. For large graphs of more than 100 vertices it is best
to use sfds which is referred to as a “multiscale version” of fds.

twopi and circo, two other layout programs in the suite, present radial
and circular visualisations of the graph. If no root node has been specified
in twopi, a node is chosen at random. Examples of each of the layouts

70

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



available in GraphViz is given in Figure 6.2. More information regarding
the mentioned layout programs can be found on the GraphViz website at:
http://www.graphviz.org.

A useful visualisation strategy is to view the graph using dot from left
to right to see what could be perceived as possible “entry points”. Consider
the digraph presented in Figure 6.2 for dot. From the figure is it clear that
vertices p and q may be considered “entry points” to the digraph. Using this
representation could be useful in identifying potential “grounding points” for
the digraph when the complier is represented by a set of disjoint digraphs.
Refer to Section 5.3.2 for an explanation and Section 7.3 for an example of
the compliers being represented by disjoint digraphs.

If the edge from vertex q to vertex r, in Figure 6.2, is reversed and the
digraph is generated again using dot. The result is given in Figure 6.3. The
vertices p and q no longer exhibit “entry point” tendencies, but vertex a
does and vertex p may be seen as a minor “entry point”.

6.4.2 Difference visualisation component

The visual representation of the ratios, R(X ,Y), requires a visualisation
that allows for multivariate data. A radar chart (also referred to as a web,
spider or star chart) is well suited for this type of data [Heerand et al., 2010].
The tool used to create the charts is the Draw tool that forms part of the
Open Office suite. More information regarding Open Office can be found
at: http://www.openoffice.org.

Each ratio representing I,M,C, I \ C, I \M,M \ C and C \M , all in
relation to I, will be represented by equi-angular radii, or spokes, on the
radar chart. The respective vertex and edge quantities in terms of their
ratios to I are plotted on the chart, resulting in two closed shapes. The
relationships between the ratios can be compared to determine compliance
in terms of similarities and differences.

If digraphs C, M and I are exactly the same, they are said to match
perfectly. The vertices and edges charts in such a perfect match situation
would have the form as shown by the dashed line in Figure 6.4. It shows
ratio values of 1 for ratios representing I, M and C and values of 0 for the
difference quantities such as I \M , etc.

The solid line in Figure 6.5 represents the maximum values for each of the
ratios. This information is a visual depiction of the information presented
in Table 6.1. It is important to note that the ratio may exceed 1.5, but for
illustration purposes the radar chart has been limited to 1.5. It is possible
that the ratios R(M, I) and R(M \ I, I) exceed the value of 1. This may
occur when M over specifies I and contains additional vertices and/or edges
not in I. The complier will never be larger than I, it will either be exactly
the same size as I, that is isomorphic to I, or it will be smaller than I, a
subgraph isomorphism of I. As the complier becomes smaller in size, the

71

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.graphviz.org
http://www.openoffice.org


a b

c

f g

rd

h

ik

j

l

m

op

q

a

b

c

f

g

r

d

h

i

k

j

l

m

o

p

q

dot neato

a

b

c

f

g

r

d

h

i

k

j
l

m

o
p

q a

b

c

f
g

r
d

h

i

k

j

l

m

o

p

q

fdp sfdp

a

b

c

f

g

r

d

h

i

k

j

l

m

o

p

q a

b

c

f

g

r
dh

i

k j

l

m

o

p

q

twopi circo

Figure 6.2: Examples of digraph layouts generated by GraphViz

72

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a

b

c

f

g

r

d

q

h

i
k

j

l

m

o

p

Figure 6.3: Manipulating using dot layout

Figure 6.4: Radar chart illustrating a perfect match of ratios in relation to
I

ratio R(C, I) will tend towards 0 and the ratio R(I \C, I) will moved along
the spoke in the figure towards 1. The ratio R(I \M, I) moves from 0 on
the spoke towards 1 when there is very little that is common between I and
M . The ratio R(C \M, I) will exhibit similar tendencies as R(I \M, I) but
in relation to the relative size of C.

A situation may occur, as described by Outcome 4 in Section 5.3.2,
where the complier is an exact copy of I yet the model is not an exact copy
of I. In this situation the information represented in M maximally covers
the information presented in I and the ratio R(C, I) will be 1. The ratio
R(I \C, I) will be 0, but the ratio for R(I \M) may be greater than 0. This
situation will be illustrated in Section 7.5, Representation 2.

Using the radar chart to visualise, under perfect matching conditions,
the ratios R(M \ C,M) and R(C \M,C) results in a radar chart as given
in Figure 6.6. The ratios R(M, I) and R(C, I) are also included to keep the
perspective with regards to the ideal of the model and the complier.

73

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 6.5: Radar chart illustrating a worst case of ratios in relation to I

Figure 6.6: Radar chart illustrating a perfect match of ratios R(M \ C,M)
and R(C \M,C)

74

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



6.4.3 Other visualisation components

Other than the visualisations already presented by the Graph Visualisa-
tion and Difference Visualisation components, other visualisation possibili-
ties also exist. These additional visualisations can make use of existing tools
in combination with either the algorithm or the comparison component re-
sults or both. Herman et al. [2000] presents further information visualisation
techniques where the information is represented as graphs and Bennett et al.
[2007] applies layout aesthetic techniques to digraphs. Both these techniques
can be incorporated into components and placed in the framework to en-
hance the framework with regards to graph visualisation. The incorporation
of techniques such as these and others is left for future work.

6.5 Applying the framework to the toy application

The application of the graph visualisation, difference comparison and dif-
ference visualisation components of the framework will be shown in terms
of the toy application that was introduced in Section 5.4. In this section
it is assumed that the Graph Trans-morphism Algorithm component of the
framework has already been executed for the specific ideal and model di-
graphs.

For each of the components, what can be observed or derived from the in-
formation given will be enumerated in order to refer back to the observation
if it can also be established from one of the other components.

6.5.1 Visual representation of the graphs

Visual representations of the digraphs I, M and C have already been pre-
sented in Figures 5.1, 5.2 and 5.3 respectively. These figures were generated
using the dot layout in GraphViz. From these independent figures it is very
difficult to see what the similarities and differences are between digraphs I
and M except for what had already been highlighted in green. The similar-
ities between C and I are easier to identify on the individual figures.

Figure 6.7 presents these same digraphs in terms of their respective E′

sets using the dot layout. All three digraphs, I, M and C are drawn together
in the same diagram.

From Figure 6.7 the match between the complier and the ideal can easily
be seen. They match wherever the green and blue arrows, representing their
respective edges, appear in parallel. A blue arrow with no parallel green
arrow points to information in the ideal which is not only absent from the
model, but cannot be inferred from the model and is therefore also absent
from the complier. Vertex a is clearly the designated “entry point” in all
the digraphs.

75

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Legend

Ideal (I)

Model (M)

Complier (C)

 

 

 

a b

c

f

d

j

g

e

h

i

Figure 6.7: Visual comparison of I, M and C using dot

Redrawing the digraphs in Figure 6.7 with twopi and specifying a as the
“entry point” or “root” in GraphViz, results in the superimposed graphs
given in Figure 6.8. From this figure it can clearly be seen that vertex j is
unique to the model M . Likewise, vertex e is unique to the ideal I, and so
are the edges that link to e from vertices h and d.

From Figures 6.7 and 6.8 the following summarising observations can be
made:

Observation 1 - Match between I and C: The perceived match between
I and C is high as can be seen from the parallel green and blue lines.

Observation 2 - “Entry point” node: The natural vertex to act as “en-
try point” to digraphs I, M and C is vertex a.

Observation 3 - Vertex e only in I: Vertex e is not in M , nor is it in C
and therefore neither are the edges that link it to h and d.

Observation 4 - Vertex j is only in M : Vertex j is not in I and there-
fore also not in C.

6.5.2 Results of the difference combinations

The toy application’s vertex and edge sets for digraphs I, M and C are
presented in Table 6.2. The table also indicates the vertices and edges of
the significant set differences, namely I \ C, I \M , M \ C and C \M .

76

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 6.8: Visual comparison of I, M and C using twopi

Quantity Variable Set representation for the Toy Application

I VI {a, b, c, d, e, f, g, h, i}
E′I {(a, b), (a, c), (a, f), (b, c), (b, f), (c, d), (d, e), (f, g),

(g, h), (h, e), (h, i), (i, d)}
M VM {a, b, d, f, j}

E′M {(a, b), (a, d), (b, f), (b, j), (d, f)}
C VC {a, b, c, d, f, g, h, i}

E′C {(a, b), (a, c), (a, f), (b, c), (b, f), (c, d), (f, g),
(g, h), (h, i), (i, d)}

I \ C VI\C {e}
E′I\C {(d, e), (h, e)}

I \M VI\M {c, e, g, h, i}
E′I\M {(a, c), (a, f), (b, c), (c, d), (d, e), (f, g),

(g, h), (h, e), (h, i), (i, d)}
M \ C VM\C {j}

E′M\C {(a, d), (b, j), (d, f)}
C \M VC\M {c, g, h, i}

E′C\M {(a, c), (a, f), (b, c), (c, d), (f, g), (g, h), (h, i), (i, d)}

Table 6.2: Vertex and edge sets for the quantities

77

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The information in this table confirms what was seen by the inspection
in the digraph visualisations.

The set difference I \ C results in the sets VI\C = {e} and E′I\C =

{(d, e), (h, e)} as shown in Table 6.2. This can be clearly seen in Figure 6.8
and confirms Observation 3.

The vertex set difference of M \C confirms Observation 4, that vertex j
is not an element of the complier and consequently it will not be an element
of the ideal either.

The difference set C \M results in vertices and edges that have been
inferred from the information in M in relation to I and have been included
in C.

From the difference combinations, Observations 3 and 4 can be con-
firmed and a further observation made, namely:

Observation 5 - 4 vertices and 8 edges inferred from M : A relatively
large number of vertices and edges can be inferred from information
in M . This can be seen from C \M . These resultant sets are similar
in cardinality to the sets of I \M .

6.5.3 Determining the ratios

The values presented in Table 6.3 are derived from the sets in Table 6.2 by
calculating the cardinalities for each of the sets. The respective cardinalities
for vertices and edges for each of the quantities, represented by their ratio
descriptor introduced in Table 6.1, is given in the second and third columns.
The fourth and fifth columns, for the first seven rows represents the ratio of
the quantity with respect to the quantity of I. Rows eight and nine present
the respective quantities in terms of M and C respectively. These ratios are
calculated using the formulae given by Definitions 6.5 and 6.6.

Ratio (R(X ,Y)) | VX | | E′X | V ratio
X EratioX

R(I, I) 9 12 1.00 1.00

R(M, I) 5 5 0.56 0.42

R(C, I) 8 10 0.89 0.83

R(I \ C, I) 1 2 0.11 0.17

R(I \M, I) 5 10 0.56 0.83

R(M \ C, I) 1 3 0.11 0.25

R(C \M, I) 4 8 0.44 0.67

R(M \ C,M) 1 3 0.20 0.60

R(C \M,C) 4 8 0.50 0.80

Table 6.3: Set quantity cardinalities and ratio calculation results for the toy
application

78

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The vertex and edge ratios for R(I, I) will always be 1. The ratio for
M , R(M,I), merely gives an indication of M ’s cardinality in terms of I and
not much should be read into the value. If this ratio is 1, it does not mean
that M and I represent the same information. It just indicates that I and
M have the same number of vertices and/or edges. A value greater than
1 will indicate that M is “bigger” than I and a value less than 1, that M
is “smaller”. The ratio for C, R(C,I), is more significant. It indicates the
extent to which C is a subgraph isomorphism of I. This ratio quantifies
what was seen by Observation 1.

The ratios of the difference quantities cannot be seen in isolation from
one another. All ratios for difference quantities must tend towards zero
and the closer they all are to zero, the better the match between I and M .
Observation 6 captures this requirement.

Observation 6 - All set difference ratios must tend to 0: The closer
the set difference ratios are to 0 the better the match. A perfect match
is indicated when all set difference ratios are 0.

The ratios for R(I \ C, I) quantifies the difference sets for vertices and
edges and what was seen in Observation 3. The only difference between I
and C is in terms of one vertex and two edges giving favourable vertex and
edge ratios.

R(C \M, I) confirms Observation 5, namely that C contains a relatively
large number of edges and vertices that are not explicitly in M but have to be
inferred from I. Because of this relatively high degree of inferencing, the edge
and vertex sets of C tend towards becoming subsets of the corresponding
edge and vertex sets of I and as a consequence, the R(I \ C, I) ratios are
relatively low.

The small ratios for R(M \C, I), indicates that M is not over specifying
I. This relates to Observation 4. For small values, the individual elements
of the sets can be considered and the need for them can be individually
accessed. A large ratio indicates that M may not be related to the ideal at
all and an investigation regarding the suitability of the comparison needs to
be conducted, or M can be refined in terms of contents.

6.5.4 Plotting the ratios on a radar chart

The information presented in Table 6.3 is difficult to compare due to its
format. Figure 6.9 presents the information for ratios in terms of I as a
radar chart. The radar chart plots the vertex (in green), and edge (in blue)
ratios with respect to I.

From Figure 6.9 it can be clearly seen that C almost fully represents I by
investigating R(I \C, I), Observation 4. This however needs to be viewed in
perspective with R(C \M, I), which is quite high for both vertices and edges

79

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 6.9: Radar chart - Toy application, R(I,I) to R(C \M, I)

Figure 6.10: Radar chart - Toy application, R(M,I), R(C,I), R(M \ C,M)
and R(C \M,C)

80

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



showing that quite a bit of inference took place during the construction of C,
Observation 5. The values for R(I\M, I) are high, especially for edges and is
given in Observation 7 below. In this example, the under specifying nature
of M resulted in greater inferences made in C. The extraneous elements in
M , R(M \ C, I), do not seem to have a major impact on the matching as
the ratios are quite low.

Observation 7 - M under specifies I: The differences in vertices and
edges of I and M indicate that there is not enough in M to match
with I.

Figure 6.10 presents a similar situation for ratios R(M,I), R(C,I), R(M \
C,M) and R(C \M,C). For both R(M \ C,M) and R(C \M,C) a match
would be indicated if the ratios were to be 0. In both cases the edge ratios are
high. The vertex ratio for R(M \C,M) indicates less of an over specification
than was initially thought when considering the information presented in
Figure 6.9.

6.5.5 Considering the graph edit distance

The graph edit distance comparison component was introduced in Sec-
tion 6.3.2 where it was mentioned that in order to use the Levenshtein
algorithm it is necessary to encode the graphs using a string representation.
The most obvious encoding to use is the adjacency matrix representation.
As stated previously in Section 4.2.1, for dense graphs this method works
fine, but for sparse graphs the overheads both in storage required and com-
putation could be significant.

An alternative is to encode the edges of the digraphs as a string of vertices
ordered according to their source and destination pairs. For large graphs,
this representation can also result in a long string. A third method that is
proposed for use to determine the graph edit distance for comparison in the
toy application is to use the ordered set of edges represented by E′ for each
of the graphs.

The encodings of I for the toy example in terms of each of these repre-
sentations are given below.

Adjacency matrix: The encoding of the adjacency matrix takes each row
of the matrix and concatenates it with the next to form one long
string of 0 and 1 characters. The adjacency matrix for I is given by
the following 10 × 10 matrix. The vertices used to setup the matrix
are in VI ∪ VM .

81

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a b c d e f g h i j

a 0 1 1 0 0 1 0 0 0 0
b 0 0 1 0 0 1 0 0 0 0
c 0 0 0 1 0 0 0 0 0 0
d 0 0 0 0 1 0 0 0 0 0
e 0 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0 1 0 0 0
g 0 0 0 0 0 0 0 1 0 0
h 0 0 0 0 1 0 0 0 1 0
i 0 0 0 1 0 0 0 0 0 0
j 0 0 0 0 0 0 0 0 0 0

The matrix is encoded by concatenating each row with the next which
results in the following string. Each 0 and/or 1 is delimited by a space.

0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Vertex string: The string of vertices encoding requires the set E′ for the
digraph to be ordered, first with respect to the source vertex and then
the destination vertex. E′ for I is given by the following set of pairs
of vertices representing the edges:

E′I = {(a, b), (a, c), (a, f), (b, c), (b, f), (c, d),

(d, e), (f, g), (g, h), (h, e), (h, i), (i, d)}

Removing the syntax and using just the vertices from left to right will
result in the encoding for I given below.

a b a c a f b c b f c d d e f g g h h e h i i d

Ordered E′: The encoding for an ordered E′ is similar to the string of ver-
tices representation in that it uses E′ and the ordered (source, desti-
nation) pairs. Each pair is delimited by a space to enable easy parsing
of the input string. The encoding in terms of an ordered E′ is given
by the following string:

(a,b) (a,c) (a,f) (b,c) (b,f) (c,d) (d,e) (f,g) (g,h) (h,e) (h,i) (i,d)

The results of the graph edit distance for each of the encodings for the
combinations of I and M , I and C, and M and C are given in Table 6.4.

82

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digraph combi-
nation

Adjacency ma-
trix

Vertex string Ordered E′

I and M 10 17 10

I and C 2 4 2

M and C 10 13 8

Table 6.4: Graph edit distance for the toy application

Figure 6.11: Graph edit distance ratios for the toy application

83

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Calculating the ratio of each combination per encoding and plotting
these ratios on a line graph, gives an indication of the similarities between
the encodings. Figure 6.11 presents these ratios visually as a line graph.

From the line graph it is clear that there is not much difference between
the ratios. This indicates that one edit distance encoding is as good as
another for this application. This being the case, the execution time to
determine the edit distance per encoding should be taken into consideration.
As the digraphs increase in size, so will the execution time. For the adjacency
matrix the execution time increase will be more dramatic than that of the
other two encodings. The encoding using E′ in the majority of cases should
perform the best as it will always have the least number of comparisons to
execute.

The “dip” in line graph given in Figure 6.11 can be attributed to C being
a good representation of M in terms of I. This means that there are fewer
edits — inserts, deletes and changes — required to transform I into C.

6.5.6 Interpretation

The complier digraph C that was built as a subgraph isomorphism of I by
algorithm T matches well with the ideal I, Observation 1. This can be seen
in the ratios for R(C,I) and R(I \ C, I). Ratio R(I \ C, I) also corresponds
to Observation 3. Unfortunately, C over specifies M by inferring too much.
Quantities R(I \M, I) and R(C \M, I) (and Observation 7 ) attest to this.
There is not enough overlap between I and M to expect a good match, and
the ratios for R(C \M, I) show that C is over specifying M , Observation
5. Both these quantities and Observation 4 which is related to R(M \C, I),
can be used to reconsider M and to determine how M can be restructured
to decrease ratio R(C \M, I).

Observation 2 can only be determined by looking at the visual repre-
sentations of the digraphs. Observation 6 on the other hand can only be
made by considering the ratios, either in number form as a radar chart
visualisation of the numbers.

6.6 Conclusion

A framework, referred to as the Graph Comparison Framework, was pre-
sented that makes use of the inputs to and output from the Graph Trans-
formation Algorithm introduced in Chapter 5. The framework comprises
of two main components and can be extended further. These components
concentrate on the visualisation of the digraphs as well as the comparison
of these digraphs.

Two visualisations were discussed, the first presents the digraphs using
different layouts from which similarities and differences may be spotted vi-
sually. The second makes use of the results from the difference comparison

84

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



component and represents these results on radar charts for more detailed
comparison.

As with the visualisations, two comparisons were discussed. The first
comparison looks at exact matching between the digraphs and presents the
information regarding the differences between the digraphs as difference ra-
tios. The second comparison component which was briefly discussed is an
inexact matching technique and considers the number of edits required to
match two digraphs.

All these techniques were applied to the toy application which was intro-
duced in Chapter 5. The application of the techniques and the results par-
ticular to this application were discussed. In chapters to follow, the Graph
Comparison Framework will be applied to the analysis of the outcomes of
algorithm T (Chapter 7) and to real-world scenarios in Chapter 11.

85

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 7

Analysis of the Outcomes of
T

7.1 Introduction

In Chapter 5 an algorithm was presented which accepts two digraphs as
parameters, the model and ideal, and returns a third digraph, the complier,
which is the information represented in the model in terms of the structure
of the ideal. Section 5.3.2 in the chapter identified possible outcomes of
the complier. Each of these identified outcomes will be discussed using
simple digraphs for the ideal and model which best illustrate the outcomes
of, or complier returned by, the algorithm. The discussion around each of
the outcomes that are illustrated with the specific toy application ideals
and models will further be guided by the Graph Comparison Framework
presented in Chapter 6.

It is important to note that the outcomes of algorithm T are not mutually
exclusive. Figure 7.1 gives all the possible combinations for the outcomes. It
is for example possible for Outcomes 2, 4 and 5 to have instances of Outcome
1. Disjoint digraphs, Outcome 2, may also be subgraphs (Outcome 5) of I.
In both these cases it may be necessary to take rectifying action and refine
at least the model.

For each of the sections that follow the algorithm T will be applied to a
given ideal and model in order to illustrate the possible resultant compliers
for each of the outcomes. It is hoped that in the real world the majority of
the resultant compliers will comply with Outcome 5 so that the techniques
presented by the framework in Chapter 6 can be applied and the results
thereof be used to improve the model until Outcome 4 is met. Each section,
as necessary, will also discuss possible rectifying actions that may need to
be taken to improve the matching of M to I.

86

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Complier digraph - C

Outcome 1 

 Parallel edges

Outcome 2 

 Disjoint graphs and

Outcome 3 

 Empty
Outcome 4 

 Exact copy of ideal

and

Outcome 5 

 Subgraph of ideal

and

and

Figure 7.1: Outcome combinations of algorithm T

a

f(e5)

b
(e1)

c

(e3)

d
(e7)

(e9)

g
(e6)

e
(e12)

h

(e13)

i
(e10)

(e14)

(e2)

(e4)

(e8)

(e11)

Figure 7.2: Outcome 1 - I

7.2 Outcome 1 - Parallel edges

The complier will only have parallel edges if the ideal has parallel edges that
have not been removed by applying Rule 5.2 to the ideal before running the
algorithm. Consider the ideal as given by Figure 7.2 with the parallel edges,
(f, d, (e7)) and (f, d, (e9)), and the model as given by Figure 7.3. It is clear
from the two figures that the ideal and model are not fully comparable in
their current form. The only edge pairs in E′ for each graph that overlap
are (f, d), (d, e) and (h, e). These have been marked in blue in the respective
digraphs.

The subgraph, marked in blue, in M is a subgraph isomorphism of I.
With some correlation between M and I, there will be at least as much
correlation between C and I.

After running the algorithm, T , the resultant complier C is given in

f d
(e3)

e

(e5)

i
(e7)

h

(e6)j

(e1)

b

(e2)
(e4)

Figure 7.3: Outcome 1 - M

87

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



f

d
(e7)

(e9)

g(e6)

e

(e2)
h

(e13)

i
(e10)

b

(e14)

c

(e2)

(e4)

(e8)

(e11)

Figure 7.4: Outcome 1 - C

Figure 7.4. The edges which overlapped in I and M are also highlighted in
blue in digraph C. A visual inspection of I and C reveals that there is only
one vertex in I which is not in C. This vertex is a. With regards to edges,
those characterised by the labels (e1), (e3) and (e5) are in I but not in C.
For convenience, these have been highlighted in red in I. It follows, that
C is a subgraph isomorphism of I because all edges between vertex b and e
that are in C are also in I. This can be seen when comparing the complier
in Figure 7.4 with the ideal in Figure 7.2. The information represented by
the complier which is derived from the information in the model is now
comparable to the ideal.

As can be seen in Figure 7.4, parallel edges in the ideal are transferred
to the complier after the successful execution of algorithm T . Application of
Rule 5.2, to a digraph with parallel edges will result in a digraph with a single
edge in which the labels of the edges have been concatenated. Application of
the rule to the ideal before running the algorithm, will result in a complier
without parallel edges. If the rule was not applied before the complier
was determined, then the rule must be applied to both I and C. For the
example under consideration, application of the rule to the edges (f, d, (e9))
and (f, d, (e7)) will result in a merged edge (f, d, ((e9), (e7))) in the digraph
being considered.

The blue edges in the figures representing I, M and C indicate edges
that are common between the three digraphs. When comparing the labels
of the common edges between M and either I or C, it is clear that the
labels are not necessarily common between the digraphs even though the
vertices may be. Application of Rule 5.6 transfers the label of an edge from
one digraph and concatenates it to the label of an edge of another graph
which has the same source and destination vertices but a different label.
For example, the transferral of the common edge labels from M to C by
the application of the rule results in updated edges between the vertices
highlighted in blue in digraph C. The exact specifications of these edges are
given by: (f,d,(((e9),(e7)),(e3))), (d,e,((e2),(e5))) and (h,e,((e13),(e6))) if it
is assumed that the parallel edges have already been removed.

88

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



c3

d3

d4

d2

d5 e3

e4

e1

e2

f1

e8

f2

d9

e9

e10

e11

d11

e12 f4

f3

f5

a1

b1

b2

b3

b4

c1

c2

c5

c4

c6

c7

c8

d1

d6

e7

d7

d8

d10

d13

e5

a2

b5

f6

Figure 7.5: Outcome 2 - I

7.3 Outcome 2 - Disjoint digraphs

It is possible for the complier to be represented by a set of disjoint digraphs.
In this case it is necessary to update at least the model and possibly re-
evaluate the representation of the ideal in order to unify these disjoint di-
graphs without changing the information the digraphs represent. Consider
the ideal and model digraphs given in Figures 7.5 and 7.6. These digraphs
have been drawn using the sets E′I and E′M , the sets of (source,destination)
pairs without the labels, for I and M respectively. E′n was defined in Defi-
nition 2.9.

After applying algorithm T to the ideal and model digraphs, the resul-
tant complier digraph is given in Figure 7.7. Digraph C is a set of disjoint

89

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



c3 d3

d4

d2 f1

e3

e8 f2

d9

e9

e10

d11

f4

f3x

y1

y2

y3

z1

z2

z3

z4

z5

d1

Figure 7.6: Outcome 2 - M

digraphs which map to the areas highlighted in blue on the respective I and
M digraphs given in Figures 7.5 and 7.6. Each of these disjoint digraphs are
subgraph isomorphisms of the ideal in their own right. The output given by
the algorithm is presented in Section B.1 in the Appendix.

In some applications / contexts, a result such as this might prompt the
user (of the framework) to question the accuracy of either the ideal or the
model, or both. It seems that an “entry point” might be needed possibly into
both the ideal and the model. This “entry point” should not detract from the
information that the individual digraphs represent, but should ensure that

c3

d2 d3 d4 d5

e1 e3

d11

e12

f3 f4

f1

d9

e10 e9

e8

f2

Figure 7.7: Outcome 2 - C

90

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a1

b1

b2

b3

b4

c1

c2

c3

c5

c4

c6

c7

c8

a2

b5

d1

d2

d6

d3

d4

d5

d8

d9

d11

d10

d13

e1

e3

e8

f1

f2

e10

e9

e12

f3

f4

g

Figure 7.8: Outcome 2 - C updated

the domain, which both the ideal and model represents, is better covered.
Assume this “entry point” g is placed in I by including two edges that

link node g with nodes a1 and a2 respectively. That is, the following two
triples are concatenated to the representation of I, (g, a1, ∅), (g, a2, ∅). A
similar concatenation is applied to digraph M with the triple (g, x, ∅) being
included in the specification.

The execution of T with these updated I and M digraphs results in a
complier as given by Figure 7.8. In some contexts, the subgraph isomor-
phism, C, of I might be considered to be a complier that is more represen-
tative of the ideal than the earlier version.

Applying the comparison component of the framework, particularly the
difference quantities and comparing the prior to update and the updated
radar charts, given in Figure 7.9, provides the following insights into the
similarities and differences between the digraphs.

The addition of the “entry points” have little effect of the relationship of
M to I. This can be seen by the fact that the ratio represented by R(M, I)
in the figures has not changed much. The ratio represented by R(C, I) has
shown a marked improvement after the addition of the “entry points” in I
and M , as has the ratio of R(I \ C, I). The addition of “entry points” will
in some contexts result in a complier that is a more representative subgraph

91

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Before update After update

Figure 7.9: Outcome 2 - Radar charts

isomorphism of the ideal than an earlier version without the “entry points”
was.

The inclusion of the “entry points” and corresponding edges results in
the ratio R(C \M, I) moving away from the ideal value of 0 towards 0.5
for vertices and 0.75 for edges. The difference can be seen on the radar
chart in Figure 7.9 when comparing the before and after spoke for the ratio
R(C \M, I). This is as a result of M under-representing I. The edges that
result in this under-representation of M in terms of I are given by C \M ’s
“After row” in Table 7.1. This row also represents the extent to which C
has inferred information in M that has not been explicitly specified in M .
Adapting M using this row will ensure that M better represents I.

From Table 7.1 it is evident that as C moves closer to a better match
with I it moves further from matching with M . This is because C, after the
update, is represented by a much larger graph. It has moved from a graph
with 17 vertices and 14 edges to one with 37 vertices and 49 edges.

Inspection of the sets of I \M and C \M after the adaption to I and
M has been made reveals that the sets are similar. The differences between
the sets are highlighted in blue in Table 7.1.

Table 7.2 presents the results of the application of the graph edit distance
to the digraphs before the update and after the update to digraphs I and
M . From these values it is clear that C is a better representation of M with
regards to I after the update has been made. It is also clear that the update
degrades the match between M and C. This confirms the results presented
in Figure 7.9 and Table 7.1.

In conclusion, C is a better representation of M in terms of I after the
addition of the “entry point” vertices . Where C gained with the inclusion
of the “entry point” vertices when compared with I, it lost in terms of

92

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Modification Difference set

I \ C Before (a1,b1) (a1,b2) (a1,b3) (a1,b4) (a2,b3) (a2,b5) (b1,c1)
(b1,c2) (b2,c1) (b2,c3) (b2,c5) (b3,c4) (b3,c6) (b3,c7)
(b3,c8) (b4,c4) (b5,c8) (c1,d1) (c1,d2) (c2,d6) (c4,d6)
(c5,d5) (c6,d7) (c6,d8) (c6,d9) (c7,d11) (c7,d7)
(c8,d10) (c8,d13) (d10,e3) (d13,f3) (d13,f6) (d2,e2)
(d3,e4) (d6,e3) (d6,e7) (d6,e8) (d7,e5) (d8,f1) (d8,f2)
(d9,e11) (e12,f5)

After (c6,d7) (c7,d7) (d13,f6) (d2,e2) (d3,e4) (d6,e7) (d7,e5)
(d9,e11) (e12,f5)

I \M Before (a1,b1) (a1,b2) (a1,b3) (a1,b4) (a2,b3) (a2,b5) (b1,c1)
(b1,c2) (b2,c1) (b2,c3) (b2,c5) (b3,c4) (b3,c6) (b3,c7)
(b3,c8) (b4,c4) (b5,c8) (c1,d1) (c1,d2) (c2,d6) (c3,d2)
(c3,d5) (c4,d6) (c5,d5) (c6,d7) (c6,d8) (c6,d9) (c7,d11)
(c7,d7) (c8,d10) (c8,d13) (d10,e3) (d11,e12) (d13,f3)
(d13,f6) (d2,e1) (d2,e2) (d3,e3) (d3,e4) (d5,e3) (d6,e3)
(d6,e7) (d6,e8) (d7,e5) (d8,f1) (d8,f2) (d9,e11) (e1,f1)
(e12,f3) (e12,f4) (e12,f5)

After The same as with the “Before” entry, but with the
following two additional pairs: (g,a1) (g,a2)

M \ C Before (d1,f2) (d11,f1) (d11,f3) (d11,f4) (d2,f1) (x,y1) (x,y2)
(x,y3) (y1,z1) (y1,z2) (y2,z3) (y2,z4) (y3,z5) (z1,c3)
(z2,d1) (z2,d2) (z3,e3) (z3,e8) (z4,d9) (z5,d11)

After Exactly the same as the “Before” entry

C \M Before (c3,d2) (c3,d5) (d11,e12) (d2,e1) (d3,e3) (d5,e3)
(e1,f1) (e12,f3) (e12,f4)

After (a1,b1) (a1,b2) (a1,b3) (a1,b4) (a2,b3) (a2,b5) (b1,c1)
(b1,c2) (b2,c1) (b2,c3) (b2,c5) (b3,c4) (b3,c6) (b3,c7)
(b3,c8) (b4,c4) (b5,c8) (c1,d1) (c1,d2) (c2,d6) (c3,d2)
(c3,d5) (c4,d6) (c5,d5) (c6,d8) (c6,d9) (c7,d11)
(c8,d10) (c8,d13) (d10,e3) (d11,e12) (d13,f3) (d2,e1)
(d3,e3) (d5,e3) (d6,e3) (d6,e8) (d8,f1) (d8,f2) (e1,f1)
(e12,f3) (e12,f4) (g,a1) (g,a2)

Table 7.1: E′ difference sets for outcome 2

Digraph combi-
nation

Before update After update

I and M 54 56

I and C 42 9

M and C 22 47

Table 7.2: Graph edit distance for outcome 2

93

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



specifying M accurately. The set for C \M after the update provides the
vertices that have been inferred in C from the information in M . Taking a
closer look at these and making further changes to M will ensure that M is
a better match to C. These kinds of changes requires human knowledge of
the subject area that I is representing in order to modify M and increase
the coverage of M in relation to C and I.

7.4 Outcome 3 - Empty resultant digraph

An empty resultant digraph, though not very likely in practice, is a theo-
retical possibility. Using the same digraph to represent the ideal as given in
Figure 7.5, but a different model as presented in Figure 7.10, the resultant
complier is the empty graph.

Again, the addition of an “entry point” will enable additional matchings
to be found. The same triples are added to the ideal ((g, a1, ∅), (g, a2, ∅)) and
the model ((g, x, ∅)) as were added to the ideal and model representations
for outcome 2 in Section 7.3. The resultant complier for the updated I and
M digraphs is given in Figure 7.11

The resultant values of the inexact matching technique represented by
the graph edit distance is given in Table 7.3. The values for before update
are either the cardinality of I, as seen by the first value in the first two
rows, or the cardinality of M for the first value in the third row. The graph
edit distances represented by the cardinality of the set was expected for the
calculations which have C in them as C = ∅. The value for the first row
being the cardinality of I indicates that there is very little that is similar
between I and M and that it takes | I | inserts, deletes or updates to convert
I to M .

Digraph combi-
nation

Before update After update

I and M 56 58

I and C 56 4

M and C 34 54

Table 7.3: Graph edit distance for outcome 3

The results for after update for the graph edit distance between I and
M are as expected. It remains the cardinality of I where I now has two
additional edges thereby explaining the difference of 2 between the after and
before values. There is an improvement between I and C from before to after
update. Before the update required 56 edits to transform I to C, while after
the update only 4 edits were required. This indicates that the complier
matches the ideal quite well. The situation is not that good between the

94

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



x

y1

y2

y3

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

e11

f1

e2

e3

d8

f2

e5

e9

z7a

z7b

f6

f3

f4

e8

e7

e10

e1

Figure 7.10: Outcome 3 - M

95

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a1

b1

b2

b3

b4

c1

c2

c3

c5

c4

c6

c7

c8

a2

b5

d2

d6

d3

d5

d7

d8

d9

d11

d10

d13

e1

e2

e3

e7

e8

e5

f1

f2

e10

e11

e9

e12

f3

f6

f4

g

Figure 7.11: Outcome 3 - C updated

96

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Before update After update

Figure 7.12: Outcome 3 - Radar charts

model and the complier.
Applying the comparison component of the framework, particularly the

difference quantities and comparing the prior to update and the updated
radar charts, given in Figure 7.12, provides the following insights into the
similarities and differences between the digraphs.

The addition of the “entry point” has not made much difference between
the ratios of before and after for R(M, I), they have however made a marked
difference to the ratio represented by C. Digraph C has almost an equiv-
alent cardinality to I. Just ratio R(C, I) alone cannot provide information
regarding the match of M to I. It is important to investigate the difference
ratios as well. Here again when I and C are compared, that is R(I \ C, I),
there is little difference between the two digraphs. This indicates that M
represented in terms of C matches I well. There however is no improvement
in M ’s relation to I. The ratio of R(M \ C, I) indicates that even though
there is little change in terms of edges, there is a better match in terms of
vertices. As C was empty before the update took place, the result of C \M
cannot be compared to the after update result. However, the after update
result can be analysed on its own. There are many, 93%, edges that have
been inferred in C that are not in M . The difference ratio for vertices is
better at 56%.

In conclusion, the match between the model and ideal in terms of the
complier was an empty graph. until the introduction of the “entry points”.
By investigating the exact vertices and edges in the quantities M \ C and
C \M , what is extraneous in M and what has been inferred to be in M
and included in C can be determined. This information can be used by a
domain expert as input to improve the model.

97

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



7.5 Outcome 4 - Exact copy of the ideal

The complier may be an exact copy of the ideal, that is automorphic to
the ideal by Definition 2.10, under two very different representations of the
model. The first is if the model is automorphic to the ideal. The second is
if the model is not automorphic to the ideal, but nevertheless such that the
coverage of the ideal by the model is adequate to produce a complier that
is automorphic to the ideal. Each of these representations will be discussed
in the sections that follow.

7.5.1 Representation 1: M and I are identical

The first of these representations can easily be illustrated by running the
algorithm with an ideal and model that are in fact exactly the same and
therefore automorphic to each other.

Let the digraph representing the ideal given in Figure 7.5 be used as
input parameters for the algorithm for both I and M . After the execution
of the algorithm, T , the resultant complier is given by the set of triples:

CT (I,I) = {(a1, b1, ∅), (a1, b2, ∅), (a1, b3, ∅), (a1, b4, ∅), (a2, b3, ∅), (a2, b5, ∅),
(b1, c1, ∅), (b1, c2, ∅), (b2, c1, ∅), (b2, c3, ∅), (b2, c5, ∅),
(b3, c4, ∅), (b3, c6, ∅), (b3, c7, ∅), (b3, c8, ∅), (b4, c4, ∅), (b5, c8, ∅),
(c1, d1, ∅), (c1, d2, ∅), (c2, d6, ∅), (c3, d2, ∅), (c3, d3, ∅), (c3, d4, ∅),
(c3, d5, ∅), (c4, d6, ∅), (c5, d5, ∅), (c6, d7, ∅), (c6, d8, ∅), (c6, d9, ∅),
(c7, d11, ∅), (c7, d7, ∅), (c8, d10, ∅), (c8, d13, ∅),
(d10, e3, ∅), (d11, e12, ∅), (d13, f3, ∅), (d13, f6, ∅),
(d2, e1, ∅), (d2, e2, ∅), (d3, e3, ∅), (d3, e4, ∅), (d5, e3, ∅),
(d6, e3, ∅), (d6, e7, ∅), (d6, e8, ∅), (d7, e5, ∅),
(d8, f1, ∅), (d8, f2, ∅), (d9, e10, ∅), (d9, e11, ∅), (d9, e9, ∅),
(e1, f1, ∅), (e12, f3, ∅), (e12, f4, ∅), (e12, f5, ∅), (e8, f2, ∅)}

This set of triples representing the complier can be directly matched
to the representation of the ideal given in Appendix B.1. The ratios for
R(I \ C, I), R(I \M, I), R(M \ C, I) and R(C \M, I) being 0 is expected
and confirms the automorphism.

The order in which the triples in the model are specified also has no effect
on the resultant complier. Running the algorithm with C = T (I, I) presents
the same results as running the algorithm with MZ→A, where MZ→A is I
with the triples presented in reverse order, that is C = T (I,MZ→A). It can
therefore be concluded that if I and M are automorphic, then the order in
which the triples are specified has no bearing on the complier C.

98

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a1

f1 e2 e3 e4 e5 e7 d1 d4

a2

e9 e10 e11 f2 f3 f4 f5 f6

Figure 7.13: Outcome 4 - M

7.5.2 Representation 2 - adequate coverage given by M

The second model representation requires a model that adequately covers the
ideal but without being automorphic to the ideal. Consider a model in which
only the source vertex may be repeated and the destination vertices are all
unique. The destination vertices must also comply with the requirement
that they must be the furthest vertex in the path from the specific source.
Such a model for the ideal given in Figure 7.5 is given by the following set
of triples:

M = {(a1, f1, ∅), (a1, e2, ∅), (a1, e3, ∅), (a1, e4, ∅),
(a1, e5, ∅), (a1, e7, ∅), (a1, d1, ∅), (a1, d4, ∅),
(a2, e9, ∅), (a2, e10, ∅), (a2, e11, ∅), (a2, f2, ∅),
(a2, f3, ∅), (a2, f4, ∅), (a2, f5, ∅), (a2, f6, ∅)}

The graphical representation of digraph M , refer to Figure 7.13, reveals
that M comprises of two disjoint directed graphs which are actually trees.
The first directed tree has a root of a1 and the other has the root a2. The
output of the algorithm for this run is given in the Appendix in Section B.2.
The resultant complier is exactly the same as the one specified by CT (I,I)
and given in Figure 7.5.

Further investigation of the radar chart in Figure 7.14 for this represen-
tation of Outcome 4 confirms that M covers I adequately so that C and I
are indeed isomorphic. Both the ratios for R(C, I) as well as R(I \ C, I) in
Figure 7.14 reflect the fact that I and C are exactly the same graph.

The ratio R(M \ C, I) which is 0 in terms of vertices confirms that all
vertices in M are in C as well. This means that there are no extraneous
vertices in M , that is vertices in M which are not in I and therefore cannot
be transferred to C. With regards to the edges, these are not exactly the
same and differ by 29%. In a real-world application the subject area expert
would need to make a decision regarding whether the edge ratio is significant
or not. The ratio of R(C \M, I) indicates inference did indeed take place
in the construction of the complier for both vertices and edges. For edges,
100% of the edges, that is all the edges have been inferred. When considering
the vertices, 59% of the vertices have been inferred.

It should be noted that the value of the ratio R(I \M, I) for the vertices
as shown in the radar chart in Figure 7.14 is unclear, and could incorrectly

99

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 7.14: Outcome 4 - Radar chart

be construed as 0. This however is not the case. It is actually 0.59. Rep-
resenting the vertex and edge ratios on individual radar charts removes the
obscurity. This can be verified by viewing the radar chart for the vertices
only of Outcome 4, as shown in Figure 7.15.

In conclusion, when the model is an exact copy of the ideal the complier
will be an exact copy of the ideal. Both the model and the complier are
automorphic to the ideal. The complier may also be automorphic to the
ideal even if the model is not automorphic to the ideal. In this case the
model must adequately cover the information presented in the ideal which
results in all vertices and edges not explicitly specified in the model being
inferred from the ideal and present in the complier.

7.6 Outcome 5 - Subgraph of the ideal

Applying the algorithm to the ideal and model digraphs as presented by
Figures 7.5 and 7.10 in their respective updated forms, that is with the
inclusion of the grounding vertex g in each, the resultant complier has al-
ready been given in Figure 7.11. The output of the algorithm is presented
in Section B.3 of the Appendix.

A visual comparison of the ideal, model and complier is given in Fig-
ure 7.16. The blue lines represent the edges between the vertices of the
ideal; the red lines represent the edges of the model; and the green lines
are the edges of the complier. From the figure it is clear that the ideal and
model are different in structure. The complier on the other hand is similar

100

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 7.15: Outcome 4 - Radar chart - vertices

to the ideal. It is not an exact match, but comes very close. The majority
of the blue edges of the ideal are shadowed by a green complier edge.

From the visual representation, focussing on the ideal and the complier,
it can be seen that there is a correspondence between the blue edges of
the ideal and the green edges of the complier. The edit distances for these
graphs are exactly those presented in Figure 7.3 in the After update column.
The edit distance for I and C indicates that I and C are very close even
though M is vastly different from I and C.

Further investigation into the matching, particularly of the quantity I\C
which is used to determine the extent to which the complier is a subgraph
isomorphism of the ideal, indicates that the vertices d1, d4, e4 and f5 from
the ideal are not part of the complier and the set of edges

{(c1, d1, ∅), (c3, d4, ∅), (d3, e4, ∅), (e12, f5, ∅)}

are not in the complier. The radar chart presented in Figure 7.17 pro-
vides an indication of the extent to which the other quantities play a role in
the comparison of M to I in terms of C. For ratios R(I \M, I), R(M \C, I)
and R(C \M, I), the edge results are by far worse than the vertex results.
This indicates that even if the edges of I and M do not match well, the
vertices may represent the information adequately for both I and M .

The radar chart for ratios R(M \ C,M) and R(C \M,C) presented in
Figure 7.18 confirms this. The edges in M that are not in C in relation to
the edges in M are high. The same is true for the ratio R(C \M,C) in
terms of edges. The respective ratios in terms of vertices presents a similar

101

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Legend

Ideal (I)

Model (M)

Complier (C)

 

 

 

g

a1

a2

x

b1

b2

b3

b4

b5

c1

c2

c3

c5

c4

c6

c7

c8

d1

d2

d6

f2

e1

e2

f1

e8

e3

e7

d3

d4

d5

e4

d7

d8

d9

d11

d10

d13

e5

e9

e10

e11

e12

f3

f4

f5

f6

y1

y2

y3

z1

z2

z3

z4

z5

Figure 7.16: Outcome 5 - Comparison of I, M and C

102

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 7.17: Outcome 5 - Radar chart

picture with 50% of the vertices in M not being in C in relation to M and
61% of the vertices in C are not in M in relation to C. This indicates that
significant inference has taken place when building C.

In conclusion, as the ratios for vertices and edges for C tend to 1 and
the ratio R(I \ C, I) tends to 0, C moves closer to being an automorphism
of I than a subgraph isomorphism.

7.7 Conclusion

The possible outcomes of algorithm T presented in Section 5 have been
illustrated using toy application digraphs for the ideal and model as input
to the algorithm. The complier for each of the outcomes has been analysed
using the Graph Comparison Framework presented in Chapter 6.

From the discussions presented, it is clear that a complier that is com-
parable to the ideal is built using the information of the model and the
structure of the ideal. Once the framework has been applied, it may be
considered desirable to update the model, and perhaps even the ideal as
well, especially when the complier results in outcomes as described by 2 and
3. Updating of the model should be guided by both the outcomes and the
resultant vertex and edge sets for quantities M \ C and C \M especially.
Quantity M \ C represents the information in M that is not in C. This
information, for the purposes of the thesis has been referred to as extrane-
ous. The quantity C \M presents information in C that is not in M . When
building the complier from the information in M this information has been

103

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 7.18: Outcome 5 - Radar chart for R(M \ C,M) and R(C \M,C)

inferred to be in M and may be used in a real-world application to improve
M .

These toy applications, presented in this chapter and in Chapter 6, illus-
trate how the Graph Transformation Algorithm and the Graph Comparison
Framework can be applied and how the results can be interpreted in order
to determine to what extent the digraphs match. In Part II of this thesis,
the framework will be applied to the real world application of curriculum
design. In this application of the framework, the digraphs modelling the
curricula do not have 10’s of vertices and edges, but 100’s. It is also not
evident from a human perspective, what the similarities and differences are,
as it was with the toy application.

104

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Part II

Application

105

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 8

Computing Curricula
Specifications

8.1 Introduction

World over, societies and organisations exist that provide specifications for
curricula within the discipline of computing. The most pervasive of these
curricula is the ACM/IEEE Computing Curricula [Joint Task Force for Com-
puting Curricula, 2005]. Many other curricula make use of the ACM/IEEE
Curriculum volumes as a foundation for their own computing curricula or
were involved in the process of specifying the computing curricula as spec-
ified by the volumes. Both the British Computer Society (BCS) and the
Australian Computer Society (ACS) have been involved in aspects of the
ACM/IEEE Curricula series and therefore it can be assumed that the fun-
damental aspects of their respective curricula are closely associated with
those defined by the ACM/IEEE Computing Curricula series.

This chapter introduces the ACM/IEEE Computing Curricula and the
volumes, which represent different disciplines. After presenting an overview
of the volumes in the series, more details with regards to the Computer
Science curriculum volume will be discussed before concluding.

8.2 ACM/IEEE Computing Curricula series

The ACM/IEEE Computing curriculum series [Joint Task Force for Com-
puting Curricula, 2005] currently defines five disciplines within Computing.
There is also scope to increase this number. The current disciplines1 de-
fined in the curriculum series are: Computer Science; Information Systems;
Software Engineering; Computer Engineering; and Information Technology.
Each discipline will be described in the sections that follow.

1English grammar rules require that the names of disciplines, such as computer science,
should be written in lower case letters. In this thesis, the rule will not be applied when

106

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



8.2.1 Disciplines in the series

The disciplines defined in the ACM/IEEE Computing curriculum series will
be briefly described in the sections that follow.

Computer Engineering

Computer Engineering is concerned with the design and construction of com-
puters and computer-based systems. It focusses on the interaction between
hardware and software components and the communications between these
components.

Computer Engineering has its foundations in traditional electronic engi-
neering and mathematics, but additionally includes the designing of comput-
ers and devices. Computer engineers also need to have a solid understanding
of software development.

Computer Science

A Computer Science curriculum should cover a wide range of topics from the
fundamentals to the more specialised. It also covers both theory and prac-
tice, specifically in terms of programming. A Computer Science curriculum
should present graduates with a broad, comprehensive foundation in order
for the graduate to easily be able to adapt to new technologies and ideas
[Joint Task Force for Computing Curricula, 2005]. A Computer Science
curriculum must enable the graduate to: design and implement software;
identify new ways of using computers; and develop ways of solving comput-
ing problems.

Information Systems

The discipline of Information Systems focusses on the integration of infor-
mation technology solutions and business processes to meet the needs of an
organisation. Degree programmes presented in this discipline tend to fall
under the business schools in the universities that present them.

The discipline focusses on information and technologies that are neces-
sary to manage the information. It bridges the gap between the management
of an organisation and the technical requirements for running the organi-
sation. An Information Systems curriculum must enable the graduate to
specify, design and implement the information system requirements of an
organisation.

referring to the disciplines as defined in the ACM/IEEE Computing curriculum series.
The Computing volume disciplines will be presented using a capitalised first letter for
each word specifying the discipline, for example, Computer Science.

107

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Information Technology

The Information Technology discipline focusses on all aspects of the techno-
logical requirements of an organisation. It includes the selection, creation,
application, integration and administration of computing technologies [ACM
SIGITE 2008 Task Force on IT Curriculum, 2008]. An Information Tech-
nology graduate understands software as well as how to solve technology
problems, both related to hardware and software, within an organisation.
This is in contrast to the Information Systems discipline which relates to
the information of an organisation.

Software Engineering

Software engineers develop and maintain software systems that are reliable
and that have been developed according to the requirements of the client.
These systems also are maintained by the software engineer. There is an
overlap between Computer Science and Software Engineering and many de-
gree programmes present Software Engineering as part of Computer Sci-
ence. Universities presenting Software Engineering degree programmes re-
quire students to take a large portion of the Computer Science curriculum.

From the descriptions above it is clear that the disciplines differ in terms
of their focus. Some disciplines look at hardware, others software and some
at the organisation itself. It is also clear that degrees conferred within
computing resort under Engineering, the Sciences and Commerce. Table
8.1, taken from the Joint Task Force for Computing Curricula [2005, page
12], shows how the disciplines differ in terms of hardware, software and
organisational needs. The discipline of Electronic Engineering is not part
of the Computing Curricula series, but has been included to distinguish
the focus areas of the disciplines that are within the series especially the
discipline of Computer Engineering.

8.2.2 Series from 1991 to 2013

The Computer Science discipline was the first discipline to be defined in
1991. The discipline was referred to as the ACM/IEEE Computing Curricu-
lum and abbreviated to CC1991. For a while the “Computing Curriculum”
nomenclature was retained. However, with the growth of additional disci-
plines related to computing, by 2005 it was deemed necessary to rename
CC2001 to CS2001 (Computer Science 2001). The term “Computing” was
assigned a generic status that embraced these new disciplines. Figure 8.1
introduces each of the disciplines as they are defined in the 2005 ACM/IEEE
Computing Curriculum Series document.

108

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Discipline Issues Comment and description
Hardware Software Organi-

sational
needs

Electronic
Engineering

X

Computer
Engineering

X X Software development focusses on
hardware devices

Computer
Science

X Used to express ideas and explore
problems and applications

Software
Engineering

X Creating software that satisfies real-
world requirements

Information
Technology

X Makes use of software and hardware
to meet the needs of an IT depen-
dent organisation. It focusses on
whether the infrastructure of an or-
ganisation is appropriate and reli-
able.

Information
Systems

X Focusses on the generation and use
of information

Table 8.1: Comparison of Computing Curricula [Joint Task Force for Com-
puting Curricula, 2005, page 12]

Figure 8.1: Computing Curricula Series [Joint Task Force for Computing
Curricula, 2005, page 7]

109

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 8.2: Computing Curricula Series 1991 to 2013

The Information Technology volume, referred to in CC2005 as IT2006,
was completed and approved in 2008 and has subsequently been referred to
as the Information Technology 2008 (IT2008) volume. The SE2004 volume
describes the curriculum for undergraduate programmes in Software Engi-
neering and a volume released in 2009 describes a curriculum for graduate
programmes in Software Engineering, referred to as GSwE2009. In 2010 the
Information Systems volume was updated for undergraduate programmes
and a graduate programme curriculum, MSIS, was introduced in 2006. An
update of the Computer Science volume is expected to be finalised by the
end of 2013. Figure 8.2 provides an overview of the development of the Com-
puting Curricula series from 1991 to 2013. The changes to the Computer
Science volume will be further discussed in Section 8.4.

8.3 ACM/IEEE curriculum structure

For each discipline specified by the 2005 ACM/IEEE Computing Curricula
Series [Joint Task Force for Computing Curricula, 2005], the contents of the
discipline is characterised hierarchically. Various Knowledge Areas (KAs)
are defined at the top level of the hierarchy. Each of these, in turn, comprise
of Knowledge Units (KUs) and KUs comprise of topics [The Joint Task
Force on Computing Curricula Association for Computing Machinery IEEE-
Computer Society, 2012]. In some cases sub-topics have been identified, but
all these can still be seen as more in-depth topic specification. Although an
entire KA can be shared between disciplines, it is more likely that a subset
of KUs within a KA will be shared. A topic may also resort under more
than one KU and therefore under more than one KA.

110

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



8.4 ACM/IEEE Computer Science Curriculum

Given the rate at which technology changes, it not surprising that the ACM/
IEEE Computer Science Curriculum volume needs to change too. Approxi-
mately every ten years, an updated version of the volume is released. Along
with the new curriculum specification, the changes between the new vol-
ume and the previous volume are provided as part of the curriculum volume
report.

In the sections that follow, a brief history of the ACM/IEEE Computer
Science curriculum volume will be given. An overview of the KAs in the cur-
riculum volumes will be presented, illustrating the changes that took place
with regards to KAs between the volumes. Finally, the required hours of
instruction for the core KAs of the volumes will be presented and compared

8.4.1 A brief history

Prior to the ACM/IEEE Computing Curricula of 1991, the ACM and the
IEEE-CS worked independently on computing curricula recommendations.
In the spring of 1988, the Joint Curriculum Task Force, comprising of the
ACM and the IEEE-CS, was formed to develop curriculum recommenda-
tions for computing. The outcome of this partnership was the Computing
Curricula 1991 report [ACM/IEEE-CS Joint Curriculum Task Force, 1991].
Ten years later, the Computing Curricula 2001 report was released. This
was followed by the 2005 overview report which identified different disci-
plines within computing [Joint Task Force for Computing Curricula, 2005]
and the Computing Curricula 2001 was included in the overview report and
renamed Computer Science 2001 to better reflect the discipline it repre-
sented. In 2008, an update to the 2001 report was released and is referred
to as the Computer Science 2008 update report. At the time of writing, the
latest version of the Computer Science curricula volume was under review
and was targeted for release towards the end of 2013. Two review volumes
were released for public comment. The first was released in the beginning
of 2012 and referred to as Computer Science 2013 Strawman version. Com-
ment was open until June 2012. These comments were incorporated into
the Computer Science 2013 Ironman version that was released in February
of 2013.

The last complete Computer Science Curricula volume was therefore
released in 2001. The 2008 update of the 2001 curriculum volume has a
strong focus on Computer Security [ACM/IEEE-Curriculum CS2008 Joint
Task Force, 2008]. In both the 2001 and 2008 curricula volumes, KUs were
identified as being either core or elective [ACM/IEEE-Curriculum 2001 Task
Force, 2001; ACM/IEEE-Curriculum CS2008 Joint Task Force, 2008]. Core
KUs and their respective topics are regarded as base line requirements in
any curriculum that is developed for the discipline. The minimum number

111

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

- 147 - 

 

SE/Software Processes  77 

[1 Core-Tier1 hours; 2 Core-Tier2 hours] 78 
Topics: 79 

[Core-Tier1] 80 
 Systems level considerations, i.e., the interaction of software with its intended environment 81 
 Phases of software life-cycles 82 
 Programming in the large vs. individual programming 83 

 84 
[Core-Tier2] 85 

 Software process models (e.g., waterfall, incremental, agile) 86 
 87 

[Elective] 88 
 Software quality concepts 89 
 Process improvement 90 
 Software process capability maturity models 91 
 Software process measurements 92 

 93 

Learning Outcomes: 94 

[Core-Tier1] 95 
1. Describe how software can interact with and participate in various systems including information 96 

management, embedded, process control, and communications systems. [Knowledge] 97 
2. Differentiate among the phases of software development. [Knowledge] 98 
3. Explain the concept of a software life cycle and provide an example, illustrating its phases including the 99 

deliverables that are produced. [Knowledge] 100 
4. Describe how programming in the large differs from individual efforts with respect to understanding a large 101 

code base, code reading, understanding builds, and understanding context of changes. [Knowledge] 102 
 103 

[Core-Tier2] 104 
1. Describe the difference between principles of the waterfall model and models using iterations. 105 

[Knowledge] 106 
2. Compare several common process models with respect to their value for development of particular classes 107 

of software systems taking into account issues such as requirement stability, size, and non-functional 108 
characteristics. [Application] 109 
 110 

[Elective] 111 
1. Define software quality and describe the role of quality assurance activities in the software process. 112 

[Knowledge] 113 
2. Describe the intent and fundamental similarities among process improvement approaches. [Knowledge] 114 
3. Compare several process improvement models such as CMM, CMMI, CQI, Plan-Do-Check-Act, or 115 

ISO9000. [Knowledge] 116 
4. Use a process improvement model such as PSP to assess a development effort and recommend approaches 117 

to improvement. [Application] 118 
5. Explain the role of process maturity models in process improvement. [Knowledge] 119 
6. Describe several process metrics for assessing and controlling a project. [Knowledge] 120 
7. Use project metrics to describe the current state of a project. [Application] 121 

  122 

Figure 8.3: CS2013 Strawman Software Engineering KA, Software Processes
KU [The Joint Task Force on Computing Curricula Association for Com-
puting Machinery IEEE-Computer Society, 2012, Page147]

of hours that should be spent on each KU is also specified. Elective KUs on
the other hand are optional to the curriculum being developed.

The 2013 Strawman volume (hereafter CS2013S) [The Joint Task Force
on Computing Curricula Association for Computing Machinery IEEE-Computer
Society, 2012] and updated Ironman volume (hereafter CS2013I) move the
designation of core or elective from the KU level to the topic level and dis-
tinguish between two types of core topics. The first is referred to as core
tier 1 (CT1) and the second as core tier 2 (CT2). Topics are now labeled
as being core (either CT1 or CT2) or elective. A KU may therefore contain
a mixture of core and elective topics. Refer to Figure 8.3 for an example
containing CT1, CT2 and elective topics. Core topics, both CT1 and CT2,
have a minimum number of hours allocated to them. In the figure, a min-
imum of one hour has been allocated to CT1 topics and two hours to the
CT2 topics.

A further requirement in CS2013S, which has been incorporated into
CS2013I as well, is that all topics in CT1 must be included in a curricu-
lum, while at least 90% (with an 80% bare minimum) of CT2 is considered
essential to be included in a Computer Science curriculum.

8.4.2 Changing Knowledge Areas (KAs)

CC1991 specified 11 subject areas (SAs). These were named with tags in
brackets as [ACM/IEEE-CS Joint Curriculum Task Force, 1991]:

112

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Algorithms and Data Structures (AL);
Architecture (AR);
Artificial Intelligence and Robotics (AI);
Database and Information Retrieval (DB);
Human-Computer Communication (HU);
Numerical and Symbolic Computation (NU);
Operating Systems (OS);
Programming Languages (PL);
Introduction to a Programming Language - optional (PR);
Software Methodology and Engineering (SE); and
Social, Ethical and Professional Issues (SP).

When CC2001 was released, the SAs were referred to as knowledge areas
(KAs) and there was a total of 14 KAs identified. The number of KAs
remained the same in CS2008, but increased to 18 in CS2013S [Sahami
et al., 2012].

Table 8.2 provides a summary of the changes that took place from 1991
to the 2013 Strawman and Ironman versions of the ACM/IEEE Computer
Curriculum volume. The six (6) KAs marked with an asterisk (∗) map
directly to SAs in Computing Curricula 1991. The other 5 SAs defined in
CC1991 have been included in KAs marked with two asterisks (∗∗).

The most significant change between CC1991 and CC2001 is the addition
of KAs that focus on Discrete Structures, Computer Graphics and Net-
centric Computing. Between CC2001 and CS2008, no marked changed took
place with regards to the KAs.

From the table it is clear that there were no changes in KAs between
CC2001 and CS2008. The changes came about in CS2013S. The KAs AL,
AR, DS, HC, IM, IS, OS, PL and SE in CS2013S remain the same as they
are in CC2001. KAs CN, GV, NC and SP changed focus, but not enough to
drop them entirely. The PF knowledge area was dropped in CS2013S and
IAS, PBD, PD, SDF and SF were introduced.

As with the KAs, the number of core KUs and topics also increased from
1991 to 2013. Figure 8.4 shows the number of core KAs in which core topics
reside. In CC1991, all KUs related to the 10 non-optional KAs are core.
The core topic count for CC1991 has not been shown. The related KAs and
topics for the core KUs specified in the CC2001 and CS2008 volumes are
also shown. Finally, the information shown for CS2013S reflects KUs that
contain one or more CT1 or CT2 topics, as well as the KAs associated with
these KUs. From the figure it is evident that there has been a marginal
increase in topics between CC2001 and CS2008. However, between CS2008
and CS2013S, there has been a marked increase in all aspects.

113

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



KA CC2001 CS2008 CS2013S

AL∗ Algorithms and Complexity

AR∗ Architecture and Organisation

CN∗∗ Computational Science and numerical
methods

Computational Sci-
ence

DS Discrete Structures

GV Graphics and Visual Computing Graphics and Visual-
isation

HC∗∗ Human-Computer Interaction

IAS Information Assur-
ance and Security

IM∗∗ Information Management

IS∗∗ Intelligent Systems

NC Net-centric Computing Networking and
Communication

OS∗ Operating Systems

PBD Platform-Based De-
velopment

PD Parallel and Dis-
tributed Computing

PF∗∗ Programming Fundamentals

PL∗ Programming Languages

SDF Software Develop-
ment Fundamentals

SE∗ Software Engineering

SF Systems Fundamen-
tals

SP∗ Social and Professional Issues Social and Profes-
sional Practice

∗ SA defined in CC1991
∗∗ CC1991 SA included in the KA

Table 8.2: Knowledge Areas

8.4.3 Core hour requirements

All curricula specifications, from 1991 to CS2013I, specify the core hours
in terms of lecture hours. Lecture hours are the number of hours it takes
to present the material in a lecture-based format. Lecture hours exclude
activities such as preparation, practical sessions, assessment etc. related to
the presentation of the material in the lecture.

Figure 8.5 gives the core hour requirements for each of the curriculum
volumes. In the 1991, 2001 and 2008 volumes, KUs were specified as core

114

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



KA_KU_T

Page 1

Figure 8.4: Core content of curricula

or elective. As previously noted, in the 2013 Strawman and Ironman vol-
umes, the specification of core and elective was moved to the topic level,
and a distinction was made between two tiers of core topics. CS2013I
specifies 165 hours in total of CT1 topics and 142 CT2 hours [The Joint
Task Force on Computing Curricula Association for Computing Machinery
IEEE-Computer Society, 2013]. Calculating the average core hours across
the curriculum volumes suggests that a Computer Science degree programme
requires approximately 284 ((271+280+280+(165+142))÷4) lecture hours
on core material. A general rule is that the out of lecture time a student
should spend on the material presented in a lecture should be about 3 times
the lecture hours. This gives a total of approximately 284× 4 = 1136 hours
required for Computer Science core material. In CC2001 it is suggested
that a student should devote at least 160 hours per module [ACM/IEEE-
Curriculum 2001 Task Force, 2001] in the Computer Science curriculum.
This means that in order to cover the core Computer Science content, at
least 1136 ÷ 160 = 7.1 core modules are required in the curriculum of a
Computer Science degree programme.

8.4.4 Excerpts from the curricula

Excerpts of the Computer Science curricula volumes are given in Appendix
D. Both CC2001 and CS2008 present an overview of the curriculum volume
KAs and KUs in tabular form. Refer to Figures D.1 and D.3 respectively. In
CC2001 the core hours per KA is given when the name of the KA is specified.
A breakdown of the core hours per KU is given in parenthesis are for the
specific KU. The core KUs are also underlined. CS2008 follows a similar
structure as CC2001, except the core KUs are not underlined. The details
of the the KUs follow the overview tables for CC2001 and CS2008 in the

115

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 8.5: Core hour requirements

order in which they appear in the tables. In both the Strawman and Ironman
volumes, each KA of the Computer Science Body of Knowledge (CS-BoK)
is specified individually before the KUs are discussed in more detail. An
example of the specification of the Software Development Fundamentals
KA is given in Figures D.5 and D.7 for CS2013S and CS2013I respectively.
Already here there is a difference between core hours for SDF/Development
Method. The CT1 hours are given as 9 in CS2013S and 10 in CS2013I.

Examples of KU details for CC2001 and CS2008 are given in Figures D.2
and D.4 respectively. The KU presented is the Data Structures KU in
the Programming Fundamentals KA. The Data Structures KU in CS2013S
and CS2013I falls into the renamed Software Development KA. Figures D.6
and D.8 present the KU details for Strawman and Ironman respectively.

In the CS2013 Strawman and Ironman volumes, a distinction is made
with regards to the learning outcomes as to where in the curriculum these
topics need to be taught. Learning outcomes are categorised as Knowledge,
Application or Evaluation. These relate to the level of mastery required for
the particular topic with Knowledge representing a low level of mastery [The
Joint Task Force on Computing Curricula Association for Computing Ma-
chinery IEEE-Computer Society, 2012].

8.5 Conclusion

This chapter has introduced the ACM/IEEE Computing Curricula series.
It gave a brief history of the origins and contituents of the series. The
Computer Science discipline as identified within the series was presented in

116

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



more detail, showing the components that make up the volumes of 2001, 2008
and the proposed 2013 volume in the form of the Strawman and Ironman
drafts. A comparison between the volumes was presented on the KA-level
prior to looking how the different volumes specify core and elective aspects
of the curriculum. This comparison, along with the presentation of the
excerpts of the volumes, is presented on a high-level of specification. More
detail regarding the similarities and difference between the modules will be
presented in Chapter 11 when the Graph Comparison Framework that was
discussed in Chapter 6 is applied to the curriculum volumes.

117

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 9

University Degree
Programme Requirements

9.1 Introduction

This chapter will discuss some of the hurdles that universities in a country
like South Africa may encounter when developing a curriculum for Computer
Science. In order to achieve this the qualifications structure, referred to as
the National Qualifications Framework in South Africa, will be introduced
and contrasted with a selection of countries against which universities in
South Africa benchmark their Computer Science curricula. Accreditation
will briefly be discussed as this is a mechanism by which degree programmes
are compared on an international basis in order to determine equivalence,
often referred to as substantial equivalence.

9.2 Qualification structures

In order to be able to compare a South African qualification with other de-
grees in the world, an overview of the qualification structures in North Amer-
ica, Australia, Europe and the United Kingdom is provided. A summary,
showing the comparison between the qualification structures will conclude
the section.

Countries, other than South Africa, that fall into the BRICS - an as-
sociation of emerging national economies: Brazil, Russia, India, China and
South Africa - grouping have very similar degree structures as Europe and
the United States. The trend is to have a four years Bachelor’s followed by
a two years Master’s and about three years of Doctorate study. There are
some interesting additional requirements that students wanting to pursue
postgraduate qualifications need to comply with. In India for example, in
order to enter a Doctorate programme a student must have completed a
Master’s degree. They are then allowed to continue with an MPhil which

118

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



may take them into the Doctorate programme [International Education Ex-
change Center, 2009]. China requires prospective Doctorate students to be
endorsed by two academics on the Associate Professor or Professor level be-
fore being allowed to enter the programme [Chinese Government’s Official
Web Portal, 2005]. Professional and accreditation bodies from these coun-
tries are also emerging as signatories of accreditation agreements in order to
register degree programmes that are internationally recognised. As will be
seen in Section 9.3.

9.2.1 United States of America, Canada and parts of Aus-
tralia

Countries in Northern America and parts of Australia, refer to qualifications
in terms of years after kindergarten. A high school diploma is on level K-12.
A Bachelor’s degree on K-16, 4 years after K-12. The first two years after
K-12 are college years followed by two university years. The college years are
referred to as Freshman and Sophmore years, while the two university years
are called the Junior and Senior years [ABET Review, 2010]. A Bachelor’s
degree is conferred when a student completes approximately 120 semester
hours over the 4 years of study in accordance with the regulations of the
institution. A semester hour is used as a universal quantification of contact
time. Semester hours are calculated by multiplying the number of contact,
also referred to as lecture, minutes in a week with the number of weeks in
a semester and dividing by 60. A practical session of less than 4 hours per
week will add 1 semester hour to the total. A typical semester is from 14
to 17 weeks. The time allocated to a lecture is institution dependent. An
average module will equate to approximately 3 semester hours.

Master’s and Doctoral qualifications follow on from the Bachelor’s and
typically take at least 2 years each.

9.2.2 Europe

The European Higher Education Area (EHEA) was established as a direct
result of the Bologna process [Fuller et al., 2006]. The Bologna process cul-
minated in an agreement between different educational ministries in Europe
regarding the transfer of credits between countries and the equivalences of
qualifications in higher education. The Bologna process was proposed at the
University of Bologna and the declaration was signed in 1999. The Bologna
declaration came about due to the differences in education systems in many
countries in Europe and the incompatibility between them [Career Space
Consortium, 2001]. The aim of the EHEA is to facilitate the development of
higher education in Europe. There were two dominant education systems in
Europe, the continental system, mainly based on the German system, and
the Anglo-American system.

119

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



As a result of the Bologna process, a framework comprising 3 cycles has
been developed [EHEA Framework, 2005]. An undergraduate degree (rep-
resented by cycle 1) of at least three years is called a Bachelor’s degree (or
licence) and requires between 180 and 240 ECTS (European Credit Trans-
fer and Accumulation System) credits. The Bachelor’s degree may include
a Short Cycle of 120 ECTS credits. There are 60 ECTS credits in a full
time year of study, representing about 1500-1800 hours of study. Cycle two
represents a one or two year diploma called a Masters of 90 to 120 ECTS
credits with at least 60 credits on cycle 2 level. Cycle 3 represents a Doctor-
ate degree and is meant to be obtained in at least 3 years of study. Cycle 3
does not have a credit requirement.

9.2.3 United Kingdom

The United Kingdom has two defined frameworks: one for England, Wales
and Northern Ireland; and a separate one for Scotland. Each of these frame-
works are briefly explained in the paragraphs that follow.

The Qualifications and Credit Framework (QCF) of 2010 applies to Eng-
land, Wales and Northern Ireland. The framework comprises of 9 levels,
beginning at the Entry level and then from 1 to 8 [Office of Qualifications
and Examinations Regulations, 2012]. Levels 6, 7 and 8 map onto the degree
designations for Bachelor’s with Honours, Masters and Doctorate as speci-
fied in the Framework for Higher Education Qualifications (FHEQ) which
is regulated by the Quality Assurance Agency (QAA) [Qualifications Assur-
ance Authority, 2008]. The FHEQ was developed so that credit transfer can
take place between the United Kingdom and Europe with levels 6, 7 and 8
mapping directly onto the European cycles. Levels 6 and 7 in the framework
have a credit count. Level 6 is 360, level 7 180. Level 8 typically has no
credit value [Diagram of higher education qualification levels in England,
Wales and Northern Ireland]. One credit equates to 10 hours of learning.

The Scottish Credit and Qualifications Framework (SCQF) works on a
12 point level scale with Bachelor degree programmes beginning at level 9.
Levels 10, 11 and 12 represent Honours, Master’s and Doctorate respectively.
An Honours refers to a degree that is designed to be completed in 4 years
or more [Qualifications Assurance Authority, 2001].

9.2.4 South Africa

All qualifications in South Africa must comply the specifications of the Na-
tional Qualifications Framework (NQF) as set out by the national Depart-
ment of Education. This is similar to the structures already presented in
the previous sections.

The NQF defines three categories of certificates in education and train-
ing, beginning in primary school and ending with Doctoral studies. These

120

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



categories are referred to as: General Education and Training Certificate
(GETC), Further Education and Training Certificate (FETC) and Higher
Education and Training Certificate (HETC) [NQF Bands, 2010]. Table 9.1
shows the categories with their corresponding NQF Exit levels. In order to
enter a Bachelor’s degree programme as defined in the HETC category, a
relevant National Senior Certificate (NSC) is required with an exit level of
4.

Category NQF exit level Description

GETC 1 First 9 years of schooling

FETC 2 Grade 10
3 Grade 11
4 Grade 12

HETC 5 to 10 Specified by the HEQF

Table 9.1: NQF categories

The HETC category is detailed in the Higher Education Qualifications
Framework (HEQF). The HEQF identifies two qualification types, under-
graduate and postgraduate. NQF exit levels 5, 6 and 7 are considered un-
dergraduate study. A Bachelor’s degree taking 3 years of study is considered
to have an NQF exit level of 7. Postgraduate study occupies levels 8, 9 and
10. Table 9.2 summerises the NQF exit levels of the HEQF. For each degree
designation the total minimum credits for the degree is given in the second
last column of the table. The credits give a direct indication of the hours
required to complete the degree. One credit equates to 10 hours of study,
referred to as notional hours. A Bachelor’s with an NQF exit level of 8 takes
4 years of study and is referred to as a professional degree. It leads directly
to a Master’s degree programme [Pandor, 2007].

NQF exit level Degree designation Min total credits Year(s)

7 Bachelor’s 360 3

8 Bachelor’s 480 4

8 Honours 120 1

9 Master’s 180 1 to 2

10 Doctorate 360 2

Table 9.2: HEQF exit levels

9.2.5 Summary

Table 9.3 provides a summary of the qualifications presented in South Africa,
the United Kingdom, Europe and the United States of America. United

121

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Kingdom(1) in the table refers to the framework for England, Wales and
Northern Ireland, and United Kingdom(2), the framework for Scotland. As
can be seen, the naming conventions of the degree programmes are stan-
dard with regards to Bachelor’s, Master’s and Doctorate. The concept of
an Honours degree that follows a 3 year Bachelor’s is only defined in the
qualifications frameworks of South Africa and Scotland.

The minimum total hours of study for each of the qualification frame-
works is presented in brackets in Table 9.3. These hours include both class,
also referred to as contact, hours and preparation hours. For the calculation
of the hours for the United States it is assumed that a semester is 14 weeks
and that for every contact hour there are three hours required for prepara-
tion. Hours for postgraduate studies are dependent on the institution but
tend to be around 5400 hours for Master’s and Doctorate combined.

9.3 Accreditation structures

Accreditation of programmes takes place at different levels and for a variety
of reasons. Accreditation of degree programmes for credit transfer or fur-
thering qualifications may take place at either the institutional level or at a
governmental level. The Bologna process helps with these types of transfers
in Europe. In South Africa, transfer between South African universities is
done on the institutional level, while transfer from outside South Africa to
a South African institution is on the governmental level. Accreditation of
specific degree programmes to ensure that the discipline content is complied
with is done by accreditation bodies that focus on the particular discipline.

9.3.1 Accreditation for transfer reasons in South Africa

In South Africa, the South African Qualifications Authority (SAQA) de-
termines the equivalences of degree programmes and certifies degree pro-
grammes within South Africa. International students who wish to study in
South Africa are required to present their existing qualifications to SAQA
for approval. SAQA does not stipulate curricula, nor does it provide an
accreditation service.

The South African Department of Higher Education classifies educa-
tional institutions of higher education and training as either public or pri-
vate. Public South African Universities are categorised into three cate-
gories: Universities, Comprehensive Universities and Universities of Tech-
nology [International Education Association of South Africa, 2009; Jooste,
2009]. Universities provide theoretically-oriented degree programmes while
Universities of Technology focus on vocational programmes. Comprehensive
Universities deliver programmes that may be either theoretical or vocational
or both theoretical and vocational. Private institutions have programmes
that are approved by SAQA for presentation in South Africa.

122

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



D
e
g
re

e
S

o
u

th
A

fr
ic

a
U

n
it

e
d

K
in

g
d

o
m

(1
)

U
n

it
e
d

K
in

g
d

o
m

(2
)

E
u

ro
p

e
U

n
it

e
d

S
ta

te
s

N
Q

F
le

v
el

s
Q

C
F

le
v
el

s
S

C
Q

F
L

ev
el

s
C

y
cl

es

B
ac

h
el

or
’s

3-
ye

ar
7

(3
60

0)
9

B
ac

h
el

or
’s

4-
ye

ar
8

(4
80

0)
6

(3
60

0)
1

(4
5
0
0
)

B
a
ch

el
o
r’

s
(6

7
2
0
)

H
on

ou
rs

8
(1

20
0)

10

M
as

te
r’

s
9

(1
80

0)
7

(1
80

0)
11

2
(2

2
5
0
)

M
a
st

er
’s

D
o
ct

or
at

e
10

(3
60

0)
8

(n
o

cr
ed

it
va

lu
e)

12
3

(n
o

cr
ed

it
re

q
u

ir
em

en
t)

D
o
ct

o
ra

te

T
ab

le
9.

3:
H

ig
h

er
ed

u
ca

ti
on

q
u

al
ifi

ca
ti

on
su

m
m

a
ry

123

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



9.3.2 Accreditation of disciplines

Accreditation is a mechanism used to assure quality of institutions and their
degree programs [Ford, 1991]. It is especially necessary for disciplines in
which graduates are to enter into professional practice. Accreditation can
be acquired on either an institutional level, school or department level, or on
a programme level. Many accreditation bodies follow the programme level
model [Impagliazzo et al., 1997].

The world over, societies and organisations exist that provide specifi-
cations for curricula and the accreditation thereof. In many cases there is
synergy between these groupings, specifically accreditation agreements in
which there is mutual understanding of accreditation status. These agree-
ments are in the form of being signatories, or members, of an accord.

The accords

There are two predominant accreditation agreements, the Washington Ac-
cord and the Sydney Accord. The Washington Accord focuses on engineer-
ing programs, while the Sydney Accord is focused on technology programs.

Washington Accord: The Washington Accord was established in 1989
to recognise substantial equivalence of engineering programs accredited by
the organisations holding the member signatory status and their affiliates
within the particular countries. The accord enables programmes that have
been accredited to be recognised by other signatories. Graduates of accred-
ited programmes have therefore met the requirements to practice engineering
in any of the jurisdictions of the signatory [Accord, Washington].

The organisations that originally signed the Washington Accord in 1989,
along with their respective countries in brackets, are: Engineers Australia -
IEAust (Australia), Canadian Engineering Accreditation Board of Engineers
Canada - CEAB-EC (Canada), Engineers Ireland - EI (Ireland), Institution
of Professional Engineers New Zealand - IPENZ (New Zealand), Engineering
Council UK - ECUK (United Kingdom) and the Accreditation Board of
Engineering and Technology - ABET (United States of America). In 1999
the Engineering Council of South Africa - ECSA joined as a signatory of the
the accord. Figure 9.1 presents the signatories of the Washington Accord
according to when they signed and their status.

Sydney Accord: The Sydney Accord came into being in 2001 as a result
of the efforts of the Ottawa Intent (1999) working group. It provides for
recognition of technology programs, particularly in engineering. The accord
was signed by IEAust (Australia), CEAB-EC (Canada), HKIE (Hong Kong
China) , EI (Ireland), IPENZ (New Zealand), ECSA (South Africa) and
ECUK (United Kingdom). The arrows that emanate from box on the right

124

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 9.1: Accreditation Accords [Signatories in September 2013]

labelled Sydney Accord of Figure 9.1 show the signatories of the Sydney
Accord [Accord, Sydney]. Figure 9.2 presents the signatories of the Sydney
Accord according to the years in which they signed the accord.

Accrediting computing

The Joint Task Force for Computing Curricula [2005, pages 45 to 48] briefly
discusses accreditation of computing programs in the USA by ABET and
the UK by the British Computer Society - BCS. Accreditation of computer
science programs began in the 1980’s [Ford, 1991]. As with engineering,
certain parties perceived a need to bring into being an accord specifically
for Computer Science accreditation which is referred to as the Seoul Accord.
After a brief discussion of the Seoul Accord, a brief discussion of the ABET
accreditation criteria will be presented.

Note, in passing, that in South Africa no official national organisation to
represent the interests of the educational aspects of the Computer Science
community. South African universities therefore tend to be guided by inter-
national trends for both the curriculum specification as well as accreditation
criteria.

Seoul Accord: In 2008 the Seoul Accord, specifically for Computer Sci-
ence accreditation between different accreditation bodies in the world, was

125

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 9.2: Sydney Accord [Signatories in September 2013]

Figure 9.3: Seoul Accord [Signatories in August 2013]

signed. It aimed at establishing an agreement of mutual recognition be-
tween the signatories of the accord to recognise graduates from accredited
programmes between the accreditation organisations in the discipline of
Computer Science. The founding 6 signatories of the accord were the Ac-
creditation Board for Engineering Education of Korea - ABEEK (Republic
of Korea), ABET (USA), Australian Computer Society - ACS (Australia),
BCS (United Kingdom), Canadian Information Processing Society - CIPS
(Canada) and JABEE (Japan) [Calitz, 2010]. In June 2009 two more sig-
natories joined the Seoul Accord, the Hong Kong Institution of Engineers -
HKIE (Hong Kong China) and Institution of Engineering Education Taiwan
- IEET (Chinese Taipei) [Accord, Seoul]. Figure 9.3 presents the signato-
ries of the Seoul Accord. The signatories of the Seoul Accord that are also
signatories of the Washington Accord have also been included in Figure 9.1.

ABET: In order for a Computer Science degree to be accredited by
ABET, a Computer Science degree programme must comply with speci-
fied minimum requirements. A summary of these requirements is given in
Table 9.4 [ABET Criteria, 2010; ABET Review, 2010]. From the table it can
be seen that the requirements cover 4 categories, each having a minimum
number of semester hours linked to them to which the degree programme

126

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



must comply. A typical Computer Science Bachelor’s degree programme
requires at least 120 semester hours.

Category A relates to the Computer Science component of the degree
programme and is divided into two sub-categories, fundamental and ad-
vanced. Fundamental Computer Science focusses on the areas of algorithms,
data structures, software design, programming languages concepts, com-
puter organisation and architecture. The advanced category builds on the
fundamentals and provides depth with regards to Computer Science knowl-
edge.

The Mathematics and Science category (B) is also divided into two sub-
categories each requiring a specific number of semester hours to be complied
with. The mathematics subcategory (B1) must include discrete structures
as a field of study and may be augmented with modules in calculus, linear
algebra, numerical methods, probability, statistics, number theory, geome-
try, or symbolic logic. The science subcategory (B2) provides exposure to
lab work and subsequently scientific reasoning.

Category C provides breadth to the degree programme by requiring mod-
ules to be taken from other disciplines such as Humanities, Arts and Eco-
nomic Sciences. Category D on the other hand requires the degree pro-
gramme to include modules in order for students to be able to engage in the
profession of Computer Science. These modules include oral and written
skills as well as ethical aspects of the discipline.

Necessary skills that are not linked to semester hours, but still form an
integral part of the accreditation requirements, are skills such as problem
solving and having a good knowledge of at least one programming language.
However, it is also required that the degree program should expose the
student to more than one language.

9.4 Institutional requirements

In the previous sections, governmental and accreditation body requirements
for degree programmes have been discussed. These are not the only re-
quirements that degree programmes at a university need to adhere to. The
university itself may also place institutional requirements onto degree pro-
grammes it offers. Institutional requirements tend to include required mod-
ules for degree programmes. They may also dictate the structure of degree
programmes. Institutional requirements are also in many cases more specific
and on a lower level of granularity that governmental or accreditation body
requirements.

127

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



C
a
te

g
o
ry

S
e
m

e
st

e
r

H
o
u

rs
S

u
b

-c
a
te

g
o
ry

S
e
m

e
st

e
r

H
o
u

rs

C
om

p
u

te
r

S
ci

en
ce

(A
)

≥
40

F
u

n
d

am
en

ta
l

(A
1
)

≥
1
6

A
d

va
n

ce
d

(A
2
)

≥
1
6

M
at

h
em

at
ic

s
an

d
S

ci
en

ce
(B

)
≥

30
M

at
h

em
at

ic
s

(B
1
)

≥
1
5

S
ci

en
ce

(B
2
)

≥
1
2

E
d

u
ca

ti
on

G
en

er
al

(C
)

≥
30

O
th

er
(D

)
d

iff
er

en
ce

T
O

T
A

L
≥

12
0

T
a
b

le
9.

4:
M

in
im

u
m

A
B

E
T

re
q
u

ir
em

en
ts

128

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



9.5 Challenges

From a South African perspective, the two main challenges faced in prepar-
ing a curriculum for ABET accreditation based on the ACM/IEEE Com-
puter Science curriculum are:

1. the compatibility between credits and semester hours; and

2. that Bachelor’s degree programmes in South Africa are typically 3
years instead of 4.

Minor challenges include complying with government and institutional re-
quirements as set out for degree programmes and competing internationally
with institutions in more prosperous countries, some of which might have
attained institutional ranking on the world ranking lists. These challenges
will briefly be discussed in the sections that follow.

9.5.1 Economic

The United Nations classifies Africa as a developing continent, but treats
the countries belonging to the Southern African Customs Union (SACU) as
falling into a developed region [United Nations, 2010]. Botswana, Lesotho,
Namibia, South Africa and Swaziland are members of SACU [Southern
African Customs Union, 2011]. The World Bank classifies South Africa
as an “upper middle income” economy with a so-called IBRD lending cate-
gory [World Bank, 2010]. IBRD (International Bank for Reconstruction and
Development) is a division of The World Bank and provides loans to govern-
ments with an extended repayment option. The United States, Europe and
Australia are classified as ”High income: OECD”. This means that they are
members of the Organisation for Economic Co-operation and Development
(OECD) which is an organisation for the stimulation of economies and world
trade. South Africa is therefore not in the same league economically as the
United States, Europe or Australia against whom we compete.

9.5.2 Ranking

With regards to the academic ranking, none of the universities in South
Africa which present Computer Science degree programmes rank on the
2013 list of the Academic Ranking of World Universities for Computer Sci-
ence [ARWU CS 2013, 2013]. The top rankings are all North American.
These rankings are determined by using the criteria published by Academic
Ranking of World Universities (ARWU) at http://www.shanghairanking.
com/ARWU-SUBJECT-Methodology-2013.html.

129

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.shanghairanking.com/ARWU-SUBJECT-Methodology-2013.html
http://www.shanghairanking.com/ARWU-SUBJECT-Methodology-2013.html


9.5.3 Semester hours versus notional hours

Credits as defined by the South African NQF and semester hours as defined
by the ACM/IEEE and in the ABET specification are not directly compa-
rable units of measure. It is therefore necessary to determine the equivalent
semester hours per module presented in South Africa in order to calculate
compliance to the international requirements.

Semester hours represent contact hours [ABET Criteria, 2010; ABET
Review, 2010], while the credits per module in the South African system
reflect so-called notional hours [Pandor, 2007]. Notional hours represent
the total time expected to complete the module, which includes contact
hours, preparation time and non-class related educational activities such as
completing of assignments. An indication of the total time required for a
degree programme has already been presented in Table 9.3.

In order to be able to compare the contact time per module it is necessary
to calculate the contact time, in actual minutes, for the module. For the
calculations, it will be assumed that a semester is 14 weeks and that a contact
session is 50 minutes in duration. This means that one semester hour for
this scenario approximates to 14 ∗ 50 = 700 contact minutes over a semester
in terms of lectures. To calculate the practical session component contact
minutes for a three hour practical session would result in an additional
14 ∗ 180 = 2520 contact minutes per semester.

With the South African credit system giving an indication of total time
required, it is necessary to look at the breakdown of each module in terms
contact hours. At the University of Pretoria, for example, a typical module
comprises of a certain number of lectures, tutorials and practical sessions
per week (lpw, tpw and ppw respectively). From this, the total contact time
for the semester can be calculated.

At the University of Pretoria, a 16 credit module typically has 3 lpw,
1 tpw and 1 ppw. Lectures and tutorials are 50min each while a practical
is usually 3 hours. The total contact minutes per week, excluding practical
sessions, is therefore given by (3∗50)+(1∗50), giving a total of 200 minutes
per week. Over 14 weeks, the total contact minutes for such a module would
be 200∗14 = 2800 minutes. To calculate the semester hours for the lectures,
the total minutes needs to be divided by the total contact minutes for a
semester. The semester hours for such a module is therefore 2800/700 = 4.
The practical session, being less than 4 hours per week adds 1 semester hour
to the total resulting in a module of 5 semester hours.

Knowing the total contact hours for a module helps with module plan-
ning and knowing how many hours the student should have at their disposal
to attend to assignments and preparation. For the 16 credit module given
above, the student should have: notional hours - contact hours, which is
(16 ∗ 10)− ((2800 + (180 ∗ 14))/60) = 160− 89 = 71 hours at their disposal.

130

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



9.5.4 Four years into three

A Bachelor of Science (BSc) degree in South Africa requires 3 years of full
time study giving an NQF exit level of 7 with a minimum credit value of 360
(refer to Table 9.2). For each year in the degree programme, a student is
required to complete at least 120 credits or 1200 hours of work. The ABET
requirement of at least 120 semester hours (refer to Table 9.4) results in a
total of at least (120 ∗ 700)/60 = 1400 contact hours as per the rationale
given in Section 9.5.3 for a degree programme. Using the general rule, refer
to Section 8.4.3, regarding a student working 3 times the classroom time out
of the classroom, requires the student to study for at least 1400 ∗ 4 = 5600
hours to complete the degree.

With Bachelor’s degrees in the United States of America being 4 years in
length, students are expected to work at least 5600 hours over the 4 years.
The HEQF minimum expects 3600 hours of work for a degree programme
resulting in a difference of 2000 hours between the ABET and HEQF re-
quirements. The net result is that in order for a South African curriculum
to comply with curriculum and accreditation requirements in the United
States, the additional year’s hours needs to be included over the 3 years of
the degree. This translates into a total of approximately 1667 hours per
year devoted to study, or 12 hours per day for a 5 day working week. Many
students in their first year are unable to cope with the pace and quantity
of work expected of them and elect to extend their degree programme by a
year. This is in line with the statistics produced by the Council of Higher
education from a study which looked at the gradation patterns of the 2005
cohort of students. From this study, 27% of students completed the three
year degree programme in the minimum of 3 years. A further 24% had
completed their degree programme by 2010 [Council of Higher Education,
South Africa]. Of the remaining 49%, 12% dropped out from 2007 to 2010.

9.6 Conclusion

It is clear that there is a need to be able to compare degree programmes on
an international basis. The Bologne process was successful in unifying de-
gree structures in Europe and the United Kingdom. This makes it easier to
move between institutions in Europe and the UK either during undergrad-
uate studies (3 or 4 year Bachelor’s degree programme) or for postgraduate
studies, that is for Master’s and Doctorate. Accreditation is another mech-
anism by which degree programmes can be compared by having the degree
programme accessed and then as a result of the Accords being seen as sub-
stantially equivalent to other degree programmes that have been accredited
by accreditation bodies who have signed the Accord.

South Africa still follows the 3+1, Bachelor’s plus Honours, approach
to enter into a Master’s programme. This structure for the qualifications

131

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



presents South African universities with a challenge to compete internation-
ally and apply for international accreditation. As the qualification structure
is not directly comparable with international trends, the ability to accredit
degree programmes results in students needing to complete 4 years of work
in 3. This decidedly will have an effect on the accreditation of programmes
in particularly Computer Science. A further impact is the standing of South
Africa in the world economically, which will have a direct impact on rankings
of institutions of higher learning, especially in Computer Science.

132

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 10

Modelling Curricula using
Digraphs

10.1 Introduction

This chapter represents the bridge between the theory relating to digraphs
and the application of the framework to real-world curriculum specifications.
The modelling of the curricula (introduced in Chapters 8 and 9 of Part II)
as digraphs (as defined in Part I) will be briefly discussed. This discussion
serves as a precursor to the discussion in Chapter 11 on how the framework
can be applied to curriculum models.

In the sections that follow, modelling the curriculum volumes as well
as a real-world curriculum as digraphs will be discussed. When modelling
real-world curricula, capturing the information to be represented by the di-
graph can be difficult. Suggestions as to how to go about it are discussed.
When modelling, it may happen that two different entities represent the
same concept. In this case it will be necessary to build equivalence relation-
ships between these entities such as KAs, KUs, topics, etc. Finally a short
discussion on improving representations, particularly the model digraph rep-
resentations, will be discussed.

10.2 Curricula volumes as digraphs

To be able to effectively compare the curricula volumes it is necessary to
model them in a uniform manner. The volumes have already defined a linear
path between KAs and the topics. Taking this as a basis and including all
the KA to topic paths in a single structure will result in a tree-like structure.

Consequently, with this approach a curriculum volume is modelled by
using an onion as the metaphor. Refer to Figure 10.1. In the center is the
discipline, in this case Computer Science (CS). The next ring represents the
KA’s, followed by the KU’s. The final ring represents topics.

133

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 10.1: Modelling a curriculum volume

As stated in Section 8.3, some topics are further broken down into
subtopics, but for modelling purposes, these are simply modelled as top-
ics that are related to other topics. There are instances where topics resort
under more than one KU. This fact can be accommodated in a directed
graph model in which the KAs, KUs and topics are represented by vertices
and the edges represent the relationships between these vertices.

Once the digraph has been defined, the structure and the content of
one curriculum volume can be compared with one another. Comparing
digraph structures visually often reveals differences and similarities between
the graphs. This inspection can be used to expose interesting areas where
investigation based on the framework may be warranted and may provide
further details.

10.3 Real-word curricula as digraphs

The structure of real-world curricula is dependent on the qualifications
framework and the institutional requirements placed on the degree pro-
grammes being presented. The most common models for curricula are mod-
ules in terms of year-levels; and, modules in terms of their prerequisites be-
ginning with introductory modules and culminating in advanced modules.
Using the onion metaphor again, these two structures will result in degree
programme structures as represented by Figure 10.2 and 10.3 respectively.

Contrasting Figure 10.2 with the curriculum volume in Figure 10.1 in-

134

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 10.2: Modelling a real-world curriculum in terms of year-levels

Figure 10.3: Modelling a real-world curriculum in terms of prerequisites

135

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



dicates that what is common between the two structures is only that both
begin in CS and both have longest paths ending in topics and subtopics.
Other than this, what lies between these two extremities is completely dif-
ferent. Modelling a real-world curriculum in terms of prerequisites results
in layers of modules that are related and their respective prerequisites. The
structure in Figure 10.3 is completely different from the ones in the other
two figures, yet the layers representing modules and topics are also in Fig-
ure 10.2 which gives the representation of the real-world curriculum in terms
of year-levels.

Setting up a the real-world curriculum as a digraph can be tricky, not
in so much as creating the basic structure, but in identifying the topics
presented in the modules. Capturing the topic information will the presented
in more detail in the next section, Section 10.4.

10.4 Capturing topic data

Capturing topic data requires that inputs from a curriculum expert and a
module leader. The curriculum expert has a thorough knowledge of the
ACM/IEEE curriculum volume that has been modelled and is being used
to determine topics in the real-world curriculum. The module leader has in-
depth knowledge of the content of the real-world module being presented.
The curriculum expert will be modelling the real-word curriculum in terms
of the curriculum volume with the input of the module leader who assumes
the role of the domain expert. Capturing accurate information in the real-
world curriculum requires communication between the curriculum expert
and the module leader.

There are two basic approaches for capturing from the particular ACM/
IEEE Curriculum Volume topics that are related to the modules in the real-
world curriculum. The first approach assumes the volume topics are the only
topics that can be used as input to modelling the real-world curriculum. The
second approach takes existing modules and their respective topics and tries
to match these to the ACM/IEEE curriculum volume topics by matching
keywords. These two approached will be discussed in the paragraphs that
follow.

Capturing topic data using a spreadsheet. A possible way of imple-
menting this approach is to make use of a spreadsheet similar to the
one that accompanies CC2013I, but extended to the topic level. An
excerpt of such a spreadsheet is given in Figure 10.4. When using a
spreadsheet, each topic in turn needs to be considered in the context
of its KA and KU whether it is taught in a particular module or not.
This spreadsheet is then transformed into a digraph representing the
particular real-world curriculum. This method is highly human inten-

136

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



sive and requires the input of both the curriculum expert as well as
the module leaders at all stages.

Capturing topic data using keywords. In the alternative method in which
keyword matching is used, keywords are automatically extracted from
the real-world curriculum descriptions. A list of words that may ap-
pear in the real-world curriculum descriptions, such as conjunctions,
are ignored. The keywords are then matched to the topics of the cur-
riculum volumes. This method allows for electronic parsing of the
module description to automatically do the linking of keywords in the
module description to topics in the particular volume. This method
partly automates the process of identifying topics in the curriculum
volume and can be used to suggest topics that can be used as the initial
input for a discussion with the module leader. This method does not
remove the curriculum expert, but does reduce the topics that needs
to be taken into consideration.

10.5 Modelling equivalences

Across the curricula volumes the terminology of some KAs, KUs and top-
ics have subtly altered through the years, yet the aspect being referred to
has remained the same. The curricula volumes do provide a narrative re-
garding changes, but these are mostly on a high, overview level. Exact
changes to specifically KUs and topics are not highlighted in detail. This is
a problem when the curricula are modelled as digraphs and exact matching
techniques, and finding the differences and similarities between the graphs,
are performed. In order to ensure that across volumes and in curricula be-
ing modelled a standard terminology is used, it is of the utmost importance
that equivalences are modelled. The modelling of the equivalences must not
change the meaning of the digraph.

To illustrate the modelling of equivalences, consider the KU linked to
the SE KA that represents requirements. Over the curricula volumes subtle
changes have been applied to it. For the purposes of the discussion, the
unique identifier assigned to the KU will be used.

Software requirements and specifications: The unique identifier assigned
to it for modelling purposes is U0119 for CC2001.

Requirements specifications: In CS2008, the description of the KU changed
slightly. The unique identifier given for modelling purposes is U0119 1.

Requirements engineering : In both CS2013S and CS2013I, the text of
the KU changed to Requirements engineering. The unique identifier
assigned to this KU is U0206.

137

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



F
ig

u
re

10
.4

:
E

x
am

p
le

of
a

sp
re

ad
sh

ee
t

u
se

d
to

m
o
d

el
th

e
B

S
c

C
S

d
eg

re
e

p
ro

g
ra

m
m

e

138

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



SE

U0119

U0119_1

U0206

T00047

T00250

T00559

T00608

T00609

T00609_2

T01547_1

T01658

T00250_1

T00250_2

T00609_1

T01562

T01563

T01564

Figure 10.5: Representation of the KU representing requirements

A visual representation of these KUs across the curriculum volumes, related
topics that link to the KU descriptions and the KA, are represented by the
sub-digraph in Figure 10.5. From the figure it can be seen that U0119,
U0119 1 and U0206 share topics. U0119 and U0119 1 share four topics
between them. U0206 and U0119 1 shares one topic. There is one topic
unique to U0119 and therefore CC2001. CS2008 contains two topics unique
to it via U0119 1. Six topics are common to CS2013S and CS2013I of which
five are not shared with one of the other two curriculum volumes.

Using the shared topics as an indication and some domain knowledge, it
can be said that U0119, U0119 1 and U0206 are equivalent KUs. For this
reason they need to be modelled as such. For traceability and matching
purposes, it is necessary that the KUs do not loose their unique identity.
They also however need to remain unified. In order to achieve this, the
vertices are arranged in such a way that they are all reachable from the SE
KA and that they all continue to the relevant topics. This can be achieved by

139

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Or_13

U0119 U0119_1 U0206

Or_13_out

Figure 10.6: Or-subgraph for the KU representing requirements

relying on a so-called or-subgraph. The rule to apply to build an or-subgraph
for these vertices is given by Rule 10.1.

Rule 10.1 (Vertex equivalence - or-subgraph)

For vertices v1, v2 to vn which are equivalent, the following construction
provides a so-called or-subgraph.

(v1, v1N , L1N ), (v2, v2N , L2N ), ..., (vn, vnN , LnN ) −→
(orname in, v1, L1), (v1, orname out, Lname1),
(orname in, v2, L2), (v2, orname out, Lname2), ...,
(orname in, vn, Ln), (vn, orname out, Lnamen)

where N represents any number of out-bound edges from 1 to N .

The resulting structure after the application of Rule 10.1 to Figure 10.5 is
given in Figure 10.6. This structure will be referred to as Or-subgraph 13.

The or-subgraph seen in Figure 10.6 must be incorporated into the sub-
graph given in Figure 10.5. This is achieved by applying the rule given by
Rule 10.2. Figure 10.7 shows the result of linking Or-subgraph 13 into the
sub-digraph in Figure 10.5.

Rule 10.2 (Linking the or-subgraph)

(s, v1, L1), (v1, v1N , L1N ), (s, v2, L2), (v2, v2N , L2N ), ...,
(s, vn, Ln), (vn, vnN , LnN )
−→
(s, orname in, Lorname),
or-subgraphname,
(orname out, v1N , L1N ), (orname out, v2N , L2N ), ..., (orname out, vnN , LnN )

where N represents any number of outbound edges from 1 to N .

The subgraph connected by edges of a given colour in Figure 10.7, for

140

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



example the red edges for CC2001, represents the same information as was
originally represented by the vertices connected by the red edges in Fig-
ure 10.5. In the former case, however, there is a path from SE through
either U0119, U0119 1 or U0206 instead of through U0119 only.

For every application of Rules 10.1 and 10.2, two additional vertices are
included in the original digraph. A digraph, G, with | VG | vertices and
X sets of equivalent vertices will result in a digraph with | VG | +2X ver-
tices. Similarly, the number of edges in the digraph after the equivalences
have been included will be at least | E′G | +3X. This will account for the
increase in the cardinality in terms of vertices and edges when equivalences
are applied to the real-world examples in the application to curriculum de-
velopment discussed in Chapter 11.

10.6 Improving representations

By considering the quantities M \ C and C \M , the model and in some
instances the ideal as well, can be improved. The improvements for each
of the quantities will briefly be discussed. The use of the quantities for
improvement has already been demonstrated in Section 6.5 of Chapter 6
when the toy application was discussed, and in Chapter 7 when the outcomes
of the algorithm T were presented. It will also be used in Chapter 11 when
comparing curricula volumes and real-world curricula.

Improving the representation by considering quantity M \ C.
The quantity M \ C represents all the vertices and edges in M that
are not in C. In most cases these are structural, such as year-levels or
module codes. It may be that these also include topics that are not
represented in C. In this case these are extraneous1 topics and are not
necessary for the comparison under review. Removing these topics will
typically result in a better match. This quantity, M \ C, should be
evaluated as a possible means of exposing or suggesting equivalences.

Quantity M \ C is also useful when used in conjunction with I \M
to determine the integrity of the digraphs representing the ideal and
model. Assume the algorithm T is run twice for two digraphs A and
B. The first run is with A as the ideal and B as the model for which
the results are captured. The second time the algorithm is run, B
represents the ideal and A the model and the results are once again
captured. The cardinalities of the vertices and edges for the quantity
I \M for the first run must equal the cardinalities of the vertices and
edges for M \ C for the second. If the reverse is also true, that is
the cardinalities of the vertices and edges for the quantity I \M for
the second run equals the cardinalities of the vertices and edges for
M \ C of the second run, then the digraphs A and B can be said

141

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Or_13

U0119

U0119_1

U0206

Or_13_out

T00047

T00250

T00559

T00608

T00609

T00609_2

T01547_1

T01658

T00250_1

T00250_2

T00609_1

T01562

T01563

T01564

SE

Figure 10.7: Linking Or-subgraph 13 into the digraph

142

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



to be consistent. Table 10.1, illustrates this for curriculum volumes
CS2013S and CS2013I. From the table it can clearly be seen that the
cardinalities for R(I \M, I) and R(M \ C, I) have flipped when the
digraphs representing the ideal and model have been swapped around
after the algorithm is rerun. If the cardinalities are not the same be-
tween the forward and reverse runs, further investigations into the sets
represented by the cardinalities may reveal the inconsistencies within
either the model or the ideal. In many instances these inconsistencies
can be attributed to errors made during the modelling of I and M .
These differences need to be resolved before an accurate comparison
can be made.

Improving the representation by considering quantity C \M .
The quantity C \M represents the sets of edges and vertices that are
in C but not in M . These edges and vertices have been inferred1 from
I using the information from M . By considering the inclusion of these
edges and vertices into M , the compliance of M with regards to I
should improve.

CS2013S as I,
CS2013I as M

CS2013I as I,
CS2013S as M

Ratio (R(X ,Y)) | VX | | E′X | | VX | | E′X |
R(I, I) 683 683 732 732

R(M, I) 732 732 683 683

R(C, I) 593 593 597 597

R(I \ C, I) 90 90 135 135

R(I \M, I) 93 208 142 257

R(M \ C, I) 142 257 93 208

R(C \M, I) 3 118 7 122

Table 10.1: Set quantity cardinalities for CS2013S and CS2013I

10.7 Conclusion

In Part I, when the theory regarding the Graph Comparison Framework was
presented, no mention was made of how the information in the real-world
that is represented by the digraphs would be captured nor what problems
may arise in doing so. This chapter has bridged the gap between the ap-
plication of the framework on a theoretical toy application and how it will
be applied in the real-world to the ACM/IEEE curriculum volumes and a
real-world degree programme specification in Chapter 11.

1The concepts of extraneous and inferred were defined in Section 6.3.1.

143

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 11

Application of the
Framework to Computing
Curricula

11.1 Introduction

This chapter will illustrate how the framework presented in Chapter 6 can
be applied to curricula relating to Computer Science. Five areas in which
the Graph Comparison Framework can be applied to Computer Science
curricula have been identified. The broad categories for these areas are:

Area A: Comparison of ACM/IEEE Computer Science Curriculum vol-
umes

Area B: Comparison of a real world curriculum against one of the ACM/IEEE
Computer Science Curriculum volumes to determine how it compares.

Area C: Comparison of one real-world curriculum with another real-world
curriculum to determine similarities and differences.

Area D: Comparison of the ACM/IEEE Computer Science Curriculum
volumes with accreditations structures such as ABET.

Area E: Comparison of a real-world curriculum with an accreditation struc-
ture.

This list of areas is by no means complete. Many combinations of curricula
specifications, accreditation requirements and real-world curricula can be
applied where one needs to be compared to the other. It is also conceivable
that the framework could be used to determine progress during a curriculum
development and improvement process.

To illustrate how the Graph Comparison Framework can be applied to
curricula comparison, it will be applied to the first two areas specified above.

144

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Three scenarios have been identified. The first two scenarios relate to Area
A. The third scenario considers a real-world curriculum and compares it
to the curriculum volumes. The application of the framework to the other
areas not discussed in this chapter will follow a similar rationale.

The discussion related to each scenario will present aspects of how the
framework can be applied to curriculum comparison and development. When
applying the framework in a real-world context, all results presented by the
framework must be considered to form a holistic picture of the comparison.

For purposes of uniformity, edges between vertices on the graph visualisa-
tion diagrams are presented in different colours according to the curriculum
volume. CC2001 will be presented in red, CS2008 in blue, CS2013S in green
and CS2013I in purple. The real-world curriculum is presented in orange
and the complier in yellow. This colour coding will be used where possible
when representing information on radar charts and other diagrams as well.

As stated before, the ACM/IEEE curricula volumes discuss changes that
have taken place in the CS-BoK. For example, [The Joint Task Force on
Computing Curricula Association for Computing Machinery IEEE-Computer
Society, 2013, Page 200] discusses the changes that have taken place between
CS2001 and CS2013I at a macro-level. When modelling the curricula vol-
umes as digraphs and comparing them with each other, the comparison takes
place on a micro-level.

11.2 Scenario 1: Comparing the core aspects of
the curricula volumes

11.2.1 Scenario overview

In this scenario, the Graph Comparison Framework will be applied to CC2001,
CS2008, CS2013S and CS2013I, illustrating and identifying the subtle changes
that have taken place between the curricula volumes. The changes at KA
and KU level will be considered. Equivalences will be incorporated into the
comparison. The changes with regards to topics will be highlighted and dis-
cussed by applying the Difference Comparison component to the digraphs
and further investigating the difference sets. This scenario will only be
applied to the core aspects of the volumes. Only the core aspects are con-
sidered because representations taking electives into account as well, will
detract from the explanation of the application of the framework. The core
aspects already account for a vertex count in some representations of ap-
proximately 700. Adding the elective topics will in many instances double
the current vertex cardinality of the digraph.

As CC2001 is the last official curriculum volume, CS2013S and CS2013I
will primarily be compared with it. CS2013S and CS2013I will also be com-
pared with one another to highlight the changes made after the contributions

145

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



from the public have been taken into account.

11.2.2 Graph visualisation

Table 11.1 visualises the core aspects of the four curricula volumes as di-
graphs. (The neato command of the GraphViz software package was used
to provide the so-called “spring model” layouts. These were briefly discussed
in Section 6.4.1.) Although much of the detail is obscured, the visualisation
nevertheless suggests that the volumes have changed over time. To deter-
mine what has remained the same, a more fine-grained comparison between
volumes is necessary.

From the neato spring model results in Table 11.1 it can be inferred
that CS2013S does not have explicit subtopics. An in-depth study of the
curriculum volume confirms this. CC2001, CS2008 and CS2013I all seem
to reflect that there are subtopics defined. CS2013I also has what can be
referred to as subsubtopics defined. When closely studying the respective
curriculum volumes, what is highlighted by the spring models can be seen
in the volumes. A closer investigation of the content of the spring models
will provide more detail into the similarities and differences between the
curriculum volumes.

In order to derive more information from the digraphs it is necessary
zoom into specific areas within the graph. Table 11.2 illustrates what can be
seen when aspects of the spring models are enlarged. The Human Computer
Interaction KA and KUs highlighted in the table will be discussed in more
detail in Scenario 2, presented in Section 11.3.

11.2.3 Difference comparison

The digraphs representing the core aspects of the curricula volumes will be
compared. The first comparison will consider how each of the review curricu-
lum volumes, CS2008, CS2013S and CS2013I, differ from the last complete
Computer Science curriculum volume, namely CC2001. In this compari-
son CC2001 will be regarded as the ideal. CS2008, CS2013S and CS2013I
will each in turn represent the model and be compared with CC2001. The
second comparison is between CS2013S and CS2013I. CS2013S will be con-
sidered the ideal and CS2013I the model. This comparison should indicate
the impact public comment of CS2013S had in the development of CS2013I.

For each comparison, that is for: CC2001 as ideal (I) with CS2008 as
model (M); CC2001(I) with CS2013S(M); CC2001(I) with CS2013I(M); and
CS2013S(I) with CS2013I(M), three representations for each of the digraphs
will be considered. The first digraph representation will be exactly as pub-
lished in the respective curriculum volume. The second digraph representa-
tion to be considered will take equivalences in KAs into account. The third
and final digraph representation will consider equivalences for both KAs and

146

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



AL

U0009

U0014

U0015
U0038

U0049

T00046

T00063

T00067

T00189

T00267

T00278

T00456

T00486

T00037

T00058

T00199T00305

T00689
T00756

T00793

T00116

T00240

T00320

T00739

T00761

T00780

T00112
T00231

T00688

T00726

T00060

T00273

T00412

T00458

T00567

T00603

T00643_1

T00650

T00655

T00760

T00763

T00768

AR

U0012
U0036

U0046

U0071

U0077

U0079

U0084

T00010

T00035

T00048

T00120

T00301

T00339

T00341

T00711

T00256

T00390

T00470

T00495

T00593

T00315

T00340

T00355

T00071

T00227

T00302
T00351

T00358

T00573

T00822

T00241

T00455

T00604

T00605

T00652

T00821

T00073

T00096

T00230

T00372

T00395

T00403

T00698

T00804

T00072

T00345

T00357

T00404

T00649

T00720

CS

DS

GV

HC

IM

IS

NC

OS

PF

PL

SE

SP

U0016

U0018

U0037

U0048

U0060

U0102

U0053

U0057

U0019

U0045

U0030

U0032

U0068

U0051

U0074

U0111

U0021

U0073

U0087

U0125

U0027

U0078

U0090

U0092

U0109

U0010

U0041

U0050

U0052

U0104

U0001

U0033

U0072

U0089

U0093

U0129

U0114

U0115

U0116

U0117

U0119 U0120

U0121U0128

U0064

U0070

U0080

U0098

U0099

U0107

U0113

T00382

T00391

T00422

T00451

T00515
T00553

T00771T00784

T00795

T00125

T00489

T00674

T00497

T00216

T00217

T00237

T00077

T00254

T00598

T00645

T00180

T00677

T00767

T00769

T00782

T00178

T00401T00453

T00549

T00550

T00551

T00587

T00703

T00752

T00813

T00013_1

T00092

T00280

T00295

T00653_1

T00792

T00803

T00364

T00494 T00576

T00801

T00271

T00524

T00008

T00117_1

T00297

T00298

T00299_1

T00363

T00428

T00523

T00107

T00136

T00461

T00597

T00142

T00145

T00287

T00786

T00970

T00019

T00289

T00327
T00328

T00330

T00333

T00624

T00632

T00258

T00491
T00290

T00417

T00746

T00053

T00449

T00531

T00610
T00612

T00055

T00068

T00113

T00535

T00773

T00086

T00135

T00350

T00444

T00496

T00700

T00740

T00766

T00682

T00045

T00442

T00040

T00173

T00218

T00261

T00562

T00633

T00082 T00812

T00166

T00439
T00564

T00617

T00717 T00810

T00012

T00147

T00182

T00418

T00433

T00543

T00692

T00707

T00731

T00747

T00074

T00469

T00479

T00500

T00611

T00819

T00007

T00022

T00105

T00106

T00167

T00352

T00709

T00162

T00253

T00292

T00324

T00402

T00616

T00146

T00517

T00542

T00626

T00149

T00316

T00536

T00733

T00745

T00214

T00215

T00220

T00034

T00137

T00317

T00318

T00388

T00506

T00522
T00582

T00619

T00694

T00699

T00702

T00049

T00119

T00255

T00654

T00704

T00796

T00190

T00314

T00586

T00588

T00656

T00735

T00005

T00009

T00421

T00481

T00774

T00151

T00262

T00478

T00736

T00102

T00371

T00393

T00088

T00089

T00097

T00200

T00336

T00347

T00460

T00510

T00642

T00065

T00293

T00738

T00281

T00346

T00635

T00734

T00103

T00160

T00163

T00259

T00459

T00661

T00705

T00080

T00379
T00591

T00665

T00672

T00541

T00664

T00669

T00722

T00547

T00548

T00613

T00663

T00666

T00670

T00047 T00250
T00559

T00608

T00609

T00110

T00546

T00607

T00729

T00758

T00061

T00338

T00462

T00728

T00783

T00794

T00021

T00087

T00150

T00353

T00545

T00291

T00499

T00972

T00123

T00248

T00668

T00764

T00973

T00303

T00304

T00398

T00781

T00207

T00249

T00348

T00526

T00723

T00001
T00095

T00101

T00148

T00208

T00396

T00741

T00750

T00797

T00284

T00319

T00614

T00263

T00269

T00349

T00362

T00659

T00065_1

T00065_2

T00065_3

T00065_4

T00065_5

T00082_1
T00082_2

T00082_3

T00125_1

T00125_2

T00823

T00824

T00945

T00946

T00489_1

T00489_2

T00489_3

T00942

T00943

T00944

T00674_1

T00674_2

T00682_1

T00682_2

T00682_3

T00682_4

T00974

T00975

T00976

T00977
T00978

T00979

T00812_1

T00812_2
T00812_3

T00812_4

AL

U0009

U0014_1

U0015

U0038

U0049_1T00046

T00063

T00067

T00189

T00267

T00278

T00456

T00486

T00058

T00037

T00199

T00305

T00689

T00756

T00793

T00116

T00240

T00320

T00739

T00761

T00780

T00112

T00231

T00688
T00726

T00060

T00273

T00412_1

T00458
T00567

T00603

T00643_1

T00650

T00655

T00760

T00763

T00768

AR

U0036_1

U0046

U0084_1

U0135

U0136

U0137

T00133_1
T00825

T00839

T00840

T00841

T00842

T00843

T00340_1

T00854

T00855

T00856

T00857

T00858

T00859

T00860

T00861

T00862

T00863

T00864

T00865

T00866

T00844

T00845

T00846T00847

T00848

T00849

T00850

T00851

T00071

T00302_1

T00351_1

T00852

T00073_1

T00697_1

T00698_1

T00853

CS

DS

GV

HC

IM

IS

NC
OS

PF

PL

SE

SP

U0016

U0018

U0037

U0048

U0060

U0102

U0053

U0057

U0045

U0221

U0030

U0032
U0068_1

U0051

U0172

U0227

U0073

U0087

U0142

U0027

U0078

U0090

U0092

U0109

U0112

U0010_1

U0041

U0050_1

U0052_1

U0089_1

U0104

U0133

U0134

U0001

U0033

U0089

U0093

U0129

U0147

U0114

U0115

U0116

U0117

U0119_1

U0120_1

U0121_1

U0128U0064

U0070

U0098

U0099_1

U0133_1

U0216

U0231

T00382

T00391
T00422

T00451

T00515

T00553

T00784

T00795

T00125_1

T00125_2

T00125

T00489_1

T00489_2

T00489_3

T00489

T00497

T00674_1

T00674_2

T00674

T00823

T00824

T00216

T00217

T00237

T00238

T00077

T00254

T00598

T00645
T00180

T00677_1

T00767

T00769

T00782

T00178
T00401

T00453

T00549

T00551

T00587
T00703

T00752_1

T00813

T00013_1

T00092

T00280

T00295

T00653_1

T00792

T00803

T00364

T00494

T00576

T00801

T00008_1

T00117_3

T00211_3

T01162

T01163

T01635

T01636

T01637

T01638

T00524

T01235

T01639

T01640

T00107

T00136

T00461

T00597

T01272

T00142

T00145

T00287

T00970

T01270

T00019

T00327

T00328

T00330

T00333

T00624

T00632

T01268_1

T01641

T01642

T00258

T00290

T00417

T00491

T00746

T00942
T00943

T00944

T00945

T00946

T00055

T00068

T00113

T00535_2

T00773

T00053

T00449_1
T00531

T00610

T00612_1

T00045

T00442

T00682_1 T00682_2

T00682_3

T00682_4
T00682

T00900

T00173

T00261

T00904

T00040

T00789

T00903

T00912

T00913

T00350

T00444

T00740

T00766_1

T00901

T00902

T00012

T00147

T00182

T00418

T00433

T00543

T00692

T00707

T00731

T00747

T00074

T00479_1

T00611

T00819

T00007

T00022

T00105

T00106

T00167

T00352

T00709

T00162

T00253

T00292

T00324

T00402

T00616T00146

T00517

T00542

T00626

T00745

T00508

T00555

T00637

T00883

T00149

T00316

T00536

T00733

T00212_1

T00214

T00220

T00034

T00317

T00318

T00388

T00506

T00619

T00699

T00702

T00826

T00827

T00049

T00119

T00255

T00654

T00704

T00796

T00089

T00200

T00336

T00460

T00510

T00642

T00190

T00586

T00588

T00656_1

T00735

T00828

T00829

T00830

T00831

T00832

T00833

T00834

T00835

T00836

T00837

T00838

T00009

T00421

T00481

T00774

T00151

T00262

T00736

T00920

T00088

T00097

T00347

T00065_1

T00065_2

T00065_3

T00065_4
T00065_5

T00065

T00293

T00738

T00281

T00346

T00635

T00734

T00102

T00371

T00393

T00103

T00160

T00163

T00259

T00459

T00661

T00705

T01543_1

T01646

T01647

T01648

T01649

T01650

T00080

T00379_1

T00665

T00672

T01670

T00541

T00664

T01655

T01656

T01657

T00613T00670

T00722

T00547

T00548
T00663_1

T00666

T01669

T00047

T00250

T00559

T00608

T00609_2

T01547_1

T01658

T00546

T00607

T00729_1
T00758

T01653

T01654

T00462_1

T00728_3

T00783

T00794_1

T01576

T01659

T01660

T01661

T01662
T01663

T01664

T01665

T01666

T00087

T00150

T00353

T01651

T01652

T00291

T00499

T00972

T00123

T00248

T00668

T00764

T00973

T00207

T00249

T00348

T00526_2

T00723

T01645

T00001

T00095

T00101

T00148

T00208

T00396

T00741_1

T00750

T00797

T01615

T01616_1

T00263

T00269

T00349

T00362

T00659

T01611_1

T01643
T01644

T00303

T00304

T00398

T00781

T00284_1

T00614_1

T00173_1

T00562

T00633

T00283_1

T01550

T01667
T01668

T00974

T00975

T00976

T00977

T00978

T00979

T00905

T00906

T00907

T00908

T00909

T00910

T00911

CC2001 CS2008

CS

AL

AR

CN_1

DS

GV_1

HC

IAS

IM

IS

NC_1

OS
PD

PL

SDF

SE

SF

SP

U0009

U0014_1

U0050_2

U0148

T00063

T00067

T00189

T00193

T00267

T00278

T00586
T01028

T00037

T00058_1

T00058_2
T00058_3

T00199

T00305_1

T00674_3

T00689_1

T00756

T00793_1

T00060

T00273_1

T00412

T00458_1

T00486_1

T00567_1

T00603

T00643_1
T00650

T00655_1

T00768

T01029 T01030

T00116

T00156_1

T00240

T00594
T00739

T01031

T01032

U0012

U0036

U0071

U0077

U0079

T00010

T00035

T00048

T00120_1

T00301

T00339

T00341

T00357_2

T00711

T01058

T01059

T00470

T00495_1

T00593_1

T01055

T01056

T01057

T00071

T00227

T00302

T00351

T00358_1

T00573

T00822

T00241

T00455

T00604

T00605

T00652

T00821

T00073

T00096

T00230

T00372

T00395

T00403_1

T00698

T00804

T01060

U0152

T01068

T01069

T01070

U0016

U0018

U0037

U0048_1

U0060

U0102

U0156

U0045

U0157

U0087

U0164

U0030

U0032

U0170

U0051

U0074_1

U0172

U0173

U0073_1

U0144

U0176

U0177

U0178

U0179

U0180

U0027

U0078

U0090

U0092

U0109

U0112
U0094_1

U0186

U0187

U0188

U0189

U0041_1

U0047

U0089

U0127_1

U0147_1

U0193

U0050

U0052_2

U0204

U0205

U0114

U0115U0116

U0117

U0118

U0120_1

U0121_1

U0206

U0207

U0179_1

U0208

U0209

U0210

U0211

U0212

U0213

U0214

U0215

U0070

U0098

U0099_1

U0133_1

U0216

U0217

U0218

T00382_1

T00391

T00451

T00515

T00554

T00771

T00784

T00795

T01097

T00125_1

T00125_2

T00125

T00489_1

T00489_2

T00489_3

T00489

T00497

T00674

T00823

T01101

T01102

T01103

T01104

T00216_1

T00216_2

T00217_1

T00217_2

T00237_1

T01107

T01108

T01109

T00254_1

T00598_1

T00645_1 T01087

T01088

T01089

T01090

T01091

T01092

T01093

T01094

T01095

T01096

T00180

T00677_1

T00767

T00769

T00782

T01105

T01106

T00178

T00453_1

T00549

T00551_1
T00587

T00752_1

T00813T01098

T01099

T01100

T00509_1 T00792_1 T01110

T01111

T01112

T01113
T01114

T01115

T01116

T01117

T00117_2

T00523

T01162

T01163

T01164
T01165

T01166

T01167

T01168

T00211_2

T00211_3

T00272_1

T01169

T01170

T01171

T01172

T01173

T01174

T00040T00173

T00562

T00633

T00903

T01261

T01262

T01263

T01264

T01265

T01266

T00829_1

T01249

T01250

T01252

T01253

T01254

T01255
T01256

T01257

T01258

T01259

T01260

T00107_1

T00136

T00461

T00597

T01272

T00142

T00145

T00970

T01269

T01270

T01271

T00019

T00327

T00328

T00333_1

T00624_1

T01267

T01268

T00942

T01286

T01287

T01288

T01289

T01290

T01291

T01292

T01293

T01294

T01295

T01296
T01297

T01298

T01299

T01300

T01301

T00531_1

T00610_1

T00612_1

T01304

T00055_1

T00068_1

T00113

T00535_1

T00773_1

T01302

T01303

T00153_1

T00743_1

T01305

T01306

T01307

T00086_1

T01398

T01399

T01400

T01401

T00557_1

T01402

T01403
T01404

T01405

T00135_1

T00135_2

T01016_1

T01406

T00623_1

T01407

T01408

T01409

T00086_2

T00356_2

T01410

T01411

T01412

T01413

T01414

T01415

T01416

T01417

T01418

T01419

T00182

T00433

T00692

T00707

T00747

T01420

T01421

T00074

T00611

T00819

T00007

T00022

T00105

T00106

T00167

T00709

T00162

T00253

T00324

T00402
T00616

T00146

T00517

T00542

T00626

T00475

T00508

T00555_1

T00637

T00883

T01470

T01471

T01472

T01473

T01474

T01448

T01449

T01450

T01451_1

T01451_2

T01451_3

T01451

T01452

T01453

T01454

T01455

T01456

T01457

T01458

T01459

T01096_1

T01460 T01461

T01462

T01463_1

T01463_2

T01463_3

T01463

T01464_1

T01464_2

T01464_3

T01464_4

T01464

T01465

T01466

T00862_1

T01477

T01478

T01479

T00212_2

T01516

T01517_1

T01517_2

T01517
T01518

T01519

T01506

T01507

T01508

T01509

T01510

T01511
T01512

T01513

T01514_1

T01514_2

T01514_3

T01514

T01515

T00089_1

T00089_2

T00336_1

T00460

T01495

T01496

T01497

T01498

T01499

T01500

T01501

T01502

T01503

T01504

T01505

T00139_1

T00482_1

T00482_2

T00482_3

T00482_4

T00522_1

T01520

T01521

T01522

T01523

T01524_1

T01524_2

T01524

T01525_1

T01525_2

T01525_3

T01525_4

T01525

T00371_1

T00371_2

T00371_3

T01528

T01529

T01530_1

T01530

T01531

T00484_1

T01526

T01527

T00034

T00582_1

T00699

T00702

T01535

T01536

T01537

T00049

T00119

T00255

T00654

T00735

T00796_1

T00796_2

T00190
T00200

T00259

T00536_1

T00536

T00588_1

T00642

T00733_1

T00733

T00745

T01532

T01533

T01534

T00149

T00546_1

T00728_1T01538

T01539

T01540

T01541

T01542

T01543 T01545

T01546

T00163_1

T00661_1

T01565

T01566

T01567

T01568

T01569

T01570

T01571

T00080

T00672

T01581

T01582

T01583

T00664_1

T01547

T01548 T01549

T00613_1

T00976

T01550

T01551

T01552

T01553

T01554

T01555

T01556

T01557

T01559

T01560

T01561

T00671_1

T00671_2 T01584

T00546_2

T00607

T00663_1

T00729_1

T00758_1

T00061

T00728_2

T00783

T01575

T01576

T01577

T01578

T01579
T01580

T00250_1

T00250_2
T00609_1

T00609_2

T01562
T01563

T01564

T01540_1

T01540_2

T01540_3

T01572

T01573

T01574

T00517_1

T01597

T01598

T00256_1

T00256_2

T01016_2

T01585

T01586

T01587
T01588

T00600_1
T01589

T01590

T01591

T00840_1
T01055_1

T01296_1
T01592

T01593

T00862_2

T01594

T01595

T00372_1

T00860_1

T01027

T01596

T00403_2

T00403_3

T01599

T01600

T01601

T01602

T01603

T01604

T01605

T01606

T01607

T01608

T00123_1

T00248_1

T01618

T01619
T01620

T01621

T01622

T00526_1

T01623

T01624

T01625

T01626

T00001

T00095_1

T00101

T00148

T00208

T00741_1

T00750

T00797_1

T01211_1

T01615

T01616

T01617

T00269_1

T00362_1

T01193_1

T01609

T01610

T01611

T01612

T01613

T01614

T01627

T01628
T01629

T01630

T01631

T01632

T01633

T01634

AL

U0009

U0014_1

U0050_2

U0148

T00063

T00067

T00189

T00193

T00267

T00278

T00586

T01028

T00037

T00058_1

T00058_2

T00058_3

T00199

T00305_1

T00674_3

T00689_1

T00756

T00793_2

T00793_3

T00060

T01030

T00273_1

T00458_1

T00486_1

T00567_1

T00643_1

T00655_1

T01671

T00116

T00156_1

T00240
T00594

T00739

T01031_1

T01032_1

AR

U0012

U0036

U0071

U0077

U0079

T00010

T00035

T00048

T00120_1

T00301
T00339

T00341

T00357_2

T00711

T01058

T01059

T00470

T00495_1

T00593_1

T01055T01056

T01057

T00071

T00227

T00302

T00351

T00358_1

T00573

T00822

T00241

T00455

T00604

T00605

T00652

T00821

T00073

T00096_1

T00230

T00372

T00395

T00403_1
T00698

T00804

T01060

CN_1

U0152_1

T01069

T01070

T01672

T01673

CS

DS

GV_1

HCI

IAS

IM

IS

NC_1

OS

PD

PL

SDF

SE

SF

SP

U0016

U0018

U0037

U0048_1

U0060

U0102

U0156

U0045

U0157

U0087

U0164_1

U0165

U0169_1

U0236

U0237

U0030

U0032

U0170

U0051

U0074_1

U0172
U0173

U0073_1

U0144

U0176

U0177

U0178 U0179

U0180

U0027

U0078

U0090

U0092

U0109

U0112

U0094_1
U0186

U0187

U0188

U0189

U0041_1

U0047

U0089

U0127_1

U0147_1

U0193

U0050

U0052_2

U0204

U0205

U0114

U0115

U0116

U0117

U0118

U0120_1

U0121_1

U0206

U0207

U0179_1

U0208

U0209

U0210

U0211_1

U0212_1

U0213

U0214

U0215

U0070

U0098

U0099_1
U0133_1

U0216

U0217

U0218

T00515

T00382_1

T00391

T00451

T00553

T00771

T00795_1

T01097

T00125
T00489

T00674

T00497_1

T01104

T00216_1

T00216_2

T00217_1

T00217_2

T00237_1

T01107

T01108

T01109

T00254_1

T00598_1

T00645_1

T00769

T00180

T00677_1

T00782T01105

T01106

T00178

T00453_1
T00549 T00551_1

T00587

T00752_1

T00813
T01098

T01099

T01100

T00792_2

T01113

T01117

T01675

T01676

T01677

T01678

T01679

T00117_2

T00523

T01162

T01163

T01164

T01165

T01166

T01167

T01168

T01680

T00211_3

T00211_5
T00272_1

T00524

T01171_1

T01172_1

T01174 T01681

T00903_1

T01259_1

T01713

T01714

T01715

T00829_2

T01215_1

T01256_1

T01682

T01683

T01716

T01717

T01718

T01719

T00832

T01684

T01685

T01686

T01687

T01688

T01689

T01690

T01691

T01692

T01693

T01694

T01695

T01698

T01451_4

T01696

T01697

T01703

T01704

T01705

T01706

T01707

T01708

T01709

T01710T01711

T01712

T00107_1

T00136

T00461

T00597

T01272

T01721

T00142

T00145_1

T00970

T01269

T01270

T01271

T00019

T00327

T00328

T00333_1

T00624_1

T01267

T01268

T01720

T01287

T01290

T01297

T01286

T01301

T00531_1

T00610_1

T00612_1

T01304

T00055_1

T00068_1

T00113

T00535_1

T00773_1

T01302

T01303

T00153_3

T00743_1

T01305

T01306 T01307

T00086_1

T01398

T01399

T01400

T01401

T00557_1

T01402

T01403

T01404

T01405

T00135_1

T00135_2

T01016_1

T01406

T00623_1

T01407

T01408

T01409

T00086_2
T00356_2

T01410_1

T01411

T01722

T01412

T01413

T01414

T01415

T01416 T01723

T01417

T01418

T01419

T00182

T00433

T00692

T00707

T00747

T01420

T01421

T00074

T00611

T00819

T00007 T00022

T00105

T00106

T00167

T00352

T00709

T00162

T00253

T00324

T00402

T00616

T00146

T00517

T00542

T00626

T00475

T00508

T00555_1

T00637

T00883

T01473

T01470

T01471

T01472

T01451

T01724

T01448

T01449

T01455

T01457

T01452 T01453
T01454

T01459
T01460

T01463

T01464

T01462

T00862_1

T01477

T01478

T01479

T01517

T00212_3

T01516

T01518

T01519

T01507_1

T01510

T01514

T01513

T01515

T00460
T01497

T01501

T00089_1T00089_2

T00336_1

T01505

T00139_1

T00482_1

T01524

T01525

T01522

T01523

T00371_1

T01530
T01727

T01528

T01529T00484_1

T01526

T01527

T00928_1T00034

T00582_1

T00699_1

T00702

T01536

T01537_1

T01538_1

T00049

T00119

T00255

T00654_1

T00735

T00796_1

T00796_2

T00259

T00536

T00733

T00745

T01538

T01670_1

T00149

T01546

T00163_1

T01565

T01566

T01567

T01568

T01569

T01570_1
T01571

T01581

T00080

T00672

T01582 T01583

T00664_2

T01547

T01549

T01730

T00613_1

T01556

T01561

T00671_1

T00671_2 T01584

T00546_2

T00607

T00663_1

T00729_1

T00758_1

T00728_2

T01575

T01576

T01577T01579

T01580

T00250_1

T00250_2

T00609_2

T01562

T01563

T01564

T01572

T01732

T01573

T01574

T00517_1

T01597

T01598

T00256_1

T00256_2

T01016_2

T01586

T01587

T01588

T00600_1

T01589

T01590_1

T01591

T00840_1

T01055_1

T01296_1

T01592

T01593

T00543_1
T00862_3

T01594_1

T01737

T01738

T00372_2

T00860_1

T01027_1

T01596

T00403_2

T00403_4

T01064_2

T01599

T01600

T01601

T01602

T01603

T01604_1

T01605

T01606

T01607

T01608

T01739

T00123_2

T00248_1

T01618

T01619
T01620

T01621
T01622

T00526_1

T01623

T01624

T01625

T01626

T00001

T00095_2

T00101

T00148

T00208

T00741_1

T00750

T00797_1

T01211_2

T01615

T01616

T01617_1

T01740

T00269_1

T00362_1

T01193_1
T01609

T01610_1

T01611

T01612

T01613

T01614
T01627

T01628

T01629

T01630

T01631

T01632
T01633

T01634

T01029

T00125_1

T00125_2

T00823

T01101

T00522_1

T01521_1

T01094

T01095

T01096

T00200

T00642

T01533

T01534

T00371_2

T00371_3

T01495 T01496

T00482_2

T00482_3

T00482_4

T00489_1

T00489_2T00489_3

T00784

T00190

T00536_1

T00588_1

T01731

T01092

T01093

T01550

T01551

T01087

T01088

T01089

T01090

T01091

T01548

T01102

T01103

T00061

T00783

T01578

T00733_1

T00767

T01674

T01535_1

T01535_2

T01535_3

T01535_4

T01535_5

T00412

T00603

T00650

T00768

T01096_1

T01465 T01466

T00942

T01288

T01291

T01292

T01293

T01294

T01295

T01296

T01298

T01299

T01300

T01451_1

T01451_2

T01451_3

T01456

T01458_1

T01461_1

T01463_1

T01463_2

T01463_3

T01464_3

T01464_4

T01464_1

T01464_2

T01474

T01498

T01499

T01500

T01502_1

T01503

T01504

T01507

T01508

T01509

T01511

T01512_1T01514_1

T01514_2

T01514_3

T01726

T01517_1

T01517_2

T01524_1

T01524_3

T01525_1

T01525_2

T01525_3

T01525_4

T01530_1

T00728_1

T01539

T01540

T01541

T01542

T01543

T01544

T01728

T00976

T01557

T01559

T01560

T01540_1

T01540_2

T01540_3

T01670

T01735

T01736

T01545

T01729

T01699

T01700

T01701

T01702

T01725

T01531_1

T01531_2

T01733

T01734

CS2013S CS2013I

Table 11.1: Core aspects of the curriculum volumes

147

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CC2001

CS2013I

Table 11.2: Zoomed into CC2001 and CS2013I HC/HCI in Table 11.1

148

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Relative sizes of digraphs

Page 1

| V | | E' | | V | | E' | | V | | E' |
Original KAs equivalent KAs & KUs equivalent

0

100

200

300

400

500

600

700

800

900

CC2001

CS2008

CS2013S

CS2013I

476

510

683

732

CC2001 CS2008 CS2013S CS2013I

Cardinality

N
u
m

b
e

r

Figure 11.1: Respective sizes of the curricula volume digraphs

KUs.

Respective sizes of the digraphs across curricula volumes.

The sum of the KAs, KUs and topics specified in the core of a curriculum
volume is one less than the size of the associated digraph. This is because an
additional “entry point” vertex, labelled as CS, appears in each diagraph,
linking to each of the KAs. (An example of such an “entry point” was
previously encountered in Figure 10.1.) The respective digraph sizes, | V |,
and the associated number of edges in each case, | E′ |, are shown in the
“Original” major row of Table 11.3. (The data to obtain | V | is available
in Figure 8.4.) The information is visually displayed in Figure 11.1.

Table 11.3 and Figure 11.1 further show how the cardinality of the ver-
tices and edges increase per volume when Rule 10.2 is applied to equivalent
KAs. If the rule is further applied to include equivalent KUs the result is
shown by the final major row in the table and the final two rows of bars in
the figure.

Figure 11.1 and Table 11.3 show that the growth in the curriculum size
from CS2008 to CS2013S is significant. A total of 173 (34%) vertices have
been added and 164 (32%) edges from CS2008 to CS2013S. A further growth
of 49 (7%) vertices and edges between CS2013S and CS2013I indicates that
changes took place with regards to content in the curriculum volumes. An
increase of 44% in vertices and 42% in edges between CS2008 and CS2013I
has taken place.

149

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CC2001 CS2008 CS2013S CS2013I

Original
| V | 476 510 683 732
| E′ | 477 519 683 732

KAs equivalent
| V | 495 529 701 750
| E′ | 501 543 707 756

KAs & KUs equivalent
| V | 573 607 777 826
| E′ | 607 643 827 872

Table 11.3: Values showing the respective cardinalities of the curriculum
volume digraphs

Respective sizes of the difference sets across curricula volumes.

The resulting cardinalities and ratios of the Graph Trans-morphism algo-
rithm for the comparison of the core aspects of the curricula volumes as
described in the previous section are given in Section E.1 of Appendix E.
The section in the appendix is structured as follows:

• There are three tables in which CC2001 serves as I and CS2008,
CS213S and CS2013I serve as M , respectively.

• A fourth table in which CC2013S serves as I and CS2013I serves as
M .

Each table has the following structure:

• Nine rows giving R(X,Y ), where X and Y appear in various combina-
tions of I, M and C, as discussed in Section 6.3.1.

• Three major columns labeled “Original”, “KA equivalences” and “KA
and KU equivalences” as used in Table 11.3.

• Each major column in each of these tables has sub-columns labeled
| VX |, | E′X |, V ratio

X and EratioX . The meaning of these sub-column
labels was explained in Section 6.3.1.

It should be noted that the equivalences bloat the vertex and edge cardi-
nalities for the respective digraphs. The bloating of vertices and edges was
discussed in Section 10.5. To ensure that the comparisons between the dif-
ferent graph combinations, when taking equivalences into account, remain
constant, exactly the same equivalence vertices and edges have been included
in all digraph representations being compared. A set difference between the
digraphs will therefore not result in side effects from the addition of the
equivalence vertices and edges as all the additional vertices and edges will
not be taken into account in the results of the operation.

150

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Vertices Edges

Figure 11.2: Scenario 1: Original - Radar charts

The values given in the tables in the appendix, confirm that there was
marginal change in core content of the curricula volumes CC2001 and CS2008.
However, some rearranging of relationships took place. This rearranging is
confirmed by the relatively high edge ratios for R(I \M, I) and R(M \C, I)
(0.52 and 0.61 respectively) in the column representing the original curricula
volume.

The values presented in Tables E.2 and E.3 (which compare CC2001 with
CS2013S and CS2013I, respectively) indicate that the differences between
these volumes is more significant than in the case of CC2001 and CS2008.
The comparisons will be highlighted in the section that follows where the
differences are visualised on radar charts.

11.2.4 Difference visualisation

The difference visualisations presented are all derived from the information
given in Tables E.1 to E.4 in Appendix E. The first visualisation will consider
the curricula volumes as originally specified, while the second discussion will
show whether including equivalences makes a difference in the matching of
the volumes.

Visualisation of differences between the curricula volumes.

The visualisation of the information representing the curricula volumes as
originally defined from the tables in Appendix E, Section E.1 are given
by the radar charts in Figure 11.2 for the comparisons with CC2001 as I.
From these visualisations, the differences between the curricula volumes as
discussed in the previous difference comparison section can be seen.

151

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



From the figures it is clear that CS2008 looks very much like CC2001
in terms of vertices. The ratio R(C, I) indicates that not all vertices in
CS2008 are in CC2001. C has roughly 25% less vertices than CS2008 even
though the respective cardinality of CS2008 is marginally more than that
of CC2001, as shown by R(M, I). The representation of the edges follows
a similar trend as for vertices. However the magnitude of the differences is
more pronounced when viewing R(I \M, I) and R(M \ C, I).

Inspection of the difference sets, particularly for M \ C and C \M in-
dicates that there are indeed differences between CC2001 and CS2008. Ta-
ble 11.4 summarises the extent of these differences. This data indicates that
there are a total of 27 extraneous KUs in CS2008 and 18 inferred KUs in C.
These KUs naturally have a knock-on effect on the topics for which there
are no matches in terms of edges. With regards to topic counts themselves,
there are 145 extraneous topics in CS2008. No topics have been inferred in
C.

The curricula volumes CS2013S and CS2013I have significantly more
vertices and edges than CC2001 as shown by R(M, I) in Figure 11.2. Indeed,
the differences with respect to CS2013I is somewhat larger than with respect
to CS2013S. From R(M \C, I) it can be seen that structurally the curricula
volumes have also changed. The complier, however, does match well to the
model as can be seen by ratio R(C \M, I), this means that very little was
inferred.

The visual comparison of the original of CS2013S with CS2013I will be
discussed in the next paragraph. This paragraph will discuss equivalences
between elements in the digraphs representing the curriculum volumes.

Visualisation of the impact the equivalences have of the matching
of curricula volumes.

Figure 11.3 presents the vertex and edge radar charts with CC2001 repre-
senting the ideal and CS2008 the model. On each radar chart the curricula
as specified in the curricula volumes is given along with the application of
the equivalences for KA and KA with KU also applied. From the figures it
is clear that the equivalences do increase matching, be it marginally. Com-
parison of CC2001 and CS2008 with the equivalences for both KAs and
KUs taken into account result in the additional values presented in the last
columns of Table 11.4 for vertices. These values correspond to the values
for the cardinality of vertices given in Table E.1 by calculating the sum
of the respective KU and topic entries. The comparisons for CC2001 with
CS2013S and CS2013I follow similar trends.

The radar charts in Figure 11.4 compare CS2013S modelled as the ideal
and CS2013I as the model. The ratio R(M, I) in the radar charts indicates
that CS2013I when modelled as a digraph has more vertices and edges than
CS2013S. This is in line with the results in Table 11.3 which show an in-

152

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Original KA equiva-
lences

KA and KU
equivalences

KUs Topics KUs Topics KUs Topics

M \ C 27 145 17 155 11 145

C \M 18 0 18 0 2 0

Table 11.4: Cardinality of vertices in the difference sets M \ C and C \M
for CC2001(I) and CS2008 (M)

Vertices Edges

Figure 11.3: Scenario 1: Equivalences CC2001 and CS2008

153

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Vertices Edges

Figure 11.4: Scenario 1: Equivalences CC2013S(I) and CS2013I(M)

crease in vertices and edges from 683 to 732 from CS2013S to CS2013I. The
ratio R(C \M, I), specifically for vertices indicates that the complier is a
good representation of the model. R(M \C, I), indicates that CS2013I con-
tains vertices and edges that are not in CS2013S. Further investigation of
specifically the vertices will highlight where to look for possible equivalences
and changes that took place. With the equivalences of KAs and KAs with
KUs following a similar trend, it would mean that the topics need to be
investigated in more detail.

11.2.5 Discussion

Two observations can be made from the preceding discussions. The first is
that the curricula have changed rather significantly from CC2001 to CS2013,
both Strawman and Ironman. This change is both in terms of content and
structure. The shift in content can be seen in Figure 11.2. Closer inspection
of the sets C \M and M \C will give an indication of where the differences
lie between the curricula volumes.

The second observation relates to the addition of the equivalences. It is
clear from Figures 11.3 and 11.4 that the addition of the equivalences does
improve matching. It is therefore necessary to also include equivalences
on the topic level. Scenario 2 will illustrate topic level equivalences for a
subgraph of each curriculum volume representing the Human Computer In-
teraction KA. Finding topic equivalences for all the KAs in each curriculum
volume will be left for future work.

154

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



11.3 Scenario 2: Details regarding the Human Com-
puter Interaction KA

11.3.1 Scenario overview

This scenario compares the core aspects of the Human Computer Interaction
KA as defined in the curricula volumes. This comparison was previously
done and reported on in Marshall [2012] with respect to CC2001, CS2008 and
CS2013S. The comparison with CS2013I has been included in the discussion
of this scenario due to the fact that CS2013I had not been released when the
paper was submitted and accepted. The inclusion of equivalences has also
been added—something that had not previously been done for this KA.

11.3.2 Graph visualisation

Figure 11.5 presents the core aspects of the Human Computer Interaction
KA. The colour of the edges is in keeping with the conventions as set out
in the introduction: CC2001 is red, CS2008 is blue, CS2013S is green, and
CS2013I is purple. From the figure it can be seen that the KA underwent
a name change in CS2013I . Also, two KUs, identified as U0019 and U0221,
have been dropped in the CS2013 versions of the curricula volumes. U0019
was defined in CC2001 only and U0221 was defined in CS2008 only. The KU,
U0045, is present in all four volumes. U0157 was included for the CS2013
volumes and underwent a change between CS2013S and CS2013I.

11.3.3 Difference comparison

From the visualisation of the digraphs given in Figure 11.5, there are areas
of interest in the Human Computer Interaction KA. The first is between
CC2001 and CS2008, the second is between the 2013 Strawman and Ironman
volumes. The Graph Comparison Framework, beginning with the Trans-
morphism Algorithm, will be applied to each of these areas to determine
if there are any equivalences that may need to be taken into consideration
when comparing the volumes.

Graph Trans-morphism Algorithm results for CC2001 and CS2008.

Application of the Graph Trans-morphism Algorithm to CC2001 and CS2008,
with CC2001 representing the ideal and CS2008 representing the model and
vice versa results in the compliers given in Figure 11.6. Topic T00524 is
linked to U0019 in the complier for CC2001 and to U0221 in the complier
for CS2008. On closer inspection it can be seen that U0019, Building a
simple graphical user interface, and U0221, Building GUI interfaces, are
equivalent.

155

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



HC

U0019

U0045

U0221

U0157

HCI

T00271

T00524

T00008
T00117_1

T00297
T00298T00299_1

T00363

T00428

T00523

T00008_1

T00117_3

T00211_3

T01162
T01163

T01635T01636

T01637

T01638

T00117_2

T01164

T01165

T01166

T01167

T01168

T01680

T01235

T01639

T01640

T00211_2

T00272_1

T01169

T01170

T01171

T01172

T01173

T01174

T00211_5

T01171_1

T01172_1

T01681

Figure 11.5: Representation of the Human Computer Interaction (HC and
HCI in 2013I) KA

HC

U0019

U0045

T00524

HC

U0045

U0221 T00524

CC2001 (I) CS2008(I)

Figure 11.6: Scenario 2: Compliers for CC2001 as I and CS2008 as M and
vice versa

156

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



HC

Or_30

U0045

U0019

U0221

Or_30_out T00524

Figure 11.7: Scenario2: Complier for CC2001 and CS2008 with or-subgraph

By including an or-subgraph, the resultant complier in Figure 11.7 is the
same for CC2001 as ideal and CS2008 as model as it is for CS2008 as ideal
and CC2001 as model. From this figure it can be confirmed that there are
no topics in common between CC2001 and CS2008 that are linked to KU
U0045 and that there is still only one topic, as expected, in common between
U0019 and U0221.

Investigation of the difference sets in terms of vertices, given in Ta-
ble 11.5, indicates that all vertices in the complier are also in the model,
C \M = ∅. The reverse is not true; there are vertices in the model which
are not in the complier, M \C. It is also interesting to note that the sets for
I \ C, I \M for CC2001 as the ideal and CS2008 as the model, and M \ C
for CS2008 as the ideal and CC2001 as the model are the same. Closer
investigation of both the sets for M \ C may reveal similarities in topics.
Topics are distinguishable by there vertex names beginning with “T”. This
investigation is left for the Observation section of this discussion.

Graph Trans-morphism Algorithm results for CS2013S and CS2013I.

Applying the Graph Trans-morphism Algorithm to the Human Computer
Interaction related core defined in CS2013S and CS2013I results in iden-
tical complier graphs as given in Figure 11.9 on the left. The complier
comprises of two disjoint trees representing the KUs U0045, Foundations of
human-computer interaction, and U0157, Designing Interaction. Outcome
2 in Section 7.3 discussed disjoint digraphs and the need to include an “en-
try point” in the digraphs. When considering the original digraphs that
represent CS2013S and CS2013I, there is no common KA between the two
graphs. In CS2013S the KA is referred to as HC and in CS2013I as HCI.
(Refer back to Figure 11.5.) By including the equivalence, described by the
or-subgraph in Figure 11.8, the resultant complier is as given in Figure 11.9
on the right.

Table 11.6 presents the cardinality of the vertex and edge sets for each
of the difference quantities when the or-subgraph has been included. This
table is an excerpt from the resultant table, Table E.8, that can be found
in Section E.2 of the Appendix. The tables presented in the section are

157

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity I M Set representation

I \ C CC2001 CS2008 {T00008, T00117 1, T00271, T00297,
T00298, T00299 1; T00363, T00428,
T00523 }

CS2008 CC2001 {T00008 1, T00117 3, T00211 3, T01162,
T01163, T01235, T01635, T01636,
T01637, T01638, T01639, T01640}

I \M CC2001 CS2008 {T00008, T00117 1, T00271, T00297,
T00298, T00299 1; T00363, T00428,
T00523 }

CS2008 CC2001 {T00008 1, T00117 3, T00211 3, T01162,
T01163, T01235, T01635, T01636,
T01637, T01638, T01639, T01640}

M \ C CC2001 CS2008 {T00008 1, T00117 3, T00211 3, T01162,
T01163, T01235, T01635, T01636,
T01637, T01638, T01639, T01640}

CS2008 CC2001 {T00008, T00117 1, T00271, T00297,
T00298, T00299 1; T00363, T00428,
T00523 }

C \M CC2001 CS2008 ∅
CS2008 CC2001 ∅

Table 11.5: Scenario 2: Vertex sets for selected quantities

Or_5

HC

HCI

Or_5_out

Figure 11.8: Or-subgraph for HC/HCI KA

158

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



U0045

T00117_2

T00523

T01162

T01163

T01164

T01165

T01166

T01167

T01168

U0157

T00211_3

T00272_1

T01174

HC

Or_5_out

U0045

U0157

HCI

Or_5

T00117_2

T00523

T01162

T01163

T01164

T01165

T01166

T01167

T01168

T00211_3

T00272_1

T01174

Disjoint complier Complier after inclusion of or-subgraph

Figure 11.9: Scenario 2: Compliers for CS2013S and CS2013I

159

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



similar in structure to the tables in Section E.1, but relate to Scenario 2.
As in the previous section, the comparison of the difference sets indicates
that there are still vertices that need to be investigated for equivalences,
particularly on the topic level. From the table it can be seen that M \ C
results in a set of cardinality 6 for vertices for CS2013S as ideal and CS2013I
as model, and vice versa. These results mean that there are 12 vertices in
total that are not common in the two curricula specifications for the Human
Computer Interaction KA. As these are the vertices that differ, it is necessary
to consider similarities between them.

Quantity I M | V | | E′ |
I \ C CS2013S CS2013I

6 6
CS2013I CS2013S

I \M CS2013S CS2013I
6 6

CS2013I CS2013S

M \ C CS2013S CS2013I
6 6

CS2013I CS2013S

C \M CS2013S CS2013I
0 0

CS2013I CS2013S

Table 11.6: Scenario 2: Set cardinalities for selected quantities

Observations

The difference sets give a good indication of which vertices in the model were
not matched. This is particularly seen in respect of the vertices of M \ C.
A detailed investigation into the vertex sets reveals that there are indeed
equivalences. A total of 9 equivalences on the topic level were found and
each modelled with an or-subgraph. These or-subgraphs are labelled Or N,
where N is a letter from A to I. Taking topic equivalences into account
and including them into the graph representation, results in a graphical
representation of the curriculum volumes presented by Figure 11.10.

From Figure 11.10 it can be seen that U0045 is defined in all four cur-
riculum volumes. Of the topic equivalences in U0045, three (Or C, Or D
and Or A) are between CC2001 and CS2008 only, showing a change in how
topics are described already in the 2008 volume. The topics in equivalence
Or E, remained the same for CS2005 and the two CS2013 volumes, that is
T01162. The change in the topic description took place between CC2001
and CS2008. Or F represents a topic that returned in CS2013I after last
being specified in CC2001. After the topic equivalences has been applied,
the general structure of the KU seems more ordered when compared with
Figure 11.5.

Topic equivalences Or B, Or G, Or H and Or I in Figure 11.10 reflect

160

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



HC

Or_5_out

HCI

Or_5

Or_30

U0045

U0157

U0019

U0221

Or_30_out

T00271

T00524

T01235
T01639

T01640

Or_A

T00008

T00008_1

Or_A_out

Or_B

T00211_2
T00211_5

Or_B_out

Or_C

T00297

T01637

Or_C_out

Or_D

T00298

T01636

Or_D_out

Or_E

T00299_1

T01162

Or_E_out

Or_F

T00363

T01680

Or_F_out

Or_G
T01170

T01681Or_G_out

Or_H

T01171

T01171_1

Or_H_out
Or_I

T01172

T01172_1

Or_I_out

T00117_1

T00428

T00523

T00117_3

T00211_3

T01163T01635

T01638T00117_2

T01164

T01165

T01166

T01167

T01168
T00272_1

T01169

T01173

T01174

Figure 11.10: Representation of the Human Computer Interaction (HC and
HCI in 2013I) with topic equivalences

161

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



subtle changes to the topics made between CS2013S and CS2013I. This
accounts for the limited commonality between topics of the KU U0157 in
Figure 11.5.

Topic T00524, which was shown in Figure 11.5 and aligned with either
U0019 or U0221 in Figure 11.6, is not present in CS2013S.

Closer investigation of the tables in Appendix E.2 for Scenario 2 reveals
that the ratios for the original digraph specifications are exactly the same
for the ideal and model as they are for when the ideal and model were
reversed. (Specifically, it will be seen that the first set of four values under
the Original column heading in Table E.5, with CC2001 representing the
ideal and CS2008 the model, are the same as the first set of four values in
Table E.6.) The same is true for Tables E.7 and E.8 representing CS2013S
and CS2013I.

Comparison of equivalence data in the tables in Appendix E.2 are more
interesting. The comparison is presented in the radar charts to be discussed
in the section regarding difference visualisation that follows.

11.3.4 Difference visualisation

The ratios for vertices and edges in the tables in Appendix E.2 for Scenario
2 are exactly the same when regarding equivalences of the KAs and KUs.
When adding topic equivalences to the digraphs being compared, the differ-
ence between the ratios is less than 0.05 from each other. This means that
there is minimal differentiation between vertices and edges.

The radar charts in Figure 11.11 show the comparison of the curriculum
volumes with equivalences. The equivalences in terms of KUs are on the
left-hand-side of the figure. The right-hand-side of the figure includes the
nine topic equivalences for HC/HCI across all curriculum volumes. The KA
equivalence of HC in CC2001, CS2008 and CS2013S is equivalent to HCI
in CS2013I is applied to both the left-hand-side and the right-hand-side.
From the radar charts it can be seen that when taking the KA and KU
equivalences into account, as on the left-hand-side, the differences between
the curriculum volumes is greater. The addition of the topic equivalences
results in a minimal difference between the curriculum volumes.

Analysis of radar chart with KU equivalence

When analysing Figure 11.11 using the equivalent KA and KUs, that is the
radar chart on the left, it is apparent that CS2013S and CS2013I are similar.
The only differentiation between them on the radar chart is for the ratios
R(M \C, I) and R(C \M, I). Where the one ratio is 0 the other is 0.25 and
vice versa when the model and ideal are swapped—refer to the yellow line
versus blue line on the radar chart. This change means that there has been
a 25% increase in representation of digraph CS2013I from CS2013S. Ratio

162

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Knowledge Units (KUs) Topics

Figure 11.11: Scenario 2: Equivalences in the HC/HCI KA

R(C, I) confirms that the similarity between the two volumes is 75%.
The ratio R(M, I) when equivalence of KUs is taken into account high-

lights the fact that the representation of the HC KA has increased by 19%
in going from CC2001 to CS2008. This was not immediately apparent
in Figure 11.5. For both CC2001 and CS2008 as the ideal, the resulting
complier—represented by the ratio R(C, I)—is dissimilar to the ideal. The
match between the complier and the ideal is less than 50% in both instances.
This ratio, along with R(I \ C, I), R(I \M, I) and R(M \ C, I), indicates
that other than just an increase in representation, there was also a shift from
CC2001 to CS2008 in terms of content. Referring back to Figure 11.5, this
shift can be seen when considering the the conjunction between the edges
with red lines and the edges with blue lines.

Analysis of radar chart with KU and topic equivalences

Analysis of the radar chart on the right of Figure 11.11 shows that when
topic equivalences are included, the matching between the digraph pairs
tend towards the benchmark. This was what was hoped for when viewing
the visual representation of the digraphs in Figure 11.10 and comparing it
to the digraphs in Figure 11.5.

The difference between CC2001 and CS2008 of approximately 25% is
still visible in ratios R(I \C, I), R(I \M, I) and R(M \C, I). This confirms
that adding the equivalences does not change the meaning as depicted by the
relationships between vertices in the digraph, but rather enables improved
matching. The matching between CS2013S and CS2013I has improved with
the inclusion of topic equivalences.

163

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



11.3.5 Discussion

From the analysis it can be seen that there was a shift between CC2001 to
CS2008 with regards to the Human Computer Interaction KA. This shift was
not as pronounced as the one that took place when CS2013S was specified.
During the shift to CS2013S the topics represented by the equivalent KUs
U0019 (Building a simple graphical user interface) and U0221 (Building GUI
interfaces) were dropped and a new KU, U0157 (Designing Interaction) was
introduced. With one topic shared between the three KUs it cannot be con-
cluded that the three KUs are equivalent. A further shift took place between
CS2013S and CS2013I. This is most pronounced where the topics related to
U0157 are concerned, as can be seen in Figure 11.5. When considering the
equivalences in topics represented in Figure 11.10, it was seen that the shift
was as a result of changes in topic descriptions.

This scenario has shown that finding equivalences for KAs, KUs and—
more specifically—for topics, does improve matching. It is also important
that, in order to remove bias, equivalences are applied uniformly to all di-
graphs that are to be compared. When equivalences are uniformly applied,
their net effect on the ratios is limited to the ratios R(M, I) and R(C, I).
The equivalences have no effect of the difference ratios. This is because
uniform application of equivalences means that the same equivalences occur
in the two digraph sets which serve as operands of the set difference opera-
tor. As a result, the resulting set will therefore not contain any equivalence
information.

Scenario 2 shows that it is desirable to extend the mapping of topic
equivalences to the other KAs. An interesting KA to begin with would be
the KA defined as PF in CC2001 and CS2008 and defined as SDF in CS2013
Strawman and Ironman. Section 8.4.2 and Table 8.2 referred briefly to these
changes.

11.4 Scenario 3: Application to a real-world cur-
riculum

11.4.1 Scenario overview

In this scenario, the core aspects of a real-world curriculum presented in
Appendix F will be compared with the ACM/IEEE curriculum volumes.
The real-world curriculum is that of the BSc degree programme in Computer
Science (BSc CS) presented at the University of Pretoria.

In this scenario, knowledge provided by the curriculum expert and the
module expert, will be needed to make decisions regarding curriculum choices.

164

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



11.4.2 Overview of the BSc CS degree programme

The BSc CS curriculum was developed in 2007 using CC2001 as a basis.
The methodology followed to develop the curriculum was to complete a
spreadsheet based on what was being presented in the modules that existed
at the time. An example of the spreadsheet has already been presented
in Chapter 10, Figure 10.4. The information was used to determine the
gap between what was being presented and what is required in a Computer
Science curriculum as defined in CC2001 [Marshall, 2011]. In the absence
of any software tools (other than a spreadsheet), the data collection and
the gap determination process had to be done manually—all in all a rather
demanding task.

The BSc CS curriculum that resulted from this process is presented in
Appendix F. The curriculum follows the curriculum structure as required
by the University of Pretoria. Modules are classified as fundamental, core
and elective. Fundamental modules are prescribed by the University. Core
modules are prescribed modules which all students following the degree pro-
gramme must complete. Electives add variety to the degree and, within
parameters, students may use them to customise their programmes. In the
BSc CS degree programme, Computer Science students are required to pass
the specified COS modules presented by the Computer Science department.
Other departments in the University are responsible for the modules whose
codes do not begin with COS. Mathematics presents the modules on Dis-
crete Structures (WTW115 and WTW285), Information Systems presents
the database module (INF214) and Information Science the Social and eth-
ical issues surrounding Information Technology in INL240. The Computer
Architecture module, ERA284, was presented by the Electrical, Electronic
and Computer Engineering department.

The first intake of students on the curriculum was in 2009 with the
first cohort completing at the end of 2011. Since the implementation of
the degree programme, a few changes have been made to the programme.
These changes are mainly due to institutional changes, changes to modules
presented by other departments that impact the core modules of the degree
programme, and changes to staff and/or textbooks used in the modules.

11.4.3 Changes require re-evaluation

With changes taking place both in the ACM/IEEE curriculum volumes as
well as the BSc CS degree programme, it would be sensible to test what is
being presented against what is expected. In 2011 this was done [Marshall,
2011]. From this study it was seen that the curriculum inadequately reflected
the changed ACM/IEEE curriculum volumes, namely CS2008 and CS2013S.

The original spreadsheet, along with the official university module de-
scription and the study guides for the respective modules, was used as a basis

165

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CS

Year1

Year2

Year3

COS132

COS151

COS110

COS121

WTW115

ERA284

COS212

COS216

COS222

COS226

INF214

INL240

COS301

COS332

COS330

COS333

T00151

T00005

T00009

T00034
T00037

T00119

T00149

T00190

T00255

T00316

T00341

T00478

T00481
T00506

T00522

T00536

T00546

T00582

T00588
T00605

T00702

T00733

T00774

T00796

T00045

T00055

T00060

T00240

T00256

T00289

T00290
T00291

T00293

T00358

T00362

T00371

T00455

T00470

T00499

T00643_1

T00652

T00689

T00745

T00942

T00972

T00137

T00200

T00259

T00317

T00336

T00403

T00421

T00459

T00460

T00510

T00523

T00619

T00654
T00656

T00694

T00705 T00735

T00049

T00089

T00107

T00160

T00163

T00305

T00388

T00642

T00699

T00704

T00771
T00612

T00077

T00125_2

T00178

T00216

T00217

T00254

T00320

T00382

T00391

T00401

T00422

T00451

T00453

T00489_1

T00489_2

T00489_3

T00497

T00515 T00549

T00550 T00551

T00553

T00587

T00598

T00645

T00703T00752

T00784 T00795

T00813

T00823

T00824

T00046

T00058

T00063

T00067

T00068

T00113

T00162

T00180

T00189

T00199

T00267

T00273

T00278

T00314

T00315

T00318

T00456T00458

T00486

T00567
T00586

T00603

T00624

T00650

T00655

T00677

T00746

T00756

T00760

T00763

T00767

T00768

T00769

T00773

T00782

T00793

T00021

T00065_5

T00082

T00117_1

T00166

T00287

T00324

T00439

T00545

T00617

T00682_1

T00682_2

T00682_4

T00717

T00786

T00810

T00812

T00812_1

T00812_3

T00970

T00007

T00071T00073

T00074
T00082_2

T00135

T00146

T00147

T00182

T00253

T00330

T00350

T00395

T00404

T00418

T00433T00469

T00500

T00517

T00542
T00543

T00611

T00616
T00626

T00692

T00707

T00709

T00731

T00819

T00065_1

T00010

T00012

T00048

T00072

T00082_3

T00086

T00120

T00227

T00241

T00301

T00302

T00340

T00345

T00351

T00352

T00357

T00372

T00479

T00495

T00573

T00604

T00649

T00698

T00720

T00747

T00801

T00804

T00821

T00136

T00142

T00526

T00597

T00008

T00047

T00061

T00080

T00087

T00103

T00110

T00150

T00250

T00271

T00297

T00298

T00299_1

T00338

T00353

T00363

T00379

T00428

T00462

T00541

T00547

T00548

T00559

T00591

T00607

T00608

T00609

T00613

T00661

T00663

T00664

T00665

T00666

T00669

T00670

T00672

T00728

T00729

T00783

T00794

T00974

T00975

T00976

T00977

T00978

T00979

T00040

T00442

T00444

T00496

T00700

T00740

T00766

T00082_1

T00095

T00173

T00261

T00491T00562

T00564

T00633

T00635

T00741

T00750

T00797

T00035

T00065_2

T00065_3

T00065_4

T00096

T00097

T00102

T00346

T00738

INL204

T00207

T00208

T00248

T00269

T00303

T00398 T00659

T00723

T00764
T00781

WTW285

T00237

T00412

Figure 11.12: Real-world BSc CS

for re-evaluating the BSc CS curriculum. From this information, a keyword
match (introduced in Section 10.4) was applied to the BSc CS specification.
The CC2001 topics in the then-existing curriculum were derived from these
keywords.

11.4.4 Graph visualisation

In this section the BSc CS degree programme will be compared visually
with the ACM/IEEE Curriculum volumes. Figure 11.12 represents the core
modules of the BSc CS degree programme. When this figure is compared
with the core in CC2001 given in Table 11.1, the two figures do not appear to
be structurally similar. Neither is the extent to which the BSc CS curriculum
complies with CC2001 immediately apparent.

Figure 11.13 presents the complier graph of the BSc CS degree as model,
shown in yellow, with the ideal of CC2001 in red. Common edges will have a

166

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



AL

U0009

U0014

U0015
U0038

U0049

T00046

T00063

T00067

T00189

T00267

T00278

T00456

T00486

T00037

T00058

T00199

T00305

T00689

T00756

T00793

T00116

T00240

T00320

T00739

T00761

T00780

T00112

T00231

T00688

T00726

T00060

T00273

T00412

T00458

T00567

T00603

T00643_1

T00650

T00655

T00760

T00763

T00768

AR

U0012 U0036

U0046

U0071

U0077

U0079

U0084

T00010

T00035

T00048

T00120

T00301

T00339

T00341

T00711

T00256

T00390

T00470

T00495

T00593

T00315

T00340

T00355

T00071

T00227

T00302

T00351

T00358

T00573

T00822

T00241

T00455

T00604

T00605

T00652

T00821

T00073

T00096

T00230

T00372

T00395

T00403
T00698

T00804

T00072
T00345

T00357

T00404

T00649T00720

CS

DSGV

HC

IM

IS

NC

OS

PF

PL

SE

SP

U0016

U0018

U0037

U0048

U0060

U0102

U0053

U0057

U0019

U0045

U0030

U0032

U0068

U0051

U0074

U0111

U0021U0073

U0087

U0125

U0027

U0078

U0090

U0092

U0109

U0010

U0041

U0050

U0052

U0104

U0001

U0033

U0072

U0089

U0093

U0129

U0114

U0115

U0116

U0117

U0119

U0120

U0121

U0128

U0064

U0070

U0080

U0098

U0099

U0107

U0113

T00382

T00391

T00422

T00451

T00515

T00553

T00771

T00784

T00795

T00125

T00489

T00674

T00497

T00216

T00217

T00237

T00077

T00254

T00598

T00645

T00180

T00677

T00767

T00769

T00782

T00178

T00401

T00453

T00549

T00550

T00551

T00587

T00703

T00752

T00813

T00013_1

T00092

T00280

T00295

T00653_1

T00792

T00803

T00364

T00494 T00576

T00801

T00271

T00524

T00008

T00117_1

T00297

T00298

T00299_1

T00363

T00428

T00523

T00107

T00136

T00461

T00597

T00142

T00145

T00287

T00786

T00970

T00019

T00289

T00327

T00328

T00330 T00333

T00624

T00632

T00258

T00491
T00290

T00417

T00746

T00053
T00449

T00531

T00610

T00612

T00055

T00068 T00113

T00535

T00773

T00086

T00135

T00350

T00444

T00496

T00700

T00740

T00766

T00682

T00045

T00442

T00040

T00173

T00218 T00261

T00562

T00633

T00082

T00812

T00166

T00439

T00564

T00617

T00717

T00810

T00012

T00147

T00182

T00418

T00433

T00543

T00692

T00707

T00731

T00747

T00074

T00469

T00479

T00500

T00611

T00819

T00007

T00022

T00105

T00106

T00167

T00352

T00709

T00162

T00253

T00292

T00324

T00402

T00616

T00146

T00517

T00542

T00626

T00149

T00316

T00536

T00733

T00745

T00214

T00215

T00220

T00034

T00137

T00317

T00318

T00388
T00506

T00522

T00582

T00619

T00694

T00699

T00702

T00049

T00119

T00255

T00654

T00704

T00796

T00190

T00314

T00586

T00588

T00656

T00735

T00005

T00009

T00421

T00481

T00774

T00151

T00262

T00478

T00736

T00102

T00371

T00393

T00088

T00089

T00097

T00200

T00336

T00347

T00460

T00510

T00642

T00065

T00293

T00738

T00281

T00346

T00635

T00734

T00103

T00160

T00163

T00259

T00459

T00661

T00705

T00080

T00379T00591

T00665

T00672

T00541

T00664

T00669

T00722

T00547

T00548

T00613

T00663

T00666

T00670

T00047 T00250
T00559

T00608

T00609
T00110

T00546

T00607

T00729

T00758

T00061

T00338

T00462

T00728

T00783

T00794

T00021

T00087

T00150

T00353

T00545

T00291

T00499

T00972

T00123

T00248

T00668

T00764

T00973

T00303

T00304

T00398

T00781

T00207

T00249 T00348

T00526

T00723

T00001

T00095

T00101

T00148

T00208

T00396

T00741

T00750
T00797

T00284

T00319

T00614

T00263

T00269

T00349

T00362

T00659

T00065_1

T00065_2

T00065_3

T00065_4

T00065_5

T00082_1 T00082_2

T00082_3

T00125_1

T00125_2

T00823

T00824

T00945

T00946

T00489_1

T00489_2

T00489_3

T00942

T00943

T00944

T00674_1

T00674_2

T00682_1

T00682_2

T00682_3

T00682_4

T00974

T00975

T00976

T00977
T00978

T00979

T00812_1

T00812_2

T00812_3

T00812_4

Figure 11.13: Complier of the BSc CS as model and CC2001 as ideal

double line, one in yellow representing the edge of the complier and one in red
representing the edge of CC2001. From the figure one has the impression
that the complier is similar to CC2001. The Difference Comparison and
Difference Visualisation components presented in Sections 11.4.5 and 11.4.6
respectively will provide more detailed insight into the similarity.

The immediate question to arise is: “How well does the BSc CS curricu-
lum compare with CS2013I?”. To answer this question, the visual represen-
tations of the complier of the BSc CS curriculum as model and CS2013I as
ideal are overlayed and presented in Figure 11.14. From the representation
in Figure 11.14, it can be seen that the matching of the complier of the
BSc CS degree programme no longer matches as well as it did with CC2001
(compare with Figure 11.13). This can be seen when inspecting the edges

167

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



that are represented in both yellow and purple. In this comparison, these
edges are few. On closer investigation between CC2001 and CS2013I, this
result can be attributed to the subtle changes in topic descriptions that have
taken place between the two volumes.

In order to update the topics in the BSc CS degree programme from
CC2001 topics descriptions to CS2013I topics descriptions, a keyword match—
as described in Section 10.4, Capturing topic data—is applied. Keywords
or phrases for the modules in the BSc CS degree programme are identified
by using the official university module descriptions and the module study
guides. The list of topics associated with CS2013I are used to represent
the curriculum volume topics. For each keyword or phrase representing the
module, the corresponding CS2013I topic(s) for the related KA and/or KU
are identified. The identification follows a two step process. The first step
makes use of the program to suggest candidate CS2013I topics that relate to
the module description keywords or phrases. The second step requires the
curriculum and/or module expert to accept or reject the topics that have
been proposed as matching. The results of the topic matching process and
inclusion in the BSc CS degree programme are given in Figure 11.15. This
figure is a representation of the complier of the BSc CS degree programme
with topics in terms of the topics defined in CS2013I and compared with
CS2013I. The edges that are both yellow and purple in Figure 11.15, indi-
cates that modelling the BSc Cs degree programme with topics in CS2013I
when comparing with CS2013I, results in a better match between the com-
plier and the ideal. A more in-depth analysis of the results is presented in
Sections 11.4.5 and 11.4.6.

11.4.5 Difference comparison

CC2001(I), BSc
CS(M)

CS2013I(I), BSc
CS with CC2001
topics (M)

CS2013I(I), BSc
CS with CS2013I
topics(M)

Quantity | V | | E′ | | V | | E′ | | V | | E′ |
I 476 477 732 732 732 732

M 332 397 332 397 370 470

C 338 389 157 156 461 460

I \ C 88 88 575 576 271 272

I \M 165 477 625 732 383 732

M \ C 21 397 225 397 21 470

C \M 77 389 50 156 112 460

Table 11.7: Scenario 3: Set cardinalities for the comparison of the BSc CS
with CC2001 and CS2013I

168

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



AL

U0009

U0014_1

U0050_2

U0148

T00063

T00067

T00189

T00193

T00267

T00278

T00586

T01028

T00037

T00058_1

T00058_2

T00058_3

T00199

T00305_1

T00674_3

T00689_1
T00756

T00793_2

T00793_3

T00060

T01030

T00273_1

T00458_1

T00486_1

T00567_1

T00643_1

T00655_1

T01671

T00116

T00156_1
T00240

T00594

T00739

T01031_1

T01032_1

AR

U0012

U0036

U0071

U0077

U0079

T00010

T00035

T00048

T00120_1

T00301

T00339

T00341

T00357_2

T00711
T01058T01059

T00470

T00495_1
T00593_1

T01055

T01056

T01057

T00071

T00227

T00302

T00351

T00358_1

T00573

T00822

T00241

T00455

T00604

T00605

T00652

T00821

T00073

T00096_1

T00230

T00372

T00395

T00403_1

T00698

T00804

T01060

CN_1

U0152_1
T01069

T01070
T01672

T01673

CS

DS

GV_1

HCI

IAS

IM

IS

NC_1

OS

PD

PL

SDF

SE

SF

SP

U0016

U0018

U0037

U0048_1

U0060

U0102

U0156

U0045

U0157

U0087

U0164_1
U0165 U0169_1

U0236

U0237

U0030

U0032

U0170

U0051

U0074_1

U0172
U0173

U0073_1U0144

U0176

U0177U0178

U0179

U0180

U0027
U0078

U0090
U0092

U0109

U0112

U0094_1

U0186

U0187

U0188

U0189

U0041_1

U0047

U0089

U0127_1

U0147_1

U0193

U0050

U0052_2

U0204

U0205

U0114

U0115

U0116

U0117

U0118

U0120_1

U0121_1

U0206
U0207

U0179_1

U0208

U0209

U0210

U0211_1U0212_1

U0213
U0214

U0215

U0070

U0098

U0099_1U0133_1

U0216

U0217

U0218

T00515

T00382_1

T00391
T00451

T00553 T00771

T00795_1T01097

T00125

T00489

T00674

T00497_1

T01104

T00216_1

T00216_2

T00217_1

T00217_2
T00237_1

T01107

T01108
T01109

T00254_1

T00598_1

T00645_1

T00769

T00180

T00677_1

T00782

T01105

T01106

T00178

T00453_1

T00549

T00551_1

T00587

T00752_1

T00813

T01098
T01099

T01100

T00792_2

T01113

T01117

T01675

T01676
T01677

T01678
T01679

T00117_2

T00523

T01162

T01163

T01164

T01165T01166

T01167

T01168

T01680

T00211_3

T00211_5
T00272_1

T00524

T01171_1

T01172_1

T01174

T01681

T00903_1

T01259_1

T01713

T01714
T01715

T00829_2

T01215_1

T01256_1

T01682

T01683

T01716

T01717
T01718

T01719

T00832

T01684

T01685

T01686

T01687

T01688

T01689

T01690

T01691

T01692

T01693
T01694

T01695

T01698

T01451_4

T01696

T01697

T01703

T01704

T01705

T01706

T01707

T01708

T01709

T01710

T01711

T01712

T00107_1

T00136

T00461

T00597

T01272

T01721

T00142

T00145_1

T00970

T01269

T01270

T01271

T00019

T00327

T00328

T00333_1

T00624_1

T01267

T01268

T01720

T01287

T01290

T01297

T01286

T01301

T00531_1

T00610_1

T00612_1

T01304
T00055_1

T00068_1 T00113

T00535_1

T00773_1

T01302

T01303T00153_3

T00743_1

T01305

T01306
T01307

T00086_1

T01398

T01399

T01400

T01401

T00557_1

T01402

T01403

T01404
T01405

T00135_1

T00135_2

T01016_1

T01406

T00623_1

T01407
T01408

T01409

T00086_2

T00356_2

T01410_1

T01411

T01722

T01412
T01413

T01414
T01415

T01416

T01723

T01417
T01418

T01419

T00182

T00433

T00692

T00707

T00747

T01420

T01421

T00074

T00611

T00819

T00007

T00022

T00105

T00106

T00167

T00352

T00709

T00162

T00253

T00324 T00402

T00616
T00146

T00517

T00542

T00626

T00475

T00508
T00555_1T00637

T00883

T01473

T01470T01471

T01472

T01451

T01724

T01448

T01449

T01455
T01457

T01452

T01453

T01454
T01459

T01460

T01463
T01464

T01462

T00862_1

T01477

T01478

T01479

T01517

T00212_3

T01516

T01518

T01519

T01507_1

T01510

T01514

T01513

T01515

T00460

T01497

T01501

T00089_1

T00089_2

T00336_1

T01505

T00139_1

T00482_1

T01524

T01525

T01522

T01523

T00371_1

T01530

T01727 T01528

T01529

T00484_1

T01526

T01527

T00928_1

T00034

T00582_1

T00699_1

T00702

T01536

T01537_1

T01538_1

T00049

T00119

T00255

T00654_1

T00735

T00796_1

T00796_2

T00259

T00536

T00733

T00745

T01538

T01670_1

T00149

T01546

T00163_1

T01565

T01566

T01567
T01568

T01569
T01570_1

T01571

T01581

T00080
T00672

T01582
T01583

T00664_2

T01547

T01549

T01730

T00613_1

T01556

T01561

T00671_1

T00671_2

T01584

T00546_2

T00607

T00663_1

T00729_1

T00758_1

T00728_2

T01575

T01576

T01577T01579

T01580

T00250_1
T00250_2 T00609_2

T01562

T01563

T01564

T01572

T01732
T01573

T01574

T00517_1

T01597

T01598

T00256_1
T00256_2T01016_2 T01586

T01587

T01588

T00600_1

T01589

T01590_1

T01591

T00840_1

T01055_1

T01296_1

T01592

T01593

T00543_1

T00862_3

T01594_1

T01737

T01738

T00372_2

T00860_1

T01027_1

T01596

T00403_2

T00403_4

T01064_2

T01599

T01600

T01601

T01602

T01603

T01604_1T01605

T01606

T01607

T01608
T01739

T00123_2

T00248_1

T01618

T01619

T01620
T01621

T01622

T00526_1

T01623

T01624

T01625

T01626

T00001

T00095_2

T00101

T00148

T00208

T00741_1

T00750

T00797_1

T01211_2

T01615

T01616

T01617_1

T01740

T00269_1

T00362_1

T01193_1
T01609

T01610_1

T01611T01612

T01613

T01614

T01627

T01628

T01629

T01630

T01631

T01632

T01633

T01634

T01029

T00125_1

T00125_2

T00823

T01101

T00522_1

T01521_1

T01094

T01095

T01096

T00200

T00642
T01533

T01534

T00371_2

T00371_3

T01495

T01496

T00482_2

T00482_3

T00482_4

T00489_1

T00489_2

T00489_3

T00784

T00190

T00536_1

T00588_1

T01731

T01092

T01093

T01550

T01551

T01087

T01088

T01089

T01090

T01091

T01548

T01102

T01103

T00061

T00783

T01578

T00733_1

T00767

T01674

T01535_1

T01535_2

T01535_3

T01535_4

T01535_5

T00412

T00603

T00650

T00768

T01096_1

T01465

T01466

T00942

T01288

T01291T01292
T01293

T01294

T01295

T01296

T01298

T01299

T01300

T01451_1

T01451_2

T01451_3

T01456

T01458_1

T01461_1
T01463_1

T01463_2
T01463_3

T01464_3

T01464_4

T01464_1

T01464_2

T01474

T01498

T01499

T01500

T01502_1

T01503

T01504 T01507

T01508

T01509

T01511

T01512_1

T01514_1

T01514_2

T01514_3

T01726

T01517_1

T01517_2
T01524_1

T01524_3

T01525_1

T01525_2

T01525_3

T01525_4

T01530_1

T00728_1

T01539

T01540

T01541

T01542

T01543

T01544

T01728

T00976

T01557

T01559

T01560

T01540_1
T01540_2

T01540_3

T01670

T01735
T01736

T01545

T01729

T01699

T01700

T01701

T01702

T01725

T01531_1

T01531_2

T01733

T01734

Figure 11.14: Complier of the BSc CS as model and CS2013I as ideal - BSc
CS topics defined in CC2001

169

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



AL

U0009

U0014_1

U0050_2

U0148

T00063

T00067

T00189

T00193

T00267

T00278

T00586

T01028

T00037

T00058_1

T00058_2

T00058_3

T00199

T00305_1
T00674_3

T00689_1

T00756

T00793_2
T00793_3

T00060

T01030

T00273_1

T00458_1

T00486_1

T00567_1

T00643_1

T00655_1

T01671

T00116

T00156_1
T00240

T00594

T00739

T01031_1
T01032_1

AR

U0012

U0036

U0071

U0077

U0079

T00010

T00035

T00048

T00120_1

T00301

T00339

T00341

T00357_2

T00711

T01058

T01059

T00470

T00495_1

T00593_1

T01055

T01056

T01057

T00071

T00227

T00302

T00351

T00358_1

T00573

T00822

T00241

T00455

T00604

T00605

T00652

T00821

T00073

T00096_1

T00230

T00372

T00395

T00403_1
T00698T00804

T01060

CN_1

U0152_1

T01069

T01070

T01672

T01673
CS

DS

GV_1

HCI

IAS

IM

IS NC_1OS

PD

PL

SDF

SE

SF

SP

U0016

U0018

U0037

U0048_1

U0060

U0102

U0156

U0045

U0157

U0087

U0164_1

U0165

U0169_1

U0236

U0237

U0030

U0032

U0170
U0051

U0074_1

U0172

U0173

U0073_1

U0144

U0176

U0177 U0178

U0179

U0180

U0027

U0078

U0090

U0092

U0109

U0112

U0094_1

U0186

U0187

U0188

U0189

U0041_1

U0047

U0089

U0127_1

U0147_1

U0193

U0050

U0052_2

U0204

U0205

U0114

U0115

U0116

U0117

U0118

U0120_1

U0121_1

U0206

U0207

U0179_1

U0208

U0209

U0210

U0211_1

U0212_1

U0213

U0214

U0215

U0070

U0098

U0099_1

U0133_1

U0216

U0217

U0218

T00515
T00382_1

T00391

T00451

T00553

T00771

T00795_1

T01097

T00125

T00489

T00674

T00497_1

T01104

T00216_1

T00216_2

T00217_1

T00217_2

T00237_1

T01107

T01108

T01109

T00254_1

T00598_1

T00645_1

T00769

T00180

T00677_1

T00782
T01105

T01106

T00178

T00453_1 T00549 T00551_1

T00587

T00752_1

T00813

T01098

T01099

T01100

T00792_2

T01113

T01117

T01675

T01676

T01677

T01678

T01679

T00117_2

T00523

T01162

T01163

T01164

T01165

T01166

T01167

T01168

T01680

T00211_3

T00211_5

T00272_1

T00524

T01171_1

T01172_1

T01174

T01681

T00903_1

T01259_1

T01713

T01714

T01715

T00829_2T01215_1

T01256_1

T01682 T01683

T01716

T01717

T01718

T01719

T00832

T01684

T01685

T01686

T01687

T01688

T01689T01690

T01691
T01692

T01693
T01694

T01695

T01698

T01451_4

T01696

T01697

T01703

T01704
T01705

T01706

T01707

T01708

T01709

T01710

T01711

T01712

T00107_1

T00136

T00461

T00597

T01272

T01721
T00142

T00145_1

T00970

T01269

T01270

T01271

T00019

T00327

T00328

T00333_1

T00624_1

T01267

T01268

T01720

T01287

T01290

T01297

T01286

T01301

T00531_1

T00610_1

T00612_1

T01304

T00055_1T00068_1
T00113

T00535_1

T00773_1

T01302

T01303

T00153_3

T00743_1
T01305

T01306
T01307

T00086_1

T01398

T01399

T01400

T01401

T00557_1
T01402

T01403

T01404

T01405

T00135_1

T00135_2

T01016_1

T01406

T00623_1

T01407

T01408

T01409

T00086_2

T00356_2

T01410_1

T01411

T01722

T01412

T01413

T01414

T01415

T01416

T01723

T01417

T01418

T01419

T00182

T00433

T00692

T00707

T00747

T01420

T01421

T00074

T00611

T00819

T00007

T00022

T00105

T00106

T00167

T00352

T00709

T00162

T00253

T00324

T00402

T00616

T00146

T00517

T00542

T00626

T00475

T00508

T00555_1

T00637

T00883

T01473

T01470

T01471

T01472

T01451

T01724

T01448

T01449

T01455

T01457

T01452

T01453T01454

T01459

T01460

T01463

T01464

T01462

T00862_1

T01477

T01478

T01479

T01517

T00212_3

T01516

T01518

T01519

T01507_1

T01510

T01514

T01513

T01515

T00460

T01497
T01501

T00089_1

T00089_2

T00336_1

T01505

T00139_1

T00482_1

T01524

T01525

T01522

T01523

T00371_1

T01530

T01727

T01528

T01529

T00484_1

T01526

T01527

T00928_1

T00034

T00582_1

T00699_1

T00702

T01536

T01537_1T01538_1

T00049

T00119

T00255

T00654_1

T00735

T00796_1

T00796_2

T00259

T00536

T00733

T00745

T01538

T01670_1

T00149

T01546

T00163_1

T01565

T01566

T01567

T01568
T01569

T01570_1

T01571

T01581

T00080

T00672

T01582

T01583

T00664_2

T01547

T01549

T01730

T00613_1

T01556

T01561

T00671_1

T00671_2

T01584

T00546_2
T00607

T00663_1

T00729_1

T00758_1

T00728_2

T01575

T01576

T01577

T01579

T01580 T00250_1

T00250_2

T00609_2

T01562

T01563

T01564

T01572

T01732
T01573

T01574

T00517_1

T01597

T01598

T00256_1

T00256_2

T01016_2

T01586

T01587

T01588

T00600_1

T01589

T01590_1

T01591

T00840_1

T01055_1

T01296_1

T01592

T01593

T00543_1

T00862_3

T01594_1

T01737

T01738

T00372_2

T00860_1T01027_1

T01596

T00403_2

T00403_4

T01064_2

T01599

T01600

T01601
T01602

T01603

T01604_1

T01605T01606

T01607

T01608

T01739

T00123_2

T00248_1

T01618

T01619

T01620
T01621

T01622

T00526_1

T01623

T01624

T01625

T01626

T00001

T00095_2

T00101

T00148

T00208

T00741_1

T00750

T00797_1

T01211_2

T01615

T01616

T01617_1

T01740

T00269_1

T00362_1

T01193_1

T01609

T01610_1 T01611

T01612

T01613

T01614

T01627

T01628

T01629

T01630

T01631

T01632

T01633

T01634

T01029

T00125_1

T00125_2

T00823

T01101

T00522_1

T01521_1

T01094

T01095

T01096

T00200

T00642

T01533

T01534

T00371_2

T00371_3

T01495 T01496

T00482_2

T00482_3

T00482_4

T00489_1

T00489_2

T00489_3

T00784

T00190

T00536_1

T00588_1

T01731

T01092

T01093

T01550

T01551

T01087

T01088

T01089

T01090

T01091

T01548

T01102

T01103

T00061

T00783

T01578

T00733_1

T00767

T01674

T01535_1

T01535_2

T01535_3
T01535_4

T01535_5

T00412

T00603

T00650

T00768

T01096_1

T01465
T01466

T00942

T01288

T01291

T01292

T01293

T01294

T01295

T01296

T01298

T01299

T01300

T01451_1

T01451_2

T01451_3

T01456

T01458_1

T01461_1

T01463_1

T01463_2

T01463_3

T01464_3

T01464_4

T01464_1

T01464_2

T01474

T01498

T01499
T01500

T01502_1

T01503

T01504

T01507
T01508

T01509

T01511

T01512_1

T01514_1

T01514_2

T01514_3

T01726

T01517_1

T01517_2

T01524_1

T01524_3

T01525_1

T01525_2

T01525_3

T01525_4

T01530_1

T00728_1

T01539

T01540

T01541
T01542

T01543

T01544

T01728

T00976

T01557

T01559

T01560

T01540_1

T01540_2

T01540_3

T01670T01735
T01736 T01545

T01729

T01699

T01700

T01701

T01702

T01725

T01531_1

T01531_2

T01733

T01734

Figure 11.15: Complier of the BSc CS as model and CS2013I as ideal - BSc
CS topics defined in CS2013I

170

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Table 11.7 presents the set difference quantities where the real-world
BSc CS curriculum is taken as model and where first CC2001 and then
CS2013I are used as the ideal. As with the visualisation, there are two
versions of the comparison with CS2013I. The first makes use of the topics
as defined in CC2001. The second makes use of topics in the BSc CS as
defined in CS2013I. The cardinalities of the ideal, model and complier sets
are included in the first three rows of the table. The data in the table is
used to compute the ratios that are visualised in radar charts to be discussed
later in Section 11.4.6.

Inspection of the vertices for each of the difference sets reveals some
interesting insights. These will briefly be discussed for each of the ideal
and model digraph combinations presented in Table 11.7. A listing of the
vertices for each of the vertex difference sets as produced by the Graph
Trans-morphism Algorithm has been provided in Appendix G. A synopsis
and brief discussion of these results follows.

(a) CC2001(Ideal) and BSc CS(Model)

I \ C: Of the 88 vertices, 4 are KUs. The difference of 84 therefore
represents the topics in the ideal that are not in the complier.

I \M : The vertices represent KAs, KUs and topics. It is under-
standable that the KAs and KUs will not be in M as M does
not make use of these concepts when modelling the real-world
curriculum. The total number of topics in the vertex set is 89,
more than half the total number of vertices in the set (namely
165).

M \ C: The vertex count of 21 reflects differences with respect to
structural differences in the BSc CS only. Thus, all topics in M
are also in C

C \M : Of the total of 77 vertices, only 5 refer to topics. The other 72
vertices highlight the difference in structure between the complier
and the model. The rationale for these vertices not being in M
is the same as for I \M .

Discussion
Closer examination of the 84 topics in I \ C shows that all of
them are also in I \M . The 5 topics in I \M that are not in
I \ C are: T00065, T00125, T00489, T00682 and T00722. These
are the exact same topics that are in C \M , meaning that only
these 5 topics have been inferred. The 84 topics in I which are
not in C are of more concern and need to be investigated by the
curriculum specialist as well as the real-world curriculum module
presenters to determine whether they were not overlooked when
defining the model.

171

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



(b) CS2013I (Ideal) and BSc CS with CC2001 topics (Model)

I \ C: A total of 575 vertices in the vertex difference set are in I and
not in C. Of these vertices, 6 represented KAs and 52 represented
KUs. This means that there are 517 vertices representing core
topics of CS2013I that are not in the complier.

I \M : This set difference in terms of vertices results in a total of
625 vertices with 17 representing KAs and 85 KUs. The vertices
representing topics is therefore 523.

M \ C: Of the 225 vertices, 204 represent topics. These 204 topics
in the real-world curriculum cannot be matched with topics in
CS2013I. The topics however in the real-world curriculum were
based in the topics in defined in CC2001 and therefore it is evident
that there has been a shift with regards to how the topics are
specified between CC2001 and CS2013I. The topics in this set of
vertices should be investigated to determine whether there are
equivalences for them in CS2013I.

C \M : There are 6 vertices representing topics. These topics are:
T00125, T00728 2 T01030, T01287 and T01556. These topics
have been included in C after they have been inferred from the
information in M .

Discussion
The number of topic vertices for the difference quantities I \ C,
I \M and M \C reflect that changes in the specification of topics
has taken place between CC2001 and CS2013I. It is necessary to
determine the the equivalences between the topics in the curric-
ula volumes in order to preserve backward compatibility of the
real-world curricula with the information presented in the latest
volumes. By considering the topics represented in the difference
set M \C and looking for equivalent topics in CC2001, it may be
possible to improve the comparison after application of Rules 10.1
and 10.2.

(c) CS2013I (Ideal) and BSc CS with CS2013I topics (Model)

I \ C: A total of 271 are in the vertex set. Of these 266 represent
topics and 5 KU’s.

I \M : Of the 383 total vertices, 17 represent KAs and 85 KUs. A
total of 281 topics are in I which are not in M .

M \ C: The 21 vertices in this set are the structural elements of M
such as the year-levels and module codes that are not in C. These
differences reflect structural aspects of the BSc CS degree pro-
gramme in the following way: 18 vertices represent the modules

172

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



of the degree program; and the remaining 3 vertices represent the
years into which these modules are classified.

C \M : The majority of the 112 vertices in the vertex set of the
quantity C \M represent structural aspects of C. There are 17
KAs, which corresponds to the KA value for I \M , and there
are 80 KUs. Therefore, 112 − (17 + 80) = 15 topics have been
inferred.

Discussion
The number of topics for the difference quantities I \ C and
I \M , namely 266 and 281 respectively, gives an indication to
what extent it is necessary to keep abreast with the curriculum
changes when presenting a curriculum such as a BSc CS degree
programme. From the results it can be concluded that the BSc CS
degree program (having been developed using CC2001 as a guide)
does not adequately comply with the specification in CS2013I
even when using un updated CS2013I related topic list when rep-
resenting the degree programme.

Summary

From Table 11.7 it can be seen that the model increases in size when the
topics from CS2013I are used. It is important to remember that a topic
equivalence exercise between CC2001 and CS2013I was not done in order
to select the topics. The topics from CS2013I were selected by extracting
keywords from the module descriptions and study guides of the BSc CS de-
gree programme and then looking for these keywords in the topic list for
CS2013I. From the list of modules and related keyword and the correspond-
ing list of topics and related KUs and KAs from CS2013I, relevant topics for
the modules were chosen by a semi-automated process. The CC2001 topics
in the BSc CS degree programme were therefore not used as a basis to select
the topics for the updated BSc programme.

The above comparison did not consider topic equivalences. The notion of
topic equivalences was illustrated for the Human Computer Interaction KA
in Section 11.3. To determine the topic equivalences between CC2001 and
CS2013I, the topics selected for the BSc CS programme using CC2001 and
CS2013I topics respectively can be used as a starting point. These topics are
structured in terms of modules. This clusters relevant topics together and
reduces the complexity of the search space. Determining topic equivalences
between the different curriculum volumes is included in the future work
chapter.

From the table it can also be seen that comparing a BSc CS curriculum
that was developed using CC2001 with CS2013I results in a drop in the size
of the complier. The cardinality of the vertices of the complier drops from
338 when compared with CC2001 to 157 when compared with CS2013I.

173

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Sheet1

Page 1

KA

KU

Topic

KA

KU

Topic

KA

KU

Topic

(a) CC2001 and BSc CS

(b) CS2013I and BSc CS with CC2001 topics

(c) CS2013I and BSc CS with CS2013I topics

0 200 400 600 800 1000 1200 1400

I\C I\M M\C C\M

Figure 11.16: Scenario 3: Vertex set cardinalities in terms of KAs, KUs and
Topics

This indicates a change either in topics descriptions between CC2001 and
CS2013I, or a shift in focus between the curriculum volumes. In order to
determine the cause, a curriculum expert will need to consider the difference
sets given in Appendix G.

Figure 11.16 breaks the total cardinalities for the vertices presented in
Table 11.7 into KA, KU and topic cardinalities. These cardinalities are
presented per difference quantity. The cardinalities are presented as accu-
mulative values on the bar graph per comparison presented by the scenario.

An interesting result, highlighted in Figure 11.16, is that for the topics
represented by the quantity M \ C when the BSc CS using topics from
CC2001 was compared with CS2013I. These topics (shown in yellow and
204 in total) are topics defined in CC2001 that are no longer in CS2013I.
Each of these topics needs to be investigated and equivalences in CS2013I
found for them. Topics with no equivalences indicate a shift in focus from
CC2001 to CS2013I. This focus shift could mean either that CS2013I has
moved totally away from the topic or it could mean that the topic is no
longer defined as core. Finding equivalences for the majority of these topics
will reduce the differences shown by quantities I \ C and I \M .

The topics not in the BSc CS that are in CC2001, highlighted by the
quantity I \ C represented by (a) in Figure 11.16, should also be resolved.
Not resolving the topics difference in (a) may have a knock-on effect for the
comparisons if the BSc CS with CS2013I. Both for the BSc CS with CC2001
topics (topic bar for (b)) and then for the BSc CS with CS2013I topics (refer
to the topic bar in the figure for (c)).

Similarly the topics should also be resolved for (c) for the same quan-
tity. Resolution of (b)for the quantity serves no purpose due to the already

174

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



reported on disparity between the topics of CC2001 and CS2013I.

11.4.6 Difference visualisation

From the results presented in the previous section, Section 11.4.5, it would
seem that the BSc CS curriculum that was developed using CC2001 as
a basis poorly complies with CS2013I. By comparing the radar charts in
Figure 11.17, this supposition is confirmed.

Each of the ratios in each of these radar charts will now be discussed.
For purposes of brevity and clarity, the comparisons will be referred to as
(a), (b) and (c) as indicated in Section 11.4.5. Cardinalities for the vertices
and edges for each of the quantities can be found in Table 11.7.

R(M, I): This ratio represents the relative size of M in terms I. Because of
the increase in the size of I in going from CC2001 to CS2013I while
M does not change significantly, it is to be expected that the ratio in
(a) will be greater than in (b) and (c). The values in (b) and (c) are
similar, suggesting that the two ways in which topics are determined
(i.e. based on CC2001 or based on CS2013I) does no influence the
comparison of M against I for CS2013I.

R(C, I): The complier provides an indication of how well M matches I in
terms of content. The ratio for (a) is 0.82 indicating a relatively good
match between the model and the ideal. The ratio for (b) is the worst
of the three at 0.21 indicating that there is a mismatch between the
information in M , particularly the topics, and the requirement as spec-
ified by I - in this case CS2013I. The value for C is 0.63 which shows
that there was an improvement in matching when the topics of the
BSc CS degree programme were defined in terms of topic descriptions
given in CS2013I. Nevertheless, the match in (c) is not as good as it
was in (a), suggesting that the curriculum of the BSc CS needs to be
reconsidered and adjustments made in line with the changes specified
by CS2013I. Investigation of the sets relating to M \C and C \M will
give insights into what needs to be included in the revamped BSc CS
curriculum and what needs to be removed.

R(I \ C, I): This ratio is closely related to R(C, I) in that in both ratios,
only I and C, (which is derived as a subgraph isomorphism of I) are
being compared. There are 88 vertices and 88 edges, from Table 11.7,
in (a) which need to be investigated. Of the 88 vertices, 84 (18%)
represent topics and 4 represent KUs. The ratio in (b) fares badly at
0.79 for both vertices and edges. Of the 575 vertices in I that are not
in C, 517 refer to topics. There is an improvement in (c) to a ratio of
0.37.

175

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



(a) (b)
CC2001 and BSc CS with CC2001 topics CS2013I and BSc CS with CC2001 topics

(c)
CS2013I and BSc CS with CS2013I topics

Figure 11.17: Scenario 3: Radar Charts - BSc CS (taken as M) compared
to CC2001 and CS2013I Curriculum volumes (taken as I in each respective
case).

176

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 11.18: Scenario 3: Venn diagram of common topic vertices between
comparisons of curricula volumes with a real-world curriculum for quantity
I \ C

A comparison of the topics in (a), (b) and (c) shows that 14 topics are
common across the three comparisons. These topics should be the first
to be evaluated by the curriculum expert and considered for possible
inclusion in the BSc CS degree programme by the relevant module
expert. Figure 11.18 presents an overall view of the number of topics
that are common between the different comparisons. The 7 topics that
are common between only (a) and (b) also need to be considered for
inclusion in the BSc CS degree programme.

Once a decision regarding the topics that are common to the compar-
isons has been made, equivalences between topics can be investigated.
There are 63 topics in (a) which are not in (b). These are topics de-
fined in CC2001. The topics in (b), a total of 244 + 252 = 496, which
are not in (a) are topics defined in CS2013I. The curriculum expert
should consider each of the 63 topics in (a) and see whether there are
not equivalences in (b) for these topics.

R(I \M, I): In general, the ratio performs better for vertices than it does
for edges for all three comparisons. This can be attributed to the
structural differences between I and M . A similar comparison as was
done with R(I \ C, I) can be applied to this ratio to determine where
the similarities and differences lie between I and M .

An interesting comparison that can be made is between the difference
sets of I\C and I\M . This has already been discussed in Section 11.4.5
for (a), where it was pointed out that all 84 topics in I \M are also
in I \ C but that the latter contains an additional 5 topics. A similar

177

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



comparison for (b) indicates that there are 4 additional topics in I \M
that are not in I\C. This means that if the curriculum expert uses I\C
when considering differences for resolution and reruns the algorithm
before looking at I \M , the differences that have already been resolved
will not reflect in I \M .

R(M \ C, I): It is to be expected that R(M \ C, I) for both vertices and
edges is not 0. This is due to the structural components in M that are
not in I. It is expected that all the structuring information, such as
year level and module (this information was reflected in Figure 10.2)
will be included in the calculation of the ratio.

In (b), M \ C contains both structuring information as well as topic
information that are in M and not in I. The topics in M are topics
are defined in CC2001, while the topics in C are defined in CS2013I.
This result is highlighted in Figure 11.16. These topics in M that are
not in C can be seen as being extraneous to M in terms of C. By
analysing these 204 topics in M , the curriculum expert may be able
to find equivalences in CS2013I.

R(C \M, I): This ratio is an indication of what has been inferred to be
“implicit” in M and has been included in C. The ratio for edges for
(a) and (c) indicates that 82% and 63% respectively of edges have
been inferred. The percentages in terms of vertices are 16% and 15%
respectively for (a) and (c). The percentage represented by the ratio
for vertices in (b) is 7%. Closer inspection of the vertex sets, lists of
which are also in the appendix, shows that most of the information
that has been inferred are the KAs and KUs. The inference of topics
is limited to 5, 6 and 15 topics for (a), (b) and (c) respectively. The
venn diagram in Figure 11.19 presents the number of topics and their
relation to each other. From the diagram it can be seen that 2 topics
are in all 3 sets for M \C. This means that these two topics (namely
T00125 and T00489) are inferred by all comparisons. This is a clear
indication that these topics should be considered for inclusion in the
BSc CS degree programme curriculum.

A closer investigation of the other topics by a curriculum expert may
result in equivalences being identified which will in turn result in bet-
ter matches for the comparisons. For example, the topic T00722 Team
management and topic T01556 Team participation need to be investi-
gated in terms of their definitions in their respective curriculum vol-
umes. T00722 is only defined in CC2001 as a topic in the KU U0117
Software project management. T00722 has 6 subtopics in CC2001 and
it is likely that one or more of these resulted in the topic being in-
ferred. T01556 from CS2013I also falls under the KU U0117. It also
has subtopics, four in total, and has also been inferred. It is therefore

178

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 11.19: Scenario 3: Venn diagram of common topic vertices between
comparisons of curricula volumes with a real-world curriculum for quantity
M \ C

necessary to further investigate U0117.

Figure 11.20 presents the topics of KU U0117 for CC2001 and CS2013I.
From the figure it can be seen that one topic, T00976, is shared be-
tween CC2001 and CS2013I. This topic is a subtopic in both curricu-
lum volumes. In CC2001 it is a subtopic of T00722 and in CS2013I
it is a subtopic of T01556, the two topics from the example. Topics
T00722 and T01556 can be considered as equivalent. This equivalence
will be referred to as or se 1. Considering the descriptions for the
other topics in the figure, the following additional equivalences can be
determined:

or se 2: T00613 is equivalent to T00613 1

or se 3: T00979 is equivalent to T01599

or se 4: T00974, T00975 and T00977 are equivalent to T01557

Applying Rules 10.1 and 10.2 to or se 1, or se 2 and or se 3 will
result or-subgraphs as described previously. The application of these
rules to or se 4 will not result in the desired or-subgraph as given in
Figure 11.21. The rules will need to be refined to make provision for
situations such as these. This refinement will be left to form part of
the future work presented in Chapter 12.

179

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



T00722 

 Team management

T00974 

 Team processes

T00975 

 Team organisation and decision making

T00976 

 Roles and responsibilities in a software team

T00977 

 Role identification and assignment

T00978 

 Project tracking

T00979 

 Team problem resolution

T00547 

 Project management tools

T00548 

 Project scheduling

T00613 

 Risk analysis

T00663 

 Software configuration 

 management

T00666 

 Software measurement and 

 estimation techniques

T00670 

 Software quality assurance

CS SE U0117

T00613_1 

 Risk

T01556 

 Team participation

T01561 

 Effort estimation 

 (at the personal level)

T01550 

 The role of risk in the life cycle

T01551 

 Risk categories including security, 

 safety, market, financial, technology, people, quality, 

 structure and proces

T01557 

 Team process including responsibilities for tasks, 

 meeting structure, and work schedule

T01559 

 Team conflict resolution

T01560 

 Risks associated with virtual teams 

 (communication, perception, structure)

Figure 11.20: Scenario 3: U0117 topics for CC2001 and CS2013I

or_se_4

T00974

T01557

T00975

or_se_4_out

T00977

Figure 11.21: Scenario 3: or-subgraph for or se 4

180

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



11.4.7 Discussion

The topics associated with the BSc CS degree programme for both (a) and
(c) were determined using the same set of keywords derived from the mod-
ule descriptions and study guides as documented for the BSc CS degree
programme. For both, the keywords were searched for in the list of topic
descriptors for the respective curriculum volumes. The resulting list was
checked by a curriculum expert (the author) to make sure that the match,
either exact or partial, is relevant to the topic in terms of the structure of
the volume and the degree programme. Only relevant topics were kept for
comparison. The results indicate that there has been a shift of focus be-
tween CC2001 and CS2013I and that a curriculum that has been developed
in terms of one curriculum volume may not comply as well with an updated
volume.

From a curriculum development point of view, it is desirable to keep the
real-world curriculum in line with the latest curriculum volume specification
in order to remain relevant with regards to the discipline. In the narrative
for this scenario, some advice has been given regarding where to look for and
how to approach the differences that may exist in the curriculum. Currently
there is no process defined that will guide the curriculum expert into finding
similarities and differences. Neither is there a processes indicating what to
do when these have been found. The work presented here highlights these
similarities and differences of a specific real-world curriculum in relation to
CS2001 and CS2013I, using different notions of the topics in these curricula.
In some places an indication of action has been given in regard to redefining
topics, defining equivalences, etc. It is left to future work to determine
processes that a curriculum expert needs to follow for some predetermined
scenarios that may arise when comparing a real-world curriculum with a
specification.

11.5 Conclusion

This chapter illustrated how the Graph Comparison Framework can be ap-
plied to real-world scenarios. Of the five areas mentioned in the introduc-
tion, two have been illustrated using only the core aspects of the curricula
being modelled. The discussions around each of the areas illustrated how
the results from the framework can be interpreted by a curriculum expert.

From the scenarios presented, it is clear that the modelling of equiva-
lences is of utmost importance. In order to successfully model equivalences
between the curriculum volumes a systematic approach needs to be followed.
This approach could be to consider each KA independently, such as was
presented in Scenario 2 in Section 11.3. Once these equivalences have been
modelled, the matching between curriculum volumes and the matching of a
real-world curriculum should improve specifically with regards to topics.

181

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The results of each of the ratios should not be seen in isolation from each
other. A holistic approach needs to be followed when evaluating the results
and considering the difference sets. The difference sets for quantity I \ C
presents all information in I that is not in C. Invariably it is the case that
if the information is not in C then it is also not in M .

Usually the difference set M \C for vertices includes structural informa-
tion M that is not in C If this is the case then a decision can be made to
ignore the quantity. If, however, the vertex sets contain topic information
for the curriculum application area, then the information is significant. It
means that information exists in the model that is not in the complier and
the curriculum expert should attend to this.

The difference sets for C \M presents all information that was derived
from I and included in C, but is not in M . The curriculum expert needs
to determine whether the information in C but not in M is significant and
whether this information needs to be explicitly included in the model.

The curriculum expert, after having reviewed the results of a number of
curricula comparisons using the framework, will get a feel for which ratios
are significant in which situations. It is a matter for future research to
determine whether this expert evaluation knowledge can be captured and
in parts automated. The framework may also be extended to include some
partial analysis of the results.

182

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Part III

Future Work and Conclusion

183

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 12

Future Work

12.1 Introduction

The work presented in this thesis is but the beginning of a larger project
with the vision of developing a tool for curriculum comparison and develop-
ment in the next three or so years as one of the key projects in the CSEDAR
(Computer Science Education Didactics and Applications Research) at the
University of Pretoria. The work effectively forms the foundation towards
the development of such a tool. Before this tool can be developed, a num-
ber of smaller projects need to be completed. Some of these projects have
already been referred to in previous chapters. This chapter will provide a
summary of them and include others that are mentioned for the first time.

The projects identified fall into two broad categories. The first is projects
which involve further research into specific aspects of the work presented in
the thesis. This includes further investigating the theories on which the
framework is grounded and extending the framework itself. The second is
more practical in nature. It involves the application of the framework and
requires the ground work to be laid in terms of data capture with regards
to curriculum volumes. It also involves the application of the framework to
comprehensively assess existing curricula wherever such a need exists.

The sections that follow will involve aspects of both theory and practical
projects. They have however been classified in terms of their presentation
in the thesis rather than in terms of their theoretical or practical nature.

12.2 Digraph related projects

These projects focus on the implementation and transformation of digraphs.
Enhancements to the Graph Trans-morphism algorithm are also discussed.

184

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



12.2.1 Set theory

In many instances when analysing the results of the Graph Trans-morphism
algorithm, relationships between the set differences can be seen. An in-depth
study of these relationships needs to be undertaken. This study should
focus on finding trends in the results and try to determine under which
circumstances these results occur.

Examples of interesting relationships in the results are presented below.
These are observations and need to be investigated further to determine
under which circumstances they hold. Once this has been done, their role
in the analysis process of the digraphs can be determined.

Outcome 2, Section 7.5 of Chapter 7: For the specific digraphs used
to illustrate Outcome 2, the following relationship between the differ-
ence sets was observed: (I \M) \ (I \C) = C \M and C ∼= I. Further
investigation needs to conducted to determine when (I \M)\(I \C) =
C \M and whether C will always be a subgraph isomorphism of I in
these instances.

Scenario 2 in Chapter 11: In Table 11.5 an interesting result is seen.
This result is summarised in Table 12.1 in which A and B represent
the two digraphs being compared. When the algorithm is run for the
first time, A is the ideal and B the model. The algorithm is run for a
second time with B the ideal and A as the model. From the table it can
be seen that, in each respective run, the resultant set representations
for I \C and I \M are the same. The resultant set representations are
reversed for M \ C. Furthermore C \M = ∅ in both runs, indicating
that in each respective case, M ’s vertices and edges are supersets of
their respective counterparts in C.

Quantity I M Set representation comment

I \ C A B Result 1
B A Result 2

I \M A B The same as Result 1
B A The same as Result 2

M \ C A B The same as Result 2
B A The same as Result 1

C \M A B ∅
B A ∅

Table 12.1: Summary of set representations of Table 11.5

This result has been used to test the integrity of digraphs A and B.
If the resultant set representations do not form the pattern as seen in
Table 12.1, then there is an error in the specification of either A or

185

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



B. This error in specification can be identified by comparing all the
sets which should look as Result 1 does with each other. A similar
comparison is also done for the Result 2 sets. Any deviations need
to be checked in A or B and action needs to be taken. When the
resultant sets of A and B as the ideal and model and the reverse give
the pattern as shown in the table, then it can be said that there are
no structural anomalies in the digraphs.

A further result provided by the sets represented by Result 1 and
Result 2 in the table, is that these are most likely the vertices for
which equivalences between Result 1 and Result 2 can be found.

It needs to be determined whether this phenomenon is general for all
digraphs A and B. If it is, then the test for digraph integrity can be
automated.

12.2.2 Algorithm improvements

Improvements to the algorithms relate to before and after execution of the
algorithm and to the implementation of the algorithm itself. The discussion
will begin by looking at the algorithm and how it is currently implemented.

The algorithm as presented by Algorithm 1 requires that a path be
searched for in I for every source and destination vertex combination in
M . Translating this implementation to the set of triples representation re-
sulted in some paths being searched for multiple times due to the inclusion
of labels in the path. To make the algorithm more efficient it was neces-
sary to only consider paths between unique combinations of the source and
destination vertices in M . This definition of the algorithm excludes labels.
This improvement was already included in Algorithm 2. Algorithm 2 can
still be made more efficient by storing a list of paths that have already been
discovered and only searching for paths in I if the path being searched for
in I is not already in the list or a subpath of the the path is already in the
list.

Currently the algorithm does not make use of the label element of the
triple when searching for paths. This means that there is no possibility of
stating that only edges with specific label attributes may be included in the
complier. An example would be if a distinction were to be made between
core and elective topics. It would be handy if one of the elements in the
label tuple would represent this information and then the selection is made
at algorithm level instead of when the digraphs are created, as is currently
the case. This idea can be extended to include any meta-knowledge that
may be stored in the label tuple, making it possible to run the algorithm
using partial definitions of the the ideal and/or model.

In some circumstances it may not be necessary to execute the algorithm
in order to be able to say something about the compliance of the model

186

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



to the ideal. If, for example, as discussed in Outcome 3 in Section 5.3.2,
V (I) ∩ V (M) = ∅, then there are no common vertices between I and M .
The resultant complier after T has executed will be the empty set; that
is, C = ∅. On the other end of the scale as discussed in Section 6.3.1, if
for example I \M = ∅, then I and M are automorphic and therefore also
isomorphic.

After the successful execution of algorithm T , testing whether I \C = ∅
indicates whether C is automorphic to I. Refer to Section 6.3.1 for the
explanation. If this is the case, then it can be said that M is a good repre-
sentation of I. The set differences M \C and C \M will give an indication
of what is extraneous in M relative to I, and what is inferred to be in M
from I, respectively. This information may be used to update M so that it
matched I more closely.

Finally, using a technique similar to the one used by GraphViz to deter-
mine the “root nodes” of a digraph, it must be investigated whether it is pos-
sible for the algorithm to self determine “entry point” vertices. The addition
of “entry points” has been illustrated by using the GraphViz visualisations
and then manually determining the “entry point(s)” and linking them to the
“root nodes” in Section 6.4.1. It was also applied in Sections 7.3 and 7.4. A
slightly different application of the idea was used in Section 11.3.3.

12.2.3 Rules

From the discussion in Section 11.4.6 it is clear Rule 10.1 and Rule 10.2 are
näıve in the assumption that there is a one-to-one mapping between vertices
when dealing with equivalences. The rules therefore need to be updated to
make provision for additional types of relationships between vertices. The
first one of these relationships is given in Figure 11.21.

12.3 Knowledge representations

In this thesis a digraph representation was chosen for the ideal and model
and by extension also the complier to represent the knowledge. Including a
label in the tuples in which meta-knowledge is given provides a richer im-
plementation of a digraph. It does however not change the classification of
a digraph from a non-generative representation to a generative representa-
tion. To summarise from Chapter 1, a generative representation is one in
which information can be deduced from the representation by looking at the
relationships between concepts in the representation and reasoning about
the concepts. Examples of generative knowledge representations in terms
of Computer Science are concept lattices and ontologies [Andreasen et al.,
2003].

A lattice in mathematics is a partially ordered set in which two ele-
ments have a unique supremum (join or least upper bound) and infimum

187

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



(meet - greatest lower bound). A concept lattice is defined as a triple. The
triple comprises of two finite sets, one representing objects and the other
attributes. The third element of the triple is a binary relationship between
the objects and the attributes. By defining a partial order on the relations
between objects and attributes, the lattice can be visualised using a Hasse
diagram. A Hasse diagram is a directed acyclic graph with the constraint
that each pair of vertices has a unique supremum and a unique infimum
[Zhao and Halang, 2006; Berry and Sigayret, 2004].

An ontology represents knowledge in terms of concepts and the relation-
ships between the concepts within a domain. Ontologies are used to model
and reason about the domain [Wang and He, 2006]. A similarity between
ontologies and concept lattices exist and it is possible to translate tech-
niques used on one and apply it to the other [Zhao and Halang, 2006; Cho
and Richards, 2007]. It has also been shown by Zhao et al. [2008] that it is
possible to translate specifically from an ontology to a concept lattice. With
concept lattices being modelled as Hasse diagrams [Zhao and Halang, 2006],
which are a form of digraph, a mapping between ontologies and digraphs
should be achievable and needs to be investigated.

Cassel et al. [2008] are in the process of building a Computing Body of
Knowledge in Protégé, an ontology editor and knowledge-base framework.
Protégé is an open source project and is developed by Stanford University.
More information on Protégé can be found at http://protege.stanford.
edu. It is envisaged that this Computing ontology could be used as a foun-
dation for curriculum development in Computing. Once the Computing on-
tology has been completed, the extent to which the ontology could support
and/or extend the groundwork laid in this thesis can be investigated.

12.4 Framework extensions

Extensions to the Graph Comparison Framework presented in Chapter 6
can be made. The framework also needs to be extended to include analysis
components that can be used by the domain expert. This could either be
the person with knowledge of the curriculum or the person with knowledge
of the modules. How this analysis framework links to the existing framework
will also need to be investigated.

12.4.1 Framework for comparison

The Graph Comparison framework consists of three parts. The Graph
Trans-morphism Algorithm is the first part of the framework and provides
the information to be compared. This information is manipulated by the
Visualisation component and/or the Comparison component. Extension of
the existing framework may include additional visualisations and compari-
son techniques.

188

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://protege.stanford.edu
http://protege.stanford.edu


Additional visualisations may make use of the existing information from
the Graph Transmorphism Algorithm and/or the graph Comparison com-
ponent. For example, the inclusion of a visualisation, such as the venn
diagrams in Figures 11.18 and 11.19 can be included.

Additional components may be included that offer alternative ways of
quantifying the differences between the ideal, model and complier. It is
possible that these components make use of visualisation components as
well.

The graph edit distance component which was briefly introduced in Sec-
tion 6.3.2 could be further explored. For example, it would be interesting to
determine if there is a correlation between the graph edit distance between
two digraphs and the number of edge subdivisions that take place to com-
plete a transformation from one graph to another. Definition 2.13 defines
what is meant by edge subdivision and Rule 2.1 the transformation that
needs to be applied.

12.4.2 Framework for the domain expert

It is envisage that an analysis framework will be used by the domain expert.
It will take the results from the Graph Comparison Framework and present
this information in a manner which is easy to understand and manipulate.
It will also guide the domain expert in the analysis process.

A component that could be included in the analysis framework is one that
enables the comparison of digraphs from previous comparisons to be com-
pared with one another to illustrate progress in the curriculum development
process. Such a component was already identified and used in Chapters 7
and 11. This will enable the domain expert to determine to what extent the
changes made to the ideal and/or model have affected the comparison. An
example of a visualisation of this information can be seen in Figures 11.18
and 11.19. The venn diagrams present the overlap between the vertices in
the difference sets.

12.5 Computer Science curriculum development

The project related to Computer Science curriculum development has two
sub-projects associated with it. The first relates to what has been presented
in this thesis, specifically in terms of the application in Chapter 11. The
way forward with regards to curriculum comparison and design is presented
in Section 12.5.1. Section 12.5.2 introduces the second sub-project. This
sub-project relates to the accreditation discussion presented in Section 9.3.

189

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



12.5.1 Curriculum comparison and design

Scenario 1 in Chapter 11 illustrated the value of equivalences for KAs and
KUs between curriculum volumes. Scenario 2 looked at equivalences on
the topic level for the Human Computer Interaction KA. The first priority
within the application domain is to define topic equivalences for core topics.
These equivalences need to be applied for all the KAs across the volumes
CC2001, CS2008, CS2013S and CS2013I. The strategy to follow to achieve
this is to consider each KA individually as was done in Scenario 2. The most
interesting KA to begin with is PF in CC2001, CS2008 and SDF in CS2013
Strawman and Ironman.

After completing all the topic equivalences for core topics, the elective
topics must be included. Elective topics for CC2001 and CS2008 have al-
ready been captured. They still need to be modelled and incorporated into
the digraph for the particular curriculum volume. The topics for CS2013S
and CS2013I must be captured and modelled. Once this has been done,
topic equivalences across curriculum volumes needs to once again be deter-
mined. In some instances topics may be considered core in one curriculum
volume and elective in another. This will enable the curriculum expert to
understand how the volumes have changed on the micro-level, which is not
discussed in the curriculum volumes. Having a complete curriculum break-
down for all published volumes, with equivalences, will enable curriculum
developers to compare real-world curricula that have been developed using
older volumes for partial compliance and use this as a starting point for
curriculum change or improvement.

Some techniques for curriculum improvement have already been dis-
cussed when reviewing the toy application in Sections 5.4 and 6.5, the Out-
comes of algorithm T in Chapter 7 and the application of the framework to
curricula discussed in Chapter 11 for Scenarios 1, 2 in Area A and Scenario
3 in Area B. These techniques need to be formalised and included in the
project relating to the analysis component mentioned in Section 12.4.2.

Real-world curricula need to be collected in order for Area 3, which was
introduced in Chapter 11, to be experimented with. This experimentation
may result in additional insights into curricula development and the pro-
cesses involved which can be included in the analysis framework for the
domain expert.

The ACM/IEEE Curriculum volumes specify learning outcomes for each
KU. Up till now, these learning outcomes have not been considered at all. It
would be a ‘nice to have’, if the relevant learning outcomes for a module could
be generated. Automatic generation of learning outcomes, will make the
writing of module documentation much easier. Learning outcomes will also
be advantageous when applying for accreditation of the degree programme
being developed.

190

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



12.5.2 Accreditation comparison

The notion of accreditation was introduced in Section 9.3. Accreditation
comparison was introduced in Chapter 11 when Areas D and E were de-
fined. It will be necessary to adapt the framework in order to be able to
do accreditation comparison as well. This has a number of challenges of its
own as the topics in the accreditation specification are not explicitly given.
This means some additional inferencing needs to take place.

Area D compares a curriculum volume to accreditation requirements. As
accreditation requirements are usually specified at a higher level of abstrac-
tion than curriculum requirements are, this area could be used by curriculum
experts to develop curricula that compare favorably with both the accred-
itation specification as well as the specification of a curriculum volume by
determining the match between the two.

The area defined as E, concerns the comparison of a real-world curricu-
lum with accreditation criteria. It may be necessary to include the com-
parison of Area D to guide the comparison of topics from the real-world
curriculum.

12.6 Conclusion

The ultimate goal of this research, as stated in the introduction, is to develop
a tool for curriculum comparison and development. Each of the projects
mentioned in this chapter, bring the study one step closer to being a more
comprehensive tool for curriculum comparison and development. Some of
these projects will require less work than others. In striving to develop a
tool, it would be prudent to complete for each of the projects a needs analysis
and assign a priority and difficulty level to each of them. These projects may
then be completed by student researchers in the CSEDAR group.

191

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 13

Conclusion

In this thesis, the extent to which the comparison of a given implementation
with a specification can be automated, was considered. An algorithm was
proposed that enables the comparison. Furthermore, a framework, which
incorporates the algorithm forms an integral part, was proposed for quan-
tifying the extent to which the implementation complies with the specifi-
cation. The comparison and quantification was first illustrated using a toy
application before it was applied to the real-world problem of curriculum
comparison and development within the discipline of Computer Science.

In this chapter, the degree to which the objectives of the study have
been attained will be discussed. A summary of contributions made to the
Computer Science body of knowledge and to curriculum comparison and de-
velopment of Computer Science will be given. The chapter will be concluded
with a list of possible domains in which the framework can be applied.

13.1 Attainment of objectives

The main objective of the study originated in the domain of curriculum
comparison. When re-designing a BSc CS curriculum to comply with the
ACM/IEEE curriculum specification for Computer Science and the ABET
accreditation specification, the overarching question that was asked was,
“To what extent does the re-designed curriculum comply with the specifica-
tions?”. Each time the curriculum changed, the question was asked. This
resulted in a manual comparison process being launched. It was conceivable
that this process could be automated. The extent to which this automation
could take place became the main focus of this study.

For the purposes of the study, the problem of curriculum comparison was
generalised to a problem of digraph comparison. Curricula were modelled as
digraphs. The main objective of the study was generalised to determining
to what extent the comparison and quantification of the differences between
digraphs could be automated. To attain this objective the following sub-

192

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



objectives were considered.

Sub-objective 1: How can the digraph comparison problem be
solved?

In Chapter 2, graph matching definitions were presented. These defini-
tions, when implemented as algorithms, are considered to belong to the
complexity class NP-Complete. This means an alternative algorithm to the
graph matching problem was needed that would enable quantification of the
comparison. Another problem that was encountered was that the digraphs
being compared were not necessarily structurally similar, a requirement for
the graph matching techniques. The problem was solved by developing an
algorithm, the Graph Trans-Morphism Algorithm, that builds a graph us-
ing the information of the graph representing the implementation and the
structure of the graph representing the specification. This new graph is then
a sub-graph isomorphism of the graph which represents the specification.
The sub-objective of digraph comparison was achieved when the Graph Trans-
morphism Algorithm, as described in Chapter 5, was developed.

Sub-objective 2: How can similarities/differences between digraphs
be quantified?

The first challenge was to determine the similarities and differences between
the digraphs before the quantification could take place. For small digraphs,
50 or so connected vertices, it is possible to represent them visually and
then compare the graphs by inspection. This comparison becomes more
difficult as the graphs become larger and an automatic method was needed
to calculate the similarities and differences. It was not until the digraphs
being compared were modelled as a set of triples that the problem could be
solved. By modelling digraphs as sets, the set difference operator can be
used to represent the differences. Once the differences can be calculated, so
can the similarities.

Quantification of the similarities and differences reduced to a problem
of finding the set differences between the combinations of the three graphs,
the two input and the resultant graph given as output by the Graph Trans-
Morphism Algorithm.
The sub-objective of the quantification of digraph similarity/difference was
achieved when the Graph Comparison Framework, described in Chapter 6,
was proposed. The framework makes provision for both visual and computa-
tional comparison of digraphs. A combination of visual and computational
is also catered for.

193

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Sub-objective 3: Can the generalised solution be applied to cur-
ricula?

Computer Science curricula specifications and implementations, when mod-
elled as digraphs, result in models with 500 or more vertices and edges for
core aspects of the specifications alone. Digraphs of this magnitude are near
to impossible to compare using a manual process.
The sub-objective of applying the generalised digraph comparison solution to
curricula has been discussed in Part II of the thesis. Chapter 11 illustrated
the application of the framework. The sub-objective has been achieved. It
has been shown that the generalised solution can be applied to curricula.

Attainment of the main objective — “To what extent can the
comparison and quantification of the differences between digraphs
be automated?”.

From the discussions in Chapter 11 it can be deduced that the interpretation
of the results still needs to be completed by a domain expert. The process of
curriculum comparison and development can therefore be semi-automated.

13.2 Summary of contributions

The contributions that have been made can be categorised as contributions
made towards the theory discussed in Part I and contributions towards ap-
plication of the theory discussed in Part II. Aspects of the work has also been
published in conferences and these contributions will be briefly discussed.

Theory contributions

• An algorithm, the Graph Trans-morphism Algorithm
The algorithm builds a subgraph isomorphism given two digraphs, each
represented as a set of triples. The algorithm takes these two digraphs,
referred to the ideal and the model, and derives a third, referred to as
the complier, which represents the information in the model in terms
of the structure defined by the ideal. The algorithm was introduced
and discussed in Chapter 5.

• A partial definition for digraph isomorphism in terms of a set
of triples
Two definitions have been presented. The first is a definition that can
be used for digraphs represented as a set of triples with labels. The
second definition is a definition for a set of triple representation with-
out labels. These definitions are presented by Definitons 6.2 and 6.4
respectively. Both the definitions take the structure of the digraph
into account as well as the requirement for digraph comparison that

194

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



the information relating to vertices should also match. The digraph
isomorphisms, represented by these two definitions, therefore take both
the syntax of the digraphs into account as well as the implied seman-
tics, discussed in Section 10.2.

• A framework for digraph comparison
The framework for digraph comparison, referred to as the Graph Com-
parison Framework, was presented in Chapter 6. The framework is
used to determine the similarities and differences between digraphs.
These similarities and differences are also quantified for comparison
purposes.

Application contributions

• Application of the framework to curriculum design
In Part II of the thesis, the application of the framework was applied to
the real-world application of curriculum comparison and development,
specifically for curricula in the discipline of Computer Science. The
application of curriculum design has always been a manual process,
specifically when designing a curriculum to comply with a specification
such as the ACM/IEEE Computer Science curriculum volume. It has
been shown that the framework contributes to the semi-automation of
this process.

• Ability to reveal micro-level changes between Computer Sci-
ence Curriculum volumes
The curriculum volumes focus on macro-level changes, with regards
to the previous volume, when discussing the structure of the specific
curriculum volume. These changes are usually on the level of KAs
and KUs. Changes on topic level are rarely mentioned and it is here
where the detail is needed when trying to migrate an existing curricu-
lum from one curriculum volume specification to another. Discussion
of the application scenarios in Chapter 11 highlighted the need for
topic equivalences when migrating between curriculum volume speci-
fications.

• Possible contribution to the changes in the HC/HCI KA be-
tween CS2013S and CS2013I
In Marshall [2012] a model of CS2013S was compared with CC2001
and CS2008. After the conference at which the paper was presented,
the details regarding the comparison was asked for by one of the dele-
gates. It is hoped that this comparison contributed to the changes in
the HC/HCI from CS2013S to CS2013I as presented in Chapter 11,
Scenario 2 of the thesis.

195

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Publication contributions

Aspects of the work presented in this thesis has previously been published
at conferences. The first paper, Marshall and Kourie [2010] presented the
first iteration of the Graph Trans-morphism Algorithm. In 2011, the first
paper applying what was then a very basic framework to curriculum design,
was presented at CSERC 2011 in Heerlen, The Netherlands. This paper dis-
cussed the application of the algorithm and a very immature set difference
theory to the application of developing a curriculum in the South African
context. The third paper [Marshall, 2012], also looking at the application
within Computer Science curricula, compared the core aspects of the cur-
riculum volumes CC2001, CS2008 and CS2013S.

13.3 Suggestions for applications

The research has already been applied to curriculum comparison and de-
velopment. Chapter 12 has included additional areas that still need to be
considered towards building a tool for curriculum comparison. This work
will form the key research focus of the CSEDAR research group at the Uni-
versity of Pretoria in the next three or so years.

Once the framework has matured, research that applies the framework
to other domains will be considered. Possible application domains, but are
not limited to, may include:

• Curriculum design in the other disciplines identified by the ACM/IEEE Joint
Task Force for Computing Curricula [2005].

• The possibility of applying the framework to designing curricula for
MOOCs. This has been mentioned on pages 48 and 49 of the CS2013I
volume. Also, mention is made that the example course given on page
356 of the CS2013I curriculum volume is presented as a MOOC on
Coursera [The Joint Task Force on Computing Curricula Association
for Computing Machinery IEEE-Computer Society, 2013]. An initial
digraph taking prerequisites for entry level courses using MOOCs has
been presented in Marshall [2013]. This can be used as a basis for the
application of the framework in the future.

• Modelling and comparison of genes in the discipline of Bioinformatics.

• Comparison of images that have been modelled as digraphs to deter-
mine differences and similarities between the images.

• Translating management or manufacturing processes/workflows to di-
graphs and comparing best practices to practices that take place on
the ground.

196

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Bibliography

Aaronson, S., Fu, C., Kuperberg, G., and Granade, C. (2013). Com-
plexity Zoo. Accessed 23 August 2013. URL: https://complexityzoo.
uwaterloo.ca/Complexity_Zoo.

ABET Criteria (2010). Criteria for Accrediting Computing Pro-
grams 2011-2012. ABET. Accessed on 5 January 2011. URL:
http://www.abet.org/Linked%20Documents-UPDATE/Program%

20Docs/abet-cac-criteria-2011-2012.pdf.

ABET Review (2010). ABET Self-study Questionnaire: Tem-
plate for a self-study report. ABET. Accessed on 5 Jan-
uary 2011. URL: http://www.abet.org/Linked%20Documents-UPDATE/
Program%20Docs/self-study-quest-cac.doc.

Accord, Seoul (2013). Seoul Accord. Accessed on 24 August 2013. URL:
http://www.seoulaccord.com/accord/index.jsp.

Accord, Sydney (2013). Sydney Accord. Last visited 23 September 2013.
URL: http://www.washingtonaccord.org/sydney/.

Accord, Washington (2013). Washington Accord. Last visited 23 September
2013. URL: http://www.washingtonaccord.org.

ACM SIGITE 2008 Task Force on IT Curriculum (2008). Information
Technology 2008 Curriculum Guidelines for Undergraduate Degree Pro-
grams in Information Technology. Last visited 10 September 2013. URL:
http://www.acm.org/education/curricula.html.

ACM/IEEE-CS Joint Curriculum Task Force (1991). A Summary of the
ACM/IEEE-CS Joint Curriculum Task Force Report - Computing Cur-
ricula 1991. Commun. ACM, 34(6):68–84.

ACM/IEEE-Curriculum 2001 Task Force (2001). Computing Curricula
2001: Computer Science. Last visited 22 August 2007. URL: http:

//www.acm.org/education/curricula.html.

ACM/IEEE-Curriculum CS2008 Joint Task Force (2008). Computer Science
Curriculum 2008: An Interim Revision of CS 2001.

197

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

https://complexityzoo.uwaterloo.ca/Complexity_Zoo
https://complexityzoo.uwaterloo.ca/Complexity_Zoo
http://www.abet.org/Linked%20Documents-UPDATE/Program%20Docs/abet-cac-criteria-2011-2012.pdf
http://www.abet.org/Linked%20Documents-UPDATE/Program%20Docs/abet-cac-criteria-2011-2012.pdf
http://www.abet.org/Linked%20Documents-UPDATE/Program%20Docs/self-study-quest-cac.doc
http://www.abet.org/Linked%20Documents-UPDATE/Program%20Docs/self-study-quest-cac.doc
http://www.seoulaccord.com/accord/index.jsp
http://www.washingtonaccord.org/sydney/
http://www.washingtonaccord.org
http://www.acm.org/education/curricula.html
http://www.acm.org/education/curricula.html
http://www.acm.org/education/curricula.html


Alekseev, V. (2013). Graph homeomorphism. Encyclopedia of Mathematics.
Accessed on 19 February 2013.

Andreasen, T., Bulskov, H., and Knappe, R. (2003). Similarity from con-
ceptual relations. In NAFIPS 2003: 22nd International Conference of
the North American Fuzzy Information Processing Society, 2003, pages
179–184.

Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske,
S., Plump, D., Schürr, A., and Taentzer, G. (1999). Graph transformation
for specification and programming. Science of Computer Programming,
34(1):1–54.

ARWU CS 2013 (2013). Academic Ranking of World Universities in Com-
puter Science - 2013. Shanghai Ranking. Accessed on 25 August 2013.

AT&T Labs Research and Contributors (2013). Graphviz - Graph Visual-
ization Software - Drawing graphs since 1988. Accessed on 30 May 2013.

Babai, L. and Luks, E. M. (1983). Canonical labeling of graphs. In Pro-
ceedings of the fifteenth annual ACM symposium on Theory of computing,
STOC ’83, pages 171–183, New York, NY, USA. ACM.

Bang-Jensen, J. and Gutin, G. (2007). Digraphs: Theory, Algorithms and
Applications. Springer-Verlag, first edition.

Barla-Szabo, G. (2002). A Taxonomy of Graph Representations. Master’s
thesis, University of Pretoria.

Barla-Szabo, G., Watson, B., and Kourie, D. (2004). Taxonomy of directed
graph representations. IEE Proceedings - Software, 151(6):257–264.

Bengoetxea, E. (2002). Inexact Graph Matching Using Estimation of
Distribution Algorithms. PhD thesis, Ecole Nationale Supérieure des
Télécommunications, Paris, France.

Bennett, C., Ryall, J., Spalteholz, L., and Gooch, A. (2007). The aesthetics
of graph visualization. In Computational Aesthetics, pages 57–64.

Berry, A. and Sigayret, A. (2004). Representing a concept lattice by a graph.
Discrete Appl. Math., 144(1-2):27–42.

Black, P. E. (2004a). “complexity”, in Dictionary of Algorithms and Data
Structures [online]. Accessed on 22 August 2013. URL:http://www.nist.
gov/dads/HTML/complexity.html.

Black, P. E. (2004b). “subgraph isomorphism”, in Dictionary of Algorithms
and Data Structures [online]. Accessed on 26 March 2013. URL: http:
//www.nist.gov/dads/HTML/subgraphiso.html.

198

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.nist.gov/dads/HTML/complexity.html
http://www.nist.gov/dads/HTML/complexity.html
http://www.nist.gov/dads/HTML/subgraphiso.html
http://www.nist.gov/dads/HTML/subgraphiso.html


Bondy, J. and Murty, U. (1976). Graph Theory With Applications. Elsevier
Science Ltd.

Bovet, D. P. and Crescenzi, P. (2006). Introduction to the theory of com-
plexity. Creative Commons Attribution-Noncommercial 2.5 License.

Calitz, A. P. (2010). A Model for the Alignment of ICT Education with Busi-
ness ICT Skills Requirements. PhD thesis, Nelson Mandela Metropolitan
University, Port Elizabeth, South Africa.

Career Space Consortium (2001). Curriculum Development Guidelines. New
ICT curricula for the 21st century: designing tomorrow’s education. Ac-
cessed on 4 January 2011.

Cassel, L. N., Davies, G., LeBlanc, R., Snyder, L., and Topi, H. (2008). Using
a Computing Ontology as a Foundation for Curriculum Development.
SWEL 2008: Sixth International Workshop on Ontologies and Semantic
Web for E-Learning in conjunction with ITS 2008: Ninth International
Conference on Intelligent Tutoring Systems.

Chinese Government’s Official Web Portal (2005). China’s Education Sys-
tem. Accessed on 20 September 2013. URL: http://english.gov.cn/
2005-08/27/content_26661.htm.

Cho, W. C. and Richards, D. (2007). Ontology construction and concept
reuse with formal concept analysis for improved web document retrieval.
Web Intelli. and Agent Sys., 5(1):109–126.

Council of Higher Education, South Africa (2012). VitalStats Pub-
lic Higher Education 2010. Accessed on 20 September 2013. URL:
http://www.che.ac.za/sites/default/files/publications/vital_

stats_public_higher_education_2010.pdf.

Diagram of higher education qualification levels in England, Wales and
Northern Ireland (2013). Diagram of higher education qualification levels
in England, Wales and Northern Ireland. Accessed on 24 August 2013.
URL: http://www.ecctis.co.uk/europass/documents/ds_chart.pdf.

Diestel, R. (2005). Graph Theory. Springer-Verlag, third edition.

Drozdek, A. (2008). Data Structures and Algorithms in Java. Cengage
Learning, third edition.

EHEA Framework (2005). A Framework for Qualifications of the European
Higher Education Area. EHEA.

Fiscus, J., Ajot, J., Radde, N., and Laprun, C. (2006). Multiple dimen-
sion levenshtein edit distance calculations for evaluating automatic speech

199

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://english.gov.cn/2005-08/27/content_26661.htm
http://english.gov.cn/2005-08/27/content_26661.htm
http://www.che.ac.za/sites/default/files/publications/vital_stats_public_higher_education_2010.pdf
http://www.che.ac.za/sites/default/files/publications/vital_stats_public_higher_education_2010.pdf
http://www.ecctis.co.uk/europass/documents/ds_chart.pdf


recognition systems during simultaneous speech. In Proceedings of the
International Conference on Language Resources and Evaluation LREC
2006, LREC 2006, pages 803–808.

Ford, G. (1991). The SEI undergraduate curriculum in software engineering.
In SIGCSE ’91: Proceedings of the twenty-second SIGCSE technical sym-
posium on Computer science education, pages 375–385, New York, NY,
USA. ACM Press.

Fuller, U., Pears, A., Amillo, J., Avram, C., and Mannila, L. (2006). A
computing perspective on the bologna process. SIGCSE Bull., 38:115–
131.

Gao, X., Xiao, B., Tao, D., and Li, X. (2010). A survey of graph edit
distance. Pattern Analysis and Applications, 13:113–129. 10.1007/s10044-
008-0141-y.

Harel, D. (1992). Algorithmics - The Spirit of Computing. Addison Wesley
Publishing Company, second edition.

Heckel, R. (2006). Graph transformation in a nutshell. Electron. Notes
Theor. Comput. Sci., 148(1):187–198.

Heerand, J., Bostock, M., and Ogievetsky, V. (2010). A Tour through the
Visualisation Zoo. Queue, 8(5):20–30.

Herman, I., Melancon, G., and Marshall, M. S. (2000). Graph visualization
and navigation in information visualization: A survey. IEEE Transactions
on Visualization and Computer Graphics, 6(1):24–43.

Homer, S. and Selman, A. L. (2011). Computability and Complexity Theory.
Springer, second edition.

Impagliazzo, J., Cannon, R. L., Coulter, N. S., Frailey, D. J., and Jones,
L. G. (1997). Accreditation in the Computing Profession. In SCI ’97:
Proceedings of the World Multiconference on Systemics, Cybernetics and
Informatics.

International Education Association of South Africa (2009). Study SA 9th
Edition - South Africa’s higher education landscape. International Edu-
cation Association of South Africa. Accessed on 3 January 2011. URL:
http://www.ieasa.studysa.org/map/SouthAfricaHELandscape.pdf.

International Education Exchange Center (2009). Indian Academic Degree
Structure. Accessed on 20 September 2013. URL: http://www.ieec.in/
indian.php.

Johnson, D. S. (2005). The np-completeness column. ACM Trans. Algo-
rithms, 1(1):160–176.

200

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.ieasa.studysa.org/map/SouthAfricaHELandscape.pdf
http://www.ieec.in/indian.php
http://www.ieec.in/indian.php


Joint Task Force for Computing Curricula (2005). Computing Curricula
2005: The Overview Report covering undergraduate degree programs in
Computer Engineering, Computer Science, Information Systems, Informa-
tion Technology, Software Engineering. Last visited 22 August 2007. URL:
www.acm.org/education/curric_vols/CC2005-March06Final.pdf.

Jooste, N., editor (2009). Study South Africa - The Guide to South African
Higher Education. International Education Association of South Africa,
9 edition.

Koopman, T. (2009). A Generative Graph Template Toolkit (GraTe-Tk)
for C++. Master’s thesis, University of Pretoria.

Korf, R. E. (1985). Depth-first iterative-deepening: an optimal admissible
tree search. Artificial Intelligence, 27(1):97–109.

Kriegel, K. (1986). The space complexity of the accessibility problem for
undirected graphs of log n bounded genus. In Gruska, J., Rovan, B., and
Wiedermann, J., editors, Mathematical Foundations of Computer Science
1986, volume 233 of Lecture Notes in Computer Science, pages 484–492.
Springer Berlin Heidelberg.

Luger, G. F. (2009). Artificial Intelligence - Structures and Strategies for
Complex Problem Solving. Addison Wesley.

Marshall, L. (2011). Developing a Computer Science Curriculum in the
South African Context. In Computer Science Education Research Con-
ference, CSERC 2011. ACM.

Marshall, L. (2012). A comparison of the core aspects of the ACM/IEEE
Computer Science Curriculum 2013 Strawman report with the specified
core of CC2001 and CS2008 Review. In Computer Science Education
Research Conference, CSERC 2012. ACM.

Marshall, L. (2013). Leveraging online courses to increase student success
in a Computer Science degree. In Computer Science Education Research
Conference, CSERC 2013. ACM.

Marshall, L. and Kourie, D. (2010). Deriving a digraph isomorphism for
digraph compliance measurement. In Proceedings of the 2010 Annual
Research Conference of the South African Institute of Computer Scientists
and Information Technologists, SAICSIT ’10, pages 160–169, New York,
NY, USA. ACM.

Monroe, H. (2012). Complexity Garden. Accessed on 23 Au-
gust 2013. URL: https://complexityzoo.uwaterloo.ca/Complexity_
Garden#graph_isomorphism.

201

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

www.acm.org/education/curric_vols/CC2005-March06Final.pdf
https://complexityzoo.uwaterloo.ca/Complexity_Garden#graph_isomorphism
https://complexityzoo.uwaterloo.ca/Complexity_Garden#graph_isomorphism


Myers, R., Wilson, R. C., and Hancock, E. R. (2000). Bayesian graph edit
distance. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22:628–635.

NQF Bands (2010). Level Descriptors. SAQA. Accessed on 3 January 2011.
URL: http://www.saqa.org.za/show.asp?include=focus/ld.htm.

OED Online (2013). framework, n. Accessed July 30, 2013.

Office of Qualifications and Examinations Regulations (2012). Compar-
ing qualifications levels. Office of Qualifications and Examinations Reg-
ulations. Accessed on 24 August 2013. URL: http://ofqual.gov.uk/
help-and-advice/comparing-qualifications/.

Pandor, G. N. M. (2007). The Higher Education Qualifications Framework.
Government Gazette, South Africa.

Preiss, B. R. (1998). Data Structures and Algorithms with Object-Oriented
Design Patterns in C++. John Wiley & Sons.

Qualifications Assurance Authority (2001). The framework for qual-
ifications of higher education institutions in Scotland. Accessed
on 24 August 2013. URL: http://www.qaa.ac.uk/Publications/

InformationandGuidance/Documents/FHEQscotland.pdf.

Qualifications Assurance Authority (2008). The framework for higher ed-
ucation qualifications in England, Wales and Northern Ireland. Ac-
cessed on 24 August 2013. URL: http://www.qaa.ac.uk/Publications/
InformationandGuidance/Documents/FHEQ08.pdf.

Rayward-Smith, V. J. (1986). A First Course in Computability. Blackwell
Scientific Publications.

Sahami, M., Roach, S., Cuadros-Vargas, E., and Reed, D. (2012). Com-
puter science curriculum 2013: reviewing the strawman report from the
ACM/IEEE-CS task force. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education, SIGCSE ’12, pages 3–4, New
York, NY, USA. ACM.

Southern African Customs Union (2011). Southern African Customs Union.
SACU. Accessed on 3 January 2011. URL: http://www.sacu.int/.

Sutcliffe, P. J. (2009). Moments over the Solution Space of the Travelling
Salesman Problem. PhD thesis, Faculty of Engineering and Information
Technology University of Technology, Sydney.

The C++ Resources Network (2013). cplusplus.com. Accessed on 12 March
2013. URL: http://www.cplusplus.com.

202

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.saqa.org.za/show.asp?include=focus/ld.htm
http://ofqual.gov.uk/help-and-advice/comparing-qualifications/
http://ofqual.gov.uk/help-and-advice/comparing-qualifications/
http://www.qaa.ac.uk/Publications/InformationandGuidance/Documents/FHEQscotland.pdf
http://www.qaa.ac.uk/Publications/InformationandGuidance/Documents/FHEQscotland.pdf
http://www.qaa.ac.uk/Publications/InformationandGuidance/Documents/FHEQ08.pdf
http://www.qaa.ac.uk/Publications/InformationandGuidance/Documents/FHEQ08.pdf
http://www.sacu.int/
http://www.cplusplus.com


The Joint Task Force on Computing Curricula Association for Computing
Machinery IEEE-Computer Society (2012). Computer Science Curricula
2013 Strawman Draft.

The Joint Task Force on Computing Curricula Association for Computing
Machinery IEEE-Computer Society (2013). Computer Science Curricula
2013 Ironman Draft V1.0.

United Nations (2010). Composition of macro geographical (continental)
regions, geographical sub-regions, and selected economic and other group-
ings. United Nations Statistics Division. Accessed on 3 January 2011.

Wang, J. and He, K. (2006). Towards representing fca-based ontologies
in semantic web rule language. In CIT ’06: Proceedings of the Sixth
IEEE International Conference on Computer and Information Technol-
ogy, page 41, Washington, DC, USA. IEEE Computer Society.

Wilson, R. C. and Hancock, E. R. (2004). Levenshtein distance for graph
spectral features. In Proceedings of the Pattern Recognition, 17th Interna-
tional Conference on (ICPR’04) Volume 2 - Volume 02, ICPR ’04, pages
489–492, Washington, DC, USA. IEEE Computer Society.

World Bank (2010). Country and Lending Groups. The World Bank. Ac-
cessed on 3 January 2011. URL: http://data.worldbank.org/about/
country-classifications/country-and-lending-groups.

Zaslavskiy, M. (2010). Graph matching and its application in computer
vision and bioinformatics. PhD thesis, ParisTech - Institut des Sciences
et Technologies (Paris Institute of Technology).

Zhao, Y. and Halang, W. (2006). Rough concept lattice based ontology
similarity measure. In InfoScale ’06: Proceedings of the 1st international
conference on Scalable information systems, page 15, New York, NY, USA.
ACM.

Zhao, Y., Halang, W., and Wang, X. (2008). A rough similarity measure for
ontology mapping. In ICIW ’08: Proceedings of the 2008 Third Interna-
tional Conference on Internet and Web Applications and Services, pages
136–141, Washington, DC, USA. IEEE Computer Society.

203

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://data.worldbank.org/about/country-classifications/country-and-lending-groups
http://data.worldbank.org/about/country-classifications/country-and-lending-groups


Part IV

Appendices

204

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix A

Algorithm Execution

A.1 Algorithm trace

A trace of the execution of Algorithm 2 for the toy application presented in
Section 5.4.

Preconditions:

I = {(a, b, (e1)), (a, c, (e2)), (a, f, (e3)), (b, c, (e4)), (c, d, (e5)), (d, e, (e6)),
(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (h, e, (e11)), (i, d, (e12))}

M = {(a, b, (e1)), (a, d, (e2)), (d, f, (e3)), (b, f, (e4)), (b, j, (e5))}

Cresult = undefined

Call Cresult = T (I,M)

Initial state after the execution of lines 1 to 3

I = {(a, b, (e1)), (a, c, (e2)), (a, f, (e3)), (b, c, (e4)), (c, d, (e5)), (d, e, (e6)),
(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (h, e, (e11)), (i, d, (e12))}

M = {(a, b, (e1)), (a, d, (e2)), (d, f, (e3)), (b, f, (e4)), (b, j, (e5))}

Pset = ∅

sourceSet = {a, b, d}

destinationSet = {b, d, f, j}

State after iteration [1]: i = 1 and j = 1

source = a

destination = b

205

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



DFSID(source, destination, I) = {{(a, b, (e1))}}

Pset = {{(a, b, (e1))}}

State after iteration [2]: i = 1 and j = 2

source = a

destination = d

DFSID(source, destination, I) = {{(a, c, (e2)), (c, d, (e5))},
{(a, b, (e1)), (b, c, (e4)), (c, d, (e5))},
{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}}

Pset = {{(a, b, (e1))}} ∪
{{(a, c, (e2)), (c, d, (e5))},
{(a, b, (e1)), (b, c, (e4)), (c, d, (e5))},
{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}}

State after iteration [3]: i = 1 and j = 3

source = a

destination = f

DFSID(source, destination, I) = {{(a, b, (e1)), (b, f, (e7))}, {(a, f, (e3))}}

Pset = {{(a, b, (e1))},
{(a, c, (e2)), (c, d, (e5))},
{(a, b, (e1)), (b, c, (e4)), (c, d, (e5))},
{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}} ∪
{{(a, b, (e1)), (b, f, (e7))},
{(a, f, (e3))}}

State after iteration [4]: i = 1 and j = 4

source = a

destination = j

DFSID(source, destination, I) = ∅

Pset = {{(a, b, (e1))},
{(a, c, (e2)), (c, d, (e5))},
{(a, b, (e1)), (b, c, (e4)), (c, d, (e5))},

206

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, b, (e1)), (b, f, (e7))},
{(a, f, (e3))}} ∪ ∅

State after iteration [5]: i = 2 and j = 1

source = b

destination = b

Line 8 of Algorithm 2 ensures that loops are not searched for and therefore
the DFSID call is not made. No change to Pset is made.

State after iteration [6]: i = 2 and j = 2

source = b

destination = d

DFSID(source, destination, I) = {{(b, c, (e4)), (c, d, (e5))},
{(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}}

Pset = {{(a, b, (e1))},
{(a, c, (e2)), (c, d, (e5))},
{(a, b, (e1)), (b, c, (e4)), (c, d, (e5))},
{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, b, (e1)), (b, f, (e7))},
{(a, f, (e3))}} ∪
{{(b, c, (e4)), (c, d, (e5))},
{(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}}

State after iteration [7]: i = 2 and j = 3

source = b

destination = f

DFSID(source, destination, I) = {{b, f, (e7))}}

Pset = {{(a, b, (e1))},
{(a, c, (e2)), (c, d, (e5))},
{(a, b, (e1)), (b, c, (e4)), (c, d, (e5))},
{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, b, (e1)), (b, f, (e7))},

207

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



{(a, f, (e3))}
{(b, c, (e4)), (c, d, (e5))},
{(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}} ∪
{{b, f, (e7))}}

State after iteration [8]: i = 2 and j = 4

source = b

destination = j

DFSID(source, destination, I) = ∅

Pset = {{(a, b, (e1))},
{(a, c, (e2)), (c, d, (e5))},
{(a, b, (e1)), (b, c, (e4)), (c, d, (e5))},
{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, b, (e1)), (b, f, (e7))},
{(a, f, (e3))}
{(b, c, (e4)), (c, d, (e5))},
{(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}
{{b, f, (e7))}} ∪ ∅

State after iteration [9]: i = 3 and j = 1

source = d

destination = b

DFSID(source, destination, I) = ∅

Pset = {{(a, b, (e1))},
{(a, c, (e2)), (c, d, (e5))},
{(a, b, (e1)), (b, c, (e4)), (c, d, (e5))},
{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, b, (e1)), (b, f, (e7))},
{(a, f, (e3))}
{(b, c, (e4)), (c, d, (e5))},
{(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}
{{b, f, (e7))}} ∪ ∅

State after iteration [10]: i = 3 and j = 2

source = d

208

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



destination = d

Line 8 of Algorithm 2 ensures that loops are not searched for and therefore
the DFSID call is not made. No change to Pset is made.

State after iteration [11]: i = 3 and j = 3

source = d

destination = f

DFSID(source, destination, I) = ∅

Pset = {{(a, b, (e1))},
{(a, c, (e2)), (c, d, (e5))},
{(a, b, (e1)), (b, c, (e4)), (c, d, (e5))},
{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, b, (e1)), (b, f, (e7))},
{(a, f, (e3))}
{(b, c, (e4)), (c, d, (e5))},
{(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}
{{b, f, (e7))}} ∪ ∅

State after iteration [12]: i = 3 and j = 4

source = d

destination = j

DFSID(source, destination, I) = ∅

Pset = {{(a, b, (e1))},
{(a, c, (e2)), (c, d, (e5))},
{(a, b, (e1)), (b, c, (e4)), (c, d, (e5))},
{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, b, (e1)), (b, f, (e7))},
{(a, f, (e3))}
{(b, c, (e4)), (c, d, (e5))},
{(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}
{{b, f, (e7))}} ∪ ∅

209

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Transformation of Pset and assignment in Line 13 to C

C = T (Pset)

= T ({{(a, b, (e1))},
{(a, c, (e2)), (c, d, (e5))},
{(a, b, (e1)), (b, c, (e4)), (c, d, (e5))},
{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))},
{(a, b, (e1)), (b, f, (e7))},
{(a, f, (e3))}
{(b, c, (e4)), (c, d, (e5))},
{(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}
{{b, f, (e7))}})

= {(a, b, (e1)), (a, c, (e2)), (a, f, (e3)), (b, c, (e4)), (b, f, (e7)),

(c, d, (e5)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}

Postconditions:

I = {(a, b, (e1)), (a, c, (e2)), (a, f, (e3)), (b, c, (e4)), (c, d, (e5)), (d, e, (e6)),
(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (h, e, (e11)), (i, d, (e12))}

M = {(a, b, (e1)), (a, d, (e2)), (d, f, (e3)), (b, f, (e4)), (b, j, (e5))}

Cresult = {(a, b, (e1)), (a, c, (e2)), (a, f, (e3)), (b, c, (e4)), (b, f, (e7)),
(c, d, (e5)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}

A.2 Results tranformation

Application of Rule 5.7 to the results obtained by inspection given in Sec-
tion 5.4.1 results in the transformation of the paths to sets of triples as given
below:

(a, b): [a (e1) b] −→ {(a, b, (e1))}

(a, d): [a (e2) c (e5) d] −→ {(a, c, (e2)), (c, d, (e5))}
[a (e1) b (e4) c (e5) d] −→ {(a, b, (e1)), (b, c, (e4)), (c, d, (e5))}
[a (e1) b (e7) f (e8) g (e9) h (e10) i (e12) d] −→
{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}

[a (e3) f (e8) g (e9) h (e10) i (e12) d] −→
{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}

210

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



(a, f): [a (e1) b (e7) f ] −→ {(a, b, (e1)), (b, f, (e7))}

(b, d): [b (e4) c (e5) d] −→ {(b, c, (e4)), (c, d, (e5))}
[b (e7) f (e8) g (e9) h (e10) i (e12) d] −→
{(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}

(b, f): [b (e7) f ] −→ {(b, f, (e7))}

The union of the resultant sets of triples results is a complier given by:

{(a, b, (e1))} ∪
{(a, c, (e2)), (c, d, (e5))} ∪

{(a, b, (e1)), (b, c, (e4)), (c, d, (e5))} ∪
{(a, b, (e1)), (b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))} ∪

{(a, f, (e3)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))} ∪
{(a, b, (e1)), (b, f, (e7))} ∪
{(b, c, (e4)), (c, d, (e5))} ∪

{(b, f, (e7)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))} ∪
{(b, f, (e7))} =

{(a, b, (e1)), (a, c, (e2)), (a, f, (e3)), (b, c, (e4)), (b, f, (e7)),

(c, d, (e5)), (f, g, (e8)), (g, h, (e9)), (h, i, (e10)), (i, d, (e12))}

211

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix B

Algorithm Output

The output from the program which implements the Graph Trans-morphism
algorithm, T , is given in this appendix for a selection of the possible out-
comes of T . T was introduced in Chapter 5. The possible outcomes of the
algorithm were first mentioned in Section 5.3.2 of Chapter 5. A detailed dis-
cussion of these outcomes is presented in Chapter 7. The outcomes for which
output is given are 2, 4 and 5 in Sections B.1, B.2 and B.3 respectively.

The output of the algorithm lists all the edges in the digraph for the
ideal, model and complier. Note, all digraphs are represented using as a
of the form (source,destination). Refer to Section 6.3.1 for a discussion
of representing the edges as tuples when used in the Graph Comparison
Framework.

212

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



B.1 Output - Outcome 2, Section 7.3

Printing out the Ideal, Model and Complier

Ideal

Printing set of tuples: (a1,b1) (a1,b2) (a1,b3) (a1,b4) (a2,b3) (a2,b5)

(b1,c1) (b1,c2) (b2,c1) (b2,c3) (b2,c5) (b3,c4) (b3,c6) (b3,c7) (b3,c8)

(b4,c4) (b5,c8) (c1,d1) (c1,d2) (c2,d6) (c3,d2) (c3,d3) (c3,d4) (c3,d5)

(c4,d6) (c5,d5) (c6,d7) (c6,d8) (c6,d9) (c7,d11) (c7,d7) (c8,d10) (c8,d13)

(d10,e3) (d11,e12) (d13,f3) (d13,f6) (d2,e1) (d2,e2) (d3,e3) (d3,e4)

(d5,e3) (d6,e3) (d6,e7) (d6,e8) (d7,e5) (d8,f1) (d8,f2) (d9,e10) (d9,e11)

(d9,e9) (e1,f1) (e12,f3) (e12,f4) (e12,f5) (e8,f2)

Model

Printing set of tuples: (c3,d3) (c3,d4) (d1,f2) (d11,f1) (d11,f3) (d11,f4)

(d2,f1) (d9,e10) (d9,e9) (e8,f2) (x,y1) (x,y2) (x,y3) (y1,z1) (y1,z2) (y2,z3)

(y2,z4) (y3,z5) (z1,c3) (z2,d1) (z2,d2) (z3,e3) (z3,e8) (z4,d9) (z5,d11)

Complier

Printing set of tuples: (c3,d2) (c3,d3) (c3,d4) (c3,d5) (d11,e12) (d2,e1)

(d3,e3) (d5,e3) (d9,e10) (d9,e9) (e1,f1) (e12,f3) (e12,f4) (e8,f2)

213

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



B.2 Output - Outcome 4, Section 7.5

Ideal

Printing set of tuples: (a1,b1) (a1,b2) (a1,b3) (a1,b4) (a2,b3) (a2,b5)

(b1,c1) (b1,c2) (b2,c1) (b2,c3) (b2,c5) (b3,c4) (b3,c6) (b3,c7) (b3,c8)

(b4,c4) (b5,c8) (c1,d1) (c1,d2) (c2,d6) (c3,d2) (c3,d3) (c3,d4) (c3,d5)

(c4,d6) (c5,d5) (c6,d7) (c6,d8) (c6,d9) (c7,d11) (c7,d7) (c8,d10) (c8,d13)

(d10,e3) (d11,e12) (d13,f3) (d13,f6) (d2,e1) (d2,e2) (d3,e3) (d3,e4)

(d5,e3) (d6,e3) (d6,e7) (d6,e8) (d7,e5) (d8,f1) (d8,f2) (d9,e10) (d9,e11)

(d9,e9) (e1,f1) (e12,f3) (e12,f4) (e12,f5) (e8,f2)

Model

Printing set of tuples: (a1,d1) (a1,d4) (a1,e2) (a1,e3) (a1,e4) (a1,e5)

(a1,e7) (a1,f1) (a2,e10) (a2,e11) (a2,e9) (a2,f2) (a2,f3) (a2,f4) (a2,f5)

(a2,f6)

Complier

Printing set of tuples: (a1,b1) (a1,b2) (a1,b3) (a1,b4) (a2,b3) (a2,b5)

(b1,c1) (b1,c2) (b2,c1) (b2,c3) (b2,c5) (b3,c4) (b3,c6) (b3,c7) (b3,c8)

(b4,c4) (b5,c8) (c1,d1) (c1,d2) (c2,d6) (c3,d2) (c3,d3) (c3,d4) (c3,d5)

(c4,d6) (c5,d5) (c6,d7) (c6,d8) (c6,d9) (c7,d11) (c7,d7) (c8,d10) (c8,d13)

(d10,e3) (d11,e12) (d13,f3) (d13,f6) (d2,e1) (d2,e2) (d3,e3) (d3,e4)

(d5,e3) (d6,e3) (d6,e7) (d6,e8) (d7,e5) (d8,f1) (d8,f2) (d9,e10) (d9,e11)

(d9,e9) (e1,f1) (e12,f3) (e12,f4) (e12,f5) (e8,f2)

214

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



B.3 Output - Outcome 5, Section 7.6

Printing out the Ideal, Model and Complier

Ideal

Printing set of tuples: (a1,b1) (a1,b2) (a1,b3) (a1,b4) (a2,b3) (a2,b5)

(b1,c1) (b1,c2) (b2,c1) (b2,c3) (b2,c5) (b3,c4) (b3,c6) (b3,c7) (b3,c8)

(b4,c4) (b5,c8) (c1,d1) (c1,d2) (c2,d6) (c3,d2) (c3,d3) (c3,d4) (c3,d5)

(c4,d6) (c5,d5) (c6,d7) (c6,d8) (c6,d9) (c7,d11) (c7,d7) (c8,d10) (c8,d13)

(d10,e3) (d11,e12) (d13,f3) (d13,f6) (d2,e1) (d2,e2) (d3,e3) (d3,e4)

(d5,e3) (d6,e3) (d6,e7) (d6,e8) (d7,e5) (d8,f1) (d8,f2) (d9,e10) (d9,e11)

(d9,e9) (e1,f1) (e12,f3) (e12,f4) (e12,f5) (e8,f2) (g,a1) (g,a2)

Model

Printing set of tuples: (c3,d3) (c3,d4) (d1,f2) (d11,f1) (d11,f3)

(d11,f4) (d2,f1) (d9,e10) (d9,e9) (e8,f2) (g,x) (x,y1) (x,y2) (x,y3)

(y1,z1) (y1,z2) (y2,z3) (y2,z4) (y3,z5) (z1,c3) (z2,d1) (z2,d2) (z3,e3)

(z3,e8) (z4,d9) (z5,d11)

Complier

Printing set of tuples: (a1,b1) (a1,b2) (a1,b3) (a1,b4) (a2,b3) (a2,b5)

(b1,c1) (b1,c2) (b2,c1) (b2,c3) (b2,c5) (b3,c4) (b3,c6) (b3,c7) (b3,c8)

(b4,c4) (b5,c8) (c1,d1) (c1,d2) (c2,d6) (c3,d2) (c3,d3) (c3,d4) (c3,d5)

(c4,d6) (c5,d5) (c6,d8) (c6,d9) (c7,d11) (c8,d10) (c8,d13)

(d10,e3) (d11,e12) (d13,f3) (d2,e1) (d3,e3)

(d5,e3) (d6,e3) (d6,e8) (d8,f1) (d8,f2) (d9,e10)

(d9,e9) (e1,f1) (e12,f3) (e12,f4) (e8,f2) (g,a1) (g,a2)

215

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix C

Significance of Ratios

For each of the ratios identified in Section 6.3.1, the significance of the
ratios defined by Definitions 6.5 and 6.6 will be provided. An overview of
the information is presented in Table 6.1.

R(I, I)- I relative to I:

Ratio values
< 1 1 > 1

The values for both ver-
tices and edges will al-
ways be 1.

216

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



R(M, I) - M relative to I:

Ratio values
< 1 1 > 1

For both vertices and
edges, the cardinality
of the respective sets
in M are smaller than
the corresponding car-
dinalities of the sets in
I. This means that M
is much smaller in size
than what I is.

The number of respec-
tive vertices or edges in
M is the same as in I.
This is just a ratio in
terms of a count, and
therefore it cannot be
said that I and M rep-
resent the same infor-
mation. It will be neces-
sary to take other quan-
tities into consideration
in order to determine
the similarities or differ-
ences between I and M

The size of M in re-
lation to I is much
larger. This could mean
that M is over specify-
ing or that there is no
match between M and
I. Other quantities will
need to be considered
to determine the exact
cause.

R(C, I) - C relative to I:

Ratio values
< 1 1 > 1

C is a subgraph isomor-
phism of I. The closer
the value is to 1, the
better C matches the
information in I.

C is isomorphic to I. This can never happen
because C is derived
from I. C is therefore
either a copy of I or
tends toward represent-
ing I. It can never over-
represent I.

217

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



R(I \ C, I) - I \ C relative to I:

Ratio values
< 1 1 > 1

The closer the ratio is to
0, the better the match
between C, and by im-
plication M , are to I.
C is a subgraph isomor-
phism of I.

C is the empty set and
therefore there is no
match between C and I,
and therefore no match
possible between M and
I.

C is derived from I and
therefore can either be
smaller or equal to I in
cardinality. It can never
be larger than I.

R(I \M, I) -I \M relative to I:

Ratio values
< 1 1 > 1

The closer the ratio is to
0, the better M matches
I.

There are no common
elements between I and
M , that is I ∪ M = ∅
and therefore no possi-
bility of matching M in
terms of C onto I.

With the first operand
of the set difference be-
ing I, the resultant of
the set difference opera-
tion will never be larger
than I itself.

218

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



R(M \ C, I) -M \ C relative to I:

Ratio values
< 1 1 > 1

The closer the ratio if
to 0, the better C repre-
sents M . A ratio closer
to 1 implies that C does
not represent the infor-
mation presented in M .
M has too many extra-
neous elements not in C
and therefore not in I.
It is possible that M is
being matched with an
incompatible I, or that
the content of M should
be re-evaluated taking
the resultant sets into
account.

A ratio of exactly 1 is
ver unlikely, but will oc-
cur if the cardinality of
M \ C and I are the
same.

A ratio greater than 1
implies that M is to
begin with a large di-
graph, at least as large
as I.

219

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



R(C \M, I) -C \M relative to I:

Ratio values
< 1 1 > 1

The closer the ratio is
to 0, the less there has
been inferred from M
when constructing C.

A ratio that equals 1
is highly unlikely. The
closer the ratio is to 1,
the more has been in-
ferred when construct-
ing C and it would
be advisable to revisit
the representation on
M taking the resultant
sets of this set difference
into account.

C is ether isomorphic
to I or a subgraph iso-
morphism and therefore
the ratios will never be
greater than 1.

R(M \ C,M) -M \ C relative to M :

Ratio values
< 1 1 > 1

The closer the ratio is to
0, the better the match
is between M and C
and the more accurate
the C is in representing
M in the structure or I.

A ratio of 1 indicates
that there is no com-
mon elements between
M and C. In this case C
must be the empty set.

The ratio will never be
larger than 1 because
the resultant set can
never be larger than M .

220

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



R(C \M,C) -C \M relative to C:

It is possible that C = ∅ which means that there are no common
elements between M and I. In this case the quantity ratio would be
undefined. For C 6= ∅, the following quantity ratios are possible.

Ratio values
< 1 1 > 1

As the ratio tends to
0, the better the repre-
sentation of M in terms
of C. A ratio that
tends towards 1 means
that more than exists in
M and has been trans-
ferred to C has been in-
ferred in C.

A ratio of exactly 1 will
never occur because this
would mean that C in
its entirety has been in-
ferred from M .

The ratio will never be
greater than 1 because
the difference cannot
get bigger than what C
is.

221

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix D

Excerpts from the
ACM/IEEE CS Curriculum
Volumes

The excepts from the ACM/IEEE Curriculum volumes which describe the
Computer Science curriculum illustrate how the curricula are presented in
each of the volumes. The CC2001 and CS2008 volumes always presented
a table in which all KAs and their core and elective KUs are specified. In
CS2013, both Strawman and Ironman, this single overview table represent-
ing the Computer Science Body of Knowledge (CS-BoK) is presented per
KA. Figures D.1, D.3, D.5 and D.7 present the overview for the respective
volumes.

Figures D.2, D.4, D.6 and D.8 provide an example for each of the
volumes as to how the topics and learning outcomes are specified for the
Data Structures KU.

There excepts presented in the appendix have reference to the discussion
in Chapter 8.

222

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



D.1 CC2001CC2001 Computer Science volume – 85 –
Final Report (December 15, 2001)

Figure A-1. Computer science body of knowledge with core topics underlined

DS. Discrete Structures (43 core hours)
DS1. Functions, relations, and sets (6)
DS2. Basic logic (10)
DS3. Proof techniques (12)
DS4. Basics of counting (5)
DS5. Graphs and trees (4)
DS6. Discrete probability    (6)

PF. Programming Fundamentals (38 core hours)
PF1. Fundamental programming constructs (9)
PF2. Algorithms and problem-solving    (6)
PF3. Fundamental data structures    (14)
PF4. Recursion (5)
PF5. Event-driven programming (4)

AL. Algorithms and Complexity (31 core hours)
AL1. Basic algorithmic analysis (4)
AL2. Algorithmic strategies    (6)
AL3. Fundamental computing algorithms (12)
AL4. Distributed algorithms    (3)
AL5. Basic computability    (6)
AL6. The complexity classes P and NP
AL7. Automata theory
AL8. Advanced algorithmic analysis
AL9. Cryptographic algorithms
AL10. Geometric algorithms
AL11. Parallel algorithms

AR. Architecture and Organization (36 core hours)
AR1. Digital logic and digital systems (6)
AR2. Machine level representation of data (3)
AR3. Assembly level machine organization (9)
AR4. Memory system organization and architecture (5)
AR5. Interfacing and communication    (3)
AR6. Functional organization (7)
AR7. Multiprocessing and alternative architectures (3)
AR8. Performance enhancements
AR9. Architecture for networks and distributed systems

OS. Operating Systems (18 core hours)
OS1. Overview of operating systems (2)
OS2. Operating system principles (2)
OS3. Concurrency (6)
OS4. Scheduling and dispatch (3)
OS5. Memory management    (5)
OS6. Device management
OS7. Security and protection
OS8. File systems
OS9. Real-time and embedded systems
OS10. Fault tolerance
OS11. System performance evaluation
OS12. Scripting

NC. Net-Centric Computing (15 core hours)
NC1. Introduction to net-centric computing (2)
NC2. Communication and networking (7)
NC3. Network security (3)
NC4. The web as an example of client-server computing (3)
NC5. Building web applications
NC6. Network management
NC7. Compression and decompression
NC8. Multimedia data technologies
NC9. Wireless and mobile computing

PL. Programming Languages (21 core hours)
PL1. Overview of programming languages (2)
PL2. Virtual machines (1)
PL3. Introduction to language translation (2)
PL4. Declarations and types (3)
PL5. Abstraction mechanisms (3)
PL6. Object-oriented programming (10)
PL7. Functional programming
PL8. Language translation systems
PL9. Type systems
PL10. Programming language semantics
PL11. Programming language design

Note:  The numbers in parentheses represent the minimum
number of hours required to cover this material in a lecture
format. It is always appropriate to include more.

HC. Human-Computer Interaction (8 core hours)
HC1. Foundations of human-computer interaction (6)
HC2. Building a simple graphical user interface (2)
HC3. Human-centered software evaluation
HC4. Human-centered software development
HC5. Graphical user-interface design
HC6. Graphical user-interface programming
HC7. HCI aspects of multimedia systems
HC8. HCI aspects of collaboration and communication

GV. Graphics and Visual Computing (3 core hours)
GV1. Fundamental techniques in graphics (2)
GV2. Graphic systems    (1)
GV3. Graphic communication
GV4. Geometric modeling
GV5. Basic rendering
GV6. Advanced rendering
GV7. Advanced techniques
GV8. Computer animation
GV9. Visualization
GV10. Virtual reality
GV11. Computer vision

IS. Intelligent Systems (10 core hours)
IS1. Fundamental issues in intelligent systems (1)
IS2. Search and constraint satisfaction (5)
IS3. Knowledge representation and reasoning    (4)
IS4. Advanced search
IS5. Advanced knowledge representation and reasoning
IS6. Agents
IS7. Natural language processing
IS8. Machine learning and neural networks
IS9. AI planning systems
IS10. Robotics

IM. Information Management (10 core hours)
IM1. Information models and systems    (3)
IM2. Database systems (3)
IM3. Data modeling (4)
IM4. Relational databases
IM5. Database query languages
IM6. Relational database design
IM7. Transaction processing
IM8. Distributed databases
IM9. Physical database design
IM10. Data mining
IM11. Information storage and retrieval
IM12. Hypertext and hypermedia
IM13. Multimedia information and systems
IM14. Digital libraries

SP. Social and Professional Issues (16 core hours)
SP1. History of computing (1)
SP2. Social context of computing (3)
SP3. Methods and tools of analysis (2)
SP4. Professional and ethical responsibilities (3)
SP5. Risks and liabilities of computer-based systems (2)
SP6. Intellectual property    (3)
SP7. Privacy and civil liberties    (2)
SP8. Computer crime
SP9. Economic issues in computing
SP10. Philosophical frameworks

SE. Software Engineering (31 core hours)
SE1. Software design (8)
SE2. Using APIs    (5)
SE3. Software tools and environments    (3)
SE4. Software processes (2)
SE5. Software requirements and specifications (4)
SE6. Software validation (3)
SE7. Software evolution    (3)
SE8. Software project management (3)
SE9. Component-based computing
SE10. Formal methods
SE11. Software reliability
SE12. Specialized systems development

CN. Computational Science (no core hours)
CN1. Numerical analysis
CN2. Operations research
CN3. Modeling and simulation
CN4. High-performance computing

Figure D.1: Overview of Knowledge Areas- CS2001 BoK [ACM/IEEE-
Curriculum 2001 Task Force, 2001, Page 85]

223

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CC2001 Computer Science volume – 90 –
Final Report (December 15, 2001)

PF2. Algorithms and problem-solving [core]
Minimum core coverage time: 6 hours

Topics:
Problem-solving strategies
The role of algorithms in the problem-solving process
Implementation strategies for algorithms
Debugging strategies
The concept and properties of algorithms

Learning objectives:
1. Discuss the importance of algorithms in the problem-solving process.
2. Identify the necessary properties of good algorithms.
3. Create algorithms for solving simple problems.
4. Use pseudocode or a programming language to implement, test, and debug algorithms

for solving simple problems.
5. Describe strategies that are useful in debugging.

PF3. Fundamental data structures [core]
Minimum core coverage time: 14 hours

Topics:
Primitive types
Arrays
Records
Strings and string processing
Data representation in memory
Static, stack, and heap allocation
Runtime storage management
Pointers and references
Linked structures
Implementation strategies for stacks, queues, and hash tables
Implementation strategies for graphs and trees
Strategies for choosing the right data structure

Learning objectives:
1. Discuss the representation and use of primitive data types and built-in data structures.
2. Describe how the data structures in the topic list are allocated and used in memory.
3. Describe common applications for each data structure in the topic list.
4. Implement the user-defined data structures in a high-level language.
5. Compare alternative implementations of data structures with respect to performance.
6. Write programs that use each of the following data structures: arrays, records, strings,

linked lists, stacks, queues, and hash tables.
7. Compare and contrast the costs and benefits of dynamic and static data structure

implementations.
8. Choose the appropriate data structure for modeling a given problem.

Figure D.2: Example of the CS2001 Programming Fundamentals KA, Data
Structures KU [ACM/IEEE-Curriculum 2001 Task Force, 2001, Page 90]

224

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



D.2 CS2008
� Appendix�A�� Overview�of�the�Body�of�Knowledge�

 
DS. Discrete Structures (43 core hours)  
DS/FunctionsRelationsAndSets (6)  
DS/BasicLogic (10)  
DS/ProofTechniques (12)  
DS/BasicsOfCounting (5)  
DS/GraphsAndTrees (4)  
DS/DiscreteProbability (6)  
 
PF. Programming Fundamentals (47 core hours)  
PF/FundamentalConstructs (9)  
PF/AlgorithmicProblemSolving (6)  
PF/DataStructures (10)  
PF/Recursion (4)  
PF/EventDrivenProgramming (4)  
PF/ObjectOriented (8)  
PF/FoundationsInformationSecurity (4)  
PF/SecureProgramming (2)  
 
AL. Algorithms and Complexity (31 core hours)  
AL/BasicAnalysis (4)  
AL/AlgorithmicStrategies (6)  
AL/FundamentalAlgorithms (12)  
AL/DistributedAlgorithms (3)  
AL/BasicComputability (6)  
AL/PversusNP  
AL/AutomataTheory  
AL/AdvancedAnalysis  
AL/CryptographicAlgorithms  
AL/GeometricAlgorithms  
AL/ParallelAlgorithms  
 
AR. Architecture and Organization (36 core 
hours)  
AR/DigitalLogicAndDataRepresentation (7)  
AR/ComputerArchitectureAndOrganization (9)  
AR/InterfacingAndI/OStrategies (3) 
AR/MemoryArchitecture (5)  
AR/FunctionalOrganization (6)  
AR/Multiprocessing (6)  
AR/PerformanceEnhancements  
AR/DistributedArchitectures  
AR/Devices  
AR/DirectionsInComputing  
 
OS. Operating Systems (18 core hours)  
OS/OverviewOfOperatingSystems (2)  
OS/OperatingSystemPrinciples (2)  
OS/Concurrency (6)  
OS/SchedulingandDispatch (3)  
OS/MemoryManagement (3) 
OS/DeviceManagement  
OS/SecurityAndProtection (2) 
OS/FileSystems  
OS/RealTimeAndEmbeddedSystems  
OS/FaultTolerance  
OS/SystemPerformanceEvaluation  
OS/Scripting  
OS/DigitalForensics  
OS/SecurityModels 

 

NC. Net-Centric Computing (15 core 
hours)  
NC/Introduction(2)  
NC/NetworkCommunication (7)  
NC/NetworkSecurity (6)  
NC/WebOrganization  
NC/NetworkedApplications  
NC/NetworkManagement  
NC/Compression  
NC/MultimediaTechnologies  
NC/MobileComputing  
 
PL. Programming Languages (21 core 
hours)  
PL/Overview(2)  
PL/VirtualMachines(1)  
PL/BasicLanguageTranslation(2)  
PL/DeclarationsAndTypes(3)  
PL/AbstractionMechanisms(3)  
PL/ObjectOrientedProgramming(10)  
PL/FunctionalProgramming  
PL/LanguageTranslationSystems  
PL/TypeSystems  
PL/ProgrammingLanguageSemantics  
PL/ProgrammingLanguageDesign  
 
HC. Human-Computer Interaction (8 core 
hours)  
HC/Foundations (6)  
HC/BuildingGUIInterfaces (2)  
HC/UserCcenteredSoftwareEvaluation  
HC/UserCenteredSoftwareDevelopment  
HC/GUIDesign  
HC/GUIProgramming  
HC/MultimediaAndMultimodalSystems  
HC/CollaborationAndCommunication  
HC/InteractionDesignForNewEnvironments  
HC/HumanFactorsAndSecurity  
 
GV. Graphics and Visual Computing (3 
core hours)  
GV/FundamentalTechniques (2)  
GV/GraphicSystems (1)  
GV/GraphicCommunication  
GV/GeometricModeling  
GV/BasicRendering  
GV/AdvancedRendering  
GV/AdvancedTechniques  
GV/ComputerAnimation  
GV/Visualization  
GV/VirtualReality  
GV/ComputerVision  
GV/ComputationalGeometry  
GV/GameEngineProgramming  

 

IS. Intelligent Systems (10 core 
hours)  
IS/FundamentalIssues (1)  
IS/BasicSearchStrategies (5)  
IS/KnowledgeBasedReasoning (4)  
IS/AdvancedSearch  
IS/AdvancedReasoning  
IS/Agents  
IS/NaturaLanguageProcessing  
IS/MachineLearning  
IS/PlanningSystems  
IS/Robotics  
IS/Perception  
 
IM. Information Management (11 
core hours)  
IM/InformationModels (4)  
IM/DatabaseSystems (3)  
IM/DataModeling (4)  
IM/Indexing  
IM/RelationalDatabases  
IM/QueryLanguages  
IM/RelationalDatabaseDesign  
IM/TransactionProcessing  
IM/DistributedDatabases  
IM/PhysicalDatabaseDesign  
IM/DataMining  
IM/InformationStorageAndRetrieval  
IM/Hypermedia  
IM/MultimediaSystems  
IM/DigitalLibraries  
 
SP. Social and Professional Issues (16 
core hours)  
SP/HistoryOfComputing (1)  
SP/SocialContext (3)  
SP/AnalyticalTools (2)  
SP/ProfessionalEthics (3)  
SP/Risks (2)  
SP/SecurityOperations  
SP/IntellectualProperty (3)  
SP/PrivacyAndCivilLiberties (2)  
SP/ComputerCrime  
SP/EconomicsOfComputing  
SP/PhilosophicalFrameworks  
 
SE. Software Engineering (31 core 
hours)  
SE/SoftwareDesign (8)  
SE/UsingAPIs (5)  
SE/ToolsAndEnvironments (3)  
SE/SoftwareProcesses (2)  
SE/RequirementsSpecifications (4)  
SE/SoftwareVerificationValidation (3)  
SE/SoftwareEvolution (3)  
SE/SoftwareProjectManagement (3)  
SE/ComponentBasedComputing  
SE/FormalMethods  
SE/SoftwareReliability  
SE/SpecializedSystems  
SE/RiskAssessment  
SE/RobustAndSecurity-
EnhancedProgramming 
 
CN. Computational Science (no core 
hours)  
CN/ModelingAndSimulation  
CN/OperationsResearch  
CN/ParallelComputation 

Figure D.3: Overview of Knowledge Areas - CS2008 BoK [ACM/IEEE-
Curriculum CS2008 Joint Task Force, 2008, Appendix A]

225

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



x The concept and properties of algorithms  
 

Learning Objectives:  
7. Discuss the importance of algorithms in the problem-solving process.  
8. Identify the necessary properties of good algorithms.  
9. Create algorithms for solving simple problems.  
10. Use pseudocode or a programming language to implement, test, and debug algorithms for solving simple 

problems.  
11. Describe strategies that are useful in debugging.  

PF/DataStructures�[core]�
Minimum core coverage time: 10 hours  
 
Topics:  
x Representation of numeric data  
x Range, precision, and rounding errors  
x Arrays  
x Representation of character data  
x Strings and string processing  
x Runtime storage management  
x Pointers and references  
x Linked structures  
x Implementation strategies for stacks, queues, and hash tables  
x Implementation strategies for graphs and trees  
x Strategies for choosing the right data structure  

 
Learning Objectives:  
1. Describe the representation of numeric and character data.  
2. Understand how precision and round-off can affect numeric calculations.  
3. Discuss the use of primitive data types and built-in data structures.  
4. Describe common applications for each data structure in the topic list.  
5. Implement the user-defined data structures in a high-level language.  
6. Compare alternative implementations of data structures with respect to performance.  
7. Write programs that use each of the following data structures: arrays, strings, linked lists, stacks, queues, and 

hash tables.  
8. Compare and contrast the costs and benefits of dynamic and static data structure implementations.  
9. Choose the appropriate data structure for modeling a given problem. 

PF/Recursion�[core]�
Minimum core coverage time: 4 hours  
 
Topics:  
x The concept of recursion  
x Recursive mathematical functions  
x Simple recursive functions  
x Divide-and-conquer strategies  
x Recursive backtracking  
 
Learning Objectives:  
1. Describe the concept of recursion and give examples of its use.  
2. Identify the base case and the general case of a recursively defined problem.  
3. Compare iterative and recursive solutions for elementary problems such as factorial.  
4. Describe the divide-and-conquer approach.  
5. Implement, test, and debug simple recursive functions and procedures.  
6. Determine when a recursive solution is appropriate for a problem.  

PF/EventDrivenProgramming[core]�
Minimum core coverage time: 4 hours 
 

Figure D.4: Example of the CS2008 Programming Fundamentals KA, Data
Structures KU [ACM/IEEE-Curriculum CS2008 Joint Task Force, 2008, Ap-
pendix B]

226

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



D.3 CS2013 Strawman

 

- 139 - 

 

emphasize formal analysis (e.g., Big-Oh, computability) or design methodologies (e.g., team 30 

projects, software life cycle) early, thus integrating hours from the Programming Languages, 31 

Algorithms and Complexity, and/or Software Engineering knowledge areas.  Thus, the 42-hours 32 

of material in this knowledge area should be augmented with core material from one or more of 33 

these knowledge areas to form a complete and coherent first-year experience. 34 

When considering the hours allocated to each knowledge unit, it should be noted that these hours 35 

reflect the minimal amount of classroom coverage needed to introduce the material.  Many 36 

software development topics will reappear and be reinforced by later topics (e.g., applying 37 

iteration constructs when processing lists).  In addition, the mastery of concepts and skills from 38 

this knowledge area requires a significant amount of software development experience outside of 39 

class. 40 

 41 

SDF. Software Development Fundamentals (42 Core-Tier1 hours) 42 

 Core-Tier1 hours Core-Tier2 hours Includes 
Electives 

SDF/Algorithms and Design 11  N 

SDF/Fundamental Programming Concepts 10  N 

SDF/Fundamental Data Structures 12  N 

SDF/Development Methods 9  N 

   43 

44 
Figure D.5: Overview of the CS2013 Strawman SDF BoK [The Joint Task
Force on Computing Curricula Association for Computing Machinery IEEE-
Computer Society, 2012, Page 139]

 

- 141 - 

 

 Functions and parameter passing 91 
 The concept of recursion 92 

 93 
Learning Outcomes: 94 

1. Analyze and explain the behavior of simple programs involving the fundamental programming constructs 95 
covered by this unit. [Evaluation] 96 

2. Identify and describe uses of primitive data types. [Knowledge] 97 
3. Write programs that use each of the primitive data types. [Application] 98 
4. Modify and expand short programs that use standard conditional and iterative control structures and 99 

functions. [Application] 100 
5. Design, implement, test, and debug a program that uses each of the following fundamental programming 101 

constructs: basic computation, simple I/O, standard conditional and iterative structures, the definition of 102 
functions, and parameter passing. [Application] 103 

6. Choose appropriate conditional and iteration constructs for a given programming task. [Evaluation] 104 
7. Describe the concept of recursion and give examples of its use. [Knowledge] 105 
8. Identify the base case and the general case of a recursively-defined problem. [Evaluation] 106 

 107 

SDF/Fundamental Data Structures  108 

[12 Core-Tier1 hours] 109 

This unit builds the foundation for core concepts in the Algorithms & Complexity knowledge 110 
area, most notably in the Fundamental Data Structures & Algorithms and Basic Computability & 111 
Complexity units.  112 
Topics: 113 

 Arrays 114 
 Records/structs (heterogeneous aggregates) 115 
 Strings and string processing 116 
 Stacks, queues, priority queues, sets & maps 117 
 References and aliasing 118 
 Simple linked structures 119 
 Strategies for choosing the appropriate data structure 120 

 121 
Learning Outcomes: 122 

1. Discuss the appropriate use of built-in data structures. [Knowledge] 123 
2. Describe common applications for each data structure in the topic list. [Knowledge] 124 
3. Compare alternative implementations of data structures with respect to performance. [Evaluation] 125 
4. Write programs that use each of the following data structures: arrays, strings, linked lists, stacks, queues, 126 

sets, and maps. [Application] 127 
5. Compare and contrast the costs and benefits of dynamic and static data structure implementations. 128 

[Evaluation] 129 
6. Choose the appropriate data structure for modeling a given problem. [Evaluation] 130 

 131 

132 
Figure D.6: Example of the CS2013 Strawman Software Development Fun-
damentals KA, Data Structures KU [The Joint Task Force on Computing
Curricula Association for Computing Machinery IEEE-Computer Society,
2012, Page141]

227

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



D.4 CS2013 Ironman

 

- 163 - 

 

emphasize formal analysis (e.g., Big-Oh, computability) or design methodologies (e.g., team 30 

projects, software life cycle) early, thus integrating hours from the Programming Languages, 31 

Algorithms and Complexity, and/or Software Engineering knowledge areas.  Thus, the 43 hours 32 

of material in this knowledge area will typically be augmented with core material from one or 33 

more of these knowledge areas to form a complete and coherent first-year experience.   34 

When considering the hours allocated to each knowledge unit, it should be noted that these hours 35 

reflect the minimal amount of classroom coverage needed to introduce the material.  Many 36 

software development topics will reappear and be reinforced by later topics (e.g., applying 37 

iteration constructs when processing lists).  In addition, the mastery of concepts and skills from 38 

this knowledge area requires a significant amount of software development experience outside of 39 

class. 40 

 41 

SDF. Software Development Fundamentals (43 Core-Tier1 hours) 42 

 Core-Tier1 hours Core-Tier2 hours Includes 
Electives 

SDF/Algorithms and Design 11  N 

SDF/Fundamental Programming Concepts 10  N 

SDF/Fundamental Data Structures 12  N 

SDF/Development Methods 10  N 

 43 

44 
Figure D.7: Overview of the CS2013 Ironman SDF BoK [The Joint Task
Force on Computing Curricula Association for Computing Machinery IEEE-
Computer Society, 2013, Page 163]

 

- 141 - 

 

 Functions and parameter passing 91 
 The concept of recursion 92 

 93 
Learning Outcomes: 94 

1. Analyze and explain the behavior of simple programs involving the fundamental programming constructs 95 
covered by this unit. [Evaluation] 96 

2. Identify and describe uses of primitive data types. [Knowledge] 97 
3. Write programs that use each of the primitive data types. [Application] 98 
4. Modify and expand short programs that use standard conditional and iterative control structures and 99 

functions. [Application] 100 
5. Design, implement, test, and debug a program that uses each of the following fundamental programming 101 

constructs: basic computation, simple I/O, standard conditional and iterative structures, the definition of 102 
functions, and parameter passing. [Application] 103 

6. Choose appropriate conditional and iteration constructs for a given programming task. [Evaluation] 104 
7. Describe the concept of recursion and give examples of its use. [Knowledge] 105 
8. Identify the base case and the general case of a recursively-defined problem. [Evaluation] 106 

 107 

SDF/Fundamental Data Structures  108 

[12 Core-Tier1 hours] 109 

This unit builds the foundation for core concepts in the Algorithms & Complexity knowledge 110 
area, most notably in the Fundamental Data Structures & Algorithms and Basic Computability & 111 
Complexity units.  112 
Topics: 113 

 Arrays 114 
 Records/structs (heterogeneous aggregates) 115 
 Strings and string processing 116 
 Stacks, queues, priority queues, sets & maps 117 
 References and aliasing 118 
 Simple linked structures 119 
 Strategies for choosing the appropriate data structure 120 

 121 
Learning Outcomes: 122 

1. Discuss the appropriate use of built-in data structures. [Knowledge] 123 
2. Describe common applications for each data structure in the topic list. [Knowledge] 124 
3. Compare alternative implementations of data structures with respect to performance. [Evaluation] 125 
4. Write programs that use each of the following data structures: arrays, strings, linked lists, stacks, queues, 126 

sets, and maps. [Application] 127 
5. Compare and contrast the costs and benefits of dynamic and static data structure implementations. 128 

[Evaluation] 129 
6. Choose the appropriate data structure for modeling a given problem. [Evaluation] 130 

 131 

132 
Figure D.8: Example of the CS2013 Ironman Software Development Fun-
damentals KA, Data Structures KU [The Joint Task Force on Computing
Curricula Association for Computing Machinery IEEE-Computer Society,
2013, Page165]

228

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix E

Application Scenarios -
Cardinalities and ratios

E.1 Scenario 1

229

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



O
ri

g
in

a
l

K
A

e
q
u

iv
a
le

n
c
e
s

K
A

a
n

d
K

U
e
q
u

iv
a
le

n
c
e
s

R
a
ti

o
(R

(X
,Y

))
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
R

(I
,I

)
47

6
47

7
1

1
49

5
50

1
1

1
5
7
6

6
1
1

1
1

R
(M

,I
)

51
0

51
9

1.
07

1.
09

52
9

54
3

1.
07

1.
08

6
1
1

6
4
7

1
.0

6
1
.0

6

R
(C
,I

)
35

6
35

6
0.

75
0.

75
37

5
38

0
0.

76
0.

76
4
5
7

4
9
1

0
.7

9
0
.8

0

R
(I
\
C
,I

)
12

0
12

1
0.

25
0.

25
12

0
12

1
0.

24
0.

24
1
1
9

1
2
0

0
.2

1
0
.2

0

R
(I
\
M
,I

)
13

8
24

8
0.

29
0.

52
13

8
24

8
0.

28
0.

50
1
2
1

1
5
8

0
.2

1
0
.2

6

R
(M
\
C
,I

)
17

2
29

0
0.

36
0.

61
17

2
29

0
0.

35
0.

58
1
5
6

1
9
4

0
.2

7
0
.3

2

R
(C
\
M
,I

)
18

12
7

0.
04

0.
27

18
12

7
0.

04
0.

25
2

3
8

0
.0

1
0
.0

6

R
(M
\
C
,M

)
17

2
29

0
0.

34
0.

56
17

2
29

0
0.

33
0.

53
1
5
6

1
9
4

0
.2

6
0
.3

0

R
(C
\
M
,C

)
18

12
7

0.
05

0.
36

18
12

7
0.

05
0.

33
3

3
8

0
.0

1
0
.0

8

T
ab

le
E

.1
:

S
ce

n
ar

io
1

-
C

C
20

01
(I

)
an

d
C

S
20

0
8
(M

)

230

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



O
ri

g
in

a
l

K
A

e
q
u

iv
a
le

n
c
e
s

K
A

a
n

d
K

U
e
q
u

iv
a
le

n
c
e
s

R
a
ti

o
(R

(X
,Y

))
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
R

(I
,I

)
47

6
47

7
1

1
49

5
50

1
1

1
5
7
6

6
1
1

1
1

R
(M

,I
)

68
3

68
3

1.
43

1.
43

70
1

70
7

1.
42

1.
41

7
8
1

8
3
1

1
.3

6
1
.3

6

R
(C
,I

)
19

2
19

2
0.

40
0.

40
21

1
21

6
0.

43
0.

43
3
0
0

3
3
4

0
.5

2
0
.5

5

R
(I
\
C
,I

)
28

4
28

5
0.

60
0.

60
28

4
28

5
0.

57
0.

57
2
7
6

2
7
7

0
.4

8
0
.4

5

R
(I
\
M
,I

)
30

0
35

0
0.

63
0.

73
29

8
34

6
0.

60
0.

69
2
8
0

3
0
3

0
.4

9
0
.5

0

R
(M
\
C
,I

)
50

7
55

6
1.

07
1.

17
50

4
55

2
1.

02
1.

10
4
8
5

5
2
3

0
.8

4
0
.8

6

R
(C
\
M
,I

)
16

65
0.

03
0.

14
14

61
0.

03
0.

12
4

2
6

0
.0

1
0
.0

4

R
(M
\
C
,M

)
50

7
55

6
0.

74
0.

81
50

4
55

2
0.

72
0.

78
4
8
5

5
2
3

0
.6

2
0
.6

3

R
(C
\
M
,C

)
16

65
0.

08
0.

34
14

61
0.

07
0.

28
4

2
6

0
.0

1
0
.0

8

T
ab

le
E

.2
:

S
ce

n
ar

io
1

-
C

C
20

01
(I

)
an

d
C

S
20

1
3
S

(M
)

231

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



O
ri

g
in

a
l

K
A

e
q
u

iv
a
le

n
c
e
s

K
A

a
n

d
K

U
e
q
u

iv
a
le

n
c
e
s

R
a
ti

o
(R

(X
,Y

))
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
R

(I
,I

)
47

6
47

7
1

1
49

5
50

1
1

1
5
7
6

6
1
1

1
1

R
(M

,I
)

73
2

73
2

1.
54

1.
53

75
0

75
6

1.
52

1.
51

8
3
0

8
7
6

1
.4

4
1
.4

4

R
(C
,I

)
18

5
18

4
0.

39
0.

39
20

4
20

8
0.

41
0.

42
2
9
3

3
2
6

0
.5

1
0
.5

3

R
(I
\
C
,I

)
29

1
29

3
0.

61
0.

61
29

1
29

3
0.

59
0.

58
2
8
3

2
8
5

0
.4

9
0
.4

7

R
(I
\
M
,I

)
30

8
35

5
0.

65
0.

74
30

5
34

9
0.

62
0.

70
2
8
7

3
1
3

0
.5

0
0
.5

2

R
(M
\
C
,I

)
56

4
61

0
1.

18
1.

28
56

0
60

4
1.

13
1.

21
5
4
1

5
7
8

0
.9

4
0
.9

5

R
(C
\
M
,I

)
17

62
0.

04
0.

13
14

56
0.

03
0.

11
5

2
8

0
.0

1
0
.0

5

R
(M
\
C
,M

)
56

4
61

0
0.

77
0.

83
56

0
60

4
0.

75
0.

80
5
4
1

5
7
8

0
.6

5
0
.6

6

R
(C
\
M
,C

)
17

62
0.

09
0.

34
14

56
0.

07
0.

27
5

2
8

0
.0

2
0
.0

9

T
ab

le
E

.3
:

S
ce

n
ar

io
1

-
C

C
20

01
(I

)
an

d
C

S
20

1
3
I(

M
)

232

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



O
ri

g
in

a
l

K
A

e
q
u

iv
a
le

n
c
e
s

K
A

a
n

d
K

U
e
q
u

iv
a
le

n
c
e
s

R
a
ti

o
(R

(X
,Y

))
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
R

(I
,I

)
68

3
68

3
1

1
70

1
70

7
1

1
7
8
1

8
3
1

1
1

R
(M

,I
)

73
2

73
2

1.
07

1.
07

75
0

75
6

1.
07

1.
07

8
3
0

8
7
6

1
.0

6
1
.0

5

R
(C
,I

)
59

3
59

3
0.

87
0.

87
61

1
61

7
0.

87
0.

87
6
9
2

7
4
2

0
.8

9
0
.8

9

R
(I
\
C
,I

)
90

90
0.

13
0.

13
90

90
0.

13
0.

13
8
9

8
9

0
.1

1
0
.1

1

R
(I
\
M
,I

)
93

20
8

0.
14

0.
30

92
20

5
0.

13
0.

29
8
9

2
0
3

0
.1

1
0
.2

5

R
(M
\
C
,I

)
14

2
25

7
0.

21
0.

38
14

1
25

4
0.

20
0.

36
1
3
8

2
4
8

0
.1

8
0
.3

0

R
(C
\
M
,I

)
3

11
8

0
0.

17
2

11
5

0
0.

16
0

1
1
4

0
0
.1

4

R
(M
\
C
,M

)
14

2
25

7
0.

19
0.

35
14

1
25

4
0.

19
0.

34
1
3
8

2
4
8

0
.1

7
0
.2

8

R
(C
\
M
,C

)
3

11
8

0.
01

0.
20

2
11

5
0

0.
19

0
1
1
4

0
0
.1

5

T
ab

le
E

.4
:

S
ce

n
ar

io
1

-
C

S
20

13
S

(I
)

an
d

C
S

20
1
3
I(

M
)

233

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



E.2 Scenario 2

234

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



O
ri

g
in

a
l

K
U

e
q
u

iv
a
le

n
c
e

T
o
p

ic
e
q
u
iv

a
le

n
c
e
s

R
a
ti

o
(R

(X
,Y

))
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
R

(I
,I

)
14

12
1

1
16

16
1

1
3
6

4
1

1
1

R
(M

,I
)

16
15

1.
14

1.
25

19
19

1.
19

1.
1
9

3
4

3
9

0
.9

4
0
.9

5

R
(C
,I

)
2

1
0.

14
0.

08
7

7
0.

44
0.

4
4

2
6

3
1

0
.7

2
0
.7

6

R
(I
\
C
,I

)
12

11
0.

86
0.

92
9

9
0.

56
0.

5
6

1
0

1
0

0
.2

8
0
.2

4

R
(I
\
M
,I

)
11

11
0.

79
0.

92
9

9
0.

56
0.

5
6

1
0

1
0

0
.2

8
0
.2

4

R
(M
\
C
,I

)
14

14
1

1.
17

12
12

0.
75

0.
7
5

8
8

0
.2

2
0
.2

R
(C
\
M
,I

)
0

0
0

0
0

0
0

0
0

0
0

0

R
(M
\
C
,M

)
14

14
0.

88
0.

93
12

12
0.

63
0.

6
3

8
8

0
.2

4
0
.2

1

R
(C
\
M
,C

)
0

0
0

0
0

0
0

0
0

0
0

0

T
ab

le
E

.5
:

S
ce

n
ar

io
2

-
C

C
20

01
(I

)
an

d
C

S
20

0
8
(M

)

235

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



O
ri

g
in

a
l

K
U

e
q
u

iv
a
le

n
c
e

T
o
p

ic
e
q
u
iv

a
le

n
c
e
s

R
a
ti

o
(R

(X
,Y

))
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
R

(I
,I

)
14

12
1

1
19

19
1

1
3
4

3
9

1
1

R
(M

,I
)

16
15

1.
14

1.
25

16
16

0.
84

0.
8
4

3
6

4
1

1
.0

6
1
.0

5

R
(C
,I

)
2

1
0.

14
0.

08
7

7
0.

37
0.

3
7

2
6

3
1

0
.7

6
0
.7

9

R
(I
\
C
,I

)
12

11
0.

86
0.

92
12

12
0.

63
0.

6
3

8
8

0
.2

4
0
.2

1

R
(I
\
M
,I

)
11

11
0.

79
0.

92
12

12
0.

63
0.

6
3

8
8

0
.2

4
0
.2

1

R
(M
\
C
,I

)
14

14
1

1.
17

9
9

0.
47

0.
4
7

1
0

1
0

0
.2

9
0
.2

6

R
(C
\
M
,I

)
0

0
0

0
0

0
0

0
0

0
0

0

R
(M
\
C
,M

)
14

14
0.

88
0.

93
9

9
0.

56
0.

5
6

1
0

1
0

0
.2

8
0
.2

4

R
(C
\
M
,C

)
0

0
0

0
0

0
0

0
0

0
0

0

T
ab

le
E

.6
:

S
ce

n
ar

io
2

-
C

S
20

08
(I

)
an

d
C

C
20

0
1
(M

)

236

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



O
ri

g
in

a
l

K
A

e
q
u

iv
a
le

n
c
e

T
o
p

ic
e
q
u
iv

a
le

n
c
e
s

R
a
ti

o
(R

(X
,Y

))
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
R

(I
,I

)
21

20
1

1
24

24
1

1
3
9

4
4

1
1

R
(M

,I
)

21
20

1
1

24
24

1
1

4
2

4
8

1
.0

8
1
.0

9

R
(C
,I

)
14

12
0.

67
0.

6
18

18
0.

75
0.

7
5

3
7

4
2

0
.9

5
0
.9

5

R
(I
\
C
,I

)
7

8
0.

33
0.

4
6

6
0.

25
0.

2
5

2
2

0
.0

5
0
.0

5

R
(I
\
M
,I

)
7

8
0.

33
0.

4
6

6
0.

25
0.

2
5

2
2

0
.0

5
0
.0

5

R
(M
\
C
,I

)
7

8
0.

33
0.

4
6

6
0.

25
0.

2
5

5
6

0
.1

3
0
.1

4

R
(C
\
M
,I

)
0

0
0

0
0

0
0

0
0

0
0

0

R
(M
\
C
,M

)
7

8
0.

33
0.

4
6

6
0.

25
0.

2
5

5
6

0
.1

2
0
.1

3

R
(C
\
M
,C

)
0

0
0

0
0

0
0

0
0

0
0

0

T
ab

le
E

.7
:

S
ce

n
ar

io
2

-
C

S
20

13
S

(I
)

an
d

C
S

20
1
3
I(

M
)

237

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



O
ri

g
in

a
l

K
A

e
q
u

iv
a
le

n
c
e

T
o
p

ic
e
q
u
iv

a
le

n
c
e
s

R
a
ti

o
(R

(X
,Y

))
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
|V
X
||
E
′ X
|V

r
a
ti
o

X
E
r
a
ti
o

X
R

(I
,I

)
21

20
1

1
24

24
1

1
4
2

4
8

1
1

R
(M

,I
)

21
20

1
1

24
24

1
1

3
9

4
4

0
.9

3
0
.9

2

R
(C
,I

)
14

12
0.

67
0.

6
18

18
0.

75
0.

7
5

3
7

4
2

0
.8

8
0
.8

8

R
(I
\
C
,I

)
7

8
0.

33
0.

4
6

6
0.

25
0.

2
5

5
6

0
.1

2
0
.1

3

R
(I
\
M
,I

)
7

8
0.

33
0.

4
6

6
0.

25
0.

2
5

5
6

0
.1

2
0
.1

3

R
(M
\
C
,I

)
7

8
0.

33
0.

4
6

6
0.

25
0.

2
5

2
2

0
.0

5
0
.0

4

R
(C
\
M
,I

)
0

0
0

0
0

0
0

0
0

0
0

0

R
(M
\
C
,M

)
7

8
0.

33
0.

4
6

6
0.

25
0.

2
5

2
2

0
.0

5
0
.0

5

R
(C
\
M
,C

)
0

0
0

0
0

0
0

0
0

0
0

0

T
ab

le
E

.8
:

S
ce

n
ar

io
2

-
C

S
20

13
I(

I)
an

d
C

S
20

13
S

(M
)

238

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix F

BSc Computer Science
Degree

239

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



FUNDAMENTAL MODULES
Code Module Credits Semester Period

Hours
Year-level 1 (at least 20 credits)

CIL111 Computer Literacy 4 2 S1
CIL121 Information Literacy 4 2 S2

EOT162 Academic writing skills 6 1.5 Q2
EOT164 Communication in organisations 6 3 S2
OR
EOT110 Academic Literacy 6 3 S1
EOT120 Academic Literacy 6 3 S2
Year-level 2 (8 credits)
JCP202 Community-based Project 8 1.71 Year

CORE MODULES
Code Module Credits Semester Period

Hours
Year-level 1 (120 credits)
COS110 Program Design: Introduction 16 5 S2
COS121 Software Modelling 16 5 S2
COS132 Introduction to Programming 16 5 S1
COS151 Introduction to Computer Science 8 3 S1
ERA284 Computer Architecture 16 4 S2
WTW114 Calculus 16 5 S1
WTW115 Discrete Structures 8 3 S1
WTW126 Linear Algebra 8 3 S2
WTW128 Calculus 8 3 0
WTW152 Mathematical Modeling 8 3 S1
Year-level 2 (110 credits)
COS212 Data Structures and Algorithms 16 5 S1
COS222 Operating Systems 16 5 S1
COS226 Concurrent Systems 16 5 S2
COS216 Netcentric Computer Systems 16 5 S1
INF214 Informatics: Database Design 14 4 S1
INL240 Information Science: Social and ethical impact 20 4 S1
WTW285 Discrete Structures 12 3 S2
Year-level 3 (81 credits)
COS301 Software Engineering 27 5 Year
COS330 Computer Security and Ethics 18 3 S2
COS332 Computer Networks 18 3 S1
COS333 Programming Languages 18 3 S1

Pass an exemption examination in CIL 111 or

Pass an exemption examination in Academic Literacy AND

240

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



ELECTIVE MODULES
Code Module Credits Semester Period

Hours
Year-level 1 (at least 78 credits)
Statistics (at least 26 credits)

WST111 Mathematical Statistics 16 5 S1
WST121 Mathematical Statistics 16 5 S2
OR
STK110 Descriptive Statistics 13 3 S1
STK120 Multivariate Statistics 13 3 S2
Science (32 credits)
Students with Physical Science Level 4 in grade 12 can choose between Physics, Chemistry or Biological Sciences
Physics
PHY171 First Course in Physics 32 10 Year
OR
Chemistry
CMY117 General Chemistry 16 5 S1
CMY127 General Chemistry 16 5 S2
OR
Biological Sciences
MLB111 Molecular and Cell Biology 16 5 S1
BOT161 Plant Biology 8 3 S2
MBY161 Introduction to Microbiology 8 3 S2
OR
Students without Physical Science in grade 12 are required to take Geology
GLY151 Introductory Geology 8 3 Q1
GLY152 Physical Geology 8 3 Q2
GLY161 Historical Geology 8 3 Q4
GLY162 Environmental Geology 8 3 Q3
Other (at least 20 credits)
At least 20 credits from the Faculties of Humanities or Economic and Management Sciences 
for which the student has the prerequisites
Year-level 2
Additional electives from second year modules in order to satisfy third year elective module prerequisites
Year-level 3 (at least 63 credits)
63 credits on third year level for which the student has the prerequisites from:

Computer Science including EMK310
Information Science
Mathematics
Mathematical Statistics
Physics
Chemistry

A choice between Mathemetical Statistics or Statistics subject to the grade 12 Mathematics level

241

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix G

Scenario 3 - Vertices of
difference sets

This appendix provides the output of the Graph Trans-morphism Algorithm
for the difference sets for vertices. The totals presented are the total number
of verities in the set as provided in Table 11.7. The vertices in each of the
sets have been clustered in the presentation in terms of their function within
the set. This means that for the curricula volumes the clusters are in terms
of KAs, KUs and Topics. The clustering for the real-world curriculum is in
terms of year-levels, modules and topics. The topics are of interest for the
discussion in Section 11.4.5.

G.1 CC2001 (I) and BSc CS (M)

Quantity Vertices

I \ C
Total: 88

T00001 T00013 1 T00019 T00022 T00053 T00088 T00092
T00101 T00105 T00106 T00112 T00116 T00123 T00125 1
T00145 T00148 T00167 T00214 T00215 T00218 T00220
T00230 T00231 T00249 T00258 T00262 T00263 T00280
T00281 T00284 T00292 T00295 T00304 T00319 T00327
T00328 T00333 T00339 T00347 T00348 T00349 T00355
T00364 T00390 T00393 T00396 T00402 T00417 T00449
T00461 T00494 T00524 T00531 T00535 T00576 T00593
T00610 T00614 T00632 T00653 1 T00668 T00674 T00674 1
T00674 2 T00682 3 T00688 T00711 T00726 T00734 T00736
T00739 T00758 T00761 T00780 T00792 T00803 T00812 2
T00812 4 T00822 T00943 T00944 T00945 T00946 T00973
U0038 U0041 U0053 U0107

242

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Vertices

I \M
Total: 165

AL AR DS GV HC IM IS NC OS PF PL SE SP
T00001 T00013 1 T00019 T00022 T00053 T00065 T00088
T00092 T00101 T00105 T00106 T00112 T00116 T00123
T00125 T00125 1 T00145 T00148 T00167 T00214 T00215
T00218 T00220 T00230 T00231 T00249 T00258 T00262
T00263 T00280 T00281 T00284 T00292 T00295 T00304
T00319 T00327 T00328 T00333 T00339 T00347 T00348
T00349 T00355 T00364 T00390 T00393 T00396 T00402
T00417 T00449 T00461 T00489 T00494 T00524 T00531
T00535 T00576 T00593 T00610 T00614 T00632 T00653 1
T00668 T00674 T00674 1 T00674 2 T00682 T00682 3
T00688 T00711 T00722 T00726 T00734 T00736 T00739
T00758 T00761 T00780 T00792 T00803 T00812 2 T00812 4
T00822 T00943 T00944 T00945 T00946 T00973
U0001 U0009 U0010 U0012 U0014 U0015 U0016 U0018
U0019 U0021 U0027 U0030 U0032 U0033 U0036 U0037
U0038 U0041 U0045 U0046 U0048 U0049 U0050 U0051
U0052 U0053 U0057 U0060 U0064 U0068 U0070 U0071
U0072 U0073 U0074 U0077 U0078 U0079 U0080 U0084
U0087 U0089 U0090 U0092 U0093 U0098 U0099 U0102
U0104 U0107 U0109 U0111 U0113 U0114 U0115 U0116
U0117 U0119 U0120 U0121 U0125 U0128 U0129

Quantity Vertices

M \ C
Total: 21

COS110 COS121 COS132 COS151 COS212 COS216
COS222 COS226 COS301 COS330 COS332 COS333
ERA284 INF214 INL204 INL240 WTW115 WTW285
Year1 Year2 Year3

Quantity Vertices

C \M
Total: 77

AL AR DS GV HC IM IS NC OS PF PL SE SP
T00065 T00125 T00489 T00682 T00722
U0001 U0009 U0010 U0012 U0014 U0015 U0016 U0018
U0019 U0021 U0027 U0030 U0032 U0033 U0036 U0037
U0045 U0046 U0048 U0049 U0050 U0051 U0052 U0057
U0060 U0064 U0068 U0070 U0071 U0072 U0073 U0074
U0077 U0078 U0079 U0080 U0084 U0087 U0089 U0090
U0092 U0093 U0098 U0099 U0102 U0104 U0109 U0111
U0113 U0114 U0115 U0116 U0117 U0119 U0120 U0121
U0125 U0128 U0129

243

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



G.2 CS2013I (I) and BSc CS with CC2001 topics
(M)

Quantity Vertices

I \ C
Total: 575

CN 1 GV 1 IAS NC 1 PD SF
T00001 T00019 T00022 T00055 1 T00058 1 T00058 2
T00058 3 T00068 1 T00086 1 T00086 2 T00089 1 T00089 2
T00095 2 T00096 1 T00101 T00105 T00106 T00107 1
T00116 T00117 2 T00120 1 T00123 2 T00125 1 T00135 1
T00135 2 T00139 1 T00145 1 T00148 T00153 3 T00156 1
T00163 1 T00167 T00193 T00211 3 T00211 5 T00212 3
T00216 1 T00216 2 T00217 1 T00217 2 T00230 T00237 1
T00248 1 T00250 1 T00250 2 T00254 1 T00256 1 T00256 2
T00269 1 T00272 1 T00273 1 T00305 1 T00327 T00328
T00333 1 T00336 1 T00339 T00356 2 T00357 2 T00358 1
T00362 1 T00371 1 T00371 2 T00371 3 T00372 2 T00382 1
T00402 T00403 1 T00403 2 T00403 4 T00453 1 T00458 1
T00461 T00475 T00482 1 T00482 2 T00482 3 T00482 4
T00484 1 T00486 1 T00495 1 T00497 1 T00508 T00517 1
T00522 1 T00524 T00526 1 T00531 1 T00535 1 T00536 1
T00543 1 T00546 2 T00551 1 T00555 1 T00557 1 T00567 1
T00582 1 T00588 1 T00593 1 T00594 T00598 1 T00600 1
T00609 2 T00610 1 T00612 1 T00613 1 T00623 1 T00624 1
T00637 T00645 1 T00654 1 T00655 1 T00663 1 T00664 2
T00671 1 T00671 2 T00674 T00674 3 T00677 1 T00689 1
T00699 1 T00711 T00728 1 T00729 1 T00733 1 T00739
T00741 1 T00743 1 T00752 1 T00758 1 T00773 1 T00792 2
T00793 2 T00793 3 T00795 1 T00796 1
Continued on next page...

244

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Vertices

I \ C (cont.) T00796 2 T00797 1 T00822 T00829 2 T00832 T00840 1
T00860 1 T00862 1 T00862 3 T00883 T00903 1 T00928 1
T01016 1 T01016 2 T01027 1 T01028 T01029 T01031 1
T01032 1 T01055 T01055 1 T01056 T01057 T01058 T01059
T01060 T01064 2 T01069 T01070 T01087 T01088 T01089
T01090 T01091 T01092 T01093 T01094 T01095 T01096
T01096 1 T01097 T01098 T01099 T01100 T01101 T01102
T01103 T01104 T01105 T01106 T01107 T01108 T01109
T01113 T01117 T01162 T01163 T01164 T01165 T01166
T01167 T01168 T01171 1 T01172 1 T01174 T01193 1
T01211 2 T01215 1 T01256 1 T01259 1 T01267 T01268
T01269 T01270 T01271 T01272 T01286 T01288 T01290
T01291 T01292 T01293 T01294 T01295 T01296 T01296 1
T01297 T01298 T01299 T01300 T01301 T01302 T01303
T01304 T01305 T01306 T01307 T01398 T01399 T01400
T01401 T01402 T01403 T01404 T01405 T01406 T01407
T01408 T01409 T01410 1 T01411 T01412 T01413 T01414
T01415 T01416 T01417 T01418 T01419 T01420 T01421
T01448 T01449 T01451 T01451 1 T01451 2 T01451 3
T01451 4 T01452 T01453 T01454 T01455 T01456 T01457
T01458 1 T01459 T01460 T01461 1 T01462 T01463
T01463 1 T01463 2 T01463 3 T01464 T01464 1 T01464 2
T01464 3 T01464 4 T01465 T01466 T01470 T01471 T01472
T01473 T01474 T01477 T01478 T01479 T01495 T01496
T01497 T01498 T01499 T01500 T01501 T01502 1 T01503
T01504 T01505 T01507 T01507 1 T01508 T01509 T01510
T01511 T01512 1 T01513 T01514 T01514 1 T01514 2
T01514 3 T01515 T01516 T01517 T01517 1 T01517 2
T01518 T01519
Continued on next page...

245

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Vertices

I \ C (cont.) T01521 1 T01522 T01523 T01524 T01524 1 T01524 3
T01525 T01525 1 T01525 2 T01525 3 T01525 4 T01526
T01527 T01528 T01529 T01530 T01530 1 T01531 1
T01531 2 T01533 T01534 T01535 1 T01535 2 T01535 3
T01535 4 T01535 5 T01536 T01537 1 T01538 T01538 1
T01539 T01540 T01540 1 T01540 2 T01540 3 T01541
T01542 T01543 T01544 T01545 T01546 T01547 T01548
T01549 T01550 T01551 T01557 T01559 T01560 T01561
T01562 T01563 T01564 T01565 T01566 T01567 T01568
T01569 T01570 1 T01571 T01572 T01573 T01574 T01575
T01576 T01577 T01578 T01579 T01580 T01581 T01582
T01583 T01584 T01586 T01587 T01588 T01589 T01590 1
T01591 T01592 T01593 T01594 1 T01596 T01597 T01598
T01599 T01600 T01601 T01602 T01603 T01604 1 T01605
T01606 T01607 T01608 T01609 T01610 1 T01611 T01612
T01613 T01614 T01615 T01616 T01617 1 T01618 T01619
T01620 T01621 T01622 T01623 T01624 T01625 T01626
T01627 T01628 T01629 T01630 T01631 T01632 T01633
T01634 T01670 T01670 1 T01671 T01672 T01673 T01674
T01675 T01676 T01677 T01678 T01679 T01680 T01681
T01682 T01683 T01684 T01685 T01686 T01687 T01688
T01689 T01690 T01691 T01692 T01693 T01694 T01695
T01696 T01697 T01698 T01699 T01700 T01701 T01702
T01703 T01704 T01705 T01706 T01707 T01708 T01709
T01710 T01711 T01712 T01713 T01714 T01715 T01716
T01717 T01718 T01719 T01720 T01721 T01722 T01723
T01724 T01725 T01726 T01727 T01728 T01729 T01730
T01731 T01732 T01733 T01734 T01735 T01736 T01737
T01738 T01739 T01740
Continued on next page...

Quantity Vertices

I \ C (cont.) U0037 U0041 1 U0047 U0048 1 U0070 U0073 1 U0074 1
U0087 U0094 1 U0098 U0112 U0114 U0116 U0118 U0127 1
U0133 1 U0144 U0147 1 U0152 1 U0156 U0157 U0164 1
U0165 U0169 1 U0170 U0173 U0176 U0177 U0178 U0179
U0179 1 U0180 U0186 U0187 U0188 U0189 U0193 U0206
U0207 U0208 U0209 U0210 U0211 1 U0212 1 U0213 U0214
U0215 U0216 U0217 U0218 U0236 U0237

246

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Vertices

I \M
Total: 625

AL AR CN 1 DS GV 1 HCI IAS IM IS NC 1 OS PD PL
SDF SE SF SP
T00001 T00019 T00022 T00055 1 T00058 1 T00058 2
T00058 3 T00068 1 T00086 1 T00086 2 T00089 1 T00089 2
T00095 2 T00096 1 T00101 T00105 T00106 T00107 1
T00116 T00117 2 T00120 1 T00123 2 T00125 T00125 1
T00135 1 T00135 2 T00139 1 T00145 1 T00148 T00153 3
T00156 1 T00163 1 T00167 T00193 T00211 3 T00211 5
T00212 3 T00216 1 T00216 2 T00217 1 T00217 2 T00230
T00237 1 T00248 1 T00250 1 T00250 2 T00254 1 T00256 1
T00256 2 T00269 1 T00272 1 T00273 1 T00305 1 T00327
T00328 T00333 1 T00336 1 T00339 T00356 2 T00357 2
T00358 1 T00362 1 T00371 1 T00371 2 T00371 3 T00372 2
T00382 1 T00402 T00403 1 T00403 2 T00403 4 T00453 1
T00458 1 T00461 T00475 T00482 1 T00482 2 T00482 3
T00482 4 T00484 1 T00486 1 T00489 T00495 1 T00497 1
T00508 T00517 1 T00522 1 T00524 T00526 1 T00531 1
T00535 1 T00536 1 T00543 1 T00546 2 T00551 1 T00555 1
T00557 1 T00567 1 T00582 1 T00588 1 T00593 1 T00594
T00598 1 T00600 1 T00609 2 T00610 1 T00612 1 T00613 1
T00623 1 T00624 1 T00637 T00645 1 T00654 1 T00655 1
T00663 1 T00664 2 T00671 1 T00671 2 T00674 T00674 3
T00677 1 T00689 1 T00699 1 T00711 T00728 1 T00728 2
T00729 1 T00733 1 T00739 T00741 1 T00743 1 T00752 1
T00758 1 T00773 1 T00792 2 T00793 2 T00793 3 T00795 1
T00796 1 T00796 2 T00797 1 T00822 T00829 2 T00832
T00840 1 T00860 1 T00862 1 T00862 3 T00883 T00903 1
T00928 1 T01016 1 T01016 2 T01027 1 T01028 T01029
T01030
Continued on next page...

247

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Vertices

I \M (cont.) T01031 1 T01032 1 T01055 T01055 1 T01056 T01057
T01058 T01059 T01060 T01064 2 T01069 T01070 T01087
T01088 T01089 T01090 T01091 T01092 T01093 T01094
T01095 T01096 T01096 1 T01097 T01098 T01099 T01100
T01101 T01102 T01103 T01104 T01105 T01106 T01107
T01108 T01109 T01113 T01117 T01162 T01163 T01164
T01165 T01166 T01167 T01168 T01171 1 T01172 1 T01174
T01193 1 T01211 2 T01215 1 T01256 1 T01259 1 T01267
T01268 T01269 T01270 T01271 T01272 T01286 T01287
T01288 T01290 T01291 T01292 T01293 T01294 T01295
T01296 T01296 1 T01297 T01298 T01299 T01300 T01301
T01302 T01303 T01304 T01305 T01306 T01307 T01398
T01399 T01400 T01401 T01402 T01403 T01404 T01405
T01406 T01407 T01408 T01409 T01410 1 T01411 T01412
T01413 T01414 T01415 T01416 T01417 T01418 T01419
T01420 T01421 T01448 T01449 T01451 T01451 1 T01451 2
T01451 3 T01451 4 T01452 T01453 T01454 T01455 T01456
T01457 T01458 1 T01459 T01460 T01461 1 T01462 T01463
T01463 1 T01463 2 T01463 3 T01464 T01464 1 T01464 2
T01464 3 T01464 4 T01465 T01466 T01470 T01471 T01472
T01473 T01474 T01477 T01478 T01479 T01495 T01496
T01497 T01498 T01499 T01500 T01501 T01502 1 T01503
T01504 T01505 T01507 T01507 1 T01508 T01509 T01510
T01511 T01512 1 T01513 T01514 T01514 1 T01514 2
T01514 3 T01515 T01516 T01517 T01517 1 T01517 2
T01518 T01519 T01521 1 T01522 T01523 T01524 T01524 1
T01524 3 T01525 T01525 1 T01525 2 T01525 3 T01525 4
T01526 T01527 T01528 T01529 T01530 T01530 1 T01531 1
T01531 2 T01533 T01534 T01535 1 T01535 2 T01535 3
Continued on next page...

248

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Vertices

I \M (cont.) T01535 4 T01535 5 T01536 T01537 1 T01538 T01538 1
T01539 T01540 T01540 1 T01540 2 T01540 3 T01541
T01542 T01543 T01544 T01545 T01546 T01547 T01548
T01549 T01550 T01551 T01556 T01557 T01559 T01560
T01561 T01562 T01563 T01564 T01565 T01566 T01567
T01568 T01569 T01570 1 T01571 T01572 T01573 T01574
T01575 T01576 T01577 T01578 T01579 T01580 T01581
T01582 T01583 T01584 T01586 T01587 T01588 T01589
T01590 1 T01591 T01592 T01593 T01594 1 T01596 T01597
T01598 T01599 T01600 T01601 T01602 T01603 T01604 1
T01605 T01606 T01607 T01608 T01609 T01610 1 T01611
T01612 T01613 T01614 T01615 T01616 T01617 1 T01618
T01619 T01620 T01621 T01622 T01623 T01624 T01625
T01626 T01627 T01628 T01629 T01630 T01631 T01632
T01633 T01634 T01670 T01670 1 T01671 T01672 T01673
T01674 T01675 T01676 T01677 T01678 T01679 T01680
T01681 T01682 T01683 T01684 T01685 T01686 T01687
T01688 T01689 T01690 T01691 T01692 T01693 T01694
T01695 T01696 T01697 T01698 T01699 T01700 T01701
T01702 T01703 T01704 T01705 T01706 T01707 T01708
T01709 T01710 T01711 T01712 T01713 T01714 T01715
T01716 T01717 T01718 T01719 T01720 T01721 T01722
T01723 T01724 T01725 T01726 T01727 T01728 T01729
T01730 T01731 T01732 T01733 T01734 T01735 T01736
T01737 T01738 T01739 T01740
Continued on next page...

Quantity Vertices

I \M (cont.) U0009 U0012 U0014 1 U0016 U0018 U0027 U0030 U0032
U0036 U0037 U0041 1 U0045 U0047 U0048 1 U0050
U0050 2 U0051 U0052 2 U0060 U0070 U0071 U0073 1
U0074 1 U0077 U0078 U0079 U0087 U0089 U0090 U0092
U0094 1 U0098 U0099 1 U0102 U0109 U0112 U0114 U0115
U0116 U0117 U0118 U0120 1 U0121 1 U0127 1 U0133 1
U0144 U0147 1 U0148 U0152 1 U0156 U0157 U0164 1
U0165 U0169 1 U0170 U0172 U0173 U0176 U0177 U0178
U0179 U0179 1 U0180 U0186 U0187 U0188 U0189 U0193
U0204 U0205 U0206 U0207 U0208 U0209 U0210 U0211 1
U0212 1 U0213 U0214 U0215 U0216 U0217 U0218 U0236
U0237

249

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Vertices

M \ C
Total: 225

COS110 COS121 COS132 COS151 COS212 COS216
COS222 COS226 COS301 COS330 COS332 COS333
ERA284 INF214 INL204 INL240 WTW115 WTW285
T00005 T00008 T00009 T00012 T00021 T00040 T00045
T00046 T00047 T00055 T00058 T00065 1 T00065 2
T00065 3 T00065 4 T00065 5 T00068 T00072 T00077
T00082 T00082 1 T00082 2 T00082 3 T00086 T00087
T00089 T00095 T00096 T00097 T00102 T00103 T00107
T00110 T00117 1 T00120 T00135 T00137 T00147 T00150
T00151 T00160 T00163 T00166 T00173 T00207 T00216
T00217 T00237 T00248 T00250 T00254 T00256 T00261
T00269 T00271 T00273 T00287 T00289 T00290 T00291
T00293 T00297 T00298 T00299 1 T00303 T00305 T00314
T00315 T00316 T00317 T00318 T00320 T00330 T00336
T00338 T00340 T00345 T00346 T00350 T00353 T00357
T00358 T00362 T00363 T00371 T00379 T00382 T00388
T00398 T00401 T00403 T00404 T00418 T00421 T00422
T00428 T00439 T00442 T00444 T00453 T00456 T00458
T00459 T00462 T00469 T00478 T00479 T00481 T00486
T00491 T00495 T00496 T00497 T00499 T00500 T00506
T00510 T00522 T00526 T00541 T00543 T00545 T00546
T00547 T00548 T00550 T00551 T00559 T00562 T00564
T00567 T00582 T00588 T00591 T00598 T00608 T00609
T00612 T00613 T00617 T00619 T00624 T00633 T00635
T00645 T00649 T00654 T00655 T00656 T00659 T00661
T00663 T00664 T00665 T00666 T00669 T00670 T00677
T00682 1 T00682 2 T00682 4 T00689 T00694 T00699
T00700 T00703 T00704 T00705 T00717 T00720 T00723
T00728 T00729 T00731 T00738 T00740 T00741 T00746
T00752 T00760 T00763 T00764 T00766 T00773 T00774
T00781 T00786 T00793 T00794 T00795
Continued on next page...

Quantity Vertices

M \ C (cont.) T00796 T00797 T00801 T00810 T00812 T00812 1 T00812 3
T00824 T00972 T00974 T00975 T00977 T00978 T00979
Year1 Year2 Year3

250

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Vertices

C \M
Total: 50

AL AR DS HCI IM IS OS PL SDF SE SP
T00125 T00489 T00728 2 T01030 T01287 T01556
U0009 U0012 U0014 1 U0016 U0018 U0027 U0030 U0032
U0036 U0045 U0050 U0050 2 U0051 U0052 2 U0060 U0071
U0077 U0078 U0079 U0089 U0090 U0092 U0099 1 U0102
U0109 U0115 U0117 U0120 1 U0121 1 U0148 U0172 U0204
U0205

G.3 CS2013I (I) and BSc CS with CS2013I topics
(M)

Quantity Vertices

I \ C
Total: 271

T00001 T00019 T00022 T00086 2 T00089 1 T00096 1
T00101 T00105 T00116 T00117 2 T00123 2 T00148
T00153 3 T00156 1 T00167 T00193 T00211 3 T00211 5
T00212 3 T00216 2 T00217 2 T00230 T00250 1 T00272 1
T00328 T00339 T00402 T00482 2 T00482 3 T00508
T00582 1 T00593 1 T00594 T00664 2 T00671 1 T00671 2
T00674 3 T00711 T00733 1 T00739 T00743 1 T00758 1
T00793 2 T00795 1 T00796 2 T00797 1 T00832 T00860 1
T00883 T01027 1 T01028 T01031 1 T01032 1 T01056
T01057 T01058 T01060 T01070 T01088 T01096 1 T01099
T01103 T01104 T01106 T01107 T01108 T01109 T01113
T01163 T01167 T01168 T01171 1 T01174 T01215 1
T01256 1 T01267 T01268 T01271 T01286 T01288 T01291
T01292 T01293 T01294 T01296 T01296 1 T01297 T01298
T01299 T01300 T01302 T01304 T01305 T01306 T01307
T01400 T01402 T01404 T01406 T01408 T01410 1 T01411
T01412 T01413 T01415 T01416 T01420 T01421 T01448
T01451 T01451 1 T01451 2 T01451 3 T01452 T01453
T01454 T01459 T01461 1 T01463 1 T01463 2 T01464 2
T01465 T01466 T01470 T01471 T01478 T01499 T01500
T01503 T01504 T01505 T01507 T01507 1 T01508 T01509
T01512 1 T01514 1 T01514 3 T01515 T01517 T01517 1
T01517 2 T01518 T01519 T01524 T01524 1 T01524 3
T01525 1 T01525 2 T01525 4 T01526 T01527 T01528
T01529 T01533 T01534 T01535 4 T01535 5 T01538 1
T01539 T01540
Continued on next page...

251

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Vertices

I \ C (cont.) T01540 1 T01540 2 T01540 3 T01541 T01543 T01546
T01547 T01548 T01561 T01563 T01565 T01566 T01573
T01574 T01575 T01578 T01580 T01581 T01582 T01584
T01586 T01587 T01588 T01590 1 T01591 T01592 T01594 1
T01597 T01598 T01599 T01600 T01601 T01602 T01603
T01604 1 T01605 T01606 T01607 T01608 T01610 1 T01611
T01614 T01615 T01616 T01617 1 T01620 T01621 T01622
T01624 T01625 T01627 T01628 T01630 T01632 T01633
T01634 T01670 T01671 T01672 T01673 T01674 T01675
T01676 T01677 T01679 T01682 T01684 T01685 T01686
T01688 T01689 T01690 T01691 T01692 T01693 T01694
T01696 T01698 T01699 T01700 T01701 T01702 T01703
T01704 T01705 T01707 T01708 T01709 T01710 T01711
T01717 T01719 T01721 T01725 T01726 T01729 T01730
T01731 T01732 T01733 T01734 T01735 T01736 T01739
T01740
U0118 U0173 U0214 U0215 U0218

252

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Vertices

I \M
Total: 383

AL AR CN 1 DS GV 1 HCI IAS IM IS NC 1 OS PD PL
SDF SE SF SP
T00001 T00019 T00022 T00086 2 T00089 1 T00096 1
T00101 T00105 T00116 T00117 2 T00123 2 T00125 T00148
T00153 3 T00156 1 T00167 T00193 T00211 3 T00211 5
T00212 3 T00216 2 T00217 2 T00230 T00250 1 T00272 1
T00328 T00339 T00402 T00482 2 T00482 3 T00489
T00508 T00582 1 T00593 1 T00594 T00598 1 T00664 2
T00671 1 T00671 2 T00674 T00674 3 T00711 T00733 1
T00739 T00743 1 T00758 1 T00793 2 T00795 1 T00796 2
T00797 1 T00832 T00860 1 T00883 T01027 1 T01028
T01031 1 T01032 1 T01056 T01057 T01058 T01060 T01070
T01088 T01096 1 T01099 T01103 T01104 T01106 T01107
T01108 T01109 T01113 T01163 T01167 T01168 T01171 1
T01174 T01215 1 T01256 1 T01267 T01268 T01271 T01286
T01287 T01288 T01290 T01291 T01292 T01293 T01294
T01296 T01296 1 T01297 T01298 T01299 T01300 T01302
T01304 T01305 T01306 T01307 T01400 T01402 T01404
T01406 T01408 T01410 1 T01411 T01412 T01413 T01415
T01416 T01420 T01421 T01448 T01451 T01451 1 T01451 2
T01451 3 T01452 T01453 T01454 T01455 T01457 T01459
T01461 1 T01463 T01463 1 T01463 2 T01464 T01464 2
T01465 T01466 T01470 T01471 T01478 T01497 T01499
T01500 T01503 T01504 T01505 T01507 T01507 1 T01508
T01509 T01512 1 T01514 T01514 1 T01514 3 T01515
T01517 T01517 1 T01517 2 T01518 T01519 T01524
T01524 1 T01524 3 T01525 T01525 1 T01525 2 T01525 4
T01526 T01527 T01528 T01529 T01533 T01534 T01535 4
T01535 5
Continued on next page...

253

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Vertices

I \M (cont.) T01538 T01538 1 T01539 T01540 T01540 1 T01540 2
T01540 3 T01541 T01543 T01546 T01547 T01548 T01561
T01563 T01565 T01566 T01573 T01574 T01575 T01578
T01580 T01581 T01582 T01584 T01586 T01587 T01588
T01590 1 T01591 T01592 T01594 1 T01597 T01598 T01599
T01600 T01601 T01602 T01603 T01604 1 T01605 T01606
T01607 T01608 T01610 1 T01611 T01614 T01615 T01616
T01617 1 T01620 T01621 T01622 T01624 T01625 T01627
T01628 T01630 T01632 T01633 T01634 T01670 T01670 1
T01671 T01672 T01673 T01674 T01675 T01676 T01677
T01679 T01682 T01684 T01685 T01686 T01688 T01689
T01690 T01691 T01692 T01693 T01694 T01696 T01698
T01699 T01700 T01701 T01702 T01703 T01704 T01705
T01707 T01708 T01709 T01710 T01711 T01717 T01719
T01721 T01725 T01726 T01729 T01730 T01731 T01732
T01733 T01734 T01735 T01736 T01739 T01740
U0009 U0012 U0014 1 U0016 U0018 U0027 U0030 U0032
U0036 U0037 U0041 1 U0045 U0047 U0048 1 U0050
U0050 2 U0051 U0052 2 U0060 U0070 U0071 U0073 1
U0074 1 U0077 U0078 U0079 U0087 U0089 U0090 U0092
U0094 1 U0098 U0099 1 U0102 U0109 U0112 U0114 U0115
U0116 U0117 U0118 U0120 1 U0121 1 U0127 1 U0133 1
U0144 U0147 1 U0148 U0152 1 U0156 U0157 U0164 1
U0165 U0169 1 U0170 U0172 U0173 U0176 U0177 U0178
U0179 U0179 1 U0180 U0186 U0187 U0188 U0189 U0193
U0204 U0205 U0206 U0207 U0208 U0209 U0210 U0211 1
U0212 1 U0213 U0214 U0215 U0216 U0217 U0218 U0236
U0237

Quantity Vertices

M \ C
Total: 21

COS110 COS121 COS132 COS151 COS212 COS216
COS222 COS226 COS301 COS330 COS332 COS333
ERA284 INF214 INL204 INL240 WTW115 WTW285
Year1 Year2 Year3

254

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Quantity Vertices

C \M
Total: 112

AL AR CN 1 DS GV 1 HCI IAS IM IS NC 1 OS PD PL
SDF SE SF SP
T00125 T00489 T00598 1 T00674 T01287 T01290 T01455
T01457 T01463 T01464 T01497 T01514 T01525 T01538
T01670 1
U0009 U0012 U0014 1 U0016 U0018 U0027 U0030 U0032
U0036 U0037 U0041 1 U0045 U0047 U0048 1 U0050
U0050 2 U0051 U0052 2 U0060 U0070 U0071 U0073 1
U0074 1 U0077 U0078 U0079 U0087 U0089 U0090 U0092
U0094 1 U0098 U0099 1 U0102 U0109 U0112 U0114 U0115
U0116 U0117 U0120 1 U0121 1 U0127 1 U0133 1 U0144
U0147 1 U0148 U0152 1 U0156 U0157 U0164 1 U0165
U0169 1 U0170 U0172 U0176 U0177 U0178 U0179 U0179 1
U0180 U0186 U0187 U0188 U0189 U0193 U0204 U0205
U0206 U0207 U0208 U0209 U0210 U0211 1 U0212 1 U0213
U0216 U0217 U0236 U0237

255

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 


	Introduction
	Research proposal
	Research approach
	Research description
	Significance of the study
	Scope of the study
	Structure of the document

	I Theory
	Graph Theory
	Introduction
	Graph types
	Undirected graph
	Directed graph
	Directed acyclic graph

	Graph matching
	Graph isomorphism
	Graph homomorphism

	Graph transformation
	Conclusion

	Complexity Theory
	Introduction
	Big-O notation
	Decision problems
	Turing machines
	Complexity classes
	Conclusion

	Implementing Digraphs
	Introduction
	Implementation techniques
	Adjacency matrix
	Adjacency list
	Set of triples
	Comparison

	Problems and algorithms
	Finding paths and traversal
	Matching

	Conclusion

	Graph Trans-morphism Algorithm
	Introduction
	Terminology
	Algorithm
	Algorithm overview
	Possible outcomes of algorithm T
	Algorithm detail
	Discussion in terms of graph theory
	Discussion with reference to complexity theory

	Explanation of the algorithm using a toy application
	Derivation of C using M and I by inspection
	Building C with algorithm T
	By inspection vs. algorithmic computation

	Conclusion

	Graph Comparison Framework
	Introduction
	Framework overview
	Comparison component
	Difference comparison component
	Other comparison components

	Visualisation component
	Graph visualisation component
	Difference visualisation component
	Other visualisation components

	Applying the framework to the toy application
	Visual representation of the graphs
	Results of the difference combinations
	Determining the ratios
	Plotting the ratios on a radar chart
	Considering the graph edit distance
	Interpretation

	Conclusion

	Analysis of the Outcomes of T
	Introduction
	Outcome 1 - Parallel edges
	Outcome 2 - Disjoint digraphs
	Outcome 3 - Empty resultant digraph
	Outcome 4 - Exact copy of the ideal
	Representation 1: M and I are identical
	Representation 2 - adequate coverage given by M

	Outcome 5 - Subgraph of the ideal
	Conclusion


	II Application
	Computing Curricula Specifications
	Introduction
	ACM/IEEE Computing Curricula series
	Disciplines in the series
	Series from 1991 to 2013

	ACM/IEEE curriculum structure
	ACM/IEEE Computer Science Curriculum
	A brief history
	Changing Knowledge Areas (KAs)
	Core hour requirements
	Excerpts from the curricula

	Conclusion

	University Degree Programme Requirements
	Introduction
	Qualification structures
	United States of America, Canada and parts of Australia
	Europe
	United Kingdom
	South Africa
	Summary

	Accreditation structures
	Accreditation for transfer reasons in South Africa
	Accreditation of disciplines

	Institutional requirements
	Challenges
	Economic
	Ranking
	Semester hours versus notional hours
	Four years into three

	Conclusion

	Modelling Curricula using Digraphs
	Introduction
	Curricula volumes as digraphs
	Real-word curricula as digraphs
	Capturing topic data
	Modelling equivalences
	Improving representations
	Conclusion

	Application of the Framework to Computing Curricula
	Introduction
	Scenario 1: Comparing the core aspects of the curricula volumes
	Scenario overview
	Graph visualisation
	Difference comparison
	Difference visualisation
	Discussion

	Scenario 2: Details regarding the Human Computer Interaction KA
	Scenario overview
	Graph visualisation
	Difference comparison
	Difference visualisation
	Discussion

	Scenario 3: Application to a real-world curriculum
	Scenario overview
	Overview of the BSc CS degree programme
	Changes require re-evaluation
	Graph visualisation
	Difference comparison
	Difference visualisation
	Discussion

	Conclusion


	III Future Work and Conclusion
	Future Work
	Introduction
	Digraph related projects
	Set theory
	Algorithm improvements
	Rules

	Knowledge representations
	Framework extensions
	Framework for comparison
	Framework for the domain expert

	Computer Science curriculum development
	Curriculum comparison and design
	Accreditation comparison

	Conclusion

	Conclusion
	Attainment of objectives
	Summary of contributions
	Suggestions for applications

	Bibliography

	IV Appendices
	Algorithm Execution
	Algorithm trace
	Results tranformation

	Algorithm Output
	Output - Outcome 2, Section 7.3
	Output - Outcome 4, Section 7.5
	Output - Outcome 5, Section 7.6

	Significance of Ratios
	Excerpts from the ACM/IEEE CS Curriculum Volumes
	CC2001
	CS2008
	CS2013 Strawman
	CS2013 Ironman

	Application Scenarios - Cardinalities and ratios
	Scenario 1
	Scenario 2

	BSc Computer Science Degree
	Scenario 3 - Vertices of difference sets
	CC2001 (I) and BSc CS (M)
	CS2013I (I) and BSc CS with CC2001 topics (M)
	CS2013I (I) and BSc CS with CS2013I topics (M)



