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Abstract. We present a tool for the visualization of distributed com-
putations. Special attention is payed to certain distributed algorithms
which have been coded as rewriting systems. In order to study the be-
haviour of algorithms and tool, several experiments have been performed
the results of which are presented and discussed. Finally, some important
properties of our tool are described and explained. A release of the tool
is available to the public.

1 Introduction

In recent years, distributed and parallel systems [1, 19] are generally available,
and their technology has reached a certain degree of maturity. Moreover, the
technological advances of workstations and networks combined with middleware
solutions like CORBA and DCOM help to avoid physical hardware problems
such as low speed, heterogeneity, failure, etc. Thus, distributed systems have be-
come a serious option for many companies. Examples of distributed applications
include manufacturing, banking, process control, or weather forecast computa-
tions.

Unfortunately, we still lack complete understanding of how to design, realize,
and test the software of such systems, although research effort has been spent
on this topic. Understanding the behaviour of a distributed program remains
a challenge. This is due to the intrinsic complexity of distributed algorithms
and programs compared to serial ones. Programmers must coordinate and syn-
chronize communication between processes. Several tools have been proposed to
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assist the development of distributed applications. These tools include debug-
gers, performance monitoring, execution analysis, and other aids.

Our work has focus on a tool for visualizing and animating distributed al-
gorithms [5]. A key component of understanding a distributed computation is
knowing what is occurring in the algorithm, how processors are working and
how they communicate. Since distributed algorithms are complex abstract ob-
jects, visualization plays an important role in improving their perception and
their understanding. Researchers in distributed computing need visualization
during the design and debugging phase of an algorithm and also when present-
ing the algorithm. This is especially important in case of certain graph problems
which are know to be deterministically unsolvable by distributed computation
[9] such that random-based approaches to solve such problems are inevitable:
obviously, due to the essence of randomization, the actual runtime behaviour
of such random-based computations can only be observed but not theoretically
predicted in principle. In the classroom, teachers can present distributed algo-
rithms and use visualization to explain the execution steps in detail. Moreover,
students are able to manipulate and experiment existing distributed algorithms
through visualization, and they can see their results on selected input as well as
the behaviour of processors during the execution.

There are some special visualization systems developed for the needs of par-
ticular projects, and general systems for visualizing large families of algorithms.
Examples of general systems include Balsa [2], Polka [16], Zeus [3] and Xtango
[14]. The tool we have developed deals with many distributed algorithms. More-
over, we suggest to the user, through easy and friendly-user interface, to de-
scribe the algorithm to visualize using rewriting rules according to the methods
described by Métivier et al. [8, 9, 10, 11].

The rest of our paper is structured as follows. Section 2 sketches the under-
lying model which our tool is based on. The tool itself is described in section 3.
Section 4 briefly reports on our experience with the behaviour of our tool in the
execution of distributed algorithms. Related work is described in section 5, and
section 6 concludes the paper.

2 Overview of the underlying Model

In this section, our notion of distributed computation is (informally) explained,
which is necessary to understand the tool description of section 3. We sketch the
structures in which distributed computation takes place as well as the entities
of which those structures consist, and we describe what temporal and causal
constraints have to be obeyed by the visualisation component of our prototype.
Our model is application-transparent which means that it does not matter if we
plug our visualisation tool into a real network (which is ongoing work) or if we
internally simulate such a network in other modules of our software prototype
(which is done in its currently available version).



2.1 Autonomous Distributed Computation

In autonomous distributed computation, which our concept is based on, we have
neither a master nor one program which is shared among the processors. Instead
we have as many programs as processors —the programs may be clones of each
other but this need not be the case— and the processors have to organize their
cooperation themselves.?

One can distinguish several different sub-types of autonomous distributed
computing, for example: Does each processor have knowledge about the whole
system or does each processor only know its immediate neighbour processors?
Do the processors carry unique identifiers or not?

In our approach we assume anonymous distributed computing which means
that each processor does only know its immediate neighbours, and the processors
do not carry unique identifiers.

2.2 Nets and Graphs

Having sketched the concept of autonomous distributed computing, which is the
principle of our approach, we now have to explain the substrate on which this
kind of computing shall take place. In general, such substrates are nets of arbi-
trary topological structure which we represent by undirected graphs consisting
of nodes and edges as usual.

Fig. 1. processor with program P, current state s = 11001, and C =5

3 The well-known Neural networks and cellular automata can also be seen as special
cases of autonomous distributed systems. In case of autonomous distributed com-
puting, the notion of algorithm is not the classical one any more. This is because
the behaviour of the whole distributed system is not sufficiently described by each
occurring algorithm executed by its corresponding processor. There is no meta algo-
rithm explicitly describing the system behaviour emerging from the cooperation of
the autonomous processors or entities. Such systems are also called computationally
irreducible.



Nodes: We assume that each node in the graph represents an entity called
processor which is able to Turing-compute and which is able to send and
receive messages to its neighbour processors.

We further assume that the internal state space Sy of a node k is related to
its connectivity C = | Ej| (which is the number of edges to which this node is
attached in the graph) as S :D {0,1}“. This means that k at least keeps a

memory cell s; for each of its immediate neighbour nodes n; (i = 1,..., Eg).
If k£ has established a certain relationship with n; then s; := 1, otherwise
s; .= 0.

A simple example is sketched in Fig.1. (Of course, a node’s current state
s € Sy is not necessarily invariant: usually it will change from time to time
during an ongoing distributed computation.)

Edges: The edges of a graph are meant to represent communication channels
under the following (ideal) assumptions.

— The channels are bi-directional.

— Messages travelling through a channel cannot overtake each other while
travelling, which means that the channels operate in a FIFO mode.

— The channels are perfect such that no message can be lost (or changed)
while travelling through a channel.

— Finally we assume full duplex communication, which means that two
messages can pass each other while traveling in opposite directions at
the same time, without disturbing each other.

With these assumptions we do not need to model the channel as an active en-
tity with a semaphore blocking technique. (The channels are thus completely
passive in our model.) The situation is sketched in Fig.2.

C_ M

Fig. 2. full duplex FIFO channel with travelling messages

Please note that our decision to model processors as nodes and channels
as edges is not as “natural” as it might appear. In [12] for example we find
distributed systems modelled with processors as edges and channels as nodes.
The purpose of [12], however, is rather different from ours: They are dealing
with formal semantics of concurrent systems, while we are on the way to intuitive
online simulation and visualisation tools, as outlined in the introductory section.

Communication: In our model we assume asynchronous communication. Thereby,
some processor p; may seamlessly continue its operations after it has sent some



message m to a neighbour processor p; via a communication channel e.*

2.3 Partially ordered Time

Dealing with visualisation of distributed systems, one always has to face the
problem of how to sequentially display a set of events on a screen which have
possibly taken place simultaneously in a distributed computation network. This
is a matter of causality and time which has somehow to be reflected by the
underlying model of event simulation and visualisation.

In order to keep our model as general and as reliable as possible, we must
not impose too many constraints on it (which could turn out as not satisfiable in
practice). The following assumptions, however, seem to be the weakest possible.

No Common Clock: Assuming anonymous networks where each node does only
know its immediate neighbours (as described above), having a common clock
would mean having a graph with at least one (clock)node connected to all
other nodes (as Information can only be transmitted via the edges). On the
other hand, we cannot impose any constraint on the topological shape of
our graphs a-priori. The visualisation component of the tool cannot serve
as a common clock either, because it must not artificially influence the net
processes which it has just to display on the screen.

Communication Speed Unknown: Let S; and S7 be the initial state and the
terminal state of a distributed computation. Let M be the set of all messages

which occurred in this computation, thus: Sy LR Sr. Let m € M any
message and v(m) its velocity (travelling speed). As v(m) is dependent from
the hardware realization of the distributed system, which is not characterized
by our model, we may only assume 0 < v(m). For the same reason, we may
not even assume an equality v(m;) = v(m;) for two different messages m;
and m; in M.

Network Geometry Unknown: The graphs which we use to characterize the
topological properties of our communication networks do not contain any
information about the length of the communication channels — and length
is a geometrical dimension. Those channel measures are dependent from
the hardware realization (wires) of the system which is not specified by the
model.

A consequence of these assumptions is that each node p; in our network has got
its private time line which is only weakly related to the time lines of the other
nodes in the net, and a total order of events in such a network is impossible from
a local point of view [6].

These minimal properties of our model make it difficult for the visualisation
component of our prototype to display a logically consistent “movie” of the
state changes during a distributed computation. In [5] we have described two

* With synchronous communication, p; would have to stop all its operations after
sending m until it would have received an answer reply(m) by p; via e.



concepts (one of which based on Lamport’s clocks [6]) for achieving the necessary
consistency of visualisation.

3 Implementation

We have implemented a prototype tool based on the concepts discussed in this
paper. The user interface of the tool is a graphical environment that allows the
user to draw a network easily, and to visualize the execution of a distributed
algorithm. The architecture of the tool is composed of mainly three parts: the
graphical user interface, the simulator and the algorithm library as sketched
in Fig.3. These modules are well-separated such that the modification of one
component involves only small changes for the rest of the system.

GUI
pipe
communication
Algorithms
Simulator

Fig. 3. architecture of the prototype

3.1 The Graphical User Interface

The editor allows the user to construct a network by “Drag & Drop”. The user
can add, delete, or select vertices, edges or subgraphs. The visual attributes of
a vertex —labels, colors, and shapes— can also be set by the user. Once the
network drawn, the simulation is run after the user has chosen an algorithm or a
rewriting system from the library. During the execution, the traffic of messages
exchanged between nodes and their values are displayed and the status of edges
and nodes are updated on-line. Moreover, the visualization speed can be chosen
by the user such that the messages can be seen travelling slowly or fast, depend-
ing on the purpose of the current application. Fig.4 shows the initial state of
the distributed algorithm that generates a random spanning tree as described
in [11]. The result of the execution of the algorithm is shown in Fig.5. Detailed
descriptions of the tool are given in [5].
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Fig. 4. before the distributed spanning tree computation

3.2 The Simulator

The simulator is the link between the visualizer and the algorithms. It models
a network of asynchronous processors. Each processor communicates only with
its immediate neighbours by message passing. In the current version of the tool,
each processor, associated to a vertex in the underlying graph, is implemented
by a JAVA thread. The simulator manages the exchanges of messages between
threads, as well as the visualization of events. Each event has an identifier which
is a number that will be used to synchronize the execution of the algorithm with
its visualization. The identifier of an event helps to acknowledge its visualization.
In this way, displayed information is synchronized with the state of the network.
There are two types of events corresponding to the state modification of vertices
or edges, or to message exchanges:



Fig. 5. after the distributed spanning tree computation

— State modification of a vertex: The state of a vertex is a set of information
of the vertex which are used by the algorithm during its execution. These
informations are interpreted by the graphical interface. Precisely, when a
vertex changes its state, it informs the simulator who sends an event to
the graphical interface. The process of this vertex waits until obtaining an
acknowledgment receipt from the graphical interface, which means that this
event has been displayed. The changes of an edge are displayed in a similar
way.

— Message visualization: Processors use queues to store messages. Sending
a message M from vertex A to B consists of adding M to the queue of B.
However, the visualization of the message M moving from A to B is dis-
played before adding it effectively to the queue of B. The simulator begins
by sending an event to the graphical interface in order to visualize the mes-



sage M. Once this event is acknowledged by the simulator, it is added to the
queue of B, and a signal is sent to the processor of B in order to wake it in
case it had been blocked on reading an empty queue.

3.3 The Algorithm Library

An algorithm is implemented by a JAVA program which will be instantiated
on each vertex of the graph, and executed asynchronously by the corresponding
processor. A vertex is implemented by a class that contains its identifier, its
internal state, its degree, and optionally the size of the graph. It is possible
for the programmer to manipulate a vertex by using the following implemented
interface functions:

— getId() returns the identity of a vertex,

getState() (resp. setState()) gives (resp. changes) the state of a vertex,

getArity () returns the degree of a vertex, i.e. the number of neighbours,

— getNetSize () allows to know the size of the graph for algorithms where the
size is assumed to be known.

Since communications between processors are based on messages, the required
functions to handle messages are provided. A message is programmed by a class
that contains all required informations. The programmer can use a message
through the following methods:

— sendTo(int) (resp. sendA11()) sends the message to a particular neighbour
(resp. all neighbours),

— receiveFrom(int) (resp. receive()) receives a message from a particular
neighbour (resp. the first message waiting in the queue of the vertex). Other
methods are also available to manage messages of particular types, i.e. mes-
sages that send integer, strings, or other types.

Remember that although messages are stored in the queue of the receiver,
the implementation allows also to handle messages that arrive on a particular
channel.

To animate random (or probabilistic) distributed algorithms, a method called
synchronization() is implemented. It returns a random synchronization of a
vertex with one of its neighbours. To do so, every vertex sends to its neighbours
either 0 or 1 (the choice is random). Two vertices are synchronized if they send
each other the value 1. For more details on the synchronization and its use in
random distributed algorithms, see [10].

Many standard distributed algorithms are already implemented. These in-
clude the leader election and star synchronization [9] as well as spanning tree
computation [11]. The tool provides also a graphical interface to capture a rewrit-
ing system as is known that rewriting systems can be used to describe distributed
algorithms [8]. The advantage of using rewriting systems is that the algorithm
can be defined by a small number of production rules. A production rule is
implemented by a class called AlgoRule.



4 Experiments with the Tool Prototype

Having described the architecture of our prototype in the previous section, we
can now report on some behavioural properties of it. The results of our experi-
ments will certainly influence later versions and forthcoming implementations of
our visualization tool. They may be regarded as first steps into further studies.

When performing experiments with the tool one has to keep in mind that
tool and algorithm melt into a wnit the particular constituents of which are hard
to separate. This tight integration between tool and algorithm is not easy to
handle in an empirical study, because:

— When we want to exactly explore the behaviour of the tool, we need an
algorithm as “driving fuel” the behaviour of which must not be unknown.

— When we want to exactly explore the behaviour of an algorithm, we need a
tool as “vehicle” the behaviour of which must not be unknown.

The problem of our experimental situation is, however, that we neither know
the behaviour of our new prototype exactly, nor the behaviour of the algorithms
which have not yet been subject to empirical investigations. For this reason
the reader has to be aware of the possibility that the results presented in this
section may still be somewhat tentative. Nevertheless we hope to sufficiently
approximate the “unknown reality”.

We have performed several experiments with our tool the results of which
are described and interpreted in [5]. They cannot be presented in this paper due
to lack of space, but one example is given in the following.

Example: Ring graphs with even numbers of nodes are simple examples of
non-T-prime graphs [11]. For this reason Métivier’s distributed SpanningTree
algorithm [11] —which has also been employed for screen-shots in section 3—
sometimes fails when applied to such graphs, because SpanningTree is explicitly
designed to operate on T-prime graphs. For this experiment, we have made 237
repetitions of SpanningTree on a 6-Ring and observed the distribution of results
with respect to failure or success [5]. Because our ring graph has size 6, we can
have failure outputs with 2 part-trees of size 3 or with 3 part-trees of size 2.
Fig.6 shows our ring graph with one example of a successful output and two
examples of failures. All in all we have 36 success possibilities wherein a spanning
tree is constructed. In total we have 79 output possibilities such that 43 of them
are failures. The combinatorial success-failure-ratio is thus (36 : 43) ~ (9 : 11).

As depicted in Fig.7, only 43 of all the 79 output possibilities have been
observed at all. Success has been noticed in 172 cases, while failure was counted
65 times. The six dark grey “towers” in the success part of Fig.7 show that
the 6 nodes are almost equally returned as head-nodes of the computed span-
ning tree; this might be regarded as a consequence of the perfectly symmetrical
structure of ring graphs which equal connectivity for each of its nodes. While
the combinatorial success-failure-quota is only (9 : 11), the empirically observed
success-failure-quota of (172 : 65) ~ (3 : 1) is considerably better, which was not
obvious before the experiment had been performed.
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Fig. 7. distribution of outputs in the ring graph erperiment

5 Related Work

There are other related tools available to assist the users in comprehending the
execution of algorithms. Those tools generally perform some kinds of behavioural
analysis to help convey the user exactly how the programs operate. For a sum-
mary of algorithm animation and software visualization systems see [13].

— PARADE [17] is an environment for developing visualizations and anima-
tions of parallel and distributed programs. PARADE handles trace events
and monitoring. It has been used to develop a tool called the Animation
Choreographer.

— Polka [16] is a software visualization toolkit that was designed to support
end-user developed software visualizations. It allows to build algorithm and
program animations. Polka is implemented in C++ on the top of the X
windows System.

— XTango [14] is a general purpose algorithm animation system that supports
programmers developing color, real-time, 2.5-dimensional, smooth anima-
tions of their own algorithms and programs. The focus of the system is on
ease-of-use. XTango utilizes the path-transition animation paradigm which
helps move animation design to an abstract, high level.

— ZADA [7] is a collection of interactive graphical animations of selected algo-
rithms from the field of distributed algorithms and communication protocols



and resembles work going beyond isolated examples. The underlying anima-
tion system Zeus [3] has been extended from sequential algorithm visualiza-
tion to cope with parallel algorithms.

— VADE [18] is a WWW-based environment for the visualization of distributed
algorithm. The authors of VADE are also concerned with the causality prob-
lem. In their model, however, the price of the visualization consistency is
an undesired feedback of the visualization onto the visualized distributed
computation, which makes the system less suited for monitoring tasks.

6 Conclusion

In this paper, we have given an extended abstract of our work on the visualization
of distributed algorithms [5] and we have empirically shown the feasibility of
our concepts. Future work remains to improve our tool particularly to handle
huge graphs as well as real-world networks. Parts of the tool are currently re-
engineered with the goal of providing more intuitive interactions and displays as
well as faster performance. We have used our tool to make several experiments
supporting the analysis of several distributed algorithms. We think that our
tool is useful as well for educational purposes (in order to explain the execution
of distributed algorithms to students) as for researchers and practioneers in
distributed systems (who require tool support for their tests and experiments).
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