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Abstract

This paper proposes a novel concept for the modelling of a vehicle steering driver model for path
following. The proposed steering driver reformulates and applies the Magic Formula, used for tyre
modelling, to the vehicle's yaw acceleration vs. steering velocity response as a function of vehicle speed.

The path-following driver model was developed for use in gradient-based mathematical optimisation of
vehicle suspension characteristics for handling. Successful application of gradient-based optimisation
depends on the availability of good gradient information. This requires a robust driver model that can
ensure completion of the required handling manoeuvre, even when the vehicle handling is poor.

The steering driver is applied to a non-linear full vehicle model of a Sports Utility Vehicle, performing a
severe double lane change manoeuvre. Simulation results show excellent correlation with test results. The
proposed driver model is robust and well suited to gradient-based optimisation of vehicle handling.

Keywords: driver model, Magic Formula, steering response, tyre characteristics, handling, mathematical
optimisation.

1. Introduction

The use of lateral path following driver models for the simulation of closed loop vehicle
handling manoeuvres is vital. However, great difficulty is often experienced in
determining the gain parameters for a stable driver at all realistic vehicle speeds, and
vehicle parameters.

The primary reason for requiring a driver model in the present study is for the
optimisation of an off-road vehicle's suspension system. The suspension characteristics
are to be optimised for handling, while performing the closed loop ISO 3888-1
(International Organisation for Standardisation, 2004) severe double lane change
manoeuvre. The driver model thus has to be robust for various suspension setups, and
perform only one simulation to return the objective function value. Therefore steering
controllers with learning capability will not be considered, as the suspension could be
vastly different from one simulation to the next. Only lateral path following is considered
in this preliminary research, as the double lane change manoeuvre is normally performed
at a constant vehicle speed. Furthermore the main purpose of the driver model is to
enable successful completion of the handling manoeuvre, so that good gradient



information can be determined, especially when the suspension settings are far from the
optimum settings for handling. Accurate representations of real human driver behaviour
under these conditions are less important than the successful completion of the
manoeuvre.

The current research is concerned with the development of a controllable suspension
system for Sports Utility Vehicles (SUV's). The suspension system has to be modelled,
and the handling dynamics simulated, for widely varying suspension settings. The vehicle
in question has a comparatively soft suspension, coupled to a high centre of gravity,
resulting in large suspension deflections when performing the double lane change
manoeuvre. This large suspension deflection results in highly unstable vehicle behaviour,
eliminating the use of driver models suited to vehicles with minimal suspension
deflection. Steady state rollover calculations also show that the vehicle will roll over
before it will slide.

A robust driver model is difficult to achieve, especially when suspension spring and
damper characteristics are allowed to vary over a wide range. The determination of driver
model parameters become especially complex when accurate, non-linear full vehicle
models, with large suspension travel, are to be controlled in proximity to the handling
limits of the vehicle.

This research proposes a novel lateral path-following driver model based on the
relationship between vehicle yaw response and non-linear tyre characteristics. The non-
linearity of the tyre characteristics is replicated for the steering model’s parameters. The
non-linear response of the vehicle is captured by fitting the Magic Formula (frequently
used for tyre lateral force vs. slip angle modelling) to the vehicle’s yaw acceleration vs.
steering velocity for different vehicle speeds.

Previous research into lateral vehicle model drivers is now discussed, followed by the
mathematical vehicle model. The characterization of the vehicle's dynamics, with the
Magic Formula driver model, and the implementation thereof completes the paper.

An extensive overview of driver models for vehicle dynamics applications is given by
Plochl and Edelmann (2007). Many different driver models have been proposed, most of
which have specific applications and are difficult to generalise for all requirements.

Snider (2009) evaluated various driver models in CarSim (2011). The driver models
ranged from simple kinematic and geometric models, used by various autonomous
vehicles (Thrun et al., 2006 and Urmson et al., 2008), to more complex dynamic models
based on optimal control theory (Tewari, 2002). Snider (2009) concluded that the driver
models can be tuned to suit a specific range of conditions. With most exhibiting a
compromise between low speed performance and high speed stability.

Sharp, Casanova and Symonds (2000) implement a linear, multiple preview point
controller, with steering saturation limits mimicking tyre saturation, for vehicle tracking.
The vehicle model used is a 5-degree-of-freedom (dof) model, with non-linear Magic
Formula tyre characteristics, but no suspension deflection. This model is successfully



applied to a Formula One vehicle performing a lane change manoeuvre. Gordon, Best
and Dixon (2002) make use of a novel method, based on convergent vector fields, to
control the vehicle along desired routes. The vehicle model is a 3-dof vehicle, with non-
linear Magic Formula tyre characteristics, but with no suspension deflection included.
The driver model is successfully applied to lane change manoeuvres. The primary
similarity between these methods is that vehicle models with no suspension deflection
were used.

Prokop (2001) implements a PID (Proportional Integral Derivative) prediction model for
tracking control of a bicycle model vehicle. The driver model makes use of a driver plant
model that is representative of the actual vehicle. The driver plant increases with
complexity to perform the required dynamic manoeuvre, from a point mass to a two track
model with elastokinematic suspension. This model is then optimised with the SQP
(Sequential Quadratic Programming) optimisation algorithm for each time step. This
approach, however, becomes computationally expensive, when optimisation of the
vehicle's handling is to be considered.

A typical simple linearised single point path following driver model is discussed by
Genta (1997). This type of driver model is frequently used in the simulation of vehicle
handling.

For the current research several driver model approaches were implemented, but with
limited success. Due to the unsuccessful implementation of these driver models for
steering control, it was decided to characterize the whole vehicle system, using step steer,
and ramp steer inputs, and observe various vehicle parameters. This lead to the discovery
that the relationship between vehicle yaw acceleration vs. steering rate for various vehicle
speeds appeared very similar to the side force vs. slip angle characteristics of the tyres.
With this discovery it was decided to implement the proposed novel driver model, with
the gain factor modelled with the Pacejka Magic Formula, normally used for tyre data.

2. Mathematical Vehicle Model

For the simulation performed in this study, a Land Rover Defender 110 is modelled in
MSC.ADAMS View with standard suspension settings, as a baseline. The non-linear
MSC.ADAMS Pacejka 89 tyre model (Bakker, Pacejka and Linder, 1989) is fitted to
measured tyre data, and used within the model. The tyre's vertical dynamics and load
dependent lateral dynamics are considered in this model. The longitudinal dynamic
behaviour of the tyres and vehicle is not considered because the vehicle is driven at
constant speed. The vehicle body is modelled as two rigid bodies connected along the roll
axis at the chassis height, by a revolute joint and a torsional spring, in order to better
capture the vehicle dynamics due to body torsion in roll. The anti-roll bar is modelled as
a torsional spring between the two rear trailing arms to be representative of the actual
anti-roll bar's effect. The bump and rebound stops are modelled with non-linear splines,
as force elements between the axles and vehicle body. The suspension bushings are
modelled as kinematic joints with torsional spring characteristics that are representative
of the actual vehicle's suspension joint characteristics, in an effort to speed up the



solution time, and help decrease numerical noise. The baseline vehicle's springs and
dampers are modelled with experimentally determined non-linear splines. The vehicle's
centre of gravity (cg) height and moments of inertia were also measured by Uys et al.
(2005) and used within the model. Provision is made to vary the spring and damper
characteristics over a wide range, for optimisation purposes. Figure 1 indicates the
kinematic modelling of the rear and front suspensions. The complete model consists of 15
unconstrained degrees of freedom, 16 moving parts, 6 spherical joints, 8 revolute joints, 7
Hooke's joints, and one motion defined by the steering driver. The unconstrained degrees
of freedom are indicated in table 1.

Table 1 - MSC.ADAMS vehicle model's unconstrained degrees of freedom

Body Degrees of Freedom Associated Motions
Vehicle Body 7 body torsion
(2 rigid bodies) longitudinal, lateral, vertical
roll, pitch, yaw
Front Axle 2 roll, vertical
Rear Axle 2 roll, vertical
Wheels 4x1 rotation

The speed control is modelled as a variable force attached to the body at wheel centre
height. The magnitude of this force depends on the difference between the instantaneous
speed and desired speed. Because the vehicle is four-wheel drive with open differentials,
the vertical tyre force is measured at all tyres. If any tyre looses contact with the ground,
the driving force to the vehicle is removed until all wheels are again in contact with the
ground. This MSC.ADAMS model is then linked to the Simulink based driver model that
returns as outputs the desired vehicle speed and steering angle, calculated using the
vehicle's dynamic response.

The vehicle model is validated against measured test data for the double lane change
manoeuvre at an entry speed of 65 km/h, where the steering input, as measured on the
vehicle, is used to steer the simulation model. The results for the comparison between the
MSC.ADAMS model and the measured results are presented in Figure 2, with excellent
correlation achieved.

3. Driver Model Description

To investigate the relationship between vehicle response and steering inputs, simulations
were performed for various constant steering input rates, at various vehicle speeds with
the vehicle’s baseline suspension system. The results of some of these simulations are
displayed in Figure 3. The plots indicate that the yaw acceleration attains a constant value
for a significant part of the duration of the simulation, for each specific steer rate and
vehicle speed, for almost all steer rates at low speeds and for low steer rates at high
speeds. It can also be noted that the response becomes larger as vehicle speed increases
for the same steer rate. This increase in sensitivity is well known with modern vehicles
equipped with active steering systems which reduce the steer ratio to improve steering
stability at high vehicle speeds, such as BMW’s active steering system Qinchao et al
(2011). As a result of the increase in sensitivity, lower steer rates are required at higher



speeds to generate the same yaw acceleration response. Thus, the use of lower steer rates
at higher speeds ensures that the yaw acceleration response still obtains a constant value
for a significant part of the input duration. These constant values of the responses
suddenly reduce towards the end of the test. This sudden reduction is most likely due to
the tyre reaching its saturation level.

Since both the steer rate and vehicle speed would influence the time to reach tyre
saturation, the yaw acceleration was therefore plotted against lateral acceleration rather
than time. The lateral acceleration also gives a measure of the level of tyre saturation.
Figure 4 shows the yaw acceleration vs. lateral acceleration as a function of steer rate for
different vehicle speeds. The figure better illustrates the near constant response obtained
by the yaw acceleration. The response stays fairly constant up to very high lateral
accelerations after which a sudden drop occurs (indicating that the tyre force is
saturating).

Reymond et al. (2001), as well as Hugemann and Nickel (2002), showed that normal
drivers typically reached higher lateral accelerations as vehicle speeds increased. This
increase was however only up to a certain speed. After exceeding this speed they tended
to reach lower lateral accelerations with increasing speed to increase the safety margin
available to them. In their tests conducted during normal driving the lateral acceleration
seldomly exceeded 6 m/s’. Thus, the normal operating lateral accelerations of a vehicle
can be considered to be below 6 m/s’. If it is considered that the yaw acceleration
response remains fairly constant below lateral acceleration of 6 m/s”, it can be said that
the yaw acceleration obtains a steady state response during normal operating conditions
for a specific vehicle speed and steer rate.

It is thus possible to obtain the steady state yaw acceleration response as a function of
steer rate and vehicle speed. The steady state yaw acceleration vs. steer rate curve,
obtained from the results indicated in Figure 3 and 4 are shown in Figure 5. This trend is
very similar to the tyre's lateral force vs. slip angle at various vertical loads as indicated
in Figure 6. At low speeds the characteristic is linear but as the vehicle speed increases,
the characteristic becomes more non-linear as the non-linearity of the tyres comes into
play. Because of this trend it was postulated that the vehicle could be controlled by
comparing the actual yaw acceleration to the desired yaw acceleration, and adjusting the
steering input rate.

From kinematic principles it is known that, for a rigid body undergoing motion in a plane
(see Figure 7), the rotational angle as a function of time is dependant on: the current
rotational angle, v, the current rotational velocity, y_, the rotational acceleration, y/

and the time step, 7, over which the rotational acceleration is assumed constant. If the
rotational acceleration is not constant, but sufficiently small time steps 7 are considered,
the predicted rotational angle y, will be sufficiently well approximated. The predicted

rotational angle can therefore be determined as follows:



L1
V.=V, +waf+5wz (1)

The yaw acceleration ¥ needed to obtain the desired yaw angle at time (¢+7) is
calculated from equation (1) as follows:

yjzzy/d_l//é_l//ar (2)

T
While most driver models only make use of the vehicle’s yaw angle for control, this
formulation uses the vehicle’s yaw angle and yaw rate to better approximate the required
steering input. The inclusion of the yaw rate in the formulation improves the robustness
of the driver model.

The vehicle's steady state yaw acceleration, v/ , with respect to different steering rates, o ,

was determined with the simulation model for a number of constant vehicle speeds, x, as
presented in Figure 5. The steady state yaw acceleration reached during every simulation
was then used to generate the figure. When comparing Figure 5 to the vehicle's lateral
tyre characteristics, presented in Figure 6, it appears reasonable that the Magic Formula
could also be fitted to the steering response data. Therefore the reformulated Magic

Formula, discussed below, is fitted to this data, and returns the required steering rate o,
which is defined as:

6= f(y,%) 3)

As output, the driver model provides the required steering rate o, which is then
integrated for the time step Az to give the required steering angle ¢ .

4. Magic Formula Fits

The Magic Formula was proposed by Bakker, Pacejka and Linder (1989) to describe the
tyre's handling characteristics in one formula. In this research the Magic Formula will be
discussed in terms of the tyre's lateral force vs. slip angle relationship, which directly
affects the vehicle's handling and steering response. The Magic Formula is defined as:

y(x) = Dsin(C arctan{Bx — E(Bx —arctan(Bx))})
Y(X)=y(x)+S, (4)
x=X+§,

The terms are defined as:
Y(X) tyre lateral force F,

X tyre slip angle o
B stiffness factor



C shape factor
D peak factor
E curvature factor
S, horizontal shift

S, vertical shift

These terms are dependent on the vertical tyre load, F,, and camber angle, y . The Magic
Formula can now be fitted to the steady state yaw acceleration vs. steering rate for
different vehicle speeds as indicated in Figure 7, with the parameters redefined as:

vertical tyre load F, is equivalent to vehicle speed x

tyre slip angle o is equivalent to steering rate &
tyre lateral force F, is equivalent to vehicle yaw acceleration y/

The Magic Formula for the vehicle's steering response can now be stated again as in
equation (4), but with the terms now defined as:

Y(X) steady state yaw acceleration {7

X steering rate &

B stiftness factor

C shape factor

D peak factor

E curvature factor
S, horizontal shift

S, vertical shift

With the redefined parameters, the Magic Formula coefficients can be determined in the
usual manner. The determination of the coefficients applied for the steering driver is now
discussed.

4.1 Determination of Coefficients

The peak factor D is determined by plotting the maximum yaw acceleration value v/
against the vehicle speed x. For this the graphs have to be interpolated. Quadratic curves
were fitted through the vehicle's response curves, and the estimated peak values were
used. The peak factor is defined as:

D =ax’ +a,x (5)

The peak factor curve was fitted through the estimated peak values, with emphasis on
accurately capturing the data for vehicle speeds of 60 to 90 km/h. The resulting quadratic
curve fit to the predicted peak values of the yaw acceleration is shown in Figure 8. It is
observed that the fit for the Magic Formula is poor for any speed below 60 km/h. This is



attributed to the almost linear curve fit through the yaw acceleration vs. steering rate for
speeds below 60 km/h, resulting in an unrealistically high prediction of the peak values.
Thus, the insufficient fitting of the peak factor for speeds below 60 km/h has little effect
on the overall fit since the response will remain within the linear region at these speeds
well beyond the steer rates which are humanly possible. The peak factor is however an
important parameter in capturing the non-linear response at vehicle speeds over 60 km/h,
hence the emphasis on accurately capturing the peak value at higher speeds.

In the original tyre model paper (Bakker, Pacejka and Linder, 1989), BCD is defined as
the cornering stiffness. Here it will be termed the ‘yaw acceleration gain’. For the yaw
acceleration gain the gradient at zero steering rate is plotted against vehicle speed as
illustrated in Figure 9. The camber term y of the original paper will be ignored thus

coefficient a, becomes zero. The yaw acceleration gain is fitted with the following
function:

BCD = a, sin(2arctan(x/a, ))(1—asy) (6)

For the determination of the curvature E, quadratic curves were fitted through each of
the curves in Figure 5. These approximations could then be differentiated twice to obtain
the curvature for each. This curvature is plotted against vehicle speed x (Figure 10), and
the straight line approximation:

E=ax+a, (7

is then fitted through the data points, in order to determine the coefficients a, and a,.
The straight line approximation fitted through the points is also shown in Figure 10.

The shape factor C, is determined by optimising the resulting Magic Formula fits to the

measured data. This parameter is the only parameter that has to be adjusted in order to
achieve better Magic Formula fits to the original data. It is defined in terms of the Magic

Formula coefficient a,as follows:
C=a, (8)
The stiffness factor B is determined by dividing BCD by C and D:

B=BCD/CD )

In the current research the horizontal and vertical shift of the curves were ignored
allowing coefficients a, to a,, to be assumed zero.

The Magic Formula fits to the original data are presented in Figure 11. It can be seen that
all of the fits are very good. The insufficient fitting of the peak factor at speeds below 60



km/h as mentioned had no effect on the quality of the fit at those speeds. The gradient at
all speeds is captured very well as to be expected from the fit of the yaw acceleration gain
in Figure 8. The fit at 80 and 90 km/h drops more at higher steer rates, however, the
maximum relative error is still below 10%.

With the Magic Formula coefficients being determined, the manipulation of the Magic
Formula for the driver application is now discussed.

5. Reformulated Magic Formula

The steering driver requires, as output, the steering rate & . For this reason the Magic
Formula is reformulated to make it possible to have as inputs, vehicle velocity x and
required vehicle yaw acceleration v/, and as output required steering rate & . However,
due to the nature of the Magic Formula it is not possible to change the dependent variable
of the formula. The arc tan function is therefore described by the pseudo arc tan
function, suggested by Pacejka (2002), as:

1+

pseudo arctan(x) = X a|x|)2 (10)

1+2(b|x|+ax )/
where a=1.1 and b =1.6. The Magic Formula can now be written as:

Bx(1+ a|Bx))
F =Bx—E| Bx- .
1+ 2(b|Bx{ + a(Bx)*) /
Fo tan[wj (11)
C

A closed-form expression having x as the dependent variable was obtained using
MATLAB's Symbolic Math Toolbox (Matlab Symbolic Math Toolbox, 2008), and
returns an exceptionally long equation, of three terms, not presented here due to its shear
size. This resulting equation is coded into the Simulink model consisting of the
MSC.ADAMS model and the steering controller.

6. Implementation of Results

In order to validate the performance of the proposed methodology, the Magic Formula
driver was implemented in the vehicle simulation model. The driver model is interfaced
with the MSC.ADAMS simulation via a MSC.ADAMS/Simulink co-simulation. The
vehicle model’s differential equations are solved using MSC.ADAMS. The simulation
model supplies the driver model, which is implemented in Simulink, at each time step
with the x position of the vehicle’s cg, vehicle speed, yaw rate as well as yaw angle. The
desired yaw angle is obtained from the x position of the vehicle’s cg and the desired path,
which is also modelled in Simulink. The driver model then solves for the required steer



rate input and returns the integration thereof to the simulation. This interface is
graphically displayed in Figure 12.

The vehicle was simulated performing the ISO3888-1 (International Organisation for
Standardisation, 2004) double lane change manoeuvre. The excellent comparison with
measured results is presented in Figure 13, for kingpin angle, yaw velocity, left rear (Ir)
spring displacement and left front (If) lateral acceleration. It is important to note that the
double lane change is simulated at a constant speed while the measured results (see
Figure 2) show that the driver decreased speed during the manoeuvre, explaining the
discrepancies towards the end of the double lane change.

Comparison of the kingpin steering angle produced by the driver model and that applied
by the human driver during actual tests (Figure 13) indicates that the driver model closely
follows human driver behaviour. It should also be noted that significant differences exist
for the human driver behaviour during different test runs.

The driver model was then analysed for changing the vehicle's suspension system from
stiff to soft, for various speeds. Presented in Figure 14 is the driver model's ability to
keep the vehicle at the desired yaw angle (Genta, 1997) over time. From the results it can
be seen that a varying preview time with vehicle speed, would be beneficial, however, it
is felt that for this preliminary research the constant 0.5 seconds preview time is
sufficient. Also it is evident that the softer suspension system, at 70 km/h vehicle speed, is
slightly less stable, as seen by the oscillatory nature at the end of the double lane change
manoeuvre.

The results show that the driver model provides a well controlled steering input. Also
there is a lack of high frequency oscillation typically associated with single point preview
driver models, when applied to highly non-linear vehicle models like SUV’s, which are
being operated close to their limits in the double lane change manoeuvre.

Another non-linear driver model implemented was that of Freund and Mayr (1997). This
driver model includes a dynamic vehicle model, inclusion of the non-linear tyre
dynamics, speed dependent steer angle saturation function. The driver model also
implements a path filter which incorporates the path angle and the rate of path angle
change in the preview point. Aspects of this driver model are implemented in the
commercial software veDYNA (Plochl and Edelmann, 2007 and Irmscher and Ehmann,
2004). The driver model has one tuning parameter which was tuned to give the best
performance at 60 km/h. Presented in Figure 15 is the driver model’s ability to keep the
vehicle at the desired yaw angle over time. In comparison to the proposed driver model,
Freund’s model provides stable but poorer performance over the given manoeuvre.

The proposed driver model was successfully used in the optimisation of a vehicle
suspension system by Thoresson et al. (2009a and 2009b), where the requirement for a
robust driver model is essential. The driver model allowed suspension parameters to be
modified without requiring any modification to the driver model while still maintaining
excellent path following ability.



The fact that the driver model parameters, obtained from the baseline suspension
characteristics, also work well for the other suspension characteristics, indicates that the
driver model is robust, but also that vehicle yaw response is strongly dependant on the
lateral tyre properties.

7. Conclusions

It has been shown that the Magic Formula, traditionally used for describing tyre
characteristics, can be fitted to the vehicle's steering response, in the form of yaw
acceleration vs. steering rate, for different vehicle speeds.

A robust single point steering driver model has been successfully implemented on a
highly non-linear vehicle model. The success of the single point steering driver can be
attributed to the non-linear gain factor, modelled using the Magic Formula, that changes
in value with vehicle speed and required yaw acceleration.

Future work could entail an investigation into determining the driver model parameters
directly from the lateral tyre properties instead of using the expensive simulation. A
further aspect that could be considered is determining the value of varying preview time
with vehicle speed.
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Figure 2. Validation of MSC.ADAMS model's handling dynamics. Double lane change at
an entry speed of 65 km/h. Steering input measured during tests used (/r refers to left
rear).



Steer Rate vs Time at 40km/h

5 T T r T
1deg/s
—4 2deg/s | |
kY 3deg/s
>
o) 4deg/s
2.3 1
2
&
— 2 7
@
2
w1
0 i i i i i i
0 2 4 6 8 10 12
Time [s]
Steer Rate vs Time at 60km/h
5 T T T T T T
1deg/s
— 4 2deg/s | |
kY 3deg/s
o
o) 4degls
.3 —
2
©
x, ,
o
@
2
N1
0 i i i i i i
0 1 2 3 4 5 6
Time [s]
Steer Rate vs Time at 80km/h
5 T T T T T T T
1deg/s
—4 2deg/s | |
{2 3deg/s
o
[0} 4deg/s
.3 g
2
©
x, i
o
@
2
D1
0 i i i i i i i i
0 0.5 1 15 2 25 3 3.5 4

Time [s]

Yaw Acceleration [deg/sz] Yaw Acceleration [deg/§]

Yaw Acceleration [deg/sz]

Yaw Acceleration vs Time at 40km/h

1deg/s

15} 2deg/s [
3deg/s
4deg/s

10 1

5 . J
r
0 ]
0 2 4 6 8 10 12
Time [s]
Yaw Acceleration vs Time at 60km/h
1deg/s

201 2deg/s |4
3deg/s

150 4deg/s | |

10 4

5 r’ 14 i
0 ]
0 1 2 3 4 5 6
Time [s]
Yaw Acceleration vs Time at 80km/h

30 T T T T T T T 3
1deg/s

25 2deg/s 4
3degls

20 4deg/s [

15 7

10 q

5 J
0 . 4
0 05 1 15 2 25 3 35 4

Time [s]

Figure 3. Yaw acceleration response to front wheel steer rate at various vehicle speeds.




Yaw Acceleration vs Lateral Acceleration at 20km/h
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Figure 4. Yaw acceleration vs. lateral acceleration for various front wheel steer rates at

various vehicle speeds.
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Figure 5. Vehicle yaw acceleration response to different steering rates
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Figure 11. Magic Formula fits to original vehicle steering behaviour
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Figure 14. Comparison of different suspension settings and vehicle speeds, for the double

lane change manoeuvre with proposed driver model, where the desired is as proposed by
Genta (1997)
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