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In high range-resolution (HRR) radar systems, the returns from a single target may fall in multiple

adjacent range bins which individually vary in amplitude. A target following this representation is

commonly referred to as an extended target and results in more information about the target. How-

ever, extracting this information from the radar returns is challenging due to several complexities.

These complexities include the single dimensional nature of the radar measurements, complexities

associated with the scattering of electromagnetic waves, and complex environments in which radar

systems are required to operate. There are several applications of HRR radar systems which extract

target information with varying levels of success. A commonly used application is that of imaging

referred to as synthetic aperture radar (SAR) and inverse SAR (ISAR) imaging. These techniques

combine multiple single dimension measurements in order to obtain a single two dimensional im-

age. These techniques rely on rotational motion between the target and the radar occurring during the

collection of the single dimension measurements. In the case of ISAR, the radar is stationary while

motion is induced by the target.

There are several difficulties associated with the unknown motion of the target when standard Doppler

processing techniques are used to synthesise ISAR images. In this dissertation, a non-standard Dop-
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pler approach, based on Bayesian inference techniques, was considered to address the difficulties.

The target and observations were modelled with a non-linear state space model. Several different

Bayesian techniques were implemented to infer the hidden states of the model, which coincide with

the unknown characteristics of the target. A simulation platform was designed in order to analyse

the performance of the implemented techniques. The implemented techniques were capable of suc-

cessfully tracking a randomly generated target in a controlled environment. The influence of varying

several parameters, related to the characteristics of the target and the implemented techniques, was

explored. Finally, a comparison was made between standard Doppler processing and the Bayesian

methods proposed.
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OPSOMMING

’N MONTE CARLO BENADERING TOT OORHEERSENDE WEERKAATSING

VOLGING VAN ’N ENKELE UITGEBREIDE TEIKEN IN HOË AFSTANDSRESOLUSIE

RADAR

deur

Allan De Freitas

Studieleier(s): Dr. J.P. de Villiers & Mr. W.A.J. Nel
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sresolusie profiel, partikel filtering, ISSR, partikel Markov ketting

Monte Carlo, partikel marginale Metropolis-Hastings monsteringsmet-

ode, statiese parameter estimasie

In hoë afstandsresolusie radar (HAR) stelsels, kan ’n radarpuls se weerkaatsing vanaf ’n enkele teiken

in verskeie aaneenlopende afstandshekke val waarvan elkeen kan wissel in amplitude. ’n Teiken wat

op hierdie manier voorgestel word, word ’n uitgebreide teiken genoem en verskaf meer inligting oor

die teiken. As gevolg van verskeie komplikasies is dit egter nie so eenvoudig om hierdie inligting

uit die weerkaatsing te onttrek nie. Hierdie komplikasies is as volg: die enkel-dimensionele aard van

die radarmetings; kompleksiteite wat verband hou met die weerkaatsing van elektromagnetiese golwe;

die komplekse omgewings waarin radar stelsels moet funksioneer. Daar is verskillend HAR-verwante

algoritmes wat die teiken inligting kan onttrek, elk met verskillende vlakke van sukses. ’n Algemene

benadering is die van beeldvorming waarna verwys word as sintetiese stralingsvlak radar (SSR) en

inverse SSR (ISSR) beeldvorming. Hierdie tegnieke kombineer verskeie enkel-dimensionele metings

om ’n enkele twee-dimensionele beeld te kry. Verder maak hierdie tegnieke staat op die beweging

tussen die teiken en die radar tydens die versameling van die enkel-dimensionele metings. In die

geval van ISSR, is die radar stilstaande terwyl die teiken die beweging veroorsaak.
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Daar is verskeie probleme wat verband hou met die onbekende beweging van die teiken wanneer

standaard Doppler verwerkingstegnieke gebruik word om ISSR beelde te vorm. In hierdie verhandel-

ing, word die standaard Doppler benadering nie gevolg nie, maar ’n benadering gebaseer op Bayesiese

afleidingstegnieke. Die teiken en waarnemings word gemodelleer deur ’n nie-lineêre toestandsruimte

model. ’n Verskeidenheid Bayesiese tegnieke was geïmplementeer om die verborge toestande van die

model af te lei. Hierdie verborge toestande verteenwoordig die onbekende eienskappe van die teiken.

’n Simulasie platform is ontwerp om die prestasie van die geïmplementeerde tegnieke te analiseer. Die

geïmplementeerde tegnieke was daartoe in staat om suksesvol die willekeurige gegenereerde teiken

in ’n beheerde omgewing te volg. Die invloed van die wisseling van verskeie parameters, wat verb-

and hou met die eienskappe van die teiken en die geïmplementeerde tegnieke, is ondersoek. Laastens

word ’n vergelyking getref tussen die standaard Doppler verwerking en die voorgestelde Bayesiese

metodes.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



ACKNOWLEDGEMENTS

I would like to extend my gratitude to the following people and organisations for the support they

offered me while I endeavoured to complete my research:

• First and foremost, I would like to thank my Lord and Saviour for granting me the opportunity

and talent to conduct this research.

• I would like to thank my study leader Dr. J.P. de Villiers. Without Dr. de Villiers’ help and

guidance this work would not have been possible.

• My parents, grandmother and siblings, who encouraged me through out this research project

and also supported me financially.

• My wife, Trinette, and her family, for all their support and encouragement.

• I extend my thanks to all the numerous people who helped review and edit the dissertation.

• The Council for Scientific and Industrial Research (CSIR), King Abdulaziz City for Science

and Technology (KACST), and the University of Pretoria for their financial support.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



LIST OF ABBREVIATIONS

APF Auxiliary Particle Filter

BPF Bootstrap Particle Filter

DSA Dominant Scatterer Algorithm

EKF Extended Kalman Filter

EM Electromagnetic

ESS Effective Sample Size

FFT Fast Fourier Transform

HF High-Frequency

HRR High Range-Resolution

ISAR Inverse Synthetic Aperture Radar

KF Kalman Filter

LFM Linear Frequency Modulated

MCMC Markov Chain Monte Carlo

MH Metropolis-Hastings

MTT Multi-Target Tracking

PF Particle Filter

PMMH Particle Marginal Metropolis-Hastings

PRF Pulse Repetition Frequency

RCS Radar Cross Section

RMSE Root Mean Square Error

SAR Synthetic Aperture Radar

SFW Stepped Frequency Waveform

SIS Sequential Importance Sampling

SMC Sequential Monte Carlo

SNR Signal-to-Noise Ratio

SUT Scaled Unscented Transformation

UKF Unscented Kalman Filter

UPF Unscented Particle Filter

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



TABLE OF CONTENTS

CHAPTER 1 Introduction 1

1.1 Background & Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6.1 Conference Proceedings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6.2 Journal Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 Radar Principles 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Scattering Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Radar Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Range Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Range Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Doppler Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 High Range-Resolution Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 High Range-Resolution Radar Waveforms . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 3 Tracking Algorithms 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 State Space Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Bayesian Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3.5.1 Bootstrap Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.2 Auxiliary Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.3 Unscented Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Static Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CHAPTER 4 Target & Sensor Modelling Approach 30

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Target Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Radar Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Observation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 State Space Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5.1 Model I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5.2 Model II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 5 Results & Discussion 42

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Model I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Observation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.2 Bootstrap Particle Filter Approach . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.3 Particle Markov Chain Monte Carlo Approach . . . . . . . . . . . . . . . . 53

5.3 Model II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Observation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Particle Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.3 Unscented Particle Filter Approach . . . . . . . . . . . . . . . . . . . . . . 70

5.3.4 Bootstrap Particle Filter Approach . . . . . . . . . . . . . . . . . . . . . . . 71

CHAPTER 6 Conclusions & Future Work 82

6.1 Summary & Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.1 Joint Static Parameter & State Estimation with Range Only Measurements . . 82

6.1.2 State Estimation with Range & Delta Phase Measurements . . . . . . . . . . 82

6.2 Proposals for Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

APPENDIX A ISAR Processing 91

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1

INTRODUCTION

1.1 BACKGROUND & CONTEXT

Radar systems are used in a wide range of applications including, but not limited to, weather monitor-

ing [1], target detection [2], target classification [3], scene imaging [4], and target tracking [5]. Radar

systems utilise electromagnetic waves to detect and infer different characteristics of a target located

within a specific region. This is performed through a two step process which includes the illumina-

tion of a specific region with electromagnetic waves, followed by the reception of any electromagnetic

scatter which is reflected from objects in the region towards the radar system. The target is considered

to be a specific object of interest and differs according to the application. Reflections from other ob-

jects within the region are referred to as clutter. When an electromagnetic wave is incident upon the

surface of a target, it is scattered in a complex manner. The scattered wave directed towards the radar

system from a target originates primarily from multiple individual reflection points, referred to as

dominant scatterers [6]. This was observed experimentally in [7] using an imaging and tracking radar

system, where dominant scattering sources for multiple types of aircraft were consistently measured

over a time period of up to 20 seconds with changes in range and aspect angles.

A large variety of radar configurations exist [8], this research focuses on processing returns obtained

by monostatic pulsed radar systems capable of achieving a high range-resolution (HRR). HRR sys-

tems transmit high bandwidth waveforms to achieve the required range-resolution. Processing the

raw returns, observed by the radar, results in a discrete complex HRR profile. A HRR profile is a

projection of the observable scatterers located in a three dimensional space to a single dimension,

referred to as the range dimension, located along the radar line of sight [9]. Similarly, a synthetic

aperture radar (SAR) and inverse SAR (ISAR) image is a projection of the observable scatterers loc-
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Chapter 1 Introduction

ated in a 3-D space to a 2-D image plane. A SAR/ISAR image can be generated from a sequence of

HRR profiles that are obtained at different azimuth angles between the radar platform and the target

[10]. This is achieved due to the effective rotational motion of the target and/or radar platform during

the collection of HRR profiles. This research is associated with ISAR due to the assumption of a

stationary radar sensor and a target subjected to unknown motion.

1.2 MOTIVATION

The motion of a target may vary depending on the type of target. Vehicles on land have restricted

motion when compared to aircraft and maritime vessels. The motion of an unconstrained target

located in a three dimensional space contains 6 degrees of freedom. This includes 3 degrees of

freedom of rotational and translational motion respectively, as illustrated in Figure 1.1. In ISAR

Figure 1.1: Illustration of the 6 degrees of freedom for the motion of an unconstrained target in

a 3-D co-ordinate system.

processing, the target motion is ideally a constant rate of rotation about a fixed axis. In this case,

and under the assumption that HRR profiles are collected over a period in which no migration of

scatterers through resolution cells occurs, an undistorted ISAR image can be obtained by performing

a fast Fourier transform (FFT) on each range bin. When the motion of the target also consists of

translational motion components further preprocessing is required, prior to the FFT on each range bin,

to remove the effects thereof. Translational motion compensation focuses on removing the component

of motion directed along the line of sight of the radar which jointly affects all the scatterers, whilst

retaining the rotational motion. It is either carried out as a single step, or firstly as coarse range

alignment followed by fine phase correction [11]. Conventional motion compensation algorithms

generally assume that the rotational motion of the target is constrained to a 2-D plane during the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

interval in which the target is observed [12]. It has been found that many real world targets exhibit

rotation in a 3-D plane, including aircraft undergoing fast manoeuvres [13] and ships at sea [14]. The

presence of rotation in a 3-D plane may result in distorted ISAR images. It has also been found that

ISAR images of targets subjected to a time-varying perturbed motion can lead to distortion in ISAR

images [10].

The rotation induced by the target is essential in order to resolve the scatterers in the cross-range

dimension, the direction perpendicular to the range dimension. However, the unknown complex

motion of a target can result in severe distortion of ISAR images. Knowledge of the motion of the

target would allow for the compensation of the distortive effects. Since ISAR is generally performed

on uncooperative targets, a need to estimate the motion of a target prior to the generation of ISAR

images is clearly evident.

1.3 OBJECTIVE

The primary objective of this research is to design an algorithm which is capable of tracking the

locations of multiple dominant scatterers and motion parameters of an extended target that is observed

by a monostatic pulsed HRR radar. It is assumed that the target is uncooperative and hence only the

measurements obtained from the radar are available. Techniques based on Bayesian frameworks were

explored due to the stochastic nature of the motion of the target and radar measurements.

In order to achieve this objective, the design and implementation of a simulation test platform was

required. The simulation test platform includes the simulation of the target, the evolution of the

target’s location through time, and the simulation of a monostatic pulsed HRR radar system which

obtains measurements from the target.

1.4 CONTRIBUTION

The contribution which this research makes to the field of radar is the novel application of several

Monte Carlo techniques that extract information of an extended target from measurements taken by

a monostatic pulsed HRR radar. The motivation for the research was based on the extraction of

the motion parameters of the extended target to aid in the reduction of distortion in ISAR imagery,

however, additionally inferring the locations of multiple dominant scatterers on the extended target

may also aid in systems which perform automatic target recognition based on HRR profiles [3].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

There are several approaches [15, 16, 17] which utilise the dominant scatterer assumption to infer

scatterer locations and target motion parameters from monostatic pulsed HRR radar. This dissertation

applies a novel approach, based on Bayesian inference techniques, to the problem.

1.5 OUTLINE OF DISSERTATION

The dissertation is separated into 6 chapters. Chapter 2 introduces the reader to the radar principles

and processing which is used extensively in the dissertation. Chapter 3 introduces the reader to

Bayesian non-linear tracking, with the focus on Monte Carlo methods which are capable of state

estimation as well as joint state and static parameter estimation. Chapter 4 introduces the reader to

the target model, radar simulator and state space modelling created specifically for the HRR radar

application. In Chapter 5 the results obtained by applying several different techniques that are cap-

able of inference based on the state space models defined in Chapter 4 are presented. In Chapter

6 conclusions are drawn based on the results obtained and recommendations for future research are

highlighted.

1.6 PUBLICATIONS

1.6.1 Conference Proceedings

The following paper was presented at the international Information Fusion conference in Singapore

2012. The paper has been published in the peer reviewed proceedings of the conference.

1. A. De Freitas and J. De Villiers, "Multiple Scatterer Tracking in High Range-Resolution Radar."

in Information Fusion (FUSION), 2012 15th International Conference on, July 2012, pp. 1683-

1688.

1.6.2 Journal Publications

The following article was submitted to a peer-reviewed and ISI accredited journal.

1. A. De Freitas, J. De Villiers and W. Nel, "A Particle Filter Approach to Extended Target Track-

ing in High Range-Resolution Radar." IEEE Signal Processing Letters, submitted for publica-

tion.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2

RADAR PRINCIPLES

2.1 INTRODUCTION

Historically, conventional radar systems have been used to infer knowledge of different aspects of a

target of interest. This knowledge included the range, velocity and heading of the target relative to

the radar system [18]. With advancements in radar technology, modern radar systems are capable

of identifying, imaging, tracking and classifying targets while suppressing incident reflections which

are not associated with the target. Much of the functionality associated with modern radar systems is

made possible through HRR radar.

This chapter introduces important concepts related to HRR radar which are used by the HRR radar

simulator and the observation extraction process which are both further elaborated on in Chapter

4.

2.2 SCATTERING MECHANISMS

HRR radar systems illuminate regions which may contain targets with electromagnetic (EM) energy.

Once the EM energy is incident upon a target in the region, it is scattered in a complex manner. There

are several different scattering mechanisms which may result in EM energy being redirected back

towards the radar system. The dominant types of scattering mechanisms are dependent on the size of

the target relative to the wavelength of the transmitted EM energy and generally fall under one of the

following three regions [8]:

1. Rayleigh region dipole scattering.
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Chapter 2 Radar Principles

2. Resonant region scattering.

3. High-frequency (HF) optics region scattering.

Typically HRR radar systems fall under the HF optics region scattering [7]. In this region the

wavelength of the EM energy is assumed to be much smaller than the extent of the target. The

four primary scattering mechanisms which occur in this region are:

1. Direct illumination specular scattering which is normal to surfaces.

2. Multiple specular scattering induced through the EM energy bouncing between structures on

the target.

3. Diffractive scattering from the end regions of finite targets.

4. Travelling wave scattering along edges.

The specific dominant scattering mechanisms that generate scatter are dependent on the geometry and

material composition of the target. The scatter of interest is that which is directed towards the radar,

referred to as the backscatter direction. A traditional measure of a target’s scattering behaviour in the

backscatter direction is the radar cross section (RCS). The RCS is a measure of the reflective strength

of a target [19]. Due to normalisation, the RCS is not dependent on the distance between a target and

the radar system or the transmitter power level of the radar system. When the dominant scattering

mechanisms are those in the HF optics region, the target may be modelled as a collection of scattering

centres referred to as scatterers. The RCS of a target may fluctuate greatly due to the fact that the total

coherent RCS of multiple scatterers is dependent on the phase of each scatterer. The total coherent

RCS for N scatterers is represented mathematically as

σtotal =

∣∣∣∣∣ N

∑
i=1

√
σie

j4πRi
λ

∣∣∣∣∣
2

, (2.1)

where
√

σi and R represents the scatterer amplitude and distance between the radar system and scat-

terer i respectively, and λ represents the wavelength of the transmitted EM wave. The RCS for a

target may vary greatly depending on the complexity of the target and the aspect angle between the

radar and the target. As such, an exact RCS pattern for an individual target is hard to determine and

would also be of limited use due to the limited knowledge that a radar system has of an uncooperative

target. Thus statistical models that use probability distributions to describe the variations in the RCS

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 2 Radar Principles

have been described. Well known models include the Swerling target models [18].

2.3 RADAR FUNDAMENTALS

A monostatic pulsed radar system illuminates a region with a pulsed radar waveform. The time delay

between when the pulsed waveform is transmitted and a reflection from a target in the region of

illumination is sensed by the radar system, is directly related to the distance between the target and

the radar system according to the following equation

t =
2R
c
, (2.2)

where t represents the time delay, and c represents the speed of light (c≈ 3×108 m/s).

2.3.1 Range Resolution

Range resolution describes the minimum distance, specifically in terms of the range dimension, with

which a radar system is capable of resolving two sources of reflections [6]. In the context of HRR,

the sources of reflections are the individual scatterers located on a single target. The range resolution

is related to the bandwidth of the radar waveform through the following expression

∆Rcell ≈
c

2B
, (2.3)

where ∆Rcell represents the extent of a range resolution cell and B represents the bandwidth of the

radar waveform.

The complex returns of all the scatterers which are located within a single range resolution cell con-

structively or destructively interfere to result in a combined response, as illustrated by Equation 2.1 for

the RCS. In general, the aim is to minimise the range resolution in order to obtain more information

about the target.

2.3.2 Range Ambiguity

A pulsed radar system retransmits the radar waveform at a specific frequency referred to as the pulse

repetition frequency (PRF). The PRF of the radar determines the maximum range to a target which

can be measured by the radar system. Targets located further away which are still detected by the

radar system result in an ambiguous measurement that will lead to the target being measured as closer

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 2 Radar Principles

to the radar than in reality. The unambiguous target range is given by

Ru =
c

2 ·PRF
. (2.4)

2.3.3 Doppler Frequency

The Doppler effect describes the phenomenon of the change in center frequency of a waveform that

is incident upon a target which is undergoing motion relative to the radiation source of the waveform.

The change in frequency is induced due to an increase or decrease in the wavelength of the waveform

when the target is receding or closing respectively. The Doppler frequency is the difference in the

centre frequency of a waveform that is transmitted, incident upon a target undergoing motion relative

to the source of transmission and received. The Doppler frequency is represented mathematically

as

fd =
2vr

c
, (2.5)

where vr represents the radial velocity of the target. In terms of HRR radar systems, the target typic-

ally contains velocity components that are not only directly towards or away from the radar system.

For a more general velocity, the Doppler frequency is given by

fd =
2v
c

cosθa, (2.6)

where θa represents the angle between the radar line of sight and the velocity vector of the tar-

get.

2.4 HIGH RANGE-RESOLUTION PROFILES

A HRR profile is a projection of the complex returns from the observable scatterers on a target located

in a 3-dimensional space to a 1-dimensional space. The 1-dimensional space is referred to as the range

dimension and is located along the line of sight of the radar. Figure 2.1 illustrates an example of how

the magnitude of a complex HRR profile is related to a target in range. The HRR profile is a discrete

complex result. A range bin is the minimum range resolution cell that is resolved in the HRR profile.

The amplitude of each range bin is dependent on the strength of the return from the scatterer located

within the range bin. Constructive or destructive interference may occur when multiple scatterers are

located in a single range bin as illustrated in Figure 2.2. In Figure 2.2 (a) a target consisting of four

dominant scatterers is illustrated. The magnitude of the HRR profile for the case when the target

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

8

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2 Radar Principles

Radar Line of Sight

HRR Profile

Figure 2.1: Illustration of the relation between a target and the magnitude of a complex HRR

profile.

only consists of each dominant scatterer and when the target consists of all the dominant scatterers is

overlayed in Figure 2.2 (b).

(a) A target consisting of 4 dominant scatterers. Zero of down

range dimension shifted to 10000.

(b) The corresponding magnitude of HRR profile for the 4

dominant scatterer target. Zero of range dimension shifted to

10000.

Figure 2.2: Illustration of constructive and destructive interference in a HRR profile.
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Chapter 2 Radar Principles

It is clear from Figure 2.2 (b) that the two dominant scatterers on the left and on the right result in

destructive and constructive interference respectively. The effect of the interference on the magnitude

of the complex return for a single range bin due to multiple scatterers is dependent on the type of

scatterers located in the range bin. Three possible categories for the type of scatterers located in a

range bin have been identified:

1. When a range bin contains a large number of small scatterers with no dominant scatterers.

2. When a range bin contains a number of small scatterers with a single dominant scatterer present.

3. When a range bin contains a number of small scatterers with multiple dominant scatterers

present.

Statistical models for the fluctuations in each category have been explored [20]. It is impossible

to determine the number or type of scatterers located in a range bin from the HRR profile. The

error caused in the amplitude and phase of the complex return, due to the assumption that only a

single scatterer is located in a range bin when there are actually multiple scatterers, is referred to

as scintillation and glint noise respectively [18]. This noise is more predominant when dominant

scatterers interfere and is reduced in HRR radar systems due to the relatively high range-resolution

which allows for a higher degree of dominant scatterer isolation.

2.5 HIGH RANGE-RESOLUTION RADAR WAVEFORMS

Three groups of radar waveforms are utilised by HRR radar systems to obtain HRR profiles. These

include,

1. fixed frequency waveforms,

2. pulse-compression waveforms, and

3. inter-pulse modulated waveforms.

The bandwidth of a standard rectangular pulse waveform is inversely proportional to the duration of

the pulse. Increasing the bandwidth of the waveform results in a finer range resolution according to

Equation 2.3. With a standard rectangular pulse waveform, a larger bandwidth can be obtained by

decreasing the duration of the pulse. However, this approach is practically limited as a minimisation
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Chapter 2 Radar Principles

in pulse duration requires analogue electronics capable of higher sampling rates and also requires the

transmitter to output a higher peak output power in order to maintain a specific average power. These

limitations lead to the development of pulse-compression and inter-pulse modulation.

Pulse-compression waveforms consist of techniques which do not require the minimisation of the

pulse duration in order to obtain large increases in the bandwidth of the signal. This is done through

linear or non-linear amplitude, frequency or phase modulation. One of the most commonly used

pulse-compression waveforms is the linear frequency modulated (LFM) waveform. The waveform is

produced by linearly increasing the frequency of an oscillator. The advantages of the LFM waveform

includes the ability to easily generate the waveform through the application of either active or passive

techniques, and the fact that the LFM pulse shape and signal-to-noise ratio (SNR) are relatively

insensitive to changes in the frequency of the returned signal [21]. Changes in the frequency of

the received signal occur when the target being measured by the radar system is subjected to motion,

due to the Doppler effect. HRR profiles are typically obtained through either matched filtering or

stretch processing when pulse compression waveforms are utilised [22].

Inter-pulse modulated waveforms are used in radar systems which are subjected to hardware limita-

tions. Specifically related to limitations in the instantaneous bandwidth available for the demodulation

of the received signal. A stepped frequency waveform (SFW) is a inter-pulse technique commonly

used in HRR radar systems [6, 23]. The requirement for a high instantaneous bandwidth is over-

come by SFWs, by transmitting n narrowband radar waveforms. Each narrowband radar waveform

is transmitted at a different carrier frequency. The carrier frequency is stepped by a fixed frequency

step. This is essentially sampling in the frequency domain. The received in-phase and quadrature

samples are stored for each pulse. Spectral weighting is applied if necessary to reduce the magnitude

of the sidelobes in the received signal at the expense of degrading the range resolution. Finally the

inverse discrete Fourier transform is applied to the data to obtain the data in the time domain. The

time domain representation is directly related to the range domain through Equation 2.2 resulting in

a synthetic HRR profile. The equivalent bandwidth of a SFW is given by

B = n∆ f , (2.7)

where ∆ f is the inter-pulse frequency difference. The unambiguous range window for the SFW is

limited to the unambiguous range for a single pulse,

Ru,w =
c

2∆ f
. (2.8)
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Chapter 2 Radar Principles

The disadvantage of utilising SFWs is that the time period that it takes to collect measurements is n

times longer when compared to an equivalent pulse-compressed waveform. This may be an obvious

disadvantage for time constrictive applications, however, uncompensated motion of the target which

occurs during the collection of the n profiles may distort the resulting synthetic HRR profile.

The SFW method of HRR profile synthesis was utilised by the radar simulator in Section 4.3. The

main reason for the selection of this HRR profile synthesis technique was due to the availability of real

world data obtained by a HRR radar system that utilises SFW. This supports future research aimed

at applying the techniques developed in this dissertation on the real world data. The next chapter

introduces the Bayesian techniques used to infer the motion parameters of a target and the location of

the dominant scatterers on a target from a set of HRR profiles.
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CHAPTER 3

TRACKING ALGORITHMS

3.1 INTRODUCTION

Object tracking is a challenging problem which appears in multiple fields. The application of this

dissertation is related to the tracking of multiple dominant scatterers located on a single target being

observed by a HRR radar system. However, regardless of the application, a general procedure for

designing an object tracking algorithm exists. This chapter introduces the general procedure for

object tracking algorithm design and highlights several filtering methods which were utilised in this

research.

3.2 OBJECT TRACKING

The general procedure for designing an object tracking algorithm is summarised by the following

steps [24]:

1. Object Representation - The first step required in an object tracking application is to clearly

define how the object is represented. This representation is largely dependent on the mechanism

used to observe the object. In conventional tracking radar, a target of interest is represented by

a single point in space [25]. In HRR radar systems, it is possible to treat multiple dominant

scatterers on a target of interest as points in space.

2. Feature Selection - It is required to first obtain features from the raw observations of the ob-

ject. Depending on the application, it may be necessary to first perform feature extraction. If

multiple features are present, features which contribute the most information about the object
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Chapter 3 Tracking Algorithms

representation may be chosen. A limited number of features where extracted and used in the

dominant scatterer tracking application.

3. Object Detection - A method for the detection of the object from the raw observations is re-

quired. This method is utilised each time a new observation is available for processing which

then allows for the extraction of the selected features that describe the object.

4. Tracking Algorithm Selection - Many different tracking algorithms exist. Statistical methods

were considered due to the existence of noise in the observations and the possibility of perturb-

ations in the motion of the target.

The application investigated by this research is considered to fall in the framework of a multi-target

tracking (MTT) problem as a target consists of multiple individual dominant scatterers which are

required to be tracked. Typical MTT applications are concerned with the tracking of multiple inde-

pendent point targets [26]. However, in this application, the multiple point targets are fixed on a rigid

body and cannot be considered independent. Targets which are represented in this manner are referred

to as extended targets. There are two difficulties which are associated with the following statistical

approaches to extended target tracking [27]:

1. Realistic models for the target dynamics and the measurement processes are often non-linear

and perturbed by non-Gaussian noise.

2. The sensor typically yields unlabelled measurements of the point targets.

The first difficulty is the main focus of this research. The second difficulty is commonly referred to

as the data association problem. Ideal data association was assumed as there are several classic tech-

niques which have been applied to solving data association in the same statistical framework as used

in this research, including multiple hypothesis tracking [28], joint probabilistic data association filter

[29], nearest neighbour association [29], and probabilistic multiple hypothesis tracking [30].

3.3 STATE SPACE MODELLING

Tracking, in a statistical framework, consists of the estimation of the states of an object undergoing

motion based on noisy measurements. Filtering is the estimation of the current state of a dynamic

system given the past and current observations. Estimation of future states given the past and current
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Chapter 3 Tracking Algorithms

observations is referred to as prediction, and the estimation of states given past and future observations

is referred to as smoothing. Tracking applications generally perform filtering at each time step [31].

A state space model may be either continuous time, continuous-discrete time or discrete time [32]

and consists of models for the observations and dynamics of the states. A discrete state space model

is represented by

xxxk = a(xxxk−1,wwwk),

yyyk = b(xxxk,vvvk),

(3.1)

where xxxk and yyyk represent the states and observations at discrete time instant k respectively, wwwk and

vvvk represent stochastic variables modelling the noise disturbances in the state dynamics and observa-

tions respectively, and a(·) and b(·) represent generation functions for the states and observations. A

probabilistic equivalent to the equations presented in Equation 3.1 are given by

xxxk ∼ f (xxxk|xxxk−1),

yyyk ∼ g(yyyk|xxxk),

(3.2)

where f (·) is referred to as the state transition density and g(·) is referred to as the observation density

and are probability distribution functions. A general assumption for the state dynamics in tracking

applications is that the state variables form a temporal Markov chain. It is also assumed that the

observations are mutually independent and independent of the state at previous time steps [33]. This

model is illustrated graphically in Figure 3.1.

yk-2 yk-1 yk yk+1

xk-2 xk-1 xk xk+1

Observed

Hidden

f(xk|xk-1)

g(yk|xk)

Figure 3.1: Illustration of a typical discrete time state space model.

3.4 BAYESIAN FILTERING

Bayesian inference relies on the posterior distribution, p(xxx1:T |yyy1:T ), where xxx1:T = {xxx1,xxx2, . . . ,xxxT},

yyy1:T = {yyy1,yyy2, . . . ,yyyT}, and T represents the final discrete time step. The filtering distribution is

the posterior distribution up to the current discrete time step, k, with the states of the previous time
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Chapter 3 Tracking Algorithms

steps marginalised out, p(xxxk|yyy1:k). The filtering distribution is the probability of interest in tracking

applications utilising a Bayesian framework. The filtering distribution can be iteratively computed

when the filtering distribution at the previous time step, p(xxxk−1|yyy1:k−1), is available. This is achieved

through a two step process [34]. The first step is referred to as the prediction step and is based on the

state transition density, via the Chapman-Kolmogorov equation

p(xxxk|yyy1:k−1) =
∫

f (xxxk|xxxk−1)p(xxxk−1|yyy1:k−1)dxxxk−1. (3.3)

A new observation is then made at time instant k and incorporated through the second step referred to

as the update step, via Bayes’ rule

p(xxxk|yyy1:k) =
g(yyyk|xxxk)p(xxxk|yyy1:k−1)∫

g(yyyk|xxxk)p(xxxk|yyy1:k−1)dxxxk
. (3.4)

The recursive relationship of Equations 3.3 and 3.4 form the optimal Bayesian solution. Utilising

these equations for Bayesian filtering is generally not possible since an analytical solution only exists

in certain circumstances. A commonly used analytical solution of the Bayesian recurrence relation-

ship is the Kalman filter (KF) [31]. The KF assumes that the filtering distribution follows a Gaussian

distribution. Additionally, the state space models are linear and perturbed by Gaussian noise. The

performance of the KF is poor when applied to tracking applications which consist of state space

models characterised by non-linearity and/or described by non-Gaussian statistics.

Several extensions of the KF have been developed to deal with non-linearities in state space mod-

els. Two popular extensions are the extended Kalman filter (EKF) [31] and unscented Kalman filter

(UKF) [35]. The EKF has several different forms, in general the EKF linearises all non-linear mod-

els so that the traditional KF can be applied. The EKF is applied in a wide range of applications,

however, a general consensus within the tracking and control community is that difficulties lie in the

implementation and tuning of the EKF. The EKF performance is only reliable for systems that are

almost linear on the time scale of the update intervals [36]. The UKF improves upon the EKF by

representing the filtering distribution through a set of carefully chosen sample points which capture

the mean and covariance of the Gaussian distribution. The sample points are then propagated through

the true non-linear state space model. Ultimately neither the EKF, UKF or other Kalman based filters

can approximate non-Gaussian filtering distributions.

The alternative to Kalman based filters explored throughout this research was that of sequential Monte

Carlo (SMC) methods. The primary underlying SMC method of interest was the particle filter (PF)

which is capable of dealing with state space models which are non-linear and/or contain non-Gaussian

noise.
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Chapter 3 Tracking Algorithms

3.5 PARTICLE FILTERING

In Monte Carlo simulation, an approximation of the posterior distribution up to the current discrete

time step, k, is represented by a weighted set of samples,

p̂(xxx0:k|yyy1:k) =
1
N

N

∑
i

δ
i
X̃XX0:k

(xxx0:k), (3.5)

where X̃XX i
0:k ∼ p(xxx0:k|yyy1:k) and N represents the total number of samples1 selected for the representa-

tion. In this context, the state at discrete time k = 0 is included in the representation of the posterior

distribution as p(xxx0) represents the prior distribution. It is commonly required to determine the prop-

erties of the posterior distribution, such as expectations of the form

E[hk(xxx0:k)] =
∫

hk(xxx0:k)p(xxx0:k|yyy1:k)dxxx0:k, (3.6)

where hk(xxx0:k) is a meaningful function for estimation. Using the Monte Carlo representation, the

expectation can be approximated by

hk(xxx0:k) =
1
N

N

∑
i

hk(X̃XX
i
0:k), (3.7)

and according to the law of large numbers hk(xxx0:k) −−−→
N→∞

E[hk(xxx0:k)]. However, owing to the lack of

an analytical solution for the posterior distribution, it is impossible to obtain samples for the posterior

distribution, X̃XX i
0:k. Importance sampling [34] is a method which overcomes this problem of sampling

from the posterior distribution by obtaining samples from a known proposal distribution, q(xxx0:k|yyy1:k).

Substituting the proposal distribution into Equation 3.6 results in

E[hk(xxx0:k)] =
∫

hk(xxx0:k)
p(xxx0:k|yyy1:k)

q(xxx0:k|yyy1:k)
q(xxx0:k|yyy1:k)dxxx0:k. (3.8)

This expression can be further expanded by applying Bayes’ rule to the posterior distribution

E[hk(xxx0:k)] =
∫

hk(xxx0:k)
g(yyy1:k|xxx0:k) f (xxx0:k)

p(yyy1:k)q(xxx0:k|yyy1:k)
q(xxx0:k|yyy1:k)dxxx0:k. (3.9)

The importance weights are defined as

wk(xxx0:k) =
g(yyy1:k|xxx0:k) f (xxx0:k)

q(xxx0:k|yyy1:k)
. (3.10)

Substituting the importance weights into the expression in Equation 3.9 results in

E[hk(xxx0:k)] =
∫

hk(xxx0:k)
wk(xxx0:k)

p(yyy1:k)
q(xxx0:k|yyy1:k)dxxx0:k. (3.11)

1Each sample is also commonly referred to as a particle as the name of the SMC technique suggests.
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Chapter 3 Tracking Algorithms

The density in the denominator, p(yyy1:k), is an unknown normalising constant that can be removed

from the integration,

E[hk(xxx0:k)] =

∫
hk(xxx0:k)wk(xxx0:k)q(xxx0:k|yyy1:k)dxxx0:k

p(yyy1:k)
. (3.12)

In order to simplify this expression further, it is firstly required to expand the unknown normalising

constant in the denominator,

E[hk(xxx0:k)] =

∫
hk(xxx0:k)wk(xxx0:k)q(xxx0:k|yyy1:k)dxxx0:k∫

g(yyy1:k|xxx0:k) f (xxx0:k)dxxx0:k
. (3.13)

Introducing the proposal distribution in the denominator allows for the term in the denominator to be

simplified in terms of the importance weights in Equation 3.10,

E[hk(xxx0:k)] =

∫
hk(xxx0:k)wk(xxx0:k)q(xxx0:k|yyy1:k)dxxx0:k∫
g(yyy1:k|xxx0:k) f (xxx0:k)

q(xxx0:k|yyy1:k)
q(xxx0:k|yyy1:k)

dxxx0:k

=

∫
hk(xxx0:k)wk(xxx0:k)q(xxx0:k|yyy1:k)dxxx0:k∫

wk(xxx0:k)q(xxx0:k|yyy1:k)dxxx0:k
.

(3.14)

Similarly to Equation 3.7, the Monte Carlo approximation for the expression in Equation 3.14 is given

by

hk(xxx0:k) =
1
N ∑

N
i hk(XXX0:k

i)wk(XXX0:k
i)

1
N ∑

N
i wk(XXX0:k

i)
, (3.15)

where XXX i
0:k ∼ q(xxx0:k|yyy1:k). The normalised importance weights are represented by

w̃i
k =

wi
k

∑
N
j w j

k

. (3.16)

The Monte Carlo approximation is then simplified in terms of the normalised importance

weights

hk(xxx0:k) =
N

∑
i

hk(XXX0:k
i)w̃i

k. (3.17)

The Monte Carlo approximation for the posterior distribution is thus represented by

p̂(xxx0:k|yyy1:k) =
N

∑
i

w̃i
kδ

i
XXX0:k

(xxx0:k). (3.18)

However, this is a non-sequential method of obtaining an approximation for the posterior distribution.

In order to obtain a sequential approximation, it is required to factor the proposal distribution

q(xxx0:k|yyy1:k) = q(xxx0:k−1|yyy1:k−1)q(xxxk|xxx0:k−1,yyy1:k). (3.19)

Substituting the new form of the proposal distribution into Equation 3.10 and utilising the assumptions

that the observations are mutually independent and the states form a temporal Markov chain, leads
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Chapter 3 Tracking Algorithms

to a sequential update for the importance weights. This is illustrated by firstly substituting the new

proposal distribution into Equation 3.10,

wk(xxx0:k) =
g(yyy1:k|xxx0:k) f (xxx0:k)

q(xxx0:k−1|yyy1:k−1)q(xxxk|xxx0:k−1,yyy1:k)
. (3.20)

Multiplying this expression with the importance weights from the previous time step in both the

numerator and denominator results in,

wk(xxx0:k) =
wk−1(xxx0:k−1)

wk−1(xxx0:k−1)

g(yyy1:k|xxx0:k) f (xxx0:k)

q(xxx0:k−1|yyy1:k−1)q(xxxk|xxx0:k−1,yyy1:k)
. (3.21)

Expanding the importance weights from the previous time step in the denominator according to Equa-

tion 3.10 results in,

wk(xxx0:k) =
wk−1(xxx0:k−1)q(xxx0:k−1|yyy1:k−1)

g(yyy1:k−1|xxx0:k−1) f (xxx0:k−1)

g(yyy1:k|xxx0:k) f (xxx0:k)

q(xxx0:k−1|yyy1:k−1)q(xxxk|xxx0:k−1,yyy1:k)
. (3.22)

Finally, simplifying this expression results in,

wk = wk−1
g(yyyk|xxxk) f (xxxk|xxxk−1)

q(xxxk|xxx0:k−1,yyy1:k)
, (3.23)

where the dependence on xxx0:k for the importance weights was dropped for notational convenience.

The sequential importance sampling (SIS) PF makes use of this relationship to iteratively update the

approximation for the filtering distribution. This procedure is summarised in Algorithm 3.1.

Algorithm 3.1 Sequential Importance Sampling

Initialisation: k = 0

for i = 1,...,N do

Sample XXX i
0 ∼ q0(xxx0)

end for

for k = 1,...,T do

for i = 1,...,N do

Sample XXX i
k ∼ qk(xxxk|XXX i

k−1,yyyk)

Evaluate the importance weights according to Equation 3.23.

end for

for i = 1,...,N do

Normalise the importance weights according to Equation 3.16.

end for

end for

* Where T represents the final time interval and q0(xxx0) represents the prior proposal distribution.
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Chapter 3 Tracking Algorithms

Although theoretically sound, the SIS algorithm is prone to weight degeneracy. Weight degeneracy

occurs since the variance of the importance weights increases over time [37]. Essentially, a single

particle will tend to have a normalised weight of 1, while the other particles weights tend towards

zero, resulting in a poor representation of the posterior distribution. To partially overcome weight

degeneracy, the introduction of a resampling step after the evaluation of the importance weights was

proposed [38, 39]. Through resampling, particles which contain higher weights are duplicated while

particles with lower weights are eliminated greatly alleviating the weight degeneracy problem. How-

ever, resampling may cause sample impoverishment, which is when particles with high weights are

favoured to a large degree and can ultimately result in the entire set of particles being duplicates of a

single particle. In order to prevent sample impoverishment, it has been proposed [34] to only perform

resampling when weight degeneracy is severe. There are several measures of weight degeneracy that

are utilised to determine when resampling should be performed. A commonly used measure is the

effective sample size (ESS) [40],

N̂e f f =
1

∑
N
i (w̃

i
k)

2
. (3.24)

A value of 1 would indicate that all the probability mass is assigned to a single particle, indicating

severe degeneracy, and conversely, the effective sample size approaches N when the weights tend to

be uniformly spread among the particles. The generic PF is described by Algorithm 3.2.

The resultant of both the SIS PF and generic PF at each time step k is an approximation of the filtering

distribution in the form

p̂(xxxk|yyy1:k) =
N

∑
i

w̃i
kδ

i
XXXk
(xxxk). (3.25)

There are several different resampling strategies currently applied in particle filters. The most com-

mon techniques are [41]:

1. multinomial resampling,

2. stratified resampling,

3. systematic resampling, and

4. residual resampling.
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Algorithm 3.2 Generic Particle Filter
Initialisation: k = 0

for i = 1,...,N do

Sample XXX i
0 ∼ q0(xxx0)

end for

for k = 1,...,T do

for i = 1,...,N do

Sample XXX i
k ∼ qk(xxxk|XXX i

k−1,yyyk)

Evaluate the importance weights according to Equation 3.23.

end for

Normalise the importance weights according to Equation 3.16.

Calculate the severity of weight degeneracy, using a measure such as in Equation 3.24.

if Weight degeneracy detected then

Resample XXX i
k

for i = 1,...,N do

Set w̃i
k = wi

k =
1
N

end for

end if

end for

In multinomial resampling, a new set of samples are obtained through resampling and replacement

based on the normalised importance weights. All the resampling strategies can be performed in

O(N) operations. Theoretically it has been shown that systematic resampling results in superior

performance [41]. The choice of resampling strategy generally has a small effect on the performance

of the PF [41, 42].

The success of an implementation of a PF is dependent on the validity of two assumptions. The first

assumption is that the discrete Dirac point-mass approximation is a sufficient representation of the

filtering distribution. This relates to the number of particles used to represent the filtering distribution,

N. This value differs and is dependent on several factors including the application, the dimensionality

of the state space, and the design of the PF, specifically the filter structure and initialisation [43].

Initialisation of the filter is a crucial step and is based on the prior knowledge of the states.
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Chapter 3 Tracking Algorithms

The second assumption is that it is possible to obtain samples from the filtering distribution by

sampling from the proposal distribution and applying importance sampling corrections. This as-

sumption is related to the choice of the proposal distribution. The choice of proposal distribution is

one of the most important design issues in importance sampling algorithms. Theoretically, there is an

infinite number of possible choices for the proposal distribution, as the only criteria for the proposal

distribution is that its support must include that of the filtering distribution [44]. However, the op-

timal proposal distribution is the distribution which minimises the variance of the importance weights

[45],

qk(xxxk|XXX i
k−1,yyyk) = p(xxxk|XXX i

k−1,yyyk). (3.26)

Substituting this proposal distribution into Equation 3.23 results in the following iterative importance

weight update

wi
k ∝ wi

k−1 p(yyyk|XXX i
k−1) = wi

k−1

∫
g(yyyk|xxxk) f (xxxk|XXX i

k−1)dxxxk. (3.27)

However, sampling from this proposal distribution and solving the integral in Equation 3.27 is not

possible with the exception of very few state space models. Alternatives to implementing the optimal

proposal distribution includes using sub-optimal proposal distributions and using approximations of

the optimal proposal distribution.

3.5.1 Bootstrap Particle Filter

In the seminal paper by Gordon et al. [39] it was proposed that the state transition density be used as

the proposal distribution in the generic PF structure

qk(xxxk|XXX i
k−1,yyyk) = f (xxxk|XXX i

k−1). (3.28)

Subsequently, the importance weight update equation simplifies to

wi
k = wi

k−1g(yyyk|XXX i
k). (3.29)

This specific PF structure is referred to as the bootstrap PF (BPF). The BPF has been widely used

in several different fields such as in computer vision, where it is referred to as the condensation

algorithm [46]. This selection of proposal distribution also has the advantage of reducing the com-

putational complexity required for the calculation of the importance weights. However, unlike the

optimal proposal distribution, this choice of proposal distribution fails to take the current observation

into account when propagating the particles through the state space. This may lead to PF degen-

eracy, especially in applications where the likelihood density is relatively peaked in comparison to
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Chapter 3 Tracking Algorithms

the state transition density. Blindly propagating the particles through the state space in such an ap-

plication could result in the particles being distributed into areas of low probability of the filtering

distribution.

3.5.2 Auxiliary Particle Filter

There have been several different approaches that propose improvements on the BPF. One of the most

notable approaches is referred to as the Auxiliary PF (APF), first proposed in [47]. In the APF, it

is proposed that samples from the optimal importance distribution may be obtained through the in-

troduction of an auxiliary variable. The original APF was improved into the algorithm commonly

applied today [48]. In the BPF, the general structure of the algorithm is to first propagate the particles

through the state transition density at each time step, followed by the weighting and possibly res-

ampling of the particles. In contrast, the APF initially performs resampling of the particles based on

the latest observation prior to the propagation of the particles through the state space. The APF is

described by Algorithm 3.3.

It was suggested in [47] that the following simplifications be made

g(yyyk|XXX i
k−1) = g(yyyk|µ i

k),

qk(xxxk|XXX i
k−1,yyyk) = f (xxxk|XXX i

k−1),

(3.30)

where µ i
k is a point value of the state, typically the mean or mode of f (xxxk|XXX i

k−1). However, even

though the APF takes the latest observation into account, it has been shown [49] that utilising the

APF does not guarantee improved performance over the BPF.
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Chapter 3 Tracking Algorithms

Algorithm 3.3 Auxiliary Particle Filter

Initialisation: k = 0

for i = 1,...,N do

Sample XXX i
0 ∼ q0(xxx0)

end for

for k = 1,...,T do

for i = 1,...,N do

Evaluate the temporary weights vi
k−1 = wi

k−1g(yyyk|XXX i
k−1).

end for

Select N particle indices ji ∈ {1, ...,N} according to the temporary weights.

for i = 1,...,N do

Set XXX i
k−1 = XXX ji

k−1 and update the first stage weights ui
k−1 =

w ji
k−1

v ji
k−1

.

end for

for i = 1,...,N do

Sample XXX i
k ∼ qk(xxxk|XXX i

k−1,yyyk)

Evaluate the importance weights wi
k = ui

k−1
g(yyyk|XXX i

k) f (XXX i
k|XXX

i
k−1)

qk(XXX i
k|XXX

i
k−1,yyyk)

.

end for

Normalise the importance weights according to Equation 3.16.

end for

3.5.3 Unscented Particle Filter

There have also been several approaches which are based on the generic PF and approximate the

optimal proposal distribution. One of the most notable approaches is referred to as the unscented PF

(UPF) [42]. The UPF approximates the optimal proposal distribution with a Gaussian distribution.

The UPF achieves this approximation through the implementation of the UKF. The UKF is based

upon the scaled unscented transformation (SUT), which is essentially a method for determining the

statistics of a random variable which undergoes a non-linear transformation.

Given a random variable xxx of dimension nx that follows a Gaussian distribution with mean xxx and

covariance PPPx. The random variable is subjected to a nonlinear transformation resulting in a new

random variable

yyy = g(xxx). (3.31)
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Chapter 3 Tracking Algorithms

The aim of the SUT is to determine the first two moments of the distribution of yyy. Initially a set of

2nx+1 weighted samples, SSS = {WWW ,XXX} referred to as sigma points, are deterministically selected. The

sigma points capture the statistics of the distribution of xxx. The sigma points are determined according

to the following set of equations [50]

X0 = xxx

Xi = xxx+
(√

(nx +λ )PPPx

)
i

i = 1, ...,nx

Xi = xxx−
(√

(nx +λ )PPPx

)
i

i = nx, ...,2nx

W (m)
0 =

λ

(nx +λ )

W (c)
0 =

λ

(nx +λ )+(1−α2 +β )

W (m)
i =W (c)

i =
1

2(nx +λ )
i = 1, ...,2nx,

(3.32)

where λ = α2(nx+κ)−nx, and α , β and κ are scaling parameters. The indices (m) and (c) represent

the weights for the mean and covariance. Each sigma point is then propagated through the non-linear

transformation,

Yi = g(Xi) i = 0, ...,2nx. (3.33)

The first two moments of the transformed random variable, yyy, can then be approximated by

yyy =
2nx

∑
i=0

W (m)
i Yi

PPPy =
2nx

∑
i=0

W (c)
i [Yi− yyy][Yi− yyy]T .

(3.34)

The UKF utilises the SUT to perform recursive minimum mean-square-error estimation [36]. The

random variable is redefined as the concatenation of the state variables and associated noise variables,

xxxa
k = [xxxT

k wwwT
k vvvT

k ]
T , described by Equation 3.1. The algorithm for the UKF is presented in Algorithm

3.4.
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Chapter 3 Tracking Algorithms

Algorithm 3.4 Unscented Kalman Filter
Initialisation: k = 0

xxx = E[xxx]

PPP0 = E
[
(xxx− xxx)− (xxx− xxx)T

]
xxxa

0 =
[
xxxT 000 000

]T
PPPa

0 =


PPP0 000 000

000 QQQ 000

000 000 RRR


for k = 1,...,∞ do

Calculate sigma points, SSSa
k−1, according to Equation 3.32 based on xxxa

k−1 and PPPa
k−1.

Perform time updates:

XXXx
k|k−1 = a

(
XXXx

k−1,XXX
w
k−1
)

xxxk|k−1 = ∑
2na
i=0W (m)

i Xx
i,k|k−1

PPPk|k−1 = ∑
2na
i=0W (c)

i [Xx
i,k|k−1− xxxk|k−1][Xx

i,k|k−1− xxxk|k−1]
T

YYY k|k−1 = b
(

XXXx
k|k−1,XXX

v
k−1

)
yyyk|k−1 = ∑

2na
i=0W (m)

i Yi,k|k−1

Perform measurement updates:

PPPỹyyk ỹyyk
= ∑

2na
i=0W (c)

i [Yi,k|k−1− yyyk|k−1][Yi,k|k−1− yyyk|k−1]
T

PPPx̃xxk ỹyyk
= ∑

2na
i=0W (c)

i [Xx
i,k|k−1− xxxk|k−1][Yi,k|k−1− yyyk|k−1]

T

KKKk = PPPx̃xxk ỹyyk
PPP−1

ỹyyk ỹyyk

xxxk = xxxk|k−1 +KKKk(yyyk− yyyk|k−1)

PPPk = PPPk|k−1−KKKkPPPỹyyk ỹyyk
KKKT

k

end for

*Where XXXa =
[
(XXXx)T (XXXw)T (XXXv)T

]T
, na = nx + nw + nv, and QQQ and RRR are the process and meas-

urement noise covariances respectively.

The UPF follows Algorithm 3.2 with the UKF described by Algorithm 3.4 calculated at each time

step for each particle resulting in a sample from an approximation of the optimal proposal distribu-

tion.
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Chapter 3 Tracking Algorithms

3.6 STATIC PARAMETER ESTIMATION

The PF model, based upon the state space representation of Equation 3.2 assumed that all the static

parameters associated with the state space model were known. Practically, there may be several static

parameters which are unknown which would result in Equation 3.2 being more accurately represented

by

xxxk ∼ f (xxxk|xxxk−1,θθθ),

yyyk ∼ g(yyyk|xxxk,θθθ),

(3.35)

where θθθ represents a vector consisting of the static parameters associated with the model. There

are two different sets of approaches which have been applied in attempts to solve the problem of

static parameter estimation in systems which perform particle filtering. The first set of approaches

are based upon frequentist parameter estimation. These approaches are concerned with maximum

likelihood static parameter estimation in state space models [51, 52]. The second set of approaches

are based upon Bayesian parameter estimation. There is a wide variety of attempts which follow the

Bayesian approach, based on the state space representation in Equation 3.35. The filtering distribution

of interest is represented by

p(xxxk,θθθ |yyy1:k). (3.36)

Earlier methods proposed treating the static parameters as states through the augmentation of the state

vector [53]. The static parameters are initialised according to a prior distribution but do not propagate

through the state space owing to the static nature of the parameters. However, this may lead to severe

degeneration since the state space is only explored upon initialisation and not at each time step. This

was extended by exploring the state space in the dimensions of the static parameters with an artificial

noise whose variance tends towards zero as N approaches infinity [53, 54].

In [55] it was proposed that the posterior distribution can be decomposed as

p(xxx1:k,θθθ |yyy1:k) =Cp(xxx1:k−1|yyy1:k−1)p(θθθ |TTT k−1)p(xxxk|xxxk−1,θθθ)p(yyyk|xxxk,θ), (3.37)

where C is a constant that is not dependent on the state or static parameters, and TTT k(xxx1:k,yyy1:k) repres-

ents a set of low dimensional sufficient statistics. The sufficient statistics can commonly be written in

a recursive form based on the past sufficient statistics, the states, and the observations at the current

time period, TTT k(xxx1:k,yyy1:k) = TTT k(xxxk,yyyk,TTT k−1). Each particle is then redefined to include the sufficient

statistics and static parameters. At each iteration, the state variables are propagated through a proposal
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Chapter 3 Tracking Algorithms

distribution conditional on the existing parameters. The sufficient statistics are updated according to

their recursive formulation and finally new parameters are simulated from a proposal distribution

conditioned on the sufficient statistics. The success of algorithms which follow an approach based on

sufficient statistics is dependent on the mixing properties of the Markov kernels within the algorithm

[56]. Information about the parameters may not always accumulate in the PF due to the degeneracy

of paths introduced by resampling. The accumulation of errors in the PF may lead to the degeneracy

of the static parameters [56].

An approach not based on the requirement of sufficient statistics for the joint estimation of the state

and static parameters for the posterior distribution, p(xxx1:T ,θθθ |yyy1:T ), is proposed in [57]. This ap-

proach is based on Markov chain Monte Carlo (MCMC) techniques. A standard MCMC technique

commonly used to obtain samples from an unknown distribution is known as the Metropolis-Hastings

(MH) algorithm. The MH algorithm obtains samples from an unknown distribution through the gener-

ation of a Markov chain. Firstly, a proposed sample is generated from a known proposal distribution,

x∗ ∼ q(x∗|xk). The proposed sample is accepted as xk+1 based on the following probability

min
(

1,
P(x∗)q(x∗|xk)

P(xk)q(xk|x∗)

)
. (3.38)

If the proposed sample is rejected, then the old sample is kept through to the next time step, xk+1 = xk.

The approach presented in [57] states that it is possible to target the full posterior distribution with a

MH algorithm through the following selection of the proposal distribution

q((xxx∗1:T ,θθθ
∗)|(xxx1:T ,θθθ)) = q(θθθ ∗|θθθ)p(xxx∗1:T |yyy1:T ,θθθ

∗). (3.39)

This is equivalent to first obtaining a proposed sample for the static parameters, θθθ
∗ ∼ q(θθθ ∗|θθθ),

followed by obtaining a proposed sample for the state space given the proposed static parameters,

xxx∗1:T ∼ p(xxx1:T |yyy1:T ,θθθ
∗). The corresponding MH acceptance probability is then given by

min
(

1,
p(xxx∗1:T ,θθθ

∗|yyy1:T )q((xxx1:T ,θθθ)|(xxx∗1:T ,θθθ
∗))

p(xxx1:T ,θθθ |yyy1:T )q((xxx∗1:T ,θθθ
∗)|(xxx1:T ,θθθ))

)
, (3.40)

and it is shown in [57] that this simplifies to the following acceptance probability

min
(

1,
p(yyy1:T |θθθ ∗)p(θθθ ∗)q(θθθ |θθθ ∗)
p(yyy1:T |θθθ)p(θθθ)q(θθθ ∗|θθθ)

)
. (3.41)

However, there is also no analytical expression available for the posterior distribution given a known

static parameter which is required for sampling, p(xxx1:T |yyy1:T ,θθθ). It was proposed that a numerical

approximation for this posterior distribution be obtained through a PF algorithm. In addition, the PF
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presents a numerical approximation of the marginal likelihood, p(yyy1:T |θθθ), at no additional computa-

tional cost. This numerical approximation for the marginal likelihood is available from the unnorm-

alised weights in the PF algorithm

p̂(yyy1:T |θθθ) =
T

∏
k=1

p̂(yyyk|yyy1:k−1) =
T

∏
k=1

N

∑
i=1

wi
k. (3.42)

This numerical approximation for the marginal likelihood is used in the acceptance probability of the

MH algorithm in Equation 3.41, which is targeted at the full posterior distribution. The disadvantage

of this method, referred to as the particle marginal Metropolis-Hastings (PMMH) sampler, is that it

is not sequential and hence requires all the observations to obtain estimates for the states and static

parameters. The PMMH sampler is summarised for completeness in Algorithm 3.5.

Algorithm 3.5 Particle marginal Metropolis-Hastings sampler
Initialisation: i = 0

Sample θθθ 0 ∼ q0(θθθ)

Sample (xxx1:T )0 ∼ p̂(xxx1:T |yyy1:T ,θθθ 0) using a PF such as in Algorithm 3.2.

for i = 1,...,N do

Sample θθθ
∗ ∼ q(θθθ ∗|θθθ i−1)

Sample xxx∗1:T ∼ p̂(xxx1:T |yyy1:T ,θθθ
∗) using a PF such as in Algorithm 3.2.

Accept (xxx1:T )i = xxx∗1:T according to min
(

1, p̂(yyy1:T |θθθ ∗)p(θθθ ∗)q(θθθ i−1|θθθ ∗)
p̂(yyy1:T |θθθ i−1)p(θθθ i−1)q(θθθ ∗|θθθ i−1)

)
Else (xxx1:T )i = (xxx1:T )i−1

end for

The next chapter describes the radar simulator that was designed and implemented and introduces the

state space models of an extended target.
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CHAPTER 4

TARGET & SENSOR MODELLING APPROACH

4.1 INTRODUCTION

The first step required in any tracking application based upon a Bayesian structure is that of defining

the target with a state space representation. The state vector includes the hidden dynamic states. The

state space model includes a statistical description of how the states vary with time, and how the states

are related to the observations.

This chapter describes the simulator which was designed to simulate the target and the HRR radar

signals observed from the target at each time step. The state space representation and models of the

target, its motion, and radar observations are also presented.

4.2 TARGET DESCRIPTION

A target is represented as a set of points based on the assumption that a target consists of multiple

dominant scatterers [6]. The points are located in a 2-dimensional space as illustrated by an example

in Figure 4.1. It is assumed that the number of persistent scatterers is fixed and constant during the

observation period [7]. The dimensions are referred to as the down range, represented by x→, and

cross-range, represented by x⊥. The radar is stationary and located at the origin of the co-ordinate

system. The down range dimension corresponds to the look direction of the radar. The cross-range

dimension is perpendicular to the down range dimension with the 0 point representing the centre of

the radar beamwidth which is aligned to the centroid of rotation of the target. Figure 4.2 illustrates

the down range and cross-range dimensions relative to a target and the radar in a 2-D space. In reality,

the maximum distance to a target that can result in the collection of a HRR profile, which corresponds
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Figure 4.1: Example of a target represented with dominant scatterers. Zero reference point of

axes shifted to [10000,0].
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Figure 4.2: Illustration of the axes relative to a target and the stationary radar.

to the down range dimension, is dependent on the operating characteristics of the radar system. The

minimum and maximum extent of the target in the cross-range is dependent on the range resolution

of the radar system and the dimensions of the target respectively.
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Chapter 4 Target & Sensor Modelling Approach

4.3 RADAR SIMULATOR

A HRR radar simulator was designed in order to easily obtain radar measurements from different

targets in a controlled environment. This allowed for the full control of the target and associated

parameters. This also allowed for the comparison between the results obtained from the tracking

algorithms and the true underlying parameters.

The output required from a radar simulator influences the manner in which the simulation is carried

out. A RCS simulator requires a detailed electromagnetic approach because the amplitude of the

simulated returns are required to approximate the amplitude of the true world returns. The HRR

simulator designed was not required to model the electromagnetic phenomena to such a degree in

order to achieve the required HRR profiles.

The HRR radar simulator consists of 3 main subsystems

1. target creation,

2. target update,

3. and radar signal processing.

Target Creation

The target creation subsystem deals with the initial description of the target in the simulation space.

It is assumed that the target is a rigid body with no moving parts, as is assumed in standard ISAR pro-

cessing [4], and consists of a set of dominant scatterers. The inputs for this subsystem include:

1. The number of dominant scatterers used to represent the target.

2. The physical dimensions of the target.

3. A vector including the down range and cross-range co-ordinates for each of the dominant scat-

terers. Alternatively, a parameter can be set which results in the dominant scatterers being

uniformly distributed within the specified target dimensions.

4. The amplitude of the reflection received by the radar of each dominant scatterer.
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Chapter 4 Target & Sensor Modelling Approach

In real world systems the amplitude of a reflection received by the radar from a target is dependent

on the distance to the target, the power of the waveform transmitted by the radar system and several

other factors. In reality the amplitude can vary to a large degree between time steps, and hence the

amplitude is not a feature which is utilised for tracking a dominant scatterer. The only criteria that

the amplitude is required to meet is to be large enough to overcome a threshold which separates

the dominant scatterers from noise. Owing to the persistent dominant scatterer assumption [7], all

dominant scatterers met this criteria.

The output of the target creation subsystem is a structure array which completely describes the target

and is utilised and further modified by the other subsystems.

Target Update

The target update subsystem applies the motion models, elaborated on further in Section 4.5, to the

co-ordinates of the dominant scatterers. This essentially determines the true location of each of the

dominant scatterers at each time step of the simulation. The structure array describing the target is up-

dated with this information before being transferred to the radar signal processing subsystem.

Radar Signal Processing

The different types of backscatter found in radar systems were discussed in Section 2.2. In this

research only high frequency optical scattering was considered, and more specifically, direct illumin-

ation scattering. This is referred to as the point scatterer model and produces a return with a specific

amplitude and phase when illuminated by the radar. For a single scatterer, the radar return is given

by

sr(t) = σRCS s(t−δt), (4.1)

where s(t) is the signal transmitted by the radar, σRCS represents the amplitude of the returned signal

based on the radar cross section and range which is a specified input, and δt represents the time period

between when the signal was transmitted and received. In our application it is assumed that δt is only

a function of the distance between the radar and the scatterer. This time delay translates into a phase

difference between the original transmitted signal and received signal.

The radar waveform selected for the synthesis of the HRR profiles was a SFW as described in Section

2.5. The radar parameters utilised by the simulator are listed in Table 4.1, followed by the algorithm
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Chapter 4 Target & Sensor Modelling Approach

to obtain a HRR profile based on the use of SFWs described by Algorithm 4.1.

Table 4.1: SFW based HRR radar simulator parameters.

Symbol Radar Parameter

∆ f Step frequency

n Number of narrowband pulses transmitted in a burst

f0 Centre frequency

PRF Effective pulse repetition frequency

SNR Signal-to-noise ratio

Algorithm 4.1 Synthetic HRR profile generation through SFW processing

Initialisation: Complex radar returns, S = 0, and discrete frequencies, f =
(
−n∆ f

2 : ∆ f : n∆ f
2

)
+ f0.

for h = 1 : n do

for d = 1 : M do

Calculate the range to dominant scatterer d, R =

√
x→d

2 + x⊥d
2.

Update the radar returns, S(h) = S(h)+
√

σRCSd exp
(
−4 jπ f (h)R

c

)
.

end for

end for

Calculate the power in the complex radar returns.

Add complex white noise, according to the SNR, to the complex radar returns.

Multiply the complex radar returns by the Hamming window.

Perform inverse fast Fourier transform on the complex radar returns to obtain the HRR profile,

HRRP = IFFT (S).

* Where x→d and x⊥d represent the down range and cross-range co-ordinates for scatterer d at the

current time step respectively.

It is noted that the noise is added to the input signal at a specific SNR. The processing performed to

obtain the HRR profile may induce signal gain increasing the SNR of the HRR profile. It is assumed

that there is no motion between the radar and target during the collection of the data which is utilised

to obtain a single HRR profile. This assumption negated the requirement for additional radar signal

processing during the collection of measurements for a single HRR profile [22]. Algorithm 4.1 was
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Chapter 4 Target & Sensor Modelling Approach

applied at each time step to obtain a set of synthetic HRR profiles. The validity of the radar simulator

was verified by comparing the extracted observations from the HRR profiles with the true values

expected for the target in a noiseless system.

4.4 OBSERVATION EXTRACTION

Mathematically, a single HRR profile is represented by

so(t) = ∑
i

σRCSie
− j4π f0Ri

c x
(

t− 2Ri

c

)
+ en, (4.2)

where i represents the scatterer index, x(t) represents the point spread function, which is related to the

bandwidth of the transmit waveform used by the radar, Ri represents the distance between the radar

and scatterer i, f0 represents the radar operating carrier frequency, c represents the speed of light, and

en represents complex noise which is induced during the signal processing of the radar measurements.

The procedure described by Algorithm 4.1 results in a discretised form of the above equation.

The location in a HRR profile which results in the most information about each dominant scatterer

occurs at the time delay which corresponds to the range between the radar and the dominant scatterer.

Generally, the magnitude of the HRR profile results in a peak at this point. However, as seen in

Equation 4.2, the value at each discrete range in the HRR profile is a complex summation and may

result in destructive interference when two or more dominant scatterers are located within a close

proximity with respect to range to the radar. Other peaks in the magnitude of the HRR profile may

correspond to noise, or side lobes which are unwanted signal processing artifacts. The first processing

step performed was thresholding of the magnitude of the HRR profile. This was performed in order

to isolate the peaks related to dominant scatterers. The threshold level was manually set according to

the SNR in the simulation. The discrete ranges corresponding to the peaks in the magnitude of the

HRR profile were then obtained through a basic peak detection algorithm. The corresponding range

obtained from the peaks represent the range to each dominant scatterer.

The range to each dominant scatterer is the only information that can be extracted from the magnitude

of the HRR profile. However, additional information can be extracted from the complex HRR profile

by finding the phase at the extracted range to each dominant scatterer. The phase measurement is a

highly accurate range measurement which suffers from a very large degree of ambiguity. The phase

information obtained for a dominant scatterer from an individual HRR profile does not provide any

usable information due to a large degree of ambiguity. However, finding the difference in phase,
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Chapter 4 Target & Sensor Modelling Approach

referred to as the delta phase, for a dominant scatterer between two consecutive HRR profiles results

in an informative observation. The delta phase is related to the radial velocity of a single dominant

scatterer through

vr =
∆φλ

4π∆t
, (4.3)

where ∆φ represents the delta phase and λ represents the wavelength.

Owing to the discrete nature of the HRR profile, a parabola was fit using the discrete peak of the

HRR profile and its two neighbouring samples [58]. This allowed for a better approximation of the

true observed range value. The required shift to the estimated true peak of discrete HRR profile X [k],

whose peak is located at discrete instance k0 is

∆k =
−1

2{X [k0 +1]−X [k0−1]}
X [k0−1]−2X [k0]+X [k0 +1]

. (4.4)

4.5 STATE SPACE MODELLING

Two different discrete state space models were developed and are presented individually below.

4.5.1 Model I

This model was presented by the author in [59] and is characterised by:

1. Rotational motion only,

2. constant radial velocity,

3. noise added to the position of the dominant scatterers,

4. and range only measurements,

and is detailed below.

4.5.1.1 State Space Representation

The state vector is represented by

xxxk =
[

x→1,k,x
⊥
1,k, . . .,x

→
M,k,x

⊥
M,k

]
, (4.5)
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Chapter 4 Target & Sensor Modelling Approach

where x→c,k represents the down range co-ordinate and x⊥c,k represents the cross-range co-ordinate for

scatterer c = [1, . . . ,M] at discrete time instant k.

4.5.1.2 Motion Model

Only rotational motion about a fixed point in space is explored. The motion model parameters are

assumed static, owing to the fact that over the time interval when measurements are collected, the

motion model parameters do not vary noticeably. Analysing rotational motion results in two static

parameters which characterise the motion

θθθ =
[

θ1,θ2

]
=
[

x×,ωr

]
, (4.6)

where x× is the distance to the center of rotation of the rigid body from the radar in the down range

and ωr represents the angular velocity of the rigid body. The next state is determined through the

following generation functions

x→c,k = (x→c,k−1−θ1)cos(θ2∆t)− x⊥c,k−1 sin(θ2∆t)+θ1 +wk,

x⊥c,k = (x→c,k−1−θ1)sin(θ2∆t)+ x⊥c,k−1 cos(θ2∆t)+wk,

(4.7)

where ∆t is the constant time elapsed from discrete time instance k− 1 to k. The stochastic disturb-

ance, wk, is a zero mean Gaussian random variable.

4.5.1.3 Observation Model

For this model, the observation vector consists of only the range measurements

yyyk =
[

R1,k, . . . ,Rc,k

]
, (4.8)

where Rc,k represents the range of scatterer c at discrete time instance k. In terms of a generation

function, the observations are modelled as

Rc,k =

√
x→c,k

2 + x⊥c,k
2
+ vk, (4.9)

where vk is a zero mean Gaussian random variable.

4.5.2 Model II

In contrast to Model I, this model utilised a polar co-ordinate state vector representation to limit the

non-linearities to the observation model only. This model does not consist of static parameters as the
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Chapter 4 Target & Sensor Modelling Approach

assumption of a uniform rotational rate was not made, and the co-ordinates for the centroid of rotation

were assumed known.

4.5.2.1 State Space Representation

The state vector is represented by

xxxk =
[

r1,k,θ1,k, . . .,rM,k,θM,k,ωk

]
, (4.10)

where rc,k and θc,k represent the radius and angle of the scatterer c = [1, . . . ,M] relative to the centroid

of rotation and the cross-range axis respectively, and ωk is the angular velocity of the target at discrete

time instance k. An example of the state space representation of a random target consisting of two

dominant scatterers is illustrated in Figure 4.3.

C
ro

ss
-R

an
g

e 
(m

)

Down-Range (km)

r1,k

r2,k

ωk  

θ1,k θ2,k 

Figure 4.3: Illustration of how the state vector relates to a target in model II. The centre point on

the target represents the centroid of rotation.

4.5.2.2 Motion Model

The motion of each dominant scatterer is directly related to the motion of the target. However, a

stochastic variation between scatterers was also included. The rotational motion of the target was

modelled with a discrete almost constant angular velocity random acceleration model [31]. The
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Chapter 4 Target & Sensor Modelling Approach

motion model for each state is given by

rc,k = rc,k−1 + pc,k,

θc,k = θc,k−1 +ωk−1∆t +
1
2

∆t2qk,

ωk = ωk−1 +∆tqk,

(4.11)

where pc,k and qk represent zero mean Gaussian random variables.

4.5.2.3 Observation Model

The observation vector includes the range and delta phase measurements,

yyyk =
[

R1,k,∆φ1,k, . . .,RM,k,∆φM,k

]
. (4.12)

In terms of a generation function, the range observations are modelled as

Rc,k =

√
(rc,k cos(θc,k)+ x→× )

2 +(rc,k sin(θc,k))
2 + vk, (4.13)

where x→× represents the location of the centroid of rotation in the down range, and vk is a zero-mean

Gaussian random variable.

The delta phase measurement is ambiguous on the interval [−π;π] but is substantially less likely to

wrap around the range in comparison with the absolute phase. The generation function for the delta

phase of each scatterer is given by

∆φc,k =
4π∆Rc,k

λ
+ eφ , (4.14)

where

∆Rc,k =

√
(rc,k cos(θc,k)+ x→× )

2 +(rc,k sin(θc,k))
2−
√
(rc,k−1 cos(θc,k−1)+ x→× )

2 +(rc,k−1 sin(θc,k−1))
2,

λ is the wavelength of the transmitted signal, and eφ is a noise term which corresponds to the effects

of the complex noise term in Equation 4.2 on the delta phase measurement of each scatterer. In this

application the noise term is induced due to the addition of Gaussian noise on the quadrature and

in-phase channels in the radar receiver at a specific SNR as implemented in Algorithm 4.1. The effect

of this noise on the delta phase, eφ , was approximated with the Von Mises distribution, also referred

to as the circular Gaussian distribution. The probability density function of the Von Mises distribution

is given by

p(θ |θ0,m) =
1

2πI0(m)
exp{mcos(θ −θ0)} θ ∈ [0,2π) (4.15)
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Chapter 4 Target & Sensor Modelling Approach

where I0(m) is the zeroth-order Bessel function of the first kind, θ0 is the mean, and m is the con-

centration parameter. The mean and concentration parameter are analogous to the mean and inverse

variance of a univariate Gaussian respectively. In this application the mean was equal to 0 and the

concentration parameter was found to be dependent on the SNR in the radar simulator.

When compared with the general expression typically used to describe the observation generation

function in Equation 3.1, the generation function in Equation 4.14 is dependent on the state at the

previous time step which violates the Markovian property of the state space model. This is illustrated

in Figure 4.4.

yk-2 yk-1 yk

xk-2 xk-1 xk

Observed

Hidden

Figure 4.4: Graphical illustration of the state space model for model II prior to state space

augmentation.

The state vector was augmented with the states from the previous time step to prevent the violation

of the Markovian property, since it is a fundamental property in the development of particle filtering.

The augmentation of the state vector is illustrated in Figure 4.5.

yk-2 yk-1 yk

xk-2

xk-3

xk-1

xk-2

xk

xk-1

Observed

Hidden

Figure 4.5: Graphical illustration of the state space model for model II after state space aug-

mentation.

Table 4.2 summarises all the assumptions which were made throughout the state space model-

ling.
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Chapter 4 Target & Sensor Modelling Approach

Table 4.2: State space modelling assumptions.

Assumption Validity

The dominant scatterer assump-

tion.

This assumption is extensively used in literature [6, 7, 60].

Persistent dominant scatterers

(dominant scatterers are assumed

to be visible in all HRR profiles)

Observed in literature [7]. The total angle of rotation was

minimised in Model II to increase the validity of the assump-

tion. Future research could eliminate this assumption.

Fixed number of persistent dom-

inant scatterers.

The total angle of rotation was minimised in Model II to in-

crease the validity of the assumption. Future research could

eliminate this assumption.

Fixed angular velocity (Model I). Time period for the collection of HRR profiles was min-

imised to increase validity of the assumption. Assumption

dropped in Model II.

Gaussian and Von Mises distrib-

uted noise perturbing the range

and delta phase measurements re-

spectively.

This may not be consistent with real world measurements

since the radar simulator does not simulate many noise indu-

cing effects which occur in reality, such as other scattering

mechanisms. However, verified to be valid through simula-

tion of the radar simulator used to obtain measurements.

Perfect data association. This is not a valid assumption. Data association was con-

sidered outside of the scope of this research as discussed in

Section 3.2.
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CHAPTER 5

RESULTS & DISCUSSION

5.1 INTRODUCTION

This chapter illustrates and discusses the results obtained by applying the Bayesian inference tech-

niques described in Sections 3.5 and 3.6 to the state space models described in Section 4.5. The

targets generated for the experiments in this section are considered generic and do not conform to a

specific type of target, such as a maritime vessel.

5.2 MODEL I

5.2.1 Observation Extraction

A randomly generated target consisting of 5 dominant scatterers was created. The number of dom-

inant scatterers is related to the dimensionality of the state space. In this application the number of

dominant scatterers was selected to demonstrate the algorithms ability to handle dominant scatterers

overlapping and dominant scatterers located at different radii from the centroid of rotation, the in-

fluence of varying this parameter was investigated in Section 5.3.4. The trajectory of the dominant

scatterers, based on the motion model for Model I is illustrated in Figure 5.1. The parameters of the

target and its motion are listed in Table 5.1. The angular velocities and motion model variance were

selected arbitrarily with the aim of a sufficient amount of displacement of the location of the dominant

scatterers in the cross-range dimension during the duration of the simulation.
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Figure 5.1: Trajectory of a random target consisting of 5 dominant scatterers. The direction of

rotation of the target is anti-clockwise. Zero reference point of axes shifted to [10000,0].

Table 5.1: Defining parameters of the random target whose trajectory is illustrated by Figure 5.1.

Parameter Parameter Value

Number of dominant scatterers 5

Angular velocity (ωr) 5 rad/s

Maximum target angular velocity (ωr,max) 6 rad/s

Motion model variance (σ2
w) 1×10−3 m

Centroid of rotation co-ordinates([x×,0]) [10000,0] m

Total time elapsed 0.448 s

Time elapsed between discrete time instances (∆t) 6.4 ms

The parameters of the radar used to obtain the HRR profiles are listed in Table 5.2. The range to the

centroid of rotation, the simulation time, and the radar operating parameters were selected based on

similar applications found in literature [6, 23] as well as real world radar data which was available
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Chapter 5 Results & Discussion

and is the focus of future research [61].

Table 5.2: SFW based HRR radar simulator parameter values.

Radar Parameter Parameter Value

Step Frequency (∆ f ) 10 MHz

Number of Pulses (n) 64

Centre Frequency ( f0) 10 GHz

Effective Pulse Repetition Frequency (PRF) 10 KHz

Signal-to-noise Ratio (SNR) 20 dB

The influence of the selected radar parameters on the radar operating characteristics described in

Chapter 2 are listed in Table 5.3.

Table 5.3: SFW based HRR radar simulator operating characteristics.

Radar Characteristic Value Description

Unambiguous Target Range (Ru) 15 km Maximum range at which target radial

distance is unambiguous.

Unambiguous Target Range Window (Ru,w) 15 m Limits the physical extent of the target

which can be observed entirely in the

window.

Range Resolution (∆Rcell) 0.23 m Minimum distance at which two scatter-

ers can be observed through separate re-

turns.

Maximum Range Difference (∆R) 7.5 mm Relates to maximum radial velocity be-

fore phase wrap occurs.

The unambiguous target range is inversely related to the PRF of the radar and describes the maximum

range in which the unambiguous target range window may be located. The unambiguous target range

window is inversely related to the step frequency as illustrated in Figure 5.2. The unambiguous target

range window inherently limits the physical extent to which a target can be entirely observed in a HRR

profile generated by the radar system. Since the inference techniques presented in this dissertation

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

44

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5 Results & Discussion

will be unable to track the location of the dominant scatterers if their returns are not present in the

HRR profiles, the step frequency is required to be carefully chosen to ensure that the entire target

extent is located within the unambiguous target range window.
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Figure 5.2: The relationship between the unambiguous target range window and the step fre-

quency utilised by a SFW based radar.

However, the step frequency is also inversely related to the range resolution which describes the

minimum range required between scatterers in order to distinguish the individual returns from the

scatterers. This relationship is also dependent on the number of pulses used by the SFW radar. An

illustration of the relationship between the range resolution and step frequency for a fixed number of

pulses is illustrated in Figure 5.3.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

45

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5 Results & Discussion

5 10 15 20
0

0.5

1

1.5

2

2.5

Step Frequency (MHz)

R
an

g
e 

R
es

o
lu

ti
o

n
 (

m
)

 

 

Parameter value used

Figure 5.3: The relationship between the range resolution and the step frequency utilised by a

SFW based radar with 64 pulses.

An illustration of the relationship between the range resolution and number of pulses with a fixed step

frequency is illustrated in Figure 5.4.
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Figure 5.4: The relationship between the range resolution and the number of pulses utilised by

a SFW based radar with a step frequency of 10 MHz.

A tradeoff between maximising the step frequency to obtain a finer range resolution and selecting a

step frequency to match the target extent is highlighted by comparing Figures 5.2 and 5.3. Increasing
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the number of pulses results in a finer range resolution, however this also increases the total time

required to synthesis a single HRR profile. The centre frequency of the radar is inversely related to

the maximum allowable change in range of a scatterer between any two HRR profiles. The change

in range is caused by the motion that the target undergoes between HRR profiles. In this application

the change in range is due to noise and rotational motion as described by the state space models in

Section 4.5. In reality the change in range could also be influenced by translational motion which

would need to be considered for the selection of the centre frequency. Knowledge of the elapsed

time between HRR profiles converts the maximum allowable change in range of a scatterer to the

maximum radial velocity that a scatterer may exhibit. Exceeding the maximum radial velocity would

result in ambiguities in the delta phase measurement, hence rendering the delta phase measurement

unusable. The relationship between the maximum radial velocity and the centre frequency of a SFW

radar is illustrated in Figure 5.5. The centre frequency should be selected based on the expected radial

velocity that the target is capable of generating. This results in the full utilisation of the dynamic range

of the delta phase measurement.
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Figure 5.5: The relationship between the radial velocity and the centre frequency utilised by a

SFW based radar.

As noted in Table 5.3, the maximum range at which a target can be located from the radar system is

15 km. The maximum extent of the target in range is 15 m, and for the target represented by Model

II, the maximum radial velocity of each scatterer is 1.17 m/s. This is owing to the fact that the delta

phase measurement is only observed in Model II. The magnitude of the HRR profiles observed from
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the target in Figure 5.1 are graphically presented in Figure 5.6.
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Figure 5.6: HRR profiles generated by the radar simulator based on the radar parameters in Table

5.2. Zero point of range axis shifted to 10000.

The observation vector for model I consists of the ranges for each of the dominant scatterers. The

ranges extracted from the HRR profiles are illustrated in Figure 5.7.
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Figure 5.7: The range values extracted from the HRR profiles in Figure 5.6 for each dominant

scatterer. Zero point of range axis shifted to 10000.

The observation standard deviation, σv, related to the Gaussian random variable in Equation 4.9, may

vary depending on the presence of multiple dominant scatterers in the same vicinity. A maximum

value of 5 cm was measured and utilised by the techniques applied on Model I.

5.2.2 Bootstrap Particle Filter Approach

The approach followed by [53] in which the state space is augmented with the static parameters was

implemented since the framework of the BPF does not support static parameters. The first step in the

implementation of the BPF is the initialisation of the particles. Each particle was initialised according

to the following probability distributions, x→c

x⊥c

∼U

 RI,c−Ro,RI,c +Ro

−RE
2 , RE

2

 ,

x× ∼U
(

RD−
Ru,w

2
,RD +

Ru,w

2

)
,

ωr ∼U(0,ωr,max),

(5.1)
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where RI,c are the initial range values observed in the first high range resolution profile, RE is the

targets maximum possible cross-range extent, Ro represents the influence of RE on the range meas-

urement, and Ru,w represents the unambiguous radar range window. RD represents the range at which

a secondary low range-resolution tracking radar detects the extended target. It was assumed that this

value corresponded to the true centroid of rotation and results in the initialisation of the down range

centroid across the entire down range extent of the target. U(a,b) represents the uniform distribution

where a and b represent the minimum and maximum values respectively. The number of particles

utilised by a PF is related to the accuracy of the representation of the filtering distribution and to the

computational expense of the algorithm. Furthermore, the necessary number of particles required to

achieve a specific accuracy is dependent on the complexity of the filtering distribution [62]. These

results were obtained utilising a BPF consisting of 10000 particles. Performing the experiment util-

ising different numbers of particles showed no significant improvement in results with more then

10000 particles for a filtering distribution with the complexity associated with this application. This

is further illustrated in Section 5.3.4. The inferred marginal posterior distributions for all the state

variables at each time step are illustrated in Figures 5.8 to 5.13.
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(b) The marginal filtering distribution of x⊥1 .

Figure 5.8: The marginal filtering distribution of dominant scatterer 1, obtained at each time step

for Model I with an augmented state vector through the BPF.
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(a) The marginal filtering distribution of x→2 . Zero of down

range dimension shifted to 10000.
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(b) The marginal filtering distribution of x⊥2 .

Figure 5.9: The marginal filtering distribution of dominant scatterer 2, obtained at each time step

for Model I with an augmented state vector through the BPF.
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(a) The marginal filtering distribution of x→3 . Zero of down

range dimension shifted to 10000.
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(b) The marginal filtering distribution of x⊥3 .

Figure 5.10: The marginal filtering distribution of dominant scatterer 3, obtained at each time

step for Model I with an augmented state vector through the BPF.
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(a) The marginal filtering distribution of x→4 . Zero of down

range dimension shifted to 10000.

Observation Steps

C
ro

ss
−

R
an

g
e 

(m
)

 

 

10 20 30 40 50 60 70

−6

−4

−2

0

2

4

6

8
True state

(b) The marginal filtering distribution of x⊥4 .

Figure 5.11: The marginal filtering distribution of dominant scatterer 4, obtained at each time

step for Model I with an augmented state vector through the BPF.
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(a) The marginal filtering distribution of x→5 . Zero of down

range dimension shifted to 10000.
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(b) The marginal filtering distribution of x⊥5 .

Figure 5.12: The marginal filtering distribution of dominant scatterer 5, obtained at each time

step for Model I with an augmented state vector through the BPF.
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Figure 5.13: The marginal filtering distribution of the static parameters, obtained at each time

step for Model I with an augmented state vector through the BPF.

It is clear from the results in Figures 5.8 to 5.13 that the filter fails to successfully track the location of

the dominant scatterers in the cross-range dimension as well as the static parameters. The inclusion

of static parameters in the state space results in severe filter degeneracy. However, the marginal

filtering distributions for the down range dimension are accurate. This is due to the fact that the

down range term in Equation 4.9 is commonly several magnitudes larger than that of the cross-range

term. This results in the majority of the range observation relating to information about the down

range dimension. A particle with incorrect states in the cross-range dimensions may still obtain a

high weighting due to correct particle states in the down range dimensions. The degeneracy of the

static parameters results in an irreversible loss of track in the cross-range dimensions due to sample

impoverishment. This corresponds to results in literature [53].

5.2.3 Particle Markov Chain Monte Carlo Approach

The BPF was shown, in Figures 5.8 to 5.13, to clearly be insufficient at inferring the filtering distri-

bution of a state space model which contains static parameters. The fact that the range observation

predominantly contains information about the states which correspond to the down-range dimensions

for the dominant scatterers was also identified as an application unique problem.
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The PMMH sampler was identified in Section 3.6 as a MCMC method which is capable of estimating

the static parameters and states of general state space models. The PMMH sampler was applied to

jointly inferring the static parameters and states associated with model I, based on the same target

and observations which were presented in Section 5.2.1. The inferred marginal posterior distributions

for the state variables and static parameters are illustrated in Figures 5.14 to 5.18 and Figure 5.19

respectively. The PMMH sampler utilised a Gaussian proposal distribution for the proposal of the

static parameters with a variance of 0.1. The PF utilised by the PMMH sampler was the BPF with

10000 particles. The PMMH sampler was run with 20000 iterations. These parameters resulted in

sufficient Markov chain convergence.
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(b) The marginal posterior distribution of x⊥1 .

Figure 5.14: The marginal posterior distributions for the states associated with dominant scat-

terer 1 obtained with the PMMH sampler.
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(b) The marginal posterior distribution of x⊥2 .

Figure 5.15: The marginal posterior distributions for the states associated with dominant scat-

terer 2 obtained with the PMMH sampler.
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(a) The marginal posterior distribution of x→3 . Zero of down

range dimension shifted to 10000.
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(b) The marginal posterior distribution of x⊥3 .

Figure 5.16: The marginal posterior distributions for the states associated with dominant scat-

terer 3 obtained with the PMMH sampler.
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(a) The marginal posterior distribution of x→4 . Zero of down

range dimension shifted to 10000.
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(b) The marginal posterior distribution of x⊥4 .

Figure 5.17: The marginal posterior distributions for the states associated with dominant scat-

terer 4 obtained with the PMMH sampler.
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(a) The marginal posterior distribution of x→5 . Zero of down

range dimension shifted to 10000.

Observation Steps

C
ro

ss
−

R
an

g
e 

(m
)

 

 

10 20 30 40 50 60 70

−2

0

2

4

6

8

True state

(b) The marginal posterior distribution of x⊥5 .

Figure 5.18: The marginal posterior distributions for the states associated with dominant scat-

terer 5 obtained with the PMMH sampler.
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(b) The marginal posterior distribution of θ2.

Figure 5.19: The marginal posterior distributions for the static parameters of Model I obtained

with the PMMH sampler. The true value for each parameter is indicated by a solid line.

The PMMH sampler successfully estimated the static parameters and state variables associated with

model I. The variance of the marginal posterior distributions for the cross-range states are consider-

ably larger than for the down range states. This is due to the majority of information in the range

observation pertaining to the down range states. The information pertaining to the cross-range states

is based on the motion of the target. This is highlighted by increasing the angular velocity. The simu-

lation was performed again with the only target parameters changing being the angular velocities. The

target’s angular velocity was increased from 5 to 10 rad/s and the maximum target’s angular velocity

was increased from 6 to 15 rad/s. The corresponding dominant scatterer trajectories are illustrated in

Figure 5.20.
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Figure 5.20: Trajectory of a random target consisting of 5 dominant scatterers. The direction of

rotation of the target is anti-clockwise. Zero reference point of axes shifted to [10000,0].

The magnitude of the HRR profiles and extracted ranges for the dominant scatterers are illustrated in

Figure 5.21. The inferred marginal posterior distributions for the state variables and static parameters

are illustrated in Figures 5.22 to 5.26 and Figure 5.27 respectively.
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(a) HRR profiles generated by the radar simulator based on

the radar parameters in Table 5.2. Zero point of range axis

shifted to 10000.
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(b) The range values extracted from the HRR profiles for each

dominant scatterer. Zero point of range axis shifted to 10000.

Figure 5.21: The magnitude of the HRR profiles and extracted range values for a target with an

angular velocity of 10 rad/s.
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(a) The marginal posterior distribution of x→1 . Zero of down

range dimension shifted to 10000.
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(b) The marginal posterior distribution of x⊥1 .

Figure 5.22: The marginal posterior distributions for the states associated with dominant scat-

terer 1 obtained with the PMMH sampler.
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(a) The marginal posterior distribution of x→2 . Zero of down

range dimension shifted to 10000.

Observation Steps

C
ro

ss
−

R
an

g
e 

(m
)

 

 

10 20 30 40 50 60 70

−6

−4

−2

0

2

4

6 True state

(b) The marginal posterior distribution of x⊥2 .

Figure 5.23: The marginal posterior distributions for the states associated with dominant scat-

terer 2 obtained with the PMMH sampler.
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(a) The marginal posterior distribution of x→3 . Zero of down

range dimension shifted to 10000.
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(b) The marginal posterior distribution of x⊥3 .

Figure 5.24: The marginal posterior distributions for the states associated with dominant scat-

terer 3 obtained with the PMMH sampler.
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(a) The marginal posterior distribution of x→4 . Zero of down

range dimension shifted to 10000.
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Figure 5.25: The marginal posterior distributions for the states associated with dominant scat-

terer 4 obtained with the PMMH sampler.
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(a) The marginal posterior distribution of x→5 . Zero of down

range dimension shifted to 10000.
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(b) The marginal posterior distribution of x⊥5 .

Figure 5.26: The marginal posterior distributions for the states associated with dominant scat-

terer 5 obtained with the PMMH sampler.
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(b) The marginal posterior distribution of θ2.

Figure 5.27: The marginal posterior distributions for the static parameters of Model I obtained

with the PMMH sampler. The true value for each parameter is indicated by a solid line.

Comparing the marginal posterior distributions for the states corresponding to the cross-range dimen-

sions in Figures 5.14 to 5.18 and Figures 5.22 to 5.26 highlights the difference in the variance of

the distributions. A target undergoing a higher angular velocity contains more motion information

resulting in a lower variance in the marginal posterior distribution for the states corresponding to the

cross-range dimension. It also results in more accurate estimates for the static parameters as noted

when comparing Figures 5.19 and Figure 5.27.

5.3 MODEL II

5.3.1 Observation Extraction

Model II is aligned to a more realistic target undergoing substantially less angular velocity in the

same time frame as in Model I. A random target consisting of 6 dominant scatterers based upon

Model II was created. This value of dominant scatterers was selected to demonstrate the algorithms

ability to handle dominant scatterers located at different radii and exhibiting different delta phase

observations. The influence of varying this parameter was investigated in Section 5.3.4. The trajectory

of the dominant scatterers is presented in Figure 5.28.
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Figure 5.28: Trajectory of a random target consisting of 6 dominant scatterers. Zero reference

point of axes shifted to [10000,0].

The parameters of the target and its motion are listed in Table 5.4. The targets motion was selected

to coincide with a standard rate two turn of an aircraft. The motion model variance was selected

to ensure that the motion of the target from one time step to the next, did not result in delta phase

wrapping. The radar parameters utilised in the Model I experiments, listed in Table 5.2, remained the

same for the Model II experiments.

Table 5.4: Defining parameters of the random target illustrated by Figure 5.28.

Parameter Parameter Value

Number of dominant scatterers 6

Angular velocity (ωr) 0.1 rad/s

Centroid of rotation co-ordinates([x×,0]) [10013,0] m

Motion model variances ([σ2
q ,σ

2
p ]) [1×10−3,1×10−9] m

Total time elapsed 0.64 s

Time difference between points (∆t) 6.4 ms

The magnitude of the HRR profiles observed from the target illustrated by Figure 5.28 are graphically
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presented in Figure 5.29.
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Figure 5.29: HRR profiles generated by the radar simulator based on the radar parameters in

Table 5.2. Zero point of range axis shifted to 10000.

The observation vector for Model II consists of the range and the delta phase for each of the dominant

scatterers. The extracted ranges from the HRR profiles are illustrated in Figure 5.30. The range noise

standard deviation associated with the Gaussian random variable in Equation 4.13 was measured as

3.2 mm from simulation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

64

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5 Results & Discussion

20 40 60 80 100
5

6

7

8

9

10

11

12

13

14

HRR Profile Number

R
an

g
e 

(m
)

 

 

Scat. 1 Scat. 2 Scat. 3 Scat. 4 Scat. 5 Scat. 6

Figure 5.30: The range values extracted from the HRR profiles in Figure 5.29 for each dominant

scatterer. Zero point of range axis shifted to 10000.

The extracted delta phase of each dominant scatterer is presented in Figures 5.31 to 5.33.
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Figure 5.31: The delta phase observations extracted from the complex HRR profiles for the

dominant scatterers located on the target illustrated by Figure 5.28.
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Figure 5.32: The delta phase observations extracted from the complex HRR profiles for the

dominant scatterers located on the target illustrated by Figure 5.28.
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Figure 5.33: The delta phase observations extracted from the complex HRR profiles for the

dominant scatterers located on the target illustrated by Figure 5.28.

It was assumed that dominant scatterers do not overlap in range bins since this would result in severe

interference in the delta phase measurements. However, this could be countered in the future by

increasing the noise variance of the phase measurements when interference is detected, or through

the implementation of a multiple observation model PF [63].
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The delta phase noise concentration parameter associated with the Von Mises distributed random

variable in Equation 4.14 was measured as 769.23 from simulation.

5.3.2 Particle Initialisation

Initialisation of the particles is a crucial step in the implementation of any PF. Initialising the PF

based only on the first HRR profile received as was done according to Equation 5.1 for the range

only measurement model, resulted in the particles being too sparsely located in the state space and

hence resulting in severe PF degeneracy. A smart initialisation scheme was devised based on the

observations extracted from the first two HRR profiles.

It is assumed that the target is non-cooperative. Hence, the prior information known about the target

is limited to the maximum extent of the target and the assumption that the motion model accurately

describes the motion of the target. Observing two HRR profiles results in two range measurements

and a delta phase measurement. It was proposed that these observations could aid in obtaining a more

accurate particle initialisation. The mapping between the state space and the observation space for

Model II is represented by the observation generation functions in Equations 4.13 and 4.14. However,

this is not a unique mapping and any observation, when mapped to the state space, can result in many

different locations in the state space. This is further influenced by the noise associated with the

mapping. The aim is to populate particles in all the regions of the state space which could result in the

observations received. The first step is to perturb the observations by the noise which is associated

with the observation generation functions. This is done to move the observations possibly towards the

true location of the observations without the influence of noise as illustrated in Figure 5.34.
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Figure 5.34: Example of sampling from the observation distribution. In this illustration the cross

represents the true unknown observation, the circle represents the observation obtained. The

solid line distribution represents the true unknown distribution and the dotted line distribution

represents the distribution sampled from to obtain a unique observation associated with a specific

particle.

This method guarantees that it is possible to sample the true observation when the observation distri-

bution is symmetrical. After this step it is assumed that the noise terms in the observation generation

functions are removed, resulting in a noiseless mapping between the state space and observation

space,

Rc,k =

√
(rc,k cos(θc,k)+ x→× )

2 +(rc,k sin(θc,k))
2

∆φc,k =
4π∆Rc,k

λ
,

(5.2)

where ∆Rc,k = Rc,k − Rc,k−1. However, these relationships do not describe a complete mapping

between the observation space and every dimension of the state space. Comparing the relationships

to the state vector in Equation 4.10, it is found that there is no direct relationship between the ob-

servation space and the angular velocity dimension in the state space. A relationship was derived to

relate the observations to the angular velocity dimension in the state space. Firstly, the delta phase

observation is related to the difference in range for each scatterer through

∆Rc =
∆φcλ

4π
. (5.3)
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The difference in range is related to the radial velocity of the scatterer through

vr,c =
∆Rc

∆t
. (5.4)

The radial velocity is related to the angular velocity of the overall target and the down range and

cross-range location of the specific scatterer through

vr,c = vcosθa,c

vr,c = ωrc cosθa,c

vr,c ≈ ω

√
(x→c − x×)

2 + x⊥c
2 cos

(
π

2
+ tan−1

(
x⊥c

x→c − x×

))
,

(5.5)

where θa,c represents the angle between the radar and the velocity vector of scatterer c and is not to

be confused with the angles in the state space. The further away a dominant scatterer is from the

centroid of rotation, the larger the distance that the scatterer moves given the same angular velocity,

as illustrated in Figure 5.35. By making the angular velocity the subject of the formula in Equation

d1

d2

d1>d2

Figure 5.35: Illustration of the difference in distance travelled by dominant scatterers located

at different distances from the centroid of rotation. When the rotation rate is constant, the dis-

tance travelled is always the largest for a dominant scatterer located the furtherest away from the

centroid of rotation.

5.5 and substituting the maximum cross-range location for any scatterer and the range observation as

the down range location results in a minimum possible angular velocity for the target

ωmin,c =
vr,c√

(Rc− x×)
2 + x⊥max

2 cos
(

π

2 + tan−1
(

x⊥max
Rc−x×

)) . (5.6)

Finding the maximum of the minimum angular velocities determined for each dominant scatterer

results in the minimum angular velocity of the target for the specific particle due to the rigid body
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Chapter 5 Results & Discussion

assumption,

ωmin = max
c

ωmin,c. (5.7)

The relationship between the range observation and the down range and cross-range locations of each

scatterer is given by

Rc =

√
x→c 2 + x⊥c

2
. (5.8)

Solving for the down range location and substituting into Equation 5.5 results in

vr,c = ω

√(√
R2

c− x⊥c
2− x×

)2

+ x⊥c
2 cos

π

2
+ tan−1

 x⊥c√
R2

c− x⊥c
2− x×

 . (5.9)

After determining the minimum angular velocity for the particle, the angular velocity state is initial-

ised according to

ω ∼U(ωmin,ωmax), (5.10)

where ωmax is the maximum angular velocity fixed in simulation. The sampled angular velocity is

then substituted into Equation 5.9. With the knowledge of the radial velocity and range for each

scatterer, the only unknown variable in the equation is the cross-range location. Once the cross-

range location was inferred for each scatterer, the value was substituted into Equation 5.8 to obtain

a corresponding down range location. The down range and cross-range locations for each scatterer

were then converted into the polar domain. This process was repeated for the initialisation of each

particle.

5.3.3 Unscented Particle Filter Approach

The UPF has been shown to perform well in applications in which the likelihood density is peaked

relative to the state transition density as illustrated in Figure 5.36.
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Likelihood DensityLikelihood Density

State Transition DensityState Transition Density

Figure 5.36: Illustration of the likelihood density in terms of the state space and state transition

density.

This is due to the fact that the proposal distribution takes the latest observation into account. This

allows the filter to move the particles into areas which result in high likelihoods. However, the prob-

lem faced in this specific application, was that the state transition density, based on the motion model,

was peaked relative to the prior distribution. This resulted in the degeneration of the estimates ob-

tained from the UPF. Unlike the BPF, the weight for each particle in the UPF is dependent on the

state transition density, as noted by Equation 3.23. The mismatch between the prior distribution and

state transition density resulted in the weights obtaining a value of zero due to particles being moved

to locations in the state space where the state transition density approaches zero. The state transition

density for Model II is relatively peaked to prevent ambiguities from occurring in the delta phase

measurement.

5.3.4 Bootstrap Particle Filter Approach

The results obtained by applying the BPF to the target illustrated by Figure 5.28 were plagued by PF

degeneracy. The degeneracy resulted in a poor representation of the underlying filtering distribution.

The filter degeneracy is highlighted by the ESS curve in Figure 5.37. The PF was initialised with

10000 particles, for this particular run, at the second time step, only an equivalent of 7.24 particles

represented regions of interest in the filtering distribution. Resampling superficially increases the ESS

as several particles are duplicated many times. However, this cannot improve the approximation of

the filtering distribution. The degeneracy is linked to a lack of noise in the observation space. This

results in a highly peaked likelihood density. Increasing the number of particles used to represent the

filtering distribution did not improve the results. A suboptimal method to reduce the degeneracy was
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Figure 5.37: ESS curve obtained when the BPF was applied to inferring the states associated

with the target in Figure 5.28.

implemented. This method consisted of artificially increasing the variance of the observations in the

state space model. The BPF was run with a 10 fold increase in both the variance for the delta phase

and range observations. This resulted in a boost in the ESS and an approximated filtering distribution

in the vicinity of the true states. Firstly, validation of utilising 10000 particles was performed by

varying the number of particles and taking note of the accuracy of the angular velocity state. The root

mean-square-error (RMSE) was used as a measure of accuracy. The RMSE measures the difference

between values predicted by an estimator and the true values as given by,

RMSE =

√
1
n

n

∑
i=1

(
X̂i−Xi

)2
, (5.11)

where Xi represents the true value, X̂i represents the estimated value, which corresponds to the mean

of the approximate filtering distribution in this application, and n represents the number of samples.

The results, with the maximum initial target velocity arbitrarily selected as 0.2 rad/s, are illustrated in

Figure 5.38.
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Figure 5.38: Relationship between the RMSE and the number of particles used to represent the

filtering distribution in the BPF. The error bars represent the standard deviation of the RMSE

over 50 simulations runs.

Figure 5.38 illustrates that utilising more than 10000 particles did not result in a significant gain in

accuracy and only increased the computational complexity of the algorithm. The relationship between

PF degeneracy and the number of particles is highlighted by the error bars in Figure 5.38. The

RMSE is dependent on the square of the difference of the true value and the mean of the distribution

represented by the particles in the PF. The square differences are averaged together for all time steps

when determining the RMSE, as highlighted by Equation 5.11. A uniform distribution is used to

initialise the angular velocity state. The mean of a uniform distribution is the value located at the

midpoint of the distribution. Utilising a small number of particles to represent the uniform distribution

at the first time step is insufficient, such as utilising 100 particles which corresponds to the first data

point in Figure 5.38. There are not enough particles available to represent the entire initialisation

region. On certain runs all the particles could be initialised close to the true value of the first time

step, and stay in the vicinity of the true value for all further time steps. In this case a very low

RMSE value is obtained. At the other extreme, all the particles could be initialised far away from the

true value at the first time step and are unable to converge to the true value, resulting in a very high

RMSE value. Utilising a large number of particles to represent the distribution in the PF allows for

the particles to sufficiently approximate the initial uniform distribution. The mean of the distribution

represented by the particles at the first time step thus corresponds to the midpoint of the uniform

distribution. This value may still be relatively far away from the true value of the state at the first time
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step. As time proceeds the particles tend towards the true value and the mean gets closer to the true

value. However, the difference between the mean and true state at the first time step, which is always

large, is included in the averaging across all time steps, resulting in it being impossible to obtain a

very low RMSE value. Since the particles always converge to the true value, it is also not possible to

obtain a very high RMSE value either. The final result is a more stable RMSE value when a larger

amount of particles are used to represent the distribution. These results did not vary significantly with

an increased number of simulation runs as illustrated by the results in Figure 5.39.
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Figure 5.39: Relationship between the RMSE and the number of particles used to represent the

filtering distribution in the BPF. The error bars represent the standard deviation of the RMSE

over 200 simulations runs.

The marginal filtering distributions converted into the down range and cross-range dimensions and

ESS are given in Figures 5.40 to 5.46 below for a target with a maximum initial target velocity of

0.11 rad/s. The selection of this value translates into an application where the target is considered

to be initially rotating at an unknown varying rate between zero and a rate two turn of an aircraft.

The effect of increasing the variance of the observations in the state space model is clearly evident in

Figures 5.40 (a) and 5.43 (b). The support of the approximate distribution is not centered about the

true states. Without the increase in variance, these particles would obtain a much lower weighting

and could result in filter degeneration.
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(b) The marginal filtering distribution of x⊥1 .

Figure 5.40: Marginal filtering distributions for the states associated with dominant scatterer 1

through the BPF.
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(b) The marginal filtering distribution of x⊥2 .

Figure 5.41: Marginal filtering distributions for the states associated with dominant scatterer 2

through the BPF.
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(b) The marginal filtering distribution of x⊥3 .

Figure 5.42: Marginal filtering distributions for the states associated with dominant scatterer 3

through the BPF.
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Figure 5.43: Marginal filtering distributions for the states associated with dominant scatterer 4

through the BPF.
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Figure 5.44: Marginal filtering distributions for the states associated with dominant scatterer 5

through the BPF.
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Figure 5.45: Marginal filtering distributions for the states associated with dominant scatterer 6

through the BPF.
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(b) ESS curve obtained when the BPF with increased obser-

vation variance was applied.

Figure 5.46: Marginal filtering distributions of the radial velocity through the BPF, and corres-

ponding ESS curve.

Increasing the observation variance allowed more particles to survive, reducing filter degeneration.

This allowed for successful tracking at the expense of an increased error in the inferred estimates. The

RMSE was used to measure the consistency of the results obtained. The simulation used to obtain the

results in Figures 5.40 to 5.46 was run 50 times. The RMSE was computed for each state over all 50

simulation runs and is given in Table 5.5. Additionally, Table 5.5 also specifies the standard deviation

of the RMSE which illustrates to what degree the RMSE varies over the 50 simulation runs.

Table 5.5: RMSE calculated over 50 independent Monte Carlo runs.

State x→1 (mm) x⊥1 (mm) x→2 (mm) x⊥2 (mm) x→3 (mm) x⊥3 (mm) x→4 (mm)

RMSE 2.1 81.2 2.3 115.4 2.2 141.5 2.1

σRMSE 1.4 43.5 0.9 57.5 1.0 76.9 1.1

State x⊥4 (mm) x→5 (mm) x⊥5 (mm) x→6 (mm) x⊥6 (mm) ω (mrad/s)

RMSE 122.4 1.8 146.4 1.7 190.5 4.5

σRMSE 62.2 0.9 74.6 0.9 102.7 1.6

The RMSE increases for the estimates in the cross-range states for the dominant scatterers which are
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observed to have less motion in the cross-range dimension during the observation period.

At the final time step, the PF approximation of the joint marginal filtering distribution, for all the states

relating to the location of the dominant scatterers, was converted into the down range and cross-range

dimensions. Plotting this data resulted in a 2D image. The standard technique used in radar to obtain

a 2D image of a target undergoing motion utilising HRR profiles obtained from a stationary radar

is referred to as ISAR. The two dimensional image obtained from the PF results and from standard

ISAR1 processing utilising the same HRR profiles are presented in Figure 5.47.�����������	
��
����������	
� � �� � �� ���������� ���������������������
�
��������� � !"
(a) The log marginal filtering distribution for the states cor-

responding to the locations of the dominant scatterers. Zero

of down range dimension shifted to 10000.

�����������	
���
�������������	
��� � �� � �� ������������������������ �������� �!"#$
(b) ISAR image produced through standard Doppler pro-

cessing techniques. Zero of down range dimension shifted to

10000.

Figure 5.47: Comparison of the final log marginal filtering distribution to standard ISAR pro-

cessing.

The effect of decreasing the number of dominant scatterers being tracked was investigated by elimin-

ating dominant scatterers 1 and 3 to 6 of the target illustrated in Figure 5.28. The resulting marginal

filtering distributions are illustrated in Figures 5.48 and 5.49.

1The standard ISAR processing performed is discussed in Appendix A.
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Figure 5.48: The marginal filtering distributions obtained at each time step for Model II, through

the BPF, for a target consisting of a single dominant scatterer.
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Figure 5.49: The marginal filtering distribution for the angular velocity obtained at each time

step for Model II, through the BPF, for a target consisting of a single dominant scatterer.

Decreasing the number of dominant scatterers has the effect of decreasing the dimensionality of the

state space. The advantages of decreasing the dimensionality of the state space include:

1. An increase in the ESS, which essentially translates into a better representation of the filtering
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distribution given a fixed number of particles.

2. A decrease in computational complexity.

The disadvantage of decreasing the dimensionality of the state space is a larger variance on the filter-

ing distribution as there is less information available at each time step.
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CHAPTER 6

CONCLUSIONS & FUTURE WORK

6.1 SUMMARY & CONCLUSIONS

6.1.1 Joint Static Parameter & State Estimation with Range Only Measurements

Section 5.2.2 illustrated that the framework for standard particle filtering does not support the es-

timation of static parameters. It was shown that by adding the static parameters in the state space

leads to severe filter degeneracy. Several different techniques have been proposed to overcome this

problem. The PMMH sampler was implemented and successfully estimated the static parameters

and states associated with Model I. The disadvantage of the PMMH sampler is the fact that like all

standard MCMC methods, it is not a sequential algorithm and thus requires observations from all time

steps. The PMMH sampler requires the application of a PF for each MCMC iteration. This leads to a

substantial increase in computational time when compared to a PF approach.

The target must undergo a substantial amount of rotation to obtain information about the cross-range

location of the dominant scatterers. A full range history for each of the dominant scatterers is required

during the time in which measurements are obtained. This was assumed in the simulation, however,

in reality this may not be possible due to occlusions and scattering affects which may occur.

6.1.2 State Estimation with Range & Delta Phase Measurements

The introduction of the delta phase measurements substantially decreased the amount of motion re-

quired to be observed in order to successfully track the dominant scatterers and the motion of the

target.
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Chapter 6 Conclusions & Future Work

It was shown that the BPF is better suited than the UPF for applications which contain a prior dis-

tribution with a substantially larger variance then the noise perturbing the motion model, a peaked

likelihood density and an ambiguous state to observation space mapping. The delta phase obser-

vation is highly informative but introduces several challenges due to the ambiguous nature of the

observation.

Figure 5.47 compared the results obtained with the PF approach and the standard Doppler processing

equivalent. The particles in the PF represent the most likely hypothesis for the true state given the

noisy observations, where as the ISAR image contains unwanted artifacts due to Fourier processing.

In terms of the PF approach, a tradeoff between accuracy and degeneration of state estimates, de-

pendent on the number of dominant scatterers tracked, was identified. Doppler processing is not

dependent on the number of scatterers present in the HRR profiles. The ISAR image is not given

directly in terms of the cross-range and further processing would be required to convert the radial ve-

locity dimension into the cross-range dimension. Table 6.1 highlights the differences between ISAR

and the PF approach presented.

Table 6.1: A comparison between ISAR and the PF approach presented in this dissertation.

ISAR PF Approach

Type of scatterers processed All Dominant Only

Computational complexity Low High

Dimension dependent N/A Yes

Dependent on data association N/A Yes

Motion parameter estimates No Yes

Cross-range directly available No Yes

Type of processing Batch Batch/Sequential

Extension of results to a 3-D space Challenging Straightforward

6.2 PROPOSALS FOR FURTHER RESEARCH

This dissertation has highlighted the advantages and disadvantages of a Monte Carlo approach to

the non-linear tracking of an extended target observed by a HRR radar. There are several different

avenues available for future research including:
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1. Extending the target to a 3-D plane. This would allow for the implementation of a more realistic

target.

2. Implementation of a more advanced motion model. Increasing the dimension of the target plane

results in several additional degrees of motion.

3. Extending the simulator to account for dominant scatterer occlusions depending on the location

of the radar relative to the target.

4. Room for improvement of the filter initialisation procedure.

5. Extension of the filtering framework to accommodate data association and a variable number

of dominant scatterers.

6. Extension of the simulator to include clutter and other interference caused by unwanted radar

returns from the environment, or by the radar returns from non-dominant scatterers.

7. Extension of the filtering framework to accommodate clutter and other interference.

8. Investigation of techniques that reduce PF degeneration, such as MCMC adaptations [33].

9. The observation model for the phase measurement varies by a large degree when multiple

dominant scatterers are present in the same range bin. Extension of the filtering framework to

accommodate multiple observation models, as in [63], can be investigated to cater for when

dominant scatterers overlap.

10. Investigation of techniques capable of performing joint state and static parameter estimation

sequentially [64].

11. Application of the Monte Carlo techniques on real world HRR radar data.
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APPENDIX A

ISAR PROCESSING

The processing performed to obtain the ISAR image in Chapter 5 is separated into three steps:

1. Radial motion compensation,

2. auto focusing,

3. and Doppler processing.

A discrete HRR profile is represented in vector form

rrr =
[

A1e jθ1 . . . ANe jθN

]
, (A.1)

where Ane jθn is the polar form of the complex value in range bin n, N is the total number of range

bins and n = [1, . . . ,N]. A set of HRR profiles is represented as a matrix
rrr1
...

rrrM

=


A11e jθ11 . . . A1Ne jθ1N

... Amne jθmn
...

AM1e jθM1 . . . AMNe jθMN

 (A.2)

where M is the total number of discrete HRR profiles and m = [1, . . . ,M]. Haywood’s ISAR motion

compensation algorithm [65] was firstly applied to the set of HRR profiles, in order to perform radial

motion compensation. This is achieved by firstly identifying the range profile which contains the

maximum amplitude value, Amn, in the matrix. The corresponding range profile is selected as the

reference HRR profile, rrrre f . Each of the HRR profiles are then correlated with the reference HRR

profile,

cccm = corr(rrrre f ,rrrm) ∀m = 1, . . . ,M. (A.3)
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Appendix A ISAR Processing

The location corresponding to the maximum correlation indicates the number of range bins that are

required to be shifted for alignment with the reference HRR profile,

dm =−location[max(cccm)]−M ∀m = 1, . . . ,M. (A.4)

However, the bin shifts are not smooth and hence a low order polynomial is fit to the range bin shifts,

d1, . . . ,dM.

sm = polyfit(dm) ∀m = 1, . . . ,M. (A.5)

The smoothed shifts are applied to each of the HRR profiles in the frequency domain

rrr′m = IFFT
(

ΦΦΦFFT
([

Am1e jθm1 . . . AmNe jθmN

]))
, (A.6)

where FFT and IFFT represent the FFT and inverse FFT operations respectively, and ΦΦΦ is the phase

shift vector

ΦΦΦ =
[

e
j2πsm

N . . . e
j2πnsm

N . . . e j2πsm

]
. (A.7)

The range aligned HRR profiles are then compensated for phase changes caused by range shifts

which are only fractions of a wavelength. The auto focusing method used to achieve this was the

dominant scatterer algorithm (DSA) [66]. The DSA utilises the phase of a single dominant scatterer

to compensate the phase of all the range aligned HRR profiles. Firstly the amplitude variance for each

range bin is calculated over all the HRR profiles. The range bin with the minimum amplitude variance,

bre f , is considered to consist of a dominant scatterer and is utilised as the phase synchronising source.

The phase of each HRR profile is then compensated according to the phase of the reference range

bin

rrr′′m = e− jθbre f rrr′m. (A.8)

After phase compensation, the phase of the reference range bin is constant. The final step is to perform

Doppler processing on the auto focused range aligned HRR profiles. Prior to the Doppler processing,

a Chebyshev window, with a sidelobe magnitude of 45 dB below the mainlobe magnitude, was ap-

plied to the auto focused range aligned HRR profiles. The Doppler processing then consisted of the

application of a one-dimensional FFT on each range bin of the set of processed HRR profiles.
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