
MODELLING AND SIMULATION FRAMEWORK INCORPORATING REDUNDANCY

AND FAILURE PROBABILITIES FOR EVALUATION OF A MODULAR AUTOMATED

MAIN DISTRIBUTION FRAME

by

Marthinus Ignatius Botha

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Electronic Engineering)

in the

Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

October 2012

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

SUMMARY

MODELLING AND SIMULATION FRAMEWORK INCORPORATING REDUNDANCY

AND FAILURE PROBABILITIES FOR EVALUATION OF A MODULAR AUTOMATED

MAIN DISTRIBUTION FRAME

by

Marthinus Ignatius Botha

Promoters: Mr H. Grobler, Mr J. H. van Wyk

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Electronic Engineering)

Keywords: Automated Main Distribution Frame; Stochastic Simulation; Neural Net-

work; Genetic Algorithm; Hybrid Intelligent Algorithm; OMNeT++; Re-

dundancy Optimisation; Redundancy Allocation Problem; Expected Life-

time; System Reliability;

Maintaining and operating manual main distribution frames is labour-intensive. As a result, Auto-

mated Main Distribution Frames (AMDFs) have been developed to alleviate the task of maintaining

subscriber loops. Commercial AMDFs are currently employed in telephone exchanges in some parts

of the world. However, the most significant factors limiting their widespread adoption are cost-

effective scalability and reliability. Therefore, an impelling incentive is provided to create a simu-

lation framework in order to explore typical implementations and scenarios. Such a framework will

allow the evaluation and optimisation of a design in terms of both internal and external redundan-

cies.

One of the approaches to improve system performance, such as system reliability, is to allocate the

optimal redundancy to all or some components in a system. Redundancy at the system or component

levels can be implemented in one of two schemes: parallel redundancy or standby redundancy. It is

also possible to mix these schemes for various components. Moreover, the redundant elements may

or may not be of the same type. If all the redundant elements are of different types, the redund-

ancy optimisation model is implemented with component mixing. Conversely, if all the redundant

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

components are identical, the model is implemented without component mixing.

The developed framework can be used both to develop new AMDF architectures and to evaluate

existing AMDF architectures in terms of expected lifetimes, reliability and service availability. Two

simulation models are presented. The first simulation model is concerned with optimising central

office equipment within a telephone exchange and entails an environment of clients utilising services.

Currently, such a model does not exist. The second model is a mathematical model incorporating

stochastic simulation and a hybrid intelligent evolutionary algorithm to solve redundancy allocation

problems.

For the first model, the optimal partitioning of the model is determined to speed up the simulation

run efficiently. For the second model, the hybrid intelligent algorithm is used to solve the redundancy

allocation problem under various constraints. Finally, a candidate concept design of an AMDF is

presented and evaluated with both simulation models.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

OPSOMMING

MODELLERING- EN SIMULASIERAAMWERK WAT OORTOLLIGHEID- EN

ONDERBREKINGSPROBLEME VIR DIE EVALUERING VAN ’N MODULÊRE

GEOUTOMATISEERDE HOOFVERSPREIDINGSRAAM INSLUIT

deur

Marthinus Ignatius Botha

Promotors: Mnr H. Grobler

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Universiteit: Universiteit van Pretoria

Graad: Magister in Ingenieurswese (Elektroniese Ingenieurswese)

Sleutelwoorde: Geoutomatiseerde Hoofverspreidingsrame; Stogastiese Simulasie; Neurale

Netwerk; Genetiese Algoritme; Hibriede Intelligente Algoritme; OM-

NeT++; Oortolligheidsoptimering; Oortolligheidstoekening-probleem; Ver-

wagte Lewensduur; Stelsel Betroubaarheid;

Die instandhouding en bedryf van handmatige hoofverspreidingsrame is arbeidsintensief. Gevolglik,

het geoutomatiseerde hoofverspreidingsrame ontwikkel ten einde die onderhoudsfunksie van kliën-

telyne, te verlig. Kommersiële geoutomatiseerde hoofverspreidingsrame word reeds in telefoonsent-

rales in sekere dele van die wêreld gebruik. Die hoof faktore wat egter die wydverspreide aanvaarding

van die tegnologie beperk, is koste-effektiewe skalering en betroubaarheid. Dit was die vernaamste

dryfveer om ’n simulasieraamwerk te skep ten einde tipiese toepassings en scenario’s te ondersoek.

So ’n raamwerk sal die evaluering en optimering van ’n ontwerp in terme van beide interne en eksterne

oortolligheid toelaat.

Een van die benaderings wat gevolg kan word om stelseluitvoering te verbeter, byvoorbeeld stelselbet-

roubaarheid, is om optimale oortolligheid aan alle, of sommige, komponente wat deel uitmaak van ’n

stelsel, toe te ken. Komponentoortolligheid op die stelsel- of komponentvlakke kan deur middel van

een van twee skemas geïmplementeer word, naamlik paralleloortolligheid of bystandoortolligheid.

Dit is egter ook moontlik om hierdie skemas te vermeng vir verskillende komponente. Bowendien

mag die oortolligheidselemente van dieselfde soort wees, al dan nie. Indien alle oortolligheidsele-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

mente verskil, word die oortolligheid-optimeringsmodel met komponentvermenging geïmplementeer.

Aan die ander kant, indien die komponente identies is, word die model sonder komponentvermenging

geïmplementeer.

Twee simulasiemodelle word aangebied. Die ontwikkelde raamwerk kan gebruik word om beide

nuwe hoofverspreidingsraamargitekture te ontwikkel en bestaande outomatiese hoofverspreidings-

raam argitekture te evalueer in terme van verwagte lewensduur, betroubaarheid en diensbeskikbaar-

heid. Die eerste simulasiemodel is gemoeid met die optimering van sentrale toerusting binne in ’n

telefoonsentrale en behels ’n omgewing van kliënteverbruikersdienste. Tans bestaan daar nie so ’n

model nie. Die tweede model is a wiskundige model wat stogastiese simulasie en ’n hibriede intelli-

gente evolusionêre algoritme inkorporeer om oortolligheidstoekenning-probleme op te los.

Vir die eerste model word die optimale verdeling van die model bepaal ten einde die spoed van die

simulasie-lopie effektief te verhoog. Vir die tweede model word die hibriede intelligente algortime

gebruik om die oortolligheidstoekenning-probleem op te los, gegewe verskeie beperkings. Ten slotte

word ’n moontlike konsepontwerp vir ’n geoutomatiseerde hoofverspreidingsraam voorgestel en met

behulp van beide simulasie modelle evalueer.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

LIST OF ABBREVIATIONS

ADSL Asymmetric Digital Subscriber Line

AMDF Automated Main Distribution Frame

APL Academic Public License

CO Central Office

CEL Current Events List

CM Component Mixing

CPU Central Processing Unit

DCS Digital Cross-connect System

DES Discrete Event Simulator

DPST Double-Pole-Single-Throw

DSL Digital Subscriber Line

EA Evolutionary Algorithm

EMR Electromagnetic Relay

FEL Future Events List

FES Future Events Set

FTTB Fibre-to-the-Building

FTTH Fibre-to-the-Home

GA Genetic Algorithm

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

GUI Graphical User Interface

IDE Integrated Development Environment

IDF Intermediate Distribution Frame

ISDN Integrated Services Digital Network

LMS Loop Management System

MDF Main Distribution Frame

MTTR Mean Time to Repair

MTTF Mean Time to Failure

MEMS Micro Electromechanical System

MOEA Multi-objective Evolutionary Algorithm

MOGA Multi-objective Genetic Algorithm

MOO Multi-objective Optimisation

MPI Message Passing Interface

NED Network Description

NEMS Nano Electro-Mechanical System

NMA Null Message Algorithm

NN Neural Network

NOC Network Operations Centre

NPGA Niched-Pareto Genetic Algorithm

NSGA Non-dominated Sorting Genetic Algorithm

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

OO Object-oriented

OSS Operations Support System

PDES Parallel Distributed Event Simulation

POTS Plain Old Telephone Service

PSTN Public Switched Telephone Network

QoS Quality of Service

RAP Redundancy Allocation Problem

REVM Redundancy Expected Value Model

REVMOP Redundancy Expected Value Multi-Objective Programming

RNG Random Number Generator

RF Radio Frequency

SSR Solid-state Relay

TCP Transmission Control Protocol

TEMS Transparent Embedded Magnetic Switch

VoIP Voice over Internet Protocol

XML Extensible Markup Language

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

LIST OF TABLES

3.1 List of available simulation environments. 26

3.2 Comparison between NS-2/3 and OMNeT++. 27

3.3 Simulation time resolutions . 40

3.4 Summary of available distributions in OMNeT++. 41

3.5 Message handling and passing functions . 45

4.1 List of simulation parameters. 49

4.2 Summary of custom messages used in AMDF model. 54

4.3 Summary of simulation runs of the OMNeT++ modular AMDF model. 56

5.1 Summary of external libraries. 60

5.2 Comparison of complex system results. 79

5.3 Comparison of results of the life-support system. 84

6.1 Assumptions and parameters. 88

6.2 Findings for the first candidate design. 91

6.3 Findings for the second candidate design. 93

6.4 Findings for the third candidate design. 93

6.5 Comparison of AMDF candidate concept design results. 96

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

LIST OF FIGURES

2.1 Example of a telephone exchange terminating outside plant facilities and intercon-

necting subscribers to termination equipment. Adapted from [1]. 7

2.2 Basic configuration of cross-connect matrix board. Adapted from [3]. ©IEEE 1992. . 10

2.3 Electrical schematic diagrams of a switch unit, consisting of an array of 3×3 double-

switches. Adapted from [13]. ©IEEE 2007. 12

2.4 Arrangement of switch units on a higher hierarchical layer, forming a multicast

switching network and allowing for the re-configuration of a larger number of lines

[17]. 1 . 13

2.5 Standby system with two standby components. 14

2.6 A bridge configuration. 17

2.7 Illustration of dominance. 19

2.8 Possible Pareto-optimal fronts for a two-objective problem. 20

3.1 Model structure in OMNeT++. 32

4.1 Hierarchical structure of the model. 47

4.2 Abstract diagram of an AMDF [60]. 48

4.3 A full modular AMDF constructed in OMNeT++. A total number of 15 clients are

simulated, with five clients per AMDF module. 50

4.4 An extract of a switching matrix with an arbitrary switching configuration as gener-

ated by the OMNET++ model. 50

4.5 Lambda plot as function of link delays and number of cores [60]. 55

4.6 Speedup results for various L and n values. 57

5.1 Snapshot of the GUI. 69

5.2 Flow diagram of the redundancy optimisation model. 70

5.3 A series system. 71

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.4 Estimated lifetime of normal distributed lifetimes of standby redundancy as a function

of the number of simulation cycles for a series system. 72

5.5 Estimated lifetime of exponential distributed lifetimes of standby redundancy as a

function of the number of simulation cycles for a series system. 73

5.6 Estimated lifetime of normal distributed lifetimes of active redundancy as a function

of the number of simulation cycles for a series system. 74

5.7 A parallel system. 76

5.8 Estimated lifetime of normal distributed lifetimes of active redundancy as a function

of the number of simulation cycles for a parallel system. 77

5.9 A bridge configuration. 78

5.10 Estimated lifetime of normal distributed lifetimes of standby redundancy as a function

of the number of simulation cycles for a complex system. 79

5.11 Estimated lifetime of normal distributed lifetimes of active redundancy as a function

of the number of simulation cycles for a complex system. 80

5.12 A series-parallel transformation of the bridge network. 80

5.13 Estimated lifetime of normal distributed lifetimes of standby redundancy as a function

of the number of simulation cycles for the transformed bridge system. 81

5.14 Series system histogram . 83

5.15 Life-support system in a space capsule. 83

5.16 Small communication network. 85

5.17 Pareto-optimal set of the communication system. 86

6.1 Abstract flow diagram depicting the methodology. 87

6.2 Example of a concept design without CM block diagram. 90

6.3 Example of a concept design with CM block diagram. 94

6.4 Final Pareto set of the fourth AMDF candidate concept design. 95

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

TABLE OF CONTENTS

CHAPTER 1 Introduction 1

1.1 Overview . 1

1.2 Scope . 1

1.3 Motivation . 2

1.4 Objectives . 2

1.5 Research Approach . 3

1.5.1 Hypothesis Formulation . 3

1.5.2 Research Questions . 3

1.6 Where the Models fit in . 4

1.7 Main Contributions . 4

1.8 Structure of this Dissertation . 5

CHAPTER 2 Literature Study 6

2.1 Chapter Objectives . 6

2.2 Main Distribution Frames . 6

2.2.1 Role and Structure of the Main Distribution Frames 6

2.2.2 Problems with Existing Main Distribution Frames 7

2.2.3 Requirements for Automation of Main Distribution Frames 8

2.2.4 Benefits of Copper Automation . 9

2.2.5 Connection Matrix of the Main Distribution Frames 9

2.3 Current AMDFs . 10

2.3.1 History of the AMDF . 11

2.3.2 Switching Media . 11

2.4 Redundancy and High Availability . 13

2.4.1 Redundancy Strategies . 13

2.4.2 Expected Lifetime of Systems . 14

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.5 Reliability . 15

2.6 Redundancy Allocation Problem . 16

2.6.1 Single-objective Optimisation . 17

2.6.2 Multi-objective Optimisation . 17

2.7 Evolutionary Algorithms . 21

2.7.1 Genetic Algorithms . 22

2.7.2 Hybrid Genetic Algorithms . 24

CHAPTER 3 The OMNeT++ Simulation Environment 25

3.1 Chapter Overview . 25

3.2 Network Simulators . 25

3.2.1 Available Simulation Environments . 25

3.2.2 Network Simulators Selection Process . 25

3.3 OMNeT++ Introduction . 29

3.3.1 Discrete Event Simulation . 30

3.3.2 OMNeT++ Model Structure . 32

3.3.3 The Simulation Library . 32

3.4 The NED Language . 33

3.4.1 Features of NED . 33

3.4.2 Network Definition . 34

3.4.3 Gates . 35

3.4.4 Simple Module Definition . 35

3.4.5 Compound Module Definition . 36

3.4.6 Channel Definition . 37

3.4.7 Configuration File . 38

3.5 Simulation Concepts . 38

3.5.1 The Event Loop . 38

3.5.2 Events . 39

3.5.3 Simulation Time . 39

3.6 Random Number Generation . 40

3.7 Messages . 42

3.8 Simple Modules . 43

3.8.1 Message Handling . 44

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.8.2 Message Passing . 44

3.8.3 Parameters . 44

3.9 Compound Modules . 45

3.10 Parallel Simulation . 45

CHAPTER 4 Simulating AMDF Behaviour 47

4.1 Chapter Overview . 47

4.2 The Network . 47

4.3 Switches and Switching Matrix . 48

4.4 Main Controller . 49

4.5 Module Controller . 51

4.6 Clients . 51

4.7 Equipment Cards . 52

4.8 Alarms . 52

4.9 Technician . 53

4.10 Custom Messages . 53

4.11 Parallel Distributed Event Simulation Evaluation 53

4.11.1 Feasibility Criterion . 54

4.11.2 Results and Discussion . 56

CHAPTER 5 Redundancy Optimisation Model 58

5.1 Chapter Overview . 58

5.2 Notations . 58

5.3 Assumptions . 59

5.4 External Libraries . 59

5.5 The Model . 60

5.5.1 System Performance Metrics . 60

5.5.2 Redundancy Optimisation Models . 63

5.6 Hybrid Algorithm . 64

5.6.1 Inclusion of the Neural Network (NN) . 64

5.6.2 Data Generation . 65

5.6.3 Training Process . 65

5.6.4 Initialisation Process . 65

5.6.5 Evaluation Function . 66

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.6.6 Selection Process . 66

5.6.7 Crossover . 66

5.6.8 Mutation . 67

5.6.9 Hybrid Intelligent Algorithm Procedure . 67

5.7 Usage . 69

5.8 Evaluation . 71

5.8.1 Series System Evaluation . 71

5.8.2 Parallel System Evaluation . 75

5.8.3 Complex System . 77

5.8.4 Single-objective Optimisation Problems . 80

5.8.5 Multi-objective Optimisation Problem . 85

CHAPTER 6 Final Design Evaluation 87

6.1 Chapter Overview . 87

6.2 Candidate Concept Design One . 88

6.2.1 Assumptions . 88

6.2.2 Questions . 90

6.2.3 Findings . 91

6.2.4 Discussion . 91

6.3 Candidate Concept Design Two . 92

6.4 Candidate Concept Design Three . 93

6.5 Candidate Concept Design Four . 94

6.6 Candidate Concept Design Comparison . 96

CHAPTER 7 Conclusion 97

7.1 Overview . 97

7.2 Conclusions On The Objectives . 97

7.3 Framework Implementation Discussion . 98

7.4 Improvements to the Models . 99

7.5 Recommendations for Future Work . 99

7.6 Closing Remark . 100

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The most significant cost associated with operating and maintaining a telecommunications service-

provider business is labour [1]. In wireline telecommunication companies copper management is

especially labour intensive, since it typically involves several manual processes. A large portion of

the labour entails performing moves, additions and changes to services at last-mile copper plants.

These plants in the telecommunication service network provided by Telkom S.A. Ltd in South

Africa are known as Telkom exchanges [2]. Employed in telecommunication, the Main Distribu-

tion Frame (MDF) is a passive device which terminates cables, allowing arbitrary interconnections to

be made. Turning up (installing and activating) a service, for instance, requires on-site technicians to

connect/disconnect jumper cables manually in a connection matrix in order to establish connectivity

to a subscriber. Such a connection matrix board in the MDF may contain millions of cross-connection

points [3, 4].

1.2 SCOPE

Complex systems often require the development of a software model to simulate the behaviour of

the system under various conditions. Simulation tools have been widely used in network research,

especially during the development of new systems to ensure that the optimal solution is chosen.

The scope of this research is the development of a simulation framework to evaluate the behaviour and

effectiveness of an Automated Main Distribution Frame (AMDF) design. Specifically, the scalability

effectiveness is paramount in the design of an MDF or AMDF. High availability and reliability

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1 Introduction

are also major concerns regarding Quality of Service (QoS) in any communication network. These

properties should be kept in mind when dealing with the Loop Management System (LMS).

1.3 MOTIVATION

The main motivation is to provide a simulation framework for telecommunication service-provider

companies to effectively design and employ AMDFs in telephone exchanges. More importantly, in

terms of equipment card failures and faults, a sense of high service availability must be introduced

to the AMDF by exploring and evaluating the effects of redundant equipment cards on failover when

connected cards fail. Furthermore, redundancy at system and component levels within the AMDF

itself must be thoroughly explored to ensure mission-critical operation.

In order to evaluate the effectiveness or feasibility of a concept design, simulation models are usually

created to assess the performance of a configuration. At present, no such simulation models exist for

the development of an AMDF. Comprehensive simulation models incorporating failure probabilities

and redundancies at system and component levels must be realised to evaluate and compare various

probabilistic activity profiles.

1.4 OBJECTIVES

The first important objective is to create fully reconfigurable simulation models of a modular AMDF.

The first model must be able to exhibit the behaviour of a standard AMDF (i.e. automatic jumper-

ing upon client request), with the addition of the redundancy features. The framework allows vari-

ous configurations of a modular AMDF to be evaluated. The different configurations could entail,

among others, various numbers of clients, clients per AMDF module, redundancy percentages, fail-

over delays, link delays, equipment lifetimes and technician visitation times. The model also allows

statistics to be collected throughout the simulation run, including total and average equipment failures

per time interval, total and average technician visitations and repair times, as well as the total and av-

erage downtime experienced by clients. Because of the size of the model and number of simulation

modules, it was required that the workload be evenly distributed over multiple Central Processing

Unit (CPU) cores to speed up simulation times. This can be accomplished by partitioning the model

into several segments where each segment utilises a separate CPU core.

The second main objective is the creation of a multi-objective optimisation model for the internal

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

2

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1 Introduction

design of an AMDF. Developers and researchers are prompted to enter design-specific characteristics

via a Graphical User Interface (GUI). Such a model will aid developers/researchers in determining

the optimal set of design parameters under various design constraints.

1.5 RESEARCH APPROACH

During the first phase, a flexible simulation model was developed to evaluate the behaviour of an

AMDF using OMNeT++. The model is highly reconfigurable (including number of clients, redund-

ancy percentages, modularity, technician visits, random card failure rates, etc.) in order to explore

typical real life profiles. The actual number of redundant equipment cards is determined by obtaining

the downtime that each client experiences. The second phase entailed the generation of a mathemat-

ical model of the system incorporating failure probabilities. This model can be used to determine the

optimal redundancy at the system and component levels.

1.5.1 Hypothesis Formulation

The availability of the service provided by telecommunication companies that clients experience can

be greatly increased by implementing an AMDF that makes provision for redundant equipment cards.

To this end, the main limitations to contend with in providing such high availability include cost and

power consumption. A simulation framework helps with the evaluation and comparison of several

concept designs addressing specific scenarios, subject to specific design constraints, clients demands

and expectations and failure rates.

1.5.2 Research Questions

The main question is whether a modular AMDF can be modelled to effectively evaluate various

aspects of its operation ideally. A fully configurable simulation framework is required to simulate

various configurations of any number of clients and AMDF modules with reconfigurable parameters.

The models can be used to evaluate:

• the optimal equipment card redundancy to achieve a desired service availability percentage for

cost, power consumption, failover delays and complexity,

• the optimal system and component level redundancy that can be applied to AMDF modules for

guaranteed operation, and

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1 Introduction

• the architecture of the modular AMDF.

1.6 WHERE THE MODELS FIT IN

The first model simulates the environment of clients interacting with the access network within a

Central Office (CO). The purpose is to determine the service availability, as a percentage, that can

be obtained for a certain redundancy percentage of CO equipment cards. The second model evalu-

ates internal redundancies at system and component levels. Given specific constraints (such as cost,

power, etc.), the model determines the optimal component and / or system redundancy allocation. In

other words, the first model evaluates external redundancies (with respect to the AMDF), whereas the

second model evaluates internal redundancies.

1.7 MAIN CONTRIBUTIONS

The primary contributions of this research are:

• The development of a flexible simulation framework for modelling AMDFs and the evaluation

of their behaviour. The user is able to reconfigure all relevant aspects to construct an AMDF

conforming to any specifications.

• From an application perspective, the developed framework can be used both to develop new

AMDF architectures and to evaluate existing AMDF architectures in terms of expected life-

times, reliability and service availability.

• Candidate concepts designs incorporate redundancy to facilitate high availability of services

for clients in telecommunication networks.

The secondary contributions of this research are:

• A full paper was submitted to the 2011 Proceedings of the Southern Africa Telecommunication

Networks and Applications (SATNAC) Conference. The paper was accepted and the work was

presented at this conference [60].

• A full paper was submitted to the SAIEE Africa Research Journal. No feedback was received

prior to the submission of this dissertation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

4

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1 Introduction

1.8 STRUCTURE OF THIS DISSERTATION

Chapter 2 provides a general overview of MDFs and current AMDFs. Chapter 3 describes the OM-

NeT++ environment in detail and its features are compared to the features of other existing network

simulators. Chapter 4 provides a description of the implementation of the modular AMDF model.

Chapter 5 provides a brief overview of the essential mathematics behind reliability and multi-objective

optimisation, including stochastic simulation, neural networks and genetic algorithms. Several nu-

merical example evaluations are performed. Chapter 6 combines the models presented in Chapter 4

and Chapter 5 in a unified conceptual design. Chapter 7 concludes with the discussion of the simula-

tion models.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

5

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2

LITERATURE STUDY

2.1 CHAPTER OBJECTIVES

An overview of MDFs currently employed in telephone exchanges in South Africa is provided. The

benefits of automating these devices, possible switching technologies, as well as the requirements

of automation, are discussed. The Redundancy Allocation Problem (RAP) is discussed and possible

methods for solving them are provided.

2.2 MAIN DISTRIBUTION FRAMES

2.2.1 Role and Structure of the Main Distribution Frames

An MDF acts as a buffer where permanent outside telephone lines terminate within a telephone ex-

change [1]. At this termination point, all the outside lines are interconnected to specific telecom-

munication equipment to provide individual subscribers with their appropriate telecommunications

service, such as Digital Subscriber Line (DSL) or voice switches. In larger COs, apart from MDFs,

Intermediate Distribution Frames (IDFs) are used to distribute lines further. IDFs also serve as isola-

tion points for troubleshooting. Figure 2.1 displays a graphical view of a typical MDF / IDF config-

uration.

The conventional MDF is a double-sided steel structure containing a switching matrix with terminal

strips on both sides [3, 4]. These are commonly referred to as horizontals and verticals because of

their orientation. The horizontal side is the part where the subscriber lines are terminated, whereas

the vertical side terminates office equipment cables. Possible termination equipment in a CO include

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

Central Office

ISDN

DSL

POTS

IDF

MDF

Street Cabinets

Subscriber loops

Equipment-side loops

Figure 2.1: Example of a telephone exchange terminating outside plant facilities and interconnecting
subscribers to termination equipment. Adapted from [1].

a Public Switched Telephone Network (PSTN), also referred to as the Plain Old Telephone Service

(POTS), Voice over Internet Protocol (VoIP), DSL service equipment, such as Asymmetric Digital

Subscriber Line (ADSL), Integrated Services Digital Network (ISDN) and in some cases, dial-up

Internet facilities.

2.2.2 Problems with Existing Main Distribution Frames

Maintaining distribution frames is very labour-intensive as jumper cross-connects must be completed

manually. To this end, technicians are dispatched to the MDF or IDF to make changes. Advanced

scheduling and coordination between different service-provider groups are required [1]. Moreover,

manual operations are prone to human errors, such as improper insertions (punch-down) and incorrect

cross-connects. The problems can drastically delay the turn-up of new services and can even result in

the loss of existing services, which, in turn, may cause dissatisfaction with the customer and increase

the time-to-revenue for the service or result in unnecessary operational expenditures.

Another problematic aspect is line testing [1, 3, 4]. Line testing in itself can be time-consuming, as

technicians are required to disconnect subscribers/office equipment cables from the MDF or IDFs

and connect measurement devices at the ports. Normally, a hand-held testset is connected to a newly

configured circuit to verify the accuracy and correctness of the installation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

7

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

2.2.3 Requirements for Automation of Main Distribution Frames

As mentioned before, the primary goal of an AMDF is to alleviate the manual processes involved with

MDFs, as well as enhancing the accuracy of copper management in order to reduce cost and increase

revenue. In addition, the following requirements must generally be met for copper automation [1,

5]:

1. Any-to-Any Non-Blocking Connectivity: The AMDF must have the ability to switch any fa-

cility pair (wires in a cable) to any equipment pair regardless of any existing connections or

port utilisation in the system. With any-to-any switching, Operations Support System (OSS)

components making provisioning assignments or fault-management decisions should be able

to perform their functions successfully.

2. Scalability: Telephone exchanges vary greatly in size across the world. Smaller, rural areas

may require a few thousand copper pair terminations whereas larger, urban areas may need

to terminate the connection of several hundred thousand subscribers. An AMDF must scale

cost-effectively to meet different-sized requirements.

3. Reliability: As distribution frames are the lifeline of telecommunication companies, an AMDF

must provide an extremely high degree of confidence that connections are successfully made

upon request. Low failure rates and long expected lifetimes are paramount.

4. OSS Integration: An AMDF must be integrated directly with any other service activation, in-

ventory, and workflow systems so that cross-connections automatically take place as a software-

driven flow. By attaching existing fault management systems to AMDFs, problems can be

isolated and resolved pro-actively. A typical OSS is the testing equipment within a telephone

exchange.

5. Automated Connection Verification and Continuous Testing: An AMDF must have the ability

to attach any terminating pair remotely from either subscription or equipment side to a testing

system to verify that a connection has been securely and properly connected.

It is important that the design of an AMDF allows it to be scaled linearly to keep pace with subscriber

growth rates. In other words, the AMDF must cost-effectively scale with an increase in the number

of subscribers. Hence, the ratio of frame ports on the AMDF to the number of subscribers should

remain fairly constant as modules are added. To increase the effectiveness of scalability, a modular

design of an AMDF is suggested. As user demands (number of subscribers) increase, more modules

can be added to the existing frame to increase the capacity of the system.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

8

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

2.2.4 Benefits of Copper Automation

Automated copper switching, remote testing and verification, and OSS integration of an AMDF, can

provide the following benefits to service providers [1]:

1. Reduced Labour Costs: Automated distribution frames minimise the requirement for on-site

personnel to physically perform cross-connections. Workforce efficiency is improved, since

technician call-outs to replace faulty hardware are also minimised.

2. Faster Service Delivery: New services or changes to existing services can be provided almost

instantly. Service activation can take place in minutes as opposed to days.

3. Improved Accuracy: Automation significantly reduces errors, eliminating human errors. In

addition, testing and verification tools ensure that all changes are applied accurately.

4. Universal Test Access: The any-to-any connectivity of the AMDF offers a logical interface for

testing all copper pairs (subscriber and equipment side) even at remote sites.

5. Improved Loop Records: Service providers can ensure that loop records consistently remain

accurate throughout the expected lifetime of operation.

6. Improved Service Assurance: The inclusion of automated fault recovery techniques enables

nearly perfect network reliability. This, in conjunction with integrated test access, improves the

ability to isolate and correct errors, ultimately reducing Mean Time to Repair (MTTR).

2.2.5 Connection Matrix of the Main Distribution Frames

The pin-board matrix of an MDF contains the physical cross-connects between subscriber lines and

office equipment lines. In the case where a pure mechanical frame is used, the orientation and layout

of the cross-connect holes along with the horizontals and verticals are crucial for a compact design.

For the automated copper designs in [3, 4, 6], a similar configuration was used for the matrix board.

The configuration is shown in Figure 2.2.

The matrix has Xi (A,B) and Y j (A,B) connective patterns that are arranged in a perpendicular fashion

to each other on different insulated layers. The collective set of subscriber cables are denoted by X,

and index i refers to a specific copper pair in the cable. Similarly, the collective set of office equipment

cables are denoted by Y, and index j refers to a specific copper pair. Wires A and B (not shown in

the figure) are the twisted-pair copper wires in cables coming from a subscriber or going to office

equipment. Cross-point holes are arranged in three regions according to their function. Xi (A) is

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

9

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

Figure 2.2: Basic configuration of cross-connect matrix board. Adapted from [3]. ©IEEE 1992.

connected to Y j (A) and Xi (B) to Y j (B). Region II holes (T) establish connections for line testing

for either Xi (A,B) or Y j (A,B). Holes (J) in Region I are used for cross-point jumpering to complete

the circuit between Xi (A,B) and Y j (A,B) once a connection pin has been inserted. A third region,

Region III, is prepared for interface connectors that connect link cables, subscriber cables and office

equipment cables. Current MDFs should be perceived as cross-connect switching systems, which

means that MDFs switch circuits, not packets in the data lines. In the digital domain, these devices

are known as Digital Cross-connect Systems (DCSs). The first requirement of an AMDF states that

any-to-any non-blocking connectivity is required and the described matrix makes provision for any-

to-any connectivity. Such a cross-connect matrix, with actuators at each cross-point, is known as a

crossbar switch [7, 8].

2.3 CURRENT AMDFS

This section provides a brief overview of the AMDF and its history. The cross-point switching mech-

anisms and architectures are also discussed.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

10

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

2.3.1 History of the AMDF

Even though the concept of AMDFs is not new, very little research regarding the automation thereof

has been conducted to date. The late 1980s to the mid 1990s marked an epoch for researching

AMDFs. Using the technology available at the time, robotic solutions described in [1, 3, 4, 9, 10]

were the first attempts to automate the copper wire MDF. A robotic arm with a laser-tracking sensor

was implemented to insert/remove connection pins physically into/from cross-point holes in a high-

density pin-board matrix, similar to human technician operations. A different approach was used for

automated optical MDFs where small grooves are implemented as switches (acting as the connection

pins at cross-points) that reflect incoming optical signals from subscribers to office equipment and

back once filled with viscous oil [11, 12]. The cross-points are said to be ON or OFF depending on

whether the groove is filled with oil or not. The matrix waveguide is, however, considerably smaller

than the high-density pin-board matrix since a microfluidics implementation is employed. A similar

switching approach is described in [7] for copper MDFs, where electromechanical switches push/pull

connecting pins into/from cross-point holes.

The aforementioned concepts are feasible implementations of an AMDF. However, because of the

purely mechanical design, robotic and general electromechanical solutions have reliability and main-

tenance issues due to moving parts. Scalability of such a precise robotic system also comes at a high

price for this concept, since very precise calibrations are required for varying-sized systems. Further-

more, existing copper and optical AMDF implementations merely address the routing, or jumpering,

aspect of an AMDF. A complete automated MDF should inherit some form of fault detection and

correction, as stipulated in the previous section.

2.3.2 Switching Media

As far as automated switching is concerned, various switching media can be considered. Possible

switches include Solid-state Relays (SSRs), Electromagnetic Relays (EMRs), microrelays or stepper

motors. Recent developments in cross-connect switching arrays entailed the exploitation of Micro

Electromechanical Systems (MEMSs), specifically for telecommunication networks [13,14]. MEMS

switches are an attractive alternative to solid-state switches because of their near zero power consump-

tion with electrostatic actuation, low cost due to high-volume semiconductor manufacturing methods,

and good signal isolation due to air gaps between switch contacts. Furthermore, MEMSs fill the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

11

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

gap between SSRs and EMRs by offering true ohmic switching, desirable miniaturisation and con-

sequently good signal properties over large bandwidths [13]. Recently, promising technologies that

emerged in the form of Nano Electro-Mechanical Systems (NEMSs) [15] and Transparent Embedded

Magnetic Switches (TEMSs) [16] have provided an alternative for feasible switching media.

Regardless of the actual switches, a Double-Pole-Single-Throw (DPST) switching matrix configur-

ation, as depicted in Figure 2.3, ensures that any-to-any connectivity is achieved. In effect, two

commonly controlled switches are required for each cross-point. That is, if n subscriber ports (2n

physical wires) and m equipment ports (2m physical wires) are provided, a total of 2n×m switches

are required. For relatively large switches/relays, such as stepper motors, a considerable amount of

space would be required to implement such a switching matrix. Moreover, as the number of incoming

subscriber lines increases, the number of DPST switches increases and consequently also the number

of control signal lines. In this case, it would be feasible to cascade these switching units to form a

multicast switching network [14, 17]. Such an arrangement is shown in Figure 2.4.

Figure 2.3: Electrical schematic diagrams of a switch unit, consisting of an array of 3×3 double-
switches. Adapted from [13]. ©IEEE 2007.

Upon scrutinising Figure 2.3 and Figure 2.4, it is evident that the diagram shown in Figure 2.3 is used

to implement each switching unit in the hierarchical layer in Figure 2.4. Specifically, Figure 2.4 shows

how a multi-stage network is employed to establish any-to-any connections without interrupting ex-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

12

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

Figure 2.4: Arrangement of switch units on a higher hierarchical layer, forming a multicast switching
network and allowing for the re-configuration of a larger number of lines [17]. 1

isting connections. Various-sized MEMS switch packages for telecommunication networks have been

introduced, including 2×2, 3×3, 5×5 and 20×20 arrays [13,14]. By utilising these MEMS packages,

larger matrices can be created by implementing multi-stage switching networks.

2.4 REDUNDANCY AND HIGH AVAILABILITY

In order to provide reliable services to customers, the availability of the service should be of such a

nature that a customer is ideally able to access the service at any time without experiencing down-

times. To this end, it is required to reduce network downtimes of service-providing equipment. Stud-

ies suggest that the five nines of availability or 99.999 % of network uptime is considered to be

adequate [18,19]. This translates to a mere five minutes of downtime per year. However, the result of

recent market analysis (2009) shows that 50 % of subscribers expect at least 99.99 % availability [20].

Consequently, this research focused on achieving 99.99 % service availability.

2.4.1 Redundancy Strategies

There are two types of redundancy strategies, namely standby and active (parallel). In an active

redundancy arrangement, all redundant units are simultaneously active from time t = 0 s. As a result,

the active redundant units are subjected to operational stresses at an early stage. As the name suggests,

a standby redundancy arrangement entails redundant units being placed in standby mode when not in

operation. The redundant units are used sequentially; a failover requires that a component in standby

mode be switched on. A system with two standby redundant units are shown in Figure 2.5. If the

primary component fails (component 1), then the switching unit immediately switches over to one of

the redundant units (components 2 and 3). There are three variations of standby redundancy, namely

1Reprinted from International Conference on High Performance Switching and Routing, D. Cuda, P. Giaccone, and M.
Montalto, Design and Control of Next Generation Distribution Frames, pp. 115-120, Copyright 2011, with permission from
Elsevier.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

13

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

cold, warm and hot. In cold standby redundancy, the component does not fail before it operates, to

save the component from operation stresses. In warm standby redundancy, the component is more

prone to failure before operation. In hot standby redundancy, the failure pattern of the component

does not depend whether the component is in standby or in operation. Cold standby means that the

redundant units are powered down until needed, whereas warm and hot standby the redundant units

are activated. The likelihood of failure of redundant units not in operation is very low, and is assumed

to be zero in most cases [21]. Therefore, only active and cold standby redundancy are considered.

Figure 2.5: Standby system with two standby components.

2.4.2 Expected Lifetime of Systems

When modelling components in simulation, it is often required to define expected component life-

times. These lifetimes are typically stochastically generated from statistical distributions. The normal

and exponential/Weibull distributions are often used due to their mathematical tractability [22]. For a

parallel or active redundant system the lifetime of the components are [23]:

Ti(x,ξξξ) = max
1≤ j≤xi

ξi, j, i = 1,2, . . . ,n. (2.1)

where Ti(x,ξξξ) is the lifetime of component i in the decision vector x, and ξξξ is the observational

vector containing expected lifetimes of the redundant units. ξi, j is the lifetime of redundant unit j

of component i in the decision vector. xi is the number of redundant units assigned for component

i. Put simply, the component lifetime is equal to the largest lifetime of all the redundant units. The

corresponding component lifetime of a standby redundant system is given by:

Ti(x,ξξξ) =
xi

∑
j=1

ξi, j, i = 1,2, . . . ,n. (2.2)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

14

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

For a standby configuration, the component lifetime is simply the sum of the lifetimes of each of the

redundant units on standby. It is clear that the expected lifetime, E[Ti(x,ξξξ)], of a component will

be much larger for a standby configuration. However, implementing a standby redundant system is

much more complex and expensive due to the necessity to detect failures as they occur and to activate

redundant units [21]. Furthermore, the inclusion of the failover mechanism adds additional failure

points in the system (see Figure 2.5).

2.5 RELIABILITY

One way of increasing the reliability of a system is to incorporate redundancy scheme(s) into the

design. Implementing redundancy in a design increases the expected lifetime of the system, thus

increasing its reliability. During the early stages of conceptual design, the ability to predict reliability

is very limited. It can be difficult to predict reliability of the concept design accurately prior to testing

of a prototype in an experimental environment, or without sufficient field data. Various publications

discuss analytical approaches to modelling, evaluating and optimising the reliability of a concept

design [24–27].

For a pure series arrangement of n components/subsystems, the overall system reliability (R) is

defined by [28]:

R =
n

∏
i=1

Ri (2.3)

where Ri is the reliability of component/subsystem i in the series arrangement. It is assumed that each

component/subsystem fails independently, i.e. the failure events are mutually exclusive [28]. In the

case of a parallel configuration, components that normally perform identical functions are placed in

parallel. A failure only occurs if all the components connected in parallel have failed. The probability

that the entire parallel branch would fail (Pr{entire branch f ails}= F) is given by [28]:

F =
n

∏
i=1

Fi (2.4)

where Fi is the probability that component i would fail, or in terms of reliability, since R = 1−F

[28],

Rp = 1−
n

∏
i=1

(1−Ri) (2.5)

where Rp is the overall reliability of the parallel branch, and Ri the reliability of component/subsystem

i. After the reliability, R, has been determined for the entire system, the corresponding system cost

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

15

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

can be calculated by [24]:

C =
n

∑
i=1

ci · (ai + si)+ c f (1−R) (2.6)

where ci is the acquisition cost per component for subsystem i,

ai is the number of active redundant units for component/subsystem i,

si is the number of standby redundant units for component/subsystem i, and

c f is the cost of mission (system) failure.

si = 0 when active redundancy is used and ai = 0 when standby redundancy is used. It is often assumed

that the chosen redundancy scheme for each component is known a priori.

2.6 REDUNDANCY ALLOCATION PROBLEM

The RAP entails the simultaneous selection of components and a system-level design configuration

that can collectively meet all design constraints in order to optimise specific objective functions, such

as system cost and/or reliability [29]. In general, the RAP is known to be an NP-hard problem [30] that

can be approximated by metaheuristic approaches. The RAP is divided into two groups [25]:

• RAP with Component Mixing (CM): A mix of components is allowed for redundant units in

parallel. Using different, yet functionally similar components in a redundant configuration

increases the chances of correct operation.

• RAP without CM: A single component type is available for redundant units.

The main problem with a pure reliability optimisation problem is that the mathematics involved in

describing complex systems is reasonably complex; the analytical formulation can only be obtained

with significant effort and iteration through variations becomes impractical. Instead of using an ana-

lytical approach, the concept of the system structure function used in redundancy optimisation is

considered. In a system consisting of n components, the object is to find the optimal value of x = {x1,

x2, . . . , xn}, where xi denotes the number of redundant units for component i. Let yi denote the state

of component i, which is determined by the states, yi, j, of the redundant elements for j = 1, 2,. . . , xi,

i = 1, 2,. . . , n. A fundamental hypothesis of the system structure function is presented in [31]: For

any redundant system, there is a system structure function Ψ: {0, 1}n → {0, 1} that assigns a system

state Ψ(y) ∈ {0, 1} for each component state y ∈ {0, 1}n. Ψ(y) = 0 signifies that a component failure

has resulted in an overall system failure. Using the system structure function, one can systematically

progress through time and evaluate the state of each component, and subsequently, the state of the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

16

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

overall system at any instance. This process continues until the system structure function evaluation

returns zero. The expected lifetime is approximated by the time instance where the overall system

state changed.

As an example, consider the bridge system depicted in Figure 2.6. By definition, the bridge system

will be operational if at least one path exists between the input and the output of the system. Visual

inspection of Figure 2.6 indicates that the possible paths are: 0-3, 1-4, 0-2-4 and 1-2-3. The resulting

system structure function is then given by:

Ψ(y) = {y0 · y3,y1 · y4,y1 · y2 · y3,y0 · y2 · y4}

y0 y3

y2

y1 y4

input output

Figure 2.6: A bridge configuration.

2.6.1 Single-objective Optimisation

Evolutionary Algorithms (EAs) are of particular interest for solving the NP-hard class of problems.

Popular examples of such metaheuristics used in reliability-redundancy optimisation problems in-

clude Genetic Algorithms (GAs), ant colony optimisation [27, 32] and recently, artificial bee colony

algorithms [33, 34]. In single-objective optimisation, the problem is concerned with optimising a

problem with respect to one objective.

2.6.2 Multi-objective Optimisation

Single-objective Optimisation is sufficient to optimise a design for a single objective, provided that

other objectives are of little or no concern to the designer. As soon as multiple (and very often

conflicting) objectives become paramount for a design, there is no single optimal solution, but rather

an entire set of alternative solutions, each favouring a separate objective. Therefore, each solution

in the set is optimal in some sense and no other solution in the search space is superior to them

when all objectives are considered. The set is known as the Pareto-optimal solution set. Multi-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

17

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

dimensional search spaces are partially ordered, two solutions are related in one of two ways: either

one dominates the other, or neither is dominated [35]. Formally, a multi-objective problem is typically

defined as:
Maximise y = f(x) = (f1(x1, . . . ,xm), . . . , fn(x1, . . . ,xm))

where x = (x1, . . . ,xm) ∈ X

y = (y1, . . . ,yn) ∈ Y

(2.7)

with an m-dimensional decision vector, x, and n objectives in objective vector, y. X is the parameter

(decision-variable) space, and Y is the objective space.

In essence, there are two goals in multi-objective optimisation [36]:

1. To find a set of solutions as close as possible to the Pareto-optimal front (discussed in succeed-

ing section).

2. To find a set of solutions as diverse as possible.

The first goal is essential for optimisation, and is common to the optimality goal of single-objective

optimisation. The second goal, however, is specific only to multi-objective optimisation. Although

it is required that the set of solutions must be close to the Pareto-optimal front, they should also be

sparsely spaced in the Pareto-optimal region. A diverse set ensures a good set of trade-off solutions

to choose from. In any optimisation problem, a search is performed in the decision-variable space.

However, the search can be traced in the objective space and in some instances, the progress of the

search in the objective space can be used to steer the search in the decision-variable space.

2.6.2.1 Dominance

It is said that decision vector x1 ∈ X dominates decision vector x2 ∈ X (written as x1 � x2) with a set

K objective functions iff. [35]:

fi(x1)≥ fi(x2) for i = 1,2, . . . , K, and

f j(x1)> f j(x2) for at least one objective function j,
(2.8)

where fi(x1) donates the fitness of decision vector x1 for the ith objective. That is, x1 dominates x2

iff. it is as good as x2 regarding each objective, and there is at least one objective in which x1 is

better than x2. For example, if solution x is better than solution y in the first objective, while solution

x is worse than solution y in the second objective, it cannot be concluded that solution x dominates

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

18

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

solution y, nor that solution y dominates solution x. It is customary to say that solutions x and y are

non-dominated with respect to one another [36]. When both objectives are equally important, it is

not possible to say which solution is better. In the end, it is expected to have a set of non-dominated

solutions with respect to each other.

It is a common occurrence that multiple solutions equally satisfy one objective. In such a case it is

said that one solution weakly dominates the other if it is better with respect to the second objective.

On the other hand, if one solution strongly dominates another solution, it is better with respect to both

objectives. Figure 2.7 illustrates strong and weak dominance between difference solutions. From

the figure, it is evident that solution B weakly dominates solution A, since it is a better choice with

respect to f2. However, solution A and solution B strongly dominates solution C, since they are better

choices with respect to both objectives. Globally, it is obvious that solution D dominates the entire set.

Interestingly, it is noted that if one solution strongly dominates another solution, it weakly dominates

the solution as well, but not vice versa (for instance, solutions A, B and D weakly dominate solution

C with respect to f1).

f1 (minimise)

f2 (maximise)

A B

C

D

Figure 2.7: Illustration of dominance.

2.6.2.2 Pareto Optimality

If there is no solution vector in space X that dominates x, then x ∈ X is said to be Pareto-optimal.

These solutions form the Pareto-optimal set. The ultimate goal of multi-objective optimisation is

to identify solutions in the Pareto-optimal set X∗ ⊆ X. Therefore, the Pareto-optimal set is the set of

solutions that are not dominated by any other solution in the search space. For instance, in a 2D search

space (two objectives), the elements of the Pareto-optimal set form a curve called the Pareto-optimal

front, Y∗ = f(X∗) ⊆ Y. Figure 2.8 illustrates possible Pareto-optimal fronts for problems with two

objectives. The diversity of the solution set in each case is evident.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

19

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

O
bj

ec
tiv

e
1

Objective 2

Pareto-optimal front

(a) Minimise-minimise problem

O
bj

ec
tiv

e
1

Objective 2

(b) Minimise-maximise problem

O
bj

ec
tiv

e
1

Objective 2

(c) Maximise-minimise problem

O
bj

ec
tiv

e
1

Objective 2

(d) Maximise-maximise problem

Figure 2.8: Possible Pareto-optimal fronts for a two-objective problem.

2.6.2.3 Multi-objective Evolutionary Algorithms

Because of the large search spaces encountered in Multi-objective Optimisation (MOO), GAs are very

attractive options for solving MOO problems, since they offer a population-based approach. Also,

multiple viable solutions make GA implementations more efficient than direct analytical approaches.

Of the several Multi-objective Evolutionary Algorithms (MOEAs) that were developed, those most

often represented in the literature are [37, 38]:

1. Non-dominated Sorting Genetic Algorithm (NSGA) [39]: Individuals (chromosomes in the pop-

ulations) are classified and ranked on the basis of non-domination. All the non-dominated solu-

tions are classified and categorised in a single category and made available for selection for the

next generation. All the solutions in the first category (non-dominated) will get more copies in

the next generation. This process is completed for each generation of the entire GA run. As

a result the NSGA is not very efficient, since the Pareto ranking has to be repeated for every

generation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

20

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

2. Niched-Pareto Genetic Algorithm (NPGA) [40]: The NPGA uses a tournament selection

scheme based on Pareto dominance. Two random samples are selected and compared to a ran-

dom subset of the entire population. If only one individual is considered to be non-dominated,

and the other is not, then the non-dominated solution is passed to the next generation (including

mutation and crossover operations). Any other scenario is considered to be a tie. A tie results

in the tournament selection to be decided via fitness sharing. The population at the end of the

run is considered to be the Pareto-optimal set.

3. Multi-objective Genetic Algorithm (MOGA) [41]: The rank of a possible solution is a func-

tion of the number of chromosomes by which it is dominated in a population. All the non-

dominated solutions are assigned the highest fitness. This allows all non-dominated solutions

to be sampled at the same rate. Fitness sharing is used to penalise dominated solutions in a

certain region.

Moreover, the abovementioned MOEAs focus on simplicity of implementation. The methods are

usually implemented by applying various weights to each objective function and converting it to a

single-objective optimisation problem. However, a favoured approach is to use a GA along with

Pareto optimality to find the global optimal solution.

2.7 EVOLUTIONARY ALGORITHMS

EAs are generic population-based metaheuristic optimisation algorithms, which use mechanisms in-

spired by biological evolution, such as natural selection. The working of EAs places a focus on the

survival of the fittest principle. Candidate solutions are produced by the EA in a population, and the

fitness of the candidate solution determines whether a solution will survive the current generation.

During the transition to a new generation, the strongest parents are selected to hopefully produce new

candidate solutions with a higher fitness. However, very large spaces of possible candidate solutions

can be searched for a specific problem; it is not guaranteed that the theoretical optimal solution will

ever be found, but attempts are made to find a good approximation. The most popular type of EAs is

the GA.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

21

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

2.7.1 Genetic Algorithms

GAs are search heuristics that mimic the process of natural evolution and were proposed by J. H.

Holland in 1977 [42]. In nature, it is known that weak and unfit species in a specific environment face

possible extinction via natural selection. Stronger individuals survive to pass their genes on to future

generations. Random changes in the make-up of the genes may occur during transitions between

generations. With the correct combination of genes, the strongest will ultimately be dominant in their

population. On the other hand, infeasible changes will be eliminated over time.

2.7.1.1 Terminology

In GA terminology, a solution is called an individual or chromosome in a solution space. The chro-

mosomes consist of smaller, discrete units called genes. Typically, a gene represents the value of an

element in the solution vector, which controls a certain feature of the chromosome. A GA operates

on a set of chromosomes in a population. Each chromosome is assigned a fitness value that is propor-

tional to its feasibility in the context of the problem. The first set of chromosomes in the population is

called the initial population, which is usually randomly initialised. As the search for an optimal solu-

tion proceeds, the population consists of better (fitter) solutions. A new generation of the population

is created by mixing and matching the chromosomes of the previous generation.

2.7.1.2 Crossover

The crossover operation is one of two mechanisms used during the transition to a new generation.

During crossover, two chromosomes, called parents, are combined (also called recombination) to

form two new chromosomes, called children or offspring. Each chromosome has a certain probabil-

ity of undergoing the crossover operation, which can be set as a parameter in the GA, known as the

crossover rate (Pc). Otherwise, it is simply passed to the next generation without any changes. It is

desirable to select chromosomes in the population with the highest fitness to perform crossover. That

is, the chromosomes with higher fitness should have better probabilities to be selected for crossover.

In most instances, a fitter chromosome may be formed, but it is also possible to create a weaker one.

Mathematically, the crossover operation is defined as follows: Consider the population with a chro-

mosome vector set {V1,V2,V3, . . . ,VN}, where N is the size of the population. The chromosomes with

higher fitness are selected more frequently and are grouped into pairs (V ′1,V
′
2), (V ′3,V

′
4), (V ′5,V

′
6),. . . .

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

22

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

The crossover process is illustrated by considering the chromosome pair, (V ′1,V
′
2):

V ′1 =
(
x1

1,x
1
2,x

1
3, . . . ,x

1
n
)
, V ′2 =

(
x2

1,x
2
2,x

2
3, . . . ,x

2
n
)
.

Two randomly generated integers, n1 and n2, are generated such that n1 < n2. Then, the genes of V ′1

and V ′2 are exchanged between n1 and n2. The children are produced as follows [23]:

V ′′1 =
(
x1

1,x
1
2, . . . ,x

1
n1−1,x

2
n1
, . . . ,x2

n2
,x1

n2+1, . . . ,x
1
n
)
,

V ′′2 =
(
x2

1,x
2
2, . . . ,x

2
n1−1,x

1
n1
, . . . ,x1

n2
,x2

n2+1, . . . ,x
2
n
)
.

The children will replace their parents in the next generation. The objective function can be used

to evaluate the fitness of each chromosome of the new population. This process continues for a

predefined number of simulation runs, or until a desired solution is obtained.

2.7.1.3 Mutation

Mutation introduces random changes at the gene level of chromosomes. The mutation rate, Pm, is

usually very small, and depends on the length of the chromosomes in the population. The process

starts selecting a mutation point, and replacing the gene at that location in the chromosome with

another randomly generated value. The purpose of including mutation is to ensure that the GA escapes

a local extrema in the solution space to continue the search in another location. The inclusion of

mutation therefore increases the chances of finding the global extrema.

2.7.1.4 Fitness

The fitness of a candidate solution is determined by the objective function, which, in turn, depends on

the type of the problem. For instance, in the case of a minimisation problem candidate solutions are

assigned a higher fitness for lower objective values. As mentioned earlier, the ability of a chromosome

to reproduce or survive diminishes with a poor fitness. It is up to the decision maker to determine an

appropriate goal function to determine chromosome fitnesses.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

23

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Literature Study

2.7.1.5 Selection

The selection scheme describes how chromosomes are selected for reproduction (i.e. crossover and

mutation). The general rule is that chromosomes with higher fitness are selected more frequently. As

a result, weaker solutions are slowly, but surely, ruled out as possible solutions. Popular selection

schemes include proportional selection, rank-based selection and tournament selection.

2.7.1.6 Elitism

Elitism is a mechanism included in GAs to ensure that the best solution(s) of a generation is not lost

after reproduction. In most applications, this is accomplished by simply copying some of the best

solutions of one generation to the next.

2.7.2 Hybrid Genetic Algorithms

Many approaches employ a hybrid GA to solve problems [23, 26, 43, 44]. In these hybrids, a GA

incorporates one or more methods to improve the performance of the search. The advantages that

hybrid algorithms exhibit include enhanced search capabilities, increasing the efficiency of the GA,

improving search speed, etc. For instance, an NN can be integrated with a GA to approximate the

objective values for a candidate solution and is typically used to generate an initial population. Such

an approach would speed up the process of generating a population and guarantee feasible solutions

are produced.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

24

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3

THE OMNET++ SIMULATION ENVIRONMENT

3.1 CHAPTER OVERVIEW

In order to adequately evaluate the behaviour of an AMDF, a simulation model of the environment

of clients interacting with the access network and the AMDF topology was developed and presented

in this chapter. This chapter also touches on a number of available network simulators. A compar-

ison between the simulators is provided and reasons for selecting the OMNeT++ environment are

stipulated. A brief and compact overview of OMNeT++ is presented.

3.2 NETWORK SIMULATORS

3.2.1 Available Simulation Environments

A wide range of both commercial and free-license simulators are available, each with its own level

of complexity, flexibility and modularity. A short description of the key features of the popular

simulation environments are summarised in Table 3.1 (list based on [45, 46]).

3.2.2 Network Simulators Selection Process

All the packages mentioned in Table 3.1 provide support for the development of both wireless and

wireline networks; however, GloMoSim currently places emphasis on wireless networks and it was

not considered. Freely available simulators were given preference, and since suitable simulators were

found, commercial ones were not considered further. The main functionality of Physim would not

benefit the model for the purpose of the research and was therefore not considered. The remainder of

the simulators are freely available for research purposes.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

Table 3.1: List of available simulation environments.

Simulation environment Description

OMNeT++ OMNeT++ is a C++-based Discrete Event Simulator (DES) for mod-

elling communication networks, multiprocessors and other distributed

or parallel systems introduced in 1997 [47–49]. The motivation for de-

veloping OMNeT++ was to produce a powerful open-source discrete

event simulation tool that can be used by academic, educational and

research-oriented commercial institutions for the simulation of com-

puter networks and distributed or parallel systems [47]. OMNeT++

was designed from the onset to support large-scale network simulations

by constructing hierarchical models built from reusable components.

Strong GUI support aids in the visualisation of communication net-

works. More importantly, OMNeT++ also permits the simulation of

circuit-based simulations (black box functionality) along with packet-

based simulations.

NS-2 The NS-2 simulation environment is a discrete event simulator targeted

at networking research. NS-2 provides substantial support for simu-

lation of Transmission Control Protocol (TCP), routing, and multicast

protocols over wired and wireless (local and satellite) networks [50].

The complete source code of NS-2 is available under the GNU public

license and can be compiled on multiple platforms, including most Unix

distributions and Windows.

NS-3 NS-3 is a revision of NS-2 focussing on an improved core architecture,

software integration and educational components of NS-2, incorporat-

ing C++ to aid in complex simulations [51].

OPNET The OPNET modeller [52] is a leading commercial network simulator

that provides predictive modelling, which offers customers to design,

deploy, manage and optimise network applications and infrastructures.

NetSim NetSim is an educational stochastic DES development environment

with source code editor and compiler. Various model libraries exist

and are available for use modification [53]. NetSim provides animated

basics and pictorial presentations of networks. NetSim also contains

modules for real-time data packet capture.

Continued on next page

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

26

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

Table 3.1 – continued from previous page

Simulation environment Description

GloMoSim GloMoSim is a scalable simulation environment for wireless and wired

network systems; however, emphasis is currently placed on wireless

networks [54]. It employs the parallel discrete-event simulation capab-

ility provided by Parsec (a C-based parallel simulation language). It is

freely available for academic and research purposes. Commercial users

must use QualNet, the commercial version of GLoMoSIm [55].

Physim Physim is a network simulator focussing on Radio Frequency (RF)

channel modelling, with built-in oscilloscope, spectrum analyser and

polar plot functionalities [56]. This package is useful when investigat-

ing the effect of various frequency modulation schemes.

The main candidates were NS-2/3 and OMNeT++. Table 3.2 shows a comparison between NS-2/3

and OMNeT++. Important features that influenced the final decision included:

• language support,

• flexibility,

• documentation, support and community involvement,

• visualisation,

• programming model,

• scalability,

• event logging, and

• parallel simulation.

Table 3.2: Comparison between NS-2/3 and OMNeT++.

NS2/3 OMNeT++

Language support

Dual language simulator. Relies on C++ to im-

plement simulation models. Also supports oTcl

scripts to construct network topologies (NS-2

only). NS-3 integrates Python to realise a net-

work.

Network Description (NED) files are used to

describe network topologies. Module beha-

viours are described in C++.

Continued on next page

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

27

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

Table 3.2 – continued from previous page

NS2/3 OMNeT++

Flexibility

Originally designed to be a TCP simulator. NS-

2/3 models are very detailed and it is very diffi-

cult to manipulate or alter their behaviour.

Very flexible general framework. Atomic be-

haviour of modules can be implemented via

simple modules which operates independently.

Simple modules communicate by means of

message passing. Modules can be grouped into

larger compound modules to build hierarchical

models. This modularity allows users to create

virtually any type of circuit simulation.

Documentation

Plentiful documentation and online support. Excellent, thorough and well-structured doc-

umentation with plenty of tutorials and ex-

amples. Very active community.

Visualisation

Provides an interactive GUI with packet-level

animations and data inspection tools.

Provides an interactive GUI (TkEnv) which al-

lows users to track messages between modules

using vibrant animations. Command line rep-

resentation of the simulation run is also avail-

able.

Portability

Windows (Cygwin) and Linux platforms sup-

ported.

Windows and Linux platforms supported.

Programming model

Mixed mode Object-oriented (OO) Tcl (OTcl)

with underlying C++ classes. Network descrip-

tions are generated by OTcl. Care has to be

taken to prevent memory leaks.

OO, event-driven model written in C++. A GUI

aids in the creation of network descriptions and

configuration files.

Scalability

Continued on next page

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

28

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

Table 3.2 – continued from previous page

NS2/3 OMNeT++

Limited scalability in terms of memory usage

and simulation run-time. NS-3 exhibits better

scalability characteristics.

Provides excellent scalability of models and

allows distribution over multiple hosts during

run-time.

Result logging

Results are logged in trace files that store

timestamps and the corresponding events. The

visualisation tool (nam) replays events from a

trace file. Xgraph is used to draw vector plots.

Output statistics can be captured as series data

or single statistics in vector and scalar files, re-

spectively. The EventLog and Sequence Chart

features allow users to view the flow of events,

which greatly aid in debugging.

Parallel simulation

Parallel simulation extension developed by the

Georgia Institute of Technology, but is not in

wide use.

Parallel simulation supported via Message

Passing Interface (MPI).

A performance comparison conducted in [46] showed that NS-2, NS-3 and OMNeT++ are equally

capable of carrying out large-scale simulation runs in an efficient way. OMNeT++ is not a network

simulator by definition, but is a general DES framework. However, NS-2 is thoroughly outperformed

by both OMNeT++ and NS-3 in terms of simulation run-time and memory usage, with NS-3 hav-

ing the best overall performance. Nevertheless, NS-3 is still in the early stages and has not gained

widespread adoption, and the rich collection of NS-2 models still needs to be ported to NS-3. OM-

NeT++ has a less steep learning curve and appears to be more user-friendly. In addition, OMNeT++

provides an excellent GUI and abstract modelling language, which makes it a much more attractive

option.

3.3 OMNET++ INTRODUCTION

OMNeT++ is a C++-based OO modular DES of which the primary application area involves model-

ling communication networks, multiprocessors and other distributed systems [47]. However, it can

be used to simulate almost any discrete event system. From the onset, OMNeT++ was designed

to [47, 48]:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

• enable large-scale simulation, which requires simulation models to be hierarchical and to be

built from reusable components,

• facilitate debugging and visualisation of simulation models to reduce design-debug cycles,

• be modular, customisable and allow embedding simulations into larger applications,

• allow data interfaces to be accessible with other commonly available software tools, and

• provide an Integrated Development Environment (IDE) that facilitates model development and

the analysis of results.

The motivation for developing OMNeT++ was to produce a powerful open-source DES to be used

under the Academic Public License (APL) for academic and research purposes. A license is also avail-

able for a commercial version of OMNeT++. OMNeT++ attempts to fill the gap between research-

oriented simulators (such as NS-2) and expensive commercial products (such as OPNET) and is avail-

able on most platforms including Linux, Windows and Mac OS, using the GCC toolchain.

OMNeT++ presents a component-based simulation framework approach. Instead of providing hard-

wired simulation components, it provides the basic mechanisms and tools to write such components,

making OMNeT++ an ideal candidate for circuit-based simulations as well (along with packet-based

simulations). A high-level language exclusive to OMNeT++, called NED, allows developers to define

hierarchical components of a network as well as the topology of the network. A component is referred

to as a module in the OMNeT++ environment. The behaviour of a module is written in C++ and

special functions are provided to pass instructions to the network description layer. Modules com-

municate via message passing, which can contain complex, user-defined data structures. Messages

can be sent directly to other modules or via a predetermined path or channel. Using modularity, the

developer is able to build reusable modules that are defined by a set of parameters specific to the

module. One module can inherit the properties of another module with subtle changes. All the para-

meters of the simulation run is configurable from a single configuration file, which is passed to the

modules during initialisation of the simulation run.

3.3.1 Discrete Event Simulation

In discrete event simulation, events of the operation of a system are scheduled as a chronological

sequence of events. These events induce a change of state in the system, usually at random instances

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

30

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

in time. Multiple events can be scheduled at the same point in time; however, this may lead to

logical complexities about the order of which the events are processed. Events are processed in strict

timestamp order to maintain causality, i.e. to ensure that no current event may have an effect on earlier

events.

Unlike real-time simulation, transitions in time between events are instantaneous. The simulation

clock keeps track of simulation time, which is incremented to the timestamp where the next event is

scheduled once all the events at the current timestamp have been processed. The execution cycle of a

DES run can be encapsulated in a two-phase loop [57]:

1. Carry out all possible actions at the current simulated time.

2. Advance the simulation clock.

As mentioned, entities migrate between states after events are processed. In DES, an entity can

assume one of five states [57]:

• Active: The active state is the state a moving entity presides in while migrating to another state.

Only one entity can be active at any time.

• Ready: An entity waiting to become active, but being delayed by another active entity, is in the

ready state.

• Time-delayed: The state of an entity waiting for a known simulated time stamp, before entering

the ready state.

• Condition-delayed: The state an entity assumes when delayed by a condition until an unknown

future time stamp.

• Dormant: The state that an entity cannot automatically escape from by changes in model con-

ditions.

Entities in the ready state are placed in the Current Events List (CEL), otherwise future events are

kept in the Future Events List (FEL). A transition from the FEL to the CEL is referred to as a move.

All condition-delayed entities are placed in a delay list. By using polled waiting or related waiting,

the event is transferred to the CEL if the conditions are right. Entities in the dormant state must be

managed by user-managed lists. An event is removed from all lists once it exits the active state.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

31

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

3.3.2 OMNeT++ Model Structure

Refer to Figure 3.1 for a graphical depiction of the hierarchical model structure used in OMNeT++.

The system module, also known as the network, is the top-level module of the design. The system

module contains all the submodules of the network, which in turn could contain other submodules,

termed compound modules. The network is instantiated as a compound module without gates to the

outside world. How the submodules are connected within the compound module is defined by using

the NED language. On the other hand, the modules at the lowest level are termed simple modules.

Simple modules contain the C++ code to be executed when messages arrive at the gates of the module.

The gates of simple and compound modules can be connected via a connection; however, connections

across hierarchy levels are not permitted. Since only simple modules can react to messages, the gates

of compound modules transparently relay messages to the gates of destination simple modules.

Figure 3.1: Model structure in OMNeT++.

Simple and compound models are both instances of module types. Multiple instances of a predefined

module can be instantiated in the network. This feature is especially useful when an array of function-

ally identical components needs to be simulated. By means of inheritance, more complex modules

can be defined from base modules.

3.3.3 The Simulation Library

A rich object library is implemented for simulation. Following an OO approach results in a compact

and slim simulation kernel; components can be added to the kernel as they are required. Aggressive

memory optimisation is implemented in the simulation kernel based on shared objects and copy-on-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

32

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

write semantics.

OMNeT++ is able to generate random numbers for common statistical distributions from multiple

independent streams. Provision is also made for the developer to create his/her own custom distribu-

tions, which should be defined by histograms.

Provision is also made for container classes such as queues. These are mainly implemented to account

for multiple messages arriving at module gates. Queues can be used optionally as priority queues as

well.

Several statistical classes are included to collect statistical data on simulation runs. These include

simple ones that collect means and standard deviations of data to a number of distribution estimation

classes.

3.4 THE NED LANGUAGE

OMNeT++’s topology description language, NED, describes the physical structure of the model,

modules and their interconnections. Typical ingredients are component and parameter definitions.

Different component descriptions are used for the main components: simple modules, compound

modules and channels. Once defined, these components can be reused in other network descrip-

tions.

The NED language is designed to promote ease of scalability. Iterative loops (for-loops) along with

conditional assignments (if-statements) aid in effortlessly defining large-scale or complex networks.

NED supports partitioning of large files into smaller-sized files and reconstruction via file inclusion.

The OMNeT++ IDE provides a graphical editor for generating NED files. These files can also be

tweaked or hand-written from scratch via a standard text editor. The NED language has a one-to-one

mapping to Extensible Markup Language (XML), that is, NED files can be converted to XML without

loss of data.

3.4.1 Features of NED

The NED language exhibits the following features, which let it scale well to large projects [58]:

1. Hierarchical: OMNeT++ uses this traditional method to elevate the task to deal with complex-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

33

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

ity. Large and complex modules are broken up into smaller entities, which greatly aids in the

debugging phase.

2. Component-based: Simple and compound modules are reusable, which allows component lib-

raries to be used.

3. Interfaces: Module and channel interfaces are placeholders for actual concrete modules. This

feature is useful when the actual concrete module or channel type is determined during the

network setup. That is, the actual code to be used for the module is not hardwired.

4. Inheritance: If desired, modules and channels can be subclassed. Inherited components derive

their properties from base classes and may add extra parameters, gates, and in the case of

compound modules, connections and submodules. A derived class may also overwrite the

values of existing parameters.

5. Packages: A packet structure is included to reduce the risk of name clashes.

6. Inner types: Modules and connection types are used locally within a compound module when

defined within the compound module.

7. Metadata annotations: Extra information (metadata) can be annotated in the code without being

used by the simulation kernel. Annotations can be added to parameters, gates, channels and

submodules by adding properties. For instance, the measurement unit (Watts, etc.) can be

specified as metadata annotations.

3.4.2 Network Definition

A network is the top-level entity in the OMNeT++ simulation environment. The network, a compound

module itself, defines all sub-top-level simple and compound modules and its interconnections. The

compound modules, in turn, hold the definitions of any low-level entities. The NED description of a

standard network is:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

34

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

/ / A ne twork example
/ /
network Network {
parameters : / / Example p a r a m e t e r s

param1 = 1 0 ;
param2 = t r u e ;
param3 = normal (1 0 0 , 1 0) ;
. . .

submodules : / / Example submodules
node1 : t y p e 1 ;
node2 : t y p e 2 ;
node3 : t y p e 3 ;
. . .

c o n n e c t i o n s : / / Example c o n n e c t i o n s
node1 . g a t e 1 <−−> node2 . g a t e 1 ;
node2 . g a t e 2 −−> node3 . g a t e 1 ;
node3 . g a t e 3 <−− node1 . g a t e 3 ;
. . . }

As mentioned earlier, parameters can take on a variety of data types. Submodules are named and

defined by the type of module (the name provided for the simple or compound modules). Unidirec-

tional connections are denoted by --> and <--, whereas a bidirectional connection is depicted by

<-->. Only one connection is allowed per gate.

3.4.3 Gates

Gates are the connection points of modules. Three types of gates exist, namely input, output and

inout gates. Unidirectional connections are connected to input and output gates and bidirectional

connection are used for inout gates. Nevertheless, unidirectional connections are also allowed on

inout gates. A gate can be defined as a single gate or a gate vector. The definition of a vector is akin to

the definition of an array in C++. Square brackets are added, with either a predetermined or an open

size. One is able to dynamically add gates to a vector by using the increment operator (e.g. gate++)

if no size is defined. The current size of a gate vector is queried by sizeof() operator in C++.

Messages are sent/received at gates via the sendDirect() method; however, if it is desired to send

messages directly to a specific gate, a gate should be annotated with @directIn.

3.4.4 Simple Module Definition

Simple modules are basic atomic components of a network or compound module. A simple module

is defined with the simple keyword as follows:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

35

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

/ / A s i m p l e module example
/ /
s imple moduleName{
parameters : / / Example p a r a m e t e r s

param1 = 10 ms ;
. . .

g a t e s : / / Example g a t e s
input i n ;
output o u t ;
i n o u t bo th ;
. . . }

3.4.5 Compound Module Definition

Compound modules contain one or more submodules to group them into a larger unit. Akin to simple

modules, a compound module has gates and parameters, which can be passed to submodules. How-

ever, compound modules do not exhibit active behaviour. A compound module is defined by the

module keyword as follows:

/ / A compound module example
/ /
module moduleName{
t y p e s :
parameters : / / Example p a r a m e t e r s

param1 = 10 ms ;
. . .

g a t e s : / / Example g a t e s
input i n ;
output o u t ;
i n o u t bo th ;
. . .

c o n n e c t i o n s : / / Example c o n n e c t i o n s
node1 . g a t e 1 <−−> node2 . g a t e 1 ;
node2 . g a t e 2 −−> node3 . g a t e 1 ;
node3 . g a t e 3 <−− node1 . g a t e 3 ;
. . .

submodules : / / Example g a t e s
node1 : t y p e 1 ;
node2 : t y p e 2 ;
. . . }

All the modules contained in the compound module are listed in the submodules section, similar

to network definitions. The internal interconnections are also listed under connections. Any modules

and channel to be used locally are defined in the types section as inner types. Via subclassing,

compound modules can be extended using the extend keyword. The extended module inherits all

the properties of the base module, as well as additional submodules, parameters, or gate definitions

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

36

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

in the extended module, for example:

/ / An e x t e n d e d compound module example
/ /
module extendedModuleName ex tends moduleName{
parameters : / / Example a d d i t i o n a l p a r a m e t e r s

param2 = 30 Mbps ;
. . .

g a t e s : / / Example a d d i t i o n a l g a t e s
i n o u t bo th2 ;
. . .

c o n n e c t i o n s :
/ / Example a d d i t i o n a l c o n n e c t i o n s

node3 . g a t e 1 −−> bo th2 ;
node3 . g a t e 2 <−− node1 . g a t e 2 ;
. . .

submodules : / / Example a d d i t i o n a l g a t e s
node3 : t y p e 3 ;
. . . }

3.4.6 Channel Definition

Channels are introduced to create a reusable connection with predefined properties. In essence, chan-

nels are simple modules, with C++-classes behind them. A channel can be defined within a network to

reduce namespace pollution. A channel is defined in the type section of the network definition:

/ / A ne twork w i t h a c h a n n e l t y p e
/ /
network Network {
t y p e s :

channel C {
d e l a y = 100 ms ;
d a t a r a t e = 100 Mbps ;
} ;
. . .

c o n n e c t i o n s :
node1 . g a t e 1 −−> C −−> node2 . g a t e 2 ;
. . . }

Alternatively, a custom channel can be extended from any existing type:

/ / An Ex tended c h a n n e l
/ /
channel C ex tends ned . Da taRa teChanne l {

d i s t a n c e = 200 km ;
}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

37

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

Three predetermined types of channels are available to the user. These are listed below:

• IdealChannel: A channel with no parameters. An IdealChannel simply relays mes-

sages without any effect. Any connections without a specified channel is assumed to be an

IdealChannel.

• DelayChannel: This channel introduces a propagation delay. Parameters:

– delay: A double value to indicate the delay of a channel. The value must be followed

by a time unit (s, ms, etc.).

– disabled: A boolean value. If true, all messages sent through this channel are dropped.

• DataRateChannel: This channel introduces the datarate of the channel.

– datarate: A double value indicating the datarate of the channel, needs to be specified

in bits per second or its multiples as a unit (Kbps, Mbps, etc.).

– ber: The bit error rate (ber) is a double value parameter in [0, 1]. The channel randomly

decides on when an error occurs and sets an error flag in the packet object.

– per: The packet error rate (per) is a double value parameter in [0, 1].

3.4.7 Configuration File

A single configuration file allows the user to define all the required parameters in the simulation

model. During the initialisation process, the assigned values are copied to the parameters in all the

defined modules and channels. The simulation environmental variables are also defined in this file.

Some examples include maximum simulation time, maximum CPU time, time scale exponent, GUI

or command-line interface, allowable stack usage, and partitioning information.

3.5 SIMULATION CONCEPTS

3.5.1 The Event Loop

The DES maintains the set of future events in the FEL or Future Events Set (FES). The following

pseudocode describes the event loop [58]:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

38

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

i n i t i a l i s e : i n c l u d e s b u i l d i n g t h e model and i n i t i a l i s i n g e v e n t s i n FEL

w h i l e (FEL n o t empty)

{

r e t r i e v e f i r s t e v e n t from FEL , p l a c e i n CEL

t := t imes t amp of t h i s e v e n t (s i m u l a t i o n t ime)

p r o c e s s e v e n t : new e v e n t s i n CEL or d e l e t e p r o c e s s e d ones

}

f i n i s h s i m u l a t i o n (w r i t e s t a t i s t i c a l r e s u l t s , e t c .)

The initialisation phase entails the data structures representing the model being built for simulation.

Initial events are scheduled and the initialisation code for each module is executed. The loop extracts

events from the CEL and processes them in strict timestamp order to maintain causality. The sim-

ulation is terminated once all the scheduled events have been processed, the CPU time has reached

a given limit or until statistics collected during the simulation run have reached a desired accur-

acy.

3.5.2 Events

Events are represented by messages in the OMNeT++ environment. Each event is represented by the

cMessage class or one of its subclasses. A message is sent from one module (the source module)

to another module (destination module). Once a message arrives at the destination module, an event

occurs at the arrival time at the module. The event of timeouts, or timers, are generated by the

module by sending a message to itself. A scheduling priority can be assigned to messages in order to

account for messages arriving simultaneously; the one with the smaller integer value is executed first.

Otherwise, the message with the earliest arrival time is executed first.

3.5.3 Simulation Time

The simulated time is represented by a 64-bit integer, using a decimal fixed-point representation

type, named simtime_t. The resolution is determined by the user by setting the appropriate scale

exponent. The exponent can vary between zero and -18 in multiples of three. Table 3.3 shows the

possible resolutions.

The SimTime class performs mathematical operations as 64-bit operations on simtime_t vari-

ables. Provision is made to account for integer overflow and any other error will be reported and

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

39

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

Table 3.3: Simulation time resolutions

Exponent Resolution Time range
-18 1 as ±9.22 s
-15 1 fs ±153.72 minutes
-12 1 ps ±108.57 days
-9 1 ns ±292.27 years
-6 1 µs ±292271 years
-3 1 ms ±2.9227e8 years
0 1 s ±2.9227e11 years

halt the simulation. The SimTime class provides methods to convert the 64-bit value to double

and float types. Various other methods exist that return the simulation time as a string, the cur-

rent global scale and resolution, maximum possible simulation time and a number of other conver-

sions.

3.6 RANDOM NUMBER GENERATION

Ideally, the random numbers generated during simulation runs should be unknown and unpredicat-

able. These numbers are generated via algorithms that repeat the numbers after a certain period. To

account for randomness, these algorithms take a seed value and commence with deterministic calcu-

lations to produce a random number. The next seed is also calculated. These algorithms are known

as Random Number Generators (RNGs), or Pseudo RNGs (PRNGs).

If provided with the same seed, RNGs always produce the same sequence of numbers. This feature

is of particular importance, since it makes simulation runs repeatable, or on the the other hand truly

random. RNGs produce uniformly distributed integers in a specified range, usually [1, 232]. Mathem-

atical transformations are employed to produce variates that conform to some distribution. Table 3.4

summarises supported distributions. It is also possible to specify custom distributions by providing

the corresponding histograms.

The following RNGs can be selected in the configuration file:

• Mersenne Twister RNG: The default RNG used by OMNeT++ is Mersenne Twister (MT). MT

has a period of 219937 - 1 and is very fast; at least as fast as ANSI C’s rand().

• Minimal standard RNG: This RNG uses linear congruential generator (LCG) with a cycle

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

40

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

Table 3.4: Summary of available distributions in OMNeT++.

Function Description
Continuous distributions

uniform(a, b) Uniform distribution in the range [a, b)
exponential(mean) Exponential distribution with the given mean
normal(mean, stddev) Normal distribution with the given mean and stan-

dard deviation
truncnormal(mean, stddev) Normal distribution truncated to non-negative val-

ues
gamma_d(alpha, beta) Gamma distribution with parameters alpha > 0, beta

> 0
beta(alpha1, alpha2) Beta distribution with parameters alpha1 > 0, al-

pha2 > 0
erlang_k(k, mean) Erlang distribution with k > 0 phases and the given

mean
chi_square(k) Chi-square distribution with k > 0 degrees of free-

dom
student_t(i) Student-t distribution with i > 0 degrees of freedom
cauchy(a, b) Cauchy distribution with parameters a, b where b >

0
triang(a, b, c) Triangular distribution with parameters a ≤ b ≤ c,

a 6= c
lognormal(m, s) Lognormal distribution with mean m and variance

s > 0
weibull(a, b) Weibull distribution with parameters a > 0, b > 0
pareto_shifted(a, b, c) Generalised Pareto distribution with parameters a,

b and shift c
Discrete distributions

intuniform(a, b) Uniform integer in [a, b]
bernoulli(p) Result of a Bernoulli trial with probability 0 ≤ p ≤

1
binomial(n, p) Binomial distribution with parameters n ≥ 0 and 0

<= p ≤ 1
geometric(p) Geometric distribution with parameter 0 ≤ p ≤ 1
negbinomial(n, p) Negative binomial distribution with parameters n >

0 and 0 ≤ p ≤ 1
poisson(lambda) Poisson distribution with parameter lambda

length of 231 - 2. This RNG is only suitable for small-scale simulation models owing to the

small cycle length, especially on fast computers.

• Akaroa RNG: An external RNG available from the Akaroa library.

• Others: OMNeT++ allows the plugging in of custom RNGs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

41

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

3.7 MESSAGES

Messages represent events in OMNeT++ simulation environment. Messages are defined by the

cMessage class. The cMessage class contains several fields in its data structure, for use by the

simulation kernel and for convenience for the user. The contents of these fields are typically extracted

when processing a message. Some of the important fields are listed below:

• name: This is a string data field, containing the optional name of a message. It is especially

useful to name messages for debugging purposes.

• kind: An integer field used to categorise a message.

• scheduling priority: This integer field determines the delivery order of the current

message, should it arrive simultaneously with other messages.

• send time: The time at which the message was sent by the source module.

• arrival time: The time at which the message arrives at the destination module.

OMNeT++ provides functionality to add additional fields to the cMessage class easily. A new

message class is defined, which includes the new defined data fields. The new message name is used

to define a message variable instead of cMessage. A subclass of cMessage, named cPacket,

adds extra data fields to the message, which is useful for computer network or any other packet-based

simulation. Since the primary concern of this research is to simulate circuits rather than packets, the

cPacket class variation will not be discussed. A message is defined by:

/ / OMNeT++ custom message
/ /
message messageName {

i n t newFie ld1 ;
l ong newFie ld2 = 123456;
s t r i n g newFie ld3 ; }

The above definition generates a class for messageName with the standard cMessage methods,

as well as getter and setter methods for the new data fields. Therefore, the programmer can easily

access the new data fields when processing the message. Data fields are also not limited to scalar

types, but fixed-sized and dynamic arrays are permitted. More complex data structures (using ANSI

C’s struct) can be defined if complex data structures are required. The convention when using

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

42

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

OMNeT++ is to define a new message in the scope of the simulation kernel and to send a reference

(pointer) of the message between modules.

3.8 SIMPLE MODULES

Simple modules are the active atomic elements in the OMNeT++ environment. The active behaviour

is programmed in C++, using the OMNeT++ simulation class library. The functionality is imple-

mented by subclassing the cSimpleModule class with virtual members to allow the programmer

to redefine functions to implement the required behaviour. By default, OMNeT++ searches for a

C++ class of the same name as the simple module type in the NED language. If this is not the case,

the programmer is able to explicitly identify an alternative class to account for the behaviour via the

@class annotation.

The cSimpleModule class has four virtual member functions that interact with the simulation

kernel. These are intended to be redefined by the actual module class of instantiated modules. These

members are listed below:

• initialize(): This method is invoked after the layout of the network has been completed.

Variables are usually initialised at this stage by retrieving parameter values from the NED

descriptions.

• handleMessage(cMessage *msg): This method accepts the pointer to the message that

caused the event and performs the processing of the event. The method returns control to the

simulation kernel immediately after it completes. Simulation time never elapses during the

processing of handleMessage().

• activity(): This method is launched as a coroutine during network setup along with the

simulation kernel. Blocking functions, such as receive() or wait(), are used to suspend

the routine until a message arrives. Simulation time elapses with the blocking functions. The

routine lasts as long as the entire simulation run.

• finalise(): This method is called upon successful completion or user termination of the

simulation run. The recommended use is to record statistics of the simulation run (collected

during the simulation run).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

43

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

3.8.1 Message Handling

Functionality is implemented via one of two programming models: coroutine-based and event-

processing functions. In coroutine-based programming, the module code runs in its own non-

preemptively scheduled thread. Control is received from the simulation kernel once an event is issued.

The activity() method is used when following a coroutine-based approach. The function typic-

ally never returns. When using event-processing programming, the kernel simply invokes the required

module object function and returns immediately after processing. The handleMessage() method

is used in this approach.

The main disadvantage of using a coroutine-based approach, is that each module object to which

functionality is added via activity() requires its own CPU stack. This results in hefty memory

requirements for large models and scalability is therefore limited. Switching overhead is also intro-

duced, increasing the total simulation time. The pros of using a coroutine-based approach is that

no initialisation is required (no call to initialize(), and it is a natural programming model

for most experienced programmers. On the other hand, event-processing allows faster switching

between simulation kernel and function calls, and consumes much less memory. However, all local

variables requires to be initialised in initialize(). Generally, handleMessage is favoured

over activity.

3.8.2 Message Passing

The most frequent task of simple modules is message passing and reception. Messages can be sent via

gates to a predetermined path, or directly to another gate. A message can also be delayed or scheduled

at a certain timestamp for delayed sending of a message. A scheduled message can be cancelled at

any time. Table 3.5 summarises the functions that can be used with each programming model.

3.8.3 Parameters

Parameters defined in the NED descriptions are represented by the cPar class. The par(..) family

methods are used to access the value of a parameter in C++ code. It can be used to store the value in

local variables or used directly in mathematical operations. The values of the parameters can also be

changed during runtime, although this is rarely needed. Overloaded assignments operations exist for

various types, including long, double, boolean, int, etc.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

44

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

Table 3.5: Message handling and passing functions

handleMessage(..) activity()

• send(..): A family of functions used to send
messages to other modules via one of the gates
of the source module.

• sendDirect(..): Used to send messages
directly to one of the gates of the destination
module.

• scheduleAt(..): Schedule an event at a
certain timestamp.

• cancelEvent(..): Delete an event sched-
uled by scheduleAt().

• sendDelayed(..): Delay the sending of a
message.

• receive(..): Block module execution until
a message arrives.

• wait(..): Suspend the modules for some
time (virtual time)

• send(..): A family of functions used to send
messages to other modules via one of the gates
of the source module.

• sendDirect(..): Used to send messages
directly to one of the gates of the destination
module.

• scheduleAt(..): Schedule an event at a
certain timestamp.

• cancelEvent(..): Delete events sched-
uled by scheduleAt().

• end(): Used to finish execution of this mod-
ule. No parameters.

• sendDelayed(..): Delay the sending of a
message.

Modules may be required to respond to certain parameter changes in the simulation model. To account

for this, the handleParameterChange() method can be redefined to handle parameter changes.

This method is called by the simulation kernel whenever any parameter is altered, and control is

returned immediately.

3.9 COMPOUND MODULES

As discussed earlier, compound modules are not active elements in the simulation model. The inten-

tion of defining compound modules is purely to act as a hierarchical interface for underlying simple

modules. Compound modules are discussed in more detail in subsection 3.4.5.

3.10 PARALLEL SIMULATION

As cluster computing is becoming a norm in high-intensity computing, the need for the ability to dis-

tribute the workload over multiple processors arises. Because of the nature of large-scale simulation

models, OMNeT++ has taken great care to incorporate the option of parallel distributed simulations.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

45

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 The OMNeT++ Simulation Environment

OMNeT++ permits the simulation model to be distributed over multiple CPU cores using the MPI

standard. Communication can also be implemented as a file system based mechanism, using text files

in a shared directory. This is especially useful when multi-node clusters are considered and network

communication and synchronisation are required between local processes.

For parallel simulation, the OMNeT++ model is partitioned into several local processes. Each local

process is executed independently on a different host or processor, maintaining its own simulation

time and FELs and CELs. The main issue is to synchronise the local processes in order to maintain

causality of events, i.e. to ensure that a message arrives at another local process on the timestamp it

was intended. OMNeT++ employs synchronisation using the Null Message Algorithm (NMA) with

link delays as lookahead [59]. One great advantage of this approach is that the serial model can easily

be converted to a parallel model with very little or no modification. The main disadvantage is that

message overhead is created as inter-process messages are transmitted. The constraints of a parallel

model are the following [59]:

• Modules communicate via message passing only (no direct method calls).

• Global variables are not permitted (standard for distributed memory parallel computation).

• There are some limitations on direct message sending.

• Lookahead must be incorporated in the form of link delays.

This functionality may significantly speed up the simulation execution time if the correct partitioning

is employed, especially if most modules are implemented as coroutines. Unfortunately, the ideal par-

titioning usually has to be determined through trial and error. The ideal partitioning of the presented

simulation model was investigated and is presented in the following chapter.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

46

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4

SIMULATING AMDF BEHAVIOUR

4.1 CHAPTER OVERVIEW

This chapter presents the model of an AMDF constructed in the OMNeT++ environment. The purpose

of this model is to evaluate the dynamic behaviour of an AMDF in an exchange environment and

to explore possible equipment card redundancy scenarios. The architecture and the modules are

described in detail. The hierarchical structure of the model is shown in Figure 4.1.

Figure 4.1: Hierarchical structure of the model.

4.2 THE NETWORK

The AMDF model consists of several million modules (including clients, controllers and individual

switches) when tens of thousands of clients are simulated. A hierarchical model is used to employ

modularity, which allows the user to reflect the logical structure of the actual system in the model

structure. Figure 4.2 depicts an example of the logical structure in an abstract diagram.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Simulating AMDF Behaviour

���

�����

����	�

�	

��
������
�

��������	
�����
�������
���
�

���
��

����������
��������
���

�
�	��

����������

��������������������

��
�������������	
�������
��������

���
��

��

��	����

�
����

Figure 4.2: Abstract diagram of an AMDF [60].

The top-level entity is a translation of the diagram in Figure 4.2. It represents the environment of

clients requesting service activations, discontinuations or service changes. The user specifies via the

configuration file a number of parameters used in the model, such as the total number of clients,

clients per AMDF module, equipment card lifetimes, etc. Table 4.1 lists all the parameters that can be

altered for a simulation run. The model automatically builds a modular AMDF based on the provided

input parameters.

For demonstration purposes, a small modular AMDF with 15 clients, constructed using OMNeT++,

is depicted in Figure 4.3 to show the logical structure. The modules and its underlying submodules

are discussed in detail in the succeeding sections.

4.3 SWITCHES AND SWITCHING MATRIX

The switches are modelled as simple entities that merely pass messages received at their input gates

when they assume the CLOSED state; otherwise, the messages are dropped. For visualisation pur-

poses, the switches appear red for open switches, and green for closed switches. Figure 4.4 displays an

example of a switching matrix containing an arbitrary switching configuration. The line splitters and

joiners (grey boxes) are implemented purely for simulation purposes, since multiple connections are

not permitted in OMNeT++. Splitters and joiners are programmed to relay messages arriving at their

gates to the correct switch immediately. The information regarding the intended destination switch

is encoded in the message itself. The actual matrix is implemented as an any-to-any non-blocking

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

48

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Simulating AMDF Behaviour

Table 4.1: List of simulation parameters.

Parameter/Feature Description
Clients

totalClients Total number of clients to be simulated / capacity of the
module AMDF.

numClientsPerModule Number of clients per AMDF module. Determines num-
ber of AMDF modules.

equipmentPerClient Number of possible services allowed per client, e.g.
ADSL, POTS, etc.

CO equipment
cardLifetime Configurable random expected lifetime of equipment

cards, sampled from any statistical distribution.
redundancyPercentage Redundancy percentage of equipment cards in the CO.

Technician
visit Configurable random expected time technician arrives

after an alarm was issued, sampled from any statistical
distribution.

averageTimePerFix Configurable random expected time to replace faulty
hardware by technician, sampled from any statistical dis-
tribution.

Parallel partitioning
sDelay Link delays for inter-partition communication.
Partition-id Each module must be assigned to one, and only one par-

tition. Partitions are specified by a certain partition ID,
which is assigned to each module in the model.

cross-connect matrix. Any input (client) line can be connected to any output (equipment) at any in-

stance. Each switch is independently controlled by the AMDF module controller (local controller),

which in turn receives instructions from the master controller.

As far as redundancy is concerned, Figure 4.4 shows a configuration of an AMDF module for five

clients. Note that there are six equipment cards for each component available. This is due to the

20 % redudancy percentage that was defined for this model; 20 % redudancy for five clients trans-

lates to one redundant equipment card available for each service to each AMDF module serving five

clients.

4.4 MAIN CONTROLLER

The main controller receives requests from the call centre once the Network Operations Centre (NOC)

has received client requests. The main controller contains a record of all client-service connections

and is updated accordingly during client requests. The appropriate instructions are passed to the local

AMDF controller of the corresponding AMDF to which the client in question is connected. The

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

49

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Simulating AMDF Behaviour

Figure 4.3: A full modular AMDF constructed in OMNeT++. A total number of 15 clients are
simulated, with five clients per AMDF module.

Figure 4.4: An extract of a switching matrix with an arbitrary switching configuration as generated
by the OMNET++ model.

main controller does not have the ability to control the switches in the switching matrix directly. The

main controller is employed as an event-processing function. No parameters are defined for the main

controller.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

50

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Simulating AMDF Behaviour

4.5 MODULE CONTROLLER

The local module controller is in direct control of the switching matrix. Once all the details of the

client and his/her request are retrieved, the corresponding and affected switch number is obtained

from the local database and the appropriate action is performed. This controller is also respons-

ible for all fault detection and correction. If one of the CO equipment cards fails (i.e. exceeds its

expected lifetime), the controller takes all the necessary steps required to switch the affected client

to one of the redundant equipment cards, given that the total capacity of the AMDF module is not

exceeded. The connection to the faulty equipment is severed until a technician arrives to attend to

the problem or replace the card. Statistics are collected during the simulation run, which includes

total and average equipment failures per time interval, the total average duration of technician visits

and repair times, the total and average downtime experienced by clients, and the number of times

(and total time) the system exceeded its maximum switching capacity for given redundancies. The

actual number of AMDF modules is determined by dividing the totalClients parameter by the

numClientsPerModule parameter. The user can readily add new statistics to be recorded for

whatever purpose. The module controller is also implemented as an event-processing function.

4.6 CLIENTS

The total number of clients is defined in the configuration file in totalClients. Clients are instan-

tiated as coroutines for ease of implementation. The clients are used to feed the model with requests

for service activations, discontinuations or changes. Utilising the built-in RNGs and statistical dis-

tribution functions of OMNeT++, a client randomly issues requests with some probability. These

probabilities can be configured beforehand. The simulation routinely runs through the entire array

of clients, and depending on the current state of the client, the client enters another state with some

probability. As a result, the array of clients takes up most of the processing time. A client can assume

one of five states:

• CONNECTED: The state a client assumes when connected to one of the equipment cards.

• DISCONNECTED: The state a client assumes when not connected to any equipment card.

• REQUESTNEWSERVICE: A client enters this state when requesting a new service while in the

DISCONNECTED state.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

51

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Simulating AMDF Behaviour

• DISCONTINUESERVICE: A client enters this state when cancelling the current service(s)

while in the CONNECTED state.

• CHANGESERVICE: A client enters this state when requesting a new service after cancelling a

service while in the CONNECTED state.

The statistical frequencies of client requests are configurable to allow client profiles to be created in

order to explore typical scenarios. For example, one might be interested in the behaviour of an AMDF

during special events when a temporary increase in communication traffic is observed. Such an event

could include a World Cup tournament or the Olympic Games.

4.7 EQUIPMENT CARDS

During initialisation, each equipment card is assigned a random expected lifetime based on

the statistical distribution selected for the cardLifetime parameter. The actual number of

equipment cards is determined by the number of clients per AMDF module, numClients,

and the redundancy percentage, redundancyPercentage, and the number of services,

equipmentPerClient. Thus, the total number of equipment cards is determined by

numClients × equipmentPerClient ×(1+redundancyPercentage).

An equipment card can assume one of two states:

• OPERATIONAL: The state the equipment card assumes when operational. For visualisation

purposes, an operational card’s colour is unique to the service.

• FAULTY: The state the equipment card assumes when faulty. For visualisation purposes, a

faulty card’s colour temporarily turns to red and returns to the service colour when operational.

4.8 ALARMS

Equipment cards are assigned random lifetimes with the built-in statistical distribution functions.

When an equipment card exceeds its assigned expected lifetime, the equipment card assumes the

FAULTY state. Subsequently, an event is scheduled when the alarm alerts the main controller (con-

taining a record of all client-service connections) of the failure. The main controller, in turn, informs

the corresponding module controller of the fault, and the module controller performs the necessary

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

52

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Simulating AMDF Behaviour

steps to rectify the problem. At the same instance, the main controller schedules an event for a techni-

cian call-out based on the visit parameter. The alarm has two possible states: ON and OFF. Once

the technician arrives, the alarm is deactivated.

4.9 TECHNICIAN

Once a call-out is made, a technician is dispatched to the AMDF. Upon arrival, a message is imme-

diately sent to the alarm to be deactivated (OFF state). Depending on the number of faulty pieces of

equipment, an event is scheduled at a time proportional to the averageTimePerFix parameter to

inform the main controller when the replacement of all the faulty hardware is complete. At this stage,

the module controller switches all the affected clients back to the replaced cards.

4.10 CUSTOM MESSAGES

Three custom messages with custom data fields were defined for use in the AMDF model. These

data fields contain additional information regarding the operation of the model. The three messages

are: clientRequest, fault, switchControlMessage. Table 4.2 lists and discusses all the

messages used in the model.

4.11 PARALLEL DISTRIBUTED EVENT SIMULATION EVALUATION

In order to evaluate the effectiveness of the implementation of the simulation model, the features

programmed into the model adhering to the requirements in section 2.2 had to be assessed. It was

hypothesised that a potential problem with the current model would be scalability and Parallel Dis-

tributed Event Simulation (PDES). A run of the serial model confirmed that a large number of clients

(over 10,000) did not scale well with a single CPU core, resulting in very large simulation execution

times. The optimal partitioning of the model and process distribution had to be investigated. In view

of the number of clients for even a small-sized AMDF, a logical approach would be to divide the cli-

ents evenly over the available processes. To aid in the assessment of the effectiveness of a proposed

parallel model, a criterion was developed in [61], which was used to evaluate the potential parallelism

of the serial model.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

53

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Simulating AMDF Behaviour

Table 4.2: Summary of custom messages used in AMDF model.

Source modules Destination modules Fields
clientRequest

clients
main controller

main controller
module controller

• name: Name of the client for debugging pur-
poses.

• surname: Surname of the client for debug-
ging purposes.

• ID: ID of the client module.

• service: An enumerated type signifying the
requested service to be activated or discontin-
ued.

• oldService: Current service of the client to
be discontinued during change request.

• request: An enumerated type used to de-
termine the action to be performed based on
the client’s request.

fault

card main controller • cardIndex: Index of the card in the equip-
ment card array.

• status: Operational state of the card.

• oldSwitch: Index of the old switch during a
change (when client requests service change).

• cardName: Name of the card for debugging
purposes.

switchControlMessage

main controller
local controller

local controller
switch

• command: An enumerated command sent to
open or close a switch.

As a benchmark, an unpartitioned model was run for 3200 clients, 100 clients per module, 20 %

redundancy in express mode1. The goal was to determine the optimal set of inter-partition link delays

and number of CPU cores to maximise the execution speedup.

4.11.1 Feasibility Criterion

The events/sec (P) and events/simsec (E) values were obtained with P = 437,305 and E = 320. Note

that P and E are fixed properties of the serial model, and cannot be changed during runtime. To

1Fastest possible execution, non-debug mode with no visualisations and minimal status updates about the progress

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

54

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Simulating AMDF Behaviour

increase the effectiveness of the PDES implementation, the link delays between partitions should

be maximised, since the null message protocol in MPI uses link delays as lookahead (L). L should

be extremely large compared to 1/E (L » 1/E) and MPI end-to-end latency (τ). A cluster typically

exhibits higher values for τ , since the actual speed of the switch limits its performance. However,

high-speed interconnections used in most clusters exhibit values ranging from 5 µs to 30 µs, typically

20 µs [61]. The number of partitions is denoted by n. The coupling factor, λ , is considered:

λ =
L×E

τ×P×n
(4.1)

It follows from the definition that if λ < 1, frequent blocking is guaranteed and good performance in

terms of execution times from the simulation cannot be expected. Ideally, λ should be greater than

10.0. A typical plot for λ as a function of the number of cores and partitions is shown in Figure 4.5.

It is evident that favourable values of λ are for a lower number of cores and larger link delays. The

effect of the NMA overhead is apparent for a larger number of cores. The limitation, however, is

apparent when selecting the appropriate link delays. If the value of L is too high, the frequency of the

events to be generated between local processes will drop, resulting in a lower value for E. In addition,

the simulation model may not be a true reflection of the actual model if link delays are unrealistically

high between various modules. For this reason, the values for L was unrealistically varied (up to

1,000 s) to illustrate the effect.

Figure 4.5: Lambda plot as function of link delays and number of cores [60].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

55

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Simulating AMDF Behaviour

4.11.2 Results and Discussion

The simulation was run with a simulation time limit of 100,000 simulation seconds (27,78 hours vir-

tual time) and the elapsed time was found to be around 75.9 seconds on a single core for all values

of L. The hardware environment was a Linux-based cluster of 2.66GHz 2x Quad-Core, 8GB RAM

PCs, interconnected via Gigabit Ethernet. The tasks performed during the run included various client

requests, technician visitations, equipment failures at random times, replacement of faulty equip-

ment and automatic fault correction. The execution time for various configurations was noted and is

presented in Table 4.3.

Table 4.3: Summary of simulation runs of the OMNeT++ modular AMDF model.

Number of cores (n)
1 2 4 8 16 32

100 ms 75.9 error error error error error
1 s 76.4 68.8 21.9 10.4 110.9 476.3
5 s 75.9 67.2 21.4 12.2 30.2 100.7

10 s 75.5 67.2 20.8 10.2 19.3 88.3
100 s 75.6 67.1 19.9 9.6 16.7 10.0

Link Delay (L)

1000 s 75.8 67.1 19.7 9.4 12.6 5.6

Some configurations yielded errors, since the link delays are not classified as sufficiently large ac-

cording to the NMA class. This means that in order to maintain causality, the resulting speedup is

severely penalised owing to synchronisation. The corresponding speedup for each simulation run was

calculated and the results are presented in Figure 4.6. Client request intervals and equipment card ex-

pected lifetimes were unrealistically shortened in order to stress the model in terms of discrete events

per second. It is therefore expected that longer simulation runs (in excess of tens of millions of virtual

seconds) will follow the tendency of the graph in Figure 4.6 for lower client request frequencies and

longer lifetimes as well.

Note that no significant speedup is observed between one and two cores, since all client coroutines are

still executed on a single core. Otherwise, a significant overall speedup is observed for n > 2. This is

due to the fact that the client coroutines are evenly divided between cores. It is clear that the presence

of MPI communication overhead heavily affects the performance of the PDES model between eight

and 16 cores, especially for smaller link delays. The performance penalty may be attributed to extra

overhead added by the switch connecting the hosts in the cluster. The effect is especially evident

when inter-process messages and NMA synchronisation are more frequent (i.e. when more hosts

are involved). Furthermore, since the load is distributed, E and P are significantly reduced for all

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

56

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Simulating AMDF Behaviour

Figure 4.6: Speedup results for various L and n values.

local processes. The positive effect of using multi-node clusters becomes clear for extremely large

link delays. Unfortunately, such large link delays (to model the actual system accurately) may be

unacceptable for most designs. It is therefore concluded that the most efficient possible speedup can

be obtained using MPI within a single node in the cluster for the current model.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

57

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5

REDUNDANCY OPTIMISATION MODEL

5.1 CHAPTER OVERVIEW

This chapter presents and discusses a mathematical model used to optimise the redundancy allocation

of a concept design. The purpose of this model is to supplement the AMDF model constructed in

OMNeT++ in terms of evaluating and maximising the expected lifetime of a concept design subject

to certain optimisation criteria such as cost, power and size. As mentioned in section 2.5, there are two

general approaches to improving system reliability: increasing component reliability and/or adding

redundancy. In order to increase the overall system reliability beyond that of the inherent reliability of

standard grade components, the RAP was explored to determine the optimal redundant unit allocation

for each component under various design constraints. Moreover, the extended specifications and cost

of military grade components are not justified for this research.

5.2 NOTATIONS

This section lists the notations and symbols used to model the RAP (following the convention used

in [23]):

n number of components in the system

i component i

x x1,x2, . . . ,xn; decision vector

xi number of type-i elements selected for component i

Ti(x,ξξξ) lifetime of subsystem i

T (x,ξξξ) lifetime of system

y y1,y2, . . . ,yn; state vector

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

y(t) y1(t),y2(t), . . . ,yn(t); state vector at time t

yi state of component i

yi(t) state of component i at time t

Ψ(y) state of the system

ξi, j random lifetime of redundant unit in component i, j = 1,2, . . . ,xi

ξξξ (ξ1,1,ξ1,2, . . . ,ξ1,x1 , . . .ξ2,1,ξ2,2, . . . ,ξ2,x2 , . . . ,ξn,1,ξn,2, . . . ,ξn,xn)

N number of cycles used for stochastic simulation

M number of training pairs

C Cost constraint

P Power constraint

W Weight/size constraint

5.3 ASSUMPTIONS

Generally, the following assumptions are made in redundancy optimisation, and was used when im-

plementing concept designs in the model:

• All components in the system can assume one of two states: functional (denoted by 1) and

non-functional (denoted by 0).

• Models can include a mixture of component redundancies with and without component mixing.

• Component failures are independent, following the convention used in stochastic optimisation

publications [23, 62–64].

• A mixture of standby and active redundancy schemes can be employed.

• The failover switching time is perfect, following the convention used in [21–23, 29].

• All lifetimes are random variables (stochastic simulation [23, 29, 62–64]).

5.4 EXTERNAL LIBRARIES

This section lists the external packages and libraries included in the model. Refer to Table 5.1 for a

brief summary of the libraries.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

59

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

Table 5.1: Summary of external libraries.

Library/package Description

Fast Artificial Neural Network (FANN)1
A free, open-source and widely used multilayer NN
library. The library is easy to use, user-friendly and
very fast in execution. The NN is implemented using
this library.

The Boost Library2

This free set of C++ library extends the functionality
of C++. The libraries range from simple pointer lib-
raries to OS abstraction. The RNGs were of partic-
ular interest in this project. All number-generating
functions are seeded by a number generated by the
/dev/urandom pseudorandom number generator.

5.5 THE MODEL

A mathematical model was realised in order to maximise the mean system lifetime, α-system life-

time, or system reliability of a concept design. Stochastic programming models concerning the max-

imisation of the expected system lifetime are presented and described in [23] for active and standby

redundancy optimisation models. The models were particularly attractive for solving the RAP, es-

pecially for complex system configurations, since the approach avoids the derivation of analytical

formulations of systems. The advantages are ease of implementation and less room for error. To

solve these models, stochastic simulation and hybrid intelligent algorithms are combined to estimate

the approximate optimal solutions. Following the guidelines presented in [23], the model is developed

using C++. A modular OO approach was followed.

5.5.1 System Performance Metrics

Typically, there are three types of system performance measures used with system structure functions

[23]:

1. Expected system lifetime, E[T (x,ξξξ)]: The goal is to maximise E[T (x,ξξξ)] as it is desirable that

the system remain functional for as long as possible.

2. α-System lifetime: The largest value of T̄ satisfying Pr{T (x,ξξξ)≥ T̄} ≥ α . The system reaches

an expected lifetime of T̄ with probability α .

3. System reliability, Pr{T (x,ξξξ) ≥ T 0}: The probability that the system lifetime will exceed or

equal a given T 0.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

60

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

Generally speaking, it is difficult to obtain exact solutions using an algorithm based on analytic solu-

tions to calculate system performance metrics. This is mainly due to the extreme complexity of

system structures. Using the proposed hybrid intelligent algorithm in [23], one way to alleviate the

intense computation commonly involved with optimisation algorithms, is to incorporate stochastic

simulation to estimate performance parameters. The relation between a system’s structure function

and the system’s expected lifetime must be clarified.

It is assumed that Ψ(y) is a monotonic decreasing function of time. That is, if Ψ(y(t1)) = 1, then

Ψ(y(t2)) = 1 given that t2 ≤ t1. The relation can formally be proposed as:

For any redundant system, T (x,ξξξ)≥ t iff. Ψ(y(t)) = 1.

Since Ψ(y(t)) is a monotone function, a bisection search algorithm can be used to determine the

crossover point where Ψ(y(t)) = 0.

5.5.1.1 Stochastic Simulation of E[T (x,ξξξ)]

The algorithm used to estimate the lifetime of the entire system can be summarised as follows:

1. Generate observational vectors, ξξξ i, from the lifetimes of each redundant unit ξ , i = 1,2, . . . ,N.

2. Provide bounds, ai and bi, such that Ψ(y(ai)) = 1 and Ψ(y(bi)) = 0 for ξξξ i, i = 1,2, . . . ,N.

3. Set ti = 0.5(ai+bi). Evaluate Ψ(y(ti)); if 1 then set new ai = ti, otherwise bi = ti, i= 1,2, . . . ,N.

4. Repeat step 3. until |ai−bi|< ε , ε is a predefined error margin, i = 1,2, . . . ,N.

5. Set Ti(x,ξξξ i) = 0.5(ai +bi), i = 1,2, . . . ,N.

6. Calculate E[T (x,ξξξ)] = (1/N)
N
∑

i=1
Ti(x,ξξξ i).

5.5.1.2 Stochastic Simulation of T̄

Firstly, generate N random observational vectors, ξξξ i, from the lifetimes of redundant unit ξξξ . Use

the bisection search method to estimate E[T (x,ξξξ i)] for each ξξξ i, i = 1,2, . . . ,N. Thus, a vector of

lifetimes, {T (x,ξξξ 1),T (x,ξξξ 2), . . . ,T (x,ξξξ N)} is obtained. Next, take N′ as the integer part of αN. The

N′th largest value in the vector of lifetimes can be regarded as T̄ . The algorithm used to estimate T̄

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

61

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

for the entire system can be summarised as follows:

1. Generate observational vectors, ξi, from the lifetimes of each redundant unit ξ , i = 1,2, . . . ,N.

2. Provide bounds, ai and bi, such that Ψ(y(ai)) = 1 and Ψ(y(bi)) = 0 for ξi, i = 1,2, . . . ,N.

3. Set ti = 0.5(ai+bi). Evaluate Ψ(y(ti)); if 1 then set new ai = ti, otherwise bi = ti, i= 1,2, . . . ,N.

4. Repeat step 3. until |ai−bi|< ε , ε is a predefined error margin, i = 1,2, . . . ,N.

5. Set T (x,ξξξ i) = 0.5(ai +bi), i = 1,2, . . . ,N.

6. Set N′ as integer part of αN.

7. The N′th largest element in {T (x,ξξξ 1),T (x,ξξξ 2), . . . ,T (x,ξξξ N)} is the estimation of T̄ .

5.5.1.3 Stochastic Simulation of Pr{T (x,ξξξ)≥ T 0}

This process is similar to the procedure for estimating T̄ . Let N′ be the number of instances that

T (x,ξξξ i)≥ T 0, i = 1,2, . . . ,N. The overall system reliability can be estimated by N′/N. The algorithm

is summarised as follows:

1. Set N′ = 0.

2. Generate an observational vector, ξξξ
0, from the lifetimes of each redundant unit ξ , i =

1,2, . . . ,N.

3. Provide bounds, ai and bi, such that Ψ(y(ai)) = 1 and Ψ(y(bi)) = 0 for ξi, i = 1,2, . . . ,N.

4. Set ti = 0.5(a+b). Evaluate Ψ(y(t)); if 1 then set new ai = t, otherwise b = t, i = 1,2, . . . ,N.

5. Repeat step 4. until |a−b|< ε , ε is a predefined error margin, i = 1,2, . . . ,N.

6. If 0.5(a+b)≥ T 0, increment N′.

7. Repeat steps 2. and 6. N times.

8. Set Pr{T (x,ξξξ)≥ T 0}= N′/N.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

62

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

5.5.2 Redundancy Optimisation Models

The models presented in [23] of particular interest to the goal of this research are the Redundancy

Expected Value Model (REVM) and Redundancy Expected Value Multi-Objective Programming

(REVMOP) models. The REVM, which deals with maximising the expected lifetime under vari-

ous constraints, is given by:



max E[T (x,ξξξ)]

subject to :
N

∑
i=1

E[ci] · xi ≤C

N

∑
i=1

E[pi] · xi ≤ P

N

∑
i=1

E[wi] · xi ≤W

xi ≥ 1, x is an integer vector

(5.1)

The model presented in Equation 5.1 can be used with CM or without CM. A large system how-

ever typically consists of several local subsystems. Thus, a programming model with multiple goals

must be considered. The REVMOP attempts to maximise the expected lifetime of all subsystems

simultaneously under concurrent constraints. The REVMOP for m subsystems is:



max E[T1(x,ξξξ),T2(x,ξξξ), . . . ,Tm(x,ξξξ)]

subject to :
N

∑
i=1

E[ci] · xi ≤C

N

∑
i=1

E[pi] · xi ≤ P

N

∑
i=1

E[wi] · xi ≤W

xi ≥ 1, x is an integer vector

(5.2)

The actual procedures for solving both models are similar. Stochastic simulation and GA operations

(selection, crossover and mutation) are performed identically for both models. The only difference is

how fitnesses are assigned to possible solutions (see subsubsection 2.6.2.3). Moreover, the REVMOP

model in Equation 5.2 produces a set of Pareto-optimal solutions, which are presented to the decision-

maker who selects the best solution according to the decision-maker’s preference.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

63

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

5.6 HYBRID ALGORITHM

This section describes the hybrid intelligent algorithm that is implemented in the model. As men-

tioned earlier, stochastic simulation is used to estimate system performance metrics. However, this

approach inherently requires significant CPU time owing to the large number of computations. In

order to counter this effect, stochastic simulation is used to produce a training data set to train in an

NN using a standard back-propagation algorithm.

5.6.1 Inclusion of the NN

The purpose of the NN is to approximate the system performance metrics during the optimisation

process instead of calculating exact values, which significantly speeds up the optimisation process.

The NN is trained from a specific set of component properties in order to approximate the system

performance metrics of a possible solution. If any of the component properties is altered, such as the

statistical distribution parameters, the NN is retrained to approximate the new system performance

metrics. The approximated functions are used by the objective function to determine the best and

worse solutions. An example of a set of uncertain functions is:


U1 : x→ E[T (x,ξξξ)]

U2 : x→ Pr{T (x,ξξξ)≥ T̄} ≥ α

U3 : x→ Pr{T (x,ξξξ)≥ T 0}

(5.3)

or collectively as an uncertain function set:



U : x→ (U1(x),U2(x),U3(x))

U1(x)≡ E[T (x,ξξξ)],

U2(x)≡ Pr{T (x,ξξξ)≥ T̄} ≥ α,

U3(x)≡ Pr{T (x,ξξξ)≥ T 0},

x≡ (x1,x2, . . . ,xn),

xi ∈ 1,2, . . .

(5.4)

Finally, the NN is embedded in a GA to form the hybrid intelligent algorithm for solving general

stochastic programming models. This method (with a trained NN) significantly reduces simulation

execution times.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

64

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

5.6.2 Data Generation

Data generation entails the collection of samples from an uncertain function via stochastic simula-

tion:

U = (U1(x),U2(x), . . . ,Um(x))

The process commences by randomly generating a single integer vector x = (x1,x2, . . . ,xn). The

integer vector is used as the input to stochastic simulation to estimate the uncertain function U(x).

This process is repeated M times, producing M input-output training samples. The exact choice of the

parameter M is not critical provided it is sufficiently large to ensure good generalisation of the NN.

The same procedure can be used to generate a test data set used for training the NN.

5.6.3 Training Process

A standard back-propagation algorithm is used to train a feed-forward NN. For most applications, a

single hidden layer suffices for the NN’s ability to generalise. The NN is defined by n input neurons, m

neurons in a hidden layer and p output layers. The number of neurons in the hidden layer is determined

by (M/(n logM))1/2 as approximated in [65] when M/n >> 30. In this case, the number of input

neurons is equal to the size of the input vector, i.e. the number of components in the system. During

training, the error between the output of the NN and a test data set is continuously monitored; once a

persistent increase in the error is noticed over multiple training cycles, training is stopped.

Using the hybrid intelligent algorithm, a possible solution vector, x, is represented as a chromosome

in the GA as V = (x1,x2, . . . ,xn). The corresponding output vector produced by the NN is evaluated

by the GA.

5.6.4 Initialisation Process

A set of initial chromosomes (the initial population) is generated. If a randomly generated chromo-

some, V , is proven to be a feasible solution by meeting all the constraints of the REVM or REVMOP,

it is accepted as an initial chromosome. This process is repeated until the initial population is filled,

based on the arbitrary, preselected population size (popsize). The resulting initial population con-

sists of a chromosome set {V1,V2, . . . ,Vpopsize}.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

65

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

5.6.5 Evaluation Function

The objective functions of all the chromosomes in the initial population are estimated by the trained

NN. Based on these values, the chromosomes are arranged in an ordered relationship. Once the

order has been determined, the population is rearranged from good to bad. The arranged population

is still denoted by {V1,V2, . . . ,Vpopsize} for convenience. Finally, a rank-based evaluation function

is defined as follows:

eval(Vi) = a · (1−a)i−1 i = 1,2, . . . ,popsize (5.5)

where a ∈ (0,1) is a parameter in the GA.

5.6.6 Selection Process

Selection is employed by spinning the roulette wheel popsize times [23]. First, the cumulative

probability for each chromosome, Vi, i = 1,2, . . . ,n is calculated based on its rank, i.e.:

qi =
i

∑
j=1

Eval(j), i = 1,2, . . . ,popsize (5.6)

Next, a random real number , r ∼ U(0,qpopsize) is generated, which is used to select a parent.

Consequently, chromosome i is selected for the new population in the next generation if qi−1 < r < qi

with q0 = 0, i = 1,2, . . . ,popsize.

5.6.7 Crossover

The crossover operation requires that two parents are selected using the selection process described

above. A random real value, r ∼U(0,1) is generated for each i = 1 to popsize. If r < Pc (cros-

sover rate), chromosome Vi is selected as one of the parents. Next, the two crossover points, n1

and n2, are determined randomly. The crossover is performed as described in subsection 2.7.1. The

purpose of crossover is to create more feasible chromosomes in context of the problem, which is

attempted by merging the genes of the best chromosomes in a population to hopefully form a better

offspring.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

66

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

5.6.8 Mutation

Similar to the crossover operation, a random real value, r ∼U [0,1], is generated for each chromo-

some. Chromosome Vi is only selected for mutation provided that r < Pm (mutation rate). A random

integer, n′ ∼U [1,n], is generated as the mutation position. Another random integer is generated to

replace the gene at n′. In other words, a random solution at another location in the search space

is considered. After mutation and crossover operations are completed on a candidate chromosome,

the same feasibility check is performed to ensure the chromosome does not exceed any design con-

straints.

5.6.9 Hybrid Intelligent Algorithm Procedure

5.6.9.1 Single Objective

After selection, crossover and the mutation operation are completed, a new generation is available

for the next evaluation. The hybrid intelligent algorithm is terminated after a user-defined number of

cyclic repetitions have been completed. The execution cycle is summarised below:

1. Define component parameters, system structure function and stochastic simulation parameters.

2. Generate training and test data sets for uncertain function(s) via stochastic simulation.

3. Train a feed-forward NN to approximate the uncertain function(s) using a standard back-

propagation algorithm according to the training data set.

4. Enter parameters for GA.

5. Initialise the initial population by accepting chromosomes representing feasible solutions that

can be evaluated by the trained NN.

6. Generate new chromosomes by means of crossover and mutation and accepting the chromo-

somes representing feasible solutions.

7. Calculate the objective values via the trained NN for each chromosome in the population.

8. Sort the population according to chromosome fitnesses and determine the ranks.

9. Select chromosome parents by spinning the roulette wheel to perform crossover and mutation

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

67

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

operations for the next generation.

10. Repeat steps 6. – 9. for a given number of cycles.

11. Report the best chromosome as the optimal solution.

5.6.9.2 Multiple Objectives

The MOGA algorithm approach presented in [44, 66] uses Pareto-based ranking techniques to en-

courage the search towards the true Pareto front while maintaining diversity in the population. Fur-

thermore, by assigning random weights to the objective vector during fitness assignments, multiple

random search directions towards the Pareto front are imposed during the simulation run (see [66]

for a detailed explanation). This approach was adopted to implement the redundancy optimisation

model. The entire procedure is summarised as follows:

1. Define component parameters, system structure function, stochastic simulation parameters and

objectives.

2. Generate training and test data sets for uncertain function(s) via stochastic simulation for mul-

tiple objectives.

3. Train a feed-forward NN to approximate the uncertain function(s) using a standard back-

propagation algorithm according to the training data set.

4. Enter parameters for GA.

5. MOGA:

(a) Initialise the initial population that can be evaluated by the trained NN.

(b) Calculate objective values to form the objective vector.

(c) Update a tentative set of Pareto optimal solutions (elitist strategy).

(d) Determine the fitness vector of each chromosome using random weights ∈ [0,1].

(e) Select parents from the current population to perform crossover and mutation operations

for next generation.

(f) Add all non-dominated solutions in the current population to the tentative Pareto-optimal

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

68

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

set and remove solutions dominated by new entries.

6. The MOGA shows the final set of Pareto-optimal solutions to the human decision-maker. The

best solution is then selected according to higher level information by the decision-maker.

Recall that the solutions in a Pareto-optimal set are non-dominated with respect to each other. All the

solutions are acceptable or compromise solutions and requires additional high-level information to

select a single solution.

5.7 USAGE

User interaction is established through a GUI. The GUI was developed using the QT library from

Nokia3. The GUI provides message outputs to inform the user of its current state. A snapshot of the

GUI is shown in Figure 5.1. A complete flowchart describing the flow of the application is provided

in Figure 5.2.

Figure 5.1: Snapshot of the GUI.

3Available at: http://qt.nokia.com/

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

69

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

Start

Generate system

with appropriate

constraints

Name, define

and configure

components to

be used

Save component

configurations to file

Save

components?
Yes

Define system

structure

function using

components

No

Save

structure?

Save structure

function to file
Yes

No

Print block

diagram of

structure?

Output structure as

DOT graphics file
Yes

No

Define stochastic

simulation

parameters

Run stochastic

simulation.

Write results to

file

Train neural

network

Stochastic

simulation

run data

1

1

Save trained neural

network to file

Save trained

network?
Yes

Define genetic

algorithm

parameters

No

Create genetic

algorithm class

View and

process results

End

Run genetic

algorithm to find

optimal design

Figure 5.2: Flow diagram of the redundancy optimisation model.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

70

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

5.8 EVALUATION

This section evaluates the implementation of the redundancy optimisation model by implementing

well known problems. Specifically, the computation of the performance parameters are scrutinised

and compared to the results of other publications. The section concludes with a few simple examples

of redundancy optimisation problems. Component lifetimes may assume any unit of time, such as

hours, days, etc. Likewise, cost may be defined with any unit, such as $, U, R, etc. For evaluation

purposes, no units are assigned for the parameters. In some instances, some parameters may not

be applicable for certain components. For example, a power supply does not contribute to the total

power consumption of the system. As a result, that property is denoted by "N/A" and is ignored when

checking whether the system properties exceed the constraints.

5.8.1 Series System Evaluation

5.8.1.1 Evaluation

The behaviour of a series system was evaluated for various parameters. Consider the series con-

figuration depicted in Figure 5.3. The corresponding system structure function is straightforward:

Ψ(y) = y0 · y1 · y2 · y3 · y4.

y0 y1 y2 y3 y4
input output

Figure 5.3: A series system.

The first task was to perform stochastic simulation of the three performance criteria and the effect

some parameter changes can impose on the results. All five components have been assigned random

normal distributed lifetimes. The goal was to observe E[T (x,ξξξ)], T̄ , and Pr{T (x,ξξξ) ≥ T 0} for the

arbitrarily chosen decision vector, x = (4,4,4,4,4), i.e. each component has four redundant units,

with no component mixing. For simplicity, the following normal distributions have been assigned to

the respective components:

• y0- Lifetime: N(100,102); Standby,

• y1- Lifetime: N(150,102); Standby,

• y2- Lifetime: N(220,102); Standby,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

71

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

• y3- Lifetime: N(180,102); Standby,

• y4- Lifetime: N(200,102); Standby.

Relatively small variances were assigned to the lifetimes in order to focus on lifetimes close to the

mean provided. Standby redundancy results in a component lifetime equal to the sum of all the

lifetimes of the redundant units. Stochastic simulation with 104 cycles was performed to estimate

E[T (x,ξξξ)] accurately. Figure 5.4 shows the result, in which the straight line represents the expected

lifetime 400.028, and the curve represents the expected system lifetimes obtained by various simula-

tion cycles. It is noticed that the relative error of the results obtained is less than 0.08 % after 2000

cycles of simulation and converges to the estimated value of 400.028.

Figure 5.4: Estimated lifetime of normal distributed lifetimes of standby redundancy as a function of
the number of simulation cycles for a series system.

Next, stochastic simulation was used to estimate T̄ such that Pr{T (x,ξξξ) ≥ T̄} ≥ 0.90, i.e. the 0.9-

system lifetime, also an arbitrary value. The run that also consisted of 104 cycles returned a maximal

value of 425.705. This means that the system lifetime approaches 425.705 with a probability of

90 %.

Finally, the reliability of the system is evaluated in a run of 104 cycles for 350, i.e. Pr{T (x,ξξξ)≥ 350}.

The resulting probability is returned as 0.9946. This means the system exhibits a reliability of 99.46 %

for a required lifetime of 350.

Once all three performance criteria had been estimated for the provided lifetimes, the lifetimes of the

components were changed to equivalent exponential distributions, i.e. exponential distributions with

averages equal to the original uniform distributions. The lifetimes of the components were assigned

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

72

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

as follows:

• y0- Lifetime: Exp(100); Standby,

• y1- Lifetime: Exp(150); Standby,

• y2- Lifetime: Exp(220); Standby,

• y3- Lifetime: Exp(180); Standby,

• y4- Lifetime: Exp(200); Standby.

The process described above was repeated and the following results were produced: E[T (x,ξξξ)] =

395.397 , Pr{T (x,ξξξ) ≥ T̄} ≥ 0.90 = 612.709, Pr{T (x,ξξξ) ≥ 350} = 0.574. The following section

provides an explanation of why some of the values differ a great deal. Figure 5.5 shows E[T (x,ξξξ)] for

the exponential distributed lifetimes. In this case, more simulation cycles are required for convergence

to the estimated lifetime value.

Figure 5.5: Estimated lifetime of exponential distributed lifetimes of standby redundancy as a func-
tion of the number of simulation cycles for a series system.

Next, the standby redundant units were replaced with active redundant units. In this configuration

the total component lifetime is determined by the longest lifetime of the components in parallel. The

same decision vector, x = (4,4,4,4,4), was used. The same normal distributions as described above

were assigned to component lifetimes. Figure 5.6 shows the estimated lifetime simulation run.

The figure shows that the the estimated lifetime remains within a very small margin from the actual

estimated lifetime as the simulation run approaches 104 cycles. Similar to standby redundancy, the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

73

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

Figure 5.6: Estimated lifetime of normal distributed lifetimes of active redundancy as a function of
the number of simulation cycles for a series system.

overall system lifetime is dictated by the shortest lifetime average of all the components in series,

i.e. 100 in this case. The estimated lifetime after 104 cycles is 110.232 because of the longest life-

time of the redundant units was around 110. The estimated performance parameters are: E[T (x,ξξξ)]

= 395.397 , Pr{T (x,ξξξ) ≥ T̄} ≥ 0.90 = 119.242, and the reliability for a lower lifetime (100) is

Pr{T (x,ξξξ)≥ 100} = 0.941.

5.8.1.2 Discussion

In a series configuration the system is only operational if all the components are functional. It is often

said that a chain is as strong as its weakest link; by implication the weakest component in a series

system is the most important. Therefore, it is expected that the total system lifetime will be equal

to the shortest lifetime of all the components in series. Standby redundancy results in a component

lifetime that is equal to the sum of the lifetimes of the redundant units. It therefore comes as no

surprise that the shortest lifetime of all the redundant units, averaging 100 with four redundant units,

is a average estimated lifetime of 400.028 for the entire system.

When the distributions are changed to exponential distributions, it was expected that E[T (x,ξξξ)] would

remain constant, since the new distribution had the same mean. However, since the variance of an

exponential distribution is much greater than that of the the equivalent normal distribution, it was

expected that the the α-system lifetimes would be much greater and the estimated reliability much

lower than the previous run. The reason for this is that since T̄ is estimated as the N′th largest element

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

74

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

in the array of lifetimes (see subsubsection 5.5.1.1) and because of the larger variance, T̄ at the N′th

position would be larger. Similarly, the estimation of system reliability (subsubsection 5.5.1.1) entails

adding the number of instances that the expected lifetime exceeds a given lifetime. The result is that

a greater portion of the estimated lifetimes fall below the given lifetime, diminishing the ratio as

well. Indeed, this was the case. It is expected that a similar observation will be made with normal

distributions with larger variances.

In conclusion, it is recommended to avoid components with lifetimes with great variances in a series

system because of the system structure function. It is seen, as expected, that active redundancy results

have much lower estimated lifetimes than standby redundancy. However, the controlling mechanism

typically involved with implementing standby redundancy has a huge negative impact on the cost. The

true effect of active redundancy may nevertheless be observed for components with large variances.

Furthermore, it was noted that large variances in component lifetimes do not affect the estimated

lifetime, but instead drastically raise the α-system lifetime and decreases system reliability. Moreover,

it appears that active redundancy only has a significant impact on the lifetime of the system when

components with large variances are considered, such as an exponential distribution.

5.8.2 Parallel System Evaluation

5.8.2.1 Evaluation

Consider the parallel configuration depicted in Figure 5.7 with the following system structure func-

tion: Ψ(y) = y0|y1|y2|y3|y4. Note that the parallelism is unrelated to the parallelism introduced for

redundancy purposes, but is inherent to the operation of the system. Again, the x = (4,4,4,4,4)

decision vector was chosen in order to compare results with the series system. The same normal

distributions used in the series system were assigned to the lifetimes of each component, i.e.:

• y0- Lifetime: N(100,102); Standby,

• y1- Lifetime: N(150,102); Standby,

• y2- Lifetime: N(220,102); Standby,

• y3- Lifetime: N(180,102); Standby,

• y4- Lifetime: N(200,102); Standby.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

75

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

y0

y1

y2

y3

y4

input output

Figure 5.7: A parallel system.

The following results have been observed: E[T (x,ξξξ)] = 880.103 , Pr{T (x,ξξξ)≥ T̄}≥ 0.90 = 905.505,

Pr{T (x,ξξξ)≥ 850} = 0.9376 or 93.76 % reliability. The estimation is shown in Figure 5.8. It is evident

that the estimated lifetime is very large with regard to the assigned lifetimes. It is approximately equal

to four times the largest average of the lifetime normal distributions, i.e. N(220,10), owing to the

chosen decision vector with four redundant units for each component.

On the other hand, when the redundant units were defined with an active redundancy scheme on

the system structure function above, the following results were obtained: E[T (x,ξξξ)] = 230.46 ,

Pr{T (x,ξξξ)≥ T̄} ≥ 0.90 = 239.56, Pr{T (x,ξξξ)≥ 220} = 0.9418.

5.8.2.2 Discussion

In a serial configuration the system is only operational if all the components are functional. A parallel

configuration of components inherently extends the total expected lifetime of a system, since multiple

paths exist between the input and the output. As a result, the overall system will be functional until

the last operational component in a parallel system/subsystem fails. By adding redundancy to a par-

allel system, the total expected lifetime increases drastically, especially when a standby redundancy

scheme is employed. Active redundancy results in a system lifetime that is equal to the longest life-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

76

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

Figure 5.8: Estimated lifetime of normal distributed lifetimes of active redundancy as a function of
the number of simulation cycles for a parallel system.

time of all the components. The parallel configuration may be used to replace other smaller subsets

of standby redundancies, alleviating the complexity and cost involved in such a redundancy arrange-

ment.

It is clear from the parallel system evaluation that the component with the longest expected lifetime

dictates the expected lifetime of the overall parallel system/subsystem, regardless of the redundancy

scheme implemented, and can replace an entire branch of the parallel system, unless the compon-

ents are not functionally identical. If the components are not functionally identical, any redundancy

scheme can be used to extend the lifetime of the system.

5.8.3 Complex System

5.8.3.1 Evaluation

A complex network is defined as one that cannot be modelled as a series, parallel, or series-

parallel system. Examples of complex systems include a common PC, communication, transport-

ation, electrical and manufacturing networks. A practical example of a complex system config-

uration of a life-support system in a space capsule can be found in [67]. Another example of a

complex system is the bridge system depicted in Figure 2.6. For convenience, this figure is re-

peated in Figure 5.9. By means of inspection, the system structure function can be deduced as

Ψ(y) = {y0 · y3 | y0 · y2 · y4 | y1 · y4 | y1 · y2 · y3}. The system reliability can be derived by using

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

77

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

Equation 2.3 for each path: assuming that event Ri indicates the reliability of component i, then the

system reliability is [68]:

RS = R0R3 +R1R4 +R0R2R4 +R1R2R3−R0R1R2R3

−R0R1R2R4−R0R2R3R4−R1R2R3R4

−R0R3R1R4 +2R0R3R1R4R2.

y0 y3

y2

y1 y4

input output

Figure 5.9: A bridge configuration.

It is evident that even for a very simple example of a complex system, the mathematics describing the

system are quite broad and extensive. Such a description leaves much room for errors and may prove

difficult to implement in the model. Consequently, it may be infeasible to derive analytic formula-

tions for non-trivial systems, which was the main motivation for incorporating the bisection search

algorithm to estimate the system performance metrics stochastically for any type of system.

For comparison purposes, the same normal distributed lifetimes are assigned to the components with

the series and parallel systems. The results are as follows: E[T (x,ξξξ)] = 599.671, Pr{T (x,ξξξ)≥ T̄} ≥

0.90 = 625.822, Pr{T (x,ξξξ)≥ 550} = 0.9937. In essence, this result means that the longest estimated

lifetime out of all the possible paths is equal to E[T (x,ξξξ)]. The estimation is shown in Figure 5.10. It

is interesting to note that for a complex system that the α-system lifetime is actually slightly higher

than the estimated lifetime. This may be due to multiple paths with varying lifetimes with different

means.

The experiment was repeated with an active redundancy scheme and the same component lifetime

parameters. The simulation run yielded: E[T (x,ξξξ)] = 160.332, Pr{T (x,ξξξ) ≥ T̄} ≥ 0.90 = 169.328

and Pr{T (x,ξξξ)≥ 550} = 0.9366. Figure 5.11 shows the estimation. Little deviation is noticed around

the mean of 160.332.

According to [69], the bridge configuration in Figure 5.9 can be transformed to a series-parallel

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

78

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

Figure 5.10: Estimated lifetime of normal distributed lifetimes of standby redundancy as a function
of the number of simulation cycles for a complex system.

system with four subsystems. The transformed network is shown in Figure 5.12 and the corresponding

system structure function by inspection is: Ψ(y) = (y0 | y1) · (y3 | y4) · (y0 | y2 | y4) · (y1 | y2 | y3).

One should notice that the new configuration goes against the assumption of independent component

failures, since components are repeated in different subsystems. The intent, however, was to verify the

validity of the implemented model. By constructing the structure depicted in Figure 5.12 in the model,

similar results should be obtained by stochastic simulation as with the structure in Figure 5.9. The

same random lifetimes were assigned to each component, and a stochastic simulation was run for 104

cycles. The results were: E[T (x,ξξξ)] = 599.703, Pr{T (x,ξξξ) ≥ T̄} ≥ 0.90 = 626.209, Pr{T (x,ξξξ) ≥

550} = 0.9366. The estimation is shown in Figure 5.13 and a comparison of the results is shown in

Table 5.2.

Table 5.2: Comparison of complex system results.

Performance Bridge system Transformed system
E[T (x,ξξξ)] 599.671 599.703
Pr{T (x,ξξξ)≥ T̄} ≥ 0.90 625.822 626.209
Pr{T (x,ξξξ)≥ 550} 0.9937 0.9936

5.8.3.2 Discussion

It is evident that for a complex system the estimated system lifetime cannot be easily predicted by

visual inspection. It is difficult to predict which component will have the greatest effect on the sys-

tem lifetime without systematically running through each path, regardless of the redundancy scheme

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

79

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

Figure 5.11: Estimated lifetime of normal distributed lifetimes of active redundancy as a function of
the number of simulation cycles for a complex system.

y0

y1

y3

y4

y0

y2

y4

y1

y2

y3

input output

Figure 5.12: A series-parallel transformation of the bridge network.

used.

The validity and accuracy of the implemented models were confirmed. Two different system structure

functions, which were shown to be a transformation of the other, yielded almost identical results

during stochastic simulation runs.

5.8.4 Single-objective Optimisation Problems

This section explores a few numerical examples, assessing the effectiveness of the complete RAP sim-

ulation model. All experiments were performed with the following configuration parameters (typical

values in [23, 64]):

• Stochastic simulation:

– 3000 data for NN: Sufficient to train the NN successfully, in order to cover most of the

combinations of the decision vector.

– 10000 cycles: Previous section showed satisfactory convergence to the estimated lifetime

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

80

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

Figure 5.13: Estimated lifetime of normal distributed lifetimes of standby redundancy as a function
of the number of simulation cycles for the transformed bridge system.

of the system.

• NN:

– Number of input neurons are equal to the number of components in the system.

– Neurons in hidden layer determined by (M/(n logM))1/2 as approximated in [65] when

M/n >> 30.

– One output neuron for each of the system performance metrics.

• GA:

– Population size = 20,

– Pc = 30 %,

– Pm = 20 %,

– a = 0.05,

– Maximum generations = 300.

5.8.4.1 Series System with Constraint

Refer to the series system depicted in Figure 5.3. The goal was to maximise the expected lifetime of

the serial system under arbitrary constraints. The following is a list of all the parameters specific to

this model that were used:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

81

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

• Constraints:

– Cost: 350, an arbitrary constraint.

– Power: N/A

– Size: N/A

– Weight: N/A

• Components without CM.

• Components (lifetimes used in previous section with arbitrary costs):

– y0- Cost: 80; Lifetime: N(100,102); Standby,

– y1- Cost: 20; Lifetime: N(150,102); Standby,

– y2- Cost: 30; Lifetime: N(220,102); Standby,

– y3- Cost: 50; Lifetime: N(180,102); Standby,

– y4- Cost: 10; Lifetime: N(200,102); Standby.

A run of the hybrid intelligent algorithm returned the following optimal solution:

x∗ = (2,2,2,1,2),

with a corresponding lifetime of

E[T (x∗,ξξξ)] = 523.54,

and a total corresponding cost of

C(x∗) = 334.76.

To verify the consistency of the simulation model, the experiment was repeated for a hundred runs.

The resulting expected lifetimes are incorporated in the histogram displayed in Figure 5.14. It is clear

that the resulting histogram takes the form of an undefined statistical distribution, which can be best

approximated as a normal distribution with a mean of 524.

5.8.4.2 A practical complex system

The life-support system in a space capsule shown in [67] is analysed. Another analysis of the same

model is presented in [23]. The experiment is repeated with the same parameters in this section. A

block diagram of the system with rearranged component indices are shown in Figure 5.15.

Let the seven types of components have normal distributed lifetimes: N(290,212), N(533,232),

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

82

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

Figure 5.14: Series system histogram

y0

y1

y2

y3

y4

y5

y6

input output

Figure 5.15: Life-support system in a space capsule.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

83

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

N(312,252), N(276,232), N(350,262), N(291,212), N(271,242). All the redundant units are in

parallel. The cost of each unit is: 56, 50, 64, 60, 79, 45, 28. The resulting cost function is:

C(x) = 56x0 + 50x1 + 64x2 + 60x3 + 79x4 + 45x5 + 28x6. If the total capital available should not

exceed 600, then the constraint becomes C(x) ≤ 600. The system structure function is expressed

as: Ψ(y) = {y0 · y3, y0 · y4,y1 · y2,y1 · y4, y1 · y5,y1 · y6, y2 · y5, y2 · y6}. The corresponding REVM is

formulated as: 

max E[T (x,ξξξ)]

subject to :

C(x)≤ 600

xi ≥ 1, x is an integer vector

The model is solved by first generating a training data-set for the following uncertain function

U : x→ E[T (x,ξξξ)]

by stochastic simulation. Next, the NN (seven input neurons, 13 hidden neurons, one output neuron) is

trained, to approximate U(x). Finally, the NN is embedded in the GA. A run of the hybrid intelligent

algorithm with the parameters specified in subsection 5.8.4 shows the optimal solution is:

x∗ = (2,1,1,1,3,1,1),

with an expected mean system lifetime corresponding to x∗ of

E[T (x∗,ξξξ)] = 379.204,

and a total corresponding cost of

C(x∗) = 596.

The results of the solved model are compared to the results presented by [23] in Table 5.3 depicting

satisfactory similarities.

Table 5.3: Comparison of results of the life-support system.

Output Results obtained Results obtained in [23]
Optimal decision vector (2, 1, 1, 1, 3, 1, 1) (2, 1, 1, 1, 3, 1, 1)
E[T (x∗,ξξξ)] 379.204 371.95
C(x∗) 596 596

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

84

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

5.8.5 Multi-objective Optimisation Problem

A small communications network is presented in [70] that can be represented as the block diagram in

Figure 5.16. By inspection, the system structure functions of interest are:

Ψ1(y) = {y0 · y3 · y5, y1 · y4 · y5, y2 · y6}

for subsystem 1, and

Ψ2(y) = {y0 · y4 · y6}

for subsystem 2. The lifetimes of these components are: N(334,242), N(300,262), N(310,242),

N(350,242), N(307,232), N(325,242), N(323,242). The redundant units are in parallel. The costs

of the components are: N(105,232), N(123,242), N(100,222), N(125,242), N(98,222), N(102,242),

N(85,232). If the total capital available is 900, the goal is to maximise the expected system lifetime

of both subsystems under the cost constraint.

y0

y1

y2

y3

y4

y5

y6

input2

input1 output1

output2

Figure 5.16: Small communication network.

The final Pareto-optimal set is plotted in Figure 5.17. The black dots represent the Pareto-optimal set

of solutions. It is clear that the figure follows the trend for a maximise-maximise problem as depicted

in Figure 2.8. The result in [23], however, only mentions one solution for the model. This solution was

included in the plot in Figure 5.17 as the ′+′, and it is evident that it lies on the Pareto front. In fact,

it may be possible that the solution at (325.34, 297.45) returned by the simulation run corresponds

to the solution presented in [23], which is (325.30, 297.95). Given that stochastic simulation is

used, the estimated values would not be exact. The deviation can be attributed to different estimated

lifetimes and different approximations by the NN. Furthermore, the decision vector producing the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

85

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Redundancy Optimisation Model

305 310 315 320 325 330
285

290

295

300

305

E[T
1
(x,ξξξξ)]

E
[T

2
(x

, ξξ ξξ
)]

Figure 5.17: Pareto-optimal set of the communication system.

(325.34, 297.45) solution was (1,1,1,1,1,2,1), which correlates to the decision vector produced

in [23].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

86

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6

FINAL DESIGN EVALUATION

6.1 CHAPTER OVERVIEW

This chapter presents some examples of final designs of AMDF conceptual designs to illustrate that

the goals of the research have been achieved. To this end, the two simulation models discussed in the

previous chapters were applied to perform an evaluation of candidate AMDF designs. The abstract

flowchart shown in Figure 6.1 describes the methodology. The OMNeT++ model determines the

required equipment card redundancy to achieve a certain service availability (external redundancy).

The redundancy optimisation model is used to allocate the optimal component redundancies in order

to increase the expected system lifetime or reliability (internal redundancy). Both models provide

a unified evaluation of an AMDF concept design. Once all the design specifications/requirements

are defined (such as the capacity of the exchange, number of clients per module, expected service

availability, cost, power and size constraints and designing with or without CM) the user proceeds

by entering the parameters for both models. Next, the REVM or REVMOP are formulated using the

same approach used in the preceding chapter.

Figure 6.1: Abstract flow diagram depicting the methodology.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Design Evaluation

Finally, both simulations were run; the first model returned the number of additional ports the AMDF

should make provision for in order to accommodate redundant equipment cards, and the second re-

turned the optimal redundancy configuration in order to maximise the expected system lifetime or

system reliability. The result is that multiple candidate designs can be compared and enables the user

to make an informed choice for the best candidate design in terms of cost, power, size and the system

performance metrics. No units are assigned to the parameters.

6.2 CANDIDATE CONCEPT DESIGN ONE

The abstract diagram in Figure 4.2 shows the elements of an AMDF. The block diagram depicted

in Figure 6.2 was translated from the abstract diagram, without CM. The system consists of six

elements. The power supply (y0) may be modelled as a component in series with the system; if it

fails, the whole system fails. The main controller (y1) is in direct control of all AMDF modules, which

contains the local module controller (y3), the switch actuation control (y4) and the actual switching

matrix (y5). Alternatively, y3, y4 and y5 can collectively be modelled as y7 to compare component

level and system level redundancy allocations. The communication bus (y2) is also modelled as a

component in series, as a failure would result in an overall system failure. Redundancy is therefore

allocated to the channel.

6.2.1 Assumptions

Table 6.1 list parameters/assumptions were made prior to simulation runtime.

Table 6.1: Assumptions and parameters.

Parameter / assumption Motivation / reason

OMNeT++ model

10000 total clients Typical exchange size.

Clients expect 99.99 % availability Study conducted in [20].

100 clients per AMDF module Block sizes in employed MDFs.

Three service types per client The services mostly used in South Africa: POTS,

ADSL and ISDN.

Continued on next page

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

88

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Design Evaluation

Table 6.1 – continued from previous page

Parameter / assumption Motivation / reason

Equipment card lifetimes: Weibull(12 months, 1, 2) Weibull typically used for component failures. As-

suming one year Mean Time to Failure (MTTF) and

increasing hazard over time (β > 1).

Card replacing time: N(2 days, 1 day) Arbitrary value.

Simulated time: 24 months (two years) Arbitrary value.

Redundancy optimisation model

Stochastic simulation

5000 training data sets for NN Used for six or more components in [23].

10000 cycles in simulation Number of cycles used during evaluation in

Chapter 5.

Genetic Algorithm

Population size = 30 As convention in [23].

Crossover rate, Pc = 30 % As convention in [23].

Mutation rate, Pm = 20 % As convention in [23].

a = 0.05 As convention in [23].

Maximum generations = 300 As convention in [23].

Constraints

Cost = 2000 Arbitrary value.

Power = 500 Arbitrary value.

Size = N/A Not applicable.

Weight = N/A Not applicable.

Maximum generations = 300 As convention in [23]

Component properties

y0- Cost: N(80,102); Lifetime: N(360,1502); Power: N/A, Standby redundancy

y1- Cost: N(500,502); Lifetime: N(730,2002); Power: N(300,302), Standby redundancy

y2- Cost: N(20,42); Lifetime: N(700,1002); Power: N(10,102), Standby redundancy

y3- Cost: N(150,202); Lifetime: N(1000,2002); Power: N(30,102), Standby redundancy

y4- Cost: N(100,102); Lifetime: N(720,1002); Power: N(25,102), Standby redundancy

y5- Cost: N(500,202); Lifetime: N(800,1302); Power: N(1,0.12), Standby redundancy

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

89

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Design Evaluation

Main controller

(y1)

Communication bus

(y2)

AMDF Module (y7)

Local controller

module

(y3)

Power supply (y0)

Switch actuation

control

(y4)

Switching matrix

(MEMS)

(y5)

Possible structure function (without component mixing):
= y0.y1.y2.y3.y4.y5 = y0.y1.y2.y7

Customer

loops

Network

services

System concept design

(without CM)

Figure 6.2: Example of a concept design without CM block diagram.

6.2.2 Questions

As an example, the following questions were considered to illustrate the capability of incorporating

both models to converge to a final design:

• OMNeT++ model:

1. What equipment card redundancy percentage yields at least 99.99 % service availability

per client per year (52.5 minutes downtime per year)?

• Redundancy optimisation model:

1. What is the optimal redundancy allocation to maximise expected lifetime under the given

constraints?

2. What is the corresponding expected lifetime?

3. What is the corresponding expected cost?

4. What is the corresponding power consumption?

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

90

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Design Evaluation

For redundancy optimisation, the following REVM can be formulated as the model to be solved

(system structure function is shown in Figure 6.2):

max E[T (x,ξξξ)]

subject to :
n

∑
i=0

E[ci] · xi ≤ 2000

n

∑
i=0

E[pi] · xi ≤ 500

xi ≥ 1, x is an integer vector

6.2.3 Findings

The answers were documented and tabulated in Table 6.2.

Table 6.2: Findings for the first candidate design.

Question Result
OMNeT++

What equipment card redundancy percent-
age yields at least 99.99 % service availabil-
ity?

Equipment card redundancy percentage between 33 % and
34 % yields 99.99 % service availability. The AMDF
should make provision for at least 34 % redudancy for
equipment cards.

Redundancy optimisation model
Optimal redundancy allocation? x∗ = (4,1,5,2,2,1)
Corresponding expected lifetime? 940
Corresponding cost? 1966.51
Corresponding power consumption? 427.29

6.2.4 Discussion

According to the OMNeT++ model, at least 34 % equipment card redundancy will result in a ser-

vice availability greater than 99.99 %. Since it was one of the key assumptions that clients expect at

least 99.99 % service availability, the redundant equipment cards are mandatory to avoid customer

dissatisfaction. For the 10,000 clients simulated, an additional 3,400 equipment cards must be pro-

cured. This is quite a large number of redundant equipment cards and may prove problematic when

accommodating larger exchanges in metropolitan areas.

The redundancy optimisation model yielded a configuration that results in an expected lifetime of

940.058 (just over two and a half years if lifetimes were provided in days). With four redundant

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

91

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Design Evaluation

power supplies, it would be highly unlikely that the system would fail as a result of malfunctioned

power supplies. With only one main controller, five communication buses seems to be overkill for the

sole purpose of establishing communication between components. Nevertheless, since the system was

still well under the constraints, an excess of communication buses were added due to their relative low

cost and power consumption. Inside the AMDF module, it seems logical to include two redundant

elements for the local controller and switch actuation control components. If one fails, the other

should immediately be able to take over.

In conclusion, the results suggest that the majority of resources will be consumed in fulfilling the

34 % redundancy percentage for equipment cards rather than internal redundancies.

6.3 CANDIDATE CONCEPT DESIGN TWO

The experiment is repeated with all the parameters in the previous section, with the standby redund-

ancy replaced by active redundancy for components. However, it is evident from inspection that it

would be infeasible to choose an active redundancy scheme for the power supply. Because of the

relatively low expected lifetime in comparison with the other components, no number of redundant

elements would result in an expected lifetime that would exceed the expected lifetimes of the other

components. Although standby redundancies for power supplies are atypical, standby power supplies

are purposely included to compare the effect of redundancy schemes on the components. In this case,

the redundancy optimisation model would strive to maximise the expected lifetime of the element

with the shortest lifetime, consuming resources and prematurely exceeding system constraints. To

account for this, the standby redundancy scheme is still assigned to the power supply. The remainder

of the components are assigned an active redundancy scheme. Since no changes had been made to the

OMNeT++ model, it was expected that the results would remain unchanged. However, the change in

component properties required that the REVM be re-evaluated. The REVM of this candidate design

is identical to the REVM used in the previous section:

max E[T (x,ξξξ)]

subject to :
n

∑
i=0

E[ci] · xi ≤ 2000

n

∑
i=0

E[pi] · xi ≤ 500

xi ≥ 1, x is an integer vector

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

92

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Design Evaluation

Table 6.3: Findings for the second candidate design.

Question Result
Redundancy optimisation model

Optimal redundancy allocation? x∗ = (3,1,5,3,2,1)
Corresponding expected lifetime? 689.152
Corresponding cost? 1990.51
Corresponding power consumption? 491.57

Table 6.3 shows the results for the second candidate design. The optimal solution produced is similar

to that in the previous section. In essence, one power supply is sacrificed to add another local con-

troller. The overall effect of replacing the standby redundant elements with parallel redundant ones

is seen in the expected lifetime, which, not surprisingly, is much lower than the expected lifetime

obtained in the previous section.

6.4 CANDIDATE CONCEPT DESIGN THREE

Another possibility, one with CM, is depicted in Figure 6.3. The case where CM is used, results in

more extensive system structure functions. In this section it is assumed that two component types

of the local controller are available to illustrate the effect on the system structure function with CM.

Fortunately, by using the bisection search algorithm, the task of handling these structure functions

is alleviated. Since an additional component type is added, the system structure function changes to

(see Figure 6.3 for other examples):

Ψ(y) = {y0 · y1 · y2 · y3 · y4 · y5, y0 · y1 · y2 · y′3 · y4 · y5}

Similar properties were assigned to y′3 than to y3, with slight differences: Cost: N(130,202); Life-

time: N(900,2002); Power: N(25,102) Standby. If a standby redundancy scheme is assumed for all

components and the same REVM applies, then Table 6.4 shows the results.

Table 6.4: Findings for the third candidate design.

Question Result
Redundancy optimisation model

Optimal redundancy allocation? x∗ = (3,2,4,1,1,2,1)
Corresponding expected lifetime? 1161.03
Corresponding cost? 1987.52
Corresponding power consumption? 456.52

A similar result is obtained than in Section 6.2. In this case, one power supply and one switch

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

93

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Design Evaluation

���������	�

�	�

�
��

������������������

�
��

���������
���
��

����
�����	�

�	�

����
��

�
��

����	�����

�

�
 �

!����"�����������

����	�
�

�
#�

!����"��$����	�%�

��&�!�

�
'�

�

�������	�

����

(����)�

��	*����

������
����	����	��+������������"�������������%��$�,
-�
 .
�.
�.
�.
#.
'�/�
 0.
�.
�.
�.
#.
'�/�
 .
�0.
�.
�.
#.
'�/�
 0.
�0.
�.
�.
#.
'

����	�����

�

�
 0�

���������	�

�	

�
�0�

!
�����������������$��

����"����

Figure 6.3: Example of a concept design with CM block diagram.

actuation controller is sacrificed to add another main controller. Furthermore, it is noticed that there

are still two local controllers present, one of each type.

6.5 CANDIDATE CONCEPT DESIGN FOUR

The final candidate design focuses on optimising certain parts, or domains, of the block diagram. To

this end, the user is required to specify the subsystems that are of particular interest, to be evaluated

concurrently. In context of the proposed AMDF design shown in Figure 6.3 and Figure 6.2, a possible

specification may be to group components y3 (and subsequently y
′
3), y4 and y5 into one subsystem

(denoted by y7). The resulting model to be solved is a multi-objective optimisation problem concerned

with maximising the expected lifetimes of all defined subsystems. Assuming the same parameters as

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

94

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Design Evaluation

presented in Section 6.2, the model is used to solve the following REVMOP:

max E[T1(x,ξξξ),T2(x,ξξξ)]

subject to :
n

∑
i=0

E[ci] · xi ≤ 2000

n

∑
i=0

E[pi] · xi ≤ 500

x≥ 1, integer vector

where the system structure function of subsystem 1 (domain 1) is given by

Ψ1(y) = {y0 · y1 · y2}

and the system structure function of subsystem 2 (domain 2) is

Ψ2(y) = {y3 · y4 · y5}.

Figure 6.4: Final Pareto set of the fourth AMDF candidate concept design.

Figure 6.4 shows the Pareto-optimal set. It is now up to the decision-maker to select one of the

solutions in the Pareto set as the optimal solution. For instance, if the second subsystem (the AMDF

module in this case) assumes a higher priority than the rest of the system (first subsystem), then the

solutions at the top left corner in Figure 6.4, i.e. a solution yielding a higher value for E[T2(x,ξξξ)],

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

95

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Design Evaluation

should be considered. The decision vector of the left-most solution is: x∗ = (3,1,2,3,3,1). It is

evident that the components in subsystem 2 are assigned a higher number of redundant elements than

in the other models in the preceding sections. This is expected, since the higher priority was assigned

to maximising the lifetime of the second subsystem. Moreover, note that a more realistic number of

redundant elements for the communication bus are returned.

6.6 CANDIDATE CONCEPT DESIGN COMPARISON

Table 6.5 shows a comparison of the optimal decision vectors obtained. The similarities between the

candidate concept designs are apparent. The actual solution, however, depends on the constraints,

the employed redundancy scheme, whether the design is implemented with or without CM, and the

priority structure of subsystems. It is up to the decision-maker to decide which model is best for an

application.

Table 6.5: Comparison of AMDF candidate concept design results.

Design one Design two Design three Design four
E[T (x,ξξξ)] 940 689.152 1161.03 943.674
x∗ (4,1,5,2,2,1) (3,1,5,3,2,1) (3,2,4,1,1,2,1) (3,1,2,3,3,1)
Cost 1966.51 1990.51 1987.52 1996.12
Power 427.29 491.57 456.52 471.34

Other factors that could have been incorporated include the size/weight constraints, which are im-

portant in terms of scalability and physical layout. In addition, as more objectives are added to the

optimisation problem, the nature of the Pareto is radically changed. If the optimisation problem was

defined with three objectives, the Pareto set would become a 3D surface.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

96

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7

CONCLUSION

7.1 OVERVIEW

In Chapter 1, the specific objectives of this dissertation were listed. These objectives were addressed

during the course of this dissertation, and the outcomes are concluded, referring to the relevant sec-

tions or chapters. Lastly, possible improvements to the model and recommendations for future work

are discussed, which is followed by a closing remark.

7.2 CONCLUSIONS ON THE OBJECTIVES

The literature regarding the design and implementation of AMDFs is very limited. In this dissertation,

a simulation framework was presented to aid designers in evaluating i) the dynamic client-AMDF

interaction, and ii) system performance metrics of AMDF candidate concept designs, as stated in

Section 1.4. The presented work partially fills the void in the literature.

The purpose of the OMNeT++ dynamic behaviour model was to address the cost-effective scalability

issue of modular AMDFs. In addition, current AMDFs do not incorporate equipment card redund-

ancies. The model was used to determine equipment card redundancies in order to achieve a desired

service availability. However, the results obtained from the OMNeT++ model could not be compared

to the results of other models, since no other models performing the same simulation function ex-

ist. The work presented in [23] was the inspiration for incorporating stochastic simulation to solve

the RAP for both series, parallel and complex systems. The purpose of the redundancy optimisation

simulation model was to incorporate optimisation techniques to solve the RAP effectively in order to

address the reliability issue regarding AMDFs. Numerical experiments were performed to assess the

validity of each model, which was compared to results of other publications.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Conclusion

7.3 FRAMEWORK IMPLEMENTATION DISCUSSION

For the first model, a fully functional model of a modular AMDF was constructed using OMNeT++.

A brief overview of OMNeT++ was provided in Chapter 3 and a comparison was made with a variety

of other network simulators. The model presented in Chapter 4 allows the user to investigate the

dynamic behaviour of a modular AMDF and the effect of certain requirements such as client division

between modules, automatic cross-connection jumpering, automatic fault detection and correction,

equipment redundancy, high availability and downtimes. The model is highly configurable in order

to allow the effect of various configurations to be investigated in different scenarios. Parallel simu-

lation is implemented via MPI using the NMA as the synchronisation scheme. The optimal number

of CPU cores and inter-partition link delays was investigated to maximise speedup. The speedup ob-

tained with the parallelised model allows various configurations to be evaluated within significantly

reduced time frames. The model was used to investigate and compare various candidate designs prior

to prototype development. The model presented is supplemented by the redundancy optimisation

model.

For the second model, stochastic simulation is incorporated with a hybrid intelligent algorithm to

solve RAPs in Chapter 5. A spectrum of examples was used to verify its functionality, which includes

estimating expected lifetimes, α-system lifetimes, and system reliabilities for series, parallel and

complex configurations. Ultimately, the model was capable of handling any type of system structure

function, and was able to train NNs from relatively large training data sets that was generated by

stochastic simulation. The model also exhibits the ability to solve both single-objective and multi-

objective optimisation problems successfully. Repeatability is paramount for any simulation run, and

the model exhibits excellent repeatability of all the simulation results. A number of practical examples

of complex systems have also been evaluated and the results were compared to the results obtained

in other publications. The correct procedure for using the model is presented in a well-structured

flowchart in Chapter 5.

Finally, both models were encapsulated in a unified simulation framework in Chapter 6, which was

used to perform a complete evaluation of proposed AMDF candidate designs. Observations regarding

the effect of various properties, such as designs with CM and without CM and the actual redundancy

strategies employed, were investigated and discussed in Chapter 6.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

98

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Conclusion

7.4 IMPROVEMENTS TO THE MODELS

For the first model, no real improvement to aid in the analysis of the dynamic behaviour of modular

AMDFs can be suggested. However, the current model can be supplemented in terms of adding other

statistics to be collected during the simulation run, depending on designer preference. Moreover, new

entities can be implemented, along with he new statistics to be collected, to perform additional tasks

during the simulation run.

For the second model, multi-state components can be incorporated, which may include components

with various modes of operation and failure, which in turn may impact allocated redundancy con-

figurations. Such a modification would radically change the method by which the system structure

function is evaluated. Furthermore, components can also be classified as repairable, or non-repairable.

In such a case, maintenance is introduced in the model, having either preventive or corrective main-

tenance. Preventative maintenance, as the name suggests, is used to attend to a problems to prevent

faults from occurring. Conversely, corrective maintenance is performed after a failure. The inclusion

of maintenance would have additional cost implications on the design and could have an effect on

the service availability. Furthermore, the constraints can be extended to include, for example, space

requirements and thermal aspects.

7.5 RECOMMENDATIONS FOR FUTURE WORK

In this work, the two models presented were developed using OMNeT++ for the first, and stochastic

simulation integrated with a hybrid intelligent algorithm for the second. As an alternative, the first

model can be implemented with other network simulators, such as NS-2 or OPNET. The produced

results using the other network simulators can then be compared with those produced by the OM-

NeT++ model, as well as other aspects, such as simulation execution time and possible speedups.

The simulation model is very specific to the design of an AMDF. Therefore, such a model must also

be developed from the ground up.

For the second model, this research focused on maximising the expected lifetimes of concept designs.

The model, however, can already compute the remaining two system performance metrics. Future

work regarding system performance metrics may be to incorporate objective functions for system

reliability, or α-system lifetime computations. Subsequently, multiple objectives regarding different

system performance metrics may be considered, e.g. simultaneously maximising expected lifetime

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

99

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Conclusion

and system reliability.

7.6 CLOSING REMARK

In practice, it is difficult to assess the efficiency and feasibility of a concept design without field data

or performing extensive experiments. Simulation modelling is a popular method of predicting the

performance of a concept design prior to development. The presented framework will greatly aid

service provider businesses in effectively managing current subscriber loop networks and assist with

future network planning. Some may argue that emerging wireless technologies are destined to re-

place wireline communication networks; however, upcoming fibre optics technologies may provide

affordable options for Fibre-to-the-Building (FTTB) and Fibre-to-the-Home (FTTH) to replace cop-

per lines. Recently, it was announced that a multi billion-rand project has been launched to connect

over 2.5 million homes in six major cities in South Africa with a high-speed fibre network [71]. The

current framework can also be used to manage fibre optic lines and planning fibre optic networks;

it is required of the designer to provide the appropriate parameters for the models. The only signi-

ficant impact fibre optics may have on the design is replacing the copper switching media with the

appropriate switches for fibre optics.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

100

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[1] Web ProForum Tutorials. (2007, Jun.) The International Engineering Consortium. [Online].

Available: http://www.iec.org/online/tutorials/man_copper/

[2] Telkom S. A. Limited. (2010, Nov.) DSL Conditions. [Online]. Available: http:

//www.telkom.co.za/products_services/dsl/conditions.html

[3] T. Kanai, S. Umemura, S. Inagaki, and S. Hosokawa, “High Density Pin Board Matrix Switches

for Automated MDF Systems,” IEEE Trans. Compon., Hybrids, and Manuf. Technol., vol. 15,

no. 5, pp. 893–903, Nov. 1992.

[4] K. Yoshida, T. Hirono, S. Hosokawa, and A. Nagayama, “A New Automated Main Distributing

Frame System using Robot,” in 1991 IEEE Int. Conf. on Commun., vol. 2, 1991, pp. 977–982.

[5] E. Kovac and W. Mitchell, “The DCS as a Universal Digital Cross-Connect System,” IEEE J.

Sel. Areas Commun., vol. 5, no. 1, pp. 53–58, Jan. 1987.

[6] S. Umemura, T. Kanai, S. Inagaki, and Y. Kumakura, “Design of High Density Pin Board Matrix

Switches for Automated Main Distributing Frame Systems,” IEEE Trans. Compon., Hybrids,

and Manuf. Technol., vol. 15, no. 2, pp. 266–277, Apr. 1992.

[7] J. Teixeira, “Flow-Through Using An Automated Distribution Frame,” U.S. Patent 10,429,861,

Jul. 15, 2004.

[8] R. L. Freeman, Telecommunication System Engineering, 4th ed. New York, NY, USA: John

Wiley & Sons, Inc., 2004.

[9] S. Inagaki, T. Kanai, and S. Hosokawa, “High-density pin-board matrix switch and its crosstalk

characteristics,” Electron. and Commun. in Japan (Part I: Commun.), vol. 78, no. 7, pp. 42–45,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

Jul. 1995.

[10] H. Fukuda, “Automatic MDF Apparatus,” U.S. Patent 5,870,528, Feb. 9, 1999.

[11] S. Hosokawa, “Automated Optical MDF System,” Europe Patent 0,494,768, Feb. 9, 1992.

[12] T. Kanai, A. Nagayama, S. Inagaki, and K. Sasakura, “Automated Optical Main-Distributing-

Frame System,” J. of Lightwave Technology, vol. 12, no. 11, pp. 1986–1992, Nov. 1994.

[13] S. Braun, J. Oberhammer, and G. Stemme, “MEMS Single-Chip 5×5 and 20×20 Double-switch

Arrays for Telecommunication Networks,” in 2007 IEEE 20th Int. Conf. Microelectromech.

Syst., 2007, pp. 811–814.

[14] S. Braun, J. Oberhammer and G. Stemme, “MEMS Single-Chip Microswitch Array for Recon-

figuration of Telecommunication Networks,” in 2006 Proc. of the 36th European Microwave

Conf., 2006, pp. 811–814.

[15] D. Czaplewski, G. Patrizi, G. Kraus, J. Wendt, C. Nordquist, S. Wolfley, M. Baker, and

M. de Boer, “A Nanomechanical Switch for Integration with CMOS Logic,” Journal of Mi-

cromechanics and Microengineering, vol. 19, no. 8, p. 085003, Jul. 2009.

[16] “Micro Magnetic Latching Switches For Automated Crossconnect Systems,” White paper,

Telepath Networks, Inc. [Online]. Available: http://www.telepathnetworks.com/s.nl/sc.5/

category.36/.f

[17] D. Cuda, P. Giaccone, and M. Montalto, “Design and Control of Next Generation Distribution

Frames,” in 2011 IEEE Int. Conf. High Performance Switching and Routing, Nashville, TN, Jul.

2011, pp. 115–120.

[18] C. Simons, T. S. Pearson, C. R. Noel, and J. D. Kidder, “Network Device for Supporting Mul-

tiple Redundancy Schemes,” U.S. Patent 6,332,198, Dec. 18, 2001.

[19] J. Gray and D. P. Siewiorek, “High-availability computer systems,” Computer, vol. 24, no. 9,

pp. 39–48, Nov. 1991.

[20] M. Huynh, S. Goose, , and P. Mohapatra, “Resilience Technologies in Ethernet,” Computer

Networks, vol. 54, no. 1, pp. 57–58, Jan. 2010.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

102

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[21] D. W. Coit, “Cold-Standby Redundancy Optimization for Nonrepairable Systems,” IIE Trans-

actions, vol. 33, no. 6, pp. 471–478, 2001.

[22] L. R. Goel and R. Gupta, “Reliability Analysis of Multi-Unit Cold Standby System with Two

Operating Modes,” Microelectronic Reliability, vol. 23, no. 6, pp. 1045–1050, 1983.

[23] R. Zhao and B. Liu, “Stochastic Programming Models for General Redundancy-Optimization

Problems,” IEEE Trans. Rel., vol. 52, no. 2, pp. 181–191, Jun. 2003.

[24] S. W. Ormon, C. R. Cassady, and A. G. Greenwood, “Reliability Prediction Models to Support

Conceptual Design,” IEEE Trans. Rel., vol. 51, no. 2, pp. 151–157, Jun. 2002.

[25] J. Safari and R. Tavakkoli-Moghaddam, “A Redundancy Allocation Problem with the Choice

of Redundancy Strategies by a Memetic Algorithm,” J. Ind. Eng. Int., vol. 6, no. 11, pp. 6–16,

2010.

[26] C. Y. Lee, M. Gen, and W. Kuo, “Reliability Optimization Design using a Hybridized Genetic

Algorithm with a Neural-Network Technique,” IEICE Transactions on Fundamentals of Elec-

tronics, Communications and Computer Sciences, vol. E84-A, no. 2, pp. 627–637, Jul. 2001.

[27] S. Cheng, “Ant Colony Algorithm to Reliability Optimization in Complex System,” in 2010

IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications,

Sep. 2010, pp. 318–322.

[28] D. C. Montgomery and G. C. Runger, Applied Statistics and Probabilities for Engineers, 4th ed.

NJ, USA: John Wiley & Sons, Inc., 2007.

[29] D. Coit and A. Smith, “Optimization Approaches to the Redundancy Allocation to the Re-

dundancy Allocation Problem for Series-parallel Systems,” in 1995 Proceedings of the Fourth

Industrial Engineering Research Conference, Nashville, TN, 1995, pp. 342–349.

[30] M. S. Chern, “On The Computational Complexity of Reliability Redundancy Allocation in a

Series System,” Operations Research Letters, vol. 11, no. 5, pp. 309–315, 1992.

[31] B. Liu, Theory and Practice of Uncertain Programming, 2nd ed. Heidelberg: Physica-Verlag,

2002.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

103

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[32] Y. Liang and A. E. Smith, “An Ant Colony Optimization Algorithm for the Redundancy Alloc-

ation Problem (RAP),” IEEE Trans. Rel., vol. 53, no. 3, pp. 417–423, Sep. 2004.

[33] W. Yeh and T. Hsieh, “Solving reliability redundancy allocation problems using an artificial bee

colony algorithm,” Computers & Operations Research, vol. 38, no. 11, pp. 1465–1473, Nov.

2010.

[34] D. Karaboga and B. Basturk, “A Powerful and Efficient Algorithm for Numerical Function Op-

timization: Artificial Bee Colony (ABC) Algorithm,” Journal of Global Optimization, vol. 39,

no. 3, pp. 459–71, 2007.

[35] I. F. Sbalzarini, S. Müller, and P. Koumoutsakos, “Multiobjective Optimization using Evolution-

ary Algorithms,” in Proceedings of the Center for Turbulence Research, 2000, pp. 63–74.

[36] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms. Chichester, U.K.: Wiley,

2001.

[37] C. A. Coello Coello, “Evolutionary Multi-Objective Optimization: A Historical View of the

Field,” IEEE Comput. Intell. Mag., vol. 1, no. 1, pp. 28–36, Feb. 2006.

[38] E. Zitzler, M. Laumanns, and S. Bleuler, “A Tutorial on Evolutionary Multiobjective Optimiz-

ation,” in Metaheuristics for Multiobjective Optimisation, ser. Lecture Notes in Economics and

Mathematical Systems, X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’kindt, Eds. Springer

Berlin Heidelberg, 2004, vol. 535, pp. 3–37.

[39] N. Srinivas and K. Deb, “Multiobjective Optimization using Nondominated Sorting in Genetic

Algorithms,” Evolutionary Computation, vol. 2, no. 3, pp. 221–248, 1994.

[40] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A Niched Pareto Genetic Algorithm for Multiob-

jective Optimization,” in 1994 Proc. IEEE Conf. Evol. Comput., Jun. 1994, pp. 82–87 vol.1.

[41] C. Fonseca and P. Fleming, “Genetic Algorithms for Multiobjective Optimization: Formulation,

Discussion and Generalization,” in 1993 Proceedings of the Fifth International Conference on

Genetic Algorithms, May 1993, pp. 416–423.

[42] J. H. Holland, “Adaptation in Natural and Artificial Systems,” Ann Arbor: University of

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

104

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

Michigan Press, 1977.

[43] M. Gen and Y. S. Yun, “Soft Computing Approach for Reliability Optimization: State-of-the-art

Survey,” Reliability Engineering & System Safety, vol. 91, no. 9, pp. 1008–1026, Sep. 2006.

[44] A. Konak, D. W. Coit, and A. E. Smith, “Multi-Objective Optimization using Genetic Al-

gorithms: A Tutorial,” Reliability Engineering & System Safety, vol. 91, no. 9, pp. 992–1007,

Jan. 2006.

[45] A. E. Rizzoli. (2010, Nov.) A Collection of Modelling and Simulation Resources on the

Internet. [Online]. Available: http://www.idsia.ch/~andrea/sim/simnet.html

[46] E. Weingartner, H. vom Lehn, and K. Wehrle, “A Performance Comparison of Recent Network

Simulators,” in 2009 IEEE Int. Conf. Commun., Dresden, Jun. 2009, pp. 1–5.

[47] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation Environment,” in 2008

Proc. of the 1st Int. Conf. on Simulation Tools and Techniques for Communications, Networks

and Systems & Workshops, Marseille, France, 2008.

[48] A. Varga, “The OMNeT++ Discrete Event Simulation System,” in 2001 Proc. of the European

Simulation Multiconference, 2001.

[49] A. Varga, “Using the OMNeT++ Discrete Event Simulation System in Education,” IEEE Trans.

Educ., vol. 42, no. 4, p. 11, Nov. 1999.

[50] K. Fall and K. Vardhan. (2010, Nov.) The Network Simulator - ns-2. [Online]. Available:

http://www.isi.edu/nsnam/ns/

[51] [No Author]. (2011) The Network Simulator - ns-3. [Online]. Available: http://www.nsnam.org/

[52] OPNET Technolgies. (2010, Nov.) OPNET Modeler. [Online]. Available: http://www.opnet.

com/

[53] Tetcos. (2009) PhySim: Communication Simulator and trainer. [Online]. Available:

http://tetcos.com/software.html

[54] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: A library for parallel simulation of large-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

105

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

scale wireless networks,” in 1998 Twelfth Workshop on Parallel and Distributed Simulation,

Dresden, May 1998, pp. 154–161.

[55] Scalable Network Technologies, Inc. (2011) Qualnet Network Simulator. [Online]. Available:

http://www.qualnet.com

[56] Tetcos. (2009) Physim: Communication simulator and trainer. [Online]. Available:

http://tetcos.com/physim.html

[57] T. J. Schriber and D. T. Brunner, “Inside Discrete-Event Simulation Software: How it works

and why it matters,” in 2005 Proceedings of the Winter Simulation Conference, Dec. 2005, pp.

113–123.

[58] A. Varga, OMNeT++ User Manual 4.1, 2010.

[59] Y. A. Şekercioğlu, A. Vargas, and G. K. Egan, “Parallel Simulation Made Easy With OM-

NeT++,” in 2003 Proceedings of the European Simulation Symposium, Delft, The Netherlands,

Oct. 2003.

[60] M. I. Botha and H. Grobler, “A Simulation Framework for Evaluating the Behaviour of a Modu-

lar Automated Main Distribution Frame using OMNeT++,” in 2011 Proceedings of the Southern

Africa Telecommunication Networks and Applications Conference, East London, South Africa,

Sep. 2011.

[61] A. Varga, Y. A. Şekercioğlu, , and G. K. Egan, “A Practical Efficiency Criterion for the Null

Message Algorithm,” in 2003 15th European Simulation Symposium, Delft, The Netherlands,

Sep. 2003.

[62] H. Singh and N. Misra, “On Redundancy Allocations in Systems,” Journal of Applied Probab-

ility, vol. 31, no. 4, pp. 1004–1014, Dec. 1994.

[63] P. J. Boland, F. Proschan, and Y. L. Tong, “Standby Redundancy Policies for Series System,”

Department of Statistics, Florida State University, Tallahassee, Florida, Tech. Rep. M-383, Jan.

1991.

[64] A. K. Bhunia, L. Sahoo, and D. Roy, “Reliability Stochastic Optimization for a Series System

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

106

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

with Interval Component Reliability via Genetic Algorithm,” Applied Mathematics and Compu-

tation, vol. 213, no. 3, pp. 929–939, Apr. 2010.

[65] S. Xu and L. Chen, “A Novel Approach for Determining the Optimal Number of Hidden Layer

Neurons for FNN’s and Its Application in Data Mining,” in 2008 5th International Conference

on Information Technology and Applications, San Diego, CA , USA, Jun. 2008, pp. 683–686.

[66] T. Murata and H. Ishibuchi, “MOGA: Multi-Objective Genetic Algorithms,” in 1995 IEEE Int.

Conf. Evol. Comput., vol. 1, Nov. 1995, pp. 289–294.

[67] V. Ravi, B. S. N. Murty, and P. J. Reddy, “Nonequilibrium Simulated Annealing-Algorithm

Applied to Reliability Optimization of Complex Systems,” IEEE Trans. Rel., vol. 46, pp. 233–

239, 1997.

[68] K. Aggarwal, J. Gupta, and K. Misra, “A Simple Method for Reliability Evaluation of a Com-

munication System,” IEEE Trans. Commun., vol. 23, no. 5, pp. 563–566, May 1975.

[69] S. B. Twum, “Multicriteria Optimisation in Design for Reliability,” Ph.D. dissertation, Univer-

sity of Birmingham, 2009.

[70] K. Fung, “A Philosophy for Allocating Component Reliabilities in a Network,” IEEE Trans.

Rel., vol. R-34, no. 2, pp. 151–153, Jun. 1985.

[71] D. McLeod. (2011, March) Mega project to bring fibre to SA homes. [Online]. Available:

http://www.techcentral.co.za/exclusive-megaproject-to-bring-fibre-to-sa-homes/21723/

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

107

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

