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Summary

In experimental analysis of data the information most often required and of interest is how

the changes in one variable (independent variable) a¤ects another variable (dependent

variable). The most distinctive di¤erence between a logistic regression model and a linear

regression model is the nature of the dependent variable. A linear regression model has

a continuous dependent variable whereas with the logistic regression model the response

is typically binary or dichotomous.

The logistic regression function is the log odds of a success expressed linearly as a combi-

nation of all the covariates included in the model. For a simple binary model where each

observation can only take one of two possible forms, one cut-o¤ value is implemented for

the probability of a success of the dependent variable. If the probability of a success for

a speci�c observation is above the cut-o¤ value the observation is assigned to a speci�c

group, for example, group 1, if the probability of a success for a speci�c observation is

below the cut-o¤ value the observation is assigned to another group, say group 2.

When one of the independent variables can perfectly classify the observations into the

respective groups of the response variable, the likelihood function has no maximum and

therefore no �nite value can be found for the coe¢ cient estimates. There are three

di¤erent mutually exclusive and exhaustive classes into which the data from a logistic

regression can be classi�ed: complete separation, quasi-complete separation and overlap-

ping data. Complete and quasi-complete separation imply that only an in�nite or a zero

maximum likelihood estimate could be obtained for the odds ratio which rarely can be

assumed to be true in practice.

Numerous methods to detect complete separation or quasi-complete separation have been

developed over the years. Exact logistic regression, Firth�s method and hidden logistic

regression will be discussed in this dissertation followed by practical examples in part II.

These methods will be compared to one another in di¤erent scenarios when two covariates

are considered. A small sample where complete separation is present is investigated and

compared to a large sample in which quasi-complete separation is present. In each of the

sample size cases a plot of the observations and the signi�cance of the parameters are

considered to con�rm whether complete or quasi-complete separation is present in the
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SUMMARY viii

data.

If the data is non-overlapping, exact logistic regression, Firth�s method and hidden logistic

regression are applied to the data set. For each of these models the signi�cance of the

parameters, the goodness of �t of the model (Pearson�s chi-square, deviance and Hosmer-

Lemeshow test statistic) and the classi�cation table are considered. Overall, the best

results are obtained from exact logistic regression when working with a large sample and

a data set which is not sparse. Firth�s method gives signi�cant coe¢ cient estimates for

all cases and transforms the data to represent a logistic curve which gradually increases

to an estimated probability from 0 to 1. Finally the hidden logistic regression model gives

perfect classi�cation for all cases, but still closely resembles a model under complete or

quasi-complete separation.
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Abstract

An occurrence which is sometimes observed in a model based on dichotomous dependent

variables is separation in the data. Separation in the data is when one or more of the

independent variables can perfectly predict some binary outcome and it primarily occurs

in small samples. There are three di¤erent mutually exclusive and exhaustive classes into

which the data from a logistic regression can be classi�ed: complete separation, quasi-

complete separation and overlap. Separation (either complete or quasi-complete) in the

data gives rise to a number of problems since it implies in�nite or zero maximum likeli-

hood estimates which are idealistic and does not happen in practice. In this dissertation

the theory behind a logistic regression model, the de�nition of separation and di¤erent

methods to deal with separation are discussed in part I. The methods that will be focussed

on are exact logistic regression, Firth�s method which penalises the likelihood function

and hidden logistic regression. In part II of this dissertation the three fore mentioned

methods will be compared to one another. This will be done by applying each method to

data sets which exhibit either complete or quasi-complete separation for di¤erent sample

sizes and di¤erent covariate types.
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Introduction

Regression is an essential part of any statistical data analysis used to explain the relation-

ship between a dependent and one or more independent variables. The logistic regression

model is used to predict a discrete outcome as opposed to a continuous value obtained

from a linear regression model.

Before studying the theory of logistic regression it is essential to recognise that the object

of this method is the same as for any other regression method: to obtain a model which

explains as much of the variation in dependent variable as possible. The coe¢ cient esti-

mates for a regression model can be obtained in many di¤erent ways, in this dissertation

the coe¢ cient estimates for the logistic regression model will be obtained with maximum

likelihood estimation.

When the outcome variable in a data set is discrete, the situation of complete or quasi-

complete separation can arise within the observations. This occurs when one or more

of the independent variables can perfectly predict the dependent variable. For example,

consider a medical study where breast cancer for di¤erent genders is examined. It is much

more likely that a female will have breast cancer than a male patient. Therefore, if a small

sample is considered and only the gender of a patient is used to predict if a patient has

breast cancer or not, it is very likely that all the female patients in the sample will have

breast cancer and all the males in the study not. This scenario is an example of complete

separation. When either complete or quasi-complete separation is present in a data set,

the maximum likelihood estimates will not be obtainable due to non-convergence in the

iteration process.

This dissertation comprises a study of the logistic regression model and ways to identify

if complete or quasi-complete separation is present in a data. When separation has been

identi�ed, di¤erent solutions to obtain a model with convergent coe¢ cient estimates are

investigated. The models obtained under the di¤erent approaches are then compared

to one another to identify which model is preferred under speci�c constraints from the

original data set.

xii
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Part I

Theory of logistic regression
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Chapter 1

Logistic Regression

1.1 Introduction

A logistic regression model is introduced in part I as a generalised linear model (GLM).

This model is derived to describe the relationship between the response and the input.

The most distinctive di¤erence between a logistic regression model and a linear regression

model is the response or dependent variable. A linear regression model has a continuous

dependent variable whereas for the logistic regression model the response is binary or

dichotomous. A great many variables in any �eld are dichotomous : male vs. female,

guilty vs. not guilty, defective vs. non-defective just to name a few.

In Chapter 1 the derivation of the logistic regression model will be discussed. The di¤erent

types of categorical observations will be investigated in Section 1.3 and 1.4 from which the

logit function can be derived in Section 1.5. For categorical input values, dummy variables

need to be created as shown in Section 1.6 and the de�nition of a sparse data set is de�ned

in Section 1.7. Since a logistic regression model is based on two possible outcomes, the

probability and the odds that links to a dichotomous variable will be investigated in

Section 1.8. For any model the coe¢ cients need to be estimated and evaluated, this

will be addressed in Section 1.9. Finally di¤erent ways to test the signi�cance of the

parameters and the model will be addressed in Sections 1.10 and 1.11.

1.2 Generalised linear models

In experimental analysis of data the information most often required and of interest is how

the changes in one variable (independent variable) a¤ects another variable (dependent

variable). Observations obtained from a survey, census, etc. is the dependent variable

which represent the experimental or survey units example: students, companies, patients

etc. (the items on which the observations were made). The di¤erent independent variables

(input) considered for each observation example: age, weight, sex, etc. are also known as

2
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CHAPTER 1. LOGISTIC REGRESSION 3

the covariates. In matrix notation, let the set of observations be represented by a n� 1
column vector y = [y1; :::; yn]

T and the independent variables be denoted by a n� (m+1)
matrix X. Each row in X represents a di¤erent observation and each column represents

a covariate. Associated which each covariate is a set of coe¢ cient or parameter values

represented by a (m+ 1)� 1 column vector � = [�0; :::; �m]
T : The classical linear model

can be expressed (McCullagh & Nelder 1989, p. 9) as the relationship between the

independent and dependent variables by

y = X� + " (1.1)

where "(�) is a n� 1 column vector of the residual terms.

The assumption under a linear regression model is that the observations of the dependent

or response variable are independent, this assumption of independence is carried over to

the wider class of generalised linear models. If a relationship between the dependent and

independent variables exists a model can be �tted to predict some continuous value for the

dependent variable. For a set of independent variables there is a range of possible values

for the dependent variable and vice versa, this variation will occur due to measurement

errors and variation between experimental units.

Over a period of time it was found that not only continuous values were desired for

the response variable, but discrete values for the enumeration of probabilities were also

needed. In 1952, Dyke and Patterson were of the �rst authors to publish a study on

cross-classifying data consisting of the proportion of subjects who has a good knowledge

of cancer. This analysis of counts in the form of proportions can be modelled by using a

Bernoulli distribution to indicate the probability of a "success" or a "failure" of a single

event; to model the number of "success" or "failures" in a �xed pool of survey units the

binomial distribution will be suitable.

A model was developed, the logistic regression function, which is the log odds of a success

expressed linearly as the combination of all the covariates considered. The odds of a

success is bound by the log function to ensure only a small range of values for the response

variable. For a simple binary model where the observation can only take one of two

possible forms, one cut-o¤ value is implemented for the probability of a success of the

dependent variable. If the probability of a success for a speci�c observation is above the

cut-o¤ value the observation is assigned to a speci�c group, for example, group 1, if the

probability of a success for a speci�c observation is below the cut-o¤value the observation

is assigned to the other group, say group 2. Assigning each observation to a speci�ed

group ensures a discrete value for the dependent variable. Since only discrete values

for the dependent variable Y are considered for the logistic regression model, the error

or residual terms can rarely be used to accurately assess the �t of a logistic regression.
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CHAPTER 1. LOGISTIC REGRESSION 4

Keeping this in mind a number of di¤erent ways to assess the �t of the logistic regression

model will be explored in Section 1.10.

1.3 Two-way contingency table

When the values obtained from the dependent and the independent variable can be

categorized into a �nite number of groups, the observations can be cross-classi�ed in a

contingency table. Let the independent variable X have k groups and the dependent

variable Y have g groups then the k by g possible outcomes can be expressed in a table

with k rows for the groups of X and g columns for the groups of Y . The cells in the table

represent the kg possible outcomes.

Consider a study on n = 20 individuals where the dependent variable is marital status

and there are 4 possible groups: single, married, divorced or widow/ed. The independent

variable of interest is the number of children of each individual and is categorized in the

following groups: no children - group 1, one or two children - group 2 and �nally for

more than two children the observation is allocated to group 3. The contingency table

for variables X and Y with k = 3 and g = 4 groups respectively can be expressed in

Table 1.1.

Table 1.1: Two-way contingency table

Marital Status
Single Married Divorced Widow/ed Total

Group 1 4 1 1 0 6
Children Group 2 1 3 3 1 8

Group 3 0 3 3 0 6
Total 5 7 7 1 20

The contingency table expressed in Table 1.1 cross-classi�es only two variables X and

Y; this is called a two-way contingency table. A contingency table which cross-classi�es

three variables is called a three-way table and so forth. A two-way contingency table

with k rows and g columns as given in Table 1.1 is expressed as a k� g table, or for this
example, a 3� 4 table.

1.4 Binary observations

When the dependent variable only has two groups i.e. g = 2 then Y is a binary variable.

Consider a group of n = 30 mice on which an experiment is conducted with two di¤erent
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CHAPTER 1. LOGISTIC REGRESSION 5

possible treatments available. Each mouse can only receive a single treatment and the

result for each mouse after a period of time will be whether it survived or not. If the

group of mice is divided into n1 = 13 mice receiving treatment 1 and n2 = 17 mice

receiving treatment 2, the 2� 2 contingency table can be given in Table 1.2.

Table 1.2: Contingency table for binary observations

Outcome
Survived Died Total

Treatment Treatment 1 12 1 13
Treatment 2 11 6 17
Total 23 7 30

Since the response now only has one of two possibilities, the terms "success" and "failure"

can be used to identify the two di¤erent responses. In Table 1.2 the columns are the

response levels of the dependent variable Y . Let a success be the event that a mouse

survived a treatment and a failure be the event that a mouse died after a treatment.

From the n = 30 mice considered for the experiment 23 survived and 7 died, therefore

the overall probability of a success is 23=30 = 76:67% which will be denoted by � and

the overall probability of a failure is 7=30 = 23:33% which will be indicated by (1� �):

1.5 Deriving the logit function

When considering a binary logistic regression model, the dependent variable

Yi; i = 1; 2; :::; n; is de�ned as some categorical variable with a qualitative value of say

0 or 1. The outcome of 0 or 1 is the result of condensing a more complex input value.

The value of 1 usually represents a �success�whereas 0 typically indicates a �failure�.

Di¤erent probabilities are assigned to the di¤erent outcomes of Yi by P (Yi = 1) = �i and

P (Yi = 0) = 1��i for i = 1; 2; :::; n where the n responses are assumed to be independent.
Most common in practice is when the values of �i is restricted to a single value. If Y

has its distribution de�ned by the single probability �; the probability of a success and a

failure can be simpli�ed to P (Y = 1) = � and P (Y = 0) = 1� � respectively.

The examples considered in chapters 1.3 and 1.4 are examples of the probability of a

success depending on a single explanatory variable X. The model can be extended to

a multiple regression model where the binary response variable, which can only assume

categorical values, depends on m explanatory variables which may be either quantitative

or qualitative.
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CHAPTER 1. LOGISTIC REGRESSION 6

The probability of a success can be modelled as a function of the independent variables

X1; X2; :::; Xm, therefore a logistic regression function is a linear function of the observed

values of Xi which can be expressed (Cox and Snell 1989, p. 26) by equation (1.2)

�i = logit(�i) = log
�
�i

1� �i

�
= xi0�0 + xi1�1 + xi2�2 + :::+ xim�m =

mP
j=0

xij�j (1.2)

where i = 1; 2; :::; n and j = 0; 1; 2; :::;m. The value of log
h

�i
1��i

i
is de�ned as the logit

function and is the natural logarithm of the odds for event i which can also be described

as the ratio between the probability of a successes (�i) and the probability of a failure

(1� �i ). The model represented by equation (1.2) can also be expressed by266664
�1

�2
...

�n

377775 =
266664
x10 x11 � � � x1m

x20 x21 � � � x2m
...

...
. . .

...

xn0 xn1 � � � xnm

377775
266664
�0

�1
...

�m

377775 (1.3)

which is simpli�ed to � = X� with � : n � 1;� : (m + 1) � 1;X : n � (m + 1) where
the ith row vector of observation i is represented by xi = [xi0; xi1; :::; xij; :::; xim], the jth

column vector of covariate j is represented by xj = [x1j; x2j; :::; xij; :::; xnj]T and the �rst

column vector of X is represented by x0 = [1; 1; :::; 1]T :

1.6 Dummy variables

When a logistic regression model is �tted to a data set which contains categorical explana-

tory variables, it is important to create dummy variables which represent the di¤erent

categories. This is done since if a categorical value is represented by a numerical value,

this value only represents a category and has no numerical properties. The number of

dummy variables considered for a speci�c covariate, is the number of categories for the

speci�c explanatory variable (k) minus 1. Therefore for the example considered in Section

1.3, the three di¤erent groups for the number of children will be replaced by a dummy

variable with two indicators say xd1 and xd2 where group 1 can be represented by xd1 = 0

and xd2 = 0; group 2 can be denoted by xd1 = 1 and xd2 = 0 and �nally xd1 = 0 and

xd2 = 1 to represent group 3. This coding is illustrated in Table 1.3.

If the jth explanatory variable which is represented by xj = [x1j; x2j; :::; xnj]
T is a cat-

egorical variable with kj possible levels, then kj � 1 indicators will be needed. Let the
indicators be represented by xdjl ; then the coe¢ cients for these indicators will be expressed

by �jl; l = 1; 2; :::; kj � 1: Therefore, for a logistic regression model with m explanatory

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. LOGISTIC REGRESSION 7

Table 1.3: Coding for dummy variables

Indicator
xd1 xd2

Group 1 0 0
Children Group 2 1 0

Group 3 0 1

variables and the jth variable a categorical variable, the model in equation (1.2) can be

represented (Hosmer & Lemeshow 2001, p. 33) by

�i = �0xi0 + xi1�1 + xi2�2 + :::+
kj�1P
l=1

xdjl�j + :::+ xim�m: (1.4)

1.7 Covariate Patterns

Consider the logistic regression model as shown in equation (1.3) and suppose the �tted

model has m covariates. A single observed set of covariates for say the ith observation

can be given by the ith row of X, xi = [xi0; xi1; xi2; :::; xim]: There are two types of

covariate patterns in a data set, the �rst is where every observed set of covariates are

distinct for all observations i = 1; :::; n: The second is where a covariate set is repeated

for two or more di¤erent observations. Therefore if a speci�c number of observations all

share the covariate set xi = [xi0; xi1; xi2; :::; xim]; let vc denote the number of observations

which share this covariate pattern in the cth covariate class. Individuals sharing a speci�c

covariate set is said to form a covariate class.

To illustrate this using a simple example consider the result of a speci�c course a student

enrolled for (student passing the course is indicated by yi = 1 or failing the course is

indicated by yi = 0). The results of this course are dependent on class attendance (never

attended is indicated by xi1 = 1, sometimes attended by xi1 = 2 or often attended xi1 = 3)

and on the semester mark obtained throughout the year (a semester mark equal to or

above 50% is indicated by xi2 = 1 and a semester mark strictly below 50% is indicated

by xi2 = 2). A sample of 10 students is considered and the observed values are tabulated

in the �rst column of Table 1.4.

Let q where c = 1; 2; :::q denote the number of distinct covariate patterns, then if every

observation has its own unique covariate pattern, q = n otherwise if some observations

have tied covariate patterns then q < n:When one or more of the covariates are continuous

it is very likely that the observations will have their own unique covariate pattern. In the

event that the number of tied covariate patterns are few, the data set is seen as a sparse

data set (McCullagh & Nelder 1989, p. 120). Sparseness does not necessarily indicate
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CHAPTER 1. LOGISTIC REGRESSION 8

Table 1.4: Representing covariate patterns

Observations represented individually Observations represented by covariate class

i
Covariate
(xi1; xi2)

Response
yi

c
Covariate
(xc1; xc2)

Class size
vc

Response
yc1

1 (2; 1) 0 1 (1; 1) 1 0
2 (1; 1) 0 2 (1; 2) 1 0
3 (2; 2) 0 3 (2; 1) 1 0
4 (3; 1) 0 4 (2; 2) 3 2
5 (1; 2) 0 5 (3; 1) 2 1
6 (3; 1) 1 6 (3; 2) 2 2
7 (3; 2) 1
8 (2; 2) 1
9 (2; 2) 1
10 (3; 2) 1

that the observations does not express much about the data set or that the parameters

obtained will give a poor representation of the covariates. To the contrary, as discussed

in (McCullagh & Nelder 1989, p. 120) when the sample size is large, the asymptotic

approximation is quite accurate.

Covariate classes make it visually easier to analyse and interpret the data set by high-

lighting the patterns which occur most often. Adding covariate classes does however have

the disadvantage that the order of the original data set is lost and the original data set

cannot be reconstructed from the covariate class summary. If the order of the data set is

not important, which is most often the case when using random samples, no information

will be lost.

For binary observations which are grouped into covariate classes the probability of a

success for each class is expressed by yc1
vc
for c = 1; 2; :::; q and 0 � yc1 � vc, where yc1

is the number of successes out of the vc observations for the cth covariate class. The

covariate class sizes can be expressed by vector v = (v1; v2; :::; vq): If all the observations

have their own unique covariate pattern the size for all covariate classes is 1 and the

covariate class vector can be expressed by v = (v1; v2; :::; vn): The covariate classes for

the student results are expressed in column 2 of Table 1.4 where q = 6.

Whether a data set is grouped or ungrouped according to covariate classes is important

for the di¤erent goodness-of-�t tests discussed in Section 1.10. It is also essential for

di¤erent methods to determine coe¢ cient estimates for a logistic regression model which

is explained in Chapter 3. One of the methods explained in Chapter 3 (exact logistic

regression) takes the sum over discrete patterns of covariate values to determine the

coe¢ cients for the logistic regression model as explained in Zorn (2005). For the scenario

where all the observations have their own unique covariate pattern, the exact logistic
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CHAPTER 1. LOGISTIC REGRESSION 9

regression model could give unreliable coe¢ cient estimates.

1.8 Relationship between the probability and the odds

of an event

Since the odds of an event is the ratio between the number of successes and failures it

can also be expressed by

odds =

�
�i

1� �i

�
=
P (Yi = 1)

P (Yi = 0)
(1.5)

and since 0 � �i � 1 the odds of the event will always be greater than or equal to 0. The
relationship between the odds of an event and the probabilities �i is illustrated in Table

1.5.

Table 1.5: Relationship between probability, odds and log(odds)

�i odds =
h

�i
1��i

i
log
h

�i
1��i

i
1 Not de�ned Doesn�t exist
0:75 3 0:478
0:5 1 0
0:25 0:333 �0:478
0 0 Doesn�t exist

Therefore a value of 0 < �i < 0:5 will lead to odds < 1 and log(odds) < 0; 0:5 < �i < 1

will give odds > 1 and log(odds) > 0 and �nally an equal probability of �i = 0:5 will lead

to the odds of a event being 1, i.e. even odds, and the log of this event is 0.

When the value of �i is estimated the estimated value of each binary observation yi namelybyi can be calculated. Since byi will have a continuous value, a cut-o¤ value for b�i must be
speci�ed: if the outcome is above the cut-o¤ value the observation will be classi�ed as byi
= 1 and for any value below this cut-o¤ value the observation will be labelled as byi = 0.
As is inevitable in model �tting, some observations could be misclassi�ed, i.e. byi = 1

when yi = 0 and vice versa. Unlike linear regression however, the �tting error cannot be

quanti�ed since the true value cannot be decomposed as the sum of the �tted value and

an error term, therefore a classi�cation table (discussed in Section 1.10.4) will be used to

report misclassi�ed values.

The logit model expressed in equation (1.2) can be written in terms of the row vector xi
and column vector �; i.e.
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CHAPTER 1. LOGISTIC REGRESSION 10

log

�
�i

1� �i

�
= xi�: (1.6)

Taking the antilog of equation (1.6) yields

e
log
h

�i
1��i

i
= exi�

i.e.
�i

1� �i
= exi�

i.e. �i = exi�(1� �i)
i.e. �i + �ie

xi� = exi�

) �i =
exi�

1 + exi�
(1.7)

and

1� �i = 1� exi�

1 + exi�

=
1 + exi� � exi�
1 + exi�

=
1

1 + exi�
: (1.8)

Therefore �i = P (Yi = 1) = exi�

1+exi�
(Cox and Snell 1989, p. 19) or equivalently, if the

equation is multiplied with
�
e�xi�

e�xi�

�
the probability of a success is given by

�i = P (Yi = 1) =
1

1 + e�xi�
: (1.9)

To visualise how the function in equation (1.7) responds to di¤erent values of �i one can

simplify the model in equation (1.7) to include only one explanatory variable, say the jth

covariate, and no constant term expressed by

�i =
exij�j

1 + exij�j
: (1.10)

Figures 1.1 and 1.2 (Allison 2012, p. 91), illustrate the logistic curve of the probability

�i at di¤erent values of xij when �j is positive and when �j is negative. It can be noted

from Figure 1.1 that there is an upward trend when �j > 0; and from Figure 1.2 that

there is a downward trend when �j < 0:
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Figure 1.1: Logistic curve for values where �j > 0
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Figure 1.2: Logistic curve for values where �j < 0
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1.9 Estimating the parameters

To use the function in equation (1.2) one needs to determine the elements of the column

vector �: One of the most popular methods to estimate unknown coe¢ cients is using

maximum likelihood (ML) estimation. Since the values of y = [y1; :::; yn]
T are assumed to

be independent, the likelihood function (Collett 2003, p. 67) of the n binary observations

as a function of � is:

l(�) = P (Y1 = y1; Y2 = y2; :::; Yn = yn; �1; :::; �n) =
nQ
i=1

�yii (1� �i)1�yi : (1.11)

The log-likelihood function of � = [�0; :::; �m]
T is obtained by determining the natural

logarithm of the likelihood function in equation (1.11) and by rewriting equation (1.6) as

log(�i) = xi� + log(1� �i), that is
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log l(�) =
nP
i=1

fyi log �i + (1� yi) log(1� �i)g

=
nP
i=1

fyi(xi� + log(1� �i)) + (1� yi) log(1� �i)g

=
nP
i=1

fyixi� + yi log(1� �i) + log(1� �i)� yi log(1� �i)g

=
nP
i=1

fyixi� + log(1� �i)g

=
nP
i=1

�
yixi� � log(1 + e(xi�))

	
: (1.12)

The ML estimate for �j; j = 0; 1; :::;m can be obtained by getting the derivative of

equation (1.12) with respect to �j and setting this derivative equal to 0. The derivative

of equation (1.12) for j = 1; 2; :::;m as given in Heinze and Schemper (2002) is

U(�j) =
@ log l(�)

@�j

=
nX
i=1

yixij �
nX
i=1

exij�j(xij)

1 + exij�j

=
nX
i=1

yixij �
nX
i=1

�ixij

=
nX
i=1

(yi � �i)xij
set
= 0. (1.13)

The derivative of equation (1.12) with respect to �0; set equal to 0; simpli�es to

U(�0) =
@ log l(�)

@�0

=
nX
i=1

yi �
nX
i=1

e�0

1 + e�0

=
nX
i=1

yi �
nX
i=1

�i
set
= 0 (1.14)

since xi0 = 1 for 8i: From equation (1.14) and Hosmer and Lemeshow (2001, p. 10) it

can be noted that the solution for the sum of the observed values can be expressed as

nX
i=1

yi =
nX
i=1

b�i (1.15)

where b�i is the predicted values of �i:
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In logistic regression the equations given in (1.13) and (1.14) are nonlinear in �j;j =

0; 1; :::;m and thus require special methods to solve. The solution of � from equations

(1.13) and (1.14) which is called the ML estimator (b�); is obtained by using iterative
methods. For a simple logistic regression model, a model is saturated when the number

of groups for the independent variable, k, equals the number of unknown parameters

(m + 1) in the model. For saturated models the equations in (1.13) and (1.14) can be

solved explicitly for the ML estimator b�: Examples hereof include the case where the
binary response variable can be found as a function with only one variable X (with

two possible outcomes) such that observed values obtained can be expressed in a 2 � 2
contingency table as expressed in Table 1.2. In this case the observed frequencies can

be used in the natural logarithm of the cross product ratio to obtain the ML estimates

(Allison et al., 2004)

b� = log f11f22
f12f21

(1.16)

where fij indicates the frequency for the ith row and jth column in the 2� 2 contingency
table.

For most models, however, the model cannot be classi�ed as saturated and therefore no

explicit solution can be determined. In this scenario the ML estimates have to be obtained

with numerical methods, the most often applied method being Newton-Rhapson.

Consider the ith row vector xi = (1; xi1; xi2; :::xim) as an (m+1)� 1 column vector of the
covariates for observation i i.e. xTi : The �rst derivative of the log-likelihood with respect

to �; set equal to 0; can be found (Allison 2012, p. 44) as

U(�)=
@ log l(�)

@�
=

nX
i=1

xTi yi �
nX
i=1

xTi (1 + e
�xTi )�1 (1.17)

whereU(�) is a (m+1)�1 column vector of partial derivatives
h
@ log l(�)
@�0

; @ log l(�)
@�1

; :::; @ log l(�)
@�m

iT
and is also known as the gradient or score function. The second derivative with respect

to � of the log-likelihood function set equal to 0 is indicated (Allison 2012, p. 44) by

I(�)=
@2 log l(�)

@�@�
0 = �

nP
i=1

xTi xi(1 + e
�xTi )�1(1� (1 + e�xTi )�1) (1.18)

where I(�) is a matrix of second partial derivatives and is also known as the Hessian

matrix. The Hessian matrix is not only used to estimate coe¢ cients from the well de-

veloped theory of ML estimation (Rao, 1973), but is also used to estimate the variances

and covariances of the estimated coe¢ cients.
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The diagonal and o¤-diagonal elements of the Hessian matrix can be expressed (Hosmer

& Lemeshow 2001, p. 34) by

@2 log l(�)

@�2j
= �

nX
i=1

x2ij�i(1� �i) (1.19)

and

@2 log l(�)

@�j@�l
= �

nX
i=1

xijxil�i(1� �i) (1.20)

for j; l = 0; 1; 2; :::;m. The variances and covariances of the estimated coe¢ cients are

obtained from the inverse of the Hessian matrix i.e.

V ar(�) = I�1(�): (1.21)

The value for V ar(�) at the estimated value b� will be donated by V ar(b�), where the
values in this matrix for the jth coe¢ cient estimate will be expressed by dV ar( b�j) anddCov( b�j; b�l):
The estimates for � is then calculated (Allison 2012, p. 44) by the Newton-Rhapson

algorithm formulated by

�new = �old � I�1(�old)U(�old) (1.22)

where I�1(�) is the inverse of the Hessian matrix I(�): The column vector of starting

values (�old) is substituted on the right hand side of equation (1.22), this will yield the

new value (�new) on the left hand side of (1.22), �new is then used on the right hand side

of the equation to obtain the next new value on the left hand side. This process will be

repeated until the left hand side of the equation is equal to the right hand side which is an

indication that the process converged. This process usually takes fewer than 25 iterations

for convergence, if the process did not converge after 25 iterations the chance that it will

converge is very low. When the process does not converge, it is a strong indication that

separation is present in the data, which will be discussed in Chapter 2.

1.10 Goodness of �t

Many goodness-of-�t measures exist to show how well a given logistic regression model

�ts the data. There is however no overall best method which can be singled out to assess

the adequacy or inadequacy of a given logistic regression model. Each method has its

own advantages and disadvantages depending on the sample size, type of covariates used,

etc. Four di¤erent types of methods will be considered, the �rst method comprises of
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CHAPTER 1. LOGISTIC REGRESSION 15

tests which are based on covariate patterns and consist of the Pearson�s chi-square test

(Pearson, 1900) and the deviance test. The second method uses estimated probabilities

from the assumed model which is known as Hosmer and Lemeshow�s bC and bH tests. The

third method is informal model �t statistics, followed by using a tabular method, the

classi�cation tables. There are a number goodness-of-�t models available in practice and

the interested reader is referred to Liu (2007) and Hosmer and Lemeshow (2001).

1.10.1 Pearson�s chi-square test and deviance test

In linear regression the signi�cance of a model is found by computing the squared distance

between the observed and the predicted outcome value also known as the SSE. This value

indicates how close the model correctly predicted the outcome variable. If the size of the

SSE is large it implies a large distance between the observed and the estimated outcome

which is an indication that the model is not a good predictor. In logistic regression

the same approach is followed i.e. to take the di¤erence between the observed and the

predicted outcome. According to Hosmer and Lemeshow (2001) the deviance statistic for

logistic regression plays the same role as the SSE plays in linear regression.

To derive the Pearson chi-square statistic, assume n independent observations from a

Bernoulli distribution where the probability of a success for a single observation is given

by �i. Then the logistic regression model can be derived as described in Section 1.5. The

estimated parameters of the logistic regression model can be obtained with numerical

methods as discussed in Section 1.9. Suppose a logistic regression model is derived as in

equation (1.2), then if the �tted model hasm covariates, each observation yi; i = 1; 2; :::; n

has a single covariate set xi = [xi0; xi1; :::; xim] which is represented in a single row of X

in (1.3). As discussed in Section 1.7 two types of covariate patterns can exist in a data

set. The �rst is where each observation has its own unique covariate set and there are no

tied covariate sets (i.e. q = n), this is also referred to as a sparse data set. The second

type is where more than one observation share the same covariate set (i.e. q < n).

By considering the second type of covariate pattern (q < n), if vc number of observations

in the cth covariate class share the same covariate set then
qX
c=1

vc = n: If ns is the total

number of successes and nf is the total number of failures over all the covariate classes

then n = ns + nf : If the total number of successes in the cth covariate class is given by

yc1 and the total number of failures is given by yc0 then
qX
c=1

yc1 = ns and
qX
c=1

yc0 = nf :

The expected number of successes for the cth covariate class can be given by (Hosmer

and Lemeshow 2001, p. 145)
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cyc1 = vc b�c (1.23)

where b�c is the ML estimator of �c of the cth covariate class given by b�c = exc
b�

1+excb� .
The likelihood function in equation (1.11) is that of n independent observations from

a Bernoulli distribution. Now we have the case where vc observations share the same

covariate set and therefore a likelihood function can be derived in terms of vc, yc1, �c
given by (Liu 2007, p. 20)

l(�) =
qQ
c=1

 
vc

yc1

!
�yc1c (1� �c)vc�yc1 (1.24)

and the natural logarithm of the function in equation (1.24) is given by

log l(�) =

qX
c=1

(
log

 
vc

yc1

!
+ yc1 log(�c) + (vc � yc1) log(1� �c)

)
: (1.25)

For a speci�c covariate pattern of covariate class c the Pearson residual (Hosmer and

Lemeshow 2001, p. 145) is given by

r(yc1; b�c) = (yc1 � vc b�c)p
vc b�c(1� b�c) (1.26)

and the Pearson chi-square test statistic is expressed by

�2 =

qX
c=1

r(yc1; b�c)2 (1.27)

with q � (m+ 1) degrees of freedom.

The deviance residual for the cth covariate class is given by (Hosmer and Lemeshow 2001,

p. 146)

d(yc1; b�c) = ��2 �yc1 log� yc1
vc b�c

�
+ (vc � yc1) log

�
(vc � yc1)
vc(1� b�c)

���1=2
: (1.28)

If the cth covariate class has no successes (yc1 = 0) it results in
�
yc1
vcc�c
�
= 0 then the

deviance residual can be calculated by

d(yc1; b�c) = �p2vc jlog(1� b�c)j: (1.29)

Similarly, if only successes are observed in the cth covariate class (yc1 = vc) it leads to�
(vc�yc1)
vc(1�c�c)

�
= 0 and the deviance residual can be calculated by

d(yc1; b�c) =p2vc jlog( b�c)j: (1.30)
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CHAPTER 1. LOGISTIC REGRESSION 17

From equations (1.28), (1.29) and (1.30) the deviance statistic can be calculated by

D =

qX
c=1

d(yc1; b�c)2: (1.31)

If the model is correct, the deviance test statistic is approximately a chi-square distribu-

tion with q � (m+ 1) degrees of freedom.

When the �rst covariate type (q = n) is present in a data set, i.e. vc = 1 for 8c, Pearson�s
statistic reduces to (by using equation (1.15)) as shown in McCullagh and Nelder (1989,

p. 121)

�2 =

qX
c=1

(yc1 � b�c)2b�c(1� b�c)
=

nX
i=1

(yi � b�i)2b�i(1� b�i)
=

nX
i=1

(yi � 2yi b�i + b�i2)b�i(1� b�i)
=

nX
i=1

(yi � 2y2i + y2i )
yi(1� yi)

=
nX
i=1

(yi � y2i )
yi(1� yi)

=
nX
i=1

yi(1� yi)
yi(1� yi)

= n: (1.32)

From equation (1.32) one can note that the Pearson chi-square statistic is reduced to the

sample size which is not a very useful test for goodness-of-�t.

Similarly when the �rst covariate type is present in a data set, the deviance residual from

equation (1.28) is reduced to

d(yi; b�i) = ��2 �yi log� yib�i
�
+ (1� yi) log

�
(1� yi)
(1� b�i)

���1=2
(1.33)

since vc = 1, yc1 = yi and all classes are of size 1. The only two possible values for yi is 0

or 1 which implies that the values for (1� yi) ln(1� yi) and yi ln yi will be reduced to 0
for either case. By taking this into consideration, combined with the result from equation

(1.15), the deviance test statistic in equation (1.31) can be rewritten, as shown by (Liu

2007, p. 22) , to be
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D =

qX
c=1

d(yc1; b�c)2
=

nX
i=1

d(yi; b�i)2 (1.34)

=

nX
i=1

 �
2

�
yi log

�
yib�i
�
+ (1� yi) log

�
(1� yi)
(1� b�i)

���1=2!2

= 2
nX
i=1

�
yi log

�
yib�i
�
+ (1� yi) log

�
(1� yi)
(1� b�i)

��
= 2

nX
i=1

[yi log yi � yi log b�i + (1� yi) log (1� yi)� (1� yi) log(1� b�i)]
= 2

nX
i=1

[�yi log b�i � (1� yi) log(1� b�i)]
= �2

nX
i=1

[b�i log b�i + (1� b�i) log(1� b�i)] : (1.35)

From equation (1.35) it is seen that the deviance only makes use of the estimated prob-

abilities b�i and does not take into consideration the agreement between the observed
binary values and their corresponding �tted probabilities (Collett 2003, p. 68). The

test statistics represented in equations (1.32) and (1.35) only occurs when sparse data

is observed (q = n) therefore extreme caution should be applied when interpreting the

Pearson chi-square or deviance test statistic when the �rst covariate type is present in

the data set.

When there is a signi�cant di¤erence between the Pearson chi-square and deviance test

statistic it could imply that the sampling distribution of the Pearson chi-square and the

deviance test statistic are not correctly approximated by the Chi-square distribution with

q � (m+ 1) degrees of freedom; this could be the result of a sparse or a small data set.

1.10.2 Hosmer-Lemeshow statistic

One advantage of using the Hosmer-Lemeshow statistic as a measure of goodness-of-�t

is that this test does not require that a covariate set xi = [xi0; xi1; :::; xim] needs to be

repeated over more than one observation. The Hosmer-Lemeshow test can be used for

the case where each observation has its own unique covariate set (q = n), unlike for the

Pearson chi-square and deviance test. Therefore the Hosmer-Lemeshow tests can be used

on a data set with both continuous and categorical independent variables.
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There are two di¤erent types of Hosmer-Lemeshow tests available (Liu 2007, p. 24), the

one is based on predetermined cut-o¤ values of the estimated probability of a success and

is indicated by bH. To calculate bH, ten groups are formed by setting the upper interval for
the �tted probabilities for each group to 0:1; 0:2; :::; 1. This may however lead to groups

with small and/or unequal sizes which is why this particular method is not often used in

practice and therefore will not be discussed any further.

The second statistic, bC; is more prevalent and will be discussed. This test is based on the
percentiles of the estimated probabilities. The �rst step to determine bC is to calculate

the estimated probabilities under the assumed logistic regression model derived for the

speci�c data set (as derived in equation (1.7)) of all the observations. The observations

are then sorted into ascending order according to the corresponding �tted probabilities.

From this ordered list the observations are grouped. The groups can be selected manually

such that the groups have equal sizes:

Suppose there is a total of a groups where each group is of size va. In each of these groups

the observed values for the dependent variable yi; i = 1; 2; :::; a; are added to obtain the

observed number of successes, oi in that group. Similarly, the �tted probabilities in

each group are added to obtain the estimated expected number of successes, ei: In each

group the average success probability is the expected number of successes divided by

the total number of observations in that group, i.e. b�i = ei
va
:Using this information the

Hosmer-Lemeshow test statistic is given by (Hosmer and Lemeshow 2001, p. 148)

bC = aX
i=1

(oi � va b�i)2
va b�i(1� b�i) : (1.36)

This statistic is an approximate chi-square distribution with (a � 2) degrees of freedom
when the �tted model is appropriate. This leads to a formal goodness-of-�t hypothesis

test where each observation has its own unique covariate set. This value should be

interpreted with caution since the value is greatly in�uenced by the total number of

observations, the number of observations within each group and how the values are split

into di¤erent groups. Care should especially be taken when interpreting this value when

the number of covariate patterns are less than the number of observations (q < n), as

shown in Bertolini et al. (2000). Any conclusion based on this statistic should only be

taken as a guideline on assessing the goodness-of-�t of a logistic regression model.

1.10.3 Model �t statistics

Penalized �t statistics, as discussed in (Allison 2012, p. 22) can be used to informally

compare models with di¤erent number of covariates against each other; these values can
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however not be used to construct a formal hypothesis testing such as the Pearson chi-

square, deviance test statistic and Hosmer-Lemeshow statistic.

The most fundamental test of the model �t statistics is the maximised value of the log

likelihood function as de�ned in equation (1.11) multiplied by �2. The value of

�2LogL (1.37)

is greatly dependent on the number of observations and the number of covariates consid-

ered in the data set. A high value for �2LogL is usually a indication of a badly �tted
model, but since this value is a¤ected by the data set that is used, it is advised to only

use this value as a comparative measure for di¤erent models �tted on the same data set.

If a data set has more covariates, the value of �2LogL tends to decrease, if the number
of observations in the data set increases the value of �2LogL tends to be in�ated.

Since the �2LogL value decreases (showing a better �t) as the number of covariates
increases, another measure needs to be considered which penalises models with more

covariates. The Akaike�s information criterion (AIC) places such a penalty on models

since it is calculated by

AIC = �2LogL+ 2k (1.38)

where k is the number of covariates plus the intercept term, therefore k = m + 1. For

each additional covariate introduced in a model the value of �2LogL is thus penalised
(increased) by a factor of 2.

Schwarz criterion (SC) is a statistic that even more severely penalises �2LogL for each
additional covariate added and is given by

SC = �2LogL+ k log n (1.39)

Each additional covariate in the model is now penalised by a factor of k log n where k =

m+1 and log n is the natural logarithm of the number of observations used in the model.

For example if a model is built based on a sample of 50 observations, each additional

covariate introduced in the model will be penalised by a factor of log(50) = 3:912.

1.10.4 Classi�cation tables

The methods and tests mentioned up to this stage involve formal hypothesis testing

and informal model �t statistics to assess whether the logistic regression model �ts the

data adequately. These methods however do not allow a visual representation of the
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actual results. When a logistic regression model has been obtained for a speci�c data

set the predicted values can be calculated and compared with the observed values. A

classi�cation table (Hosmer and Lemeshow 2001, p. 156) can then be compiled by cross-

classifying the observed outcome with the predicted values obtained from the logistic

regression model.

A classi�cation table allows one to evaluate to which extent the logistic regression model

correctly predicts the group membership of an observation, i.e. whether the model is

appropriate and �ts the data well. Consider the outcomes (win or a loss) of a team for

10 matches. The predicted outcome for the team depends on the number of hours they

have practised, the team�s morale, the proportion of wins the coach has and the location

of the match. A logistic regression model can be constructed to predict a win, dependent

on the above mentioned independent variables. Fictitious predicted and actual outcomes

of the 10 games (win=1 and loss=0) for the speci�c team are summarised in Table 1.6.

Table 1.6: Predicted and actual outcome for team
Match 1 2 3 4 5 6 7 8 9 10

Predicted outcome 1 1 1 1 1 0 0 0 1 0
Actual outcome 1 0 1 1 0 0 1 0 1 0

The predicted values in Table 1.6 are obtained by specifying a cut-o¤ predicted proba-

bility value to classify the predicted outcome as either a loss or a win. If the predicted

probability is below this cut-o¤ predicted probability value the predicted outcome will

be classi�ed as a 0. If the predicted probability exceeds the cut-o¤ value the derived

outcome will be equal to 1. The most often used cut-o¤ value is 0:5: By cross-classifying

the actual and predicted values on a cut-o¤ value of 0:5 in Table 1.6 the classi�cation

table in Table 1.7 is obtained.

Overall the percentage which was correctly classi�ed by the model is 70%. For the

individual outcomes the win category is predicted most accurately (80%) whereas the

prediction for a loss is not as accurately predicted (60%).

This method allows us to examine a model from the predictive accuracy perspective.

With this method it is important to remember that the predictions were obtained from

the same data used to �t the model and could therefore give very positive results. For

Table 1.7: Classi�cation table for team results
Predicted

Win=1 Loss=0 Percentage Correct
Observed Win=1 4 1 80%

Loss=0 2 3 60%
Overall % 70%
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example if a correctly classi�ed percentage of wins is 70%; it suggests a good �t on the

face of it. If however it is much more likely that a team will win than lose, 70% correctly

classi�ed as a win may be a bad prediction. It should be borne in mind that classi�cation

is susceptible to the relative sizes of the two groups and always promotes classi�cation

into the group with the larger size.

Classi�cation is not just dependent on the sample size but also on the predictive outcome

that was obtained from the model. To illustrate this, consider (Hosmer and Lemeshow,

2001) a data set with 100 patients where the predictive probability to have a disease isb� = 0:51 for all 100 patients. If the cut-o¤ value is 0:5 and considering that the model
is appropriate would imply that 51 patients have the disease and 49 does not. Then 51

would fall above the cut-o¤ value and would be correctly classi�ed, whereas 49 out of

the 100 would be misclassi�ed. Therefore classi�cation tables should only be utilised as

an illustrative measure of the predictive outcome. It is good practice to keep a separate

validation sample which can be used to evaluate the predictive accuracy of the model.

1.11 Signi�cance of coe¢ cients

1.11.1 Test Statistics

When considering which of the covariates to include in a model, it is important to con-

sider the following question: does the model that include this speci�c covariate predict

the outcome better than a model that does not include this speci�c covariate? To an-

swer this question one can compare the output of a model that includes this particular

covariate with one that does not. From this (in addition to a few tests mentioned below)

one can decide which covariates to include in the model. It is important to remember in

the situation when a covariate is categorical and dummy variables were used to represent

this covariate, that these dummy variables form one group. Therefore if the categorical

covariate is excluded from the model, all the dummy variables which represent this co-

variate must be excluded. Section 1.11 just focuses on the signi�cance of the estimated

coe¢ cients where the signi�cance of a model as a whole (goodness-of-�t) is discussed in

Section 1.10.

One way to test the signi�cance of a coe¢ cient representing covariate j is to compute

the di¤erence of the deviance (as de�ned in equation (1.31)) when the covariate is not

included in the model and when the covariate is included in the model, shown by (Hosmer

and Lemeshow 2001, p. 14)

G = D(model without the covariate)�D(model with the covariate). (1.40)
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From equation (1.40) the likelihood ratio statistic can be explained. For any speci�c data

set, the derived ML estimates can be used to set up the current model. The maximised

likelihood under this current model can be denoted by cLc: The current model can how-
ever not be used on its own since it is dependent on the number of observations and

covariates used and therefore needs to be compared to a baseline model. The baseline

model typically used is one that perfectly �ts the data by building a model for which the

�tted values match the actual values. This baseline model is a saturated model. The

maximised likelihood of this saturated model is denoted by cLs: From this the likelihood

ratio (LR) is given by (Collett 2003, p. 66)

LR = �2 log
cLccLs : (1.41)

Under the null hypothesis that �j is equal to 0, LR follows a chi-square distribution with

degrees of freedom equal to the di¤erence in the number of parameters estimated by the

two models. For this test a large sample size n is required.

Before excluding any of the coe¢ cients, the univariate Wald statistic also needs to be

considered, it is given by (Hosmer and Lemeshow 2001, p. 37)

WALDj =
b�jcSE( b�j) (1.42)

where the standard error of the estimated coe¢ cients �j; j = 0; 1; :::;m is given by

cSE( b�j) = hdV ar( b�j)i1=2 : (1.43)

From equation (1.21), the estimated variance of the vector b� is given by
dV ar(b�) = bI�1(b�): (1.44)

A formulation of the Hessian matrix (expressed by equations (1.18), (1.19) and (1.20))

can be given by bI(b�) = XTW(b�)X where X is the design matrix andW(b�) is a n � n
matrix where the diagonal elements are given by b�i(1� b�i) i.e.

W(b�) =
266664
b�1(1� b�1) 0 � � � 0

0 b�2(1� b�2) � � � 0
... 0

. . .
...

0 � � � 0 c�n(1�c�n)

377775 : (1.45)

Similarly, the matrixW(�) is a n� n matrix where the diagonal elements are given by
�i(1� �i) i.e.
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W(�) =

266664
�1(1� �1) 0 � � � 0

0 �2(1� �2) � � � 0
... 0

. . .
...

0 � � � 0 �n(1� �n)

377775 : (1.46)

Under the null hypothesis that a speci�c coe¢ cient is not signi�cant, the Wald statistic

will follow a standard normal distribution.

For a logistic regression model with more than one covariate the Wald statistic can be

calculated by (Hosmer and Lemeshow 2001, p. 39)

WALD = b�T hdV ar(b�)i�1 b�
= b�T (XTW(b�)X)b�: (1.47)

The Wald statistic given by equation (1.47) follows a chi-square distribution with m+ 1

degrees of freedom under the null hypothesis that each of the m+ 1 coe¢ cients is equal

to 0.

The LR statistic and the Wald statistic can provide guidance as to which covariates

signi�cantly contribute to predicting the outcome. The score test can also be used to

analyse the signi�cance of the estimated parameters in the model and the interested

reader is referred to Hosmer and Lemeshow (2001, p.152). One should however not

entirely base the decisions on these tests, an overall assessment of the entire model and

the e¤ect of each of the covariates should also be considered.

1.11.2 Con�dence interval

For any estimate in statistics an interval in which this estimate falls can be calculated. For

logistic regression the endpoints for a 100(1� �)% con�dence interval for the coe¢ cient

estimate of the jth covariate is given by (Hosmer and Lemeshow 2001, p. 18)

b�j � z1��
2

cSE( b�j)
where z1��

2
is the upper 100(1��=2)% point from the standard normal distribution andcSE( b�j) is as de�ned in equation (1.43).
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1.12 Conclusion

Logistic regression predicts the outcome of a dichotomous variable based on a set of co-

variates. When deriving a logistic regression model it is very important to investigate the

type of covariates in your data set. If the covariates are categorical then dummy variables

should be introduced into the model, in which case the number of covariate classes present

in the data set is more likely to be less than the sample size (q < n). For this situation

the Pearson chi-square and the deviance test can be used to test the goodness-of-�t of

the model. When the covariates used are continuous no dummy variables are required in

the logistic regression model and the data set is more likely to be sparse. In this case the

Pearson chi-square and deviance test should be applied with caution and it is advisable

to rather use the Hosmer-Lemeshow test to evaluate the model�s goodness-of-�t.
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Chapter 2

Complete and quasi-complete
separation and overlap

2.1 Introduction

When one of the independent variables, X, can perfectly classify the observations into

the respective groups of the response variable, the likelihood function has no maximum

and therefore no �nite value can be found for the estimates of �. If the maximum

of the likelihood function does not exist, it follows that the ML estimates also do not

exist. This problem is known as monotone likelihood. Three di¤erent mutually exclusive

and exhaustive classes into which the data from a logistic regression can be classi�ed

exists (Albert and Anderson, 1984): complete separation, quasi-complete separation and

overlap. Complete and quasi-complete separation imply that only an in�nite or a zero

ML estimate could be obtained for the odds ratio which rarely can be assumed to be

true in practice. Although perfect prediction is aimed for in practice, if the sample size

is small and perfect prediction occurs, it is probably as a result of random variation and

not that of a true in�nite or zero odds ratio.

To illustrate complete separation, quasi-complete separation and overlapping data, prac-

tical examples are considered as illustrated in Allison et al. (2004). For the examples

considered in Section 2:1; 2:2 and 2:3 let xi � 0 be indicated by xi = 0 and xi > 0

be indicated by xi = 1: In Chapter 2 one independent variable will be used to predict

the outcome of the dependent variable, the coe¢ cient representing this one independent

variable is indicated by �:

26
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2.2 Complete separation

From Albert and Anderson (1984), complete separation occurs when there exists a (m+1)

vector of coe¢ cients � such that when xi� < 0 the outcome is yi = 0 and when xi� > 0

the outcome is yi = 1: Whenever a linear function of the independent variable Xi can

perfectly predict the response variable, complete separation occurs.

Table 2.1 contains observations from a completely separated model where there is only one

explanatory variable X and the response variable Y takes on the value yi = 0 whenever

xi < 0 and yi = 1 whenever xi � 0 for i = 1; 2; :::; 10.

Table 2.1: Example of complete separation

i 1 2 3 4 5 6 7 8 9 10
xi �5 �4 �3 �2 �1 1 2 3 2 5
yi 0 0 0 0 0 1 1 1 1 1

The observations in Table 2.1 can be summarised by a 2� 2 contingency table.

Table 2.2: Two-way table for complete separation

y
0 1

x 0 5 0
1 0 5

Whenever the two o¤-diagonal cells in a 2� 2 contingency table has frequencies of 0, it
is an indication of complete separation. To illustrate complete separation in X and Y

consider the scatterplot of the observed values in Table 2.1 given in Figure 2.1. From

Figure 2.1 it is noted that there is a horizontal jump from yi = 0 to yi = 1.

Figure 2.1: Scatter plot of x and y under complete separation
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By substituting the values of the contingency table into equation (1.16) the ML estimator

is b� = log (5)(5)
(0)(0)

, which does not exist. As the value of the estimator � increases, the log

likelihood does not reach a maximum value. Even though the log likelihood is bounded

by the value of 0, no signi�cant values for � can be estimated, this scenario is illustrated

by Figure 2.2 (Allison et al., 2004). Since the likelihood function is �at the diagonal

elements in the variance matrix of the coe¢ cient in equation (1.44) will be in�nite in

size, which leads to an in�nite standard error of the coe¢ cient representing the covariate.

Figure 2.2: The log-likelihood function as a function of � for complete separation
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2.3 Quasi-complete separation

One also gets the situation, as explained by Albert and Anderson (1984), where there

exists some (m + 1) vector of coe¢ cients � such that yi = 0 when xi� � 0 and yi = 1
when xi� � 0 and for at least one category of the outcome variable the equality holds.
This is known as quasi-complete separation.

An example of quasi-complete separation (Allison et al., 2004) is represented in Table

2.3, where there is once again only one explanatory variable X and the response variable

Y assumes the value of yi = 0 whenever xi < 0 and yi = 1 whenever xi > 0. There is

however one value for X, xi = 0, for which both yi = 0 and yi = 1 is observed.

Table 2.3: Example of quasi-complete separation

i 1 2 3 4 5 6 7 8 9 10 11 12
xi �5 �4 �3 �2 �1 0 0 1 2 3 2 5
yi 0 0 0 0 0 0 1 1 1 1 1 1
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Table 2.4: Two-way table for quasi-complete separation

y
0 1

x 0 6 1
1 0 5

By summarising the values in Table 2.3 in a 2�2 contingency table, Table 2.4 is obtained.
If either one of the o¤-diagonal cells in a 2� 2 contingency table contains a value of 0 it
is an indication of quasi-complete separation. The observations considered in Table 2.3

can be illustrated by a scatter plot shown in Figure 2.3. For the case of quasi-complete

separation there is at least one overlapping observation when xi = 0 as seen in Figure

2.3.

Figure 2.3: Scatter plot of x and y under quasi-complete separation
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By substituting the values of the contingency table into equation (1.16) the ML estimator

is found by b� = log (6)(5)
(0)(1)

; which does not exist. As the value of the estimator � increases,

the log likelihood does not reach a maximum value. Even though the log likelihood is

bound by some value smaller than 0, in this case bounded by �1 as seen in Figure 2.4 ,
no �nite value for � can be estimated. For quasi-complete separation the standard error

in equation (1.43) will be in�nite in size. This situation is far more common in practice

than complete separation.

2.4 Overlap

When neither complete nor quasi-complete separation has occurred in the data it can

be assumed that an unique �nite solution for the ML estimates exist, this is known as

overlap (Silvapulle, 1981).
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Figure 2.4: The log-likelihood function as a function of � under quasi-complete separation
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To determine the estimates of � by using the Newton-Rhapson algorithm (1.22) the

inverse of the Hessian matrix (1.18) must exist, therefore a simple criterion to determine

if the data overlaps is to test if the Hessian matrix is positive de�nite. This will occur

when the dependent variable Y cannot be perfectly predicted by the independent variable

X. Consider the following data set with n = 10.

Table 2.5: Example of overlapping data

i 1 2 3 4 5 6 7 8 9 10
xi �5 2 �3 �2 �1 0 0 1 2 3
yi 0 1 1 1 0 0 1 0 1 1

As observed in Table 2.5 multiple values (0 and 1) exist for yi if the corresponding value

of xi is above or below any speci�c value. This data set can be summarised in a 2 � 2
contingency given in Table 2.6 and illustrated by a scatter plot given in Figure 2.5. From

Figure 2.5 it can be observed that the observations �uctuate between yi = 0 and yi = 1,

there is no single horizontal jump for a certain value of xi:

Table 2.6: Two-way table for overlapping data

y
0 1

x 0 3 3
1 1 3

From equation (1.16) the ML estimator can be obtained to be b� = log (3)(3)
(3)(1)

= 1:0986 as

indicated in Figure 2.6.
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Figure 2.5: Scatter plot of x and y for overlapping data
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Figure 2.6: The log-likelihood function as a function of � for overlapping data
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2.5 Identifying complete or quasi-complete separa-

tion

The process of identifying whether a data set exhibits complete or quasi-complete separa-

tion is very important to be able to report signi�cant estimators for the logistic regression

model. Di¤erent statistical software programs have been tested with the data set repre-

sented in Tables 2.1 and 2.3 by Allison et al. (2004) to asses which of the programs give

applicable warnings of possible separation in the model. Only MINITAB, SAS GEN-

MOD, SAS LOGISTIC, SAS CATMOD and SPSS will be considered to compare with

results for 2013 since these are the software packages readily available at the University

of Pretoria. Table 2.7 indicates the warning which is given by the program, whether the

applicable program gives false convergence, reports unreliable estimates and �nally if the

program reports LR statistics.

The study done in Allison et al. (2004) is based on software that were available in 2002.
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Table 2.7: Computer packages under complete and quasi-complete separation

Results obtained by Allison et al. (2004)
Program Warning Messages False Conv. Report Est. LR Stats

Comp. Quasi. Comp. Quasi. Comp. Quasi. Comp. Quasi.
MINITAB * *

SAS GENMOD A * * * * *
SAS LOGISTIC C C * *
SAS CATMOD A A * * * *

SPSS C * *
Results obtained for 2013

Program Warning Messages False Conv. Report Est. LR Stats
Comp. Quasi. Comp. Quasi. Comp. Quasi. Comp. Quasi.

MINITAB D, E; H D, E; H * *
SAS GENMOD J * * * * * *
SAS LOGISTIC K, F, E L, F, E * *
SAS CATMOD G G * * * *

SPSS H;I H;I * *

A: Ambiguous Warning
C: Clear Warning
D: Algorithm did not converge
E: Results may be unreliable
F: MLE does not exist
G: Parameter estimates are in�nite
H: Max number of iterations reached
I: No solution could be found
J: Hessian matrix not positive de�nite
K: Complete Separation
L: Quasi-complete Separation

Comparing the results in Table 2.7 from 2002 to 2013, one observes that some of the

programs have improved whilst some stayed the same.

One of the computer packages that improved a great deal is MINITAB, even though it

still reports estimates: from no warning in 2002 to giving a warning that even if the

maximum number of iterations have been reached, no convergence was reached and the

results obtained could be unreliable in 2013.

The SAS GENMOD procedure still reports false converge, values for the estimates and

LR statistics. The warning message in 2002 was seen as ambiguous, the message as

seen in 2013 reports that the Hessian matrix is not positive de�nite. This warning only

occurs when quasi-complete separation is present in the data set; for complete separation

no warning is given. If an user has a good understanding of how the coe¢ cients are

estimated, he or she would know that if the Hessian is not positive de�nite it will not be

possible to obtain reliable estimates.
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A clear warning is still given by SAS LOGISTIC in 2013; it reports estimates but gives

a clear warning that the estimates are in�nite and that the ML estimates does not exist.

The SAS LOGISTIC procedure is the only program from the list in Table 2.7 that gives

a warning "Complete separation" or "Quasi-complete separation" if either one of those

scenarios occur within the data set.

The third SAS procedure to be considered is the SAS CATMOD procedure, this procedure

still gives false convergence and reports estimates, but from an ambiguous warning in

2002 it now reports that the parameter estimates are in�nite, which gives the user of the

program a good indication to apply caution when interpreting the estimated parameters.

The �nal program considered is SPSS. In 2002 this program gave a clear warning but

only for complete separation and it reported false convergence and estimates for quasi-

complete separation. In 2013 it still reports estimates but now gives a warning that

no solution could be found even though the maximum number of iterations have been

reached for both complete and quasi-complete separation.

2.6 Conclusion

When constructing a logistic regression model it is not always the case that the coe¢ cient

estimates will exist or, if the coe¢ cient estimates do exist, will be reliable. Therefore it

is essential to test whether complete or quasi-complete separation is present in a data set

when the dependent variable is dichotomous, especially when the sample size is small.

When complete or quasi-complete separation is present in the data set it is imperative

not to continue with the general approach to computing a logistic regression model, but

to follow a di¤erent approach. A few of these di¤erent approaches to deal with complete

or quasi-complete separation are mentioned and investigated in Chapter 3.
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Chapter 3

Methods used to deal with
separation

3.1 Introduction

The problem of complete separation and quasi-complete separation in binomial data mod-

elling was �rst documented by Day and Kerridge (1967). As shown in Silvapulle(1981),

when the data overlaps in a logistic regression model the ML estimates exist and are

unique, if separation in the data occurs the ML estimates does not exist. A formal

criterion to distinguish between complete separation and quasi-complete separation was

proposed by Albert and Anderson (1984) as discussed in Chapter 2. It is of utmost im-

portance to know if either complete separation and quasi-complete separation is present

within the data set in order to interpret the estimated regression coe¢ cients correctly.

Numerous methods to detect complete separation or quasi-complete separation have been

developed over the years. A linear-programming method was proposed by Albert and An-

derson (1984) which indicates when the data does not overlap. This linear programming

method was extended to a mixed linear programming algorithm by Santer and Du¤y

(1986) which determines for each data set whether there is complete separation, quasi-

complete separation or if the data overlap. Christmann and Rousseeuw (2001) developed

a method not just to determine whether the data overlaps, but also to determine to which

degree the data overlap in the data set.

3.2 Di¤erent methods

3.2.1 Changing the model

34
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As shown in Section 2.5, to identify whether the ML estimates exist is easily managed

with most statistical software packages. The next step is to obtain a solution when

dealing with non-overlapping data. One often used method in practice is to omit some

of the covariates which is the cause of complete separation or quasi-complete separation.

This method is however not recommended, since by omitting the covariates that hold

a strong relationship to the occurrence of interest is similar to deliberately introducing

speci�cation bias, which in turn leads to biased parameter estimates.

Another approach which changes the original covariates included in the model is by

adding arti�cial data across the various patterns to "�ll the gaps" which was caused by

separation. Various techniques are available to impute observations. This method was

proposed by Clogg et al. (1991) and as with omitting covariates, changes the covariates

that hold a strong relationship with the outcome. This method is not recommended as

shown in Heinze and Schemper (2002).

If the problematic covariate is a nominal variable with more than 2 categories, for example

single, married and divorced, the categories can be grouped together. For example single

and divorced can be considered as one group and married can be seen as the other

group. This method usually solves quasi-complete separation but does not solve complete

separation. It should also be borne in mind that if the groups are merged and the observed

values are more condensed, it will not be possible to allocate the observations to the

original groups, i.e. to restore the data set back to its original dimension.

3.2.2 Working with the likelihood function

Methods based on the likelihood function are preferred to methods which change the

original data set. One option is to use exact logistic regression (Section 3.3) as proposed

by Cox and Snell (1989) but is computing-intensive. Another solution to dealing with non-

overlapping data is by penalising the likelihood function with Je¤reys prior as proposed

by Firth (1993). Firth�s method is explained in Section 3.4 and has many advantages

as shown in Heinze (2006). Firth�s method of penalising the likelihood function was

extended by Heinze and Schemper (2002) to calculate the con�dence intervals based

on this method instead of using Wald intervals which are unreliable when dealing with

non-overlapping data. If multicollinearity is present in the data set, a second penalising

term can be introduced as shown in Gao and Chen (2007). In 2003, Rousseeuw and

Christmann introduced the concept of hidden logistic regression discussed in Section 3.5.

This involves obtaining a maximum estimated likelihood estimator which always exists

and is robust to separation and outliers.
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Since altering the original data set is not recommended and has been shown to give

undesirable results in Heinze and Schemper (2002), this method will not be discussed

further. Exact logistic regression, Firth�s method and hidden logistic regression will be

extended on in Section 3.3 to 3.5. All three methods will be applied to practical examples

in part II where they will be compared to each other in di¤erent scenarios.

3.2.3 Other methods

Alternative methods which merit mentioning but will not be elaborated on in this dis-

sertation includes an approach using Markov chain Monte Carlo methods in which one

would work in a Bayesian paradigm. Caution is advised when using these methods since

uninformative priors can lead to no convergence of the coe¢ cient estimates and the use of

informative priors may result to misleading results as discussed in Abrahantes and Aerts

(2012) and Allison et al. (2004).

When dealing with separation one should also be aware of other properties within a data

set which could lead to misleading results. Multicollinearity can be problematic if not

dealt with correctly. Gao and Chen (2007) discuss this phenomenon and introduce a

second penalising term to address this problem. Another statistical problem which can

be observed in practice is outliers. An outlier-robust method is discussed in Rousseeuw

and Christmann (2003). These are just a few di¤erent methods to deal with certain

aspects which can be observed within a data set and one should always exercise caution

when using di¤erent methods and interpreting results.

3.3 Exact logistic regression

Exact logistic regression was �rst proposed by Cox and Snell (1989). This method is

also known as exact conditional inference. As stated by King and Ryan (2002), the

general idea of exact logistic regression is "to base inferences on exact permutational

distributions of the su¢ cient statistics that correspond to the regression parameters of

interest, conditional on �xing the su¢ cient statistic of the remaining parameters at their

observed values".

3.3.1 The ML estimates

To obtain the conditional likelihood function to estimate a speci�c parameter, consider

�rst the likelihood function given in equation (1.11) and the logit function de�ned in

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. METHODS USED TO DEAL WITH SEPARATION 37

equation (1.2); then the unconditional likelihood function is given by (Collett 2003, p.

308)

l(�) =
nQ
i=1

�yii (1� �i)1�yi

=
nQ
i=1

�yii (1� �i)�yi(1� �i)1

=
nQ
i=1

�
�i

1� �i

�yi
(1� �i)

=
nQ
i=1

exi�yi(1 + exi�)�1

nQ
i=1

exi�yi(1 + e�i)�1

=
e

nP
i=1

mP
j=0

�jxijyi

nQ
i=1

(1 + e�i)
(3.1)

Let tj =
nP
i=1

xijyi; j = 0; 1; :::;m therefore for yi = 1; tj is the sum of the values of the jth

explanatory variable and expression (3.1) can be rewritten as

l(�) =
e

mP
j=0

�jtj

nQ
i=1

(1 + e�i)
: (3.2)

The tj values contain all the information about the �
0

js for the binary observations,

therefore the t
0
js are the su¢ cient statistics for the coe¢ cients. A full discussion on

su¢ cient statistics and its role in conditional inference is available in Cox and Hinkly

(1979).

Suppose we are only interested in one speci�c coe¢ cient, say �m; in which case the rest

of the parameters �0; :::; �m�1 are regarded as nuisance parameters and can be expressed

by the vector �1 = [�0; :::; �m�1]: The column vector of coe¢ cients can then be com-

posed as � = (�1; �m)
T : The conditional likelihood function of �m is found by using the

unconditional likelihood function l(�) and eliminating the e¤ect of �1:

If t0; t1; :::; tm are the observed su¢ cient statistics from the random variables T0; T1; :::; Tm;

the conditional likelihood (as discussed in Collett (2003)) for �m given T0 = t0; :::; Tm = tm
is given by
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lc(�m) = P (Tm = tmjT0 = t0; T1 = t1; :::; Tm�1 = tm�1) (3.3)

=
P (T0 = t0; T1 = t1; :::; Tm = tm)

P (T0 = t0; T1 = t1; :::; Tm�1 = tm�1)
:

The numerator of equation (3.3), P (T0 = t0; T1 = t1; :::; Tm = tm); is simply the proba-

bility of the observed data which is the sum of the values of l(�) over all possible sets of

binary data that lead to t0; t1; :::; tm: Therefore the probability of the observed data can

be calculated by (Collett 2003, p. 309)

P (T0 = t0; T1 = t1; :::; Tm = tm) =
c(t0; :::; tm)e

mP
j=0

�jtj

nQ
i=1

(1 + e�i)
(3.4)

where the number of distinct binary sequences that give the speci�ed values of t0; t1; :::; tm
can be denoted by c(t0; :::; tm): The joint distribution of

P (T0 = t0; T1 = t1; :::; Tm�1 = tm�1) can be found from equation (3.4) to be

P (T0 = t0; T1 = t1; :::; Tm�1 = tm�1) =

P
u c(t0; :::; tm�1; u)e

�mu+

m�1P
j=0

�jtj

nQ
i=1

(1 + e�i)
: (3.5)

where the summation term in the numerator is over all values for u for which

c(t0; :::; tm�1; u) � 1: Therefore the conditional likelihood function of �m from equation

(3.3), (3.4) and (3.5) can be expressed as (Collett 2003, p. 309)

lc(�m) =
c(t0; :::; tm)e

mP
j=0

�jtj

P
u c(t0; :::; tm�1; u)e

�mu+

m�1P
j=0

�jtj

=
c(t0; :::; tm)e

�mtm+

m�1P
j=0

�jtj

P
u c(t0; :::; tm�1; u)e

�mu+

m�1P
j=0

�jtj

=
c(t0; :::; tm)e

�mtmP
u c(t0; :::; tm�1; u)e

�mu
: (3.6)

From equation (3.6) it can be noted that the function does not depend on �1; :::; �m�1,

therefore if this function is maximised an exact parameter estimate for �m; also known

as the conditional ML estimate will be obtained.
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For a two-sided hypothesis test the null and alternative hypothesis is given byH0 : �m = 0

and H1 : �m 6= 0 respectively. The appropriate p-value for this hypothesis test, according
to Collett (2003, p. 312), can be obtained by adding the probabilities of all the values of

the su¢ cient statistics of coe¢ cient �m which have a probability smaller than or equal to

that of the observed value. This is similar to a two-sided p-value for Fisher�s exact test.

This test is generally known as the conditional exact test and a discussion on this can

be found in Collett (2003). A full discussion on exact logistic regression can be found in

Cox and Snell (1989), Mehta and Patel (1995), Collett (2003) and Hosmer and Lemeshow

(2001).

For exact logistic regression the estimates of �0; :::; �m are obtainable even if empty cells

are observed in the 2 � 2 contingency table expressed in Table 1.2. Even though it is
possible to determine parameter estimates in the presence of complete or quasi-complete

separation, the drawback of this method is that it can get computationally di¢ cult as the

number of covariates and samples increase. As stated by Hosmer and Lemeshow (2001,

p. 337), when using exact logistic regression, caution should be taken when analysing

the Pearson chi-square and deviance test statistics since these tests are based on a large

sample assumption and this is not usually the case when using exact methods. It is

recommended that one should rather use visual methods like a classi�cation table to

investigate the agreement between the observed and the predicted value.

Another disadvantage of exact logistic regression method is that the su¢ cient statistics

for the di¤erent parameter estimates need to be summed over discrete patterns of co-

variate values. As stated by Zorn (2005), exact logistic regression will lead to unreliable

estimates when using a combination of both continuous and categorical covariates. There-

fore if exact logistic regression is applied to a data set which contains both categorical

and continuous covariates, caution should be applied when interpreting the coe¢ cient

estimates.
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3.4 Firth�s Model

Another way to approach the problem of separation is to reduce the bias that is found

in the ML estimates. The ML estimates are unbiased with asymptotic variance equal to

the inverse of the Fisher information matrix which is given by I(�) = ��1XTW(�)X:

The dispersion parameter is given by � = 1 (for a binomial distribution), X is the model

matrix andW is a n�n matrix whereW = diag(�i(1��i)) as shown in equation(1.46):
For a large sample size McCullagh and Nelder(1989, p. 119) showed that

E(� � b�) = O(n�1) (3.7)

and expressed in terms of the covariate matrix

cov(b�) = (XTW(�)X)�1
�
1 +O(n�1)

	
: (3.8)

Then, by Firth (1993), the asymptotic bias of a single ML estimate b� of parameter � for
an m dimensional model can be written as

b(�) =
b1(�)

n
+
b2(�)

n2
+ :::� (3.9)

The aim of Firth�s method is to reduce the bias of the parameter estimates, speci�cally by

removing the O(n�1) term. Two methods already exist where the term b1(�)
n
is removed

from the asymptotic bias, namely the jackknife method (Quenouille, 1949, 1956) and by

simply substituting b� for the unknown � in b1(�)
n
: The bias corrective parameter estimate,b�BC ; is then given by

b�BC = b� � b1(b�)n : (3.10)

Firth�s method is di¤erent from the procedures mentioned above in that the parameter

is not corrected after it is estimated, but a corrective procedure is applied to the ML

estimate (score function) before the parameter estimate is calculated.

3.4.1 The model

To illustrate this method consider the modelling of binomial observations where each

observation yi have a true probability of success equal to �i i.e.
yi
ni
. The binomial

likelihood function can be expressed by (Collett 2003, p. 66)
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p(yij�i) =

 
ni

yi

!
�yii (1� �i)ni�yi

=

 
ni

yi

!
�yii (1� �i)�yi(1� �i)ni

=

 
ni

yi

!�
�i

1� �i

�yi
(1� �i)ni : (3.11)

Taking the exponential of the log of this expression becomes

exp

(
log

  
ni

yi

!�
�i

1� �i

�yi
(1� �i)ni

!)

= exp

"
log

 
ni

yi

!
+ yi log

�
�i

1� �i

�
+ ni log(1� �i)

#

= exp

24yi log
�

�i
1��i

�
� [�ni log(1� �i)]
1

+ log

 
ni

yi

!35 : (3.12)

The form of equation (3.12) is the same as that of n independent observations y1; :::; yn
with an exponential density expressed by (McCullagh and Nelder 1989, p. 28)

p(yij�i; �) = exp
�
(yi�i � d(�i))

ai(�)
+ c(yi; �)

�
; i = 1; 2; :::; n: (3.13)

Comparing equation (3.13) to equation (3.12) the functions in equation (3.12) can be iden-

ti�ed as �i = log
�

�i
1��i

�
(i.e. �i = xi� from equation(1.2) );

d(�i) = �ni log(1 � �i), ai(�) = 1, c(yi; �) = log
 
ni

yi

!
where log

�
�i
1��i

�
= logit(�i) is

the canonical link function for the binomial distribution and �j is the canonical parame-

ter. The logit function is the canonical link function (McCullagh and Nelder 1989, p. 32)

since it is also a function of �i = E(Yi) = ni�i which can be seen by

logit(�i) = log
�

�i
1� �i

�
= log

�
ni�i

ni(1� �i)

�
= log

�
�i

ni � �i

�
= �i (�i) : (3.14)

Since �(�i) = log
�

�i
1��i

�
=

mP
j=0

xij�j then �(�i) = �i as shown in equation (1.2) and

tj =
nX
i=1

xijyi is the su¢ cient statistic for �j where j = 0; 1; :::;m:
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For a single parameter �j the ML estimate is derived as a solution of the derivative of

the log likelihood l(�) or score function set equal to 0, i.e.

@ log l(�)

@�j
= U(�j) = 0: (3.15)

From equation (1.12) and the de�nition of su¢ cient statistic tj; the log likelihood function

for a single coe¢ cient �j can be expressed by

log l(�j) =
nP
i=1

n
yixij�j � log(1 + e(xij�j))

o
= tj�j � K(�j) where

K(�j) =
nX
i=1

log(1 + e(xij�j)). The score function (as obtained in equation(1.13)) can

then be expressed by

U(�j) =
@ log l(�)

@�j
=

nX
i=1

(xijyi � xij�i) = tj �K 0(�j) (3.16)

which implies that the su¢ cient statistic tj only a¤ects the location of U(�j) and not the

gradient.

It can be shown (Firth, 1993) that the bias of the estimate b�j comes from the unbiasedness
of the score function, E

�
U(�j)

�
= 0 at the correct value of �j and due to the bend in

the score function shown in Figure 3.1, U 00(�j) = K
000(�j) 6= 0:

Figure 3.1: Modi�ed score function

If the score function U(�j) was a linear function of �j then E
h b�ji = �j; but since this

is clearly not the case as shown in Figure 3.1 a bias is induced in b�j : The idea behind
Firth�s model is to implement a small bias in the score function to reduce the bias in b�j.
A suitable modi�cation to U(�j) is given by

U�(�j) = U(�j)� i(�j)b(�j): (3.17)
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This originates from the triangle geometry shown in Figure (3.1). If the estimator b�j has
a positive bias of b(�j), the score function can be shifted downward by degree i(�j)b(�j)

where the gradient of U(�j) is given by U
0(�j) = �i(�j). The modi�ed estimate ��j can

then be calculated by setting the modi�ed score function equal to 0, i.e. U�(�j) = 0:

3.4.2 The ML estimates

To obtain the modi�ed score function explained above, one can penalise the log likelihood

function given in equation(1.11) by Je¤reys (1946) invariant prior (for exponential family

models). The Je¤reys invariant prior density is given by

jI(�)j1=2 =
��XTW(�)X

��1=2 where the vector of unknown parameters are given by
� = (�0; �1; :::; �m)

T and the Fisher information matrix is given by

I(�) =��1XTW(�)X;� = 1: The penalised likelihood function for Firth�s model is thus

(Firth, 1992b)

l�(�) = l(�)� jI(�)j(1=2) : (3.18)

Taking the natural logarithm of equation (3.18) yields

log l�(�) = log l(�) + (1=2) log jI(�)j : (3.19)

To �nd the maximum, the partial derivative of �j (j = 0; 1; :::;m) in equation (3.19) is

taken and set equal to 0 (Firth, 1992a)

U�(�j) = U(�j) +

�
1

2

�
@

@�j
log
��XTW(�)X

�� (3.20)

= U(�j) + (1=2)trace
n�
XTW(�)X

��1 �
XTW(�j)X

�o
; j = 0; 1; :::;m

where U�(�j) =
@ log l�(�)

@�j
, U(�j) =

@ log l(�)
@�j

as given in equation (1.13) and W(�j) =
@W(�)
@�j

:

The value ofW(�j) is calculated by
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W(�j)

= diag

�
@(�i(1� �i))

@�j

�
(3.21)

= diag

�
@f(1 + exij�j)�1(1 + e�xij�j)�1g

@�j

�
= diag

�
�(1 + exij�j)�2

�
xije

xij�j
�
(1 + e�xij�j)�1 + (1 + e�xij�j)�2

�
xije

�xij�j
�
(1 + exij�j)�1

	
= diag

�
xij

�
�exij�j

(1 + exij�j)2(1 + e�xij�j)
+

e�xij�j

(1 + exij�j)(1 + e�xij�j)2

��
= diag

(
xij

"
�exij�j(1 + e�xij�j) +

�
e�xij�j

�
(1 + exij�j)

(1 + exij�j)2(1 + e�xij�j)2

#)

= diag

�
xij

�
�exij�j � 1 + e�xij�j + 1)
(1 + exij�j)2(1 + e�xij�j)2

��
= diag

�
xij

�
�(1 + exij�j) + (1 + e�xij�j)
(1 + exij�j)2(1 + e�xij�j)2

��
= diag

�
xij

�
�(1 + exij�j)

(1 + exij�j)2(1 + e�xij�j)2
+

(1 + e�xij�j)

(1 + exij�j)2(1 + e�xij�j)2

��
= diag

�
xij

�
�1

(1 + exij�j)(1 + e�xij�j)2
+

1

(1 + exij�j)2(1 + e�xij�j)

��
= diag

�
xij
�
�(�i)2(1� �i) + (�i)(1� �i)2

�	
= diag fxij(�i)(1� �i) [��i + 1� �i]g
= diag fxij(�i)(1� �i) [1� 2�i]g : (3.22)

Let V(�j) be an n � n diagonal matrix were the ith diagonal element is represented by
xij(1 � 2�i); i = 1; 2; :::; n, i.e. V(�j) = diag (xij(1� 2�i)) ; thenW(�j) =W(�)V(�j)

from equation (1.46) and (Firth, 1992(a)).

Therefore equation (3.20) can be simpli�ed to

U�(�j) = U(�j) + (1=2)trace
n�
XTW(�)X

��1
(XTW(�j)X)

o
= U(�j) + (1=2)trace

n�
XTW(�)X

��1
(XTW(�)V(�j)X)

o
= U(�j) + (1=2)trace

nh
W(�)X

�
XTW(�)X

��1
XT
i
V(�j)

o
= U(�j) +

1

2

nP
i=1

hixij(1� 2�i) (3.23)

where j = 0; 1; :::;m and hi is the ith diagonal element of the hat matrix

H = W(�)X
�
XTW(�)X

��1
XT : This can be done since tr(AB) = tr(BA) and the

trace of a matrix is the sum of its diagonal elements .
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Substituting the value of U(�j) given in equation (1.13) in equation (3.23) the modi�ed

score function for j = 0; 1; :::;m is (Firth, 1992a)

U�(�j) = U(�j) +
1

2

nP
i=1

hixij(1� 2�i)

=

nX
i=1

(yi � �i)xij +
1

2

nX
i=1

hixij(1� 2�i)

=

nX
i=1

�
yi +

�
hi
2

�
� hi�i � �i

�
xij

set
= 0: (3.24)

If the value of hi is known then the value of equation (3.24) can be obtained by using

standard statistical or mathematical software. If the value of hi is unknown (which is

more likely the case since it is a function of the unknown parameter �j) then this value

should be calculated by an iterative procedure as explained in Firth (1992a).

3.4.3 Method applied to complete and quasi-complete separa-

tion

To illustrate the e¤ect of the penalised likelihood function as described above we will

revisit the completely separated data considered in Section 2.1 and the quasi-complete

separated data in Section 2.2. In both these instances the value for the log-likelihood

and coe¢ cient estimate increased to positive in�nity and did not converge to one value;

by applying Firth�s model to the completely separated values the following �gure can be

obtained (SAS program available in Appendix E)

Figure 3.2: The penalized log-likelihood function as a function of � for complete separa-
tion
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From Figure 3.2 it is noted that the estimate of � now converges to a value of 0.953. For

the quasi-complete separation case the log-likelihood as a function of the estimate can be

illustrated by Figure 3.3.

Figure 3.3: The penalized log-likelihood function as a function of � for quasi separation
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Firth�s approach corresponds to adding 0.5 in each cell of a 2�2 contingency table which
gives a solution to the empty cell problem. Another way to view this is "splitting each

original observation i into two new observations having response values Yi and 1 � Yi
with iteratively updated weights 1 + hi=2 and hi=2, respectively" as stated by Heinze

and Schemper (2002). By following this approach one can ensure that all the parameter

estimates for the covariates exist whether the data exhibits complete separation or quasi-

complete separation. An important property of Firth�s method is that it yields consistent

parameter estimates which can be con�rmed by the fact that given an overlapping data

set where the ML estimates exists, the estimates obtained under Firth�s method will

converge to the ML estimates for a logistic regression model, as the sample size increases.

3.5 Hidden logistic regression

The last model to be discussed is the hidden logistic regression model. This has been

proposed by Ekholm and Palmgren (1982) and by Copas (1988) to introduce the idea of a

hidden layer in a neural network. The same idea was further developed by Rousseeuw and

Christmann (2003) but with a slightly di¤erent approach. For this method it is assumed

that the derived logistic regression model always has an intercept term. The main idea

behind this model from Ekholm and Palmgren (1982), Copas (1988) and Rousseeuw and

Christmann (2003) is that the true responses are unobservable. The response values that

are needed to �t the model are therefore not the true values but are strongly related to

the unobservable true responses. As illustration, consider a medical test which indicates
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whether a patient has a speci�c disease or not. Even if this test shows that a patient does

have the disease, this test is not 100% without fault and there could be a small chance

that the patient should have been classi�ed in the other group.

3.5.1 The model

According to the approach taken by Rousseeuw and Christmann (2003) one assumes that

the true status (T ) of the patient has one of two possible outcomes, (s) which indicates

a success e.g. the patient does have the disease and (f ) which indicates a failure i.e.

the patient does not have the speci�ed disease. If the true status is a success then the

probability of observing a 1 for the response variable is P (Y = 1jT = s) = �1, if the true
status is a success but the patient is classi�ed into group 0, then the misclassi�cation

probability is given by P (Y = 0jT = s) = 1 � �1: If the true status of the patient is
that he or she does not have the disease then the probability that the patient is correctly

classi�ed to group 0 is P (Y = 0jT = f) = 1� �0 and the probability that the patient is
classi�ed into group 1 is P (Y = 1jT = f) = �0: This probability structure is represented
in Figure 3.4 (Rousseeuw and Christmann, 2003).

Figure 3.4: Probability structure of the true status against the observable response

The values of 1��0 and �1 indicate the probability of observing the true response for T = f
and T = s respectively. The probability of observing the true response is assumed to be

higher than observing the incorrect true value. Therefore the probabilities of correctly

classifying a observation can be assumed to be greater than 0.5 i.e. 0 < �0 < 0:5 < �1 < 1:

If for example a patient does have the disease and the probability of classifying the patient

correctly is 95% i.e. P (Y = 1jT = s) = �1 = 0:95 then the probability of misclassifying
the patient as not having the disease is P (Y = 0jT = s) = 1� �1 = 0:05:
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3.5.2 The ML method

Since the true response is the unobservable value that needs to be estimated, an ML

estimate needs to be calculated for T . For this case as illustrated by Rousseeuw and

Christmann (2003) in Figure 3.4, the estimate for T only has one of two possibilities (since

it is a binary variable) and for each outcome there is a probability that it is correctly

classi�ed or not. If the true response is a failure (f) then the likelihood of observing

Y = 0 is greater than observing Y = 1; likewise if the true response is a success (s) the

likelihood of observing Y = 1 is greater than observing Y = 0. From this argument the

ML estimator for T , given the response (Y = y); can be expressed by

bT (Y = 0) = f (3.25)bT (Y = 1) = s:

If the observed value is assigned to group 1 i.e. Y = 1 then one of two possibilities

could have occurred, the true response is a success and was correctly classi�ed or the true

response is a failure and was misclassi�ed. Therefore the probability of an observed value

being placed into group 1 conditional on the ML estimator for T can be given by

P (Y = 1jbT ) = �0 if y = 0

�1 if y = 1
(3.26)

where y is the observed value of Y: To express equation (3.26) in a single line equation,

let eY denote equation (3.26) then
eY = �0 + (�1 � �0)Y = (1� Y )�0 + Y �1: (3.27)

The value for eY is a weighted average of �0 and �1 with weights of (1 � Y ) and Y
respectively.

Since logistic regression is based on n observations from a Bernoulli distribution, the

observed value for Y for the ith sample can be expressed by

eyi = (1� yi)�0 + yi�1 (3.28)

where eyi is the pseudo-observation for each individual. This pseudo-observations is a
deterministic result of the observed value yi:

The resulting estimated likelihood function of the pseudo-observations eyi is given by
l(�jey1; :::; eyn) = nY

i=1

� eyii (1� �i)1�eyi : (3.29)
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Since the true likelihood function depends on the unobservable values t1; :::; tn the like-

lihood function in equation (3.29) is only an estimation. If �0 = 0 and �1 = 1 the true

likelihood is known, therefore, since eyi is just an estimation of this value the value for eyi
will strictly lie between 0 and 1. To obtain the ML estimator for the model one can take

the natural logarithm of equation (3.29) given by

log l(�jey1; :::; eyn) = nX
i=1

(eyi log �i + (1� eyi) log(1� �i)) (3.30)

and set the derivative of equation (3.30) with respect to �j; j = 1; :::;m equal to 0 i.e.

log l(�jey1; :::; eyn)
@�j

=
nX
i=1

eyixij � nX
i=1

exij�j(xij)

1 + exij�j

=

nX
i=1

eyixij � nX
i=1

�ixij

=
nX
i=1

(eyi � �i)xij set= 0: (3.31)

When only the partial derivative with respect to �0 is considered the derivative of the

log-likelihood function set equal to 0 is given by

log l(�jey1; :::; eyn)
@�0

=
nX
i=1

eyi � nX
i=1

e�0

1 + e�0

=
nX
i=1

eyi � nX
i=1

�i
set
= 0: (3.32)

This leads to the result that the sum of the pseudo-observations is equivalent to the sum

of the estimated probabilities expressed by

nX
i=1

eyi = nX
i=1

b�i: (3.33)

Equations (3.29), (3.30), (3.31) and (3.33) are all equivalent to equation (1.11), (1.12),

(1.13) and (1.15) respectively where yi = eyi:
3.5.3 Determining the values for �0 and �1be

Since the true values for a type I and type II error are rarely known in practice, in most

cases the values for �0 and �1 must be calculated from theoretical values. One approach

for di¤erent values of �0 and �1 is explained by Copas (1988) and is based on a �xed
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value. Since �0 is the probability of an observation being misclassi�ed into group 1 when

the actual outcome is group 0, it should be a small value. �1 is the probability of an

observation being correctly classi�ed into group 1 and therefore this is expected to be a

high value. From this information let

�0 = 


�1 = 1� 
 (3.34)

with 
 � 0 and the value for 
 typically ranging from 0.01 to 0.02. As shown in Copas

(1988) desirable results are obtained when 
 = 0:01 whereas a value of 
 = 0:05 is a too

high. This method is preferable when simplicity is required.

The method developed by Copas (1988) is most e¤ective when the data set is symmetric,

i.e. when the dependent variable has an equal number of 0 and 1�s. When an asymmetric

data set is dealt with, the approach discussed by Rousseeuw and Christmann (2003) in

Section 3.5.3 can be considered. For further discussion of the method done by Rousseeuw

and Christmann (2003) assume �i is restricted to one value for all i = 1; 2; :::; n namely �:

It is more appropriate to consider the marginal distribution of yi from which the estimate,b� can be obtained by using the number of 0�s and 1�s observed.
To obtain the estimated probability of observing a success, one can argue that b� is the
average of the pseudo observations in equation (3.33)

nX
i=1

b�i =
nX
i=1

eyi
i.e.

nX
i=1

b� =
nX
i=1

eyi
i.e. nb� =

nX
i=1

eyi
i.e. b� =

1

n

nX
i=1

eyi: (3.35)

By combining the results of equations (3.28), (3.33) and (3.35) the estimated probability

can be expressed (Rousseeuw and Christmann, 2003) in terms of �0 and �1:
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b� =
1

n

nX
i=1

eyi = (1� b�)�0 + b��1
i.e. b� � b��1 = �0 � b��0
i.e.

1� �1
�1 � b� =

�0b� � �0 (3.36)

The two ratios given in equation (3.36) are both equal to a small positive number, say �;

since to it reasonable to assume

�0 < b� < �1: (3.37)

Therefore from equation (3.36) the value for �0 and �1 can be expressed in terms of b�
and � by

� =
1� �1
�1 � b�

�(�1 � b�) = 1� �1
��1 + �1 = 1 + �b�
�1(� + 1) = 1 + �b�

�1 =
1 + �b�
� + 1

(3.38)

and

� =
�0b� � �0

�(b� � �0) = �0

�b� + ��0 = �0

��0 � �0 = ��b�
�0 =

��b�
� � 1

�0 =
�b�
� + 1

: (3.39)

Since for this model the extreme values of 0 and 1 are not applicable to the esti-

mated probabilities, the value for b� cannot simply be the average of the observations,
� = 1

n

nX
i=1

yi. There has to be a constraint to ensure a value which is strictly less than 1

and strictly more than 0. One possible bound on b� is given by
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b� = max(�;min(1� �; �)) (3.40)

which ensures 0 < b� < 1:
The ratios in equations (3.38) and (3.39) correspond with the constraint given in equation

(3.37) and the fact that 0 < b� < 1: This can be veri�ed by
�1 =

1 + �b�
� + 1

>
b� + �b�
� + 1

=
b�(1 + �)
� + 1

= b� (3.41)

and

�0 =
�b�
� + 1

<
b� + �b�
� + 1

=
b�(1 + �)
� + 1

= b�: (3.42)

The two misclassi�cation probabilities of this model is P (Y = 0jT = s) = 1 � �1 and
P (Y = 1jT = f) = �0: These two values will always be smaller than the small positive
number � as shown by

�0 =
�b�
� + 1

<
�

� + 1
< � (3.43)

and

1� �1 =
1 + � � 1� �b�

� + 1
=
(1� b�)�
1 + �

<
�

1 + �
< �: (3.44)

The commonly used value for � is 0:01 as advocated by Rousseeuw and Christmann

(2003). Then if a balanced data set is observed the estimated probability is given byb� = 0:5 which implies �0 = 1� �1 from equations (3.38) and (3.39). This yields the same
results as for a symmetric data set discussed by Copas(1988) and shown by equation

(3.34).

If one considers a asymmetric data set with say 20 observations and 19 observed yi = 1,

with � = 0:01 the estimated probability from equation (3.40) is given by

b� = max

�
0:01;min

�
1� 0:01; 19

20

��
= max(0:01;min(0:99; 0:95))

= max(0:01; 0:95)

= 0:95:

Therefore the probability of a misclassi�cation, calculated by equation (3.39), is

�0 =
�b�
� + 1

=
0:01� 0:95
1:01

= 0:0094
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and the probability of an observation to be correctly classi�ed into group 1, from equation

(3.38), is

�1 =
1 + �b�
� + 1

=
1 + (0:01� 0:95)

1:01
= 0:9995:

For the asymmetric case this approach gives less biased estimates than for the case where

�0 and �1 are set to a �xed value.

This method has many advantages; it is robust against separation and against outliers.

Since the issue of outliers will not be examined further the interested reader is referred to

Rousseeuw and Christmann (2003) where a full discussion with examples and simulations

are given.

3.6 Conclusion

Many di¤erent solutions for complete and quasi-complete separation exist in practice.

Each method has its own bene�ts and disadvantages, which should be investigated before

applying each method. For the methods which were considered exact logistic regression

performs well with categorical covariates but caution should be applied when using this

method to a sparse data set. Firth�s method and the hidden logistic regression method

can be applied to a data set which contains both continuous and categorical covariates.

Each method behaves di¤erently with di¤erent covariate types and sample sizes; this will

be investigated using practical applications in part II.
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Chapter 4

Overview/ Outline of Part II

In part I the theory of logistic regression is summarised and the problem of complete and

quasi-complete separation was identi�ed in Chapter 2 of part I. Three di¤erent methods

to use when either complete or quasi-complete separation is present were discussed in

Chapter 3 of part I. The three di¤erent methods mentioned can however not always

be applied to any given data set to predict a binary outcome. Keeping this in mind

Chapter 5 will investigate a small sample of twenty observations which exhibits complete

separation. To study di¤erent types of independent variables the �rst example will include

only continuous covariates, the second both continuous and categorical covariates and the

�nal example of Chapter 5 will investigate the case where only categorical covariates are

used to predict a binary outcome. In Chapter 6 a large sample with only categorical

covariates will be investigated.

For each of the di¤erent combinations of covariate types mentioned, the general logis-

tic regression model will be investigated to con�rm if complete separation is present.

From SAS, PROC LOGISTIC, it is con�rmed that all the examples of Chapter 5 exhibit

complete separation and in Chapter 6 exhibit quasi-complete separation, but for the case

where the computer packages mentioned in Section 2.5 are not available a few exploratory

methods can be considered. First a scatter plot of the categorical covariates (which is

obtained with MINITAB) will be introduced from which one can visually con�rm if there

is a split between the groups or not. Secondly by considering numerical analysis it can

be examined whether the coe¢ cient estimates converges and if the standard error of the

coe¢ cient estimates tends to in�nity as the number of iterations increase or not, ob-

tained by both SAS and MINITAB. Once the coe¢ cient estimates are obtained it can be

con�rmed with the Wald and LR test statistic (obtained from SAS) if b� is signi�cantly
di¤erent from 0 or not.

All the covariates which are considered for each model are signi�cant in predicting the

dichotomous outcome of that example. All interactions between the covariates were also

originally included in the model. The �nal models given in equations (5.1), (5.2) and

55
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(5.3) are obtained from only choosing the signi�cant covariates to predict the outcome

according to forward stepwise logistic regression in SPSS.

For each of the di¤erent independent variable types mentioned (continuous and cate-

gorical) three methods will be applied, namely; exact logistic regression, Firth�s method

and �nally hidden logistic regression. Once parameter estimates are obtained for each

of these methods one needs to test if the coe¢ cient estimates are signi�cant or not. For

exact logistic regression and Firth�s method the coe¢ cient estimates with the appropriate

signi�cance level are calculated with SAS. The two-sided conditional exact test is used to

test the signi�cance of the coe¢ cients obtained under exact logistic regression whereas

Wald�s test statistic is used for the coe¢ cients obtained under Firth�s method. For hid-

den logistic regression the R program code given in Appendix G is applied to obtain the

coe¢ cient estimates and the appropriate signi�cance levels since there is no procedure

available in SAS as of yet to calculate these values. The Wald test statistic is also used

to calculate the signi�cance of the coe¢ cient estimates.

After testing the signi�cance of the individual coe¢ cient estimates, the overall validity

of the model needs to be examined. Some of the goodness-of-�t measures mentioned

in Section 1.10 will be considered namely the Pearson chi-square, deviance, Hosmer-

Lemeshow tests and �nally the classi�cation table. For the classi�cation tables, the

rows represent the observed values and the columns represent the predicted value for

the speci�ed model. All the examples will make use of only two covariates to compare

the di¤erent approaches on the same number of observations. Therefore none of the

model �t statistics discussed in Section 1.10.3 will be necessary, as these tests are used to

compare models with di¤erent number of covariates to each other. To calculate the formal

goodness-of-�t test statistics a SAS, PROC IML code is available in Appendix F and H

for the classi�cation tables and Pearson chi-square, deviance and Hosmer-Lemeshow tests

respectively. This has been done since the mentioned goodness-of-�t test statistics are

not available for exact or hidden logistic regression in SAS. From the goodness-of-�t

statistics it can be concluded if the method considered is a good choice for that speci�c

combination of covariates.

For the small sample case one should keep in mind that the Wald, LR, Pearson chi-

square and deviance test statistics all depend on the assumption of an approximate chi-

square distribution and could therefore give misleading results. When the statistics give

con�icting results it could be a sign that the large-sample approximation is unreliable.

Also, the Pearson chi-square and deviance test statistic are most reliable when considering

a data set with only categorical observations. The numerical values for the Pearson chi-

square and the deviance test statistic should be close to each other in value as stated in

Collett (2003, p. 87): "Large di¤erences between the two statistics can be taken as an
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indication that the chi-squared approximation to the distribution of the deviance or the

X2-statistic is not adequate."

When considering the Hosmer-Lemeshow test, as explained by Xie et al. (2008), it has

been shown that when the number of groups are few this test statistic almost always

shows that the model is adequate and therefore when possible only consider the test

statistic for a large number of groups.
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Chapter 5

Complete separation (small sample)

5.1 Introduction

Complete and quasi-complete separation is most likely to occur in small data sets which

typically occur in medical sciences as discussed in Heinze (2006), in economic indices as

shown in Beggs et al. (1981) and even in marketing as indicated in Chapman (1984).

The most common occurrence of complete or quasi-complete separation is found in bio-

statistics (medical sciences) where the application of a clinical trial usually demands a

dichotomous outcome (if a patient survived or died, if a treatment worked or did not

work, etc.) and since most medical test are typically expensive, a clinical trial will most

likely consist of a small sample.

To compare the di¤erent approaches mentioned in Chapter 3, three di¤erent data sets will

be considered. The three data sets will be identical in size (n = 20) and all of them will

be balanced, i.e. yi = 1 for 10 observations and yi = 0 for the remaining 10 observations.

Each of the three examples exhibit complete separation and will have two covariates to

predict a dichotomous outcome.

The �rst clinical trial from Philippeos et. al (2009) is used to predict whether a pa-

tient is HIV positive or HIV negative based on two continuous covariates (NMR-based

metabonomics).

The second example from Haberman (1973) is based on a sample which consists of a

combination of a categorical covariate (age group of a patient) and a continuous covariate

(number of positive axillary nodes detected) to predict if a patient survived or died within

5 years of receiving a breast cancer operation .

Finally the third example is a sample acquired from Kaggle (2012); this data set predicts

whether a passenger who was Section the RMS Titanic survived or died based on two

categorical covariates, the class of the passenger (�rst class, second class or third class)

and the sex of the passenger (female or male).

58
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5.2 Continuous covariates

5.2.1 HIV status example

Consider the data set: HIV Status (Appendix A) which was supplied by Prof. D. Meyer.

This data set consists of high-resolution proton NMR (1H-NMR) spectroscopic pro�ling

of biological �uids; these metabonomics have contributed to the identi�cation and study

of human disease. In Philippeos, Ste¤ens and Meyer (2009) these metabonomics are

speci�cally applied to identify whether a patient is HIV negative or HIV positive.

This experiment involves 20 patients of whom 10 is HIV negative (HIV�; yi = 1) and 10

of the patients are HIV positive and currently on anti-retroviral therapy (HIV+; yi = 0).

From the initial data set, 88 covariates where obtained from the NMR instrument from

which only 2 were signi�cant, xV 3:74 and xV 1:18. Both the covariates xV 3:74 and xV 1:18
are continuous and complete separation is found within this data set which can also be

con�rmed by the scatterplot in Figure 5.1. xV 3:74 and xV 1:18 are shown in Figure 5.1 and

the groups are indicated for yi = 1 and yi = 0:

Figure 5.1: Scatter plot of xV 3:74 vs. xV 1:18 grouped according to the observed value of y:
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Since this data set consists of only continuous covariates, it is a sparse data set which is

con�rmed by the fact that there are only two observations that share the same covariate

pattern therefore there are 19 unique covariate patterns i.e. q = 19.

5.2.2 General logistic regression model

Since this data set consists of continuous covariates, no dummy variables are required to

formulate a logistic regression model. The equation for a logistic regression model applied

to the HIV status data set is given by equation (5.1).

logit(�i) = �0 + �v3:74xV 3:74 + �v1:18xV 1:18 (5.1)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. COMPLETE SEPARATION (SMALL SAMPLE) 60

The e¤ect of the interaction between xV 3:74 and xV 1:18 is not signi�cant and therefore

not included in the model. From the SAS, PROC LOGISTIC, procedure the coe¢ cient

estimates for equation (5.1) after 8 iterations are found as shown by the �rst column of

Table 5.1.

Table 5.1: Logistic regression coe¢ cient estimates for HIV status

After 8 iterations After 25 iterations After 100 iterations
Variable b� SE of b� b� SE of b� b� SE of b�
Intercept 10.6243 70.4261 45.6032 184766 96.0844 761609
xV 3:74 -160.8 272.3 -611.284 731383 -1068.22 3662281
xV 1:18 -39.7412 74.3653 -153.135 180033 -269.342 559114

From the output it is noticed that the standard error for all coe¢ cients estimates are

considerably greater than the corresponding coe¢ cient estimates. This is the �rst indica-

tion that the coe¢ cient estimates should be evaluated with care. Even though estimated

values for the coe¢ cients are obtained, there is a warning given by the program that

the values haven�t converged and that the validity of the model is questionable. To test

the validity of the coe¢ cient estimates after 8 iterations the LR and Wald statistic, with

corresponding p-values, is given in Table 5.2 calculated by equations (1.41) and (1.47)

respectively.

Table 5.2: LR and Wald statistics for HIV status
After 8 iterations

Variable Statistic p-value
LR 10:6243 < 0:0001
Wald 70:4261 0:8398

Under the null hypothesis that � is not signi�cantly di¤erent from 0, the LR statistic

rejects the null hypothesis and the Wald statistic does not reject the null hypothesis.

The two con�icting conclusions of the LR and Wald statistics are an indication that an

approximate chi-square distribution wasn�t obtained. This is due to the small sample

of 20 observations which is used. The maximum number of iterations were increased to

25 and 100 respectively. The results for the coe¢ cient estimates and standard error in

Table 5.1 of the coe¢ cient estimates (obtained in MINITAB) are given columns 2 and 3

respectively. From these results it is clear that the parameter estimates increase as the

log-likelihood function increases (as indicated by Figure 2.2). As the number of iterations

increases, the value for b� and the standard error for b� increase and tend to in�nity since
there is no convergence. This indicates that none of the coe¢ cient estimates found in

Table 5.1 are reliable and other methods should be applied.
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5.2.3 Exact logistic regression: HIV status

There is a function available in SAS, PROC LOGISTIC, which can be used to estimate

the coe¢ cients for an exact logistic regression. This function was used to estimate exact

logistic regression coe¢ cients for the HIV status model in equation (5.1). The correspond-

ing p-values for the two sided conditional exact test are also obtained and the results are

given in Table 5.3.

Table 5.3: Exact logistic regression coe¢ cient estimates for HIV status

Variable b� p-value
Intercept : .
xV 3:74 �11:9668 0:0022
xV 1:18 �1:9115 0:2857

From the values expressed in Table 5.3 it can be noted that there is no intercept value,

and the e¤ect of xV 3:74 is signi�cant but xV 1:18 is not signi�cant in the model. To test the

overall �t of the model the Pearson chi-square, deviance (based on q = 19) and Hosmer-

Lemeshow test under the null hypothesis that the model �ts the data adequately are

considered in Tables 5.4 and 5.5.

Table 5.4: Pearson and deviance test statistic for HIV under exact logistic regression

Test
Test

Statistic DOF p-value Conclusion

Pearson chi-square 13:56 16 0:631 The model is adequate
Deviance 17:15 16 0:376 The model is adequate

As discussed in Section 1.10.1, caution should be taken when analysing the Pearson chi-

square and deviance statistic for a small sample and when working with a sparse data

set. The di¤erence between the deviance statistic value and the Pearson chi-square value

should heed as a warning to the interpretation of the goodness-of-�t measures.

Since the Hosmer-Lemeshow test depends on the size of the groups chosen, groups of size

1; 2; 4 and 5 each will be considered and are given in Table 5.5.

Table 5.5: Hosmer-Lemeshow test statistics for HIV status under exact logisitic regression

va a
Hosmer-Lemeshow

test statistic DOF p-value Conclusion

1 20 13:65 18 0:752 The model is adequate
2 10 13:25 8 0:1 The model is adequate
4 5 9:1 3 0:03 The model is not adequate
5 4 12:26 2 0:002 The model is not adequate
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Hosmer-Lemeshow�s p-values for 4 and 5 groups, of size 5 and 4 respectively, are the

lowest and the null hypothesis that the model is an adequate model is rejected. For 1

group of size 20 and 2 groups of size 10 each the p-values are greater than 0:05 and the

null hypothesis is not rejected at a signi�cance level of � = 0:05. Over the di¤erent group

sizes the p-values vary between 0:002 and 0:752 which is a clear indication that the group

size used makes a di¤erence with this test. From the Pearson chi-square and deviance

test the model is adequate. From the Hosmer-Lemeshow statistics the indication is that

the model is not adequate since the results for a larger number of groups (va = 4 and

va = 5) are more reliable than for a few number of groups, and these indicate it is not a

good model.

Finally consider the classi�cation table for the exact logistic regression model with dif-

ferent cut-o¤ values for the predicted probability. The cut-o¤ values ranges from b� = 0:1
to b� = 0:9 in increments of 0.1. To illustrate how well the predicted model performs

with the di¤erent cut-o¤ levels the following classi�cation tables are given (Tables 5.6

and 5.7).

Table 5.6: Classi�cation table for HIV status under exact logisitic regression for a cut-o¤
probability from 0.1 to 0.5.

Exactb� Predicted
values

Percentage
correct

HIV� HIV+

0:1 Observed HIV� 10 0 100%
Values HIV+ 10 0 0%
overall
%

50%

0:2 Observed HIV� 10 0 100%
to Values HIV+ 8 2 20%

0:4
overall
%

60%

0:5 Observed HIV� 10 0 100%
Values HIV+ 6 4 40%
overall
%

70%
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Table 5.7: Classi�cation table for HIV status under exact logisitic regression for a cut-o¤
probability from 0.6 to 0.9.

Exactb� Predicted
values

Percentage
correct

HIV� HIV+

0:6 Observed HIV� 10 0 100%
Values HIV+ 2 8 80%
overall
%

90%

0:7 Observed HIV� 10 0 100%
Values HIV+ 1 9 90%
overall
%

95%

0:8 Observed HIV� 10 0 100%
Values HIV+ 0 10 100%
overall
%

100%

0:9 Observed HIV� 3 7 30%
Values HIV+ 0 10 100%
overall
%

65%

From Table 5.7 it can be noted that the exact logistic regression model classi�es the

values well for a cut-o¤ value between 0.6 and 0.8. Since this is a balanced data set, the

classi�cation for b� = 0:5 will be used in practice and for this cut-o¤ value the number of
observations which are correctly classi�ed is 14=20 = 70% from Table 5.6.

Overall the exact logistic regression model only has one signi�cant parameter, is indicated

as an overall good �t by Pearson chi-square and deviance tests, but not by the Hosmer-

Lemeshow test. Finally this model has a relatively good classi�cation rate.

5.2.4 Firth�s Method: HIV status

Continuing with the HIV status example SAS, PROC LOGISTIC, will once again be

applied with the model statement ��rth�. The coe¢ cient estimates for the HIV status

data set under Firth�s model are given in Table 5.8 and the estimates converged after 5

iterations.

It can be noted from Table 5.8 that the parameter estimates for both xV 3:74 and xV 1:18
are signi�cant at a 5% level (p-values obtained from Wald statistic discussed in Section

1.11.1). Even though the covariates used are signi�cant it is empirical to test the overall

performance of the model (given Firth�s coe¢ cient estimates). For overall goodness-of-�t
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Table 5.8: Firth�s method coe¢ cient estimates for HIV status

Variable b� p-value
Intercept 1:9783 0:7353
xV 3:74 �42:6196 0:0147
xV 1:18 �10:0157 0:0376

the Pearson chi-square and deviance are given in Table 5.9 with the same degrees of

freedom mentioned in Table 5.4.

Table 5.9: Pearson and deviance test statistic for HIV under Firth�s method

Test
Test

Statistic DOF p-value Conclusion

Pearson chi-square 1:43 16 0:999 The model is adequate
Deviance 2:66 16 0:999 The model is adequate

From the two tests done in Table 5.9, Firth�s model is an adequate model given the high

p-values of the goodness-of-�t tests. Once again the value for the Pearson chi-square

and the deviance statistics are slightly di¤erent which indicates that caution should be

applied when interpreting these values. The Hosmer-Lemeshow statistics for the same

groups sizes as considered for the exact test are given in Table 5.10.

Table 5.10: Hosmer-Lemeshow test statistics for HIV status under Firth�s method

va a
Hosmer-Lemeshow

test statistic DOF p-value Conclusion

1 20 1:435 18 0:999 The model is adequate
2 10 1:422 8 0:994 The model is adequate
4 5 0:671 3 0:88 The model is adequate
5 4 1:394 2 0:498 The model is adequate

From the results for Hosmer-Lemeshow�s test for all group sizes it is clear that this model

is adequate for all group sizes.

Classi�cation of the model in equation (5.1) given die coe¢ cient estimates in Table 5.8

for cut-o¤ values ranging from 0:1 � b� � 0:9 in increments of 0:1 are given in Table 5.11.
Firth�s model classi�es the predicted outcomes perfectly for 0:3 � b� � 0:8 which includes
the predicted probability for a balanced data set of b� = 0:5:
In conclusion when using Firth�s model to predict the HIV status of a patient, both covari-

ates are signi�cant in the model, the overall goodness-of-�t tests indicate an appropriate

model and the classi�cation table gives 100% correctly classi�ed values for b� = 0:5:
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Table 5.11: Classi�cation table for HIV status under Firth�s method for cut-o¤probability
from 0.1 to 0.9

Firthb� Predicted
values

Percentage
correct

HIV� HIV+

0:1 Observed HIV� 10 0 100%
Values HIV+ 3 7 70%
overall
%

85%

0:2 Observed HIV� 10 0 100%
Values HIV+ 1 9 90%
overall
%

95%

0:3 Observed HIV� 10 0 100%
to Values HIV+ 0 10 100%

0:8
overall
%

100%

0:9 Observed HIV� 8 2 80%
Values HIV+ 0 10 100%
overall
%

90%

5.2.5 Hidden logistic regression model

The �nal approach, and most recently developed model, to deal with completely separated

data is a hidden logistic regression model. The coe¢ cient estimates for the HIV data set

based on a hidden logistic regression model obtained with the R program in Appendix

G (mentioned in the overview of part II) are given in Table 5.12. The appropriate Wald

statistic p-values are also given in Table 5.12 next to each applicable coe¢ cient estimate.

Table 5.12: Hidden logistic regression coe¢ cient estimates for HIV status

Variable b� p-value
Intercept 5:398 0:6944
xV 3:74 �82:638 0:0985
xV 1:18 �20:447 0:1351

The log-likelihood function converged after 10 iterations and �nite coe¢ cient estimates

were obtained. From the values in Table 5.12 it can be noted that both the coe¢ cient

estimates for xV 3:74 and xV 1:18 are not signi�cant at a signi�cance level of � = 0:05. The

goodness-of-�t statistics for the hidden logistic regression model are given in Tables 5.13

and 5.14 for the same degrees of freedom considered for both exact logistic regression and

Firth�s model.
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Table 5.13: Pearson and deviance test statistic for HIV under hidden logistic regression

Test
Test

Statistic DOF p-value Conclusion

Pearson chi-square 0:211 16 0:999 The model is adequate
Deviance 0:414 16 0:999 The model is adequate

Table 5.14: Hosmer-Lemeshow test statistics for HIV status under hidden logisitic re-
gression

va a
Hosmer-Lemeshow

test statistic DOF p-value Conclusion

1 20 0:211 18 0:999 The model is adequate
2 10 0:21 8 0:999 The model is adequate
4 5 0:059 3 0:996 The model is adequate
5 4 0:21 2 0:902 The model is adequate

All the goodness-of-�t tests done on the hidden logistic regression model indicate that

it is a very good model. The classi�cation of the predicted outcomes from the hidden

logistic regression model is 100% correctly classi�ed for all pre-de�ned cut-o¤ values as

shown in Table 5.15.

Table 5.15: Classi�cation table for HIV status under hidden logistic regression for cut-o¤
probability from 0.1 to 0.9

Hidden logistic regressionb� Predicted
values

Percentage
correct

HIV� HIV+

0:1 Observed HIV� 10 0 100%
to Values HIV+ 0 10 100%

0:9
overall
%

100%

Overall for the hidden logistic regression model even though none of the coe¢ cient esti-

mates are signi�cant, the goodness-of-�t tests and the classi�cation table indicates it is

a good model for the HIV data set.

5.2.6 Conclusion: HIV status example

From the example shown above, it can be noted that even though Firth�s method and

the hidden logistic regression model both give 100% correctly classi�ed values at b� = 0:5,
only the model obtained under Firth�s method give signi�cant coe¢ cient estimates for

both xV 3:74 and xV 1:18: Since the values for b� for Firth�s method are signi�cant predictors
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in the model it can be interpreted with more con�dence than those obtained under the

hidden logistic regression model.

The results obtained for the goodness-of-�t tests and classi�cation tables can be explained

by interpreting the predicted probabilities obtained under each model. The predicted

probabilities for each observation for exact logistic regression, Firth�s model and hidden

logistic regression are plotted in Figure 5.2.

Figure 5.2: HIV example predicted probabilities for exact, Firth and hidden

observations

Pr
ed

ic
te

d
pr

ob
ab

ilit
ie

s

20151050

1.0

0.8

0.6

0.4

0.2

0.0

0.5

Variable

Firth
HLR

y
Exact

The curve obtained from the predicted probabilities under the exact logistic regression

model does not resemble the curve of either the original data set or that of a logistic curve

(Figure 1.1). This explains the fact why the exact logistic regression model did not give

signi�cant coe¢ cient estimates nor was it an appropriate model according to the Hosmer

Lemeshow goodness-of-�t tests.

Firth�s model however gives a smoother curve between yi = 0 and yi = 1 which enables

a better prediction for 0 < yi < 1: The coe¢ cient estimates for Firth�s model are all

signi�cant this implies the estimated values obtained from the model can be interpreted

with more con�dence for all values of yi as seen from Figure 5.2.

Finally from Figure 5.2 the good results obtained from the goodness-of-�t tests and

the classi�cation table for hidden logistic regression can be explained. The predicted

probabilities obtained under the hidden logistic regression model closely resemble that of

the original completely separated data set. Where the hidden logistic regression model

yields predicted values close to 0 and 1, Firth�s model gave a more even distribution

of the predicted probabilities between 0 and 1, resembling Figure 1.1. Therefore the

good results for both the goodness-of-�t tests and the classi�cation table under a hidden

logistic regression model can be explained by the fact that it closely resembles the original

data set and this also explains why the coe¢ cient estimates are not signi�cant since this

model this closely resembles a data set which is separated between yi = 0 and yi = 1:
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5.3 Continuous and categorical covariates

5.3.1 Breast cancer example

To illustrate a mixture of both categorical and continuous covariates, consider a study

between 1958 and 1970 at the University of Chicago�s Billings Hospital on the survival of

patients who had undergone surgery for breast cancer, summarised by Haberman (1973).

The two covariates which were signi�cant in predicting if a patient survived or did not

survive after 5 years of receiving the operation are the number of positive axillary nodes

and the age group of the patient observed at the time of the operation.

A sample of 20 observations, given in Appendix B, were drawn where 10 of the patients

survived after 5 years (S, yi = 1) and 10 of the patients did not survive after 5 years

(D, yi = 0). The number of positive axillary nodes is a continuous covariate and the age

group is a categorical covariate where 1 indicates a patient aged between 20 and 39, 2

indicates an age between 40 and 59 and 3 indicates a patient aged between 60 and 79.

In the sample of 20 patients complete separation was observed which can be veri�ed by

a scatter plot of the age group and the number of positive nodes shown in Figure 5.3.

Figure 5.3: Scatter plot of xNODES vs. xAGE grouped according to the observed value of
y
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The number of unique covariate sets for this data set is 10, i.e. q = 10, which is far less

than for the HIV status data set.

5.3.2 General logistic regression model

To predict the outcome of a patient after 5 years, a logistic regression model can be given

by equation (5.2)
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logit(�i) = �0 + �d11xd11 + �d12xd12 + �NODESxNODES (5.2)

where the indicators of age are summarised in Table 5.16.

Table 5.16: Coding for age groups

Indicator
xd11 xd12

Group 1 (20-39 1 0
Age Group 2 (40-59) 0 1

Group 3 (60-79) 0 0

The interaction between the number of positive nodes detected and the age group are

not signi�cant in predicting the survival status of a patient after 5 years and is therefore

not included in the model.

From SAS, PROC LOGISTIC, the coe¢ cient estimates for equation (5.2) did not converge

after 8 iterations. Since complete separation is present in the data set the log-likelihood

function was unable to converge even after 100 iterations, the results of the coe¢ cient

estimates are given in Table 5.17. The standard error for each coe¢ cient estimate ob-

tained after 8 iterations is greater than the coe¢ cient estimate itself, this is an indication

of unreliable coe¢ cient estimates.

Table 5.17: Logistic regression coe¢ cient estimates for breast cancer

After 8 iterations After 25 iterations After 100 iterations
Variable b� SE of b� b� SE of b� b� SE of b�
Intercept 77:67 168:7 �289:96 457849 �251:769 652712
xd11 �68:47 175:9 263:75 481327 192:486 500000
xd12 �59:8 146:8 222:63 448157 160:788 452226

xNODES �3:95 6:1879 14:941 14654 21:3304 41523

Subsequently as the coe¢ cient estimates did not converge, the signi�cance of the para-

meters are questionable. To test the signi�cance of vector b�;consider the LR and Wald
statistic given in Table 5.18.

Table 5.18: LR and Wald statistics for breast cancer
After 8 iterations

Variable Test statistic value p-value
LR 27:7 < 0:0001
Wald 0:4516 0:93

Under the null hypothesis that � does not signi�cantly di¤er from 0, for the coe¢ cient

estimates obtained after 8 iterations, it can be noted that the according to the LR test
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statistic the estimates for � are signi�cant. This is however contradictory to the result ob-

tained from the Wald test statistic, where the coe¢ cient estimates found in Table 5.17 are

not signi�cant. This is likely due to the small sample which makes the large-sample ap-

proximation unreliable. To obtain reliable coe¢ cient estimates di¤erent methods, which

are not in�uenced by complete separation, should be tested.

5.3.3 Exact logistic regression

When applying an exact logistic regression model to the breast cancer data one should

keep the statement of Zorn(2005): "relatively sparse data and or small numbers of obser-

vations in particular patterns of categorical covariates often lead to degenerate estimates,

and the inclusion of continuous covariates nearly always does so" in mind when using

both categorical and continuous covariates with this method. According to SAS, PROC

LOGISTIC, the coe¢ cient estimates obtained for the exact logistic regression model,

substituted in equation (5.2) are given in Table 5.19.

Table 5.19: Exact logistic regression coe¢ cient estimates for breast cancer

Variable b� p-value
Intercept . .
xd11 . .
xd12 . .
xNODES �0:871 0:0004

The coe¢ cient estimates for the intercept, xd11 and xd12 were unobtainable since the

conditional distribution is degenerate. This is due to the fact that both categorical and

continuous covariates are used in the model. The coe¢ cient estimate obtained for the

number of positive nodes is however a signi�cant parameter estimate for the model.

Since not all the coe¢ cient estimates were obtainable, the model given in equation (5.2)

only includes the number of positive nodes detected to determine the patient�s outcome

after 5 years of surgery. The goodness-of-�t statistics for the model with only one inde-

pendent variable are given in Table 5.20.

Table 5.20: Pearson and deviance test statistic for breast cancer under exact logistic
regression

Test
Test

Statistic DOF p-value Conclusion

Pearson chi-square 54:27 6 0 The model is not adequate
Deviance 31:57 6 0 The model is not adequate
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As suspected the model is not adequate to predict the outcome of a patient. The Hosmer-

Lemeshow statistics, for di¤erent group sizes, are given in Table 5.21 and provides the

same conclusion as given for the Pearson chi-square and deviance test.

Table 5.21: Hosmer-Lemeshow test statistics for breast cancer under exact logisitic re-
gression

va a
Hosmer-Lemeshow

test statistic DOF p-value Conclusion

1 20 54:27 18 0 The model is not adequate
2 10 54:27 8 0 The model is not adequate
4 5 51:18 3 0 The model is not adequate
5 4 44:57 2 0 The model is not adequate

Finally to get a tabular representation of the model obtained by exact methods, the

classi�cation table is given in Table 5.22.

Table 5.22: Classi�cation table for breast cancer under exact logisitic regression for cut-o¤
probability from 0.1 to 0.9

Exactb� Predicted
values

Percentage
correct

S D
0:1 Observed S 8 2 80%

Values D 0 10 100%
overall
%

90%

0:2 Observed S 4 6 40%
to Values D 0 10 100%

0:4
overall
%

70%

0:5 Observed S 0 10 0%
to Values D 0 10 100%

0:9
overall
%

50%

As noted from Table 5.22 for a cut-o¤ value of b� = 0:1 the model predicted the outcomes
very well, relatively well for 0:2 � b� � 0:4 and classi�ed all the values to be in placed in
group yi = 0 for a cut-o¤ value of 0:5 � b� � 0:9: Since it is a balanced data set, when
considering a cut-o¤ value of b� = 0:5; only 50% of the predicted values are correctly

classi�ed. Given the results from the classi�cation table and the goodness-of-�t statistics,

this model is not good in predicting the outcome of a patient 5 years after the operation.

This result was anticipated when using a combination of both categorical and continuous

covariates in an exact logistic regression model.
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5.3.4 Firth�s method

Since Firth�s method is based on penalising the existing log-likelihood function, the type

of covariates used should not have an e¤ect on the signi�cance of the model. Given the

Firth speci�cation in SAS, PROC LOGISTIC, the coe¢ cient estimates for the covariates

identi�ed in equation (5.2) are given in Table 5.23.

Table 5.23: Firth�s method coe¢ cient estimates for breast cancer

Variable b� p-value
Intercept 23:2419 0:0375
xd11 �21:0352 0:0626
xd12 �18:4047 0:0420

xNODES �1:0605 0:0338

Most of the coe¢ cient estimates given in Table 5.23 are signi�cant at a 5% signi�cance

level. When considering � = 0:05, xd11 is not signi�cant but since xd11 and xd12 represents

the age group together one either needs to keep or exclude both from the model. The

goodness-of-�t tests for Pearson chi-square and deviance test statistics are given in Table

5.24 followed by the Hosmer-Lemeshow�s test statistics in Table 5.25. All the goodness-

of-�t tests indicate that Firth�s model is a good model to predict the outcome of a breast

cancer patient after 5 years of surgery.

Table 5.24: Pearson and deviance test statistic for breast cancer under Firth�s method

Test
Test

Statistic DOF p-value Conclusion

Pearson chi-square 2:66 6 0:85 The model is adequate
Deviance 4:57 6 0:6 The model is adequate

Table 5.25: Hosmer-Lemeshow test statistics for breast cancer under Firth�s method

va a
Hosmer-Lemeshow

test statistic DOF p-value Conclusion

1 20 2:66 18 0:999 The model is adequate
2 10 2:5 8 0:96 The model is adequate
4 5 1:25 3 0:74 The model is adequate
5 4 2:36 2 0:31 The model is adequate

Even though Firth�s model is an adequate model by the goodness-of-�t statistics, it is

also necessary to compare the predicted values to the actual values for a small sample.

Therefore the classi�cation table of the model with the coe¢ cients given in Table 5.23 is

given in Table 5.26.
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Table 5.26: Classi�cation table for breast cancer under Firth�s method for cut-o¤ proba-
bility from 0.1 to 0.9

Firthb� Predicted
values

Percentage
correct

S D
0:1 Observed S 10 0 100%

Values D 3 7 70%
overall
%

85%

0:2 Observed S 10 0 100%
to Values D 1 9 90%

0:4
overall
%

95%

0:5 Observed S 10 0 100%
to Values D 0 10 100%

0:8
overall
%

100%

0:9 Observed S 8 2 80%
Values D 0 10 100%
overall
%

90%

The best classi�cation occurs at the predicted probability cut-o¤ value between 0.5 and

0.8. The worst classi�cation occurs at a cut-o¤ value of b� = 0:1 which still predicted 85%
of the observations in the correct group.

From exact logistic regression to Firth�s method there has been a signi�cant improve-

ment in the goodness-of-�t statistics, the signi�cance of the coe¢ cient estimates and the

classi�cation table:

5.3.5 Hidden logistic regression

The �nal approach considered for the breast cancer data set is hidden logistic regression.

Using the R program code given in Appendix G, the coe¢ cient estimates given in Table

5.27 are found.

According to the Wald test statistic none of the coe¢ cient estimates are signi�cant at

� = 0:05. Even though none of the coe¢ cients are signi�cant, for pure academic interest

sake, it will be used in equation (5.2) to estimate the outcome of a patient after 5 years.

One should also consider the overall �t of the model given by the Pearson chi-square,

deviance and Hosmer-Lemeshow test statistics given in Tables 5.28 and 5.29. From all

the given goodness-of-�t tests, the model is adequate.
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Table 5.27: Hidden logistic regression coe¢ cient estimates for breast cancer

Variable b� p-value
Intercept 41:051 0:205
xd11 �35:748 0:281
xd12 �31:466 0:247

xNODES �2:107 0:111

Table 5.28: Pearson and deviance test statistic for breast cancer under hidden logistic
regression

Test
Test

Statistic DOF p-value Conclusion

Pearson chi-square 0:23 6 0:999 The model is adequate
Deviance 0:45 6 0:998 The model is adequate

Table 5.29: Hosmer-Lemeshow test statistics for breast cancer under hidden logisitic
regressiont

va a
Hosmer-Lemeshow

test statistic DOF p-value Conclusion

1 20 0:23 18 0:999 The model is adequate
2 10 0:23 8 0:999 The model is adequate
4 5 0:061 3 0:996 The model is adequate
5 4 0:228 2 0:89 The model is adequate

The last guidance to how well the hidden logistic regression model �ts the breast cancer

data is the classi�cation table for 0:1 � b� � 0:9 given in Table 5.30, which gives a 100%
correct classi�cation for all cut-o¤ predicted probability values.

The hidden logistic regression model indicates very good prediction for the breast cancer

data from the goodness-of-�t results and the classi�cation table even though none of

the coe¢ cient estimates are signi�cant. To investigate this �nal conclusion a visual

comparison of the predicted probabilities for each method will be investigated in Section

5.3.6.

5.3.6 Conclusion: Breast cancer example

A visual comparison, in Figure 5.4, of the three methods and the actual data give in-

sight on the results obtained for the coe¢ cient estimates, goodness-of-�t tests and the

classi�cation tables.

Investigating the curve for the predicted probabilities obtained under exact logistic re-

gression it can be observed that the curve does not represent the actual data or the curve

in Figure 1.1. Since all the coe¢ cient estimates were not obtainable under exact logistic

regression a true representation of a logistic curve was unlikely to be observed from the
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Table 5.30: Classi�cation table for breast cancer under hidden logistic regression for
cut-o¤ probability from 0.1 to 0.9

Hidden logistic regressionb� Predicted
values

Percentage
correct

S D
0:1 Observed S 10 0 100%
to Values D 0 10 100%

0:9
overall
%

100%

Figure 5.4: Breast cancer example predicted probabilities for exact, Firth and hidden

observations
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predicted probabilities. The predicted probabilities obtained under exact logistic regres-

sion reaches a maximum of b� = 0:5, this can explain why the classi�cation table predicted
all the values to be yi = 0 for a predicted probability between 0:5 and 0:9:

Examining the predicted probabilities obtained under Firth�s model there is more of a

gradual increase from 0 to 1 than observed under the hidden logistic regression model.

The curve obtained from the predicted probabilities under Firth�s method resembles the

curve obtained in Figure 1.1, which serves as explanation for the signi�cant coe¢ cient

estimates, the results obtained from the goodness-of-�t tests and the perfect classi�cation

at b� = 0:5:
Finally the hidden logistic regression model closely resembles the actual data same as for

the HIV example. This resemblance in the predicted probabilities obtained under the

hidden logistic regression model and the actual probabilities of the original data explains

the 100% correct classi�cation and the fact that the hidden logistic regression model is an

adequate model. This in turn also clari�es why the coe¢ cient estimates obtained under

the hidden logistic regression model are not signi�cant since there is still a horisontal

jump in the predicted probabilities from 0 to 1.
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5.4 Categorical covariates

5.4.1 Titanic example

On April 15, 1912, during her maiden voyage, the RMS Titanic sank after colliding with

an iceberg, killing 1502 of 2224 passengers and crew members making it one of the most

infamous shipwrecks in history. The shipwreck caused a huge loss of life, since there were

not enough lifeboats for the passengers and crew. Although there was some degree of

luck involved in surviving the disaster, some groups of people were more likely to survive

than others, such as women and the �rst-class passengers.

Consider a sample of 20 observations, given in Appendix C, accessed from Kaggle (2012).

The two categorical covariates, sex and passenger class (�rst, second or third class), are

used to determine if a passenger survived (yi = 1) or not survived (yi = 0): The sample

of 20 observations exhibit complete separation as indicated by Figure 5.5.

Figure 5.5: Scatter plot of xSEX vs. xCLASS according to the observed value of y

class
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Since both covariates considered are categorical the number of unique covariate sets will

be less than that of the two previous examples. The number of unique covariate sets, as

seen from Figure 5.5, is 6, i.e. q = 6: The six groups consist of �rst class: female and

male, second class: female and male and �nally third class: class female and male.

5.4.2 General logistic regression model

To predict if a passenger who was aboard the RMS Titanic survived the shipwreck, two

categorical covariates are used which imply dummy variables will be required. Since sex

only has two groups, where female is indicated by a 1 and male by a 0 no additional

indicators will be needed for sex. There are however three di¤erent passenger classes

therefore the two indicators in Table 5.31 will be used for passenger class.
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Table 5.31: Coding for age groups

Indicator
xd11 xd12

First class 1 0
Class Second class 0 1

Third class 0 0

The logistic regression model to predict the odds of survival for a passenger is given by

equation (5.3). In the model no interaction term between sex and class is included since it

has no signi�cant contribution in predicting the outcome of a passenger who was aboard

the RMS Titanic.

logit(�i) = �0 + �d11xd11 + �d12xd12 + �SEXxSEX (5.3)

From SAS, PROC LOGISTIC and MINITAB the coe¢ cient estimates for equation (5.3)

obtained for 8, 25 and 100 iterations are given in Table 5.32. Same as for the previous

two results, the standard error for each coe¢ cient estimate is much greater than the

coe¢ cient estimate itself.

Table 5.32: Logistic regression coe¢ cient estimates for Titanic

After 8 iterations After 25 iterations After 100 iterations
Variable b� SE of b� b� SE of b� b� SE of b�
Intercept -22.0708 45.0255 -72.9268 131925 -86.89 914604
xd11 29.3929 52.7734 97.1337 151752 180.483 578732
xd12 14.5855 39.7666 48.51 117531 53.8807 409067
xSEX 14.3938 30.7782 48.2491 88369 59.9473 816507

From the values given in Table 5.32 it is clear that the coe¢ cients did not converge even

after 100 iterations and that the standard error of the coe¢ cients tends to in�nity as the

number of iterations increase. The LR and Wald statistics for the coe¢ cient estimates

obtained after 8 iterations are given in Table 5.33 for 3 degrees of freedom. As for the

two previous cases of complete separation it is observed that the conclusion given from

the LR and Wald statistic is contradictory.

Table 5.33: LR and Wald statistics for Titanic
After 8 iterations

Variable Statistic p-value
LR 27:7129 < 0:0001
Wald 0:3461 0:9511

Since the general logistic regression model could not obtain �nite coe¢ cient estimates,
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the exact method, Firth�s method and hidden logistic regression will be applied to the

observations once again.

5.4.3 Exact logistic regression

Applying exact logistic regression to the data set given in Appendix C, the coe¢ cient

estimates given in Table 5.34 are obtained.

Table 5.34: Exact logistic regression coe¢ cient estimates for Titanic

Variable b� p-value
Intercept �3:1558 0:0054
xd11 4:0444 0:0025
xd12 1:4436 0:3333
xSEX 2:1622 0:1333

As indicated from Table 5.34 all the coe¢ cients were obtainable since only categorical

covariates were considered for the exact method. Even though the indicator xd12 and

xSEX does not have signi�cant coe¢ cient estimates at a signi�cance level of � = 0:05,

the overall e¤ect of xd11 and xd12 is to be considered in the model.

By using the coe¢ cient estimates obtained in Table 5.34 in the logistic regression model

speci�ed by equation (5.3) the Pearson chi-square, deviance and Hosmer-Lemeshow test

statistics are given in Tables 5.35 and 5.36.

Table 5.35: Pearson and deviance test statistic for Titanic under exact logistic regression

Test
Test

Statistic DOF p-value Conclusion

Pearson chi-square 4:0144 2 0:134 The model is adequate
Deviance 0:1343 2 0:033 The model is not adequate

Table 5.36: Hosmer-Lemeshow test statistics for Titanic under exact logisitic regression

va a
Hosmer-Lemeshow

test statistic DOF p-value Conclusion

1 20 4:0144 18 0:999 The model is adequate
2 10 4:0144 8 0:856 The model is adequate
4 5 1:949 3 0:583 The model is adequate
5 4 3:78 2 0:151 The model is adequate

The results obtained from Pearson�s chi-square and the deviance test statistic are con-

�icting. Pearson�s chi-square indicates that the model is adequate but on the other hand
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the deviance test statistic indicates that the model is not adequate. When there is a

di¤erence between the values of Pearson chi-square and deviance test statistic, it is an

indication that the values did not converge to an approximate chi-square distribution.

This result is unexpected since theoretically the Pearson�s chi-square and deviance test

statistic should perform best when only categorical covariates are considered and should

therefore be close in value. To investigate if this di¤erence is truly the result of the small

sample used, the same example will be revisited in Chapter 6 with a larger sample size.

As shown by the Hosmer-Lemeshow statistics in Table 5.36 the model obtained from the

exact method is signi�cant for all group sizes.

Finally the classi�cation table, which cross-classi�es the observed and the predicted val-

ues, is given in Table 5.37.

Table 5.37: Classi�cation table for Titanic under exact logisitic regression for cut-o¤
probability from 0.1 to 0.9

Exactb� Predicted
values

Percentage
correct

S D
0:1 Observed S 10 0 100%

Values D 6 4 40%
overall
%

70%

0:2 Observed S 10 0 100%
Values D 2 8 80%
overall
%

90%

0:3 Observed S 10 0 100%
to Values D 0 10 100%

0:6
overall
%

100%

0:7 Observed S 8 2 80%
Values D 0 10 100%
overall
%

90%

0:8 Observed S 6 4 80%
to Values D 0 10 100%

0:9
overall
%

80%

From the classi�cation table given in Table 5.37 it is noted that the classi�cation of the

predicted values for exact logistic regression is 100% correctly identi�ed for 0:3 � b� � 0:6:
For the three di¤erent examples given it can be noted that only for the case where two
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categorical covariates are considered did the exact logistic regression model give 100%

correct classi�cation at a cut-o¤ value of b� = 0:5:
5.4.4 Firth�s method

By penalising the log-likelihood function of equation (5.3) the coe¢ cient estimates given

in Table 5.38 are obtained.

Table 5.38: Firth�s method coe¢ cient estimates for Titanic

Variable b� p-value
Intercept �4:874 0:053
xd11 6:3635 0:028
xd12 2:8963 0:209
xSEX 3:3518 0:093

The coe¢ cient estimate for xSEX is not signi�cant at � = 0:05 and as explained, the

two indicators xd11 and xd12 cannot be evaluated separately since they form one concept

(passenger class). Equation (5.3) with the coe¢ cients given in Table 5.38 yields a model

which results to a Pearson chi-square and deviance goodness-of-�t statistic given in Table

5.39.

Table 5.39: Pearson and deviance test statistic for Titanic under Firth�s method

Test
Test

Statistic DOF p-value Conclusion

Pearson chi-square 2:025 2 0:36 The model is adequate
Deviance 3:7 2 0:16 The model is adequate

From Table 5.39 it is noticed once again (as for the exact method) that the value for

the Pearson chi-square and deviance di¤ers. Even though this di¤erence is smaller than

the di¤erence obtained under exact logistic regression for the Titanic example, Firth�s

method with a large sample will also be investigated in Chapter 6. The Hosmer-Lemeshow

statistics are given in Table 5.40 and indicate that the model is adequate for all group

sizes.

Table 5.40: Hosmer-Lemeshow test statistics for Titanic under Firth�s method

va a
Hosmer-Lemeshow

test statistic DOF p-value Conclusion

1 20 2:025 18 0:999 The model is adequate
2 10 2:025 8 0:98 The model is adequate
4 5 1:04 3 0:79 The model is adequate
5 4 1:97 2 0:37 The model is adequate
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Finally as done with all previous cases the classi�cation table for Firth is given in Table

5.41. By using Firth�s model to predict the outcome of a passenger, there is 100% correct

classi�cation of the predicted outcomes for a cut-o¤ value between 0:2 � b� � 0:7:
Table 5.41: Classi�cation table for Titanic under Firth�s method for cut-o¤ probability
from 0.1 to 0.9

Firthb� Predicted
values

Percentage
correct

S D
0:1 Observed S 10 0 100%

Values D 6 4 40%
overall
%

75%

0:2 Observed S 10 0 100%
to Values D 0 10 100%

0:7
overall
%

100%

0:8 Observed S 8 2 80%
Values D 0 10 100%
overall
%

100%

0:9 Observed S 6 4 60%
Values D 0 10 100%
overall
%

80%

5.4.5 Hidden logistic regression

The �nal model to be considered for the Titanic data set is the hidden logistic regression

model. The coe¢ cient estimates for this model are given in Table 5.42.

Table 5.42: Hidden logistic regression coe¢ cient estimates for Titanic

Variable b� p-value
Intercept �11:723 0:149
xd11 15:627 0:103
xd12 7:684 0:284
xSEX 7:528 0:183

Once again as with all the models found under hidden logistic regression, the coe¢ cient

estimates according to the Wald statistic are not signi�cant. To compare the models

obtained under the three di¤erent methods the coe¢ cient estimates from Table 5.42 will

be used to substitute into equation (5.3).
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The goodness-of-�t statistics corresponding to the hidden logistic regression model are

given in Tables 5.43 and 5.44.

Table 5.43: Pearson and deviance test statistic for Titanic under hidden logistic regression

Test
Test

Statistic DOF p-value Conclusion

Pearson chi-square 0:202 2 0:9 The model is adequate
Deviance 0:399 2 0:819 The model is adequate

Table 5.44: Hosmer-Lemeshow test statistics for Titanic under hidden logisitic regression

va a
Hosmer-Lemeshow

test statistic DOF p-value Conclusion

1 20 0:202 18 0:999 The model is adequate
2 10 0:202 8 0:999 The model is adequate
4 5 0:106 3 0:991 The model is adequate
5 4 0:201 2 0:9151 The model is adequate

As for all the previous hidden logistic regression models the coe¢ cient estimates are

not signi�cant but the model is adequate according to all goodness-of-�t tests. The

classi�cation table once again shows 100% correct classi�cation for all cut-o¤ values of b�,
as seen in Table 5.45.

Table 5.45: Classi�cation table for Titanic under hidden logistic regression for cut-o¤
probability from 0.1 to 0.9

Hidden logistic regressionb� Predicted
values

Percentage
correct

S D
0:1 Observed S 10 0 100%
to Values D 0 10 100%

0:9
overall
%

100%

5.4.6 Conclusion: Titanic example

When considering only categorical covariates the predicted probabilities of exact logistic

regression, Firth�s method and hidden logistic regression is represented in Figure 5.6.

As seen in Figure 5.6 the predicted probabilities of the exact logistic regression model

more closely resembles the logistic curve in Figure 1.1 and the actual data than obtained
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Figure 5.6: Titanic example predicted probabilities for exact, Firth and hidden

observations
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from the previous two examples which support the 100% correct classi�cation at b� = 0:5.
Even though the results have improved for exact logistic regression from the previous

two examples, the curve of the predicted probabilities under exact logistic regression for

the Titanic example continue to deviate from the curve in Figure 1.1. This could be due

to the small sample size, a large sample will be used in Chapter 6 to clarify if a better

approximation occurs.

The curves for the predicted probabilities under Firth�s method and hidden logistic regres-

sion still resembles the graphs obtained for the previous two examples. Firth�s method

yields a model which is adequate and has a good classi�cation rate. Under Firth�s method

however not all the coe¢ cient estimates are signi�cant and can therefore not be inter-

preted with as much con�dence as in the previous two cases. The predicted probabilities

obtained under the hidden logistic regression model still resembles the actual data and

this explains the coe¢ cient estimates, goodness-of-�t tests and the classi�cation table.

5.5 Conclusion

Each of the three methods discussed to deal with complete or quasi-complete separation

has its own positive and negative attributes. For each method discussed one must ensure

that the correct method is used according to the covariate structure of the data set to

obtain reliable results.

For exact logistic regression to be valid one can only use a data set where each of the

covariates used is of the same data type. When using a combination of both categorical

and continuous covariates in exact logistic regression, it is almost certain that one would

obtain degenerate results. Exact logistic regression can be applied when the independent

variables only consist of continuous data although this is not recommended as there are
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models which give better results. Exact logistic regression performs the best when only

categorical covariates are used to predict the dependent variable.

When considering Firth�s method all covariate types, including a combination of categor-

ical and continuous, can be used. For all three cases of di¤erent covariates, most of the

coe¢ cient estimates obtained were signi�cant. By considering the overall goodness-of-�t

of Firth�s model, it was given as an adequate model according to Pearson�s chi-square, de-

viance and Hosmer-Lemeshow�s test statistic. For the classi�cation tables, 100% correct

classi�cation is obtained for a prede�ned estimated probability of 0.5.

Finally the hidden logistic regression model performed very well according to the classi�-

cation tables and to Pearson�s chi-square, deviance and Hosmer-Lemeshow�s test statistic.

A drawback of hidden logistic regression is the fact that it does not give signi�cant coef-

�cient estimates and that there is no prede�ned function in SAS (or any of the computer

programs mentioned in Chapter 2) available to calculate the coe¢ cient estimates. The

coe¢ cient estimates which are not signi�cant could be due to the small sample size and

will be investigated in Chapter 6 with a larger sample size.

Since all the examples considered in Chapter 5 are based on a small sample, the results

for Pearson�s chi-square and deviance test statistic should be interpreted with caution as

an approximate chi-square distribution might not have been obtained.

When considering the Hosmer-Lemeshow�s statistic other than the result depending on

the group sizes, it also depends on how many groups are chosen. If a few number of

groups are chosen then according to Xie (2008) it will almost always indicate that the

model �ts the data well. This can also be con�rmed for all examples where there is

only a few number of groups. For all cases where va is 1 or 2 the model is shown to be

an adequate model except for the exact logistic regression model applied to the breast

cancer data. Therefore when interpreting Hosmer-Lemeshow�s statistic one should rather

consider number of groups of four and higher.

When interpreting any of the models one should keep the statement of Box (1987) in

mind "All models are wrong, some models are useful". Therefore if the object of the

study is to resemble the true model as close as possible the hidden logistic regression

model will be suitable, if the object of the model is to eliminate most of the separation

present to the data set Firth�s model will work well. Each method is useful in its own

way and the model chosen depends on the desired outcome of the researcher.
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Chapter 6

Quasi-complete separation (large
sample)

6.1 Introduction

When coe¢ cient estimates of a logistic regression model are unobtainable due to non-

convergence for a practical application, the chances that quasi-complete separation is

present is much more likely than complete separation. This is especially true when

the sample size is large and continuous covariates or a combination of continuous and

categorical covariates are used. Since complete separation is a more severe case than

quasi-complete separation, all the approaches to deal with complete separation that have

been discussed can be used to deal with quasi-complete separation. To demonstrate

non-convergence of coe¢ cient estimates for a large sample, the Titanic example of Kag-

gle (2012) will be revisited. When the sample size is increased to 100, quasi-complete

separation is observed in the data set.

6.2 Categorical covariates

6.2.1 Titanic example: large sample

By considering the Titanic example in Appendix D as discussed in Section 5.4.1 from

Kaggle (2012) the logistic regression model stays the same as given in equation (5.3)

with indicators discussed in Table 5.31. For 100 randomly selected cases, quasi-complete

separation is present in the data set, which means that each covariate set is not unique

to either yi = 1 (survived) or yi = 0 (did not survive) since some covariate sets present

both yi = 1 and yi = 0, as represented in Figure 6.1.
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CHAPTER 6. QUASI-COMPLETE SEPARATION (LARGE SAMPLE) 86

Figure 6.1: Large sample scatter plot of xSEX vs. xCLASS according to the observed value
of y
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6.2.2 General logistic regression model revisited

From SAS, PROC LOGISTIC the coe¢ cient estimates for the logistic regression model

in equation (5.3) is represented in Table 6.1 for 8, 25 and 100 iterations respectively.

From Table 6.1 one can note that the coe¢ cient estimates still did not converge after

100 iterations, but the standard errors for the coe¢ cients are smaller than for the case

of complete separation. The coe¢ cient estimates and the standard error are also very

similar for all coe¢ cient estimates whereas for complete separation the standard error

di¤ered by a noticeable amount for the di¤erent coe¢ cient estimates. The standard

error for the coe¢ cient estimates are still larger than the coe¢ cient estimate itself for all

coe¢ cient estimates.

Table 6.1: Logistic regression coe¢ cient estimates for Titanic: large sample

After 8 iterations After 25 iterations After 100 iterations
Variable b� SE of b� b� SE of b� b� SE of b�
Intercept �11:2245 12:977 �28:2247 38599 �103:32 162225
xd11 8:7396 12:9884 25:7398 38599 100:83 162225
xd12 8:6596 12:9685 25:6598 38599 100:75 162225
xSEX 11:3299 12:9695 28:3301 38599 103:42 162225

Nevertheless, even if the standard errors are smaller than for complete separation, the

coe¢ cient estimates still do not converge after 100 iterations. To investigate signi�cance

of the coe¢ cient estimates obtained after 8 iterations the Wald and LR statistic are

studied in Table 6.2. From this it can be noted both tests reject the null hypothesis,

which implies that both tests indicate that the coe¢ cient estimates used in the model are

signi�cant. This conclusion is obtained for 8 iterations and is con�icting with the fact

that the coe¢ cient estimates did not converge. From this it can be observed that for a
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large sample both tests give the same result (which wasn�t the case for a small sample)

but the result is not reliable.

Table 6.2: LR and Wald statistics for Titanic: large sample

After 8 iterations
Variable Statistic p-value
LR 98:0747 < 0:0001
Wald 9:7488 0:0208

From these results it is apparent that one should make several attempts, trying di¤erent

methods to obtain coe¢ cient estimates that converge.

6.2.3 Exact logistic regression

From the exact function in SAS, PROC LOGISTIC, the coe¢ cient estimates for exact

logistic regression in Table 6.3 are obtained. It can be noted that all the coe¢ cient

estimates are highly signi�cant in estimating the survival status of a passenger who was

Section the RMS Titanic.

Table 6.3: Exact logistic regression coe¢ cient estimates for Titanic: large sample

Variable b� p-value
Intercept �5:619 < 0:0001
xd11 3:3772 0:0006
xd12 3:5117 0:0001
xSEX 5:8443 < 0:0001

The logistic regression model de�ned in equation (5.3) with the coe¢ cient estimates given

in Table 6.3 leads to the goodness-of-�t statistics given in Tables 6.4 and 6.5.

Table 6.4: Pearson and deviance test statistic for Titanic under exact logistic regression:
large sample

Test
Test

Statistic DOF p-value Conclusion

Pearson chi-square 1:3358 2 0:513 The model is adequate
Deviance 2:3541 2 0:308 The model is adequate

The Pearson chi-square and deviance test statistics both specify that the model is an

adequate model since all p-values are greater than 0.05. When comparing the results

for Pearson chi-square and deviance for a small sample to a large sample two immediate
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Table 6.5: Hosmer-Lemeshow test statistics for Titanic under exact logisitic regression:
large sample

va a
Hosmer-Lemeshow

test statistic DOF p-value Conclusion

1 100 40:764 98 0:999 The model is adequate
2 50 25:401 48 0:997 The model is adequate
5 20 8:875 18 0:963 The model is adequate
10 10 6:506 8 0:591 The model is adequate
20 5 3:109 3 0:375 The model is adequate

di¤erences can be observed. The �rst is that for a large sample the two values are much

closer in value (with an absolute di¤erence of 1.02 between the two statistics) as opposed

to the small sample case where there was an absolute di¤erence of 3.88 between the value

of the Pearson chi-square and deviance test statistic.

The second di¤erence when considering a large sample, is that the two test statistics lead

to the same conclusion whereas with the small sample the test statistics were con�icting.

One can therefore conclude that the sample size has a considerable e¤ect on the Pearson

chi-square and deviance test statistic. For the Hosmer-Lemeshow statistics given in Table

6.5 the model is adequate for all group sizes.

Finally the classi�cation table for the predicted probabilities under the exact logistic

regression model is given in Table 6.6.

Table 6.6: Classi�cation table for Titanic under exact logisitic regression for cut-o¤ prob-
ability from 0.1 to 0.9: large sample

Exact: large sampleb� Predicted
values

Percentage
correct

S D
0:1 Observed S 49 1 98%

Values D 22 28 56%
overall
%

77%

0:2 Observed S 48 2 96%
to Values D 9 41 82%

0:5
overall
%

89%

0:6 Observed S 38 12 76%
to Values D 0 50 100%

0:9
overall
%

88%

At a predicted probability of 0.5, 89% of the cases are correctly classi�ed. Over all
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predicted probability cut-o¤ values the exact logistic regression model gives a high per-

centage of values which are correctly classi�ed. The lowest correctly classi�ed percentage

of 77% is at a cut-o¤ estimated probability of 0.1.

6.2.4 Firth�s method

The coe¢ cient estimates obtained for equation (5.3) given Firth�s method are given in

Table 6.7. As for exact logistic regression for a large sample, all the coe¢ cient estimates

are signi�cant. When using the coe¢ cient estimates acquired in Table 6.7 in equation

(5.3) the overall goodness-of-�t statistics of the model are given in Tables 6.8 and 6.9.

Table 6.7: Firth�s method coe¢ cient estimates for Titanic: large sample

Variable b� p-value
Intercept �6:3106 < 0:0001
xd11 4:1497 0:008
xd12 4:1018 0:0051
xSEX 6:4116 < 0:0001

Table 6.8: Pearson and deviance test statistic for Titanic under Firth�s method: large
sample

Test
Test

Statistic DOF p-value Conclusion

Pearson chi-square 0:804 2 0:669 The model is adequate
Deviance 1:402 2 0:496 The model is adequate

Table 6.9: Hosmer-Lemeshow test statistics for Titanic under Firth�s method: large
sample

va a
Hosmer-Lemeshow

test statistic DOF p-value Conclusion

1 100 40:177 98 0:999 The model is adequate
2 50 21:094 48 0:999 The model is adequate
5 20 8:364 18 0:973 The model is adequate
10 10 6:099 8 0:636 The model is adequate
20 5 2:603 3 0:457 The model is adequate

Even though the Pearson chi-square and deviance test statistic gave the same conclusion

for both a small and large sample, there is still a di¤erence between the two values. There

is a bigger absolute di¤erence between Pearson�s chi-square and deviance for the small

sample of 1.675 than when using a large sample where the absolute di¤erence is 0.598.
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Given the goodness-of-�t tests, including the Hosmer-Lemeshow test statistics for any

number of groups, the overall �t of Firth�s model is adequate.

Table 6.10: Classi�cation table for Titanic under Firth�s method for cut-o¤ probability
from 0.1 to 0.9: large sample

Firth: large sampleb� Predicted
values

Percentage
correct

S D
0:1 Observed S 49 1 98%

Values D 21 29 58%
overall
%

78%

0:2 Observed S 48 2 96%
to Values D 9 41 82%

0:5
overall
%

89%

0:6 Observed S 38 12 76%
to Values D 0 50 100%

0:9
overall
%

88%

Once again when considering the classi�cation table given in Table 6.10 one can note

that at a predicted probability of 0.5, the number of correctly classi�ed observations is

89 out of a total of 100, identical to the classi�cation of exact logistic regression.

6.2.5 Hidden logistic regression

The �nal model to be considered for the large sample case of predicting the survival

status of a passenger who was Section the RMS Titanic is the hidden logistic regression

model. The coe¢ cient estimates given in Table 6.11 are all signi�cant according to the

Wald test statistic, in accordance with the rest of the models using a large sample. This

is the �rst example considered where the coe¢ cient estimates obtained under the hidden

logistic regression model are all signi�cant.

The overall goodness-of-�t of the model is evaluated by interpreting the Pearson chi-

square, deviance and Hosmer-Lemeshow test statistics. The absolute di¤erence between

Pearson chi-square and deviance test statistic as seen from Table 6.12 is 0.268. The

di¤erence between these two values is the smallest for all the methods mentioned using

a large sample.
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Table 6.11: Hidden logistic regression coe¢ cient estimates for Titanic: large sample

Variable b� p-value
Intercept �7:309 0:0005
xd11 4:906 0:0225
xd12 4:851 0:0181
xSEX 7:428 0:0003

Table 6.12: Pearson and deviance test statistic for Titanic under hidden logistic regres-
sion: large sample

Test
Test

Statistic DOF p-value Conclusion

Pearson chi-square 0:287 2 0:866 The model is adequate
Deviance 0:554 2 0:758 The model is adequate

The Hosmer-Lemeshow test statistics values in Table 6.13 also con�rm that the hidden

logistic regression model for a large sample is adequate.

Table 6.13: Hosmer-Lemeshow test statistics for Titanic under hidden logisitic regression:
large sample

va a
Hosmer-Lemeshow

test statistic DOF p-value Conclusion

1 100 44:220 98 0:999 The model is adequate
2 50 21:493 48 0:999 The model is adequate
5 20 7:963 18 0:979 The model is adequate
10 10 5:377 8 0:717 The model is adequate
20 5 1:859 3 0:602 The model is adequate

Finally the classi�cation table in Table 6.14 revealed that the hidden logistic regression

model could correctly classify 89% of the observations at b� = 0:5 which is the same as
for exact logistic regression and Firth�s method for the large sample case.

6.3 Conclusion

As examined for all the small sample cases, a visual representation of the predicted

probabilities for exact logistic regression, Firth�s method and hidden logistic regression

are shown in Figure 6.2.

The �rst noticeable di¤erence between the small sample case and the large sample case,

is that for the large sample case the curve for the predicted probabilities for all three

methods are almost exactly similar. From Figure 6.2 one can explain the 89% correctly

classi�ed values given for all methods and the similar results obtained from the goodness-

of-�t tests. For the large sample case the di¤erence between the coe¢ cient estimates for
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Table 6.14: Classi�cation table for Titanic under hidden logisitic regression for cut-o¤
probability from 0.1 to 0.9: large sample

Hidden: large sampleb� Predicted
values

Percentage
correct

S D
0:1 Observed S 48 2 96%
to Values D 9 41 82%

0:5
overall
%

77%

0:6 Observed S 38 12 76%
to Values D 0 50 100%

0:9
overall
%

88%

Figure 6.2: Large sample Titanic example predicted probabilities for exact, Firth and
hidden

observations
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all three methods are much smaller than for the small sample case. From this one can

conclude that for the case where only categorical covariates are used, as the sample size

increases, the coe¢ cient estimates obtained for exact logistic regression, Firth�s method

and hidden logistic regression approximates to the same value.

When considering the Titanic example other di¤erences between the small and the large

sample case were observed.

The �rst noticeable di¤erence is the fact that the Wald, Pearson chi-square and deviance

test statistics gave more reliable results, due to the fact that with a large sample one can

be more certain of the fact that an approximate chi-square distribution is obtained.

The second noticeable di¤erence is that the percentage of correctly classi�ed observations

has decreased to 89% for all methods at a cut-o¤ predicted probability of 0.5 where it
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was 100% for all methods for the small sample case. Even though this is the case, for

the large sample all the coe¢ cient estimates obtained under all methods are signi�cant

which enables one to interpret the results with more con�dence than for the small sample

case.

When considering the di¤erent methods, exact logistic regression and Firth�s method in-

creased in performance from the Pearson chi-square, deviance and Hosmer-Lemeshow test

statistics are considered. All of the corresponding p-values for the above mentioned tests

increased for both exact logistic regression and for Firth�s method. From the goodness-

of-�t measures for the two above-mentioned methods, one also notices that the di¤erence

between Pearson�s chi-square and the deviance test statistic became smaller for the large

sample case than it was for the small sample. Given all these improvements for the large

sample case it must also be mentioned that complete or quasi-complete separation is

much more unlikely in a large sample than it is in a small sample.
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Chapter 7

Summary and Conclusion

A logistic regression model predicts the outcome of a dichotomous variable based on a set

of covariates. When deriving a logistic regression model it is very important to investigate

the type of covariates present in your data set. When interpreting goodness of �t tests

it is important to bear in mind that Pearson�s chi-square and the deviance test statistic

perform best when the sample size is large and when categorical covariates are considered.

Hosmer-Lemeshow�s statistic is in�uenced by the group sizes and the number of groups

chosen

When constructing a logistic regression model the coe¢ cient estimates do not always

exist. Therefore it is essential to test whether complete or quasi-complete separation is

present in a data set when the dependent variable is dichotomous, especially when the

sample size is small. When complete or quasi-complete separation is present in the data

set it is imperative not to continue with the general approach of a logistic regression

model, but to follow a di¤erent tactic.

Many di¤erent solutions for complete and quasi-complete separation exist in practice.

Each method has its own bene�ts and disadvantages and these should be investigated

before applying the method to your data set. For the methods which were investigated,

exact logistic regression performs well with categorical covariates but caution should be

applied when using this method to a sparse data set. Firth�s method gives signi�cant

coe¢ cient estimates for most cases and transforms the data to represent a logistic curve

which gradually increases to an estimated probability from 0 to 1. Finally the hidden

logistic regression model gives perfect classi�cation for all cases, but still closely resembles

a model under complete or quasi complete separation.

For exact logistic regression one can only use a data set where each of the covariates used

are of the same data type. When using a combination of both categorical and continuous

covariates in exact logistic regression, it is almost certain that one would obtain unreliable

results. Exact logistic regression can be used when the independent variables only consist

94
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of continuous data although this is not recommended. Exact logistic regression performs

the best when only categorical covariates are used to predict the dependent variable.

When considering Firth�s method or hidden logistic regression all covariate types, includ-

ing a combination of categorical and continuous, can be used. The coe¢ cient estimates

for exact logistic regression and Firth�s method can be obtained with available functions

in SAS. A drawback of hidden logistic regression is that there is no prede�ned function

in SAS (or any of the computer programs mentioned in Chapter 2) available to calculate

the coe¢ cient estimates.

For the large sample case there was a remarkable improvement in exact logistic regression,

Firth�s method and hidden logistic regression compared to a small sample.

Future work could comprise of including more covariates in the model and analysing

the model �t statistics to compare the e¤ect of including and excluding covariates in

the di¤erent models; multicollinearity in the models can be explored, and the presence

of outliers evaluated. The di¤erent methods to deal with complete or quasi-complete

separation mentioned in Section 3.2, not covered in this dissertation, can be investigated

for di¤erent covariate types and sample sizes.

The scope which have been covered in this dissertation expresses the importance in reval-

uating the model when either complete or quasi-complete separation is obtained in the

data. It also highlights the di¤erences among the three methods investigated (exact lo-

gistic regression, Firth�s method and hidden logistic regression) and the fact that each

method cannot be used in any scenario. Finally it was shown how the goodness of �t

methods can di¤er based on the type of covariates used, sample size and group sizes.
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Appendix A: Data on HIV status
patients

HIV Status V3.74 V1.18
1 �0:4 1:63
1 �0:42 1:62
1 �0:44 1:79
1 �0:45 1:8
1 �0:46 1:99
1 �0:35 1:44
1 �0:45 1:61
1 �0:38 1:6
1 �0:5 1:85
1 �0:45 1:61
0 �0:29 1:73
0 �0:48 2:36
0 �0:36 1:95
0 �0:02 1:26
0 �0:26 1:8
0 �0:28 1:74
0 �0:24 2:27
0 �0:26 1:49
0 �0:27 1:71
0 �0:27 1:54
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Appendix B: Data on breast cancer
patients

Outcome + nodes age group
1 2 2
1 3 2
1 0 1
1 2 2
1 0 1
1 0 1
1 0 1
1 2 2
1 3 2
1 2 2
0 22 3
0 12 2
0 7 2
0 11 2
0 7 2
0 6 2
0 7 2
0 19 2
0 6 2
0 20 2
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Appendix C: Data on Titanic
passengers: small sample

Survived Class Sex
1 1 1
1 2 1
1 1 1
1 1 1
1 1 1
1 1 1
1 2 1
1 1 1
1 1 0
1 1 0
0 3 0
0 2 0
0 3 0
0 2 0
0 3 0
0 2 0
0 2 0
0 3 1
0 3 0
0 3 1
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Appendix D: Data on Titanic
passengers: large sample

S Class Sex S Class Sex S Class Sex S Class Sex S Class Sex
1 1 1 1 2 1 1 3 1 0 1 0 0 2 0
1 1 1 1 2 1 1 3 1 0 1 0 0 2 0
1 1 1 1 2 1 1 3 1 0 1 0 0 2 0
1 1 1 1 2 1 1 3 1 0 1 0 0 2 0
1 1 1 1 2 1 1 3 1 0 1 0 0 3 0
1 1 1 1 2 1 1 3 1 0 1 0 0 3 0
1 1 1 1 2 1 1 3 1 0 1 0 0 3 0
1 1 1 1 2 1 1 3 1 0 1 0 0 3 0
1 1 1 1 2 1 1 1 0 0 1 0 0 3 0
1 1 1 1 2 1 1 2 0 0 1 0 0 3 0
1 1 1 1 2 1 0 3 1 0 1 0 0 3 0
1 1 1 1 2 1 0 3 1 0 2 0 0 3 0
1 1 1 1 2 1 0 3 1 0 2 0 0 3 0
1 1 1 1 2 1 0 3 1 0 2 0 0 3 0
1 1 1 1 2 1 0 3 1 0 2 0 0 3 0
1 2 1 1 2 1 0 3 1 0 2 0 0 3 0
1 2 1 1 2 1 0 3 1 0 2 0 0 3 0
1 2 1 1 2 1 0 3 1 0 2 0 0 3 0
1 2 1 1 3 1 0 3 1 0 2 0 0 3 0
1 2 1 1 3 1 0 1 0 0 2 0 0 3 0
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Appendix E: SAS program code for
penalised likelihood function

proc iml;

y={input values};

x1={input values};

n=nrow(y);

x0=J(n,1,1);

intercept=x0*b0;

X=x0||x1;

values=J(20,3,0);

logl=J(n,1,0);

W=J(n,n,0);

do beta=0.1 to 2 by 0.1;

x1beta=x1*beta;

fullx=intercept||x1beta;

do i=1 to n;

xirow=fullx[i,+];

W[i,i]=((exp(xirow))/(1+exp(xirow)))*(1/(1+exp(xirow)));

logl[i,1]=y[i,1]*xirow-log(1+exp(xirow));

total=logl[+];

end;

Xtrans=X�;

Fisher=Xtrans*W*X;

detF=det(Fisher);

print fisher detF;

plogl=total+(0.5)*log(detF);

ind=beta*10;
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APPENDIX E: SAS PROGRAMCODEFORPENALISED LIKELIHOODFUNCTION105

values[ind,1]=beta;

values[ind,2]=total;

values[ind,3]=plogl;

end;

print values;

cn = {�beta� �LogL� �PenLogL�};

create outputval from values[colname=cn];

append from values;

run;

goptions reset=all i=join;

proc gplot data=outputval;

plot PenLogL*beta;

run;

quit;
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Appendix F: SAS program code for
classi�cation tables

proc iml;

Beta={input values};

y={input values};

x={inut values as matrix};

n=nrow(y);

intercept=J(n,1,1);

fullx=intercept||x;

print firthbeta y x fullx;

logodds=fullx*firthbeta;

results=J(10,5,0);

do prob=0.1 to 0.9 by 0.1;

ind=prob*10;

count=J(n,1,0);

cc=0;

Obs1pred0=0;

obs0pred1=0;

obs1pred1=0;

obs0pred0=0;

logoddsCO=log(prob/(1-prob));

testlogodds=J(n,1,logoddsCO);

diff=logodds-testlogodds;

do i=1 to n;

if diff[i,1]>0 then count[i,1]=1;

groups=y-count;

if groups[i,1]=0 then cc=cc+1;

if groups[i,1]=1 then obs1pred0=obs1pred0+1;
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APPENDIX F: SAS PROGRAM CODE FOR CLASSIFICATION TABLES 107

if groups[i,1]=-1 then obs0pred1=obs0pred1+1;

end;

do j=1 to (n/2);

if groups[j,1]=0 then obs1pred1=obs1pred1+1;

end;

obs0pred0=cc-obs1pred1;

results[ind,1]=cc;

results[ind,2]=obs1pred1;

results[ind,3]=obs0pred0;

results[ind,4]=obs1pred0;

results[ind,5]=obs0pred1;

end;

cn={�correctly_classified� �observed 1 predicted 1� �observed 0 predicted 0�

�observed 1 predicted 0� �observed 0 predicted 1�};

create outputval from results[colname=cn];

append from results;

run;

proc print data=outputval;

run;

quit;
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Appendix G: R program for hidden
logistic regression

y=c(1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0)

{HIV}

x1=c(-0.4,-0.42,-0.44,-0.45,-0.46,-0.35,-0.45,-0.38,-0.5,-0.45,

-0.29,-0.48,-0.36,-0.02,-0.26,-0.28,-0.24,-0.26,-0.27,-0.27)

x2=c(1.63,1.62,1.79,1.8,1.99,1.44,1.61,1.6,1.85,1.61,1.73,

2.36,1.95,1.26,1.8,1.74,2.27,1.49,1.71,1.54)

{Breast Cancer}

dj1=c(0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0)

dj2=c(1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,1,1,1,1,1)

nodes=c(2,3,0,2,0,0,0,2,3,2,22,12,7,11,7,6,7,19,6,20)

{Titanic}

dj1=c(1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0)

dj2=c(0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0)

sex=c(1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)

delta=0.01

epsilon=0.000001

maxit=100

pihat = max(delta, min(1-delta,mean(y)))

delta0 = (pihat*delta) / (1+delta)

delta1 = (1+pihat*delta) / (1+delta)

ytilde = delta0*(1-y) + delta1*y

response = cbind(ytilde,1-ytilde)

print(ytilde)

print(response)
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APPENDIX G: R PROGRAM FOR HIDDEN LOGISTIC REGRESSION 109

func=glm(response ~ x1+x2, family=binomial,

control=glm.control(epsilon=epsilon, maxit=maxit))

print(func)

summary(func)

confint(func)
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Appendix H: SAS program code for
Pearson chi-square, deviance and
Hosmer-Lemeshow statistics

proc iml;

y={input values};

x1={input values};

x2={input values};

x3={input values};

fullx=x1||x2||x3||y;

n=nrow(y);

model=J(n,1,0);

predp=J(n,1,0);

vc=J(n,8,0);

/*The values for b0,b1,b2 and b3 needs to be manually inputted*/

intercept=J(n,1,(b0));

model=intercept+b1*x1+b2*x2+b3*x3;

do i=1 to n;

predp[i,1]=exp(model[i,1])/(1+exp(model[i,1]));

end;

fullx=x1||x2||sex||y||predp;

call sort( fullx, {1 2 3}, {2} );

unique_loc = uniqueby( fullx,{1 2 3}, 1:nrow(fullx) );

q=nrow(unique_loc);

Test_unique=J(q,1,(n+1));

Test_unique[1:(q-1)]=unique_loc[2:q];

yval=J(n,q,0);

sum=J(1,q,0);
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APPENDIXH: SAS PROGRAMCODEFORPEARSONCHI-SQUARE, DEVIANCEANDHOSMER-LEMESHOWSTATISTICS111

do i=1 to q;

vc[i,2:4]=fullx[unique_loc[i,1],1:3];

vc[i,5]=Test_unique[i,1]-unique_loc[i,1];

vc[i,6]=unique_loc[i,1]+vc[i,5]-1;

if vc[i,5]>1 then;

yval[(unique_loc[i,1]:vc[i,6]),i]=fullx[(unique_loc[i,1]:vc[i,6]),4];

sum=yval[+,];

vc[i,7]= sum[1,i];

vc[i,8]=fullx[unique_loc[i,1],5];

end;

call sort( vc, {2 1}, {2} );

vc=vc[1:q,];

do i=1 to q;

vc[i,1]=i;

end;

resid=J(q,1,0);

residsq=J(q,1,0);

dev=J(q,1,0);

devsq=J(q,1,0);

ind=J(q,1,0);

do i=1 to nrow(vc);

resid[i,1]=(vc[i,7]-vc[i,5]*vc[i,8])/sqrt(vc[i,5]*vc[i,8]*(1-vc[i,8]));

residsq[i,1]=resid[i,1]##2;

log1=(vc[i,7]/(vc[i,5]*vc[i,8]));

log2=((vc[i,5]-vc[i,7])/(vc[i,5]*(1-vc[i,8])));

if log1>0 & log2>0 then ;

dev[i,1]=sqrt(2*(vc[i,7]*log(log1)+(vc[i,5]-vc[i,7])*log(log2)));

if log1=0 then; dev[i,1]=-sqrt(2*vc[i,5]*abs(log(1-vc[i,8])));

if log2=0 then; dev[i,1]=sqrt(2*vc[i,5]*abs(log(vc[i,8])));

devsq[i,1]=dev[i,1]##2;

end;

pearson=residsq[+];

deviance=devsq[+];
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APPENDIXH: SAS PROGRAMCODEFORPEARSONCHI-SQUARE, DEVIANCEANDHOSMER-LEMESHOWSTATISTICS112

HLderive=predp||y;

call sort(HLderive, {1}, );

/*manually input the number of groups va*/

va=4;

a=n/va;

groups=J(n,a,0);

yvalues=J(n,a,0);

sum2=J(1,a,0);

HLval=J(1,a,0);

indic=J(a,1,0);

from=J(a,1,1);

do i=1 to a;

indic[i,1]=i*va;

if i>1 then from[i,1]=(indic[i-1,1]+1);

groups[1:va,i]=HLderive[from[i,1]:indic[i,1],1];

yvalues[1:va,i]=HLderive[from[i,1]:indic[i,1],2];

oi=yvalues[+,];

ei=groups[+,];

pi=ei/va;

HLval[1,i]=(oi[1,i]-va*pi[1,i])##2/(va*pi[1,i]*(1-pi[1,i]));

end;

dof_pd=q-(m+1);

dof_h=a-2;

HLstat=HLval[+];

p_pvalue=1-PROBCHI(pearson,dof_pd);

d_pvalue=1-PROBCHI(deviance,dof_pd);

hl_pvalue=1-PROBCHI(HLstat,dof_h);

print pearson p_pvalue deviance d_pvalue dof_pd HLstat hl_pvalue dof_h;

quit;
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