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Abstract

Lattices of hereditary properties of finite graphs have been ex-

tensively studied. We investigate the lattice L of induced-hereditary

properties of countable graphs. Of interest to us will be some of

the members of L. Much of our focus will be on hom-properties

→G. We analyse their behaviour and consider their link to solving

the long standing Hedetniemi Conjecture. We then discuss universal

graphs and construct a universal graph Un for the property →Kn.

Then we use the structure of Un to prove a theorem by Szekeres and

Wilf. Lastly we offer a new proof of a theorem by Duffus, Sands and

Woodrow.
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1 Preliminaries

1.1 Graph theoretic definitions and notation

The following definitions and notation are predominantly those of [4]. In

those instances when the definition is from elsewhere we shall reference the

source then.

A graph G is a pair (V (G), E(G)), where the first, V (G), referred to as

the vertex set of G, is a non-empty set, and the second, E(G), referred to

as the edge set of G, is a possibly empty set of 2-element subsets of V (G).

The order of G refers to |V (G)|, the cardinal number of V (G).

The elements of V (G) are the vertices of G, while the elements of E(G)

are the edges of G. For all {x, y} ∈ E(G), we shall write xy instead of

{x, y}. Furthermore, we make no distinction between xy and yx.

For a graph G we call x and y adjacent vertices or say x is adjacent

to y if xy ∈ E(G). If xy 6∈ E(G), then we say x and y are non-adjacent

vertices. Given x ∈ V (G) the neighbours of x are those vertices adjacent

to x.

A graphG′ is a subgraph of a graphG, denotedG′ ⊆ G, if V (G′) ⊆ V (G)

and E(G′) ⊆ E(G). We shall also refer to G′ as an internal subgraph of

G. When V (G′) is a proper subset of V (G) or E(G′) is a proper subset of

E(G), then we call G′ a proper subgraph of G. A subgraph G′ of G, is an

internal induced subgraph of G, written G′ ≤ G, if, for all x, y ∈ V (G′),

xy ∈ E(G) implies xy ∈ E(G′). Given any non-empty subset A of V (G), an

induced subgraph of G whose vertex set is A will be called the subgraph

of G induced by A, written G[A]. For a graph G, a vertex u of G and an

edge e of G, we write G− u to denote the subgraph of G induced by the set

V (G) \ {u} and write G − e to denote the graph obtained from G after the

removal of e from the edge set of G.

Two graphs G and H are said to be isomorphic if there exists a bijective
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mapping φ : V (G) −→ V (H) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈
E(H). Such a map we call an isomorphism. We say G and H are non-

isomorphic if they are not isomorphic. If G′′ is isomorphic to G′, an internal

subgraph of G, we shall also refer to G′′ as a subgraph of G, similarly for

induced subgraphs.

A path P in a graphG, is a sequence of vertices ofG such that consecutive

vertices are adjacent in G and no vertex in this sequence is repeated. The

first and last members of this sequence, when they exist, are called the end

vertices of P . Any vertex of P that is not an end vertex is called an internal

vertex of P . If u and v are end vertices of a path P then we on occasion

refer to P as a u− v path. The length of P is |V (P )| − 1. A cycle in G is

a path in G with adjacent end vertices. The length of a cycle is the order

of the cycle. An even cycle is a cycle of even order, while an odd cycle is

one of odd order.

A graph G is connected if, for all u, v ∈ V (G), there exists a u−v path.

It is disconnected if it is not connected. A component of a graph G is

a connected subgraph of G that is not a proper subgraph of any connected

subgraph of G. Given a component G′ of a graph G we use G−G′ to represent

the graph G[V (G) \ V (G′)], provided V (G) \ V (G′) 6= ∅.
A complete graph is one in which any two distinct vertices are adjacent.

For a positive integer n we shall use Kn and Cn to represent a complete

graph of order n and a cycle of order n, respectively. Here Cn is seen as an

autonomous graph, a “cycle in itself”. We use the notation Kℵ0 to represent

the complete graph whose vertex set is the set {1, 2 . . .}.
The disjoint union G t H of graphs G and H with disjoint vertex

sets is that graph with vertex set V (G t H) = V (G) ∪ V (H) and edge set

E(G t H) = E(G) ∪ E(H). The disjoint union of more than two graphs is

defined similarly. The join G ∨ H of graphs G and H with disjoint vertex

2
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sets is that graph with vertex set V (G ∨H) = V (G) ∪ V (H) and edge set

E(G ∨H) = E(G) ∪ E(H) ∪ {xy | x ∈ V (G), y ∈ V (H)}.

The cross product G×H of graphs G and H is a graph whose vertex set

V (G × H) = V (G) × V (H) and whose edge set is such that two vertices

(x1, x2) and (y1, y2) are adjacent if and only if x1y1 ∈ E(G) and x2y2 ∈ E(H).

Since this is the only graph product we deal with we shall refer to it as the

product. The Mycielski construct of a graph G, denoted by M(G), is the

graph obtained by first introducing a new vertex w and then introducing, for

each x ∈ V (G), a new vertex x′ and making it adjacent to w and to all the

neighbours of x in G. The Hajós construction [10] on graphs G and H is

implemented by deleting an edge xy in G and an edge uv in H, identifying

the vertices x and u, and adding the edge yv. A graph obtained from this

construction we call a Hajós construct.

For a positive integer n and a graph G, an n-colouring of G is an as-

signment of colours to the vertices of G, where one colour from n colours is

given to each vertex. A proper n-colouring of G is an n-colouring of G in

a manner such that no two adjacent vertices are coloured the same. A graph

G is n-colourable if there exists a proper n-colouring of G. Given a proper

n-colouring of a graph G using colours 1, 2, . . . , n the set Vi (1 ≤ i ≤ n) of

vertices of G that are coloured i is called a colour class. The chromatic

number of a graph G which admits a proper n-colouring for some finite n,

χ(G), is the least integer m such that G has a proper m-colouring. A graph

G with χ(G) = n is an n-chromatic graph . A graph G is n-critical,

n ≥ 2, if, for all edges e ∈ E(G), χ(G− e) < χ(G).

The clique number ω(G) of a graph G is the largest order of all complete

subgraphs of G.

3
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1.2 Lattice theoretic definitions and notation

The following definitions and notation are consistent with [5].

By partial order we mean a binary relation, ≤, on some set P , that is

reflexive, antisymmetric and transitive. Where, for x, y, z ∈ P , reflexive

means x ≤ x, antisymmetric means if x ≤ y and y ≤ x then x = y, and

transitive means that if x ≤ y and y ≤ z then x ≤ z. By partially ordered

set(or poset) we mean a pair 〈P,≤〉, where ≤ is a partial order on P . On

occasion we write P for the partially ordered set 〈P,≤〉. This we do when no

ambiguity can arise regarding the partial order on P . In a partially ordered

set 〈P,≤〉, a minimal element x ∈ P is one such that if y ≤ x, for some

y ∈ P , then y = x. A maximal element x ∈ P is one such that if y ≥ x,

for some y ∈ P , then y = x. If P has one minimal element then we call it

the least element in P . Similarly, if P has one maximal element we call it

the greatest element in P . Two elements x and y in P are incomparable

if x � y and y � x.

Given any subset S of a poset 〈P,≤〉, we say x ∈ P is an upper bound

of S if x ≥ y for all y ∈ S. We say x ∈ P is a lower bound of S if x ≤ y for

all y ∈ S. The join of S,
∨
S, also known as the least upper bound of S,

if it exists, is the least element in the set of upper bounds of S. The meet

of S,
∧
S, also known as the greatest lower bound of S, if it exists, is the

greatest element in the set of lower bounds of S. For any x, y ∈ P , we write

x ∨ y and x ∧ y for the join and meet, respectively, of the set {x, y}, when

these exist.

A poset 〈P,≤〉 is called a lattice if the join and meet of any two elements

in P exist. At times we shall use the notation 〈P,∨,∧〉 to mean that a poset

P is a lattice whose joins and meets are defined by ∨ and ∧, respectively. A

poset P is said to be a complete lattice if the join and meet of all subsets

of P exist. A lattice L is modular if for all x, y, z ∈ L such that x ≤ y then

x∨(z∧y) = (x∨z)∧y. A lattice L is distributive if x∨(z∧y) = (x∨z)∧(x∨y)

4
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for all x, y, z ∈ L.

A subset M of a lattice L, together with the partial order ≤ inherited

from L, is a sublattice of L if the join and meet of any two elements in

〈M,≤〉 exist and are the join and meet of said elements in L. That is, for all

x, y ∈M we have

x ∨M y = x ∨L y and x ∧M y = x ∧L y,

where ∨M ,∧M and ∨L,∧L represent the joins and meets in M and L, respec-

tively. We call M a join-semi-sublattice of L if,

x ∨M y = x ∨L y for all x, y ∈M

and a meet-semi-sublattice of L if,

x ∧M y = x ∧L y for all x, y ∈M.

An element x in a lattice L is join-reducible if there exist distinct elements

y, z ∈ L such that x = y ∨ z and y 6= x 6= z. We say x is join-irreducible if

x is not join-reducible and x is not the least element in L. Similarly, x is a

meet-reducible element in L if there exist distinct elements y, z ∈ L such

that x = y ∧ z and y 6= x 6= z. If x is not meet-reducible and it is not the

greatest element in L then we call x a meet-irreducible element of L.

A closure operator is a mapping c : 〈P,≤〉 −→ 〈P,≤〉 such that, for all

x, y ∈ P ,

1. x ≤ c(x) (extensive),

2. x ≤ y implies c(x) ≤ c(y) (monotone),

3. c(c(x)) = c(x) (idempotent).

Let L1 and L2 be lattices, then a mapping f : L1 −→ L2 is a lattice

homomorphism if, for all a, b ∈ L1,

f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b).

5
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1.3 Summary

We begin by introducing the lattice L of induced-hereditary properties of

countable graphs, followed by a brief discussion of graph homomorphisms

and their properties. This we do in preparation for an investigation of the

distributive lattice Hom, which is a sublattice of L. Continuing with the

theme of graph homomorphisms, we take a look at the properties of the core

of a graph, and proceed to describe the lattice of hom-equivalence classes

of graphs. After this we discuss properties of finite character and compact

elements in L. This is followed by the construction of universal graphs for

hom-properties, achieved with the aid of the Rado graph. We then study the

well-known conjecture by Hedetniemi, which states that, for all finite graphs

G and H, χ(G×H) = min{χ(G), χ(H)}. We give equivalent formulations of

this conjecture, one of which we make in terms of the meet-irreducibility of

the hom-property→Kn. Duffus, Sands and Woodrow verified the Hedetniemi

Conjecture for some special cases. Using the Hajós construction we give a

new proof of their theorem.
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2 Lattices

2.1 The lattice L

Let I be the set of all countable unlabelled simple graphs. By ‘simple’ we

mean loop-less, undirected graphs without parallel edges. In addition we

make no distinction between isomorphic graphs. Although we are dealing

with unlabelled graphs we will on occasion assign labels to their vertices.

This we will do only better to describe the vertex set and edge set of the

graph in question. A property is any subset P of I.

Definition 1. [2] A property P is an induced-hereditary property or i-h

property, for short, if G ∈ P implies H ∈ P for all H ≤ G.

Definition 2. [2] A property P is additive if whenever G,H ∈ P then

G tH ∈ P.

Let L be the set of all induced-hereditary properties. Below are a few

examples of additive induced-hereditary properties taken from [2]. From here

on, by N we shall mean the set {1, 2, 3, . . .}.

Examples

1. I

2. O = {G ∈ I | E(G) = ∅}

3. K = {G ∈ I | all components of G are complete graphs }

4. Ok = {G ∈ I | each component of G has at most k vertices }, k ∈ N.

5. Ik = {G ∈ I | G does not contain Kk+1}, k ∈ N.

Proposition 1. The pair 〈L,⊆〉, where ⊆ means ‘to be a subset of ’, is a

poset.

7
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Proof. Let P ,Q,R ∈ L. Clearly P ⊆ P , and if P ⊆ Q and Q ⊆ P then

P = Q. Also, if P ⊆ Q and Q ⊆ R then P ⊆ R. All these are a result of

set theoretic properties.

Proposition 2. The poset 〈L,⊆〉 is a complete lattice, where joins and meets

are defined by set union and intersection, respectively. That is, the poset

〈L,⊆〉 is the lattice 〈L,∪,∩〉.

Proof. Let S ⊆ L, then
⋃
S,
⋂
S ∈ L. For all properties Q ∈ S, Q ⊆

⋃
S and⋂

S ⊆ Q. Therefore
⋃
S is an upper bound of S, and

⋂
S is a lower bound

of S.

Suppose P ∈ L is an upper bound of S. Since Q ⊆ P for all Q ∈ S it

follows that
⋃
S ⊆ P , therefore

⋃
S =

∨
S.

Now suppose P ∈ L is a lower bound of S. Then P ⊆ Q for all Q ∈ S.

From this it follows that P ⊆
⋂
S, therefore

∧
S =

⋂
S.

In keeping with [2] we obtain the following.

Proposition 3. The lattice L is distributive.

Proof. Let P ,Q,R ∈ L. Then

P ∨ (Q∧R) = P ∪ (Q∩R) = (P ∪Q) ∩ (P ∪R) = (P ∨Q) ∧ (P ∨R)

and

P ∧ (Q∨R) = P ∩ (Q∪R) = (P ∩Q) ∪ (P ∩R) = (P ∧Q) ∨ (P ∧R).

Thus L is a distributive lattice.

Definition 3. For all G,H ∈ I, a mapping f : V (G) −→ V (H) preserves

edges if f is such that uv ∈ E(G) implies f(u)f(v) ∈ E(H). The mapping

f preserves non-edges if uv /∈ E(G) implies f(u)f(v) /∈ E(H).

8
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Definition 4. [2] For all G,H ∈ I, a homomorphism from G to H is

a mapping f : V (G) −→ V (H) that preserves edges. We write G −→ H

to represent the existence of a homomorphism from G to H. On occasion,

instead of G −→ H, we will say G is homomorphic to H.

Lemma 1. Let ϕ be a homomorphism from G to H. The restriction of ϕ to

any subset A of V (G) is a homomorphism from G[A] to H.

Proof. Let ϕ be a homomorphism fromG toH, and letA be any subset V (G).

Then the mapping γ : A −→ V (H) defined, for all x ∈ A, by γ(x) = ϕ(x)

is the restriction of ϕ to A. Given any adjacent vertices u and v of G[A] it

follows that γ(u)γ(v) = ϕ(u)ϕ(v) ∈ E(H). Thus γ is a homomorphism.

Lemma 2. If G −→ H then G′ −→ H for all subgraphs G′ of G.

Proof. Let G −→ H for some G,H ∈ I. Then there exists a homomorphism

ϕ from G to H. Let G′ ⊆ G then V (G′) ⊆ V (G). It follows by Lemma

1 that the restriction of ϕ to V (G′), call it f , is a homomorphism from

G[V (G′)] to H. Therefore f preserves the edges of G′ as well, thus it is also

a homomorphism from G′ to H.

Lemma 3. If G −→ H and H −→ F then G −→ F

Proof. Let G,H, F ∈ I be such that G −→ H and H −→ F . Then there

exist homomorphisms ϕ and γ from G to H and from H to F , respectively.

We claim that the composite function γ ◦ϕ is a homomorphism from G to F .

Let uv ∈ E(G), then ϕ(u)ϕ(v) ∈ E(H) and consequently γ(ϕ(u))γ(ϕ(v)) ∈
E(F ). Thus γ ◦ ϕ is a homomorphism from G to F .

Lemma 4. If G ∈ I is such that each of its components is homomorphic to

a graph H ∈ I then G −→ H.

Proof. Let G and H satisfy the above conditions. Then the mapping from

V (G) to V (H) whose restriction to each component of G is a homomorphism

from said component to H is a homomorphism from G to H.

9
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Lemma 5. For all G ∈ I we have χ(G) ≤ n, where n ∈ N, if and only if

G −→ Kn.

Proof. Select any graph G ∈ I such that χ(G) ≤ n for some n ∈ N, and let

v1, . . . , vn be the n vertices of Kn. Since χ(G) ≤ n it follows that there exist

an integer j ≤ n such that V (G) can be partitioned into j colour classes

V1, . . . , Vj. Then the mapping ϕ : V (G) −→ V (Kn) defined by ϕ(u) = vi if

and only if u ∈ Vi, where 1 ≤ i ≤ j, is a homomorphism from G to Kn.

Let G ∈ I be such that G −→ Kn for some n ∈ N. Then there exists a

homomorphism ϕ from G to Kn. Allow v1, . . . , vn to be the n vertices of Kn.

In addition, for each 1 ≤ i ≤ n, let ϕ−1(vi) = {u ∈ V (G) | ϕ(u) = vi}. Then

the set {ϕ−1(vi) | 1 ≤ i ≤ n and ϕ−1(vi) 6= ∅} is a partition of V (G) into at

most n colour classes. Therefore χ(G) ≤ n.

Lemma 6. If G −→ H for some G,H ∈ I then χ(G) ≤ χ(H)

Proof. Let G −→ H. If χ(H) is not finite we are done. So, assume χ(H) is

finite. Then H −→ Kχ(H) by Lemma 5. From this and Lemma 3 we obtain

G −→ Kχ(H). Therefore, by Lemma 5, we obtain χ(G) ≤ χ(H).

Notice that χ(G) ≤ χ(H) does not imply G −→ H. As an example the

Mycielski construct of C5, M(C5), also known as the Grötsch graph [4], has

chromatic number 4, yet K3, which is 3-chromatic, is not homomorphic to

it.

Lemma 7. If ω(G) > ω(H) then G 6−→ H.

Proof. Let G and H be graphs in I such that ω(G) > ω(H). Then G contains

a complete subgraph of order ω(G). Call this subgraph G′. Suppose, to the

contrary, that G −→ H. Let γ be a homomorphism from G to H. Then,

for all distinct vertices u, v ∈ V (G′), γ(u)γ(v) ∈ E(H) since uv ∈ E(G′).

Therefore H[{γ(u) | u ∈ V (G′)}] is a complete graph of order ω(G). Which

implies ω(H) ≥ ω(G), clearly a contradiction.

10
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Lemma 8. If ϕ is a homomorphism from a countable connected graph G to

a countable graph H, then ϕ maps G to one component of H.

Proof. Let G,H ∈ I be such that G is connected and G −→ H. If H is

connected then we are done, so assume H is not connected. Suppose there

exists a homomorphism ϕ that maps G to at least 2 components of H. Then

there exist vertices u and v in G such that ϕ(u) and ϕ(v) belong to different

components of H. G being connected, there exists a u− v path P in G. As

a result there exist adjacent vertices x and y in P which are such that ϕ(x)

and ϕ(y) belong to different components of H. Therefore ϕ(x)ϕ(y) 6= E(H)

and thus ϕ does not preserve the edge xy. Which implies that ϕ is not a

homomorphism. Clearly this is a contradiction.

11
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2.2 The lattice Hom

Definition 5. [2] A property P ∈ L is a hom-property if there exists a

graph G ∈ I such that, for all graphs H ∈ I,

H ∈ P if and only if H −→ G.

Whence we shall write →G for P.

It follows that →G is a Hom-property for all G ∈ I. Let Hom = {→G |
G ∈ I}.

Lemma 9. All hom-properties are additive.

Proof. Let G,H ∈ I be such that all components of G belong to→H. Then

G −→ H by Lemma 4. Therefore G ∈ →H, and thus →H is additive.

Lemma 10. For all graphs G,H ∈ I

→(G tH) = (→G) ∪ (→H) ∪ D,

where D = {F ∈ I | each component of F belongs to →G or →H}.

Proof. Let F ∈ →(G t H), then there exists a homomorphism ϕ from F

to G t H. If F is connected then ϕ maps F into some component of G

or H. This follows by Lemma 8. Therefore F ∈ →G or F ∈ →H, thus

F ∈ (→G) ∪ (→H) ∪ D. If F is not connected then the restriction of ϕ to

each component of F is a homomorphism to a component of G or H . This

follows by the application of Lemma 1 and Lemma 8. Then F ∈ D, hence

F ∈ (→G) ∪ (→H) ∪D. Thus we obtain →(G tH) ⊆ (→G) ∪ (→H) ∪D.

Now supose F ∈ (→G) ∪ (→H)∪D. If F ∈ →G then F −→ G, therefore

F −→ (G t H) by Lemma 4. We obtain the same result for F ∈ →H.

So assume F ∈ D, then each component of F is homomorphic to G or H.

Therefore each component of F is homomorphic to G tH. By Lemma 4 we

obtain F −→ (GtH), thus F ∈ →(GtH). As a result (→G) ∪(→H)∪D ⊆
→(G tH). Therefore (→G) ∪ (→H) ∪ D = →(G tH).

12
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Proposition 4. The pair 〈Hom,⊆〉 is a lattice, where joins and meets are

described as follow,

→G ∨ →H = →(G tH)

and

→G ∧ →H = →G ∩ →H = →(G×H).

Proof. Clearly (→G) ∪ (→H) ∪ D, where D is as described above, is an

upper bound of →G and →H in Hom. Suppose →F is an upper bound

of →G and →H. Since →F is additive it follows that D ⊆ →F , hence

(→G) ∪ (→H) ∪ D ⊆ →F , therefore

→(G tH) = (→G) ∪ (→H) ∪ D = →G ∨ →H.

What remains now is to show that

→G ∧ →H = →G ∩ →H = →(G×H).

Since the meet of two properties in Hom as in L is defined by their intersection

we are only required to show that →G ∩ →H = → (G × H). Let F ∈
→ (G × H) then F −→ (G × H). Now let ϕ1 : V (G × H) −→ V (G)

and ϕ2 : V (G × H) −→ V (H) be mappings defined as follows. For all

(u, v) ∈ V (G×H),

ϕ1((u, v)) = u and ϕ2((u, v)) = v.

Then ϕ1 and ϕ2 are homomorphisms, so (G×H) −→ G and (G×H) −→ H.

By Lemma 3 we obtain F −→ G and F −→ H, therefore F ∈ (→G ∩ →H).

Assume F ∈ (→G ∩ →H), then there exist homomorphisms γ1 and γ2

from F to G and from F to H, respectively. The mapping γ : V (F ) −→
V (G × H) defined by γ(u) = (γ1(u), γ2(u)) is a homomorphism from F to

G×H, therefore F ∈ →(G×H), completing our proof.
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Next we prove that Hom is in fact a distributive lattice. For this we will

employ the theorem below, taken from [5].

Theorem 1. A lattice L is distributive if and only if, for all a, b, c ∈ L,

a ∨ b = c ∨ b and a ∧ b = c ∧ b implies a = c.

Theorem 2. The lattice Hom is distributive.

Proof. Let →G1,→G2,→G3 be properties in Hom satisfying the following,

→G1 ∨ →G2 = →G3 ∨ →G2

and

→G1 ∧ →G2 = →G3 ∧ →G2.

We endeavour to show that →G1 = →G3. Our proof shall be by contra-

diction. So assume →G1 6= →G3, then there exists a graph G belonging to

only one of these properties. Without loss of generality let G ∈ →G1. Now

assume G ∈ →G2, then

G ∈ (→G1 ∩ →G2) = (→G3 ∩ →G2).

This, of course, implies G ∈ →G3, which is a contradiction. Therefore G

does not belong to →G2. Since G ∈ →G1 it follows, by Proposition 4, that

G ∈ (→G1 ∨ →G2), and therefore G ∈ (→G3 ∨ →G2). By Lemma 10 we

have

→G3 ∨ →G2 = (→G3) ∪ (→G2) ∪ D,

where D is described in a similar fashion as earlier. Since G /∈ →G3 and

G /∈ →G2 it follows that G ∈ D and at least one component of G does

not belong to →G3. Let Gα be such a component. Then Gα ∈ →G2 and

Gα /∈ →G3. In addition Gα ∈ →G1 since Gα ≤ G ∈ →G1. As a result

Gα ∈ (→G1 ∩ →G2) = (→G3 ∩ →G2),
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which implies Gα ∈ →G3, a contradiction. Thus our initial assumption is

false. It follows that Hom is a distributive lattice.

The following two lemmas were obtained from Lemma 5.11 of [5].

Lemma 11. An element x from a distributive lattice L is meet-irreducible

in L if and only if whenever x ≥ b ∧ c for some elements b and c from L it

follows that x ≥ b or x ≥ c.

Proof. Suppose x is meet-irreducible and x ≥ b ∧ c. Then x = x ∨ (b ∧ c) =

(x ∨ b) ∧ (x ∨ c) so that x = x ∨ b or x = x ∨ c by the meet-irreducibility of

x. But then it follows that x ≥ b or x ≥ c.

Suppose for the converse that from x ≥ b ∧ c it follows that x ≥ b or

x ≥ c and that x = b ∧ c. Then x ≤ b and x ≤ c follow from this equation

while x ≥ b or x ≥ c follows from the given condition, hence x = b or x = c

as required.

Lemma 12. An element x from a distributive lattice L is join-irreducible in

L if and only if whenever x ≤ b ∨ c for some elements b and c from L it

follows that x ≤ b or x ≤ c.

Proof. Suppose x is join-irreducible and x ≤ b ∨ c. Then x = x ∧ (b ∨ c) =

(x ∧ b) ∨ (x ∧ c), therefore x = x ∧ b or x = x ∧ c, giving us x ≤ b or x ≤ c.

Suppose for the converse that from x ≤ b∨c it follows that x ≤ b or x ≤ c

and that x = b ∨ c. Then x ≥ b and x ≥ c hence x = b or x = c, completing

our proof.

Next we identify join-irreducible elements in Hom and save the discussion

of meet-irreducible elements in Hom for later.

Proposition 5. The join-irreducible elements in Hom are those hom-properties

→G such that G is connected.
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Proof. We first show that if G is disconnected then →G is join-reducible.

Let G be a disconnected graph. If G1 and G2 are two components of G such

that G1 −→ G2, then G −→ (G−G1) by Lemma 4. Since (G−G1) −→ G it

follows that→G =→(G−G1). Therefore it is sufficient to consider only those

disconnected graphs G whose components are mutually non-homomorphic.

Let G be a disconnected graph whose components are mutually non-

homomorphic and let G1 and G2 be any two components of G. Now consider

→(G−G1) and →(G−G2). The first does not contain the graph G1 while

the second does and the second does not contain the graph G2 while the first

does. Therefore these two properties are incomparable. Furthermore each is

a proper subset of the property →G and

→(G−G1) ∨ →(G−G2) = →((G−G1) t (G−G2)) = →G,

which, of course, implies that →G is join-reducible.

Now we prove that ifG is connected, then→G is join-irreducible. Assume,

for a proof by contradiction, that →G is join-reducible, then there exist

graphs H and F such that →H,→F ⊂ →G and

→H ∨ →F = →G,

which implies→(HtF ) =→G by Proposition 4. Which, in turn, implies that

G ∈ →(HtF ). Therefore G is homomorphic to HtF . Since G is connected

it follows by Lemma 8 that G is homomorphic to H or F . Without loss of

generality let G be homomorphic to H then G ∈ →H. Therefore→G ⊆→H,

which is a contradiction.
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2.3 The core of a graph

Definition 6. [9, 2] For a finite graph G ∈ I, the core of G, denoted C(G),

is a subgraph H of G such that G −→ H and G 6−→ H ′ for all proper

subgraphs H ′ of H. When C(G) = G we simply say G is a core.

From this definition a finite graph is not a core if and only if it is homo-

morphic to a proper subgraph of itself. Next we define the core of an infinite

graph in I.

Definition 7. For a infinite graph G ∈ I, the core of G, denoted C(G), is

a subgraph H of G that is non-isomorphic to G and is such that G −→ H

and G 6−→ H ′ for all proper subgraphs H ′ of H.

This definition does not allow an infinite graph G ∈ I to be a core of

itself. By Lemma 3 any graph G that has a core satisfies G′ −→ C(G) for

all subgraphs G′ of G.

Examples of Cores

1. All finite complete graphs.

2. All (k + 1)-critical graphs, k ∈ N.

3. The Mycielski construct of an odd cycle.

4. The graph K1 ∨G, where G is a (k + 1)-critical graph, k ∈ N.

5. The Petersen graph.

The following results were obtained from [9].

Lemma 13. Every graph G ∈ I that is homomorphic to a finite subgraph of

itself has a core.

17

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Proof. Let G ∈ I have a finite subgraph H such that G −→ H. Define

S to be the set of all subgraphs of H that G is homomorphic to. That is

S = {H ′ ⊆ H | G −→ H ′}. Since H −→ H it follows that S is non-empty.

The relation ⊆, to be a subgraph of, is a partial order on S, hence S is a

poset. Since S is finite it follows that it has a minimal element, thus G has

a core.

Not all graphs in I have a core. The graph G = (K1 t K2 t K3 t . . .)
does not have a core [9]. This is because the set of subgraphs of G that G

is homomorphic to, call this set S, has elements of the form Ki tKj t . . .,
where j > i ≥ 1. Therefore given any member KitKj t . . . of S, there exists

a homomorphism from G to Kj t . . ., a proper subgraph of Ki t Kj t . . ..
Thus S has no minimal element. Consequently G has no core.

There are however infinite graphs in I that do have cores. The graph,

K3 tC5 tC7 t . . ., constructed by taking the disjoint union of a single copy

of each odd cycle, has K3 as it’s core. The one-way infinite path PN which

has vertex set N and edge set {ij | j = i + 1} has a core. Any subgraph of

PN that is isomorphic to K2 is a core of PN.

Lemma 14. If G is a finite graph then G has a core.

Proof. Let G be a finite graph. Since G −→ G it follows by Lemma 13 that

C(G) exists.

Lemma 15. Let G ∈ I be such that ω(G) = χ(G) = n for some positive

integer n. Then C(G) = Kn.

Proof. Let G ∈ I be a graph with ω(G) = χ(G) = n for some positive integer

n. Then G has a complete subgraph H of order n that is isomorphic to Kn.

Therefore G −→ H and G 6−→ H ′, for all H ′ < H. Thus H = C(G) and so

C(G) = Kn.
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The graph K3 tC5 tC7 t . . ., whose components have chromatic number

3, has chromatic number 3 and clique number 3. By Lemma 15, we are able

to quickly arrive at the conclusion that K3 is its core. Lemma 15 can also be

used to show that all finite complete graphs are cores.

Lemma 16. Let G be a countable graph with a finite core. If F1 and F2 are

cores of G then they are isomorphic.

Proof. Let G be a countable graph with a finite core and let F1 and F2 be

cores of G.

First, we show that F1 and F2 are finite. Let F be a finite core of G

and assume F1 is not finite. Because F is a subgraph of G and G −→ F1, it

follows that F −→ F1. Since F is finite it follows that all homomorphisms

from F to F1 map F onto a proper subgraph H of F1. From G −→ F and

F −→ H we obtain G −→ H. Which implies F1 is not a core of G. This is a

contradiction, thus F1 is finite. The same argument can be applied to F2 to

show that it is finite.

Now we prove uniqueness. Since both F1 and F2 are subgraphs of G,

there exist homomorphisms φ12 and φ21 from F1 to F2 and from F2 to F1,

respectively.

We claim that both homomorphisms are surjective. Suppose, without

loss of generality, that φ12 is not surjective, then F1 is mapped onto a proper

subgraph H of F2, that is F1 −→ H. Thus G −→ H, implying F2 is not a

core, a contradiction.

By this result and the finiteness of said cores, we obtain |V (F1)| =

|V (F2)|. Therefore φ12 and φ21 are injective, and are thus bijective. But

any homomorphism from a core of G to a core of G must preserve not only

adjacency but also non-adjacency. Consequently F1 and F2 are isomorphic,

proving uniqueness.
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Lemma 17. If G ∈ I has a finite core, then C(G) is an induced subgraph of

G.

Proof. Suppose this is not so, then there exists a graph G ∈ I with a finite

core that is not an induced subgraph of G. Then G[V (C(G))] and C(G) have

a finite number of edges. In addition G[V (C(G))] has more edges than C(G)

and G[V (C(G))] −→ C(G). Let φ be a homomorphism from G[V (C(G))]

to C(G), then φ preserves all edges of G[V (C(G))], therefore at least two

edges in G[V (C(G))] are preserved by one edge in C(G). This means two

vertices of G[V (C(G))] are mapped to the same vertex in C(G). Therefore

φ maps G[V (C(G))] to a proper subgraph of C(G). Let H be this proper

subgraph, then from C(G) −→ G[V (C(G))] and G[V (C(G))] −→ H we

obtain C(G) −→ H, which implies G −→ H. Clearly this is a contradiction.

The core of a graph need not be connected. As an example, let G be the

disconnected graph whose one component is K3 and whose other component

is the Mycielski construct of C5. Then both components of G are cores and

none is homomorphic to the other. Therefore C(G) = G.

Lemma 18. Let G,H ∈ I be such that C(G) and C(H) exist. Then G −→ H

if and only if C(G) −→ C(H).

Proof. Let G,H ∈ I be such that C(G) and C(H) exist.

Suppose G −→ H, then C(G) −→ H, since C(G) ⊆ G. This, together

with H −→ C(H), yields C(G) −→ C(H).

Now assume C(G) −→ C(H). From G −→ C(G) we have G −→ C(H).

Since C(H) −→ H it follows that G −→ H.
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2.4 Equivalence classes

Definition 8. [1] Call two graphs G,H ∈ I equivalent, denoted G ∼ H, if

G −→ H and H −→ G.

We quickly show that ∼ is an equivalence relation on I. Let G ∈ I, then

G −→ G therefore G ∼ G, thus∼ is a reflexive relation. Given G,H ∈ I such

that G ∼ H, it follows that G −→ H and H −→ G therefore H ∼ G, hence

∼ is a symmetric relation. Now let G1, G2, G3 ∈ I be such that G1 ∼ G2

and G2 ∼ G3. Then G1 −→ G2, G2 −→ G3, G3 −→ G2 and G2 −→ G1. By

Lemma 3 we have G1 −→ G3 and G3 −→ G1, thus G1 ∼ G3. Therefore ∼ is

a transitive relation.

It follows that, for all G ∈ I, the set [G] = {H ∈ I | H ∼ G} is the

equivalence class of G. Let E = {[G] | G ∈ I}. The following are some of

the members of E.

1 [K1] = {G ∈ I | E(G) = ∅},

2 [K2] = {G ∈ I | χ(G) = 2},

3 [Kn] = {G ∈ I | χ(G) = n and ω(G) = n} for integers n ≥ 3.

Definition 9. For any G,H ∈ I, [G] −→ [H] if and only if G −→ H.

We show that this definition yields a well-defined relation, independent

of the choice of representatives. Let G1, G2, H1, H2 ∈ I and suppose that

[G1] = [G2] and [H1] = [H2]. We intend to show that G1 −→ H1 ⇐⇒
G2 −→ H2. Without loss of generality let G1 −→ H1. Since [G1] = [G2] and

[H1] = [H2] it follows that G1 ∼ G2 and H1 ∼ H2. Therefore G2 −→ G1 and

H1 −→ H2. By Lemma 3 we obtain G2 −→ H2.

Lemma 19. The pair 〈E,−→〉 is a partially ordered set.
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Proof. Let [G] , [H] , [F ] ∈ E. Since G −→ G it follows that [G] −→ [G]. If

[G] −→ [H] and [H] −→ [G] then G −→ H and H −→ G, therefore G ∼ H

hence [G] = [H]. Now suppose [G] −→ [H] and [H] −→ [F ], then G −→ H

and H −→ F , therefore, by Lemma 3, G −→ F , giving us [G] −→ [F ].

Theorem 3. The pair 〈E,−→〉 is a lattice, where

[G] ∨ [H] = [G tH]

and

[G] ∧ [H] = [G×H]

for all [G] , [H] ∈ E.

Proof. Let [G] , [H] ∈ E, then G −→ (GtH) and H −→ (GtH). From this

we get [G] −→ [G tH] and [H] −→ [G tH], thus [G tH] is an upper bound

of {[G] , [H]}. Suppose [F ] is an upper bound of {[G] , [H]}. Since [G] −→ [F ]

and [H] −→ [F ] it follows that there exist homomorphisms γ1 and γ2 from

G to F , and from H to F , respectively. Let γ : V (G tH) −→ V (F ) be the

mapping defined, for all x ∈ V (G tH), by

γ(x) =

{
γ1(x) if x ∈ V (G);

γ2(x) if x ∈ V (H).

Then γ is a homomorphism from GtH to F , hence [G tH] −→ [F ]. Proving

that [G tH] is the join of [G] and [H].

From (G×H) −→ G and (G×H) −→ H we arrive at [G×H] −→ [G]

and [G×H] −→ [H]. Therefore [G×H] is a lower bound of {[G] , [H]}.
Suppose [F ] is a lower bound of {[G] , [H]}, then [F ] −→ [G] and [F ] −→ [H],

therefore there exist homomorphisms ϕG and ϕH from F to G and from F

to H, respectively. Then the mapping ϕ : V (F ) −→ V (G × H) defined, for

all x ∈ V (F ), by

ϕ(x) = (ϕG(x), ϕH(x)) ,
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is a homomorphism from F to G × H, therefore [F ] −→ [G×H], proving

that [G×H] is the meet of [G] and [H].

Let the mapping φ : Hom −→ E be defined as φ(→G) = [G].

Theorem 4. φ is a lattice isomorphism from 〈Hom,⊆〉 onto 〈E,−→〉

Proof. Let →G,→H ∈ Hom, then

φ(→G ∨ →H) = φ(→(G tH)) = [G tH] = [G] ∨ [H] = φ(→G) ∨ φ(→H)

and

φ(→G ∧ →H) = φ(→(G×H)) = [G×H] = [G] ∧ [H] = φ(→G) ∧ φ(→H),

therefore φ preserves joins and meets, thus it is a lattice homomorphism.

It is easy to see that φ is onto. To see that it is one-to-one, assume

[G] = [H] then it follows that G ∼ H, therefore G ∈ →H and H ∈ →G, and

consequently →G = →H.

Theorem 5. 〈E,−→〉 is a distributive lattice

Proof. We have already established that Hom is a distributive lattice. Since

φ is a lattice homomorphism and thus preserves distributivity, it follows that

E is a distributive lattice.
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2.5 Properties of finite character

Definition 10. A property P ∈ L is of finite character (written f-c) if

G ∈ P ⇐⇒ all finite induced subgraphs of G are in P.

Let F = {P ∈ L | P is of f-c}. We aim to prove that F is sublattice of L.

To achieve this we have to prove that the intersection and the union of any

two elements in F belong to F. First we introduce some notation: For any

graph G ∈ I, let F(G) = {F ∈ I | F ≤ G and F is finite }. In terms of this

notation we have: P is of f-c if G ∈ P ⇐⇒ F(G) ⊆ P .

Lemma 20. For all graphs G ∈ I, F(G) ∈ L.

Proof. Given any graph H ∈ F(G) and any induced subgraph F of H it

follows that F is a finite induced subgraph of G, therefore F ∈ F(G) and

thus F(G) ∈ L, completing our proof.

Now we show that F is a sublattice of L, that is, it is closed under finite

intersections and finite unions. In the case of intersections we can show more

than is needed.

Theorem 6. Let S be any subset of F and let P1,P2, . . . ,Pk, where k ∈ N,

be any properties in F. Then

(a)
⋂
S ∈ F and

(b) P1 ∪ P2 ∪ . . . ∪ Pk ∈ F.

Proof. (a) Given any G ∈ I such that G ∈
⋂
S it follows that G ∈ P for all

P ∈ S. By definition of f-c, F(G) ⊆ P for all P ∈ S, therefore F(G) ⊆
⋂
S.

Now assume F(G) ⊆
⋂
S for some G ∈ I, then F(G) ⊆ P for all P ∈ S.

By definition of f-c, we have G ∈ P for all P ∈ S therefore G ∈
⋂
S. Thus⋂

S ∈ F.
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(b) Let us assume that there are properties P1,P2, . . . ,Pk in F for which

P1 ∪ P2 ∪ . . . ∪ Pk 6∈ F. Then there exists a graph H whose finite induced

subgraphs are in P1 ∪ P2 ∪ . . . ∪ Pk yet H 6∈ P1 ∪ P2 ∪ . . . ∪ Pk. But then

F(H) 6⊆ Pi for each i, otherwise F(H) ⊆ Pj for some j, which would imply

that H ∈ Pj since Pj ∈ F, and in turn imply that H ∈ P1 ∪ P2 ∪ . . . ∪ Pk.
From F(H) 6⊆ Pi (for each i) now follows that there exists, for each i, a

graph Gi ∈ F(H) with Gi 6∈ Pi. Now let G = H [V (G1)∪V (G2)∪. . .∪V (Gk)],

i.e., G is the subgraph of H induced by the union of the vertex sets of the Gi.

Clearly G is finite since each V (Gi) is finite, hence G ∈ F(H). Furthermore,

each Gi is an induced subgraph of G .

Finally, since G ∈ F(H), we have that G ∈ P1 ∪P2 ∪ . . . ∪Pk and hence

that G ∈ Pj for some j. But then, each Gi, being an induced subgraph of

G , is in this i-h property Pj. In particular we then have, for this j, that

Gj ∈ Pj, a contradiction.

Given P ∈ L let c(P) = {G ∈ I | F(G) ⊆ P}, that is, c(P) is the set of

all graphs whose finite induced subgraphs belong to P .

Lemma 21. For all P ∈ L, P ⊆ c(P).

Proof. Given any G ∈ P and any finite F ≤ G it follows that F ∈ P since P
is an induced-hereditary property. Therefore F(G) ⊆ P . As a consequence

G ∈ c(P).

Lemma 22. For all P ∈ L, c(P) ∈ L.

Proof. Let G ∈ c(P) and H ≤ G. Assume, to the contrary, that H /∈ c(P),

then F(H) 6⊆ P , which follows by the definition of c(P). Since F(H) ⊆ F(G)

it follows that F(G) 6⊆ P , which implies G /∈ c(P), a contradiction.

Lemma 23. P ∈ F if and only if P = c(P).
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Proof. Let P ∈ F. If G ∈ c(P) then F(G) ⊆ P . Since P is of f-c we

have G ∈ P . Therefore c(P) ⊆ P . By Lemma 21 we have P ⊆ c(P), thus

P = c(P).

Now suppose, for some P ∈ L, that P = c(P). Let G ∈ I be such that

F(G) ⊆ P then G ∈ c(P). Since P ∈ L it follows that F(G) ⊆ P for all

G ∈ P . Therefore P ∈ F.

Clearly c is a mapping from L into L.

Proposition 6. The mapping c is a closure operator on L

Proof. To prove that c is a closure operator we need to show that c is exten-

sive, monotone and idempotent.

By Lemma 21, c is extensive. Suppose, for some P ,Q ∈ L, that P ⊆ Q.

Select any graph G ∈ c(P), then F(G) ⊆ P . Therefore F(G) ⊆ Q. By the

definition of c(Q) it follows that G ∈ c(Q). Hence c(P) ⊆ c(Q) and thus c is

monotone.

By the monotonicity of c we have c(P) ⊆ c(c(P)) for all P ∈ L. Now,

if G ∈ c(c(P)) then F(G) ⊆ c(P). By Lemma 23, c(P) ∈ F therefore

G ∈ c(P), hence c(c(P)) ⊆ c(P). Thus c(c(P)) = c(P), proving that c is

idempotent.

The following results were obtained using Proposition 7.2 in [5].

Proposition 7. For all P ∈ L we have c(P) =
⋂
{c(Q) | P ⊆ c(Q)}.

Proof. Let P ∈ L. Since P ⊆ c(R) for all c(R) ∈ {c(Q) | P ⊆ c(Q)} it

follows that c(P) ⊆ c(c(R)) = c(R), therefore c(P) ⊆
⋂
{c(Q) | P ⊆ c(Q)}.

From P ⊆ c(P) it follows that c(P) ∈ {c(Q) | P ⊆ c(Q)}, therefore⋂
{c(Q) | P ⊆ c(Q)} ⊆ c(P), yielding c(P) =

⋂
{c(Q) | P ⊆ c(Q)}.
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Proposition 8. The sublattice F of L is a complete lattice with meets and

joins defined as follows. For every subset S of F,∧
S =

⋂
S and

∨
S = c(

⋃
S)

Proof. Let S be a subset of L. Since
⋂
S is the meet of S in L it follows that

to prove
∧
S =

⋂
S in F we need only prove that

⋂
S ∈ F. Theorem 6 offers

exactly this, thus completing the first part of our proof.

For all P ∈ S we have P ⊆
⋃
S ⊆ c(

⋃
S), therefore c(

⋃
S) is an upper

bound of S in F. Let Q ∈ F be an upper bound of S, then
⋃
S ⊆ Q. With the

help of Proposition 6 and Lemma 23 we obtain c(
⋃
S) ⊆ c(Q) = Q. Which

provides us with
∨
S = c(

⋃
S), completing our proof.
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2.6 Compact properties

Definition 11. A property P ∈ L is compact if, for every S ⊆ L,

P ⊆
∨
S =⇒ P ⊆

∨
T for some finite T ⊆ S

Lemma 24. All finite properties in L are compact.

Proof. Let P ∈ L be finite and allow S ⊆ L to be such that P ⊆
∨
S, then

H ∈
∨
S for all H ∈ P . Since

∨
S =

⋃
S it follows, for all H ∈ P , that

H ∈ Q for some Q ∈ S. From this and the finiteness of P there exist a finite

number of properties Q in S such that P is a subset of the union of said

properties.

Definition 12. Given any F ⊆ I, let

(F) = {H ∈ I | H ≤ G for some G ∈ F}.

We call (F) the i-h property generated by F . For a graph G ∈ I we write

(G) for the property ({G}), sometimes written ≤G.

For all F ⊆ I, the property (F) belongs to L. This follows immediately

from the definition. For all F ⊆ I we have F ⊆ (F), and F = (F) if and only

if F ∈ L. In fact, if ℘(I) is the set of all properties then (.) : ℘(I) −→ ℘(I)

is a closure operator, taking ℘(I) into L. The property, (G), generated by

a finite graph G is a finite property and is thus a compact element in L.

Later we will show that all properties (F) generated by a finite subset F of

I are compact elements in L. However not all elements in L are compact.

For example, the property, P = {Kn | n ∈ N}, which is the set of all finite

complete graphs, belongs to L but is not compact. To see this consider

the set S of all properties generated by a finite complete graph, that is,

S = {(Kn) | n ∈ N}. Since
∨
S =

⋃
n∈N (Kn) it follows that P ⊆

∨
S. But

clearly P is not a subset of the union of any finite number of elements in S.

Thus P is not compact.
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Lemma 25. If F1 ⊆ F2 ⊆ I then (F1) ⊆ (F2).

Proof. Let F1 and F2 be subsets of I such that F1 ⊆ F2. Let H be any

graph in (F1). Then H ≤ G for some G ∈ F1. By the initial hypothesis we

obtain G ∈ F2, from which we arrive at H ∈ (F2) by means of Definition

12.

Lemma 26. If F1, . . . ,Fn are any subsets of I, for some n ∈ N, then

(F1 ∪ . . . ∪ Fn) = (F1) ∪ . . . ∪ (Fn)

Proof. Let H ∈ (F1 ∪ . . . ∪ Fn), then H ≤ G for some G ∈ F1 ∪ . . . ∪ Fn.

Therefore G ∈ Fi, for some 1 ≤ i ≤ n, and thus H ∈ (Fi). As a consequence

H ∈ (F1) ∪ . . . ∪ (Fn), therefore (F1 ∪ . . . ∪ Fn) ⊆ (F1) ∪ . . . ∪ (Fn).

By Lemma 25 we obtain (Fi) ⊆ (F1 ∪ . . . ∪ Fn) for all 1 ≤ i ≤ n, which

gives (F1) ∪ . . . ∪ (Fn) ⊆ (F1 ∪ . . . ∪ Fn).

Theorem 7. P is a compact element in L if and only if P = (F) for some

finite F ⊆ I.

Proof. Suppose P is a compact property in L. Let Q = {(G) |G ∈ P} then

P ⊆
∨
Q. By our initial hypothesis it follows that there exists a finite subset

T of Q such that P ⊆
∨
T. Thus, for some positive integer n, we have

T = {(G1) , . . . , (Gn)}, where (Gi) ∈ Q for all 1 ≤ i ≤ n. Consequently we

have

P ⊆
∨
T = (G1 ) ∨ . . . ∨ (Gn) = (G1 ) ∪ . . . ∪ (Gn).

Now let F = {G1 , . . . ,Gn} then (F) = (G1 ) ∪ . . . ∪ (Gn) by Lemma 26,

therefore P ⊆ (F). Since P is an induced-hereditary property and Gi ∈ P
for all 1 ≤ i ≤ n, we obtain (Gi) ⊆ P for all 1 ≤ i ≤ n. Therefore

(G1 ) ∪ . . . ∪ (Gn) ⊆ P , and thus P = (F).

Now suppose P = (F) for some finite F ⊆ I. Then, for some positive

integer n, F = {F1, . . . , Fn}, where Fi ∈ I for all 1 ≤ i ≤ n. Furthermore
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P = (F1)∪. . .∪(Fn). Select S ⊆ L such that P ⊆
∨
S, then (F1)∪. . .∪(Fn) ⊆∨

S. Therefore, for all 1 ≤ i ≤ n, there exists a property Qi ∈ S such

that Fi ∈ Qi. Which implies (Fi) ⊆ Qi for all 1 ≤ i ≤ n. Therefore

P = (F1) ∪ . . . ∪ (Fn) ⊆
⋃n
i=1Qi, hence P is compact.

Let C = {P ∈ L | P is compact }.

Proposition 9. The join of any two elements in C is compact.

Proof. Let P ,Q ∈ C, then by Theorem 7 there exist finite F ,G ⊆ I such

that P = (F) and Q = (G). Therefore P ∪ Q = (F) ∪ (G) = (F ∪ G) by

Lemma 26. Since F ∪ G is a finite subset of I it follows by Theorem 7 that

P ∪Q ∈ C, therefore P ∨Q = P ∪Q ∈ C.

As we shall see in the following proposition, C is not a sublattice of L
but is instead a join-semi-sublattice of L.

Proposition 10. There are compact elements in C whose intersection is not

compact.

Proof. We offer two compact elements in C whose intersection is not in C.

Let G be the disjoint union of all finite complete graphs, that is G = K1 t
K2 tK3 t . . .. Then G belongs to I.

Now let P = (G) and Q = (Kℵ0). By Theorem 7 the properties P and

Q are compact. We claim that P ∩ Q = {Kn | n ∈ N}. For all n ∈ N,

Kn ≤ G and Kn ≤ Kℵ0 , therefore {Kn | n ∈ N} ⊆ P ∩ Q. Let H ∈ P ∩ Q,

then H ∈ Q, therefore H is an induced subgraph of Kℵ0 , which implies H

is a complete graph. Since H is a complete graph that also belongs to P it

follows that H is finite, therefore H = Kn for some n ∈ N. Which gives us

P ∩Q ⊆ {Kn | n ∈ N}. From which we obtain P ∩Q = {Kn | n ∈ N}.
Earlier, in this section, we showed that the property {Kn | n ∈ N} is not

compact, thus P ∩Q is not compact. This completes our proof.
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2.7 Universal Graphs

Definition 13. [11]

We say a graph G is a weakly universal graph of a property P ∈ L
if, for all H ∈ P, there exists an injective homomorphism from H to G. If

G ∈ P then we say G is a weakly universal graph in P.

Since we are dealing with unlabelled graphs it follows that a graph G is

a weakly universal graph of a property P if and only if, for all H ∈ P , H is

a subgraph of G.

Definition 14. [11]

We say a graph G is a universal graph of a property P ∈ L if, for all

H ∈ P, there exists an injective homomorphism ϕ from H to G such that,

for all u, v ∈ V (H), if uv /∈ E(H) then ϕ(u)ϕ(v) /∈ E(H). If G ∈ P then we

say G is a universal graph in P.

The homomorphism ϕ described in Definition 14 preserves non-edges.

Therefore a graph G is a universal graph of a property P ∈ L if and only if,

for all H ∈ P , H is an induced subgraph of G.

Lemma 27. [3] Every property P ∈ L has a universal graph.

Proof. Let P ∈ L and let G be the disjoint union of all graphs in P . Then

H ≤ G for all H ∈ P , hence G is a universal graph of P .

Lemma 27 does not guarantee that a property P ∈ L has a countable

universal graph. Since our concern lies with countable graphs we are inter-

ested in a countable universal graph for a property P ∈ L. In addition we

desire this universal graph to be in P .

Lemma 28. A compact property P ∈ L has a countable universal graph.
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Proof. Let P ∈ L be compact. Then there exists a finite subset F of I such

that P = (F). Let G =
⊔
{G′ | G′ ∈ F}, then G ∈ I and H ≤ G for all

H ∈ P .

Before pursuing universal graphs of properties in L we introduce the Rado

graph R [11], which will come in handy in our construction of universal

graphs. The Rado graph is that countable graph whose vertex set V (R) =

{1, 2, . . .} and whose edge set E(R) is described as follows. For any two

vertices x and y in V (R) where x < y, x is adjacent to y if and only if y has

a 1 in the xth position of its binary expansion. Rado showed that this graph

is a universal graph in I.

For each graph G ∈ I let U ′G be the graph with V (U ′G) = V (G)×V (Kℵ0)

and edge set

E(U ′G) = {(x, u)(y, v) | xy ∈ E(G) and (x, u), (y, v) ∈ V (U ′G)} .

For each x ∈ V (G) we call the set {(x, v) | v ∈ V (Kℵ0)} the tower of U ′G

generated by x. For each i ∈ V (Kℵ0) we call the set {(y, i) | y ∈ V (G)}
the ith level of U ′G. Then each tower of U ′G is an independent set of vertices

and two vertices p, q ∈ V (U ′G) are adjacent if and only if p and q belong to

towers generated by adjacent vertices of G.

Lemma 29. For all graphs G ∈ I, U ′G is a weakly universal graph in the

property →G.

Proof. Select any G ∈ I. Our first order of business will be to prove that

U ′G ∈ →G. Since a countable union of countable sets is countable we have

U ′G ∈ I. Let ϕ be the mapping that delivers every tower of U ′G to the vertex

in G that generated it. Given any adjacent vertices in U ′G it follows that these

vertices belong to towers of U ′G generated by adjacent vertices in G, therefore

ϕ maps said vertices to adjacent vertices in G. Thus ϕ is a homomorphism

from U ′G to G, which gives us U ′G ∈ →G. Next we prove that H ⊆ U ′G for all
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H ∈ →G. Let H ∈ →G then there exists a homomorphism, ϕ, from H to G.

For each x ∈ V (G) let Wx = {z ∈ V (H) | ϕ(z) = x}. Then {Wx | x ∈ V (G)}
is a partition of V (H) into independent sets. Since, for all x ∈ V (G), Wx

is countable there exists a one-to-one mapping from Wx into the tower of

U ′G generated by x. For each x ∈ V (G), let fx be such a mapping. Now let

γ : V (H) −→ V (U ′G) be the mapping defined, for all z ∈ V (H), by

γ(z) = fx(z) if z ∈ Wx.

Then γ is one-to-one. In addition, given any adjacent vertices z1 and z2 in

H it follows that ϕ(z1) 6= ϕ(z2) and ϕ(z1)ϕ(z2) ∈ E(G). Therefore γ(z1) and

γ(z2) belong to towers of U ′G generated by adjacent vertices. As a consequence

γ(z1) is adjacent to γ(z2) in U ′G. Thus γ is a one-to-one homomorphism from

H to U ′G, which completes our proof.

For n ∈ N let Un = Kn × R, the product of Kn and R, where V (Kn) =

{1, . . . , n}. For each 1 ≤ i ≤ n we call the set {(i, v) | v ∈ V (R)} the ith

tower of Un, denoted Ti. For each i ∈ V (R) we call the set

{(x, i) | x ∈ V (Kn)} the ith level of Un. Since the vertex set of Un is a finite

union of countable sets it follows that Un ∈ I. We aim to show that, for all

n ∈ N, Un is a universal graph in →Kn.

Lemma 30. For all n ∈ N, Un ∈ →Kn.

Proof. Let n ∈ N. We have already remarked that Un is countable. What

remains is to show that Un −→ Kn. Let ϕ be the mapping which, for each

1 ≤ i ≤ n, delivers the ith tower of Un to the vertex i of Kn. Then ϕ is a

homomorphism from Un to Kn, yielding Un ∈ →Kn.

Proposition 11. For all n ∈ N, Un is a universal graph in →Kn.

Proof. Fix a positive integer n. By Lemma 30, we have Un ∈ →Kn. We

are required to show that, for all H ∈ →Kn, there exists a one-to-one ho-

momorphism, from H to Un, that preserves non-edges. Allow H to be a
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graph in →Kn. By Theorem 1 of [11] the exists a one-to-one homomor-

phism, ϕ, from H to R that preserves non-edges. Since H −→ Kn, there

exists a partition W1, . . . ,Wn of V (H) into n colour classes. Let the mapping

γ : V (H) −→ V (Un) be defined, for all z ∈ V (H), by

γ(z) = (i, ϕ(z)) if z ∈ Wi,

where 1 ≤ i ≤ n. Given any two x, y ∈ V (H), γ(x) 6= γ(y) since ϕ(x) 6= ϕ(y).

Thus γ is one-to-one. Let x and y be any two vertices in H, then there exist

integers 1 ≤ i, j ≤ n such that x ∈ Wi and y ∈ Wj. In addition ϕ(x) 6= ϕ(y).

If xy ∈ E(H) then ϕ(x)ϕ(y) ∈ E(R) and i 6= j, therefore γ(x) = (i, ϕ(x)) is

adjacent to γ(y) = (j, ϕ(y)) in Un. If xy /∈ E(H) then ϕ(x)ϕ(y) /∈ E(R) and

therefore γ(x) = (i, ϕ(x)) is not adjacent to γ(y) = (j, ϕ(y)) in Un. Thus γ is

a one-to-one homomorphism that preserves non-edges, giving us the desired

result.

We state two useful features of the graph Un, both of which are reminis-

cent of the extension property of the Rado graph.

Theorem 8. (a) For every two finite, disjoint subsets U and V of V (Un)

of which no two elements, one from U and the other from V , are on

the same level of the towers of Un and for which U ∩ Ti = ∅ for some

1 ≤ i ≤ n, there is a vertex in the ith tower that is adjacent to all

members of U and non-adjacent to all members of V .

(b) For every finite subset W of V (Un) for which W ∩ Ti = ∅ for some

1 ≤ i ≤ n, there is a vertex in the ith tower if Un that is adjacent to

every vertex of W .

Proof. First we prove (a). Assume the subsets U and V of V (Un) satisfy the

conditions stated above. Let U ′ = {u | (j, u) ∈ U} and V ′ = {v | (j, v) ∈ V }.
Let (i, w) be the vertex of Un where w is a positive integer whose binary
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expansion has a 1 in every position u ∈ U ′, a 0 in every position v ∈ V and

a 1 in some position x > y for every y ∈ U ′ ∪ V ′. Then (i, w) has all the

required properties. The proof of (b) is similar to that of (a).

Theorem 9. For a positive integer n and a graph G ∈ I the following

statements are equivalent.

(a) G ≤ Un

(b) G −→ Un

(c) G −→ Kn

(d) G is n-colourable

Proof. Clearly (d) implies (c). By Proposition 11 we obtain (a) and (b) from

(c). Both imply G ∈ →Kn which in turn implies (d).

We remark that condition (a) of the above theorem is seemingly more

demanding than condition (b). This theorem provides us with an inducing

supergraph for all n-colourable graphs, allowing us to study n-colourable

graphs by limiting our investigation to Un.

For each graph G ∈ I let UG = G × R. Then, for each x ∈ V (G), we

call the set {(x, v) | v ∈ V (R)} the tower of UG generated by x. For each

i ∈ V (R) we call the set {(y, i) | y ∈ V (G)} the ith level of UG. Then every

tower and every level of UG is an independent set of vertices.

Lemma 31. For all G ∈ I, UG ∈ →G.

Proof. Let G ∈ I, then UG is countable. Let ϕ be the mapping which

delivers each tower of UG to the vertex in G that generated it. Then ϕ is a

homomorphism from UG to G, thus UG ∈ →G.

Proposition 12. For all G ∈ I, UG is a universal graph in →G.
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Proof. The proof of this is similar to that of the proof of Proposition 11.

Next we provide a new proof of a known result by Szekeres and Wilf. One

that utilises the structure of the universal graph Un. For a finite graph H we

shall write δ(H) for the minimum degree of the vertices of H.

Theorem 10 (Szekeres and Wilf, [12]). For a finite graph G we have

χ(G) ≤ 1 +maxH≤Gδ(H),

where the maximum is taken over all induced subgraphs H of G.

Proof. Let G be a graph of order p ∈ N and let n = 1 + maxH≤Gδ(H).

Then every induced subgraph of G has a vertex of degree at most n − 1.

We now label, in reverse order, the p vertices of G as vp, vp−1, . . . , v1: Let

vp be any vertex in V (G) with degree in G at most n − 1; let vp−1 be any

vertex in V (G) \ {vp} with degree in G[V (G) \ {vp}] at most n − 1; let,

in general, for any integer j with 1 ≤ j ≤ p − 1, vp−j be any vertex in

V (G) \ {vp, vp−1, . . . , vp−j+1} with degree in G[V (G) \ {vp, vp−1, . . . , vp−j+1}]
at most n − 1; until v1 is the single vertex left in V (G) \ {vp, vp−1, . . . , v2}
with degree in G[{v1}] at most n− 1, in fact, sadly, only zero. We construct

a homomorphism f : G −→ Un by applying (b) of Theorem 8 repeatedly

to define f(v1), . . . , f(vp) recursively. Let f(v1) be any vertex of Un. Now

suppose that for some integer k < p that f(v1), . . . , f(vk) have been defined

in such a manner that edges are preserved, that is, for every 1 ≤ i, j ≤ k,

vivj ∈ E(G) implies f(vi)f(vj) ∈ E(Un).

Let W = {f(vi) | i ≤ k and vivk+1 ∈ E(G)}. Then, by the manner in which

we chose v1, . . . , vp, |W | < n − 1. Thus there is a tower Ti of Un such that

W ∩ Ti = ∅. Applying (b) of Theorem 8 we can find a vertex w of Ti which

is adjacent to each vertex in W . By defining f(vk+1) = w we have a vertex

of Un with desired properties. Using this recursive procedure, the proof can

be completed.

36

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3 The Hedetniemi Conjecture

3.1 The Hedetniemi Conjecture and meet irreducible

elements in the lattice Hom

In this section we state the Hedetniemi Conjecture and reveal it’s link to

meet-irreducible elements in Hom.

Conjecture 1 (Hedetniemi, [7]). For all finite graphs G and H we have

χ(G×H) = min{χ(G), χ(H)}.

We have already established that (G×H) −→ G and (G×H) −→ H for

all G,H ∈ I, hence, if G and H are of finite chromatic number, it follows

that χ(G × H) ≤ χ(G) and χ(G × H) ≤ χ(H). Therefore χ(G × H) ≤
min{χ(G), χ(H)} for all countable graphs G and H with finite chromatic

number.

Let Hom∗ = {→G | χ(G) is finite }, then Hom∗ ⊆ Hom. Let →G and

→H be properties in Hom∗, then G tH and G×H are of finite chromatic

number, therefore →(G tH) and →(G×H) belong to Hom∗. From this it

follows that Hom∗ is a sublattice of Hom.

Lemma 32. The following are equivalent:

(a) For all finite graphs G and H we have χ(G×H) = min{χ(G), χ(H)}.

(b) For all G,H ∈ I with finite chromatic number we have

χ(G×H) = min{χ(G), χ(H)}.

Proof. It is easy to see that (b) implies (a), so we prove that (a) implies (b).

Suppose (a) and let G and H be countable graphs with finite chromatic num-

ber. By the Compactness Theorem [6] there exist finite induced subgraphs

G′ and H ′ of G and H, respectively, with χ(G′) = χ(G) and χ(H ′) = χ(H).
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Our assumption guarantees that χ(G′ × H ′) = min{χ(G′), χ(H ′)}. Hence

min{χ(G), χ(H)} = min{χ(G′), χ(H ′)} = χ(G′ × H ′) ≤ χ(G × H) since

G′ ×H ′ ≤ G ×H. Since the reverse inequality is true for all G and H, the

required equation follows.

We shift our focus to meet-irreducible elements in Hom. The following

are known meet-irreducible elements in Hom: →K1,→K2,→K3 and →K4.

Having not managed to characterize the meet-irreducible elements in Hom,

we offer a theorem that we hope brings us a step closer to identifying these

elements.

Theorem 11. The Hedetniemi Conjecture is true if and only if →Kn is

meet-irreducible in Hom∗ for all n ∈ N.

Proof. Let the Hedetniemi Conjecture be true and assume that, for some n,

→Kn is meet-reducible. Then there exist countable graphs G and H, of finite

chromatic number, such that →Kn ⊂ →G,→H and

→(G × H) = →G ∧ →H = →Kn. Which implies (G × H) −→ Kn and

Kn −→ (G×H) . Thus n = χ(G×H) = min{χ(G), χ(H)}, which suggests

χ(G) = n or χ(H) = n. Without loss of generality let χ(G) = n, then G is

homomorphic to Kn and consequently →G ⊆ →Kn, a contradiction.

For all n ∈ N, let →Kn be meet-irreducible in Hom∗, and assume that,

for some n, there exist graphs G and H such that

n = χ(G×H) < min{χ(G), χ(H)}. Then

→Kn ⊂ →(G tKn) and →Kn ⊂ →(H tKn).

Now

(G tKn)× (H tKn) = (G×H) t (G×Kn) t (Kn ×H) t (Kn ×Kn)

where

χ(G×H) = χ(G×Kn) = χ(Kn ×H) = χ(Kn ×Kn) = n,
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since χ(Kn × F ) = n for all graphs F with χ(F ) ≥ n. From this it follows

that χ((G tKn)× (H tKn)) = n, therefore

→((GtKn)×(HtKn)) ⊆→Kn. Since Kn ≤ Kn×Kn ≤ (GtKn)×(HtKn),

it follows that Kn is homomorphic to (G tKn)× (H tKn).

Thus →Kn ⊆ →((G tKn)× (H tKn)) and as a consequence

→(G tKn) ∧ →(H tKn) = →((G tKn)× (H tKn)) = →Kn,

which implies that →Kn is meet-reducible, a contradiction.
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3.2 More equivalent forms of the Hedetniemi Conjec-

ture

Theorem 12. The following statements are equivalent:

(a) For all finite graphs G,H ∈ I we have χ(G×H) = min{χ(G), χ(H)}.

(b) For all G,H ∈ I with finite chromatic number we have

χ(G×H) = min{χ(G), χ(H)}

(c) For all n ∈ N the hom-property→Kn is meet-irreducible in 〈Hom∗,∧,∨〉.

(d) For every two hom-properties →G and →H in Hom∗ if

→Kn = →G ∩ →H then →Kn = →G or →Kn = →H.

(e) For all n ∈ N if→G ∩ →H ⊆ →Kn then→G ⊆ →Kn or→H ⊆ →Kn.

(f) For all n ∈ N and every two n-critical graphs G and H there exists an

n-critical graph F such that F −→ G and F −→ H.

(g) Given n ∈ N and any graphs G and H with χ(G) = χ(H) = n+ 1 and

ω(G) = ω(H) = n, there exists a graph F of chromatic number n + 1

that is homomorphic to G and H.

Proof. By Lemma 32 we have established that (a) and (b) are equivalent.

By Theorem 11 we have (b) and (c) are equivalent, therefore (a) and (c)

are equivalent. The equivalence of (c) and (d) follows by the definition of

meet-irreducibility in a lattice.

We show that (b) and (e) are equivalent. Assume (b), then

→G ∩ →H ⊆ →Kn implies χ(G × H) ≤ n. By our assumption χ(G) ≤ n

or χ(H) ≤ n. Therefore G −→ Kn or H −→ Kn. Thus →G ⊆ →Kn or

→H ⊆ →Kn. Now assume (e). Given G,H ∈ I we have →(G ×H) ⊆ →
Kχ(G×H). By (e) we obtain G −→ Kχ(G×H) or H −→ Kχ(G×H). From which
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we obtain χ(G) ≤ χ(G×H) or χ(H) ≤ χ(G×H). This, of course, implies

χ(G×H) ≥ min{χ(G), χ(H)}. Therefore χ(G×H) = min{χ(G), χ(H)}.
Now we show (b) and (f) are equivalent. Let G,H ∈ I be n-critical and

assume (b). Then χ(G×H) = n, therefore G×H has an n-critical subgraph

F . Since F −→ (G ×H) −→ G and (G ×H) −→ H, it follows by Lemma

3 that F −→ G and F −→ H. Now assume (f) and let G,H ∈ I. Without

loss of generality let χ(G) ≤ χ(H). Then, for all positive integers n ≤ χ(G),

there exist n-critical subgraphs of G and H. By (f) there exists, for each

n, an n-critical graph F that is homomorphic to G and H, and as a result

is homomorphic to G × H. Thus χ(G × H) ≥ n for all positive integers

n ≤ χ(G). As a consequence χ(G×H) = χ(G) = min{χ(G), χ(H)}.
To show that (c) and (g) are equivalent we begin by showing that if

(c) does not hold then (g) does not hold. So assume, for some n ∈ N,

that →Kn is meet-reducible. Then there exist graphs G and H such that

→Kn = →G ∧ →H with →Kn ⊂ →G and →Kn ⊂ →H. Let G′ and H ′

be subgraphs of G and H, respectively, with chromatic number n + 1. We

claim ω(G′), ω(H ′) < n+1. Without loss of generality assume ω(G′) = n+1,

then we have H ′ −→ Kn+1 −→ G′ −→ G and H ′ −→ H. Which implies

H ′ ∈ →G ∧ →H = →Kn, and in turn implies H ′ −→ Kn. Surely, this is a

contradiction since χ(H ′) = n + 1. Let G∗ = G′ t Kn and H∗ = H ′ t Kn.

Then G∗ and H∗ satisfy the conditions in (g). We argue that by our initial

hypothesis there can not exist a graph F of chromatic number n + 1 that

is homomorphic to G∗ and H∗. Suppose such a graph F existed, then F

would be homomorphic to G and H since G∗ −→ G and H∗ −→ H. Which

would imply F ∈ (→G ∧ →H) = →Kn, and thus imply F −→ Kn. Which

again is a contradiction since χ(F ) = n + 1. Now we show that (c) implies

(g). Assume →Kn is meet-irreducible for all n ∈ N and let G and H be

any graphs in I with χ(G) = χ(H) = n + 1 and ω(G) = ω(H) = n. Then

Kn −→ G and Kn −→ H therefore Kn ∈ → (G × H). Which produces
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→Kn ⊆ →(G×H) = →G ∧ →H. Therefore →Kn ⊂ →(G×H) since →Kn

is meet-irreducible. Thus there exists a graph F ∈ →(G × H) which does

not belong to →Kn. Therefore χ(F ) = n + 1 and F is homomorphic to G

and H. This completes our proof.
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3.3 A new proof of the Duffus-Sands-Woodrow Theo-

rem

The following result was obtained by Duffus, Sands and Woodrow [7].

Theorem 13. Given any n ∈ N and any two connected graphs, G and H,

with χ(G), χ(H) > n and ω(G) = ω(H) = n, then χ(G×H) > n.

We present an alternative proof to this theorem. Unlike the proof by said

authors, which employs colouring functions or that of El-Zaher and Sauer [8],

which utilizes the exponential graph method, ours employs the construction

of a graph that is homomorphic to G and H.

From the lattice Hom we observed that given n ∈ N and graphs G and

H,

χ(G×H) > n ⇐⇒ ∃ F ∈ →G ∩ →H such that χ(F ) > n,

where F ∈ →G ∩ →H simply means F is homomorphic to G and H.

The theorem below is therefore equivalent to Theorem 13.

Theorem 14. Given any n ∈ N and any two connected graphs G and H

with χ(G) = χ(H) = n+ 1 and ω(G) = ω(H) = n, there exists a graph F of

chromatic number n+ 1 that is homomorphic to both G and H.

Proof. Our proof is as follows. Let G and H be as specified. We isolate

subgraphs of G and H that will enable us to find two graphs which on

application of the Hajós construction will yield the graph F . The biggest

challenge will be in proving that our construct is homomorphic to G and H.

To ease this exercise the two subgraphs we are in search of shall be obtained

by ‘trimming’ the graphs G and H of as many vertices and edges as we can

whilst preserving the characteristics mentioned above.

Let G′ and H ′ be (n + 1)-critical internal subgraphs of G and H, re-

spectively. Furthermore, let v1, . . . , vn and w1, . . . , wn be the vertices of a
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complete internal subgraph of G and H, respectively. Then let G′′ be the in-

ternal subgraph of G with vertex set V (G′′) = V (G′)∪{v1, . . . , vn} and edge

set E(G′′) = E(G′) ∪ E(G[{v1, . . . , vn}]). Similarly, let H ′′ be the internal

subgraph of H with vertex set V (H ′′) = V (H ′) ∪ {w1, . . . , wn} and edge set

E(H ′′) = E(H ′) ∪ E(H[{w1, . . . , wn}]).

We make two distinctions. If V (G′) ∩ {v1, . . . , vn} 6= ∅, we say G′′ is of

Type 1 . If V (G′) ∩ {v1, . . . , vn} = ∅, we say G′′ is of Type 2 .

If G′′ is of type 1 then it is a connected subgraph of G with chromatic

number n + 1 and clique number n. We rename G′′. Let G∗ = G′′. On

the other hand, if G′′ is of type 2 then it is a disconnected subgraph of G

with chromatic number n+ 1 and clique number n. We require a connected

subgraph of G, so we find a suitable replacement for G′′. Since G is connected

it follows that there exists a path in G connecting a vertex in V (G′) to a

vertex in {v1, . . . , vn}. Let P be a path of minimum length that achieves this

connection. Then only the end vertices of P belong to V (G′′). Let G∗ be the

graph obtained after including P into the graph G′′. Then G∗ is a connected

(n+ 1)-chromatic subgraph of G with clique number n, and is of type 2.

We do the same thing for H ′′, giving us either a graph H∗ of type 1 or of

type 2.

We are almost ready to implement Hajós’s construction. But first we

note the following. Either (i) both G∗ and H∗ are of type 1, (ii) G∗ and H∗

are of different types or (iii) both G∗ and H∗ are of type 2. We tackle each

separately.

Case (i). Since both G∗ and H∗ are of type 1, there exist 1 ≤ i, j ≤ n such

that vi is in G′ and wj is in H ′. There also exist x ∈ V (G′) and y ∈ V (H ′)

such that xvi ∈ E(G′) and ywj ∈ E(H ′), otherwise this would imply vi and

wj are isolated vertices of an (n + 1)-critical graph, which cannot be. We

apply Hajós’s construction on G′ and H ′ in order to obtain F . We do this by

first deleting the edges xvi and ywj, then we identify the vertices vi and wj
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to form the vertex z, and finally we introduce the the edge xy. The graph F

is (n+ 1)-chromatic since the Hajós construct of two (n+ 1)-critical graphs

is (n+ 1)-critical.

Now we prove that F is homomorphic to G∗ and H∗. Observe that the

induced subgraph F [(V (G′) \ {vi}) ∪ {z}] of F , call it Q, is isomorphic to

G′ − xvi. Similarly, F [(V (H ′) \ {wj}) ∪ {z}], the induced subgraph of F ,

which we will call R, is isomorphic to H ′ − ywj. Therefore Q and R are n-

chromatic and are thus homomorphic to H∗[{w1 . . . wn}] and G∗[{v1 . . . vn}].
In addition all homomorphisms from Q to H∗[{w1 . . . wn}] map the vertices

x and z to the same vertex in H∗[{w1 . . . wn}]. Similarly all homomorphisms

from R to G∗[{v1 . . . vn}] map the vertices y and z to the same vertex in

G∗[{v1 . . . vn}].
Let γ1 be any homomorphism from Q to H∗[{w1 . . . wn}], such that

γ1(z) = wj. Then γ1(x) = wj. Now let γ2 be the mapping

γ2 : V (F ) \ V (Q) −→ V (H∗) defined, for all a ∈ V (F ) \ V (Q), by γ2(a) = a.

Then γ2 preserves all edges of the subgraph of F induced by V (F ) \ V (Q).

Finally let γ be the mapping γ : V (F ) −→ V (H∗) defined by

γ(a) =

{
γ1(a) if a ∈ V (Q) ;

γ2(a) if a ∈ V (F ) \ V (Q) .

Then γ is a homomorphism, where the edge xy in F is preserved by the edge

ywj in H∗.

We can replicate the above construction to obtain a homomorphism from

F to G∗.

Case (ii). Without loss of generality, assume H∗ is of type 2. We construct

an (n+ 1)-chromatic graph, H∗∗∗, which on application of Hajós’s construc-

tion with G′ will yield a graph F that is homomorphic to G∗ and H∗. To

achieve this we shall, first, need to revisit the path P that was instrumental

in constructing H∗. Already, we have ascertained that P connects a vertex
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z ∈ V (H ′) to wj, for some integer 1 ≤ j ≤ n, in such a manner that all in-

ternal vertices of P do not belong to H ′′. Therefore P = (z, z1, . . . , zk−1, wj)

for some k ∈ N. Consider H ′, the (n + 1)-critical subgraph of H∗, whose

vertex set can be partitioned into n + 1 colour classes V1, . . . , Vn+1 where

Vn+1 = {z}. Let H∗∗ be the graph with vertex set

V (H∗∗) = V (H ′) \ {z} ∪ {u1, . . . , un}

and edge set

E(H∗∗) = E(H ′ − z) ∪ {xui | xz ∈ E(H ′) and x /∈ Vi}.

Clearly V1 ∪ {u1}, . . . , Vn ∪ {un} is a partition of V (H∗∗) into n colour

classes, therefore H∗∗ is n-chromatic. A valuable property of H∗∗ is that

every successful proper n-colouring of H∗∗ requires any two elements of the

set {u1, . . . , un} to be assigned different colours. Suppose, to the contrary,

that the vertex set of H∗∗ can in fact be partitioned into n colour classes,

W1, . . . ,Wn, where W1 contains at least two elements of {u1, . . . , un}. With-

out loss of generality let u1, u2 ∈ W1. Then every vertex that is adjacent to z

in H ′ is adjacent to u1 or u2 in H∗∗ and thus all such vertices do not belong

to W1. For all integers 1 ≤ i ≤ n, let W ∗
i be the set Wi after the removal

of all members of {u1, . . . , un}, then W ∗
1 ∪ {z},W ∗

2 . . . ,W
∗
n is a partition of

V (H ′) into n colour classes. This, of course, is a contradiction.

Now we utilise H∗∗ to construct another graph. Let H∗∗∗ be the graph

with vertex set

V (H∗∗∗) = V (H∗∗) ∪ {u} ∪
( ⋃

1≤i≤k−1

{ui,1, . . . , ui,n}
)
,

where u and the ui,j are completely new vertices, and edge set

E(H∗∗∗) = E(H∗∗) ∪
⋃
i,j,s

[{uiu1,j} ∪ {us,ius+1,j} ∪ {uk−1,ju}] ,
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where 1 ≤ i 6= j ≤ n and 1 ≤ s ≤ k−2. The graph H∗∗∗ is (n+1)-chromatic

and is homomorphic to H∗. In addition H∗∗∗ − uuk−1,1 is n-chromatic.

We quickly prove these claims. Suppose, to the contrary, that H∗∗∗ is

n-chromatic. Then we can partition V (H∗∗∗) into n colour classes C1, . . . , Cn.

By an earlier mentioned property ofH∗∗ no two elements of the set {u1, . . . un}
belong to the same colour class. We can therefore assume without loss of gen-

erality that ui ∈ Ci for all 1 ≤ i ≤ n. Thus u1,i ∈ Ci for all 1 ≤ i ≤ n. As a

consequence us,i ∈ Ci for all 1 ≤ i ≤ n and 2 ≤ s ≤ k − 1. But u ∈ Cj for

some 1 ≤ j ≤ n, thus Cj contains adjacent vertices u and uk−1,j. This is a

contradiction. Hence H∗∗∗ is (n+ 1)-chromatic.

By the aforementioned properties of H∗∗ we can partition V (H∗∗) into n

colour classes D1, . . . , Dn such that ui ∈ Di for all 1 ≤ i ≤ n.

Let D∗1 = D1 ∪ {u1,1, u2,1, . . . , uk−1,1} ∪ {u} and

D∗i = Di ∪ {u1,i, u2,i, . . . , uk−1,i} for all 2 ≤ i ≤ n then D∗1, . . . , D
∗
n is

a partition of V (H∗∗∗ − uuk−1,1) into n colour classes. Therefore H∗∗∗ −
uuk−1,1 is n-chromatic. Furthermore H∗∗∗ − uuk−1,1 −→ G∗[{v1 . . . vn}] and

all homomorphisms γ from H∗∗∗ − uuk−1,1 to G∗[{v1 . . . vn}] are such that

γ(uk−1,1) = γ(u).

The mapping φ : V (H∗∗∗) −→ V (H∗) defined by

φ(a) =


a if a ∈ H∗∗∗[V (H ′) \ {z}] ;

z if a = ui for some 1 ≤ i ≤ n;

zt if a = ut,s for some 1 ≤ s ≤ n;

wj if a = u .

where 1 ≤ t ≤ k − 1, is a homomorphism from H∗∗∗ to H∗.

Since G∗ is of type 1 there exists an integer 1 ≤ i ≤ n such that vi is in

G′. In addition there exist x ∈ V (G′) such that xvi ∈ E(G′). We implement

Hajós’s construction on G′ and H∗∗∗. We delete the edges xvi of G′ and

uuk−1,1 of H∗∗∗, then identify the vertices u and vi to form a new vertex y.

Lastly we make x and uk−1,1 adjacent. This new graph we call F .
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Next we show that F −→ G∗ and F −→ H∗. The subgraph of F induced

by the vertex set V (H∗∗∗)\{u}∪{y}, call it R, is isomorphic to H∗∗∗−uuk−1,1.

It follows that R −→ G∗[{v1 . . . vn}] and every homomorphism, γ, from R to

G∗[{v1 . . . vn}] is such that γ(uk−1,1) = γ(y).

Let γ1 be a homomorphism from R to G∗[{v1 . . . vn}] such that γ1(y) = vi.

Then γ1(uk−1,1) = vi. Let γ2 be the mapping γ2 : V (F ) \ V (R) −→ V (G∗)

defined as follows. For all a ∈ V (F ) \ V (R), γ2(a) = a. Then, let γ be the

mapping γ : V (F ) −→ V (G∗) defined, for all a ∈ V (F ), by

γ(a) =

{
γ1(a) if a ∈ V (R) ;

γ2(a) if a ∈ V (F ) \ V (R) .

Then γ is a homomorphism, where the edge xuk−1,1 in F is preserved by the

edge xvi in G∗.

Similarly the subgraph of F induced by the vertex set V (G′) \ {vi}∪{y},
call it Q, is isomorphic to G′ − xvi. Therefore Q −→ H∗[{w1 . . . wn}] and

every homomorphism, ϕ, from Q to H∗[{w1 . . . wn}] is such that ϕ(x) = ϕ(y).

Let ϕ1 be a homomorphism from Q to H∗[{w1 . . . wn}] such that

ϕ1(x) = wj. Then ϕ1(y) = wj. Let ϕ2 be the mapping ϕ2 : V (F ) \V (Q) −→
V (H∗) defined, for all a ∈ V (F ) \ V (Q), by ϕ2(a) = φ(a), where previously

φ : V (H∗∗∗) −→ V (H∗) and V (F ) \ V (Q) ⊆ V (H∗∗∗). Finally let ϕ be the

mapping ϕ : V (F ) −→ V (H∗) defined, for all a ∈ V (F ), by

ϕ(a) =

{
ϕ1(a) if a ∈ V (Q) ;

ϕ2(a) if a ∈ V (F ) \ V (Q) .

Then ϕ is a homomorphism, where the edge xuk−1,1 in F is preserved by the

edge wjzk−1 in H∗.

Case (iii). Similar to the situation for H∗ in Case (ii), there exist paths P1

and P2 belonging to G∗ and H∗, respectively, with P1 of length k, and P2 of

length `. In addition P1 connects a vertex e of G′ to a vertex vi in a manner

such that the internal vertices of P1 do not belong to G′ or G∗[{v1, . . . , vn}].
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Similarly P2 connects a vertex f of H∗[V (H ′)] to a vertex wj in a manner

that all internal vertices of P2 do not belong to H ′ or to H∗[{w1, . . . , wn}].
Let P1 = (e, z1, . . . , zk−1, vi) and P2 = (f, z′1, . . . , z

′
`−1, wj). Construct graphs

G∗∗ and H∗∗ in a fashion similar to that of H∗∗ in Case (ii) with

V (G∗∗) = V (G′) \ {e} ∪ {u1, . . . , un}

and

V (H∗∗) = V (H ′) \ {f} ∪ {u′1, . . . , u′n}.

Finally, construct graphs G∗∗∗ and H∗∗∗ with vertex sets

V (G∗∗∗) = V (G∗∗) ∪ {u} ∪
( ⋃

1≤i≤k−1

{ui,1, . . . , ui,n}
)

and

V (H∗∗∗) = V (H∗∗) ∪ {u′} ∪
( ⋃

1≤i≤`−1

{u′i,1, . . . , u′i,n}
)
,

in the same manner that H∗∗∗ of Case (ii) was constructed. Then G∗∗∗

and H∗∗∗ are (n + 1)-chromatic graphs that are homomorphic to G∗ and

H∗, respectively. Furthermore G∗∗∗ − {uuk−1,1} and H∗∗∗ − {u′u′`−1,1} are

n-chromatic.

Delete the edges uuk−1,1 of G∗∗∗ and u′u′`−1,1 of H∗∗∗ and identify the

vertices u and u′ to form the vertex y. Lastly make uk−1,1 and u′`−1,1 adjacent.

This new graph we call F . The mapping φ1 : V (G∗∗∗−u) −→ V (G∗) defined

by

φ1(x) =


x if x ∈ G∗∗∗[V (G′) \ {e}] ;

e if x = ui for some 1 ≤ i ≤ n;

zt if x = ut,s for some 1 ≤ s ≤ n.

where 1 ≤ t ≤ k − 1, is a homomorphism from G∗∗∗ − u to G∗. Whilst the

mapping φ2 : V (H∗∗∗ − u′) −→ V (H∗) defined by

φ2(x) =


x if x ∈ H∗∗∗[V (H ′) \ {f}] ;

f if x = u′i for some 1 ≤ i ≤ n;

z′t if x = u′t,s for some 1 ≤ s ≤ n.
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where 1 ≤ t ≤ `− 1, is a homomorphism from H∗∗∗− u′ to H∗. We shall use

these two homomorphisms to prove that F −→ G∗ and F −→ H∗.

The subgraph of F induced by the vertex set V (H∗∗∗) \ {u′} ∪ {y}, call

it R, is isomorphic to H∗∗∗ − u′u′`−1,1. Thus R −→ G∗[{v1 . . . vn}] and every

homomorphism, γ, from R to G∗[{v1 . . . vn}] is such that γ(u′`−1,1) = γ(y).

Let γ1 be a homomorphism from R to G∗[{v1 . . . vn}] such that γ1(y) = vi.

Then γ1(u
′
`−1,1) = vi. Now, let γ be the mapping γ : V (F ) −→ V (G∗) defined,

for all a ∈ V (F ), by

γ(a) =

{
γ1(a) if a ∈ V (R) ;

φ1(a) if a ∈ V (F ) \ V (R) .

Then γ is a homomorphism, where the edges yuk−1,i, 2 ≤ i ≤ n, and the

edge u′`−1,1uk−1,1 of F are preserved by the edge vizk−1 in G∗.

The subgraph of F induced by the vertex set V (G∗∗∗)\{u}∪{y}, call it Q,

is isomorphic to G∗∗∗ − uuk−1,1. Therefore Q −→ H∗[{w1 . . . wn}] and every

homomorphism, ϕ, from Q to H∗[{w1 . . . wn}] is such that ϕ(uk−1,1) = ϕ(y).

Let ϕ1 be a homomorphism from Q to H∗[{w1 . . . wn}] such that ϕ1(y) =

wj. Then ϕ1(uk−1,1) = wj. Let ϕ be the mapping ϕ : V (F ) −→ V (H∗)

defined, for all a ∈ V (F ), by

ϕ(a) =

{
ϕ1(a) if a ∈ V (Q) ;

φ2(a) if a ∈ V (F ) \ V (Q) .

Then ϕ is a homomorphism, where the edges yu′`−1,i, 2 ≤ i ≤ n, and the edge

uk−1,1u
′
`−1,1 of F are preserved by the edge wjz

′
`−1 in H∗.

Lemma 33. The following statements are equivalent:

(a) For all n ∈ N and every two n-critical graphs G and H there exists an

n-critical graph F such that F −→ G and F −→ H.

(b) For all n ∈ N and every two connected n-critical graphs G and H there

exists an n-critical graph F such that F −→ G and F −→ H.
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Proof. Clearly (a) implies (b). Thus our task is to prove that (b) implies

(a). So assume (b) and allow G and H to be n-critical graphs where at least

one is disconnected. Then G and H have n-critical components G′ and H ′,

respectively. Therefore, by (b), there exists an n-critical graph F such that

F −→ G′ and F −→ H ′. Since G′ −→ G and H ′ −→ H it follows by Lemma

3 that F −→ G and F −→ H. This completes our proof.

With the aid of Theorem 12 we have that (b) of Lemma 33 is equivalent

to the Hedetniemi Conjecture. Which implies that we need not consider dis-

connected graphs when proving the Hedetniemi Conjecture. Thus Theorem

14 is a special case of the Hedetniemi Conjecture. Therefore what has been

proven so far is that for all positive integers n > 1 and every two connected

n-critical graphs G and H with ω(G) = ω(H) = n − 1 there exists an n-

critical graph F that is homomorphic to G and H. What remains, in order

to prove the Hedetniemi Conjecture, is to show that there exists such a graph

F for the following two scenarios:

(a) ω(G) = n− 1 and ω(H) < n− 1

(b) ω(G) < n− 1 and ω(H) < n− 1.

Our hope is that the technique employed in the proof of Theorem 14 could

be applied, with possibly some modification, in proving the result for the

two above mentioned scenarios. We should mention that Duffus, Sands and

Woodrow, in [7], pondered an approach to proving the Hedetniemi Conjecture

through a technique that utilises Hajós’s construction. Various note-worthy

techniques have been used in proving special cases of Hedetniemi’s conjecture

and one more does not hurt.
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