Innovations Syst Softw Eng (2008) 4:223-231
DOI 10.1007/s11334-008-0058-2

From use cases to test cases via meta model-based reasoning

Position paper: work in progress

Stefan Gruner

Received: 1 July 2008 / Accepted: 26 July 2003 / Published online: 12 August 2008

© Springer-Verlag London Limited 2008

Abstract In Use cases considered harmful, Simons has ana-
lyzed the logical weaknesses of the UML use case notation
and has recommended to “fix the faulty notion of depen-
dency” (Simons: Use cases considered harmful. 29th Confer-
ence on Techn. of OO Lang. and Syst., pp 194-203, 1999).
The project sketched in this position paper is inspired by
Simons’ critique. The main contribution of this paper is a
detailed meta model of possible relations between use cases.
Later in the project this meta model is then to be formalized
in a natural deduction calculus which shall be implemented
in the PROLOG. As a result of such formalization a use case
specification can be queried for inconsistencies as well as for
test cases which must be observable after a software system
is implemented based on such a use case specification. Soft-
ware tool support for this method is also under development.

Keywords Use cases - Test cases - Meta model - PROLOG

1 Motivation and overview

The UML is notorious not only for its commercial popular-
ity but also for its vagueness and ambiguity. For this rea-
son various sub-languages of the UML have already been
subject to the application of precision enhancing techniques:
for example there is the well known OCL in support of UML’s
structural notations (class and object diagrams), whereas
a considerable number of papers deals with formal

This project is supported by Formal Methods Europe as well as the'
Research and Development Programme of the University of Pretoria.

S. Gruner (X))

Department of Computer Science, Universiteit van Pretoria, .
Pretoria, Republic of South Africa

e-mail: sg@cs.up.ac.za

representations of UML's state transition diagrams in more
precise notations such as B [15].

Rather few papers, however (see section “Related work”
below), deal with the precision of UML’s use case (UC) dia-
grams, in spite of popular voices announcing UC diagrams
as the premier language of the UML, upon which everything
else depends [7]. If UC modeling is really as relevant as it is
often announced to be, then great care must be taken about
the precise meaning of a UC specification before any misun-
derstandings can procreate themselves as errors and defects
in the software code being derived from it. For example, what
would it mean for the processes of a “live” subject system if
an actor could trigger a UC which is designed as a mandatory
inclusion of another UC? Figure 1 depicts such a question-
able scenario, simply for the sake of stimulating the reader’s
problem awareness.

In this context it is interesting to note how the authors of
[7], arguing explicitly from a commercial position, praise
exactly that kind of above-mentioned ambiguity and vague-
ness which the scientifically minded software engineer is
determined to stamp out. Therefore we! will not take [7] too
seriously their affinity to vagueness and ambiguity is con-
cerned, but we take them seriously as far as their emphasis
of the UML-UC notation as the starting point of user-centred
requirements engineering in the early phases of a develop-
ment project is concerned.

In contrast to the authors of [12], who only make a small
subset of the UC notation accessible to FDR model check-
ing, we aim at a theory for the full UC notation that allows
not only for checking the internal logical consistency of a
UC specification, but shall also enables us to—eventually—
generate high-level test cases directly from a consistent UC

specification.

! T am supported by project students: see “Acknowledgments”.

@ Springer

224

S. Gruner

e, ?
— :
<<j 55~ ey T
include: >< ek
_/

Fig. 1 Motivation: what is the precise meaning of this UC diagram?

The main contribution of this paper is a rich meta model
of possible relations which could be established between UC
or, more precisely, their process instances. This set of pos-
sible relation types exceeds by far the few relation types
which are defined upon UC by the UML. As soon as this
meta model of relations is established, meta relations (i.e.
axioms and rules) can be formulated which enable the search
for inconsistencies within a given UC specification as well
as the search for implementation consequences arising from
the given specification; these consequences should then be
empirically testable after the system is implemented.

The definition and formalisation of all those consistency
rules, however, is ongoing project work and, therefore, not
in the scope of this concept proposal paper any more.

1.1 Method

We distinguish various UC relations about which we want
to reason. These relations are classified into the following
categories:

Diagrammatic relations are those ones which are depicted
by various types of lines between UC and actors in the
standard UML diagrams [7]. We can also call these rela-
tions explicit because of their “visual” appearance in the
UC diagrams.

Modal relations are those ones (between UC and/or actors)
which are newly introduced in our approach, for the sake
of enriching the information which is transported by a UC
diagram between the stakeholders of a software develop-
ment project. In our theory we introduce basically two
new modal categories of UC relations:

— Temporal: to reason about “before,” “during,” and
“after” in several variations, and
AN 17

— Causal: to reason about “enable,” “trigger,” precon-
ditions, etc.,2

whereby it should be noted that a particular temporal
order does not necessarily imply a causal one. We also call

2 The standard UML “trigger” relationship between an actor and a UC,
or between two UCs, is in fact a causal relationship; however, in our
model the possibility of building causal expressions is considerably
expanded beyond this one, simple form of causality.

@ Springer

these relations implicit, because they cannot be “seen” in
the classical UML UC depictions.3

Note that, in principle, a UC could also be somehow related
to itself in structural recursion, though this is rarely seen in
industrial UC specifications. Such self-references to the UC
specification level would have to be adequately interpreted in
terms of their actual instances during the lifetime of the sub-
ject system. For example, a UC which < <includes> > itself
could model a recursive system in which a parent process
generates child processes of its own kind. Or for example,
if there is mutual exclusion relation of a UC from itself on
the level of specification (UC diagram), then we would have
actually modelled a “singleton pattern” to such an extent that
no two process instances of that UC can be alive in the subject
system at the same moment in time.

Consequently we must distinguish clearly between UC
as descriptions and their process instances, in analogy to the
distinction between classes and their object instances in OOP.
For the sake of well-behaved software systems derived from
such UC descriptions we stipulate:

— The possible infinity of a system stems from the infinite
number of UC instances living sequentially or simultane-
ously over the time, whereas each individual UC instance
is finite and must terminate after a non-infinite amount of
time.

— The generation of new UC instances by already existing
UC instances, which might possibly result in an infinite
system, may be of recursive nature and are depicted in the
UC diagram (at description level) by a looping trigger-
line from a UC symbol to itself.4

—~ For each actor role symbol (“stick-man”), we assume
exactly one singleton instance at any time.

In the logic description of such an enhanced UC meta model,
which is needed for consistency checks and property deduc-
tion on UC specifications, the basic properties will be des-
cribed by terms whereas the (meta) relations will be expressed
by predicates;, (see below for more explanations).

3 Future work could also be dedicated to hierarchical compositions of
UC, which are also not precisely defined in the standard UML, that
describe how an “outer” UC can be composed of “inner” UC that are
not visible from the outer perspective. This feature, which could be
graphically depicted by smaller UC “bubbles” being completely con-
tained within a bigger surrounding UC “bubble,” similar to inner classes
in OOP, would be in support of hierarchic system modeling strategies
which make use of abstraction and composition.

* In other words: any sloppy speaking of “an infinite UC” (or some-
thing like this) means that terminating instances of such UC can be
created again and again, and a “looping” UC would be one in which
some instance u; would give birth to a successor instance u; 11y before
terminating itself.

From use cases to test cases

225

To be able to relate those categories to UC and actors,
we must define a meta model that classifies the properties
(attributes) of them, such as “begin,” “end,” or other intrinsic
states of them. In the meta model we regards actors as special
cases of UC for the sake of theoretical uniformity. Thereby
we regard the various relationships between UC as extrinsic
properties, not as their intrinsic states.

The main part of our work will be the establishment of
meta relations as consistency axioms and rules about the pri-
mary UC relations. Our approach is “two-dimensional” in the
sense that it establishes laws (or meta relations) for (at most)
pairs of relations; in other words, conclusions are drawn from
maximally two premises on top of the conclusion line. For-
mally this is the usual rule structure in “natural” deduction
calculi, and materially (w.r.t. a UC diagram) this corresponds
to a locality principle in which only small sub graphs of a
UC specification graph are under scrutiny at the same time.’
Thus, we will be dealing with set of consistency axioms and
rules of the following forms (schemes):

UCZUC
UCZUC UCZUC
consequence consequence

whereby % are various possible relations in which two UC
(or, more precisely, their runtime instances) can be found,
and the consequence is another description of UC relation-
ships or properties that must hold for the sake of the
consistency of the specification. This will make automated
reasoning about an entire UC specification possible. Those
abstract rule schemes can then be made concrete by instantia-
tion, yielding rules which can be implemented in the PROLOG
in a straightforward manner.

~ For example if we know that ' is a sub UC of u (via the
inheritance relation =) and u has any property R—which
could even be a relation to yet another UC u”—then the
automated reasoning engine must be able to conclude that u’
is in possession of property R, too, formalized as:

w'=su

uRu’

u/ R u/l
-Another example of a consistency rule of this scheme: if an
event e is happening before another event ¢, and ¢’ happens
before ¢”, then e also happens before e”.%

Finally we had to make a decision about how to repre-

sent the “ontology” of our model: though we could have

5 Future work, if necessary, may attempt at generalizing our approach
from two-dimensional to three-dimensional, or even n-dimensional,
meta relations, respectively, consistency rules, which would materially
correspond to the scanning of larger areas of a UC specification graph
for patterns of inconsistency.

6 For the purpose of this paper we assume to be located in a small region
of a Newtonian universe and do not take any Einsteinian considerations
of relative time lines, light cones, etc., into account.

chosen some notation developed in the field of Description
Logics (DL) which have attracted considerable attention in
the “ontology” community, we have chosen to express our
model directly in the well known executable logic specifi-
cation language PROLOG, not at least because of nowadays
available PROLOG/JAVA interfaces, which should allow for
a comparatively easy integration of the executable PROLOG
UC model into a mostly JAVA-implemented prototype for the
demonstration of the feasibility of our ideas.

1.2 Use cases and their instances

Commercial literature on UC modeling, for example [7],
does not clearly distinguish between a UC description (rep-
resented by an oval “bubble” in a UML UC graph) and its
actual runtime instances which are, in fact, processes. This
difference is in analogy to the relationship between classes
and objects in OOP. In a “live” software system, more than
one process instances could possibly exist to any one UC
“bubble,” either simultaneously at the same time, or sequen-
tially at different points of time, or even in a combination of
both. Consequently, if (4 Z u’) is a relationship defined in a
UC specification, we will have to reason especially about the
consequences of Z as far as the process instances of and
u' are concerned. For this reason our model will also make
use of the usual existential and universal quantifiers (on UC
instances), as it is further described in the remainder of this

paper.

2 Use case meta model

As the detection and formalisation of valid consistency rules
on UC specifications, as mentioned above, is still ongoing
work in its early stages, the main contribution of this pro-
posal paper is the definition of a meta model which shows
(and structures) the “pool” of all possible relations between
(or properties of) UC. These relations can be used to instan-
tiate the materially empty rule schemes (introduced in the
previous section), in order to obtain the concrete applicable
consistency rules on which the operations of the planned UC
reasoning engine are based. /

To reason formally about a UC model, a number of
attributes must be introduced to a UC in the fashion of an
“ontology.” Whilst some of those attributes will be static in
nature (for example, some UC could be a mandatory or
optional to sub-UC to some other UC, which is always the
case), other UC properties are of dynamic nature in the sense
that their value can change during the lifetime of a UC ins-
tance. Forexample, temporal reasoning aboutone UC instance
happening before or during of after another UC instance does
only make sense if there exists a changeable state attribute
value which reflects the “ticking of time” during the lifespan

@ Springer

226

S. Gruner
of a UC instance. In the following, we present our meta model
at two conceptual levels: En ' , Instance- |
. s % g Quantiier

— Aclass diagram shows what types of entities (e.g. normal p +death

UC or actors) we have and which kinds of attributes they ‘

carry:

i : Process-
— Whereas some attributes represent unary relations L = - 4 Sass

(e.g. internal values such as instance birth time) other
attributes represent binary relations between two
entities.”

— Whereas some attributes in the meta model represent
standard relations between UC according to the UML
(which we also called the diagrammatic ones), other
relational attributes represent the new contributions of
our meta model; these are also called the modal ones.

— Then, on a conceptually finer level, possible values of the
dynamic (time related) attributes are defined in terms of
a simple finite state machine.

— The different states of a UC evolving over time allow
for finer temporal modelling; e.g. we cannot only say:
“this UC happens before that UC” but we could also
say more precisely, for example: “this UC terminates
after that UC has started,” or something like this.

As mentioned above, all UC instances are regarded as “mor-
tal” and finite in time, and the possibly infinity of a subject
system would result from the unlimited creation of such finite
instances—*“unlimited” either in the number of instances sim-
ultaneously existing at any particular point of time, or unlim-
ited as far as the life span of the entire system is concerned
(possibly with only a finite number of instances existing at any
point in time); this is probably the practically relevant case.

Anyway, this reduction of infinity to finite instance com-

ponents allows us to model any UC instance as a simple
state machine as shown below. Thereby, the internal states of
such a2 UC machine are the above-mentioned basic (unary)
properties that underly the modal reasoning about the vari-
ous relationships of UC amongst each other. Moreover, our
notion of a “successfully terminated” UC instance—in con-
trast to an “aborted” one—may include the generation of
data which might be used as input by other UC instances.
According to the learned practice of software engineering,
our model deliberately abstracts away from such detail at
this early stage of requirements engineering.

As far as the actors are concerned, we follow the usual
UML convention according to which the actors represent the
external world, from the system’s perspective. Therefore we
do not assume anything about actors except their unlimited
existence and ability to act; consequently we do not attribute
any internal states to them.

7 UC nesting would be even n-ary. &

@ Springer

Fig. 2 Meta model: use cases, actors, relations, and states

2.1 Top layer of the meta model

Figure 2 shows the top layer of our UC meta model. The
central concept is, indeed, the relation, and not the UC itself.
The picture of Fig. 2 is explained as follows:

Relations have entities that they “bind” together, as well
as—possibly—some quantification (existential or uni-
versal) as far as the instance processes to the partici-
pating entities are concerned. Sub-classes of relations
will be shown and explained later in this paper; ditto for
the possible sub-classes of instance-quantification where
applicable.

Entities have time attributes representing their “birth” and
“death” of UC instances. These time attributes allow for
reasoning about “before” or “after” relationships, etc. |

Actors are entities which are represented by the well known
“stick-men” in the pictorial UC diagrams. Belonging to
the external world outside the system boundaries, we
cannot attribute any system properties to them. They
are assumed to be always available, thus for any actor
instance we assume actor.birth = —oo, and actor.death
= +00.

Use cases are the system-internal entities which are repre-
sented by the well-known “bubbles” in a UC specifica-
tion. The lifetimes of their process instances are limited,
thus we have 0 < (p.death — p.birth) < oo for every UC
instance p. Moreover, every UC instance can go through a
sequence of states during its lifetime (as further explained
below); therefore a process state class is associated with
the UC class in our meta model.®

2.2 Inner structure of use cases

A UC is more than a “bubble” in a UC diagram; it has
an inner structure which, according to the industrial liter-
ature [7], comprises the following attributes: name, model

8 Not depicted in the UC concept of Fig. 2 are the other internal UC
attributes that are usually found in a UC specification, such as pre-
condition, post-condition, etc. [7]—some of them are modeled explic-
itly as relationships, as shown in the following sections below.

e R

From use cases to test cases

227

e SN 8 T E . E: state of virtual existence
——— E—{R+—{T) R running
= T: terminated successfully
alfe H: halted un-successfully

&: enabled by pre-condition
2 s: started by actor
(\H,) a: aborted by actor

€: internal epsilon-transition

Fig. 3 Finite state machine model of a UC instance: these states are
attributes of the UC class in the meta model

iteration phase, summary, basic course of events, alternative
paths, exception paths, extension points, triggers, assump-
tions, pre-conditions, post-conditions, related-business rules,
author, and date.

In non-rigorous forms of UC modeling, the values of these
UC attributes are simply text strings (though some algorith-
mic aspects of a UC can also be expressed in terms of state
machine notations which are offefed by other formalisms
of the UML notation). Moreover, the conceptual difference
between “assumptions” and “pre-conditions” in [7] is typ-
ically vague, as is the conceptual difference between “pre-
conditions” and “triggers” in the informal approach to UC
modelling.

In our model, only the following few UC attributes are
explicitly represented for the purpose of consistency check-
ing and logic reasoning at a high level of conceptual abstrac-
tion:

— Any UC’s basic course of events is abstractly represented
by a simple finite state machine (as further described
later).

Z triggers and pre-conditions are represented by external
UC relationships which belong to some sub-classes of
the relation class of Fig. 2 (as further described later).

Post-conditions are not explicitly modelled here for two rea-
sons: (i) in most cases, the post-condition of one UC will be
the pre-condition of another UC, and (ii) in many cases the
post-conditions make statements about the data configura-
tion of the to-be-modelled subject system; however, we do
not take subject (system) data into account at all at this high
level of meta modelling.

Figure 3 depicts the abstract state transition diagram to
every UC instance (process) of a “living” subject system.
For the sake of reasoning about a UC specification, the meta
model automaton also contains a virtual “ghost” state before
the actual “birth” of a UC instance in the subject system.
Thus, in our theory, a UC instance is regarded as “virtu-
ally” existent as soon as it is enabled (i.e. its pre-condition
is fulfilled), whereas it is actually existent only after being
triggered by an actor (from outside the system boundaries)
or by a parent process (from within the subject system).

Successful termination will eventually occur,” unless the
process is halted either by internal failure or by external abor-
tion (triggered by an actor from outside the system bound-
aries). As explained above, no UC instance can thus “live”
forever, though the subject system as a whole could well
“live” forever by giving birth to process instances in arbi-
trary numbers. Of course, transition s from E to R in Fig. 3
could also be induced by another UC via an < <include> >
or < <extend> > relationship—this should be obvious to any
reader with some experience in UC modelling and does not
need any further mentioning.

2.3 Classical instance-quantified relation types

In our meta model, all relationships between UC “bubbles” in
a UC specification are binary and directed. As a UC “bubble”
is only a representation of its extension (set of instances) the
question arises how a relation u R u’ between to UC u and u’
should be interpreted in their extensions e(u) and e(#’). This
needs to be further specified by the designers of the subject
system.

For this purpose, every relation R in the meta model is
attributed with two quantifiers: one for the domain side of
the relation, and one for the range side of the relation; thus
the following is true:

RS

whereby Q, Q' € 2 = {v, 3,3!, A). In other words, 2 is
the set of the four classical syllogistic quantifiers “one” (3!),
“some” (3), “none” (A), and “all” (V).

Example: Given two UC u and «/, their extensions e(u)
and e(u’) and a UC relation R relating u and u’ to u R «/,
then the process instance relation

e(u) RY e()
would be interpreted as:
lpeew): (Vp' eew'): p R p),

whereby p and p’ are runtime instances (processes) of UC
within a “living” subject system. The reader can easily imag-
ine that many useful relation types can be stipulated in this
way, including injection, bijection, surjection, the complete
relation (“all-to-all”), etc.

In this context we conjecture that UC specifications can be
made more precise and testable by quantifying UC relation-
ships in the form of above. Figure 4 depicts the corresponding
part of the meta model: note the self-association of the super-
class which denotes the binary pairing of those four classical
extension quantifiers.

9 This could include the production of data, which is, however, not
explicitly modeled by our high-level model. Moreover, we would
assume the fulfiliment of any post-conditions, which our theory does
not model explicitly either, only in this successful termination state.

@ Springer

228 S. Gruner
i M= | feammc s mammm——-———— o Ralatin o —m————— - 2
! Relation [~ === > g’fﬂ?ﬁ; I]// binary, directed g ‘ Relal’taen i &
] = 1
i #UML Use-Caseg
' [i [I _Canomcal # Diagrams Temporal
Alt l None One Somne
- St ——
- Causal
Fig. 4 Part of the meta model defining the instance quantifications T
of UC relations [| l 1
| 1 1 |
Inherit Extend { include “Trigger
2.4 UC relations defined by the UML l__.l__l
. ' Start Abort
The relations between UC and/or actors can be further clas- L

sified in the lower layers of our our meta model. There are,
of course, the canonical relationships which are well known
from the standard UML literature:

Inheritance, similar to class-inheritance in OOP, either
between two actors or between two UC, but never
“mixed.” A precise UC inheritance semantics has been
suggested by Pierre Metz in [10].

Triggering in which an actor instance invokes a UC instance
(via state-transition s according to Fig. 3 of above). In our
meta model, this canonical triggering relationship will be
divided into further cases (as explained below).

<<extend>> with an implicit deontic modality “optional,”
between UC only.

<<include>> with an implicit deontic modality “manda-
tory,” between UC only.

As soon as two entities (UC and/or actors) are “connected”
via any of these relations, we can start to reason logically
about the consistency (meta) relations which must hold as
far as the other properties of the thus connected entities are
concerned. In addition to those canonical UC relations we
also want to reason about the modalities of causality and
time-order (relative time of entities to each other, not absolute
time in terms of numeric values), for which we introduce the
according new sub-classes to the relation class in our meta
model, too.

As far as the canonical triggering (of UC by actor) is
concerned, we introduce a new distinction between start-
triggering (state transition s in Fig. 3) and abort-triggering
(state transition a in Fig. 3) whereby the start-trigger can be
further qualified in terms of two deontic modalities namely
“mandatory” (actor must invoke an instance of this UC at
some point in the lifetime of the subject system), or “optional”
(actor may invoke an instance of this UC). The deontic quali-
fication of the abort-trigger, on the other hand, would always
be “optional,” because it does not make sense in practice to
abort any running UC instance in every case.

@ Springer

Fig. § Classification of temporal and causal relations

Figure 5 shows the correspénding layers of the meta
model, whereby the canonical concepts are depicted in green
colour. Note that most of the canonical relations are also
causal ones, which is depicted by the multiple inheritance of
meta model concepts in Fig. 5 (see blue lines).

2.5 Temporal relationships

Distinguishing for each UC instance a start time and a stop
time as explained in Fig. 3 (i.e. no non-terminating instances),
two UC instances can only be found in any one of the fol-
lowing time relations which are depicted in Fig. 6. If two
UC symbols are given in a UC specification diagram, the
software engineer should be able to stipulate one of these
relations upon them such that further reasoning about their
process instances becomes possible. It is obvious that an
“After” relation is only the inversion of the “Before” rela-
tion (i.e. p A p’ if and only if p’ B p); therefore no “After”
relation is shown in Fig. 6. In the meta model, all relation
types (4, ..., G) shown in Fig. 6 are sub-classes of the tem-
poral class of Fig. 5.

2.6 Causal relationships

Figure 5 shows a yet un-expanded super class of the meta
model for causal relations, which needs further refinement.
Thereby the notion of causation must relate not only to the
entities (UC or actors) themselves (which can receive or trig-
ger causation) but also to the states of the process machine
model (of the UC instances) as depicted in Fig. 3—in other
words: we want to be able to distinguish causations of “Start,”
causations of “Stop,” etc. These are in fact actual (i.e. phys-
ical) triggers. Moreover, following [7], we also know condi-
tional (i.e. logical) causations, which enable or prevent the

e T 2 i R e 1 e

ey i T T A o e TN

From use cases to test cases

229

Type A|® > b

v

"zvl
3
2]
?
v
v

[Typec® >i S
PS o

TypeDid : >
= & >|
T)3 :

=

<
L
@
[]
v

Fig. 6 Different sub-classes of temporal relations

Causal

Actuat
(= Trigger)

Conditional

1
L 1

e
i
L]
o= |

Enable - Disable.
{positive {negative
precond) precond)

Fig. 7 Different types of causal relations

actual triggering of a process without actually doing the trig-
gering.

Figure 7 concludes our presentation of the new meta model
with the full expansion of the causation class. Also remember
that there is an extensional “overlap” between the causation

, class and the canonical (UML-defined) relation types; for

example the UML relationship between an actor and a UC is
a causal relationship; those are all actual ones, not conditional
ones.

2.7 Deontic qualities

Deontic logics can describe what “may” or “must” or “must
not” be done. For example an actor @ may trigger this UC,
but must not trigger that UC, which could be relevant as far
as access (login) permissions and other security features of
a software system are concerned. For our project we had to
decide whether or not to explicitly introduce deontic classes
into our meta model (and associate them to various entities
and relationships). However, it turned out that those deontic
qualities are already implicitly modeled by the instance quan-
tifications 2 described above, such that no further classes
need to be added to the meta model for this purpose.

For example, if an actor ¢ may or may not (optionally)
trigger some UC u via a trigger relation T—thus: ¢ T u—
then T could get in some form existentially quantified (rather
than all-quantified) in order to express this optionality of the
action.

2.8 Negation

Except of the A quantifier in 2, negation is generally
expressed implicitly, namely by omission, in our model. For
example, if there is no trigger relation between a particular
actor a and a particular UC u, then we may conclude that a
must not trigger # under any circumstances. For the PROLOG-
based reasoning “behind” such a UC specification we would
thus work with PROLOG’s well known negation-by-failure
semantics.

3 Ongoing work in this project

After having outlined an elaborate meta model of the UC
language in the previous section, we must now state what we
want to do with it in the next phases of our project.

3.1 Meta relations

Meta relations are consistency axioms and consistency rules
about the relations which are defined in the meta model of the
previous section. With all those many relations available the
combinatorial possibility for such consistency rules are large,
and it will take time and effort to discover the relevant and
useful ones before they can be formalised and implemented.
The difficulty of this rule finding exercise stems from two
sources:

— We want to reason about testable UC instances (i.e.
processes at runtime) rather than the abstract UC “bub-
bles” which only represent those instances at the highest
possible level of abstraction.

— The relationships about the UC instances (processes) are
quantified (universally or existentially) on either side of
the binary relationship, which multiplies the number of
potential rule candidates to be examined for validity.

Once a valid consistency rule has been found, its implemen-
tation in PROLOG (or any other deduction language for that
matter, such as OPSS5) should be a rather straightforward
exercise. Once the rules are implemented, it shall be possible

— To detect logical flaws within a UC specification before
any software development takes place, and

— To query the PROLOG model with regard to properties
of UC instances which must hold after the software

@ Springer

230

S. Gruner

development has taken place. Then we could ask ques-
tions such as: “is it true that all instances of UC # must
terminate before any instance of UC u’ can be born?”
In other words, we shall be able to generate test cases
directly from a UC specification.

3.2 Graphical user interface of a prototype

To make the UC specification system more user-friendly for
the industrial practitioner, its logic engine should be “hid-
den” behind a graphical user interface. The idea is that the
user should be able to “attach” the additional specifications
(as defined by our meta model) to a graphical UC specifi-
cation which consists mainly of the typical “stick-men” and
“bubble” diagrams. Such an enhanced UC specification must
then be translated into textual form (in an XML-like formal-
ism similar to [2,11]) such that it becomes amenable to (text-
based) automated reasoning.

From the XML representation of a logically enriched UC
specification, we could then derive the facts on which the
PROLOG engine can start its work. The technical (not so much
scientific) challenges in this scenario are thus:

— To extract PROLOG facts from a mainly graphical, logi-
cally enhanced UC specification,

— Tocouple a JAVA-implemented UC-Editor with an under-
lying PROLOG interpreter, and

— To propagate graphical (“visual”) information back into
the graphical UC specification editor after the PROLOG
reasoning process has discovered any inconsistency in
a UC specification; for example to highlight a logically
impossible specification element in red colour, or some-
thing like this.

3.3 Nested use cases

Our meta model does not contain an n-ary nesting relation
on UC which would allow for drawing smaller UC “bubbles”
within a larger “bubble” of a higher-order UC. Higher-order
(or nested) UC are explicitly discouraged by [7], but never-
theless we think that they might be useful for the purpose of
top-down system modeling at different levels of abstraction.
Future work would have to expand the meta model as well
as the set of consistency rules into this direction; thereby the
logic rules for nested UC would probably have the character
of refinement rules.

3.4 Related work and literature studies
Though we have reason to believe that our approach is quite
original, we are aware that we are not operating in an

un-explored void. In our yet ongoing literature studies we
have found a number of interesting papers which are pointing

@ Springer

into the direction of which our project is going. For exam-
ple, the application of modal and deontic logic in computer
science and software engineering is studied by [3,5,9,13].
Another ontology (meta model) approach to UC reasoning
can be found in [4]. Approaches to giving process semantics
to UC specifications can be found in [1,6,8].

4 Summary

This position paper (category: work in progress) outlined a
project towards making UC specifications—previously con-
sidered harmful [14]—more useful and less ambiguous. This
shall be achieved by a rich arsenal of UC relations, which
exceeds by far the small set of UC relation types defined
by the UML. A more or less fully elaborated meta model of
such relations has been provided in this paper as its main con-
tribution. As soon as the consistency rules (meta relations)
on these rules are discovered and formalised, logic reason-
ing about UC specification will be possible. The objective
of such reasoning is twofold, namely to detect logical flaws
within a UC specification itself (before system implementa-
tion), and to guery a UC specification for test cases which
must hold empirically (after system implementation).

Acknowledgments I would like to thanks my student helpers Ezra
Jivan and Pierre-Henri Kuate for their efforts with the implementation
of the prototype, as well as for their help with the literature search.
Ezra Jivan is also helping with the discovery of valid consistency rules
over the domains of UC relations as outlines in the meta model. Formal
Methods Europe (FME) and the University of Pretoria are supporting
this project financially. The P-UML (precise UML) community has
provided valuable hints about literature and related work. Last but not
least thanks to the anonymous reviewers of the UML+FM’ 08 Workshop
for their critique; it has been taken into account for this published version
of our paper.

References

1. Back RJ, Petre L, Paltor IP (1999) Formalizing UML use cases in
the refinement calculus. Technical Report TUCS-TR-279

2. Bisova V, Richta K (2000) Transformation of UML Models into
XML. In: ADBIS-DASFAA symposium, pp 33-45

3. den Haan N (1995) Investigations into the application of deontic
logic. LNCS 897

4. Genilloud G, Frank WF (2004) Use case concepts using a clear,
consistent, concise ontology. J Object Technol 4/6. Special Issue:
Use case modeling at UML-2004

5. Kolaczek G (2002) Application of deontic logic on role-based
access control. J Appl Math Comp Sci

6. Kotb Y, Katayama T (2006) A novel technique to verify UML use
case diagrams. IASTED Conf Softw Eng 300-305

7. Kulak D, Guiney E (2004) Use cases—requirements in context,
2nd edn. Addison Wesley/Pearson, Reading

8. Li L (2000) Translating use cases to sequence diagrams. In: Pro-
ceedings of ASE, pp 293-296

9. Maibaum T, Khosla S, Jeremaes P (1986) A modal action logic for
requirements specification. Softw Eng 86

From use cases to test cases

231

10. Metz P (2004)Revising and unifying the use case textual and graph-

11.

12.

ical worlds. PhD Thesis, promoted by W. Weber and J. O’Brien,
Department of Computing, Cork Institute of Technology, Ireland
Routledge N, Bird L, Goodchild A (2002) UML and XML schema.
In: Proceedings of 13th Australian DB conference, pp 157-166
Ryndina K, Kritzinger P (2005) Analysis of structured use case
models through model checking. S Afr Comput J 35:84-96

13.

14.

15.

Segerberg K (1982) A deontic logic of action. Stud Logica 41:269—
282

Simons A (1999) Use cases considered harmful. In: 29th Confer-
ence on Technology of OO Lang. and Syst., pp 194-203

Snook C, Butler M (2008) UML-B and Event-B—an integration of
languages and tools. In: Proceedings of IASTED international con-
ference on software engineer (SE2008), February, Innsbruck (A)

@ Springer

INNOVA/GTIONS IN
SYSTEMS AND SOFTWARE
ENGINEERING

