A Combined Graph Schema and Graph
Grammar Approach to Consistency

in Distributed Modeling

Stefan Gruner
Institut fir Kommunikations- und Softwaretechnik
Technische Universitit Berlin
stefan@c¢s.tu-berlin.ds

Abstract. In this overview-paper, a specification method based on cou-
pled graph grammars is sketched that is able to uniformly describe legal
domain configurations which distributed modeling as well as re-engineering
tasks are based on. The specification method supports the development of
proper (re)design tools, and the method is tool-supported itself,

1 -Introduction

In this section, two well-known approaches to distributed modeling and to re-
engineering of legacy systems are roughly sketched as a reminder for the reader.
This is assumed as helpful for understanding some common characteristics of
both which can be uniformly represented in an extended graph-grammatical
framework — which is the topic of this paper. (Following a “deductive path”,
the argumentation of this paper proceeds from some general experiences to the
specific contribution.)

1.1 Re-Engineering

In her contributions [1][2][3], Cremer describes how legacy COBOL systems can
be transduced into an object-oriented architecture serving as a basis for re-
implementation with a modern programming language, or even for distribution
via the CORBA: In a first step of analysis, Cremer employs the meta language
TXL for a selective parsing of the relevant structures of the legacy system. Then
she exports the output of the TXL procedure into the specification environment
PROGRES that is based on a set-oriented algorithmic graph transformation ap-
proach. In the PROGRES environment, a homomorphic representation of the
legacy system is restructured according to the paradigm of graph grammar en-
gineering described in [21].

In their contributions [13][14], Jahnke, Schéfer, and Ziindorf describe the
transformation of relational database systems into object-oriented ones. Both
their approaches are based on graph grammar engineering, too: In [13], both the
structures of the relational database system and the object-oriented database
systems are modeled as graphs. Then, a non-deterministic graph transformation
system specifies the domain transition according to the principles of [21]. As the

M. Nagl, A. Schiirr, M. Miinch (Eds.): Proc. Intl. Workshop AGTIVE 99
LNCS 1779, pp. 247 - 254. ©Springer-Verlag Berlin Heidelberg 2000

248

tables of the relational database systems may be translated into structures of the
object-oriented system in many different fashions, the re-engineering tool offers
many alternative transition operations of which the re-engineer has to choose.
In [14], the procedure has been further evolved.

1.2 Distributed Modeling

The purpose of distributed modeling is to reduce the design complexity by work-
sharing among several designers. The VIEWPOQINTS approach of Finkelstein et
al. [6][7][8][9) is especially interesting because of its possibility of delaying consis-
tency checks (and inconsistency repair) until explicit demand. Goedicke, Taent-
zer et al. have shown that VIEWPOINTS’ original specification based on first-
order logic can easily be substituted by a specification based on graph transfor-
mation [5][10].

1.3 Generalization.

Both in re-engineering and in distributed modeling one is concerned with the
mutual consistency of two or more domains. From this point of view, the main
differences between those software engineering tasks are intentional differences
reflected by the dimension of time #: In re-engineering, some system A (maybe
a structure, a program, a document, etc.) is living in domain D4 from ¢_, until
to while some corresponding system B is living in domain Dg (whereby not
necess. Dy # Dp) from t_y until £, such that A and B are consistent with each

‘other at #p (with t_, < #_, <ty < tz). In distributed modeling, all involved

systems A;, ..., Ay, evolving in their domains Dayy..., Dy, fromi) toty need
to be consistent (or, in weaker approaches: partially consistent) at certain times
1L <...<ty; <ty <...<tr. Thus, by abstraction from those details, one may
look at models or domains as graphs, and, consequently, one may look at the
task of consistency management in re-engineering or in distributed modeling as
graph transformation. Legal domain configurations can be described as sentences
(or sentence forms) generated by special kinds of coupled graph grammars, as
further explained in the following sections.

2 Graph Grammar Specifications

The following section sketches how different specification intentions may lead to
different classes of specifications. Then, some related work is briefly discussed.

2.1 Tool 6riented View — Domain oriented View

In many graph-grammatical approaches to the solution of practical software-
engineering problems, a directly tool-oriented position is taken. In tool-oriented
specification approaches, the employed graph grammars are viewed as transfor-
mative entities that describe the operations of a tool 7' on its objects within an

B



249

only implicitly given object-domain Dp. Assumed that an ob ject. O is a member
of Dr, the tool-oriented specification ensures that a T-transformed object Of
(thus: O = O’) is a member of D7 as well. On the other hand, in a domain-
oriented specification approach the transformative behavior of a Tool 7 is not
regarded with first priority. Hence, the employed graph grammars are viewed as
generative entities in such an approach that enumerates the relevant domains
Dr themselves.} As a consequence it is possible to ask if a given object O is a
member of Dy §

2.2 Related Work

The already mentioned contributions [1][2][13][14] follow the paradigm of graph
grammar engineering presented in a paper by Schiirr, Winter, and Ziindorf (21].
According to this paradigm, one graph schema is used as a kind of hierarchic type
declaration for one graph grammar (or, more general: one graph transformation
system). Therefore, it seems quite difficult to meta-mode] the distributed mod-
eling (dealing with many domains) within the paradigm of [21]. (Consequently,
a generalization of this paradigm will be sketched below, wherein many graph
schemas and many graph grammars can be involved.)

A VIEWPOINTS-oriented approach has been taken by the authors of [5] (also
mentioned above already). Unlike the approach of [21], they do not employ a
sophisticated graph schema for the purpose of typing, but they explicitly mention
the different views of a distributed modeling environment. In order to represent
those within a graph-grammatical formalism, the authors introduce the notion
of partial grammars (or sub-grammars) being parts of a whole graph grammar.
While the sub-grammars characterize the evolution of the particular domains in
distributed modeling, the whole graph grammar represents the possible history
of the total modeling environment. (Thus, the question may arise now if it is
possible to have both the advantages of typing with graph schemas and the
explicit recognition of more than one domain.)

As already suggested more than twenty years ago by Pratt [18][19], it is
possible to glue two or more graph grammars together in a parallel fashion.
Doing so, one can describe the construction of consistent configuration of sub-
models in a distributed environment quite intuitively. Given n graph grammars
with their graph languages £;, ... £, representing the particular sub-model
spaces, and given a proper coupling specification €, the language £¢ :C £,
X...X Lp represents the space of all consistent model configurations. (This
approach has been followed by several authors [15], and a generalization of it is
sketched below.)

' Both approaches can be combined for best specification results,

¥ The membership problem of grammars is undecidable in general, of course, but for-
tunately there is a large class of useful graph grammars whose membership problem
is decidable, as proven by Rekers and Schiirr in [20].

250

3 Coupled Graph Schemas — Coupled Graph Grammars

In [11] it is described how several software development environments (which are
comprehensively explained in [15]) have been specified with coupled graph gram-
mars according to the ideas of [18][19]. The aim of this section is to argue that
the useful design technique of graph grammar coupling can be further improved
by applying a corresponding design technique of coupled graph schemas. After
the concepts are sketched in general, a small example is given below.,

3.1 Concepts

In his dissertation [12] (embedded in the research context of [17]), the author
describes how coupled graph grammars can be used to specify the integration of
different yet mutually dependent sub-models in a CAD environment for chemical
engineering. Thereby, the coupling of graph grammars is guided by the coupling
of graph schemas representing some structural constraints on the visual design
language generated by the coupled graph grammars. Formally defined in [12], the
specification approach sketched in this section generalizes the graph grammar
engineering approach of [21] in two directions: First, the concept of hierarchic
typing and super-typing of graph nodes has been transferred to the edges as
well. Second, the relation between one graph schema and one graph grammar
has been extended to a relation between n graph schemas and n graph grammars
for the sake of inter-domain consistency descriptions.

Sg N - == - \ R R
oo B
PIPE - - TANK S - LI inUse FLOW

pa e Ol e
Fig. 1 coupled graph schemas (n = 2)

In Fig.1, a coupling of two graph schemas S5 and S¢ is shown. Arrows
“~” denote that some ground types PIPE and TANK are super-typed by some
type (21) in 85, whereas some ground-types LiQ, inUse, and FLOW are super-
typed by some (22) in S¢. The thick solid lines declare that the concepts PIPE
and FLOW as well as TANK and inUse correspond to each other. However, any
correspondences between Sg and the LIQ concept are declared as forbidden which
is denoted by the broken line between LIQ and the super-type 1. (Like in the
PROGRES system [21], the ground types can be instantiated while the super
types cannot: they only serve as abstract property descriptors.)

¥



251

In a similar way, the necessary correspondences between the rules of different
graph grammars —generating the different domains of some distributed model-
ing task— can be declared. It is worth mentioning that the type-correctness of
such graph grammar couplings can be checked via those axtomatic graph schema
correspondences as they are sketched in the figure of above.

3.2 Example

Please imagine an engineering task wherein a system of tanks and pipelines
shall be modelled in correspondence —but not immediately together— with
some liquid materials flowing through the system. A graph grammar S shall
describe the possible structure of such a system whereas a graph grammar C
shall describe some properties of the liquid contents of the system.

srl §r2 d PIPE
= iy

Fig.2 rules of graph grammar S

Fig.2 shows two rules of 5. With S.r1, new tanks can be added to the system.
With S.r2, new pipelines can be added accordingly. (Please forget about the
several possibilities of graph transformation semantics at this point of discourse.)
On the other hand, let’s assume that new liquid materials shall be introduced
and their applications shall be handled. As depicted in Fig.3, this is done by the
rules C.r1, C.r2, and C.r3 of graph grammar C.

La @

. Lia r e ‘ Lia @ .

C.ri

- LIO cr3

Fig. 3 rules of graph grammar C

Supposed now that a coupling & C §s x S¢ of graph schemas is given (Fig.1)
such that {PIPE—FLOW} and {TANK—inUse} are declared as the only positive
corresponding concepts of this example. Then it obvious that applications of rule
C.rI must be completely independent from the other model domain described
by graph grammar S. Moreover, it can be concluded automatically that no rule

252

correspondences {S.rI—C.r3} or {S.r2—C.r2} may be declared. Instead, a tool
may suggest its user to establish the rule couplings {S.r/—C.r2} and {S.r2—
C.r8} in order to characterize the integration of both invelved model domains
Dg and Dg.

When a rule coupling is declared as a whole (by rule names), the necessary
detatled couplings between the nodes and edges of the involved rule bodies have
to be declared accordingly by use of the information contained in &. Due to lack
of space in this overview-paper, the reader must be referred to [11][12] at that
point of discourse.

4 Results

The combined specification method of coupled graph schemas and coupled graph
grammars is formally sound such that it can be implemented by a specification
tool. The tool can support the domain specification tasks in the requirements
engineering phase of a distributed project. Given such an integrated domain
specification, further tools can be built for support the constructive design within
the project domains defined by a coupled graph schema and graph grammar
specification. .

4.1 Tool Support for Integrated Domain Specifications

In [12] a prototype is reported which supports the proper declaration of cou-
pled graph schemas and coupled graph grammars as sketched in the previous
section. With that prototype, the user can construct schema corresponidences
and grammar correspondences in a syntax-directed fashion.* The tool is able
to check the consistency of the grammar correspondences with respect to the
given schema correspondences. It could be further enhanced by an interactive
suggestion-component which provides the user with hints on possible couplings
of rules. The coupling of graph schemas and graph grammars is not restricted to
two dimensions. Instead, an n-ary approach (& C &1 x ... x 8,) is supported.

4.2 Tool Support for Distributed Modeling

In the research project reported in [17], the possibilities of tool support for
distributed modeling in chemical engineering are studied. Important problems
occurring in this field seem to be quite similar to the tasks mentioned in the intro-
ductory section above — and are, therefore, open to graph-grammatical solutions
[4]. In the context of [17], another small prototype for experimental purposes
is described in [12]. That prototype implements a partial graph-grammatical
parse-and-generate approach to consistency of certain chemical-engineering do-
mains. With that tool, the user can construct simple structure views of chemical

* The software system of the tool re-uses of some source code of the PROGRES envi-

ronment [21] according to the framework-method reported in [15].



253

plants, which can be partially translated in corresponding contents views af-
terwards — thus: the functionality of that tool is inspired by certain aspects
of the already mentioned VIEWPOINTS paradigm. The parse-and-generate ap-
proach results from the coupled specification method and has been transferred
into the PROGRES environment [21] from which the prototype tool has been
generated. The correspondence information residing in the underlying coupled
domain specification is kept by an intermediate parsing graph which occurs as
the tool proceeds with its integrative operations from one domain the other one.

4.3 Conclusion

e In this overview-paper it has been argued that coupling of graph grammars
is able to serve as a sound and uniform method for describing and under-
standing important document-processing tasks like software re-engineering
or distributed modeling.

¢ Provided with the notion of graph schemas, the coupling of graph grammars
can be pre-specified by the coupling of graph schemas such that the relative
consistency of the coupled grammar specification can be checked with respect
to the coupled schema pre-specification.

s As the method is formally sound, tool support for the construction of coupled
graph grammars —which can be applied in various domains and contexts of
industrially relevant document-design tasks— is possible.

References

1. K. Cremer, A Tool supporting the Re-design of Legacy Applications. P. Nesi,
F. Lehner (Eds.), Proc.2nd Euromicro Conf. on Softw. Maintenance & Re-Eng.,
pp-142-148. TEEE Comp. Soc. Press, 1998

2. K. Cremer, Graph-based Heverse- Engineering and Re-Engineering Tools. In [16]

3. K. Cremer, Graph-basierte Werkzeuge zum Reverse Engineering und Re-
Engineering. Doct.Diss., RWTH Aachen 1999. To be published by Deutscher
Universitdtsverlag, Wiesbaden

4. K. Cremer, S. Gruner, M. Nagl, Graph-Transformation-based Integration Tools:
Application to Chemical Process Engineering. H. Ehrig, G. Engels, H.-J. Kreowski,
G. Rozenberg (Eds.), Handbook of Graph Grammars and Computing by Graph
Transformation, vol.2, pt.IV, chpt.10, pp.369-394 World Scientific, Singapore 1999

5. H. Ehrig, G. Engels, R. Heckel, G. Taentzer, A View-oriented Approach to System
Modeling based on Graph Transformation. M. Jazayeri, H. Schauer (Eds.), ESEC-
FSE'97 Joint 6th Europ. Softw. Eng. Conf. & 5th ACM SIGSOFT Sympos. on the
Foundations of Softw. Eng. LNCS 1301, pp.327-343, Springer-Verlag, Berlin 1998

6. 5. Easterbrook, A. Finkelstein, J. Kramer, B. Nuseibeh, Coordinating distributed
View-Points: the Anatomy of a Consistency Check. INTERNAT. JOURN. ON CON-
CURRENT ENG.: RESEARCH AND APPLIC. 2/3, pp.209-222, 1994

7. A, Finkelstein, B. Nuseibeh, J. Kramer, A Framework expressing the Relations
between multiple Views in Requirements Specifications. IEEE TRANSACT. ON
SorTw. EnG. 20/10, pp.760-773, 1994

254

8. A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, B. Nuseibeh, Inconsistency-
handling in Multi-perspective Specifications. IEEE TRANSACT. ON SOFTW. ENG,
20/8, pp.569-578, 1994

9. A. Finkelstein, G. Spanoudakis, D. Till, Managing Interference. Proc. ACM SIG-
SOFT1'96 Workshop, pp.172-174, ACM Press 1996

10. M. Goedicke, B. Enders, T. Meyer, G. Taentzer, Tool Support for ViewPoini-
oriented Software Development: towards Integration of multiple Perspectives by
distributed Graph Transformation. In [16]

11. S. Gruner, M. Nagl, A. Schirr, Integration Tools supporting Development Pro-
cesses. M. Broy, B. Rumpe (Eds.), RTSE‘97 Workshop on Reguirements target-
ing Software and Systems Fngineering. LNCS 1526, pp.235-256, Springer-Verlag,
Berlin 1998

12. S. Gruner, Fine schematische und grammatische Korrespondenzmethode zur Spe-
zifikation konsistent verteilter Datenmodelle. Doct.-Diss., RWTH Aachen 1999.
Published by Shaker-Verlag, Aachen 1999

13. J. Jahnke, W. Schifer, A. Zindorf, 4 Design Environment for migrating relational
to Object-oriented Database Systems. Proc. Internat. Conf. on Softw. Maintenance,
IEEE Comp. Soc. Press, pp.163-170, 1996

14. J. Jahnke, A. Ziindorf, Using Graph Grammars for building the VARLET Database
Reverse Engineering Environment. G. Rozenberg, G. Engels (Eds.), TAGT 98 6th
Internat. Workshop on Theory & Applic. of Graph Transformation (Paderborn
1998). To appear in the LNCS, Springer-Verlag, Berlin 2000

15. M. Nagl (Ed.), Building tightly integrated Software Development Environments:
the IPSEN Approach. LNCS 1170, Springer-Verlag, Berlin 1996

16. M. Nagl, A. Schiirr (Eds.), AGTIVE99: Applications of Graph Transformations
with Industrial Relevance. LNCS this volume, Springer-Verlag, Berlin 2000

17. M. Nagl, B. Westfechtel (Eds.), Integration von Entwicklungssystemen in Inge-
nieuranwendungen: Substantielle Verbesserung der Entwicklungsprozesse. Sprip-
ger-Verlag, Berlin 1998/99

18. T. Pratt, - Pair grammars, groph languages and siring-to-graph translations.
JOuRN. oF CoMp. & SYSTEM Sc. 5, pp.560-595, 1971

19. T. Pratt, Definition of programming language semantics using grammars for hier-
archical graphs. G. Rozenberg, H. Ehrig, V. Claus (Eds.), Proc. Internat. Work-
shop on Graph Grammars & their Applic. to Comp. Sc. and Biology. LNCS 73,
Pp-389-400, Springer-Verlag, Berlin 1979

20. J. Rekers, A. Schurr, Defining and Parsing Visual Languages with layered Graph
Grammars. JOURN. OF VISUAL LANG. & COMPUTING 8/1, pp.27-55, Academic
Press, London 1997

21. A. Schiirr, A. Winter, A. Zindorf, Graph Grammar Engineering with PROGRES.
W. Schéfer, P.Botella (Eds.), ESEC‘95 Proc. 5th Europ. Softw. Eng. Conf. LNCS
989, pp.219-234, Springer-Verlag, Berlin 1995

Acknowledgments, Thanks to M.Grofle-Rhode, T.Pratt, and the AGTIVE9Y referees
for helpfull communication. Financial support was given by GETGRATS and the DFG.



