on the benefits of deforestation:
a quantitative analysis

DIPLOMASCRIPTIE

door

Stefan Gruner ~

geboren te Wiesbaden in 1970

'

X
el
kS

FACULTEIT DER WISKUNDE EN INFORMATICA
NL-1098 SJ Amsterdam-Watergraafsmeer

UNIVERSITEIT VAN AMSTERDAM

juli 1995

abstract. In this thesis an analysis program for estimating the deforestation gain for functional pr.o.grams is
developed. Several examples are analysed and the methods are discussed wit;h respect to their supp.osmons a-nd
adequacy. The aim of deforestation is to remove intermediate data structures which arise when functlor.xs work'mg
on such structures are combined in a certain manner. However, a complete deforestation turns out to be impossible

in realistic programs where lots of intermediate structures are shared.

Chapter 1

introduction

This thesis presents the result of my diploma project during the last six months on the benefits
of deforestation. This introductory chapter gives the topic and outline of my work; but first of all
some basic terms have to be explained because that is what the following chapters are built on.

1.1 what is deforestation?

A simple question! But look at some answers!:

“A compositional style of programming is often advocated by functional programmers. How-
ever, there is a certain efficiency penalty involved in creating the requisite intermediate struc-
tures. Deforestation is a program transformation technique which removes such structures
from such programs.” [3]

“Intermediate data structures are widely used in functional programs. Programs which
uge these intermediate structures are usually a lot easier to understand, but they result in
loss of efficiency at run time. In order to reduce these run-time costs, a transformation
algorithm called deforestation was proposed by Wadler which could eliminate intermediate
structures.” [7]

“Deforestation is an automatic transformation scheme for functional programs which at-
tempts to remove unnecessary intermediate data structures.” [13]

“Deforestation removes arbitrary intermediate data structures (including lists), but suffers
from major drawbacks. [...| In this paper we present a cheap and easy way of eliminating
many intermediate lists that does not suffer from these drawbacks.” [4]

“There is a style of transformation that reduce the space consumption of programs called
deforestation. The name deforestation is used because the transformation eliminates inter-
mediate data-structures (i.e. trees). The particular deforestation we are interested in is
called foldr/build deforestation.” [5]

Thus, the point at issue is surrounded, yet not hit by an exact definition. However, all authors
quoted above agree that they perform algebraic transformations (according to certain rewrite rules)
of a functional program from its source language into its source language before compilation, in
order to save some runtime after compilation of this program. The novel approach presented here
goes the other way round: looking at the events having taken place at runtime, we approximate
the a priori possibility of deforesting the analyzed program for any transformation technique.

1The slanted setting is not used in the originals.

11

12 CHAPTER 1. INTRODUCTION

1.2 intermediate structures and garbage

Is there a relation between the concept ‘intermediate structure’ and the concept ‘garbage in the
heap’? Both intermediate and garbage cells are some kind of ‘persona non grata’ among those
privileged cells which build the output structure of a functional program in the heap. Both are
eventually superfluous, and the difference between them is not easy to see from a machine point
of view. The reason for this difficulty is that the concepts of ‘intermediate’ and ‘garbage’ not only
fail to be mutually exclusive, but are actually not even comparable. ‘Being garbage’ is simply a
state of isolation in the heap; ‘being intermediate’, however, is one possible reason for becoming
garbage later. ‘Being garbage’ means for a cell ‘having done its duty’ in the runtime history,
whilst ‘being intermediate’ is the ‘duty’ itself (namely: to be produced by a function and to get
consumed by another function).

1.3 deforestation techniques

Three main techniques for deforesting intermediate structures can be found in literature. The first
one, called “the concatenate vanishes” [18], is presented for deforesting intermediate list structures
caused by the list concatenating append function. This approach —based on four rewrite rules—
seems to be a prototype: the terms ‘intermediate’ and ‘deforestation’ do not even appear in the
treatise, and the technique has not been developed further. The second one, to be found in [19],
could be called the ‘classical’ deforestation approach to arbitrary kinds of data structures. This
approach is based on seven rewrite rules and is further extended in [7] and [13]. “The concatenate
vanishes” may be regarded as a special case of this more general approach. Having discovered some
properties of list production and list consumption, [4] present the third and completely different
approach to list deforestation which is called “foldr/build” and is based on only one rewrite rule.
Experiences made with it are reported in [5] and [6]. In this thesis the transformations themselves
do not matter: we will be concerned with their results, of which examples will be given later.

.1.4 topic and outline of this thesis

Have another look at the introductory statements on deforestation quoted above. Whilst the
majority of them seem to be rather optimistic, as far as results are concerned, [13] speak more
carefully of an attempt to remove unnecessary intermediate structures — which leads directly
to the topic questions of this thesis: How much can be ‘earned’ with deforestation (assuming
there were a method to remove all intermediate structures)? Are there necessary intermediate
structures, not removable at all? In trying to give an answer, we will leave the ‘plateaw’ of
algebraic transformations to have a look into the ‘cave’ of the machine heap, where the structure
building cells reside. The machinery used for this kind of deforestation analysis is presented in
chapters 2, 3 and 4 in an abstract manner. Chapters 5, 6, 7 and 8 are concerned with small
examples presented in the deforestation literature. In chapter 9 the question is asked, whether the
results of those well-selected examples can be generalized, and deforestation analysis is performed
on four bigger benchmark programs. Chapter 10 concludes, and some more details are to be found
in the appendix together with two abstracts written in Dutch and German.

Chapter 2

an abstract view of deforestation

2.1 machinery for deforestation analysis

To study effects and possible gains of the deforesting program transformations described in the
literature on functional programming, the use of a certain machinery seems inevitable. In this case
we have: the language Miranda [16], [2] as a representative of a lazy functional programming
language; this is the front end of our machinery and the point where deforesting transformations
apply. Then, the FAST compiler [10], which takes a functional program written in a subset of
Miranda as input and generates C code suitable for compilation on almost every machine, and
finally a SPARC machine executing the C code to give the output of the Miranda program. The
FAST compilation happens —variations in detail are not mentioned— according to the principles
of the well known G-machine described by Johnsson et Augustsson [15]. Execution output of
a FAST program is a trace (Fig.1, see also chapter 4 for further explanation), ‘which documents
relevant computation steps and changes being made to the heap during the run. Such a trace
will be the basis of an automatic analysis done by a program which is described later in this
thesis. The purpose of this program is to replay the events which have taken place in the heap
and to detect and count cells which have been created as intermediate structures in the sense of
the terminology of the deforestation literature. Therefore the program uses information extracted
from the output trace.

2.2 abstracting the essentials

Abstracting from particular items in a complex situation means regarding a lot of information
as irrelevant (or even distracting) to understanding the essentials of the situation. In our case it
does not matter, for example, if constructor cells are represented in a boxed or unboxed manner
nor are the values important, which the constructor cells contain. What matters is that they
have been created at all. In a similar way, the analysis of the suspended application nodes being
built does not depend on values being computed by the functions belonging to those nodes and
how this evaluation has been done: we only want to know if suspensions have been allocated.
Thus, deforestation analysis will be a structure enalysis and therefore as independent from the
structures’ contents as possible. For this reason it seems practicable to abstract from the ma-
chinery described above (Fig.2), when we have to explain the generation of the output traces.
Such an abstraction is described in the following. The front end language Miranda is represented
by expressions of an abstract syntax as shown in Fig.3. A simple translation scheme 7 explains
the generation of a pseudo code o for an abstract machine A (Fig.4 and Fig.5). In this machine
everything which is not essential for the subsequent analysis is hidden in a ‘black box’, and only

y 13

14 CHAPTER 2. AN ABSTRACT VIEW OF DEFORESTATION

what matters as far as generation and rearrangement of heap structures are concerned is visible.
As A is meant to represent a simple model of the FAST system, .A is also built using some of
the principle ideas of the G-machine. In contrast to the detailed trace of the FAST machine, A
outputs an abstract trace, which is nevertheless expressive enough to show all events of a machine
run which are important for deforestation analysis.

2.2. ABSTRACTING THE ESSENTIALS

15

p—dy;...;dy;
d—=> fv...up=¢e
e fse1...e,

program
function definition (n > 0)
application in strict context
application in non strict context

reduce: caf=52340
_01_LIT2563:
01 NULLARY PACK: n=1 <512> at 590d8
201 LIT2563: return_T=590d8
update: root=52340 result=590d8 tag=512
_01_PROJECT: 59084 ! 1 at 0 box at 52340
_11_threestate_cmp: _01 x T 0=052340 _00_y.T.0=052648
vap2: fun=5249c,a1=526d8 at 590e0
vap3: fun=5252c,al1=590e0,a2=2 at 590ec
vap4: fun=524fc,al=52248,a2=52240,a3=590ec at 590fc
reduce: vap=590fc
prel_0001T_0001T_1100B_0: proc=2ad8c arg=59104
reduce: vap=590ec
prel_1100I_1111I.1: proc=2a600 arg=590f4
reduce: vap=590e0)
prel 0100T_1: proc=26970 arg=590e8
reduce: vap=526d8
prel_1111T O_var: proc=2611c arg=526e0
01 PACK: n=1 <768> at 59110 box at 59110
update: root=526d8 result=59110 tag=768
_01_TAG: pack=526d8 tag=3 at=59118
update: root=590e0 result=58118 tag=9

Fig.1

ezample of a trace fragment from the FAST compiler

Miranda subset - FAST compiler —+ C code —+ SPARC machine — trace

NERRRRRRRRERRRY

ABSTRACTION [[[[[[[[TIIIII]

abstract syntax — 7 scheme — & code — A machine — abstract trace

Fig.2

concrete and abstract machinery basis for deforestation analysis

| fer...en
e ey partial application
let v=-e; in ey local definition

| w variable
| ¢ constant
i function name
| evale enforced evaluation
Fig.3 annotated abstract syntaz of a lazy functional language for cell structure generation

type T :: [abstract syntaz ezpression] — (identifier) — [code]

Tldy;...5dn5] O = Tld] 0 case: program
Tld-] 0

Tlfvi...on=¢] () = function f vy ... v,; case: function definition (n > 0)
Tlel ()
return;

case: application in strict context

Tifs e1. .. en) (ident) = Tlel] (a1)
: where f # cons, f # if
Tlena] (an)

ident > € (T1f] (), aw, - .., an);

case: application in non strict context

TIf e1...e] (ident) = Tleld (a1)
: where f # cons, f # if
Tlea] (an) '

ident > vap (TTf] (), a1, ... ,an);

Tlcons e eg] (ident) = Tled] (hd)
Tlez] (t1)
ident I> cons (hd, tl);

subcase: construction in any context

Tif bool e, ;] (ident) = T[bool] (bool) subcase: conditional expression
if (bool)
{Tlex] (ident)}

else

{TTe2] (ident)}

16 CHAPTER 2. AN ABSTRACT VIEW OF DEFORESTATION

case: partial application

Tle1 ez] (ident) = Tle (pap:)
Tlez] (pap2)
ident 1> @ (papy, papa);

Tllet v =e; in €3] (¢dent) = Tler] (v) case: simple local definition
Te2] (ident)

Tlv] (zdent) = identD v; case: variable

Tlel (ident) = ident> g case: constant

Tir1 0 = procy case: function name

Tleval] (ident) = Tlel (identg) case: enforced evaluation
reduce; .

Fig.4 translation to pseudo code o. Assume that all identifiers f, a;, pap;, hd, tl, letv and bool are internally made
unjque by additional labels for scope separation

2.2.1 abstract syntax

Have a look at the abstract syntax as shown in Fig.3. A functional program is a set of function
definitions, each of them concluded by a semicolon. This pattern is derived from a special demand
of the FAST compiler to its input language. Of course function definitions may be recursive
or mutually recursive. The definition sequence is completely irrelevant as long as no undefined
functions occur. A function definition is an equation with a function name and a number of
" variables according to the defined function’s arity on the left hand side, and a legal defining
expression on the right hand side, which has especially to be well typed. An ezpression can be
a variable, a constant, a local definition (using let) or a partial or full application on further
expressions. Examples for constants are numbers, characters or NIL.
Beyond the usual abstract syntax schemes we would like to distinguish strict from non strict
application contexts in order to simulate the handling of applications as closely as possible to the
according property of the FAST compiler!. Assume hereby that we can get the necessary strictness
information for free (of course it has to be deduced in reality). This distinction is provided by a
little index s given to the function name of an application appearing in strict context. Function
calls in strict context will not be suspended, but immediately evaluated instead. This is to avoid
the creation of unnecessary suspension cells. Additionally, a function name is mentioned as a
separate kind of expression, as function names will be used as special labels in « code later. There
are also built in function names, for example null, cons, head and tail. The most unusual concept
of the abstract syntax presented here is to make an evaluation explicit by giving it also a separate
kind of expression. This concept influences the evaluation sequence of the abstract machine A
and may be used, for example, for reasons of efficiency.

!The deforestation analysis developed in this thesis is, of course, also applicable in principle for compilers which
do not perform strictness analysis. Then however, the deforestation analysis resuits would probably be different,
as strictness analysis influences the allocation behaviour of a functional program.

2.2. ABSTRACTING THE ESSENTIALS 17

2.2.2 translation to o code

Now have a look at Fig.4. For each case of the abstract syntax definition there has to be one
case of the translation scheme 7. Here there are even more because constructions and conditional
expressions, both subcases of applications, are mentioned separately. A program is translated by
translating every one of its definitions. We do not have to be concerned with the way of storing a
translated definition into —and finding it again, when needed, out of— the program memory of
the machine, but we may assume instead that all those compile time and run time management
operations, irrelevant from our abstract point of view, are done correctly by the machine?.

The result of the translation is an & program with a structure as shown in Fig.5. It consists of
a non empty command sequence to be executed step by step. The most obvious possibility is to
do case analysis by selection of one command sequence out of two given alternatives according
to some condition bool. The update command can not be reached by the translation scheme 7
this is because the graph reducing property is inherent to the machine, and not determined by
the program. The meaning of the other commands, symbols and the identifiers ident is to be
explained in the following chapter; this will be done by defining actions of the abstract machine
A for every possible command of a.

« prog " u= command

command u= ident > & (ident ... ident);
ident > cons (hd, tl);
tdent > vap (ident,ay, ..., a,);

wdent > @ (pay, pay);
ident [> ident;

if (bool)

{ command }

else

{ command }
function ident ... ident ;
return; |

reduce;

update;

command

command

Fig.5 syntaz of pseudo code o to be run by the abstract machine A

24 is not an oracle machine, because it does not need to be fed with transition advice.
In fact, A is not implemented for reasons as described above.

18 CHAPTER 2. AN ABSTRACT VIEW OF DEFORESTATION

2.3 example

As an example for translation to a code consider the abstract syntax expression

main := let v = cons 1 NIL in cons v NIL

Following the translation scheme 7~ (Fig.4) we obtain step by step:

Tmain :=let v=cons INIL incons v NIL] ()coiireveanciaiiiian case: program

In this example the program consists of only one function definition, main, without any arguments.

{71 Lot T 1T

TTlet v =cons 1 NIL in cons v NIL] (main)coouivuiieiineaiaiaiiiiininanns ..
=TT case: function definition

In the context of (main) the let expression has to be translated.

function main;
Theons 1 NILY () oottt e e v e e e e e e e
Tleons v NIL] (main)ccooiiiiiiiiiiinian., case: simple local definition

return;

It gives the order to connect one Cons cell to the head of another one.

function main;

T T T S
111)
v [> cons (hdl.) O I A I U case: construction
A T T 0
TINIL] (B12) o eenn et e e e e e e
main > cons (hda, tla); - ...uerrr e e case: construction
return; !

The (shared) value NIL is to be contained by (both) the Cons cells’ tails.

function main;

T case: constant
th & NIL ..ol s, o, B R . B, N SNOTRO SRS S L i case: constant
v D> cons (hdy, th);

hda B> v e e case: variable
ta D> NIL; oo e e L S R L BT .. S RO . ST . case: constant
main D> cons (hd,, tly);

return;

Now the translation is finished. This piece of a code gives the order to return a Cons cell as the
main result. The head of this Cons cell has to point to another Cons cell which has to be allocated
first, and has to contain the value 1 as its head. The Cons cells’ tails have to point to the (shared)
value NIL. Both 1 and NIL are constant, v is a variable.

Chapter 3

the A machine at work

3.1 machine components

In the previous chapter a reason for an abstract view of analysis has been given and a rough
sketch of such an abstraction has been drawn. In this chapter the generation of an abstract trace,
reporting the cell allocation history of a program run by the abstract model machine .4, will be
explained in more detail. The parts of A are the following:

a) Some program memory containing function definitions which héave been translated to pseudo
code a. A special one of these code sequences is the main program which starts a machine run.
b} A heap, being the memory segment for runtime cell allocations as used in all common im-
plementations of functional programming. In the case of A the heap is to contain nothing but a
skeleton of the usual heap content, namely the structure building nodes Cons, Vap and application
nodes in an abstracted form. A Cons is a structure building entity consisting of a reference to
somewhere which is usually called head and another such reference to some tail. We introduce X
(the mathematical symbol for a join) as the symbol for Cons because of its combining property.
Vap are special application nodes with an arbitrary number of arguments. Vap also appear in the
original G-machine; their name is a short form of Vector application node. An abstract Vap is
an entity consisting of a corresponding function reference label proc; and some further references
to somewhere, depending on the number of arguments of the function f belonging to it. Let ©
be a symbol for a newly created Vap, and ® a symbol for a Vap for which the corresponding
function f has already been evaluated by executing the procedure procy representing f in the
program memory of A. A © is ready to become updated in a graph reducing step (but still it is
a non updated Vap: in the model presented here, the evaluation of a function is separated from
the graph reducing update of the suspension node of that function in order to augment intuitive
clarity: first the evaluation, then the update). There are also ordinary application nodes, as in
the G-machine, but these appear in the model described here only when partial applications are
to be done; @ is the usual symbol for them.

c) A stack for references to the heap and the black box part of the machine .A. As it is not meant
to deal with computation processing details here, the stack model is chosen to be very simple
for clarity: offset counts and some other organization methods necessary for running real graph
reducers are not essential for our question and can completely be avoided in this model.

d) A dump in order to save remaining machine states when the normal program flow is to be
interrupted and stack rearrangements have to be done. This is the case when non strict function
calls occur in order to solve lazy suspensions for complete results. In the model described here,
the dump is another stack containing pairs consisting of a stack and some o code sequence. In
contrast to the G-machine, A is not meant to perform efficient computation. A simple kind of
dump in the model machine .4 has been chosen in order to represent only the idea of handling

21

22 CHAPTER 3. THE A MACHINE AT WORK

interrupts to the normal program flow caused by new function calls.

e) Finally, there is an evaluation and storage management black box which A would not be a ma-
chine without. This black box provides all operations necessary to compute properly but which
are out of the scope of interest of the questions to be asked here. These operations are variable
referencing and dereferencing, finding the locations of arguments which a function is to be applied
to, finding a function’s code out of the program memory, evaluation of built in functions and strict
function calls, reduction and update decisions and more. Fig.6 shows a conceptual sketch of A.

r —
proc main:
proc'f:
. J
Program memory evaluation and storage
managing black box
dump stack heap
Fig.6 conceptual sketch of A with program memory, stack, dump, heap and black boz

3.2. THE MEANING OF a CODE 23

3.2 the meaning of o code

In the following, the translation to & code (Fig.4 and Fig.5) together with its meaning are first
explained informally, then the state transitions of A which are the semantics of & code are pre-
sented. Two examples will conclude this chapter.

The syntax of a code is an abstraction of an imperative langnage. Translation to a code thus
means finding a proper algorithmic description for a sequence of machine steps out of a functional
specification written in abstract syntax, where no problem solving procedure has been made ex-
plicit. Fig.4 gives an idea of how a sequential code can be produced recursively by translating
such specifications piecewise and putting the results in a row. This method is well known in the
field of compiler design [1].

Commands beginning with ‘ident >’ (Fig.5) force a pointer to be pushed onto the pointer stack.
In the model described here, each pointer has a name ident to identify its ‘membership’ within
a certain syntactic context. The translation scheme 7 (Fig.4) is able to transport such context
information in the single brackets appended to the argument expression of 7. Function evalua-
tion demands context information in order to work properly. The exact usage of environments as
mathematical objects is described in the compiler literature; for the simple model here it is not
necessary to be concerned with evaluation details: by naming the stack pointers according to the
objects they refer to, an unambiguous representation of all structural coherency is provided. . ..
Commands containing cons, vap or @ (Fig.5) create, additionally, the corresponding cells on the
heap. Of course, a new cell must somehow be connected to the already existing cells, but again
we may assume by abstraction that this will be done by the black box component, which only has
to provide sufficient information about those connections for our analysis later.

The black box also has to be employed when a command ‘ident > € (...)’ for application in strict
context occurs (Fig.5). This causes some evaluation out of our scope and leaves, as its result, a
pointer on the top of the stack.

Nota bene: The black box evaluation of a function f, in strict context may further affect the
components of A. The reasons for such possible effects are of course to be found in the procedure
procy representing the definition of f. (Fig.4, case: application in strict context).

The command function name v, ... v, (or simply function name, if there are no variable function
arguments) is the beginning of a new (non strict) function call (Fig.5). In the G-machine a func-
tion call is initialised by a rather sophisticated creation of a new stack frame. 'To remind us of
these initial operations in reality, a symbolic fence # is pushed as a border line on the pointer
stack in our simple model. # may be regarded as a special pointer to nowhere. The information
about (eventual) arguments v; ... v, is kept in the black box to be given back later when needed
for deforestation analysis.

In correspondence with function, the command return concludes a function call. The result point-
ers overwrite the topmost # and the superfluous stack content is popped. The mechanism is very
simple, but not in opposition to the common usage in compiler design.

The abstract machine .A dumps a complete stack, together with the remaining code sequence,
when a function call oceurs in order to dissolve a suspension. The code for the new computation
part is imported from the program memory mentioned above and the new stack contains as its
only element a pointer to the corresponding ©. In the event of there being old code together with
old stack pointers, this code is restarted when the current remaining code sequence is empty.
Updates cause some rearrangements in the heap principally according to the corresponding be-
haviour of the known graph reduction machine. In our model the only visible change an update
can do is to replace a suspension node by a Cons after some evaluation; an update of 2 suspension
node with a structurally irrelevant value is not seen: in this case the suspension node will remain
as a Vap (or @) node as before, but of course not representing an unsolved function any more. Itis

24 CHAPTER 3. THE A MACHINE AT WORK

the command reduce which causes those reduction events (Fig.5), but the order in which they are
to occur is only a matter for the black box evaluator; the evaluation circumstances reside beyond
the horizon of our abstract point of view.

A computation will finish if the dump is empty and no code sequence remains to be done.

3.3 state transitions

Some further notations have to be explained, which will be used in the description of the state
transitions of A. They are as similar as possible to the notation used in [15].

Let [] be a symbol for the empty heap, the empty dump, the empty stack or the empty code
sequence.

S is the stack. If S is some stack, p:S is the result of pushing p onto S. Vice versa, if p:S is some
stack, then S remains after popping one element. Elements of the stack are named pointers as
described above.

C is a program consisting of a sequence of & commands. If ¢:C is a code sequence, whose first
command is ¢, then C remains to be computed after ¢ has been done.

D is the dump. A dump of which the top pair is (S,C), is written as (S,C):D. After a redump, D
remains.

All stack tops appear on the left side.

H is the heap. Unlike a stack, the heap does not force its elements into a sequential order. If H is
a heap in some state, we use H+n to denote the generation of a new node n in the heap. We use
n:H to focus attention on a certain node 7 in the heap. (An equivalent statement would be In €
Finally, T is a trace. If T is a trace documenting a current run, T:act denotes its state after the
latest action act of interest has just taken place.

For better readability, states of the components of .A may be numbered.

For example, if K; €{S, C, D, H, T} is an .A component in some state i, and this state is being
changed (for example e:X;), then this new state may be denoted by K;,; in the following machine
step.

. Let now A =<S,C,D, H, T> be a quintuple consisting of the five components stack, program,
dump, heap and trace (in this order) of .A.

Ainie = <[], EVAL:Cain, []. [, [I>

is then the initial state of A before the computation of the corresponding main function. EVAL is
not an a command, but a cheracteristic property of A and must not be mixed up with the eval
expression in our abstract syntax. This eval expression is meant to force some additional evalu-
ation where it is regarded as useful, whilst the EVAL property of A provides the main function
evaluation and reduction.

Depending on the top command of the remaining code sequence, A changes its states as follows:

<[l. EVAL:.Crsin. [I. II. [I> =
<[l. Crngin:reduce, [1, [I, >

where Cp.in 18 the @ code sequence for the main expression to be reduced.

<S5,id>t.C,D, H T> =
<id:5, C, D, H, T>

3.3. STATE TRANSITIONS 25

where id is (the name of) a new pointer to some heap cell or black box value refered to by the
variable or constant syntactic object ¢. Of course, a new pointer may point to a previously exist-
ing, not necessary newly created, heap object.

<S,id > € (procs...):C, D, H, T> =
<id:S', C', D', H', T'>

where id is a pointer to the black box evaluation result of proc; in strict context. $'=$, C'=C,
D’=D, H'=H and T'=T, if the black box evaluation of proc; has no further impact on stack, code,
dump, heap or trace (which is of course determined by the code of f). Otherwise, additional
changes to S, H and. T, as described by the transition rules, are possible.

~<S, id b cons (hd, tl):C, D, H, T]> =
<id:S, C, D, H+ M4, T:cons (adrq, adry) at adrig>

where adryy, adrng and adry are some heap addresses given by the black box according to its
allocation decisions and id is a pointer identifying the new cell X;;.

- <S5, i.d > vap (procy,a; ...a,):C, D, H, T> =
<id:S, C, D, H4+©yq, T:vap (adr; ... adr,) at adriz>

where all adr; and adr;y are addresses supplied by the black box according to the locations of the
suspension node and its arguments, and id points to the new cell ©;,.

<8, id > @(pay,paz):C, D, H, T> =
<id:S, C, D, H+@,4, T:ap(adry, adr,) at adriz>

where again all adr; are address attributes given by the black box of A.

<8, if(bool):{ commands;}:else:{ commands.}:C, D, H, T> =
<8, commands,:C, D, H, T> if bool is pointing to True,
<8, commands,:C, D, H, T> if bool is pointing to False,

where the value of bool is given by the black box of A, and commands; and commands,
are sequences of o code.

<8, function ident v ... v,:C, D, H, T> =
<#:3S, C, D, H, T:use adry ... adr,>

where # has to be regarded as a special pointer to nowhere and all adr; are given back by the
black box as addresses of the heap objects or values used as function arguments (see section 3.2);
in the case that n = 0 we have a constant applicative form (Caf).

<rS, C, D, H, T:return adr,>

where adr; given by the black box identifies the result location of the returning function, all point-
ers p; ... p; are different from #, r —not always a ‘fresh’ pointer— points to the function result.
(In the case where the returning function has been solving a suspension, the corresponding © is
marked at returntime as ©, ready to become updated).

26 CHAPTER 3. THE A MACHINE AT WORK

<S, C, D, H, T:output adr,.>

where the returning function is the main function and adr, is given by the black box as address
of the output structure root.

<8, reduce:C, D, &5:H, T> =
<p, codey, (S,update:reduce:C):D, ©5:H, T>

where S is a suspension of f, the black box has decided to dissolve this suspension by evaluating
f, p is a pointer to Oy and the corresponding codes is loaded from the program memory of A.
The update for the node just being reduced is prepared in the dump, but the reduce command
remains while there are still further nodes to be reduced.

<S, reduce:C, D, H, T> =
<S,C D H T>

where the black box has decided that there is nothing more to reduce.

<S, update:C, D, Oy :H, T> =
<S, C, D, R,:H, T:update root adr, result at adr,..,>

which means ©, is to be replaced by R, where the function belonging to @, is already evaluated
to the required kind of normal form (usually WHNF), the black box decided to update the root
©, and u points to this updated root. R, may be a X or may be ‘nothing’, which is the case when
the result is-an invisible value residing in the black box: then ® simply remains as it is in this
model. The address of R, is adr,.

<5, [, (S'C):D, H, T> =
<$:S',C, D, H, T>

where the actual program sequence is empty.

<SS, [00HT>=
<[, 0. O, [, T:ready> = A finish

where dump and program stack are empty. R)
A terminating run of A may be denoted as Ay == Af""{ah. Otherwise we denote Ay => 1,
which is the case when an input program with a non finite semantics is forced to be evaluated.

3.4. EXAMPLES 27

3.4 examples

As a first example consider the expression main := let v = cons 1 NIL in cons v NIL as introduced
for a translation example in chapter 2, and we would now like to compute this expression in order
to examine the heap structures which arise from it. First, we need to put a code for main into
the program memory of \A. Following the translation scheme 7 (Fig.4) we obtain, as shown in
chapter 2, the following o program:

1) function main;

2) hd; > 1;

3) th o NIL;

4) v > cons (hdy, th);

5) hdz > v;

6) tly > NIL;

7) main > cons (hdy, tlo);
8) return;

For ease of reference and better readability, the particular commands of this program are repre-
sented in the following by their line numbers 1) to 8) as shown in the last translation step. With
this program in its initial state A will carry out the following state transitions:

Aiis = <[], EVAL:1:2:3:4:5:6:7:8, []. I, [I>
= <[], 1:2:3:4:5:6:7:8:reduce, [], [], []>
= <#, 2:3:4:5:6:7:8:reduce, [], []. use>
=> <hdy:#, 3:4:5:6:7:8:reduce, [], [, T1>
= <tl:hdy:#, 4:5:6:7:8:reduce, [, [], T:>
= <vtlythdy:#, 5:6:7:8:reduce, [], [+ Xy, T1:cons (adry, adnyy) at adr,>
== <hdyv:tl:hdy:#, 6:7:8:reduce, [], X, To>
==> <tlp:hda:v:tly:hdy:#, 7:8:reduce, [], M, To>
= <main:tly:hdy:v:tl;thd; 4, 8:reduce, {], X, + M., Taicons (adr,, adnyi) at adr,q.>
=> <main, reduce, [], Xy:M,e:, Ta:output adr,.>
= <main, [], [], My:™pez, T4> .
S5 <[], [], [], [], T4;ready> = Af.'m',h

In our model it is not necessary to pop the pointers hd and ti as soon as they are not needed any
more. For our purpose it is enough to remove them with the entire stack frame of the returning
function. The resulting trace reports two Cons cells being created on the heap; the given address
adr, shows, that they are connected as intended by the main expression. (The NIL value is shared,
but this is not interesting here). T is the abstract output trace reporting this history:

usé

cons (adry, adryy) at adr,
cons (adry,, admyy) at adr,q
output adr,.

ready

These statements show the main expressions’ effects on the heap. As no function using arguments
has occured, the use statement in the trace shows no arguments, and as no suspensions have been
built, the final reduce command fizzled out ineffectively. A picture of the result is given in Fig.7.

28 CHAPTER 3. THE A MACHINE AT WORK

main

Fig.7 . two cons cells being built by the ezpression main ;= let v = cons 1 NIL in cons v NIL

The second example is about to deal withi a simple recursive function copy, defined as:

type copy :: [¥] — [#]
copy Is = if (null, Is) NIL {cons (head’, Is) (copy (tail’, Is))}

in abstract syntax, where * denotes some arbitrary finite type and [#] a list with elements of that
type. The built in function null appears in strict context because the question, if Is denotes the
empty list, has to be answered before one of both alternatives NIL or cons can be chosen. But why
are head’ and tail' attributed with a little s, though the contexts of cons and copy are generally
non strict? The answer is that the special functions head’ and tail’, in contrast to their ordinary
relatives head and tail, do not evaluate their argument Is to weak head normal form but only return
a pointer to the corresponding substructure of Is. Therefore the expression given above translates

via 7 to the o program:

1) function copy s;

2) apls;

3) bool > & (pracpu a);
4) if (bool)

5) {copy > NIL;}

6) else

7) {bo>Is;

8) hd > £ (procseqa b);
9)crls;

10) d > € (proceau c);
11) tl > vap (proceopy. d);
12) copy B> cons (hd, ti);}
13) return;

The function arguments have been made unique by renaming their pointers a; as a, b, ¢, d, and
again the commands are supplied with numbers for ease of reference and better readability later.
Now suppose we would like to copy the constant list structure (A:(B:NiL)) (residing inside the
black box) to examine the corresponding events in the heap. Therefore we define:

3.4. EXAMPLES 29

main = copy, (A:(B:NIL))

and translate this constant applicative expression via 7 to:

14) function main;

15) e > (A:(B:NIL));

16) main > £ (proceogy, €);
17) return;

Nota bene: The call of copy is strict in the context of the main expression because the main
expression must always be evaluated completely. Internally, the abstract machine .4 keeps the
relation: Is = [1,2,NIL]. The examination run has to be started with the main code in the program
stack of .A and will then step through the following states:

Ainir = <[, EVAL:14:15:16:17, [], [}, [I>

= <[], 14:15:16:17:reduce, [], []. [I>

= <#, 15:16:17:reduce, [], [], use>

= <e:ff, 16:17:reduce, 00 To>

= <main:e:#, 17:reduce, [, [|, T:>

= <Peopy, 1:2:3:4:5:6:7:8:9:10:11:12:13, (main:e:#, 17:reduce), [], T,>
<#:Popy, 2:3:4:5:6:7:8:9:10:11:12:13, Dy, [], Ty:use adr.>
<a:#:Peopy, 3:4:5:6:7:8:9:10:11:12:13, Dy, [], T>>
<bool:a:#:peopy, 4:5:6:7:8:9:10:11:12:13, Dy, [], To>
<bool:a:#:Pepy, 7:8:9:10:11:12:13, Dy, [], To>
<b:bool:a:#:peopy, 8:9:10:11:12:13, Dy, [}, To>
<hd:b:bool:a:#:peopy, 9:10:11:12:13, Dy, [], T2>
<c:hd:b:bool:a:#:pegpy, 10:11:12:13, Dy, [], T2>
<d:c:hd:b:bool:a:#:peopy, 11:12:13, Dy, [], To>
<tl:d:c:hd:b:bool:a:#:p.py, 12:13, Dy, [|+6g, Ta:vap (adrs) at adr>
<copy:tl:d:cthd:b:bool:a:3:peapy, 13, D1, Hi+ My, Ta:cons (adra, adry) at adre>
<COPY:Peopy, [], (Mainze:#, 17:reduce), Hy, Tyireturn adrye;>
<COPY:Peopy:mainze:#, 17:reduce, [, Hy, Ts>
<[], reduce, [], Hz, Ts:output adr,e>
<tl, 1:2:3:4:5:6:7:8:9:10:11:12:13, ([], update:reduce), ©p:Hg, Te>
<#:tl, 2:3:4:5:6:7:8:9:10:11:12:13, Dy, Hy, Tg:use adry>
<a:ftl, 3:4:5:6:7:8:9:10:11:12:13, Dy, Hy, T7>
<bool:a:#£:1l, 4:5:6:7:8:9:10:11:12:13, Dy, Hy, T7>
<bool a:#h:tl, 7:8:9:10:11:12:13, Dy, Hy, T7>
<b:bool:a: ##:tl, 8:9:10:11:12:13, Dy, Hy, T7>
<hd:b:bool:a:#4:tl, 9:10:11:12:13, Dy, Hy, T>
<&:hd:b: bool:a:#:tl, 10:11:12:13, Do, Hy, T7>
<d & hd: b bool a:#f:tl, 11:12:13, Dy, Hg, T7>
<tl:d:e:hd:b:bool:a: #:tl, 12:13, Dy, Hy + ©py, Trivap (adm"_) at adry>
<copy':tl:d:&:hd:b:bool:4: #:tl, 13, Da, ©p:Ha+ Mney, Taicons (adrg, adry) at adr.,>
<copy:tl, [], ([I. update:reduce), Gg:Hy, To:return adrpe,>
<copy':tl, update:reduce, [], ®p:Hy, T1o>
<copy':tl, reduce, [Mg:Hq, Tig:update root adry result at adr,.,>
<tl, 1:2:3:4:5:6:7:8:9:10:11:12:13, (copy’:tl, update:reduce), Sy :Hs, Ty>
<#:tl, 2:3:4:5:6:7:8:9:10:11:12:13, Ds, Hs, Tyj:use adry>

HHHUHHHHHUHHHUHH

30 CHAPTER 3. THE A MACHINE AT WORK
= <é:#:f|, 3:4:5:6:7:8:9:10:11:12:13, Ds, Hs, T12>
=> <bool:a:#:tl, 4:5:6:7:8:9:10:11:12:13, D3, Hs, T1a>
= <bool:a:#:tl, 5:13, Dy, Hs, T12>
= <copy":boo|:é:#:f|, 13, D1, ©Snic:Hs, Ti2>
= <copy":tl, [}, (copy':tl, update:reduce), Oni_:Hg, Tia:return adry >
= <copy” :fl:copy':tl, update:reduce, [}, Hs, T13>
=3 <copy”:tl:copy':tl, reduce, [], Hs, Tis:update root adry result at admy >
= <copy":tl:copy':tl, []. ., Hs, Ti>
= <[l I [I. [l Twaiready> = Asinisn

All symbols S;, D;, H; and T; are short forms of previous states of stack, dump, heap and trace,
for better readability. In an abstract manner the final trace T documents the history of copying
the structure (A:(B:NIL)) from the value domain of the black box into the heap of A:

use (29)
use adr, (32)
vap (adrg) at adry ’ (36)
cons (adra, adry) at adrye (87
return adrye (38)
output adry.; (41)
‘use adry (44)
vap (adny) at adr . (48)
cons (adrg, adry) at adre, ' (49)
return adr,e, (50)
update root adry result at adr,e., (51)
use adry (54)
return adry (56)
update root adr; result at adny (57)
ready (60)

. This trace reports a history as described in the following. (The line numbers in brackets are
inserted for comparison with a similar trace in the next chapter). First, a strict call of copy was
done by the main function. Hereby a Cons cell and a suspension node of the copy function were
built so that the suspension node was the tail (pointed by tl) of the Cons cell, while its head
pointed to the (irrelevant) value A. Then the function copy was evaluated in order to make its
suspension node ©g ready for an update. During this evaluation another Cons cell, (containing
a pointer to the value B in its head), and another suspension Oy of copy (pointed to by ti as
tail of the new Cons cell) were built. After return, the first @ became updated to X (whereby
the result of this update, namely the new Cons cell created secondly, became garbage; but this
is not in the scope of our interest in this chapter). A similar procedure was then carried out
to evaluate the second Sy, but at this time no further heap cell had been created because the
argument of copy was NIL, and after returning from copy the corresponding Oy was updated
with an ‘invisible’ value NIL residing in the black box evaluation segment of A. Therefore the ®
has remained unchanged in the heap. At last, three X and one @ remained in the heap, of which
one was garbage and the other ones contained pointers to A, B; but these contents do not touch
our interest for structures as purely as possible. Fig.8 shows the events caused by the example
program discussed above.

3.4. EXAMPLES 31

A
-1 L2y -
|
A B
—>
Fig.8 heap events caused by the ezpression main := eval copy, (A:(B:NIL)), with ‘flashes’ depicting updates

32 CHAPTER 3. THE A MACHINE AT WORK

3.5 summary

In this chapter the translation from abstract syntax to a code has been explained and the seman-
tics of it has been given more formally by defining a state transition of the abstract machine A for
each o command. At lgast two examples have been exercised, in order to give an intuition about
the generation of heap cells by an (abstraction of a) functional program and the abstract output
trace given by A to report those events.

Of course the FAST compiler, as used for investigations on the benefits of deforesting program
transformations as described later in this thesis, is a sophisticated machinery and therefore may
differ considerably in many cases from its simple abstract model, which the sketched machine 4
represents. Nevertheless .4 should be a sufficient explanation for the basis of the examination task
as mentioned above. The abstraction was made mainly by ignoring unessential information. It is
easy to find the way back from abstract traces to the concrete ones by ‘covering the skeleton with
flesh’, which means, for example, replacing the abstract labels adr; by natural numbers, consider-
ing ‘boxed’ or ‘unboxed’ variants of Cons cells, etc. This would mean having a closer look & the
structures, but still the values are unimportant. The next chapter will explain important matters
on real FAST output traces and introduce a way of analysing them with a program written in C
[12], and also other data structures than lists built of Cons cells will be mentioned.

Chapter 4

analysis methods

4.1 output trace analysis

In the previous chapters it has been shown how output traces which report a history of heap
events can be generated in principle. Now we have a look at a method to use the output trace
information for reconstructing such histories. This reconstruction will be done by an analysis
program in such a way that intermediate cells can be separated from cells belonging to the output
structure or other cells. (From a ‘meta’ point of view, the output trace itself is an ‘intermediate
structure’ between the ‘functions’ machine and analysis — and ‘deforesting’ this ‘structure’ would
mean integrating this analysis into the compiler! We also give a reason in this chapter for not
performing this kind-of ‘meta deforestation’.)

Having separated intermediate structures from the output structure, it is possible to reason about
efficiency and to compare the run time behaviour of undeforested and deforested versions of the
same functional program. The explanations given in this chapter will continue to use the abstract
terminology developed in the previous chapters. Only some of the most important FAST properties
will be mentioned in order to show what the abstraction is based on; more details concerned with
the FAST compiler system can be found in [9] and in the appendix of this thesis.

4.1.1 some FAST properties in general

The FAST compiler performs strictness analysis to save unnecessary function suspensions by
calling functions in a strict context immediately. Further, the heap objects usually (but not
always) are represented as bored. Boxing is implemented in the FAST system by using another
kind of cell, namely the Box celi or just simply Box. A Box contains nothing but a pointer to the
object to be boxed, which may be s structure cell as well as a value. The analysis of the FAST
output traces must of course not ignore the Boxes, but they are irrelevant from our abstract
point of view. Special built in prelude functions have to prepare certain function arguments for
application according to the demands of the function to be applied: a prelude function evaluates
an unevaluated object to the required kind of normal form (usually WHNF), and unboxes a boxed
object if it needs to have unboxed form. Later in this thesis we will also have to pay regard to a
further kind of cell called Pack, for data structures different from (linear) lists, but the principle
of the analysis will still be the same.

Combinators without arguments are constant applicative forms called Caf. These are statically
allocated (i.e. at compile time) and therefore do not reside in the heap. Even if the analysis of
FAST traces is meant to reconstruct the dynamic allocations (i.e. the runtime behaviour) in the
heap, the Caf cells must not be ignored, because they can become closely connected to the heap
by update. One can find examples where the output structure built by a functional program starts

33

34 CHAPTER 4. ANALYSIS METHODS

in the heap, then crosses the heap border to the Caf cells outside (in the area called ‘black box’ in
the abstract machine terminology), and finally comes back into the heap again. Ignoring the Caf
cells would mean losing the tail of such an output structure. As opposed to the abstract examples
in the previous chapters, where the main function did not take argument, the FAST main function
always takes one argument of the type ‘number’, (which may of course be 2 dummy and need not
to be computed then). The FAST output type must always be a list of characters, thus:

type main :: num — [char] .

4.1.2 preparing trace information

The abstract output traces of A contain in principle all information needed for deforestation
analysis. This is information about the allocation of cells, about the way those cells are connected
to each other to build structures, about one special cell returned as the output structure root, the
use of cells as function arguments, and about updates making changes to the structures during the
run of the machine. Analyzing FAST traces, however, we have to keep in mind that there is no
‘black box’ any more, but one memory area which the heap is only one part of. For distinguishing
cells that are allocated statically outside the heap from those ones allocated dynamically inside,
we have to get information about the beginning of the heap and in fact we can find it reported
in the FAST output trace. Any further information, apart from information about allocation,
connection, update, function arguments, first address of the heap and output root, given in the
FAST output trace is irrelevant and will be ignored.

All statements of an output trace can be regarded as instances of regular expressions and therefore
it is easy to separate the relevant statements from the irrelevant ones automatically. The relevant
statements will be translated into procedure calls in the syntax of C and then compiled together
with the analysis program also written in this language. More details of the analysis technique
and the analysis program itself can be found in the appendix.

4.1.3 automatic analysis

The deforestation analysis program contains a number of procedure definitions which can be
- divided into two groups. The first group are the history repetition definitions which match the
output trace statements translated to function calls. The analysis program simulates heap and
‘black box’ in an array, in which ‘cells’ can be ‘allocated’, ‘connected’ and ‘updated’ according
to the information in the trace. The second group is built by the analysis definitions, which
will be activated as soon as the history repetition is finished. The analysis procedures separate
the statically from the dynamically allocated cells (by using the trace information about the
starting address of the heap), group the cells into structures (by using the trace information
about connections), divide the structures into output structure (by using the trace information
about the output root), garbage (by using the trace information about updates) and intermediate
structures (the rest).
All heap cells are counted and the relation between the total number of cells and the number of
intermediate cells is presented. With information about cells being used as function arguments
(which is provided by the trace) further reasoning about the quality of different intermediate
structures seems possible; this will be described later in this thesis. Fig.9 shows the analysis
steps.

41. OUTPUT TRACE ANALYSIS 35

1) take Miranda program

2) compile it using FAST

3) let it run and get an output trace

4) save trace into a file

B) filter it with regular expression patterns

6) translate result to C procedure calls

7) compile and link with analysis program

8) run this program

9) get analysis of heap history caused by the Miranda program

Fig.9 automatic analysis of the cell allocation history caused by a functional program

Why should this deforestation analysis not be integrated in the FAST compiler system itself? Of
course it could be, but the reasons for not doing this are firstly, not to mess with the already large
and complicated FAST system and secondly, to have an adaptable module applicable to other
compiler systems as well.

4.1.4 example

Given the function copy written in abstract syntax as shown in chapter 3, we now want to anal-
yse the runtime behaviour of this function by following steps 1) to 9) shown in Fig.9. The copy
program is specified in FAST Miranda as:

copy [=[I:
copy (l:ls) = (l:copy Is);

input = 0;
main dummy = copy ['A",'B’];

(The numerical input demanded by the FAST compiler is a dummy in this case). Having compiled
and run this small functional program, the following FAST output trace documenting its history
appears:

1) ap.rec 12 bytes

2) boxrec B bytes

3) cafrec 12 bytes

'4) cons_rec 8 bytes

5) double 8 bytes

6) funrec 12 bytes

7) packrec 4 bytes

8) sdrec 12 bytes

9) vaprec 88 bytes

10) nde_rec 88 bytes

11) heap 100000 ints from 3d000 to 9ea7c¢ (start=3c0c0)
12) version: 34,1,1,0,1,susp box_ret, susp_unb_arg,normal_typing,
13) no_nesting

36

14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31)
32)
33)
34)
35)
36)
37)
38)
39)
40)
41)
42)
43)
44)
45)
46)
47)
48)
49)
50)
51)
52)
53)
54)
55)
56)
57)
58)
59)
60)

01.259.1._:
_input:

_LIT281:
-01_copy_1100LT.0_1:
01_TL1111LT 0_1:
_01 HD_1111LT 0_1:
-01_CONS_0001T_O001LT_0_2:
11275 LC:
01_270.1C:
getrusage:

11 main _11_input:
reduce:

O1_input:
-0i.input:

update:

11 main:

reduce:

01 LIT281:
_01_copy:
_11_NULL:
_O0_HD_COUNT:
_00_TL_COUNT:
vap2:

_01_CONS:

Ol _copy:
_01_LIT281:
update:

11 main:

reduce:
prel_1100LT_O:

01 _copy:

11 _NULL:
_00_HD_COUNT:
-00_TL_COUNT:
vap2:

-01_CONS:
01_copy:

update:

reduce:
prel_1100LT_O:
O1_copy:
~11_NULL:

01 _copy:

update:
getrusage:

CHAPTER 4. ANALYSIS METHODS

numb=0 at 036170

caf=0032d8 busy=FALSE at 036178

caf=0036f4 busy=FALSE at 036184

proc=00342c prel=002370 arity=1 at 036190
proc=0089a0 prel=0022b8 arity=1 at 03619c
proc=006cal0 prel=0022b8 arity=1 at 0361a8
proc=00448c prel=0024a4 arity=2 at 0361b4
cons={0364ac,0361d0) at 0361c0
cons={0364b4,036218) at 0361c8 box at 0361d0
start_rusage=f7fffbc8

caf=36178

return_I=36170

root=36178 result=36170 tag=9
_00_dummy_T_1=000000

caf=36184

_11_1A LT 0=0361c0

361c0 = false

361c0 at 364ac

361c0 at 361d0

fun=36190,a1=361d0 at 34000

h=364ac t=3d000 at 3d00c box at 3d014
return LT=3d014

return LC=3d014

root=36184 result=3d014 tag=6
return_LC=3d00c A
vap=3d000

proc=342c arg=3d008

_11_1A LT 0=0361c8

361c8 = false

361c8 at 364b4

361c8 at 36218

fun=36190,a1=36218 at 3d0ic

h=364b4 t=3d01c at 3d028 box at 3d030
return LT=3d030

root=3d000 result=3d030 tag=6 B
vap=3d0ic

proc=342c arg=3d024

_11_1A LT 0=036210

36210 = true

return LT=36218

root=3d01c result=36218 tag=8
cur_rusage=f7fffbc0 sec=0.000000 microsec=70000.

0.07 user + system seconds for copy.fast.out #1

4.1. OUTPUT TRACE ANALYSIS

37

The following lines of this FAST output trace represent an informal abstraction corresponding to

the statements given by the abstract output trace of the second example in chapter 3:

29) call of the main function using its dummy argument

32) call of the copy functior using its argument

36) dynamic allocation of a Vap cell for copy

37) dynamic allocation of a Cons cell for the copied ‘A’
38) return of the copy function

41) return of the main function

44) call of the copy function using its (tail) argument
48) dynamic allocation of a Vap cell for copy

49) dynamic allocation of a Cons cell for the copied ‘B’
50) return of the copy function

51) update of the first Vap cell

54) call of the copy function using its (NIL) argument
56) return of the copy function

57) update of the second Vap cell

60) program ready

(See appendix for details). Further we find in lines:

11) the starting address of the heap

15) static allocation of a Caf cell for the dummy 0 (irrelevant)
16) static allocation of a Caf cell for the program output

21) static allocation of a Cons cell for the input ‘A’
22) static allocation of a Cons cell for the input ‘B’
28) update of the dummy Caf (irrelevant)

40) update of the output Caf

The other lines may be completely ignored. Filtering the irrelevant statements out and translating

the other ones into C procedure calls, we obtain as a formal abstraction:

heapstart (0X3d000) ;

caf (0X036178) ;

caf (0X036184) ;

cons (0X0364ac,0X0361d0,0X0361c0) ;

cons (0X0364b4,0X036218,0%0361c8) ; box{(0X0361c8,0X0361d0) ;

update (0X36178,0X36170) ;

use (0X000000) ;

use (0X0361c0)

vap(0X361d0 ,UNDEF , UNDEF , UNDEF , 0X3d000) H

cons (0X364ac,0X3d000,0X3d00c) ; box (0X3d00¢ ,0X3d014) ;

update (0X36184,0X3d014);

outputroot (0X3d00c) ;

use(0X0361c8) ;

vap (0X36?18 ,UNDEF , UNDEF , UNDEF , 0X3d01c) ;

cons(0X3%4b4,0x3d01c,0X3d028); box (0X3d028,0X3d030) ;

update (0X34000,0X3d030) ;
use (0X036210) ;
update (0X3d01c,0X36218) ;

(11)
(15)
(16)
(21)
(22)
(28)
(29)
(32)
(36)
(37)
(40)
(41)
(44)
(48)
(49)
(51)
(54)
(57)

38 CHAPTER 4. ANALYSIS METHODS

and now the structural similarity to the abstract trace from the example given in chapter 3 is
visible! When these calls are passed to the analysis program, the following output appears:

6 Nodes: 2 Box, 2 Coms, 2 Vap

2 VapUpd: 1 from inside, 1 from outside

0 Vap remain without being updated

1 cell became garbage updating inside Vap

1 cell became garbage updating outside Vap or Caf
4 cells belong to the output structure

Ignoring to the Box cells, this result corresponds perfectly to what we may expect after having
studied the example of the abstract copy function in chapter 3. The analyser has found two Vap
cells and two Cons cells being built; both Vap are found being updated, one with a structure cell
from inside the heap, the other one with ‘something’ from outside the heap (which we know to be
the NIL value). The simple Program main dummy = copy ['A’,'B’] has not created any intermediate

structure.

4.2 o code analysis

The automatic analysis as introduced in the section above is not the only way of analysing the
runtime behaviour of a functional program. We could also express a functional program in terms
of our abstract syntax and observe the corresponding o-code in order to detect some runtime prop-
erties we are interested in, because all runtime properties of a functional program are determined
by the machine code the program is translated into. (Examples of this code analysis method are
given in the following chapters). If this is the case, at least now the question has to arise as to
why the trace analysis machinery as presented above has been developed at all. The answer is
that the possibilities of @ code analysis are quite restricted in practice. Fig.10 shows a comparison

between both analysis methods.

AUTOMATIC TRACE ANALYSIS:

theoretically applicable for all traces

practically applicable for a big subset of all traces
cell allocations a posteriori for one input
empirically tested

ALPHA CODE ANALYSIS:

theoretically applicable for all data independent functions
practically applicable only for small functions

cell allocations a priori for all possible inputs
mathematically sound

Fig.10 properties of the analysis methods in comparison

Chapter 5

the concatenate vanishes, 1987/89

In the previous chapters the relevance of pure structures for deforestation analysis has been empha-
sized and a method of automatically finding those structures created during the run of a functional
program has been developed. In this and the following chapters, some examples found in the liter-
ature on deforestation will be examined. The analysis program introduced in the previous chapter
is able to show the cell claim gain caused by the deforesting program transformations applied to
these certain examples. Moreover, where these examples are simple enough to be analyzed with
the o code method, there can be seen not only a correspondence between these results predicted
by such a theoretical analysis and those found by the analysis program but also a certain limit of
gain for each case, a limit which deforestation can never overcome. This limit is established by the
implementation of the functional language itself, which is used for writing down those example
‘programs to be examined. 2

5.1 the function reverse

5.1.1 ordinary version

As already mentioned in the introductory chapter of this thesis, Wadler’s treatise “the concatenate
vanishes” upon list processing shows how the list concatenating append function can be avoided
The following function reverse is shown to benefit from this avoidance. It can be defined stra.ighf;
forwardly in abstract syntax as:

type reverse :: [x] = [«]
reverse xs = if (null, xs) NIL (app (reverse, (tail’, xs)) (cons (head’,) NIL))

with the strictness information provided as described in the previous chapters. The functions
reverse and app are found in a composite context, whereby the inner function reverse will produce
an intermediate list structure to be consumed by the outer function app, which is responsible for
the output structure. This auxiliary list concatenating function is deﬁned as:

type app :: [+] = [¥] - [4]
app xs ys = if (null, xs) ys (cons (head’, xs) (app (tail’, xs) ys))

How many heap nodes will be created, when we are to reverse some list [= [z1,...,7,]? How will
the number of heap nodes depend on the length of the input list {? To a.nsw,er tl,1esne questions
we translate the functions and have a look at the resulting o code. Together with both function’
definitions above, we specify: main = reverse, [A,B,C] and translate it into & code, too.

48

U CHAPTER 5. THE CONCATENATE VANISHES, 1987/89 o1 FHESFUNGHON SEVERSE 45

This description informally represents an a posteriori strictness analysis, corresponding with the
formal strictness analysis done by the FAST compiler. Knowing that the reduction of the main
proceeds as follows:

Of course, the length of the input list [A,B,C] is only 3 and not some variable n; nevertheless we
may hope to find information in the target code sufficient for predicting the cell claim behaviour
for every input size n. These are the definitions given above, after being translated by 7

function reverse xs;

b > xs;

bool 1> E(Procau, B) o vvri i e *
if(bool)

{reverse D> NIL} ... co v o s o cnimmssoissie s saimivmis s e sim s a5 4 4 s 8 e SR mis s 8 ¢ ok
else

{d > xs;

¢ > E(procer, d);

a1 > E(ProCruerses C)i o veeereite e mimihiuniiominiatan i - « sinsh - . CERMRTES - 20N Yook Kk
e > Xs;

-hd > S(prochmd:, e);

tl > NIL; '

az B> cons(hd, €);o ool ol o - e L R - R S SR e < * K Kk
reverse [> E(ProCapp, 81, @2)i} + v vviersuninssneanee e e *k Kk Kk
return;

function app xs ys;

b > xs;

bool > £(procuuu, b);
if(bool)

{app > ys;}

else

{c > xs;

hd > E(prochead. €);
d o> xs;

a B> £(procgy, d);
ay > ys;

tl > vap(procagy, a1, az);
app &> cons(hd, tI);}
return;

function main;

fo [AB.CL

main > E(Proceverse, f);
return;

and now we can describe the situation as follows:

main calls reverse in a strict context.

reverse does nothing if its argument is empty.

reverse otherwise claims one Cons (for the list head)

and calls the functions reverse and app in strict contexts.

app does nothing, if its first argument is empty.

app otherwise claims one Cons and one Vap for the function app.

main =

reverse [A,B,C] =

app (reverse [B,C]) [A] =

app (app (reverse [C]) [B]) [A] =
app (app (app (reverse []) [C]) [B]) [A] =
app (app (app [] [C]) [B]) [A] =
app (app [C] [B]) [A] =

app (C:app [] [B]) [A] =

app [C,B] [A] =

(C:app [B] [A]) =

(C:Bapp [] [A]) =

[C.BA]

it is now easy to see that, if n is the length of the input list in general, there must occur:

n + 1 calls of reverse

of which n are cell productive!, and

n calls of app (done by reverse).

Ifn >0, n — 1 of them will cause a whole cascade of further calls as follows:
The first app causes no further cell productive call.

The second app causes 1 cell productive call of app.

The n — 1% app causes n — 2 cell productive calls of app.
The n® app causes n — 1 cell productive calls of app.

Knowing the number of cells allocated in every cell productive call (each Cons and each Vap is
one cell) we are now able to sum everything together. For this purpose we informally introduce
a small function named ‘Cells’, which describes the allocation behaviour of a functional program,
and takes arguments corresponding to those ones of the functional program to be described. Thus,

for the example given above, we denote:

Cellsmain () = Cellsypy(n) + Cells,ey(n)
=(2%1+2%2+...4+2(rn—2)+2(n— 1)) + (1 *n)
=21+2+...+(m-2)+(n—-1)+n)~n

_ an{n+l
=22l _
=n(n+l)—n
=n’+n-n
=n?

So this is the formula for the cell allocation behaviour when a list of length n is to be reversed. We
can see the heap growing in quadratic order, as Wadler remarks in his treatise. In the following

section a proof for the cell claim formula developed above is given.

1We consider a function call as cell productive, if it will allocate at least one new cell in the heap.

46 CHAPTER 5. THE CONCATENATE VANISHES, 1987/89

5.1.2 runtime formula proof

The proof for the runtime behaviour n? of the list reverting program main = reverse, [..] is given
by induction on the length I of the input list and based on the o code of the functions reverse and

app.

Base case: 1 =0, i.e. xs=[].
Tt is to show: Cellspgir(0)=0.
Observing the o code for reverse we find out:
E(procru [1) = TRUE. .o ittt s *
{reverse > NI}, oooonne i ok
NIL is a value outside the heap.

Induction step: | = n+1, i.e. xs=[T1, %2, ..., Tny1)-
Hypothesis: let Cellspain(n)= n? be already proved.
It is to show: Cellspain(n + 1)=(n + 1)2.
Observing the o code we find: .
E(procuu, [£1,-++,apa]) => FALSE. ... oot
E(ProCreerses [F25« s Tnt1]) «orveveemnnitii e
E(procagp, [Tntty - s @] [21]) v I ok koK k
cons(T1, NIL) .« ottt e
Thus: Cellsmgin(n + 1) = Cells nain (1) + Cellsgpy(n) + 1.
With a similar induction proof it can be shown that: Cells,,,(n) = 2n.
Therefore we conclude: n? +2n + 1 = (n+1)%

*

Quod erat demonstrandum.

Nota bene: Because of the lazy evaluation, the cell claim formula n? as proved above is only valid
if the reverse function is forced to be evaluated completely, which is the case when that function
is called directly by main. The formula is not valid, for example, in main = head (reverse [...]),
where the argument list is reverted only as far as the function head demands it.

* Fig.11 shows the output of the automatic analysis of that list reverting functional program —this
time written in Miranda and translated by the FAST compiler— with a input list length of 50: as
the allocation formula predicts, 502 = 2500 cells are found in the heap, if we do not pay regard to
those 3727 — 2500 = 1227 Boxes belonging to the irrelevant characteristics of the FAST system.
The analysis program finds, further, as many cell structures as members of the input list, namely
50, of which one structure is output and 49 are intermediate. These are caused by the n — 1 cell
productive calls of the intermediate app function by the function reverse as explained above. {(For
comparison: a program written in a traditional imperative style can do the same reverse job on a

memory area consisting of 50 places):

5.1.3 deforested version

What is there to be gained by deforestation now? According to Wadler, the deforested version of
the reverse function is given in abstract syntax as:

type reverse = [#] — [¥]
reverse xs = revhelp, xs []

5.1. THE FUNCTION REVERSE 47

type revhelp :: [¥] — [«] = [¥]
revhelp xs ys = if (null, xs) ys (revhelp, (tail,’ xs) (cons (head,’ xs) ys)

The function app has disappeared and the former intermediate reverse has been ‘lifted’ to the
output producing outer position. Again we translate the closed expression

main = reverse, [A,B,C];

together with the new definitions just given above, and find this time the following information
in the corresponding « code produced by 7

main calls reverse in strict context.

reverse calls revhelp in strict context.

revhelp does nothing if its first argument is empty.
revhelp otherwise claims a Cons cell '

and calls itself in strict context.

Having exercised the analysis in the previous section, we can easily see now that n cells will be
allocated in the heap, if some list of length n is to be reversed according to the new deforested
definition; therefore we denote:

Cellsefor(n) = n.

Corresponding to this exact result, the analysis program can find for the FAST translated Miranda
version of the deforested reverse function 50 Cons cells being allocated in the heap, where a list of
50 elements has been reversed; 50 Boxes have to be regarded as irrelevant FAST characteristics.
Fig.11 shows the automatic analysis result. Abstracting from the Box cells, in both the ordinary
and the deforested case (Fig.11 and Fig.12), the output structure contains 50 Cons cells as we
expect, knowing that the input list contained 50 value elements.

5.1.4 deforestation gain

To obtain the absolute deforestation gain, the function Cellse,.(n) has to be subtracted from the
function Cellspgin(n) given above:

Gaing, = n?

—n=n(n-—1)

It is not surprising that this is exactly the same function as Cells,g,(n) from above, as just this
append function was avoided by the concatenate vanishing transformation. -According to Wadler’s
claim the transformation has changed the runtime behaviour from quadratic to linear order, thus:
the longer the input, the more is to be gained. , .
It is also possible to measure a relative deforestation gain as:

. 2
Gainy,g =% =n

which is a term of pure linear order O(n) convergent to co with increasing n € N, as expected.

48 CHAPTER 5. THE CONCATENATE VANISHES, 1987/89

3727 Nodes: 1227 Box, 1275 Cons, 1225 Vap

1225 VapUpd: 1225 from inside, 0 from outside

0 Vap remain without being updated

1225 cells became garbage updating inside Vap

1 cell became garbage updating outside Vap or Caf
99 cells belong to the output structure

2402 cells are intermediate and belong to

49 different intermediate structures

64.45 per cent of all cells are intermediate

Fig.11 runtime behaviour of the ordinary reverse function with input length 50 when examined automatically

100 Nodes: 60 Box, 50 Cons

1 cell became garbage updating outside Vap or Caf
99 cells belong to the output structure

0 cells are intermediate

Fig.12 runtime behaviour of the improved reverse function with input length 50 when ezamined cutomatically

5.2 quicksort

Quicksort is a common algorithmic solution of a list sorting problem and Wadler gives two versions
of it as well, with and without making use of the append function. This example is difficult to
analyse theoretically, as the runtime behaviour of the guicksort function does not only depend

" on the length of the input list given to it, but also on the element order ir it. Already for short
input lists there are hundreds and thousands of possibilities. Orly the best-, worst- and average
cases of the quicksort runtime are known as O(n), O(n?) and O(nlogn). Thus, this time we do
not analyse the o code generated out of definitions in abstract syntax, but use Miranda and the
FAST compiler instead, and trust in the results of the analysis program.

5.2.1 ordinary version

The quicksort function and its auxiliary functions above and below are given in FAST Miranda as:

app = [*] = [+] = [}
app [l ys =ys;
app (x:xs) ys = (x:app xs ys);

below :: num — [num] — [num];

below x [] = [I;

below x (y:ys) = (y:below x ys), if y < x;
= below x ys, otherwise;

5.2. QUICKSORT 49

above :: num — [num] = [rum];

above x {] = [} _

above x {y:ys) = (y:above x ys), if y > x;
= above x ys, otherwise;

gsort :: [num] — [num];
gsort [] = [|;
gsort (x:xs) = app (gsort (below x xs)) (app [x] (gsort (above x xs))); .

To show the dependence on the content of the input list, we try out quicksort with three diderent
input lists. We examine the call:

main :: num — [char];
main dummy = map decode (qsort list);

where map decode defined internally converts the gsorted list into a list of characters according to
the demands of the FAST compiler’s output type, and list will be replaced by one of the following
list expressions, each of length 52:

a) [111,97,109,99,107,101,105,106,104,102,103,100,108,98,110,112,122,113,116,114,115,117,120,
118,121,119,79,65,77,67,75,69,73,71,72,70,74,68,76,66,78,80,90,81,84,82,83,85,88,86,89,87]

b) [122,85,90,67,122,103,112,109,114,99,82,101,72,73,78,97,114,107,120,97,114,99,78,79,102,119,104,
75,122,65,74,87,118,103,112,117,80,119,82,75,114,107,90,117,102,89,116,105,102, 111,120,109]

c) [65,108,121,102,65,112,71,98,85,90,83,88,73,74,87,68,81,112,121,88,111,112,105,114,81,78,117,
106,85.112,109,98,103,74.97,122,99,66,67,106,115,120,71,76,111,78,71,106,99,82,75,122]

The numbers of list a) are unique, while repetitions occur in lists b) and c). Here are the results
given by the analysis program:

for a) 1738 allocations altogether, of which 1070 are intermediate and 156 output
for b) 1706 allocations altogether, of which 1046 are intermediate and 156 output
for ¢) 1856 allocations altogether, of which 1145 are intermediate and 156 output

We can see the number of allocations in these three cases vary slightly, but of course the size of
the output structure does not vary from case to case: it is 156 = 3% 52, where 52 has been the size
of the input structure. How is this relation to be explained? As a result of the quicksort function,
the FAST system will always return a list consisting of 104 cells, which are 52 Boxes and 52 Cons.
(It is the auxiliary functions below and above which are responsible for the variation in the number
of total allocations). But it must not be forgotten that map decode is applied to convert the list
of numbers into a list of characters as the final step! Thereby also a list of altogether 104 Boxes
and Cons cells has been built, but now the content of each Cons is not directly a value, but a
Vap which later has been updated with a value (but still remains as an allocated heap cell). The
output structure is shown in Fig.13.

50 CHAPTER 5. THE CONCATENATE VANISHES, 1987/89

5.2.2 deforested version

Now the definition of quicksort is going to be deforested. Wadler gives the appendless version as:

gsort :: [num] — [hum];
gsort zs = quick zs];

quick :: [num] — [pum] — [num]; quick [} ys = ys;
quick (x:ys) ys = quick (below x xs) (x:quick (above x xs) ys);?

Without using an additional list concatenating function, a better performance might be expected.
With the analysis program we find:

for a) 1292 allocations altogether, of which 755 are intermediate and 156 output
for b) 1349 allocations altogether, of which 793 are intermediate and 156 output
for c) 1349 allocations altogether, of which 783 are intermediate and 156 output

Not the improved performance in all cases, but the changed relation between them should be
surprising. The best case now turns out to be a) rather than b), while b) and c) accidentally show
the same runtime behaviour. Still there are lots of intermediate heap cells, as the deforestation
has not touched the (intermediate) auxiliary functions below and above at all.

5.3 summary

In the first deforestation example in this chapter —the function reverse— we have been able to
show the possible decrease of cell claims caused by deforestation in a theoretic manner. This has
been done by observing the o code of the corresponding function definition specified in abstract
syntax. The analysis program has been found to give the same results as the analysis ‘by hand’ in
this example. In the second example —guicksort— where the & code analysis has been impossible
because of a data dependent function definition (“<”, “>"}, the automatic analyser has found in

- three cases, that the deforesting program transformation technique results in “a slightly better
performance” as Wadler claims. The outputs of deforested and ordinary versions of one and
the same program must of course be the same, as an optimising transformation affecting the
semantics of a program would be something other than an optimiser. But, as the example above
shows in the differing size relations between the three cases in ordinary and deforested versions,
the way to the result may be changed considerably by the deforesting transformation: Fig.14 gives
an intuitive picture of the changes in quicksort’s runtime behaviour caused by “the concatenate
vanishes” described in [18]. The relative deforestation gain might be roughly estimated as Gainye
~2 1800:1300 ~ 1.38.

2The programming technique of collecting the results ‘on the way’ in an additional variable, here ys, is called
accumulator technigue — see also the reverse example given given before. In some cases it is possible to replace
recursion by tail recursion, which is a recursive simulation of iteration, by using accumulator technique.

5.3. SUMMARY 51

Box " ‘— Box — 4 0 - - - - - - Box 4{ ‘—— NIL

Fig.13 output structure built by main dummy = map decode (qsort list); with 3 cells per each input value
deforested
a) b) c)
Fig.14 three cases of quicksorted lists, each with and without use of the append function

52

CHAPTER 5. THE CONCATENATE VANISHES, 1987/89

Chapter 6

deforestation: transforming..., 1988/90

Wadler’s treatise “deforestation: transforming programs to eliminate trees” shows under which
circumstances intermediate structures —not only lists but treelike structures in general— can be
deforested, mainly by application of seven transformation rules. The main difference between
the approaches the concatenate vanishes and deforestation from a program’s point of view is that
the first.one ‘lifts’ an intermediate function to an output position by avoiding the, so to say,
‘outermost’ append function, whilst the second one avoids ‘inner’ functions leaving the output
function on the same level as it was before. Let us now have a look at one of the examples, which
we regard as representative, in the treatise [19]. This example is interesting because it shows well
how the classic method of deforestation works, but it is also possible to gain the same effects more
cheaply in this case than by roaming through the forest of the seven rules.

6.1 an appending composite for three lists

Knowing a function to append two lists to each other, and wishing to append three lists into one,
we could simply call:

app (app b 1) s

where all /; are some list returning expressions and the function app is defined as in the previ-
ous chapter. The inner append concatenates the lists ; and I, to an intermediate list, which is
consumed by the outer append for concatenationn with the list 3. What runtime behaviour may
be expected when the length of the list I, is n1, the length of I; is ny and the length of Iy is
n3? Knowing the allocation behaviour of app as Cells,,y(n) = 2n from an observation of the o
code generated out of the abstract syntax definition as shown in the previous chapter, it is now
easy to see that the cell claim formula of the appending function composite can now be written as:

Cellsiorar(m1,m2,n5) = Cellsinner(11,m2) + Cellspyter (n,n2,m3) = 2n4 + 2(ny + np) = 4ny + 2ny

independent of ng and for n > 0. The inner append has returned an intermediate list consisting
of Cellsinper(n1,m2) = 2n; cells independent of n,. Thus, if now the double append expression is
to be deforested, a new cell claim behaviour described by:

Cellsgegor (n1,712,8) = Cellsgyser (111,12,0) = 213 + 2y

may sensibly be expected. Let us check now whether this expectation will be fullfilled.

58

54 CHAPTER. 6. DEFORESTATION: TRANSFORMING..., 1988/90

6.2 deforested version

QOut of a composite of two old append functions, each with fwo arguments, the deforestation
transformation creates one new append function with three arguments. This new ‘multi append’
function is denoted in abstract syntax as:

type app 2 [¥] = [¥] = [¥]
app xs ys zs = if (null, xs) (apphelp, ys zs) (cons (head,’ xs) (app (tail,” xs) ys zs))

type apphelp :: [¥] = [*]
apphelp ys zs = if (null, ys) zs (cons (head,’ ys) (apphelp (tail," ys) zs))

Nota bene: The function apphelp is the same function as the old append ‘modulo’ renaming.
What will happen if three lists I;, I, and I3 are to be appended with the new function?
Let us consult the a: code of the new definition in order to answer this question.

function app xs ys zs;

b > xs;

bool > £(proc,.u, b);

if (bool)

{c1 > ys;

cy D> z5

app > E(ProCapphetp: €1, C2);}
else

{d > xs;

hd &> E(procheed. d);

e > xs;

a; B> E£(proci, €);

az > ys;

ag > zs;

tl > vap(procapp, a1, az, as);
app > cons(hd, t1);}

réturn;

An analysis analogus to that one shown in the previous chapter reveals that, if n; is the length of
l; and ng the length of I3, there will occur:

n; + 1 calls of app, of which n, are cell productive, and
ny + 1 calls of apphelp, of which 7, are cell productive.

The o code resulting from the translation by 7 tells us that both app and apphelp are claiming
two cells —one Cons and one Vap— in each productive call. Therefore we can now describe the
new runtime behaviour by the formula:

Cellsgepor(n1,m2,0) = 215 + 2ng

and can easily prove that Cells up, = Cells,uter 28 expected. (Of course all these runtime formulas
are only valid if the corresponding functional expressions are completely evaluated).

6.3. DEFORESTATION GAIN 55

6.3 deforestation gain

For better readability let us now replace n; by n and ny by m. Then the formula describing the
absolute gain of the deforesting transformation from the appending composition to the new app
function with its three arguments can easiliy be written down, only dependent on =, as:

Gaingps(n,e,0) = Cellsiorar(n,m,0) — Cellsgepr (n,m,0) = Cellsinner(n,0) = 2n

More interesting than this is the relative deforestation gain, dependent on n and m, which is
written as

dnt2m _ 1+ 1

Gaingg(n,m,e) = iam pre

With this formula it is easy to estimate between which limits this relative Gain must be found.

6.3.1 m-— oo while n is fixed

I+ gw,—1+gg=1+0=1form — oo

This result has to be regarded as a speedup factor and it means: the bigger m is, the less can be
gained by deforesting the original composed expression.

6.3.2 n— co while m is fixed

I+ le — 145 =1+1=2forn—r o0

This means: however large n may be, the speedup factor gained by the deforestating transforma-
tion can never overcome the limit of constant 2. Thus, it is impossible to append three lists more
than twice as fast with the new appending method than we have been able to do with the old

composition method given above.

6.3.3 n,m— oo while m = n x k is constant

1+H_;ﬂ —>1+1+kaorn,m—)oo, 2 = k constant.
This will probably be the most frequent case in all practical applications of list concatenation.
Assuming, [; and I, have almost the same length, then & &~ 1 and the deforestation speedup is

about a factor of 1.5.

56 CHAPTER 6. DEFORESTATION: TRANSFORMING..., 1988/90

6.4 a more sophisticated appending composite

The expensive deforestation of the expression (app (app zs ys) zs) has been digging its own grave
by delivering as byproduct “a proof that append is associative”, as Wadler himself emphasizes.

That means:

(app (app s ys) zs) = (app zs (app ys 2s))

and about the expression on the right hand side of this equation we read in [7]: “This term
contains no intermediate structures because the structure append ys zs will appear directly in the

result of the term”.
And in fact, a cell claim analysis analogus to the ones shown above will result in the same formula

Cellsyopn (n1,n2,0) = 2n; + 21

for the sophisticated appending composite in the case of the deforested version.

6.5 summary

In this chapter, the deforestation of a composite of two ordinary append functions has been studied.
The example has turned out to be somewhat unfortunate because it has made itself superfluous
by returning a positive result. Nevertheless, we must not regard this misfortune as important
as there are other examples without this ‘self betraying’ effect. A more important result is that
there is a principal gain limit for the deforestation of the example studied here. As both the cell
allocation formulae of the ordinary and the deforested version of the three list concatenation have
order @(n), the relative deforestation gain between them must have order O(1), a number which
is determined by the coefficients of n in the allocation formulae. This limit is factor 2 in the
(unreachable) best case. Factor 1 —no gain— is the (also impossible) worst case, and in between
these borders the actual deforestation gain is to be found: it may perhaps be about factor 1.5 in
a lot of realistic applications. The decreasing speedup for » = 100 with m increasing from 50 to

* 500 is shown in Fig.15.

speedup

100 200 300 400 500 m

Fig.15 decreasing deforestation spesdup for increasing m with n = 100 consiant

Chapter 7

extending deforestation..., 1991

In their treatise “extending deforestation for first order functional programs” Hamilton et Jones
present an example of a function composition which is not deforestable by Wadler’s seven rules.
The reason for this is that the intermediate function is not creative. A function is creative, if
every evaluation of it will return a structure building cell, i.e. a Cons or a Pack. A function is not
creative, for example, if it returns a suspension node. If an intermediate function is not creative
one of Wadler’s rules, the unfold rule, can not be applied with a useful result. Nevertheless it is
possible to deforest this example composition by another algebraic transformation.

7.1 append-reverse, undeforestable version

Have a look at the example this chapter is about to deal with. It is a composed functional expres-
sion, denoted in abstract syntax as:

app (rev, zs ys) zs

where xs, ys, zs are list expressions. The rev function used in this expression is exactly the same
function (modulo renaming) as revhelp in chapter 5, where it occured as a result of the defor-
estation of the function reverse. The definition of app is the same as in all previous chapters. It
is possible to predict the runtime behaviour of this composed expression if the length of zs is n
and the length of ys is m. (The length of zs is irrelevant because the connection to this last list
structure is done by a single pointer). Translating the expressions via 7 to a code, as shown in
the previous chapters, we can find information about their runtime behaviour as follows:

main calls rev in strict context at first.

main calls app in strict context afterwards.

rev does nothing if its first argument is empty.

rev otherwise claims a Cons cell and calls itself in strict context.
app behaves as described in chapter 5.

Therefore, it is now easy to see that:
Cellsyps(n,m) = Cells,ey(n) + Cellsagy(n +m)

=n+ 2(n+m)
= 3n+2m.

57

58 CHAPTER 7. EXTENDING DEFORESTATION..., 1991

7.2 an algebraic transformation

Let us use the notation zs ++ ys instead of app zs ys for better readability in this section. It is
possible to save some heap ceils by applying a transformation based on the following

transformation rule: ((rev xs ys) ++ zs) = (rev xs (ys ++ zs))

The proof, which also can be found in [2], is given by complete induction over the length of xs.
It makes use of the

associativity theorem: (xs ++ ys) ++ zs = xs ++ (ys ++ z5)

which is proved,l for example, in [19]. Here is the proof of the validity of the rule given above:

Base case: xs =[]
1t is to show: (rev [] ys) ++ zs = rev [] (ys ++ zs).
(rev [] ys) ++ zs = (ys) ++ 2zs per definitionem.
rev [] (vs ++ zs) = (ys ++ zs) per definitionem.

Induction step: xs = (w:ws)
Hypothesis: let (rev ws ys) ++ zs = rev ws (ys +- zs) be already proved.
It is to show: (rev (w:ws) ys) ++ zs = rev (wiws) (ys ++ zs).
(rev (w:ws) ys) ++ zs = (rev ws (w:ys)) ++ zs per definitionem.
(rev ws (w:ys)) ++ zs = rev ws ((w:ys) ++ zs) per hypothesis.
rev ws ((w:ys) ++ zs) = rev ws (w:(ys ++ zs)) per theorem.
rev ws (w:(ys ++ zs)) = rev (w:ws) (ys ++ zs) per definitionem.

Quod erat demonstrandum.

7.3 append-reverse, transformed version

" Using our experience from the « code analysis as shown in the previous chapters, we can see now
immediately that the runtime behaviour of the new expression

rev, zs (app ys zs)
is this time describeable as

CellSirans (7,m) = Cellsapp(m) + Cellspey(n) = 2m +n

if n is the length of zs and m the length of ys. Still we find both functions rev and app in a
composite relation, nevertheless the optimisation is complete as the subterm (app ys #s) is not
intermediate but belongs directly to the result of rev.

7.4 transformation gain

Again we describe the absolute and the relative transformation gains with the difference

Gaing,(n,e) = Cellsi(n,m) — Cellsirans(n,mm) = (3n+2m) — (2m+n) = 2n

7.5. SUMMARY 59

and the quotient

: _ Bn42m _ 2
Gain,q(n,m) = i =14 55w

and again we are interested in between which limits the relative gain is to be found.

7.4.1 m— co while n is fixed

In this case we may estimate
1+1+ﬁ—)1+%=1+0=1f0rm—)oo

which means: the bigger m, the less is to be gained by the algebraic transformation;
this is the same result as in the chapter before.

7.4.2 n-— oo while m is fixed

Now we have

I+ — 1+ =1+2=38frn— oo

as a limit for the transformation speedup similar to the speedup result presented in the previous
chapter, but greater in the present case.

7.4.3 n,m— oo while m = n * k is constant

Similar to the example shown in the previous chapter, this is the average case which converges to
1+ H% for n,m —+ co, 2 =k constant.

Let, for example, k = %, then the transformation speedup will converge to 2 for increasing n, m.

7.5 summary

In this chapter an important example has been examined. For syntactical reasons, the classical
deforestation with seven rules fails to be applicable to the non-creative function rev, as Hamilton
et Jones state in their treatise. Nevertheless, the composed expression has been optimised by
another transformation introduced in the present chapter. This means that Wadler’s deforestation
as presented in [19] is not complete. There is at least one case —and even a very simple one,
as we have shown— which deforestation with seven rules is too weak to cope with, even though
this case is deforestable. Compared to the result in the previous chapter, the deforestation gain
of a factor 2 in the average case now seems high. Nevertheless, the new transformation applied
in this chapter must not be regarded as the solution to all speedup problems since it has been
constructed ad hoc to cover only one small class of abstract syntax expressions. However, here
arises the question whether it could be possible to combine some well known algebraic laws (or
other transformations from the source language into the source language) with the rather new
deforestation techniques systematically in order to achieve better deforestation results, respectively
to expand the deforestation domain into program classes which can not be improved by the
deforestation techniques found in the literature so far. Future work may attempt to answer this
question.

60

CHAPTER 7. EXTENDING DEFORESTATION..., 1991

Chapter 8

“a short cut to deforestation”, 1993

In the previous chapters, examples of deforestation with the concatenate vanishes and Wadler’s
deforestation have been discussed. There is yet another method of deforestation, presented as
foldr/build by Gill, Launchbury et Peyton Jones [4]. This chapter will deal with deforestation
by foldr/build. At first, an example showing the possibilities of this new deforestation method
will be presented. Analogous to the result of the previous chapter, (where an easily optimisable
expression has been discussed that turned out to be undeforestable by Wadler’s seven rules),
another example, this time not completely deforestable by foldr/build, is given.

For two reasons, no o code analysis will be performed in this chapter. The first example contains
—like guickSort in chapter 5— data dependencies: thus the o code analysis is not applicable in
this case. In the second example we are not interested in general program properties; only the
failure of deforestation for one instance shall be shown: in this case, the a code analysis is too
inconvenient and not at all necessary. Therefore we base our statements on the results of the
automatic trace analysis alone.

8.1 successful application of foldr/build

8.1.1 ordinary list comprehension

Have a look at this FAST Miranda program:

f:: num — char;
f x = decode x;

g num — num;
g0=0;
gx=1+g(x~1);

even :: num — bool;
even x = if x mod 2 = 0;

somefunction :: [num] — [char];
somefunction xs = [f x | x - (map g xs); even x];

input :; num;
input = 0;

61

62 CHAPTER 8. “A SHORT CUT TO DEFORESTATION", 1993

main :: num — [char];
main dummy = somefunct [65,66,67,68,69,70,71,72,73,74,75,76,77];

The purpose of this program is the following: the function f transforms an integer number into a
character by calling the built in decode function. The function g is a hard working equivalent to

the Identity function on natural numbers. The function even will return True if its input is even

and False if its input is odd. The function somefunction takes a list s of numbers, creates a new
list (with the same content) by mapping g to each element of the input list; (the map function is
built in). Then the function even is applied to each element = of the new list. If this application
returns True, the corresponding z will be a member of a third list —the output— which is built
out of all zs after applying the function f to each of them. All in all, somefunction returns a
list of characters all having even code numbers. The function main is a closed expression calling
somefunct with an argument list from 65 (the ASCII code of ‘A’) to 77 (the ASCII code of ‘M’).
The input 0 is an irrelevant dummy, but the FAST compiler demands it.

Nota bene: the subexpression map g xs produces an intermediate list in the context of the list
comprehension expression [f x | x ..].

To get an intuition about the runtime behaviour of somefunct let us do some fests with input lists
of different lengths and compare the results of the analysis program about them.

a) Input length §; =13
(numbers from 65 to 77, coding the characters from ‘A’ to ‘M)

b) Input length I3 = 26
(numbers from 65 to 90, coding the alphabet from ‘A’ to ‘Z7)

c) Input length I5 = 39
{numbers from 65 to 90 and from 97 to 109, coding FA-Z ‘- m’)

d) Input length I, = 52
(numbers from 65 to 90 and from 97 to 122, coding ‘A’-Z’,‘a’-‘z’)

. Here are runtime allocations of somefunction as found by the analysis program:

for a)
69 allocations altogether, which consist of:
39 intermediate (= 3;)
18 update garbage (=Il; + k — 1, k = 6)
12 output structure (=1; — 1)

for b)
142 allocations altogether, which consist of:
78 intermediate (= 3i3)
38 update garbage (= I + 2k)
26 output structure (= ly)

for ¢}
212 allocations altogether, which consist of:

117 intermediate (= 3l3)
57 update garbage (= I3 + 3k)
38 output structure (= I3 — 1)

8.1. SUCCESSFUL APPLICATION OF FOLDR/BUILD 63

for d)
285 allocations altogether, which consist of:
156 intermediate (= 31,)
77 update garbage (= Iy + 4k + 1)
52 output structure (= I,)

These results' indicate an output structure consisting of half as many Cons cells as the correspond-
ing input length; together with the Boxes there are as many output cells as the corresponding
input length. The variation of —1 respectively -+1 in the length of the output structure and
the number of update garbage cells is a phenomenon of the data dependancy mentioned above,
which can be explained by the changing number of even integers in the input list. The function
somefunction shows a linear runtime behaviour: The output cell number is about the same as the
input length, the intermediate number is three times the input length, and the garbage number
increases in linear order with the input. Fig.16 shows a graph of the analysis result.

8.1.2 deforested version and speedup

Whilst the other functions f, g and even remain unchanged, the definition of somefunction is defor-
ested by foldr/build to a new definition, named somefunct here. Dissolving the list comprehension
according to [15] we would obtain:

somefunction [] = .[|;
somefunction xs = ((f y):somefunction ys)), if even y;
= somefunction ys, otherwise
where (y:ys) = map g xs;;

Now it is intuitive that the intermediate structure map g xs can be removed by defining:

somefunct :: [num] — [char];
somefunct [= [J;
somefunct (x:xs) = ((f y):somefunct xs), if even y;
= somefunct xs, otherwise
where y = g x;;

This redefinition leads to the following runtime results:

for a)
18 allocations altogether, which consist of:
0 intermediate
6 update garbage (= }all = 1(I; — 1))
12 output structure (= 2 * garb = in; — 1)

for b)
39 allocations altogether, which consist of:
0 intermediate
13 update garbage (= %all = %lg)
26 output structure (= 2 * garb = iny)

!See appendix for how the analysis results are derived, and according to which assumptions the cells can be
divided into the different classes ‘output’, ‘intermediate’ and ‘update garbage’.

64 CHAPTER 8. “A SHORT CUT TO DEFORESTATION”, 1993

for c)
57 allocations altogether, which consist of:
0 intermediate
19 update garbage (= 1all = L(l; — 1))
38 output structure (= 2 * garb = ing — 1)

for d)
78 allocations altogether, which consist of:

0 intermediate
26 update garbage (= %all = %14)
52 output structure (= 2 * garb = in,)

The deforestation has been successful: there are no intermediate structures left. The new some-
funct definition is also linear in its runtime behaviour, but this time the graph line (Fig.16) is
less steep than in the ordinary case. Therefore, the relative deforestation gain must be a limited
speedup factor of order ©(1), as we found in the earlier chapters. This factor is easy to estimate
simply by dividing two of the corresponding total allocation numbers of the ordinary and the
deforested version of somefunct:

for a) 82 =3.83 for b) X2 = 3.64 for ¢) 32 =3.72 for d) 28 = 3.65

So, roughly speaking, we gain a speedup factor of between 3 and 4 independent of the length of
the input list. This is a considerably better result than in the earlier chapters, where a speedup of
factor 2 or 3 was possible only for inputs of infinite length. The speedup factors estimated above
depend on the FAST implementation and could be different if no Box cells were used.

allocations

13 26 39 52

Fig.16 runtime behaviour graphs of both versions of somefunct as found by the analysis program

8.2. FOLDR/BUILD FAILING IN A PERMUTATION 65

The reason for the improved speedup here, compared with the earlier examples, is not the different
deforestation method, but the different size of the removed intermediate structure, compared to
the size of the output structure.

8.2 foldr/build failing in a permutation

B.2.1 developing a tridky function

In this section we want to to show that also the foldr/build rule is, like Wadler’s deforestation, not,
applicable in all cases. To get an idea how such an undeforestable —or at least: not completely
deforestable— function composition can be constructed, let us repeat the foldr/build deforestation
for list comprehension in general. The Miranda expression:

h [#] = [] }
h xss = [f xs | xs «— (map g xss); pred xs];

transforms via foldr/build to

hox [¥] = [*#];
h=1[
h (xs:xss) = ((f ys):h xss), if pred ys;
= h xss, otherwise
wheré ys = g xs;;

and the inner functions f, g and pred are typed:

g1k = k%]
fooodk — &k %
pred :: *% — bool;

Observing the once deforested expression above, we detect again some functions in composite
situations! These are: f ys and pred ys, where ys = g xs. The questions are now: can these
composites always be further deforested with foldr/build? Are there cases where the déforested
version of the h function as given above is the last link in a deforestation chain, though it may well
be possible to improve this ezpression further in another way? The answer to the first question
is no, the answer to the second one is yes. In both function compositions of the deforested h
expression g is the intermediate function — the consequent question is: How must g be defined to
prevent a further foldr/build deforestation? Before we develop a sufficient definition of a cheeky_g
function we should at first give an intuition of the situation.

66 CHAPTER 8. “A SHORT CUT TO DEFORESTATION”, 1993

This picture shows the situation after the first deforestation of the list comprehension:

— >
o - build —t—> foldr ®
x flys)
—t
XS ys

The g function transforms a list zs into an intermediate list ys = g(zs). The function f folds the
intermediate list into a single core value f(ys). To make the situation complete, we must assume
that the list zs can be built out of another single core value z, for example by the expression zs
= [1..z]. If now the creation of both list-zs and ys is to be avoided we must find a function a so

that a(z) E f(ys), thus:

@ | a (=

- : a(x)=k(ys)

And here comes the trick: What nhout a function g containing an implicit ‘meta knowledge’ ebout
the sequence of elements in the lists zs and ys? How should such ‘meta knowledge’ be eziracted
out of g and pushed into a by o simple syntactic transformation? This seems really impossible,
and in fact all examples for successful foldr/build applications given in literature ‘deal with folding
functions like sum and square which are commutative, i.e. the order of the list elements as argu-
ments of those functions is irrelevant!

. Thus if we want to make a further deforestation of the expression f (g zs) impossible, and if we
assume that zs can be built and f can be expressed in terms of foldr, then the only possibility we
have is to break the foldr/build chain between zs and f by providing a function g, which is not
rewriteable in terms of the functions foldr and build®. Now we are able to define an example func-
tion cheeky_g, together with a non commutative folding function f, so that a further deforestation
of the expression given above with foldr/build is impossible:

f [z1, Ta, T3, T4] = 270 % 3% % 578 « 7™

This is a Godel bijection based on prime numbers for coding sequences of natural numbers; it
could easily be expressed in terms of foldr. The function

cheeky_g [z, T3, T3, x4] = shiftleft(shiftleft(shiftleft [z1, za, z3, 24]))

permutes its argument [y, 3, T3, T4] three times.
The left shifting permutation is defined in FAST Miranda as:

28uch a function already has been mentioned in the previous chapter: the reverse function, which has been
indeforestable for syntactic reansons, is a permutation. This property makes that function relevant for the present
chapter as well.

8.2. FOLDR/BUILD FAILING IN A PERMUTATION 67

shiftleft :: [*] — [*];

shiftleft [] = [J;

shiftleft [x] = [x];

shiftleft (x:xs) = ((last xs):init (x:xs));

last :: [¥] — »;
last [x] = x;
last (x:xs) = last xs;

init :: [#] — [];
init [x] = [];
init (x:xs) = (x:init xs);

Without any possibility of making the implicit knowledge of cheeky_g explicit, namely:

cheeky g [z1, 3, 23, 4] = [22, T3, T4, 1]

we can be quite sure that the foldr/build deforestation as presented in literature can not generate a
function a from a single value to another single value transporting the permutation ‘knowledge’ of-
the intermediate list. But how are we able to further improve the deforested h expression as given
above? Not by a syntactic transformation, but aed hoc with our knowledge about permutations:
on a list of length | = 4, one right shifting permutation is semantically equivalent to three left
shifting permutations. Thus if we replace cheeky_g by the following function:

shiftright :: [x] — [#];

shiftright [] = [I;

shiftright [x] = [x];

shiftright (x:xs) = append xs [x];

we are done because we have avoided two intermediate lists caused by the shiftleft function calls
in cheeky_g.

8.2.2 results of the automatic trace analysis

}.\gain we would like to construct cell allocation graphs for the different versions of the h expres-
sion. Therefore we have to provide inputs of different lengths and then use every input as an
argument for each version of the expression h. We choose:

a) xss = [[4,3,2,1]] (length I, = 1)
b) zss = [[4,3,2,1], [4,3,2,1]] (length I, = 2)
c) zss = [[4,3,2,1], [4,3,2,1], [4,3,2,1]] (lenght I3 = 3)
Yet some predicate function pred is needed, and we define for simplicity without loss of generality:
pred xs = True;

Now we let the analysis program work on the expression

h xss = [f xs | xs = (map cheeky_g xss); pred xs];

68 CHAPTER 8. “A SHORT CUT TO DEFORESTATION”, 1993

and obtain the following results®:

for a)
47 allocations altogether, of which:
33 intermediate (= 11xoutput)
3 output structure (= 3l;)

for b) .

95 allocations altogether, of which:
66 intermediate (= 11lxoutput)

6 output structure (= 3l;)

for ¢)
143 allocations altogether, of which:
99 intermediate (= 11xoutput)
9 output structure (= 3[3)

Now we examine the deforested expression and, as we choose pred to always be true, we can now
do without the if and otherwise statements:

hl =
h (xsixss) = ((f (cheeky-g xs)):h xss);

‘We obtain the following results from the analysis proéram:

for a)
45 allocations altogether, of which:

31 intermediate (= 10xoutput + I;)
3 output structure (= 3/;) .

for b)
90 allocations altogether, of which:

62 intermediate (= 10xoutput + L)
6 output structure (= 3l;)

for c)
135 allocations altogether, of which:
93 intermediate (= 10xoutput + I3)
9 output structure (= 3l3)

In fact, some allocation decrease caused by the deforestation of the map expression in the list
comprehension is recognisable, but only a small one. Let us finally replace cheeky_g by shiftright

and examine

hil =10
h (xs:xss) = ((f (shiftright xs)):h xss);

Then we obtain the following, obviously better, results:

3for the demands of the FAST compiler the definition of the function f has been changed to
£ [x1,x2,x3%4] = decode ((2°1 * 3°2 * 527 ¥ 7°4).100);

8.3. SUMMARY 69

for a)
16 allocations altogether, of which:
8 intermediate (= 3*output — ;)
3 output structure (= 3l;)

for b)
32 allocations altogether, of which:
16 intermediate (= 3*output — I,)
6 output structure (= 30,)

for c})
48 allocations altogether, of which:
24 intermediate (= 3xoutput — I3)
9 output structure (= 3l3)

The following table shows the deforestation gains of foldr/build, respectively foldr/build plus re-
placement of cheeky_g by shiftright, applied to the former list comprehension.

gain | foldr/build | plus replacement
factor 1.06 2.98

8.3 summary

In this chapter, it has been shown how deforestation can be done with the transformation rule
foldr/build. This method works well in cases of commutative foldings, where the element sequernce
of intermediate lists is irrelevant. The method does not work completely where the element
sequence of the intermediate lists is some kind of meta information with influence on the folding
function. In this case the generation of intermediate lists cannot be avoided without loosing this
information for the folding function. Nevertheless, it is possible for us in some cases to improve
such complicated expressions ad hoc. Replacing the function cheeky_g by shiftright has been such
an ad hoc method in the example shown above. Thus as a result, we may state that great
runtime improvements caused by foldr/build deforestation must not be expected in every function
composition situation.

In their treatise “a short cut to deforestation” the authors themselves give important comments
on the applicability of their new method. Functions of a certain type are definitively known
to be resistant against foldr/build, but nothing is said about functions not of this type: their
deforestability depends on whether they are expressable in terms of foldr/build or not. Yet we
do not know whether this property is decideable and —if it were decideable— how to do a pre-
transformation to foldr/build-form automatically to make this kind of deforestation possible. The
example of cheeky_g presented in this chapter has shown one case, where a function probably can
not be expressed infto terms of foldr/build. As such difficult functions we consider in general:
permutations, which change the sequence of the input lists’ elements, filters, which decrease the
input list length, and multiplexers, which increase the input list length.

70

CHAPTER 8.

“A SHORT CUT TO DEFORESTATION”, 1993

Chapter 9

benchmark examples

In the previous chapters some representatives of those more or less successful deforestation exam-
ples found in the literature have been studied. The question is now whether deforestation can be
successfully applied not only to those well-selected reasonable examples, but also —after all the
purpose of the deforestation research— to more realistic functional programs.

+

9.1 i.empirical deforestation limits

Comparing the deforestation results of chapters 7 and 8 we have found that the actual deforestation
gain depends on the size of the removed intermediate structure, compared to the corresponding
output structure. Thus, where the intermediate structures are big compared to the output, the
relative deforestation gain is bigger than for small intermediate structures — assuming, of course,
the intermediate structures could be deforested at all. Size and number of intermediate structures
produced by a functional program depend strongly on tke ‘density’ of functionally composite
situations occurring in such a program. The more a program is functionally composite, the
more intermediate cells it will produce compared to its output cells, and the bigger could be the
deforestation gain if there were a transformation to remove all those intermediate structures.- Yet
we have not read about deforestation gains of factors of 10 or 100, but found the following results
in [6] instead: of 25 benchmark programs analyzed there, for only three the allocation gain was
bigger than factor 2 with foldr/build; fifteen programs could not be deforested with an allocation
gain of more than factor 1.1, and for seven programs the gain was between factor 1.1 and factor
2. However, the programs with a gain of more than factor 1.1 are only toys like the eight queens
puzzle. These results are important for comparison in the following.

9.2 a new challenge for the analysis program

The analysis program has been only used for verification so far, which means either comparison
with the results of the a code analysis, or comparison of the allocation behaviours of ordinary and
deforested versions of a program without having performed o code analysis before, as shown in
the previous chapters. But what about the case in which we can neither analyze a complicated
program by hand, nor are supplied with an already deforested version of it for comparison? In this
case we would liké the analysis program to predict —or at least to guess— the maximal possible
gain of applying a deforesting transformation, assuming such a transformation exists, For analysis
applications, as done in the previous chapters, it was sufficient only to distinguish the cell classes
‘intermediate’, ‘output’, and ‘update garbage’ to find out how many cells have been allocated in
total, and how many intermediate cells actually have been removed by deforestation. But for big

71

72 CHAPTER 9. BENCHMARK EXAMPLES

programs this distinction is too rough and simple. As explained above, big composed programs
produce a lot more intermediate cells than output cells. Simply counting both and returning their
numerical relation would mean predicting a huge deforestation gain, obviously in contradiction to
the small or very small gains observed, as reported in the literature. Thus, the analysis program
now has to reason further about those cells which it found to be ‘intermediate’. This class shall
further be divided into the subclasses ‘deforesteble’ and ‘essential’, in order to produce acceptable
gain predictions. As byproduct of this further reasoning we found another cel! class, of which the
members first had been regarded as ‘intermediate’ in the former rough analysis, but then turned
out to be ‘not really intermediate’ at all. In the following we have to explain the new concepts
‘egsential’ and ‘not really intermediate’ and have to tell something about the method of deriving
these cell classes from the rough ‘intermediate’ class.

9.3 not really intermediate, essential or deforestable

In functional programs, some data structures are used as input arguments for more than one
function, for example symbol tables in eompiler design which are referred to many times. We
assume that those structures often referred to can not be deforested. An example will illustrate

this difficulty.

9.3.1 example

The following Miranda definitions simulate a small histogram table which is built out of an in-
put list, and two functions called most and fourtimes which are able to select entries out of the table:

entry ::= Pair char num;

histogram :: [char] — [entry] — [entry];
histogram [] ents = ents;
histogram (x:xs) ents = histogram xs (make x ents);

make :: char — [entry] — [entry];
make x [| = [Pair x 1];
make x (e:ents) = ((Pair y (n+1)):ents), if x =y;
= (e:make X ents), otherwise
where (Pairy n) = e;;

most :: [entry] — entry — char;
most [Pair x n] (Pair y m) = x, if n>m;
=y, otherwise;
most (e:ents) en = most ents e, if n>m;
= most ents en, otherwise
where (Pair x n) = e; {Pair y m) = en;;

fourtimes :: [entry] — [char];

fourtimes [] =7J;

fourtimes ({Pair x n):ents) = (x:fourtimes ents), if n=4;
= fourtimes ents, otherwise;

The function histogram takes a list of characters and an accumulator list for entries as input and

9.3. NOT REALLY INTERMEDIATE, ESSENTIAL OR DEFORESTABLE 78

makes a new table (i.e. a list) of entries out of it. An entry is a pair consisting of a character (of
the input list) and a number (according to how often this character occurs in the input list). The
function most takes a histogram table and a comparison entry and returns the character with the
highest number of occurrences, the function fourtimes returns a list of characters out of the table
which all occur exactly four times. If we now ¢ompute the expression

main dummy = app [most (h) (Pair ‘X' 0)] (fourtimes (h))
where h = (histogram ['A’'B','A",'C",'A",'B])i

we see that the intermediate table structure
[(Pair ‘A" 3), (Pair 'B' 2), (Pair ‘C' 1)]

produced by the expression h is shared between the functions most and fourtimes. (The main
function’s output is [‘A’]). Thus, if we wanted to deforest the intermediate table structure, we
would have to do the deforestation transformation twice: first for the composition most({h) and
second for the composition fourtimes(h). If there were ten functions operating on the histogram
table, we would have to deforest ten times, etc. Therefore we claim the following hypothesis.
Hypothesis: We call a multiply used intermediate structure ‘essential’

and assume it is undeforestable until the opposite is proved.

9.3.2 separation method

When the analysis program has found all intermediate cells, it groups them into different cell
structures according to the cell connection information given in the output trace. With trace
information about the use of particular cells as function arguments, the intermediate cell structures
in the heap are divided according to the following definitions.
Definition: A cell is member of a structure,

if either the cell is the structure root

or the cell is contained by a Cons, Bor or Pack cell

which is itself a member of this structure.
Definition: An intermediate cell structure is E-essential,

if at least one of its member cells has been used as a function argument ot least E times.

Thereby E is a natural number greater than 0,

chosen according to our intuition about the power of deforestation.
Definition: A cell structure that is not output is not really intermediate

if none of its member cells has ever been used as a function argument.
Nota bene: The second definition can intuitively be derived from the ‘definitions’ of intermediate
as given in the introductory chapter of this thesis. Not really intermediate ‘structures’ mostly
turn out to contain not more than one single cell.
Definition: Intermediate structures without the properties defined above

will be regarded as deforestable in principle.
Iglota bene: deforestable in principle does not mean we actually posses a method for deforesting
those cells.

9.3.3 continuation of the example

Two automatic analyses of the example given above shall show the suitability of our separation
method. The histogram structure is used twice, thus we must expect that we are able to find this

74 CHAPTER 9. BENCHMARK EXAMPLES

structure by comparing two automatic analyses with E=1 and E=2, if we know that all the other
intermediate structures occuring in the program are used only once. {These other structures are
caused by app and the creation of the histogram itself). And indeed, we can find in the outputs
of the analysis program the following statements for E=2:

70 Nodes: 17 Box, 11 Coms, 7 Pack, 35 Vap

2 cells belong to the output structure

58 cells are ‘intermediate’ (rough counting)

6 structures are ‘really intermediate’ and contain
34 deforestable intermediate cells

and for E=1:

5 structures are ‘really intermediate’ and contain
21 deforestable intermediate cells

with the other statements being the same as in case E=2. The 2 output cells (Cons and Box) are
used for the most frequent value ‘A’. The difference of 34 — 21 = 13 cells is exactly the size of
the histogram structure, which contains 3 Cons cells to build the list, 3 Pack cells for the pairs,
6 Boxes and 1 not updated Vap for the operation +, as shown in Fig.17. It is thus possible
to detect the essential intermediate histogram structure with help of the analysis program. We
regard this result as a good argument for the suitability of the E-assumption concept as applied
in the following advanced automatic benchmark aralyses.

ﬂ - — -

| [[
4{ Pack J —E’ack] Pack
oo o
—®
Ay UNY
Fig.17 the tial intermediate histogram structure consisting of 13 heap cells

9.4 four benchmark analyses

In this section, four FAST benchmark programs called event [14], listcompr [15], sched [17]
and wang [20] are to be analyzed. These programs are too big to be analyzed by hand: for the
numerical input 2, their traces differ from 568 to 12889 lines; listcompr claims 5340 heap nodes
for input 4 and 21078 nodes for input 8. None of the four programs exist in a deforested version,
so that the analysis program is applied as forecaster of a possible deforestation gain. Analyses
with different assumption numbers E will be compared to each other. (The programs are data
dependent and therefore run with the small input 2 in order to avoid unnecessarily long traces).

9.4. FOUR BENCHMARK ANALYSES 75

9.4.1 sched
This is the output! of the analysis program for sched with E=2:

89 Nodes: 26 Box, 22 Coms, 6 Pack, 35 Vap

29 VapUpd: 15 from inside, 14 from outside

6 Vap remain without being updated

15 cells became garbage by updating inside Vap

6 cells became garbage by updating outside Vap or Caf
10 cells belong to the output structure

58 cells are intermediate and belong to

25 different intermediate structures

9 structures are ‘really intermediate’ and contain

33 deforestable intermediate cells

65.17 per cemt of all cells are intermediate (rough counting)
37.08 per cent of all cells are deforestable with E=2.

‘Rough courting’ means regarding all cell which are neither output nor update garbage as de-
forestable intermediate, without separating them further as described above. We see, that the
intermediate part decreases from about 65 per cent in rough counting (estimated speedup factor
2.85) to about 38 per cent (estimated speedup factor 1.60), if the not really intermediate struc-
tures are ignored the same way as the essential structures with an assumption number E=2. If we
regard this number as too small, we analyze for E=3:

10 structures are ‘really intermediate’ and contain
34 deforestable intermediate cells
38.20 per cent of all cells are deforestable with E=3.

with the other analysis statements being the same as in the case above. For E=4 the result is:

10 structures are ‘really intermediate’ and contain
34 deforestable intermediate cells
38.20 per cent of all cells are deforestable with E=4.

Increasing E from 2 to 3 we regard now 38.2 per cent of all cells as deforestable intermediate; these
are less than 2.0 per cent more than with E=2. There is no difference between the analyses for
E=3 and E=4, which means that no cell is used as a function argument more than three times.
The difference between E=2 and E=1 is not only quantitative, but also qualitative: an assumption
of E=1 means regarding any shared structure as undeforestable. For E=1 we obtain:

6 structures are ‘really intermediate’ and contain
19 deforestable intermediate cells
21.36 per cent of all cells are deforestable with E=1.

In the following sections, the analysis results for the other benchmark programs with input=2 are
presented in an analogous manner.

Tt is given completely this time in order once to show the ability of the analysis program.

76 CHAPTER 9. BENCHMARK EXAMPLES

9.4.2 event

These are the automatic analysis results? for event with E=2, 3, 4:

802 Nodes: 218 Box, 212 Coms, 30 Pack, 342 Vap

589 cells are intermediate and belong to

132 different intermediate structures

40 structures are ‘really intermediate’ and contain

360 deforestable intermediate cells

73.44 per cent of all cells are intermediate (rough counting)
44 .89 per cent of all cells are deforestable with E=2.

41 structures are ‘really intermediate’ and contain
364 deforestable intermediate cells
45.39 per cent of all cells are deforestable with E=3.

41 structures are ‘really intermediate’ and contain
364 deforestable intermediate cells
45.39 per cent of all cells are deforestable with E=4.

There is only a minimal difference in the cells regarded as deforestable intermediate under as-
sumptions E=2 and E=3. No difference is found between the analyses under assumptions E=3
and E=4, which means that no intermediate cell is used as function argument more than three
times. A rough counting returns about 70 per cent ‘intermediate’ cells in all cases. This would
mean an estimated possible gain of factor about 3.3 which is probably too big, compared to our
speedup reasoning in the sections and chapters before. But taking the essential structures and
the not really intermediate structures out of our consideration, we find only about 45 per cent
deforestable intermediate cells in all cases. The corresponding estimated speedup is now about
factor 1.8 which may be regarded as a sensible forecast compared to the results presented in the
chapters before. For the qualitatively different assumption E=1 we obtain finally:

30 structures are ‘really intermediate’ and contain
295 deforestable intermediate cells
36.78 per cent of all cells are deforestable with E=1.

9.4.3 listcompr

Analogue to the programs in the sections above, the analysis program finds now for listcompr:

5340 Nodes: 1453 Box, 1177 Coms, 281 Pack, 2429 Vap

4049 cells are intermediate and belong to

1002 different intermediate structures

162 structures are ‘really intermediate’ and comtain

1108 deforestable intermediate cells

75.82 per cent of all cells are intermediate (rough counting)
20.75 per cent of all cells are deforestable with E=2.

?From now on, the less relevant statements will be omitted for clarity.

9.4. FOUR BENCHMARK ANALYSES 77

183 structures are ‘really intermediate’ and contain
1964 deforestable intermediate cells
36.59 per cent of all cells are deforestable with E=3.

185 structures are ‘really intermediate’ and comtain
1966 deforestable intermediate cells
36.82 per cent of all cells are deforestable with E=4.

In this case the difference of the analyses between E=2 and E=3 is remarkable. Only one more
structure is regarded as deforestable with E=3, but this structure contains 1886 — 1190 = 696
cells! Nevertheless, even with assumption E=4 the predicted deforestation gain corresponding to
the about 36 per cent deforestable intermediate cells is not bigger than factor 1.6 where the gain
according to the rough counting would have been estimated as factor 4. If we assume that any
shared intermediate structure is undeforestable then we obtain for E=1:

148 structures are ‘really intermediate’ and contain
1084 deforestable intermediate cells
20.30 per cent of all cells are deforestable with E=1.

9.4.4 wang

Finally, the wang program is analyzed with different assumptions as:

787 Nodes: 185 Box, 167 Cons, 23 Pack, 412 Vap

583 cells are intermediate and beiong to

202 different intermediate structures.

27 structures are ‘really intermediate’ and contain

290 deforestable intermediate cells

74.08 per cent of all cells are intermediate (rough counting)
36.85 per cent of all cells are deforestable with E=2.

29 structures are ‘really intermediate’ and contain
302 deforestable intermediate cells
38.37 per cent of all cells are deforestable with E=3.

29 structures are ‘really intermediate’ and contain
302 deforestable ihtermediate cells
38.37 per cent of all cells are deforestable with E=4.

25 structures are ‘really intermediate’ and contain
260 deforestable intermediate cells
31.77 per cent of all cells are deforestable with E=1.

Again we find no cell being used as a function argument more than three times, and the estimated
deforestation gain is for all E=1, 2, 3, 4 about factor 1.5. The following table presents all four

78 CHAPTER 9. BENCHMARK EXAMPLES

analysis results for comparison.

program predicted speedup factors with

rough counting [E=4|E=3[(E=2|[E=1
sched 2.85 1.60 |1.60 |1.60 1.25
event 3.75 1.85 1.85 1.80 1.60
listcompr 4.15 1.55 1.55 1.25 1.25
wang 3.85 1.60 1.60 1.60 1.45

The big differences between the results for rough counting and E=4, and the small differences
between the qualitatively different assumptions E=1 and E=2 (sharing ‘forbidden’ vs. ‘allowed’)
show that the biggest waste of heap space is caused by the not really intermediate cells. Therefore,
it seems not worth attempting the deforestation of multiply used intermediate structures, and in
fact, none of the known works on deforestation treats or mentions examples of such multiply used
structures.

9.5 result interpretation: mind the method!

In the introductory chapter we promised to approzimate the possibilities of deforestation. The
analysis program is able to find all cells allocated in the heap and their connections to each other.
Thus: where is the approximation? In fact, there are two. One approximation is our guess E
about the power of deforestation as mentioned above. The other one is founded, first in the
impossibility of separating ‘garbage’ from ‘intermediate cells’ as mentioned in the introductory
chapter, and second especially in the lack of definition shown in the vague statements quoted at
the beginning of this thesis: we simply do not know exactly what an intermediate structure is.
Speaking about ‘intermediate’, the quoted authors are mainly thinking about structures passed
_ between different functions. But what about.functions which create ‘their own’ intermediate

structures by recursion? This situation has not been mentioned in the deforestation literature so
far. Looking back at the histogram example, we find lots of cells being allocated transiently in
order to create the histogram structure. Of course they are garbage afterwards’, but are they
intermediate? Our analysis program simply says: ‘yes’ — which is the second approximation!
Should not at least those cells, which are transiently allocated by a function (and passed as
arguments to the same functior by recursion} in order to build up an undeforestable essential
intermediate structure, also be regarded as undeforestable? At this point our program is too weak
to perform further case analysis, but that does not matter: using the analysis program, we only
have to keep in mind that the number of cells interpreted as ‘deforestable intermediate’ is —even
after the refinement of the former rough counting— probably still somewhat overestimated, and as
the benchmark analyses show, even with that overestimation the predicted possible deforestation
gains seem to be no reason for expecting future runtime miracles.

3For deforestation analysis as performed in this thesis the garbage collector of the FAST compiler has to be
switched off, because the structures could not be identified otherwise.

9.6. SUMMARY 79

9.6 summary

In this chapter we have given a reason against an oversimplified trace analysis based only on
counting the ‘intermediate’ cells. Such a counting would result in a bad estimation of a possible
deforestation gain. Examples of observed deforestation gains have been presented for comparison
at the beginning of this chapter. A better forecast results from a further separation of the “in-
termediate’ cells in the classes ‘essential’, ‘not really intermediate’ and ‘deforestable in principle’.
The size of the essential class of one analysis depends on our assumption about the possibility
to deforest shared* structures. Sharing functiona! expressions wherever it is possible is a widely
used programming technique in order to save superfluous runtime allocations. Thus, sharing may
be regareded as ‘deforestation a priori’, however its disadvantage is, that it makes the ‘genuine
deforestation’ a posteriori difficult.

In every benchmark analysis performed in this chapter, different assumption values E lead to sim-
ilar deforestation gain predictions, and all these predictions are similar in size to the gain limits
found for the small examples in the previous chapters. Both these similarities together seem to
be an argument for the suitability of the approximative automatic trace analysis developed in
this thesis. The estimated gain factors have to be regarded as maximum values, which could be
reached if proper deforestation methods were supplied to remove all cells ‘deforestable in princi-
ple’. If the deforestation techniques used are too weak, even the small predicted possible gain will
not be reached.

. *The concept ‘shared’ is used as ‘being multiply used as a function argument’ in this thesis. This is slightly
different from the usual concept of sharing as ‘being multiply referred to’.

80

CHAPTER 9. BENCHMARK EXAMPLES

Chapter 10

conclusions

In this thesis, an analysis program has been developed as a tool for efficiency analysis of func-
tional programs. It is built in correspondence with the FAST compiler system, but is —because
of modularity— adaptable in principle for any G-machine based and runtime tracing functional
compiler as well. This analysis program is able to count the cells which the analyzed functional
program has allocated in the heap. Therefore, the analysis program is suitable for comparing the
behaviour of syntactically different but semantically equivalent versions of a functional program.
Moreover, the analysis program is able to predict the possible gain which could be achieved by
transforming the analyzed functional program by deforestation. Talking about ‘deforestation’, we
mean all changes done to the definitions of a functional program in order to reduce intermediate
structures which this functional program produces. Intermediate structures arise when functions,
working on data structures, are composed. The basis of the automatic deforestation analysis is an
output trace given by the machine which computes the functional program that is to be analyzed.
With the information found in such a trace, the analysis program can replay the heap events in
simulation and separate intermediate from output or garbage cells. Further reasoning on certain
properties of those cells found to be intermediate makes it possible to predict the possible defor-
estation gain properly.

In the first part of this thesis, the genesis of output traces from functional programs is explained in
an abstract manner. The functional language Miranda, which is used for the experiments in this
thesis, is represented by an abstract syntax with strictness annotations. These strictness annota-
tions make it possible to explain the situation with reference to relevant properties of the FAST
compiler, which is used as the Miranda compiler in this thesis. The abstraction of this compiler is
a translation scheme 7 which produces a code as abstraction of an imperative machine language.
An abstract machine A takes & code as input, updates its heap according to the semantics of
the corresponding abstract syntax program, and returns an abstract trace reporting that heap
history as output. The abstraction is not only a didactic support for a better understanding of
the analysis principles, but also an introduction to the approximating automatic analysis, which
does not need to use all the information supplied by a FAST output trace.

In the second part, examples of different deforestation techniques presented in the literature have
been analyzed. None of these techniques can cope with all situations of intermediate structure
producing function composition, and in all examples analyzed —except one— a speedup limit has
been found which can not be overcome in principle by any inventable deforestation technique.
Finally, analyses of some medium sized benchmark examples have been presented. A comparison
of the analysis results presented here with other benchmark tests in the literature shows that the
analysis method developed here is sufficient for its purpose.

The deforestation techniques found in the literature seem to be too weak to improve realistic func-
tional programs, which are considerably bigger than the specially chosen deforestation examples

81

82 CHAPTER 10. CONCLUSIONS

in the literature. One reagon for this weakness seems to be the deforestation techniques, which are
bound by many restrictions: creativeness of the function definitions, appropriate function types
and expressablility in terms of foldr/build are enumerated in the deforestation literature. The
second reason can be found in the functional programs themselves: there seem to be essential
intermediate structures which can not be deforested by any technique in practice because they are
used as function arguments more than once. Further, the number of cells belonging to, so to say,
‘crystalline’ intermediate structures is not large, compared to the number of isolated cells resid-
ing in the heap as unstructured masses beyond the domain of the deforestation transformations.
Perhaps further research on deforestation can develop techniques to remove essential intermediate
structures, which still have to be regarded as undeforestable at this time, but ‘our analysis results
show that such attempts would not be very effective. We are still missing a deforestation theory
which could order all these ad hoc techniques into a more general system, including even some
suitable algebraic transformation laws which are already well known, although not mentioned in
the defores_tétion' literature so far. '

Deforestation is not the only program transformation technique for saving superfluous heap allo-
cations [8]. For example, ‘thunk lifting’_ [11] is a transformation for avoiding suspension nodes,
and also in this case, the transformation gain seems to be restricted. It may be that a certain
efficiency price always has to be paid for the conceptual clarity of functional programs, compared
to their spaghetti code relatives. Perhaps better runtime behaviour of functional programs could
be achieved by combining deforestation with several of the many known other optimization tech-

niques, however it could then happen that different techniques interfere adversely with each other.

Nevertheless, our analysis program need not be uselegs: even if no deforestation or other trans-
formation technique were available as an algorithm, an analysis result with more than a certain
percentage of intermediate cells could inspire a programmer to think about her solution again and
to rebuild an even better one, ‘deforested’ by the creativity of the human brain.

Appendix A
bibliography

A.l1 literature on deforestation

.[18] Philip Wadler. the concatenate vanishes
mtemallr.eport (revised 1989), department of computing science, University of Glasgow, 1987

[3] A.%iFer@mn, Philip Wadler. when will deforestation stop?

proc. Glasgow workshop on functional programming, Rothesa

pr n: 2 y(Sco) Aug.1988,

in: C.Hall, R.J.M.Hughes, J.T.O’Donnell (eds). Functional Programming, pp39-56
research report 89/R4, department (_)f computing science, University of Glasgow, 1689

[19] Phi%ip Wadler. deforestation: transfofming programs to eliminate trees
Theoretical Computer Science vol.73 nr.2, pp 231-248,
North Holland, Amsterdam, 1990 (earlier version 1988)

[7] G.W. Hamilton, SB Jones. eztending deforestation for first order functional programs
gla;i{ggrlgorkshops in computing science, Portree(Sco) Aug.1991

in: R.Heldal, C.Kehler-Holst, P.Wadler (eds). Functional Pro a.rilm

Springer Verlag, Berlin, 1991 & 6 PRI,

(13] Simon Marlow, Philip Wadler. deforestation for higher order functions
_Gla;g;w workshops in computing science, Ayr(Sco) Jul.1992,
in: J.Launchbury, P.Sansom (eds). Functional Pro, i

; _ gramming, ppl54-165
Springer Verlag, Berlin, 1992 e ,

4' An’drew Glu; John Laun(:hbury, Slmon L. Peyton Jone a short t & ' 3
. S. h cut to de orestation
n: A lnd (ed). Gth E‘IIHCthnal Pl‘ogra.mmmg L ges 1 pute
. IV angua) al[(l C()ll]. uter
U Archltecture, pp223'232
ACM, New York, 1993

[5] Andrew Gill, Simon L. Peyton Jones. building on foldr

workshop, Ayr(Sco) Jul.1993

in: K.Hammond, J.T.O’Donnell (eds). Functional Programming, ppXIV.1-XIV.11
report, department of computing science, University of Glasgow, 1993 1

[6] Andrew Gill, S.L. Peyton Jones. cheap d ion i 1 i
R p deforestation in practise: a timi.
workshop, Hamburg Aug.1994, in: proc. IFIP vol.1, pp581-586 B

85

86 APPENDIX A. BIBLIOGRAPHY

A.2 literature on the FAST system

[8] Pieter H. Hartel, Hugh W. Glaser, J.M. Wild. on the benefits of different analyses in the
compilation of functional languages. in: H.W. Glaser, P.H. Hartel (eds). 3rd implementation of
functional languages on parallel architectures, pp123-145, report CSTR 91-07,

department of electronics and computer science, University of Southampton, 1991

[9] Pieter H. Hartel, Hugh W. Glaser, J.M. Wild. the FAST compiler user’s guide

in: FAST: functional programming for arrays of transputers. The collected papers, pp247-264,
report CSTR 93-15, department of electronics and computer science, University of Southampton
report DOC 93/47, department of computing, Imperial College of science, technology and medicine,
University of London, 1993

[10] Pieter H. Hartel, Hugh W. Glaser, J.M. Wild. compilation of functional longuages using
flowgraph analysis
Software — Practice and Experience 24(2), pp127-173, 1994

A.3 Dbackground literature and benchmark references

[2] R. Bird, Philip Wadler. introduction to functional programming,
Prentice Hall, New York, 1988

[15] Simon L. Peyton Jones. the implementation of functional programming languages
Prentice Hall, Englewood Cliffs(NJ), 1987

[11] A. Reza Haydarlou, Pieter H. Hartel. thunk lifting: reducing heap usage in an implementation
of a lazy functional language. technical report CS-93-07, vakgroep computersystemen,
Faculteit der Wiskunde en Informatica, Universiteit van Amsterdam, 1993

[16] D.A. Turner. miranda: a non-strict functional language with polymorphic types

. in: proceedings of the IFIP international conference on functional programming languages and
computer architecture, Nancy 1985.

Lecture Notes in Computer Science 201,

Springer Verlag, Berlin

[1] A.V. Aho, R. Sethi, J.D. Ullman. compilers: principles, techniques and tools
Addison Wesley, Reading(Mass.), 1986

[12] Brian W. Kernighan, Dennis M. Ritchie. the C programming language, 2°¢ ed.
Prentice Hall, Ecglewood Cliffs(NJ), 1988

[14] Henk L. Muller. simulating computer architectures (Dissertation)
Fakulteit der Wiskunde en Informatica, Universiteit van Amsterdam, 1993

[17] Wim G. Vree. design considerations for a parallel reduction machine (Dissertation)
Fakulteit der Wiskunde en Informatica, Universiteit van Amsterdam, 1989

[20] H. H. Wang. a parallel method for tridiagonal equations
ACM transactions on mathematical software 7 (2), pp170-183, Jun.1981

Appendix B

trace information

B.1 extraction method

All statements printed in a FAST output trace are instances of patterns which can be described
as regular expressions. Therefore, it is easy to identify those trace statements which are relevant
for the analysis. The variety of trace statements is large; interested readers should consult the
FAST literature. In the following, only a few examples of identifying trace statements with regular
patterns are given. The script with all patterns necessary and sufficient for the examples analyzed
in this thesis is given in the next section; finding Pack cells and the usage of arguments in functions
calls is especially important for advanced analysis as done in chapter 9.

B.1.1 how to find the first heap address

The beginning of the heap is reported in every trace given by the FAST compiler. Looking at a
trace, we may find for example a statement: Co

heap 100000 ints from 3f000 to ala7c (start=3e240)

3£000 and ala7c are addresses in hexadecimal notation. This means there is an afea, 100000
times the size of the type integer, located between the addresses 3f000 and a0a7c. We are only
interested in the starting address 3£000, but nevertheless have to look out for the whole statement,
Further, we have to consider the arbitrariness of all the numbers; only the words and symbols
heap, ints from, to, (start= and) are fixed. We do not even have complete information
about the size of the ‘white space’ between the words.

For these reasons, we have to use a general pattern on which a statement like that given above
matches. Such a pattern can easily be written as a regular expression:

~*heap_*[0-9]*_ints_from_[0-9a-f]*_to_[0-9a-f]* (start=[0-0a-f]*)

where _ denotes one ‘unit’ of ‘white space’, [0-9] is a short form of 0]1... |9, [0-9a-f] is & short form
of 0[1...[9la|b| ... |f and * is the common symbol for an arbitrarily often but finite repetition. As
soon as a matching pattern is recognized, the number matching the expression [0-9a-f], standing
lexicographically directly behind from, is the desired heap starting address.

87

88 APPENDIX B. TRACE INFORMATION

B.1.2 how to find the cons cells

The FAST compiler knows two versions of objects, boxed and unboxed. Here are two examples of
Cons cells reported by a FAST output trace:

~11-535-LI: cons=(0381d0,0382c6) at 0382c5

"=01-CONS: h=3f120 t=3f12¢ at 3f138 box at 3f149

They could hardly be more different from each other! But there are also some common items.
The first digit (after -) shows if the Cons is boxed or unboxed. The first example statement
begins with -1, which means unboxed. The second one begins with -0, therefore it is boxed: no
wonder, box at 3f140 can be found at its end. The first Cons cell has been statically allocated
and -LI indicates its membership to some List of Integers. The second one has been allocated
dynamically by the built in function CONS. In both examples —though in different forms— the
location of the cell at an address can be found, and the addresses of the heads and tails are given
too. Four regular expressions scan Cons cell information from an output trace:

¥-11-0-9]*~[A-Z]*: cons=([0-9a-f]*,[0-0a-f]*)_at _[0-9a-f]*
_*-01-[0-9]*—[A-Z]*: cons=([0-9a-f]*,[0-0a-f]*)_at_[0-9a-f]* box_at_[0-0a-f]*
_*_11-CONS: _h=[0-9a-f]* t=[0-a-f|* at[0-9a-f]* -

-01-CONS: h=[0-9a-f] t=[0-0a-f]* at_[0-0a-f|* box.at [0-0a-f]*

(Of course they could be combined into a single expression, but the separation has been chosen
in order to make the differences obvious). There are some built in functions, e.g. APPEND or
FROMTO, which also allocate Cons cells. These allocations are traced in yet another form so that
even further regular expressions are necessary if these built in functions are to be used, but the
principle is always the same (and anyway, every built in function could also be written ‘by hand’).

B.1.3 how to find the vap nodes

As Vap nodes may have an arbitrary number of arguments, there would have to be an equivalent
number of patterns to detect them all, which is of course not practicable. Most application will
probably not have more than three arguments, so we will not give more patterns than necessary
for detecting these. Of course in special cases, more patterns for Vap with more arguments may
easily be added. Their structure is almost the same as the ones shown below. Two examples taken
from a trace are:

vap2: fun=38208,a1=3826c at 3f000

vap4d: fun=3819¢,al=38254,a2=38214,a3=3814f at 3024

For every node vap; we can see the trace reporting i+ 1 addresses. The first one, which the ‘struc-
tural view’ is not interested in, is the location of the function code belonging to this suspension
node. Then there appear ¢ — 1 addresses for function arguments al to a;—; and the address iden-
tifying the location of the Vap itself at some certain place in the heap. The regular expressions

B.2. FILTER SCRIPT TO BE APPLIED UNDER UNIX 89

detecting these patterns are:
“*vap2: fun=[0-9a-f|* a1=[0-9a-f]* at_[0-9a-f]*
“*vap3: fun=[0-9a-f]* a1=[0-9a-f]* a2=[0-9a-f]* at_{0-9a-f]*
*vap4:_fun=...

and so on

As in the Cons case, even more structurally different expressions may be necessary if trace reports
of Vap producing built in functions like APPEND are to be examined.

While the the trace statements shown above are reporting Vap being allocated dynamically in
the heap, there are also applications allocated statically outside which are reported in yet again a
different form. It should now be sufficient just to mention that they can also be found by matching
some further regular expressions.

B.1.4! how to find the caf nodes

It is very important to find Caf (even if they are never allocated in the heap) because they can
become ‘bridges’ between heap structures of the program being examined. Here is an example of
a trace statement reporting a Caf:

-LIT541: caf=00557c busy=FALSE at 381fc

The attribute busy tells us something about the evaluation state of this Caf, but for the analysis
only the last address giving the location at some certain place in the heap is important. The
corresponding regular expression

#~LIT[0-9]*: caf=[0-9a-f|* busy=[A-Z]*_at_[0-9a-f]*

picks the information about Caf nodes out of a FAST output trace.

B.2 filter script to be applied under UNIX

B.2.1 description

The following sed-script contains the necessary regular expressions for identifying the relevant
FAST output trace statements of all experiments done in this thesis. It is possible that these
regular expressions are not enough for traces caused by other functional programs which could,
for example, produce Vap nodes of bigger arity or may use special FAST built in functions not
mentioned here. Nevertheless, it should be obvious that the corresponding rules can easily be
added to the existing script.

If this sed-script is applied to a FAST output trace, the relevant trace statements will not only
be filtered, but also translated into C procedure calls as demanded by the analysis program. If
foo.trac is the name of a file containing a FAST output trace, filter.eze the name of a file containing
the sed-script as described above, then the UNIX command

filter.exe < foo.trac > information.c

90 APPENDIX B. TRACE INFORMATION

will produce a file named information.c which contains the relevant trace statements translated
into C procedure calls. Here is the source code of our filter script:

B.2.2 script code

sed -n -e ’s/ xheap *\([0-91#\) ints from \([0-9a-f1*\) to \([0-9a-f]*\)
(start=\([0-9a-f]*\)) /heapstart (0X\2);/p’ \

-e ’s/ #_[01]#_main: return_[A-Z]#*=\([0-9a-f]*\)/outputroot (0X\1);/p’ \

-e s/ *_[a-zA-20-9]*: caf=\([0-9a-f]1*\) busy=\([A-Z1*\) at \([0-9a-f]*\)
/_caf (0X\3);/p” \

-e ’s/ *_01_[0-9a-f]*_[A-Z]*: cons=(\([0-9a-f]*\),\([0-9a-f]*\))

at \([0-9a~f1#\) box at \([0-9a-f]*\)/_cons(0X\1,0X\2,0X\3);
_box (0X\3,05\4);/p’ \

-a ’s/ *_11_[0-9a-f]*_[A-Z]*: cona=(\([0-9a-£1*\),\([0-9a-f]*\))

at \([0-9a-f]1*\)/_cons (0X\1,0X\2,0X\3);/p’ \

-e ’s/ *_[_0-9a~zA-Z]*: ap_vap tag=[0-91* (\([0-9a-£]#*\),\([0-9a-f]*\),
\([0-9a-£1#\) ,\ ([0-9a-£f]*\) ,\ ([0-9a~-f]1*\)) at \([0-9a-f]*\)
/_vap(0X\2,0X\3,0X\4,0X\5,0X\6) ; /p’ \

-e ’s/ *_[_0-9a-zA-Z]*: ap_vap tag=[0-9]1* (\([0-9a-f]1#\),\([0-9a-Ff]*\),
\([0-92-£1#\),\ ([0-9a-£]*\)) at \([0-9a-f]*\)

/_vap (0X\2,0X\3,0X\4,UNDEF, 0X\5) ; /p’ \

-e ’s/ *_[_.0-9a-zA-Z]*: ap_vap tag=[0-9]* (\([0-9a-£f]*\),\([0-9a-£f]+\),
\([0-9a-£1#\)) at \([0-9a-f]1*\)/_vap(0X\2,0X\3,UNDEF,UNDEF,0X\4);/p’ \

-e s/ *_[_0-9a-zA-Z]#: ap_vap tag=[0-9]* (\([0-9a-f]#\),\([0-9a-£1#\))

at \([0-9a-f]*\)/_vap(0X\2,UNDEF,UNDEF ,UNDEF,0X\3);/p’ \

-e ’s/ *update: root=\([0-9a-f]#\) result=\([0-9a-f]*\) tag=\([0-9]+*\)
/update (0X\1,0X\2);/p’ \

-e ’s/ *vap4: fun=\([0-9a-f]*\),al=\([0-9a-f]*\},a2=\([0-9a-f]*\),
a3=\([0-9a-£1*\) at \([0-9a-f]*\)/_vap(0X\2,0X\3,0X\4,UNDEF,0X\5);/p’ \

-e ’s/ *vap3: fun=\([0-9a-f]*\),al=\([0-9a~£]1*\),a2=\([0-9a-£]*\)

at \ ([0-92-f1*\)/_vap(0X\2,0X\3,UNDEF,UNDEF,0X\4);/p’ \

-e ’s/ *vap2: fun=\([0-9a-f]*\),al=\([0-9a-f1#*\) at \([0-9a-f]#\)
/_vap(0X\2,UNDEF, UNDEF , UNDEF, 0X\3) ; /p’ \

-e ’a/ *vap: n=4 fun=\([0-9a-f]#\) al=\([0-9a-f]*\) a2=\([0-9a-f]*\)

a3=\ ([0-9a-f]1*\) at \([0-9a-f]*\)/_vap(0X\2,0X\3,0X\4,UNDEF,0X\5);/p’ \

-e 's/ *vap: n=3 fun=\([0-9a-f1#\) al=\([0-9a-f]#\} a2=\([0-9a-Ff]*\)

at \([0~9a-f]*\)/_vap(0X\2,0X\3,UNDEF,UNDEF,0X\4);/p’ \

-e ’s/ *_01_CONS: h=\([0-9a-f]#*\) t=\([0-9a-£f]1*\) at \([0-9a-f]*\)

box at \([0-9a-f1#\)/_cons(0X\1,0X\2,0%\3); _box(0X\3,0X\4);/p’ \
-e ’s/ *_11_CONS: h=\([0-9a-f]*\) t=\([0-9a-£]x\) at \([0-9a-f]*\)
/_cons (0X\1,0X\2,08\3); /p’ \
-e ’s/ *_O1_APPEND: \([0-9a-f1*\)=(\([0-9a-£]+\):\([0-9a-f]+\))
++ \([0-92-f1%\) at \([0-92-f]1*\) box at \([0-9a-f]*\) (vap \([0-9a-f]1*\)
\([0-9a~f]1#\) at \([0-9a-f]*\))/_cons(0X\2,0X\9,0X\5); _box(0X\5,0X\6);
_vap(0X\7,0X\8, UNDEF, UNDEF, 0X\9) ; /p’ \

-e ’s/ *_11_APPEND: \([0-9a-£1*\)=(\([0-9a-£]*\) :\([0-9a-f]*\})
++ \([0-9a-f1#\) at \([0-9a-f]*\) (vap \([0-92-£]*\) \([0-9a-f]*\)
at \([0-9a-f1*\))/_cons(0X\2,0X\8,0X\5);
_vap(0X\6,0X\7 ,UNDEF ,UNDEF,0X\8) ; /p’ \

B.2. FILTER SCRIPT TO BE APPLIED UNDER UNIX 91

-e ’s/ *_01_FROMTO_I: from=\([0-91#\),to=\([0-91%\) at \([0-9a—f]*\)
box at \([0-9a-f]*\) (vap \([0-9a-f]1#\) \([0-9a-f]1*\) at \([0-9a-f]*\))

/_cons (0X\1,0X\7,0X\3); _box(0X\3,0X\4); _vap(0X\5,0X\6,UNDEF,UNDEF,0X\7);/p’ \

-e ’s/ *_11 FROMTO_I: from=\([0-91#\),to=\([0-91%\) at \([0-9a-f]1x\)

(vap \([0-9a-£1*\) \([0-9a-f]*\) at \([0-9a~f]#\))/_cons (0X\1,0X\6,0X\3);
_vap(0X\4, 0X\5,UNDEF, UNDEF,0X\6) ; /p’ \

-e s/ *reduce_bind: n=2 al=\([0-9a-f]1*\) f=\([0-9a-f]*\) at
\ ([0-9a-£1%\)/_vap(0X\1,UNDEF ,UNDEF,UNDEF,0X\3) ; /p’ \

-e ’s/ *bind_pap: n=3 fun=\([0-9a-f]*\) al=\([0-9a-f]*\) a2=\([0-9a-f]*\)
a3=\([0-9a-£]1#\) at \([0-9a-f]*\)/_vap(0X\2,0X\3,0X\4,UNDEF,0X\5);/p’ \

-e '8/ *bind: n=2 al=\([0-9a-f1#\) £=\([0-9a-f]1*\) at \([0-9a—-f]x\)

/_vap (0X\1,UNDEF, UNDEF ,UNDEF,0X\3) ; /p’ \

-e ’s/ *_01_NULLARY_PACK: n=1 <\([0-9]*\)> at \([0-9a-f]%\)
/-box(\1,0X\2) ; /p’ \

—e ’s/ *_01_PACK: n=5 <\([0-9]*\)\/\([0-9a-f]1*\),\([0-9a-f]1*\),
\([0-92a-£1*\) ,\ ([0-9a-f]1*\)> at \([0-9a~f]#\) box at \([0-9a-f]#\)
/_pack(0X\2,0X\3,0X\4,0X\5,0X\6); _box(0X\6,0X\7);/p’ \

‘=e ’s/ *_01_PACK: n=4 <\([0-91+\)\/\([0-9a-f]*\),\([0-9a-£]*\),
\([0-9a-£f]*\)> at \([0-9a-f]*\) box at \([0-9a-f]*\)
/_pack(0X\2,0X\3,0X\4,UNDEF,0X\5) ; _box(0X\5,0X\6);/p’ \ :

-e ’s/ *_01_PACK: n=3 <\([0-9]+\)\/\([0-9a—~£]1*\),\([0~-9a-f]*\)>
at \([0-9a-f]1*\) box at \([0-9a-f]*\)/_pack(0X\2,0X\3,UNDEF,UNDEF,0X\4) :

_box (0X\4,0%\5);/p’> \

~e s/ *_01_PACK: n=2 <\([0-9]*\)\/\([0-9a-£1#\)> at \([0-9a-Ff]#\)
box at \([0-9a-f]1¥\)/_pack(0X\2, UNDEF,UNDEF ,UNDEF,0X\3) ; _box(0X\3,0X\4);/p’ \

-e ’s/ *_01_PACK: n=1 <\([0-9]1#%\)> at \([0-9a-f]*\) box at \([0-9a-f]#*\)
/_box(0X\1,0X\3) ; /p’ \ °

- -e ’s/ *_01_TAG: pack=\([0-9a-f]*\) tag=\([0-9]\) at \([0-9a-f]*\)

/_box (0X\1,0X\3);/p’> \

-e ’s/ *_[0-1]1[0-1]1_[_0-9a-zA-Z]*: _[0-1]1[0-1]_[_0-9a-zA-Z]*=\([0-9a—f]*\)
-[0-1]1[0-1]1_[_0-9a-zA-Z]*=\([0-9a-f] *\) _[0-1][0-1]_[_0-9a-zA-Z]*=\([0-9a—F]*\)
[0-11[0~11[_0-9a-zA-Z]*=\([0-9a-£]*\) _[0-1]1[0-1]1_[_0~9a-zA-Z]*=\([0-9a—F]*\}
_[0-11[0-1] _[_0-9a-zA-Z]*=\([0-9a-£f1*\) _[0-1]1[0-1]_[_0-9a-zA-Z]*=\([0-Ga-£]*\)

/use(0X\1); use(0X\2); use(0X\3); use(0X\4);
use (0X\5) ; use(0X\6); use(0X\7);/p’ \

~e s/ *_[0-1]1[0-1]_[_0-9a-zA-Z]*: _[0-1]1[0-1]_[_0-9a-zA-Z]*=\([0-9a-f]#\)
_[0-11[0-1] _[_0-9a-zA-Z]*=\([0-9a-f]*\) _[0-1][0-1]_[_0-9a-zA-Z]*=\([0-9a~f]*\)
[0-11[0-1][_0-9a-zA-Z]*=\([0-9a-£f]#\) _[0-1]1[0-1]_[_0-9a-zA-Z]*=\([0~9a—Ff]*\)
-[0-1][0-1]_[_0-9a-zA-Z]1*=\([0-9a~f1+\) /use(0X\1); use(0X\2); use(0X\3);
use(0X\4); use(0X\5); use(0X\6);/p’ \

-e ’s/ *_[0-1][0-1]1_[_0-9a-zA-Zl*: _[0-1][0-1]_[_0-9a-zA-Z]*=\{[0-9a~£]+\)
[0-11[0-1]1[_0-9a~zA-Z] *=\([0-9a-£]#\) _[0-1][0~1]_[_0-9a-zA-Z]*=\([0-9a—-f]*\)
-[0-11[0-1]_[_0-9a-zA-Z]*=\([0-9a-f]1*\) _[0-1]1[0-1]_[_0-9a-zA-Z]*=\([0-9a—f]*\)

/use(0X\1); use(0X\2); use(0X\3); use(0X\4); use(0X\5);/p’ \

~e ’s/ *_[0-1]1[0-1]_[_0-9a-zA-Z]*: _[0-1]1[0-1]_[_0-9a-zA-Z]*=\ ([0-9a-f]*\)
[0-11[0-1][_0-9a-zA-Z]*=\([0-9a~£]*\) _[0-1][0-1]_[_0-9a-zA-Z]#*=\([0-9a~F]*\)
_[0-1]1[0~1] _[_0-9a-zA-Z] +=\ ([0-9a-£1%\)

/use(0X\1); use(0X\2); use(0X\3); use(0X\4);/p’ \
-e s/ *_[0-11[0-1] _[_0-9a-zA-Z]*: _[0-11[0~1]_[_0-9a-zA-Z]*=\ ([0-9a—f] %\)

92 APPENDIX B. TRACE INFORMATION

[0-11[0-1][_0-9a-zA-Z]*=\([0-9a-f1#\) _[0-1][0-1]_[_0-9a-zA-Z]*=\([0-9a-£]*\)
/use(0X\1); use(0X\2); use(0X\3);/p’ \
-e s/ *_[0-11[0-1]_[_0~9a-zA-Z]*: _[0-1][0-1]_[_0-9a-zA-Z]*=\([0-9a-f]*\)
[0-11[0-1][_0-9a-zA-Z]#=\([0-9a-f]#\) /use (0X\1); use(0X\2);/p’ \
-e ’s/ *_[0-1]1[0-1]_[_0-9a-zA-Z]*: _[0-1][0-1]_[_0-9a~zA-Z]*=\([0-9a—f]*\)

/use(0X\1);/p’ \

Appendix C

the analysis program

]

C.1 description

The analysis program, as used in this thesis, has to be prepared for its run under UNIX as follows.
Let definitions.c be the name of a file which contains the definitions of the data structures and
procedutes necessary for the analysis and the beginning of the main procedure. A file named con-
clude.c contains some procedure calls concluding the analysis and the final symbol } concluding
the main procedure. As explained in appendix B, those procedure calls representing the FAST
output trace of the functional program to be analyzed are found in another file named informa-
tion.c, and all these three files together are the special analysis program for the original functional
program. They are combined in UNIX with the command

cat definitions.c information.c conclude.c > analysis.c

into the file analysis.c which is the complete analysis program, ready to be compiled and run. The
basic idea of it is described in the following:

First, a structured type NODE is defined. It is to simulate a heap node and therefore contains
attributes which describe typical properties of such a node. These are the cell type (Box, Cons,
Pack, Vap or Caf), connections to other nodes, reference count, update information, an address,
and a colour to separate intermediate from other nodes.

Then a pseudo heap is initialised. This initial ‘heap’ is an array of NODEs whose members have
only undefined attributes.

From now on, the program run is determined by the procedure calls from the part information.c
of the analysis program.

The procedure outputroot writes the address of the root node of the output structure into a
global variable.

Similarly, the procedure heapstart writes the address of the beginning of the heap into a global
variable. This is to distinguish statically allocated cells (outside the real heap) from dynamically
allocated cells (inside the real heap) which for simplicity are both represented in the pseudo heap
array of the simulation.

The procedures _caf, _box, _cons, _vap and _pack update the pseudo heap array with new NODEs,
having attributes according to the properties of those cells.

The procedure update copies relevant attributes from the result node into the root node, and
overwrites the yet undefined update attributes. The cell being copied is marked as a member of
the class ‘update garbage’ with the colour YELLOW. Different cases have to be considered where
root or result reside inside or outside the real heap.

The procedure use increments the usage attribute of a NODE when it has just been used as a

98

94 APPENDIX C. THE ANALYSIS PROGRAM

function argument.

When all procedure calls of the part information.c are done, the dynamic heap history is recon-
structed and the actual analysis can begin. The procedure calls necessary for this purpose are
supplied by the part conclusion.c of the analysis program:

The procedure deduce separates the particular nodes into composed structures. For this purpose,
the root notes of these structures are searched first. Then the structures are ‘painted’ from their
roots to their leaf cells. The output structure is painted BLUE; the corresponding output root is
already known globally. Intermediate structures are painted RED.

Nota bene: Because of ‘update garbage’ and ‘intermediate’ not being mutually exclusive (shar-
ing!), it must be allowed to overpaint YELLOW cells RED. Thus, it is only forbidden to paint a BLUE
node RED. The structures are stored in a 2-dimensional auxiliary array.

The procedure refcount counts the connections between the NODEs in the pseudo heap. A NODE
with 0 references is a possible structure root and therefore stored in an auxiliary memory array.
The procedure filterstructs takes the auxiliary structure memory array and cuts out all NODEs
which do not belong to the real heap, but without destroying the structures themselves; (we do
this because only dynamically allocated cells are relevant for the question of deforestation). There-
fore information about the beginning of the heap is needed. The filtered structures are stored in
another 2-dimensional auxiliary memory array.

Now the procedure deforestable removes all ‘essential’ and all ‘not-really-intermediate’ struc-
tures from the second auxiliary memory by setting the corresponding first element to 0, and the
results of the analysis are ready to be shown:

The procedure statistic prints the analysis result, whlch is derived from the NODEs’ attributes,
and the content of the auxiliary array with the ‘deforestable’ intermediate class.

The procedure search helps to find a NODE with a given address out of the pseudo heap array.

C.2 source code in ANSI C

This is the code contained in the definitions.c part of the analysis,

/* clarity first! the reader may improve efficiency ad libitum */
#include <stdio.h>

/* these variables have to be adapted from case to case: */
#define ASSUMPTION_E 3
#define HEAPSIZE 60000
#define MEMSIZE 3000
#define PRINTSTRUCTS O

/% descriptions: procedures’ side effects and purposes: */
#define PREPARE void
#define NEWCELL void
#define OPERATE void
#define INFORM void
#define ANALYS void
#define HELP void
#define SHOW void

C.2. SOURCE CODE IN ANSI C

/* definitions: possible properties:

#define UNDEF -2
#define YES
#define ND -1
#define RED

#define BLUE -3

#define YELLOW
#define INTERN
#define INVISIBLE -~
#define INSIDECOPY
#define OUTSIDECOPY -

/* definitions:
#define ADDRESS
#define IDENT
#define KIND
#tdefine NUMBER
#defineé ACTION

/* specification:

typedef struct {

*/

possible attribute classes:

long
int:
int
int
int

ADDRESS cellnumber;
NUMBER reference;

NUMBER usage;
IDENT colour;
KIND isbox;
ADDRESS boxto;
KIND iscons;
ADDRESS headto;
ADDRESS tailto;
KIND ispack;
ADDRESS plto;
ADDRESS p2to;
ADDRESS p3to;
ADDRESS péto;
KIND isvap;
ADDRESS argito;
ADDRESS arg2to;
ADDRESS arg3to;
ADDRESS arg4to;
KIND iscaf;

ACTION upd_active;
ACTION upd_passive;

} NODE;

*/

type heap node. maximal arity is 4.

95

C.2. SOURCE CODE IN ANSI C

96 APPENDIX C. THE ANALYSIS PROGRAM
/* declarations: global variables: */ /* definitions: program procedure bodies: */
ADDRESS heapbegin = UNDEF; /* information: beginning of the heap */ .
ADDRESS output = UNDEF; /* information: output structure root */ PREPARE inltheapg) /* generate empty heap */
NUMBER firstfreeplace = 0; /% current heapsize x/ {NUMBER i;
NUMBER memosize = 0; /* current auxiliary memory size */ NODE empty;
NUMBER imdstructsize; /* current position of struct. deduction */ empty.cellnumber = UNDEF;
NUMBER intermedsize ; /* amount of intermediate structures */ empty.colour = UNDEF;
NUMBER deforstructs ; /% amount of deforestable interm.structs.*/ empty.reference = UNDEF;
NUMBER deforcells ; /+# amount of deforestable interm. cells */ empty.usage = 0;
empty.isbox = UNDEF;
/% declarations: data structures: */ empty.boxto = UNDEF;
NODE heap [HEAPSIZE] ; /* pseudo heap */ empty.iscons = UNDEF;
ADDRESS memo [MEMSIZE] [MEMSIZE] ; /* aux.mem. for heap structures */ empty.headto = UNDEF;
ADDRESS intermed [MEMSIZE] [MEMSIZE]; /* aux.mem. intermediate strcts */ empty.tailto = UNDEF;
empty.isvap = UNDEF;
/* definitions: heap array access makros: */ empty.argito = UNDEF;
#define OPEN new=heap[firstfreeplace]; empty.arg2to = UNDEF;
#define CLOSE heap[firstfreeplacel=new; firstfreeplace++ ‘ empty.arg3to = UNDEF;
empty.argdto = UNDEF;
/* declarations: program procedure types: ¥/ empty.iscaf = UNDEF;
PREPARE initheap(); empty.ispack = UNDEF;
INFORM heapstart (ADDRESS) ; empty.plto = UNDEF;
INFORM outputroot (ADDRESS) ; empty.p2to = UNDEF;
NEWCELL _caf (ADDRESS) ; empty.p3to = UNDEF;
empty.pdto = UNDEF;

NEWCELL _box(ADDRESS, ADDRESS);

NEWCELL _cons(ADDRESS, ADDRESS, ADDRESS);

NEWCELL _vap(ADDRESS, ADDRESS, ADDRESS, ADDRESS, ADDRESS);
NEWCELL _pack(ADDRESS, ADDRESS, ADDRESS, ADDRESS, ADDRESS);
DPERATE update (ADDRESS, ADDRESS);

HELP refcount () ;

HELP saveroot (ADDRESS) ;

ANALYS deduce();

ANALYS paint(ADDRESS, IDENT, NUMBER);

NUMBER search(ADDRESS);

INFORM use (ADDRESS);

HELP filterstructs();

ANALYS deforestable();

SHOW statistic();

empty.upd_active NO;

empty.upd_passive = NO;

for(i=0; i<HEAPSIZE; i=i+1)heap[il=empty;
firstfreeplace = 0;

return;}

INFORM heapstart (ADDRESS begin) /+ make heap begin known */
{heapbegin=begin;
return;}

INFORM outputroot (ADDRESS mainreturn) /* make output root kmown */
{output = mainreturn;
return;}

98 APPENDIX C. THE ANALYSIS PROGRAM C.2. SOURCE CODE IN ANSI C

NEWCELL _caf (ADDRESS adr) /# insert mew cell */ NEWCELL _vap(ADDRESS al, ADDRESS a2, ADDRESS a3, ADDRESS a4, ADDRESS adr)

{NODE new; {NODE new;
OPEN; OPEN;
new.cellnumber = adr; new.cellnumber = adr;
new.isbox = NO; new.isbox = NO;
new.iscons = NO; new.iscons = ND;
new.isvap = NO; nev.isvap = YES;
new.ispack = NO; new.argito = al;
new.iscaf = YES; new.arg2to = a2;
CLOSE; nev.arg3to = a3;
return;} nevw.argéto = a4;
new.ispack = NO;
new.iscaf = NO;
NEWCELL _box (ADDRESS adr, ADDRESS boxadr) CLOSE;
{NODE new; return;}
OPEN; i
new.cellnumber = boxadr;
R — = YES; NEWCELL _pack (ADDRESS p1,ADDRESS p2,ADDRESS p3,ADDRESS p4, ADDRESS adr)
new.boxto = adr; {NGDE new;
new.iscons = NO; JPEN;
new.isvap = NO; new.cellnumber = adr;
new.ispack = NO; new.isbox = NO;
new.iscaf = NO; new.iscons = NO;
CLOSE; new.isvap = NO;
return;} new.iscaf = NO;
new.ispack = YES;
new.plto = pil;
NEWCELL _cons (ADDRESS head, ADDRESS tail, ADDRESS adr) new.p2to = p2;
{NODE new; new.p3to = p3;
OPEN; new.p4to = p4;
new.cellnumber = adr; CLOSE;
new.isbox = NG; return;}
new.iscons = YES;
new.headto = head;
new.tailto = tail;
new.isvap = NO;
new.ispack = NO;
new.iscaf = NO;
CLOSE;

return;}

100 APPENDIX C. THE ANALYSIS PROGRAM C.2. SOURCE CODE IN ANSI C 101

OPERATE -update (ADDRESS root, ADDRESS result) /+ graph reduction #/ HELP refcount() /* reference count in pseudo heap array */

{NUMBER ro; {NUMBER count;
NUMBER re; NUMBER i;
NODE k; NUMBER is
NODE 1; NODE k;
ro = search(root); NODE 1;
re = search(result); for(i=0; i<firstfreeplace; i=i+1) /* for every NODE: #/
k = heapl[ro]; {k=heap[il;
count=0;

if (re==UNDEF) /% case: result is not in heap array */
{k.upd_active = INVISIBLE;
heap(ro] = k;

for(j=0; j<firstfreeplace; j=j+1) /% count ref. %/
{1=heap[j];

return;} if(1.boxto == k.cellnumber)count++;
1 = heaplrel; /* case: result is in heap array */ if (1.headto== k.cellnumber)count++;
k.iscons = 1.iscons; if(1.tailto== k.cellnumber)count++;
k.headto = 1.headto; if(l.pito == k.cellnumber)count++;
k.tailto = 1.tailto; if(1.p2to == k.cellnumber)count++;
k.isbox = l.isbox; if(1.p3to == k.cellnumber)count++;
k.boxto - = 1.boxto; if(1.p4to == k.cellnumber)count++;}
k.ispack = 1.ispack; if (count==0 && k.colour!=YELLOW)saveroot (k.cellnumber);}
k.p2to = 1.p2to; return;}
k.p3to = 1.p3to;
k.pdto = l.pdto;
k.arglto = 1l.arglto; HELP saveroot (ADDRESS root) /+* store possible root into aux.mem. */
k.arg2to = 1.arg2to; {NUMBER i=0;
k.argd3to = l.arg3to; NUMBER j;
k.argito = 1.argito; memo {memosize] [0]=root;
if (1.cellnumber>=heapbegin)k.upd_active = INTERN; memosize++;
if (1.cellnumber<heapbegin)k.upd_active = INVISIBLE; | return;}
heap[ro] = k; i

if (k.cellnumber>=heapbegin)l.upd_passive = INSIDECOPY;
if (k.cellnumber<heapbegin)l.upd_passive = OUTSIDECOPY;
if (result !=output)l.colour = YELLOW;

heap[re] = 1;

return;}

ANALYS deduce() /¥ detect cell structures */
{ADDRESS root;
NUMBER i;
refcount();
paint (output, BLUE, (MEMSIZE-1)); /* output blue */
for(i=0; i<memosize; i=i+1)
{imdstructsize=0;
root=memo[i] [0] ;
paint (root, RED, i);} /* intermediate red */
return;}

102 APPENDIX C. THE ANALYSIS PROGRAM

ANALYS paint (ADDRESS ad, IDENT color, NUMBER structure)
{NODE k;
NUMBER n;
n = search(ad);
if (n==UNDEF)return; /* case: nothing found */
k = heap([n];
if (k.colour!=BLUE &% k.colour!=RED)
{k.colour=color;
heap[n]=k;
memo [structure] [imdstructsize]=k.cellnumber;
imdstructsize++;
if (k. isbox==YES)paint (k.boxto, color, structure);
if (k.iscons==YES){paint(k.headto, color, structure);
paint(k.tailte, color, structure);}
if (k.ispack==YES){paint(k.plto, color, structure);
painq(k.p2to, color, structure);
paint(k.p3to, color, structure);
paint (k.p4to, color, structure);}}
return;}

NUMBER search(ADDRESS cell) /* search cell position in heap array */

{NUMBER 1i;

NUMBER r = UNDEF,;

if (cel1==UNDEF)return UNDEF;

for(i=0; i<firstfreeplace; i=i+1)
{if ((heap[il).cellnumber == cell)
{r=i; i=firstfreeplace;}}

return r;} /* return cell position if found, else undef */

INFORM use(ADDRESS arg) /+# increment usage attribute of arg */
{NUMBER n;
NODE k;
n=search(arg) ;
if (n==UNDEF)return;
k=heap[n];
k.usage++;
heap[n]=k;
return;}

C.2. SOURCE CODE IN ANSIC

HELP filterstructs() /¥ filter static allocations out of structures */
{ADDRESS a;
NUMBER x=0;
NUMBER y=0;
NUMBER u=0;
NUMBER v=0;
for (x=0;x<memosize;x=x+1)
{v=0;
for(y=0;y<MEMSIZE;y=y+1)
{a=memo [x] [y];
if (a>=heapbegin && a!=output)
{intermed[u] [v]=a;
v=v+1;}}
if (v>0)u=u+1;}
intermedsize=u;
return;}

103

104 APPENDIX C. THE ANALYSIS PROGRAM

ANALYS deforestable() /* keep only deforestable interm. structures */
{ADDRESS a;
NODE k;
NUMBER 1i;
NUMBER j;
NUMBER n;
NUMBER condition;
NUMBER onlynull;
for(i=0;i<intermedsize;i++)
{condition=1;
onlynull =1;
j=0;
while (j<MEMSIZE && condition==1)
{a=intermed[i] [i];
j=j+;
if (a<heapbegin)condition=0;
n=search(a);
if (n!=UNDEF)
{k=heap(n];
if (k.usage>0)onlynull=0;
if (k.usage>ASSUMPTION_E)
{condition=0; N
intermed[i] [0]=0;}}}
if (onlynull==1)intermed[i] [0]=0;}
n=0;
for(i=0;i<intermedsize;i++)
{if (intermed[i] [0]1>0)
{nt++;
j=0;
while(intermed[i] [j]>0)
{deforcells++;
jH+: 33
deforstructs=n;
return;}

C.2. SOURCE CODE IN ANSI C

SHOW statistic() /* analysis results */

{NUMBER box = 0;
NUMBER cons =
NUMBER pack
NUMBER vap
NUMBER upd
NUMBER updstr
NUMBER updval
NUMBER out =
NUMBER all =
NUMBER imd =
NUMBER gbgi =
NUMBER gbgc = =
NUMBER rem =
NUMBER structs;
NUMBER print;
NUMBER noness;

nmn w nu
OO0 O0QCQO0OO0OQOCOO

_ NUMBER i;
+ NUMBER. i
NODE k;

float speedi;

float speed2;

for(i=0; i<firstfreeplace; i=i+1)
{k=heap[il;

if (k.cellnumber>=heapbegin) /* if not on heap, don’t count #*/
{if(k.isbox == YES Z& k.isvap == NO) box++;
if(k.iscons == YES &% k.isvap == NO) cons++;
if(k.ispack == YES &% k.isvap == NO) pack++;
if(k.isvap == YES) vap++;
if(k.isvap==YES && k.upd_active==N0) rem++;
if(k.isvap==YES && k.upd_active!=NO) upd++;
if (k.isvap==YES && k.upd_active == INVISIBLE) updval++;
if(k.isvap==YES && k.upd_active == INTERN)

if (k.upd_passive==0UTSIDECOPY) gbgc++;
if (k.upd_passive==INSIDECOPY) gbgi++;
if(k.colour == RED) imd++;
if(k.colour==BLUE) out++;}}

all = box + cons + vap + pack;

speed2 = 100.0*((float)imd)/(float)all;

filterstructs();

structs = intermedsize;

deforestable() ;

noness = deforstructs;

speedl = 100.0*((float)deforcells)/(float)all;

105

106 APPENDIX C. THE ANALYSIS PROGRAM

printf("\n");
printf (" \n");
printf("%d Nodes: %d Box, %d Comns, %d Pack, %d Vap\n",all,box,cons,pack,vap);
printf("%d VapUpd: %d from inside, %d from outside\n",upd,updstr,updval);
printf("/d Vap remain without being updated\n", rem);
printf("%d Cells became garbage by updating inside Vap.\n", gbgi);
printf("%d Cells became garbage by updating outside Vap or Caf.\n",gbgc);
printf("%d Cells belong to the output structure.\n",out);
printf("/d Cells are intermediate and belorfg to\n",imd);
printf("%d different intermediate structures.\n",structs);
printf("/d structures are ‘really intermediate’ and contain\n",noness);
printf("%d deforestable intermediate cells, which are:\n",deforcells);
printf (" \n");
if (PRINTSTRUCTS)
{print=1;
for(i=0;i<intermedsize;i++)
{if (print==1)printf ("\n STRUCTURE: ");
print=0;
j=0;
while(intermed[i] [j1>0)
{printf ("%x,",intermed[i] [j1);
print=1;
j*++:}}
printf ("\n, \n");}
printf("%.2f per cent of all cells are intermediate.\n",speed2);
printf("}.2f per cent of all cells are deforestable.\n",speedl);
printf("The ‘essential’ assumption is %d.\n",ASSUMPTION_E};
printf(" \n");
return;}

main(){initheap();
The part conclude.c of the analysis contains nothing more thar the calls:

deduce();
statistic();}

and the concluding curly bracket of the main procedure.

Appendix D

abstracts in dutch and german

D.1 samenvatting

Recentelijk zijn een aantal artikelen over ontbossende programmatransformaties verschenen, die
aanzienlijke efficientieverbeteringen zouden moeten bewerkstelligen. Zulke resultaten worden in
de weinige in de literatuur over ontbossing beschreven tijd- en geheugenruimtemetingen echter
niet gevonden. De vraag naar de grootte van de door het ontbossen werkelijk optimaliseerbare
deelverzameling van alle functionele programma’s is in de literatuur nog niet gesteld. In deze
scriptie wordt een algemene automatische methode ter afschatting van de winst van ontbossing
voor ieder functionele programma ontwikkeld, onafhankelijk van de eventuele ontbossingstechniek.
De methode wordt uitgelegd aan de hand van verschillende voorbeelden, en de geschiktheid van
de methode wordt behandeld.

Onder ontbossing verstaan wij methoden die tussenstructuren verwijderen door middel van pro-
grammatekstveranderingen in het algemeen, en beperken het begrip niet alleen op de automatische
transformaties, zoals die in de literatuur zijn voorgesteld. Tussenstructuren —bomen in het al-
gemeen, lijsten in het bijzonder— treden op, als functies die op zulke datastructuren werken op
een bepaalde manier met elkaar worden gecombineerd. Het hier ontwikkelde ontbossingsanaly-
seprogramma kan optredende tussenstructuren herkennen door de informatie van ‘output traces’
van de compiler te verwerken, nadat deze traces in een voor de analyse geschikte vorm gebracht
zijn. Het analyse programma vergelijkt de aantallen van verschillende soorten knopen en voor-
spelt met behulp van twee redelijke ontbossingsaannamen de maximale winst die een willekeurige
ontbossende transformatie op het geanalyseerde functionele programma kan bereiken.

In het eerste gedeelte van de scriptie worden de analyseprincipes en de creatie van de traces met
behulp van een abstracte machine uitgelegd. In de abstractie weerspiegelt zich ook de hiervoor
opgemerkte geschikte vorm van de trace. Het tweede gedeelte laat de toepassing van de in het
eerste gedeelte voorbereidde methoden op sommige. voorbeelden zien. De resultaten bevestigen
de eerdere in de literatuur verschenen metingen, zodat een groot ‘ontbossingwonder’ in de nadere
toekomst waarschijnlijk niet te verwachten is: een volledige ontbossing van alle door eén functioneel
programma gemaakte tussenstructuren blijkt in de meeste realistische gevallen onmogelijk, omdat
vaak gebruikte structuren de dynamische relaties in het geheugen bijna willekeurig ingewikkeld
maken.

107

