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SUMMARY

In this dissertation, we study about the extension of results of p-
summing operators to Lipschitz p-summing maps and their respective
relatives for 1 ≤ p < ∞ .

Lipschitz p-summing and Lipschitz p-integral maps are the non-
linear version of (absolutely) p-summing and p-integral operators re-
spectively. The p-summing operators were first introduced in the pa-
per [13] by Pietsch in 1967 for 1 < p < ∞ and for p = 1 go back to
Grothendieck which he introduced in his paper [9] in 1956. They were
subsequently taken on with applications in 1968 by Lindenstrauss and
Pelczynski as contained in [12] and these early developments of the
subject are meticulously presented in [6] by Diestel et al.

While the absolutely summing operators (and their relatives, the
integral operators) constitute important ideals of operators used in the
study of the geometric structure theory of Banach spaces and their ap-
plications to other areas such as Harmonic analysis, their confinement
to linear theory has been found to be too limiting. The paper [8] by
Farmer and Johnson is an attempt by the authors to extend known
useful results to the non-linear theory and their first interface in this
case has appealed to the uniform theory, and in particular to the the-
ory of Lipschitz functions between Banach spaces. We find analogues
for p-summing and p-integral operators for 1 ≤ p < ∞. This then
divides the dissertation into two parts.

In the first part, we consider results on Lipschitz p-summing maps.
An application of Bourgain’s result as found in [2] proves that a map
from a metric space X into ℓ2

X

1 with |X| = n is Lipschitz 1-summing.
We also apply the non-linear form of Grothendieck’s Theorem to prove
that a map from the space of continuous real-valued functions on [0, 1]
into a Hilbert space is Lipschitz p-summing for some 1 ≤ p < ∞.
We also prove an analogue of the 2-Summing Extension Theorem in
the non-linear setting as found in [6] by showing that every Lipschiz
2-summing map admits a Lipschiz 2-summing extension. When X is
a separable Banach space which has a subspace isomorphic to ℓ1, we
show that there is a Lipschitz p-summing map from X into R2 for
2 ≤ p < ∞ whose range contains a closed set with empty interior.
Finally, we prove that if a finite metric space X of cardinality 2k is
of supremal metric type 1, then every Lipschitz map from X into a
Hilbert space is Lipschitz p-summing for some 1 ≤ p < ∞.

In the second part, we look at results on Lipschitz p-integral maps.
The main result is that the natural inclusion map from ℓ1 into ℓ2 is
Lipschitz 1-summing but not Lipschitz 1-integral.
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INTRODUCTION

The aim of this dissertation as said in the summary is to study
the extension of results about p-summing operators to Lipschitz p-
summing maps and their respective relatives for 1 ≤ p < ∞. This
study is basically a question of general nature first posed by the au-
thors of the paper [8] as an open problem 6, namely

Problem 6. What results about p-summing operators have analogues
for Lipschitz p-summing operators?

Several special cases of Problem 6 are isolated in the same paper
as problems 1 to 5, namely:

1. (Problem 1) Is there a composition formula for Lipschitz p-summing
operators? That is, do we have πL

p (TS) ≤ πL
r (T )π

L
s (S), where

1
p
≤ (1

r
+ 1

s
) ∧ 1?

2. (Problem 2) Is every Lipschitz 2-summing operator Lipschitz 2-
integral?

3. (Problem 3) When Y is a Banach space and X is a finite metric
space, what is the dual of ΠL

p (X,Y )?

4. (Problem 4) Is every Lipschitz mapping from an L1 space to a
Hilbert space Lipschitz 1-summing? Is every Lipschitz mapping
from C(K) space to a Hilbert space Lipschitz 2-summing?

5. (Problem 5) If T : X → Y is Lipschitz, is πL
p (T ) the supremum

of πL
p (TS) as S ranges over all mappings from finite subsets of

ℓp′ into X having Lipschitz constant at most one?

The paper [8] by Farmer and Johnson is an attempt by the authors
to extend known useful results to the non-linear theory and their first
interface in this case has appealed to the uniform theory, and in par-
ticular to the theory of Lipschitz functions between Banach spaces.

The study of ideals of absolutely p-summing operators and their
relatives touches on quite a broad spectrum of related issues in the ge-
ometric, analytic and measure-theoretic underpinnings related to var-
ious properties of Banach spaces and including the Randon-Nikodym
property of Banach spaces and the stability questions. It is not in-
tended that all the problems stated above be addressed at the same
time or in their order of appearance.
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NOTATION

Throughout this dissertation, we will assume all our metric spaces
to be pointed metric spaces, that is, each one has a special point des-
ignated by 0. We will use the usual convention, R and C will denote
the real or complex numbers respectively. We shall use K to represent
R or C. BX will denote the closed unit ball of our space X (metric
or Banach space). Therefore, we summarize some definitions from [6],
[15], and [3].

Bounded linear maps between Banach spaces are referred to as op-
erators. Otherwise, the word map or mapping will have a possibly
unbounded non-linear connotation. The collection L(X, Y ) of all op-
erators u : X → Y is a Banach space with respect to the norm

∥u∥ = sup
x∈BX

∥u(x)∥.

A Banach space operator u : X → Y is said to be isometric if
∥u(x)∥ = ∥x∥ for all x ∈ X; it is an isometry if it is also onto.

The dual of a Banach space X will be denoted by X∗ := L(X,K);
its typical element will be denoted by x∗, and for x ∈ X, we shall write
⟨x∗, x⟩ = x∗(x) (or ⟨x, x∗⟩) for the action of x∗ on x.

A subset K of X∗ is said to be a norming subset if it has the
property that ∥x∥ = sup{|f(x)| : f ∈ K} for all x ∈ X.

A sequence (xn) in X is norm-null if limn ∥xn∥ = 0. Similarly, a
sequence (xn) in X is weakly-null if limn x

∗(xn) = 0 for all x∗ ∈ X∗.
If xn is a sequence in X, then (xn) is norm Cauchy if and only if

given strictly increasing sequences (jn) and (kn) of positive integers,
the sequence (xkn − xjn) is norm null. Similarly, if xn is a sequence in
X, then (xn) is weakly Cauchy if and only if given strictly increasing
sequences (jn) and (kn) of positive integers, the sequence (xkn − xjn)
is weakly null.

Denote by ℓstrongp (X) the set of all sequences (xn) in X such that
(∥xn∥) ∈ ℓp, a vector space under pointwise operations with a natural
norm given by

∥(xn)∥strongp :=
(∑

n

∥(xn)∥p
) 1

p .

Denote by ℓweakp (X) the set of all sequences (xn) in X such that
(x∗(xn)) ∈ ℓp for every x∗ ∈ X∗, a vector space under pointwise oper-
ations with a norm given by

∥(xn)∥weakp := sup
{(∑

n

|x∗(xn)|p
) 1

p : x∗ ∈ BX∗

}
.

A Banach space Z is injective if whenever Y0 is a subspace of a
Banach space Y , any u ∈ L(Y0, Z) has an extension ũ ∈ L(Y, Z) with
∥u∥ = ∥ũ∥.
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Let (X, δ) and (Y, d) be metric spaces. A map f : X → Y is said to
be Lipschitz if there exists a constant C ≥ 0 (we use the convention,
0
0
= 0) such that

d(f(x), f(y)) ≤ C · δ(x, y)

for all x, y ∈ X where the notation d(f(x), f(y)) = ∥f(x) − f(y)∥ is
the distance from f(x) to f(y) in Y and also δ(x, y) = ∥x − y∥ is the
distance from x to y in X. The least such C is called the Lipschitz
constant of f and is denoted by Lip(f). We will also write

Lip(f) = sup
x,y∈X

{d(f(x), f(y))

δ(x, y)
: δ(x, y) ≤ 1, and x ̸= y

}
.

Sometimes reference will be made to a metric space X without speci-
fying the metric. We will denote by Lip(X, Y ) the set of all Lipischitz
functions from X to Y .

Two finite metric spaces X and Y are called C-isomorphic if there
is a map φ : X → Y such that Lip(φ) · Lip(φ−1) ≤ C.

Let Cn
2 = {(x1, . . . , xn)|xi ∈ {0, 1}} = {0, 1}n. For every pair

x = (xj)
n
j=1, x

′ = (x′
j)

n
j=1 in Cn

2 , the Hamming metric is defined by
h(x, x′) = ♯{i|xi ̸= x′

i}. Sometimes, Cn
2 = {−1, 1}n is more convenient

to use.
Whenever Cn

2 = {0, 1}n, the Hamming metric coincides with the stan-
dard ℓ1 metric d(x, x′) =

∑n
i=1 |xi − x′

i|.
Let 1 ≤ p ≤ ∞. Call the metric space (Cn

2 , δp) the ℓp n-cube (or ℓnp
-cube) if Cn

2 = {0, 1}n and

δp(x, x
′) =

( n∑
i=1

|xi − x′
i|p
) 1

p
=

( n∑
i=1

|xi − x′
i|
) 1

p

for any pair x, x′ in Cn
2 . The ℓ1 n-cube is often called the Hamming

cube.
Let (X, δ) be a metric space with cardinality 2n (|X| = 2n) and

consider a one to one map φ : Cn
2 → X. The map φ give some way

of ordering the elements of X by n-dimensional binary vectors. Let
x = (xj)

n
j=1 be a point in Cn

2 and denote the opposite point on the
given cube by xc = (1 − xj)

n. A diagonal in X is defined as the
unordered pair (φ(x), φ(xc)) and its length is defined by

diagφ(x) = δ(φ(x), φ(xc)).

Denoted by D the set of all diagonals. Then, |D| = 2n−1. The same
notation will be used for a diagonal and its length.

Every unordered pair of points (x, x′) in Cn
2 differing in one binary

coordinate only defines an edge in X. The length of the edge (usually
just called ’edge’) is defined by

edgeφ(x, x
′) = δ(φ(x), φ(x′)).
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Denote by E the set of all edges. Then, |E| = n2n−1.
If two edges (φ(x1), φ(x2)) and (φ(x′

1), φ(x
′
2)) share one point, they

are said to be connected. For example, if φ(x2) = φ(x′
1).

A set of n-connected edges from φ(x) to φ(xc) defines a path be-
longing to diagφ(x).
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1 PRELIMINARIES ON LIPSCHITZ SUMMING MAPS 1

1 PRELIMINARIES ON LIPSCHITZ

p-SUMMING MAPS

1.1 DEFINITIONS AND ELEMENTARY
PROPERTIES

In this chapter, we use the standard notation as can be found in [6],
and [8].

Definition 1.1.1
Suppose X and Y are Banach spaces. A linear operator u : X → Y is
p-summing for 1 ≤ p < ∞ precisely when there is a constant C ≥ 0
such that for x1, · · · , xn ∈ X and regardless of the natural number n,
we have ( n∑

i=1

∥uxi∥p
) 1

p

≤ C · sup
x∗∈BX∗

( n∑
i=1

|x∗(xi)|p
) 1

p

.

The least C for which the above inequality holds will be denoted by
πp(u). We denote by Πp(X, Y ), the set of all p-summing operators
from X into Y .

Inspired by this useful concept, Farmer and Johnson introduced in
[8] the following definition;

Definition 1.1.2
Suppose X and Y are metric spaces and 1 ≤ p < ∞. A Lipschitz map
T : X → Y is Lipschitz p-summing if there is a constant C such that
for all (xi), (yi) in X and all positive reals ai, we have∑

ai∥Txi − Tyj∥p ≤ Cp · sup
f∈B

X♯

∑
ai|f(xi)− f(yi)|p, (1.1)

where BX♯ is the unit ball of X♯, and X♯ is the Lipschitz dual of X :=
{f : X → R : |f(x) − f(y)| ≤ C · |x − y|, for some C > 0, f(0) = 0};
that is, X♯ is the Banach space of all real valued Lipschitz functions
under the (semi)-norm Lip(.) and ∥Tx−Ty∥ is the distance from Tx to
Ty in Y . X is a pointed metric space, that is, 0 ∈ X, and 0 ∈ Y . BX♯

is a compact Hausdorff space in the topology of pointwise convergence
on X.

If we restrict to ai = 1 because of density of numbers, the defi-
nition is the same. We denoted by πL

p (T ) the least C for which the
above inequality (1.1) holds and by ΠL

p (X, Y ) the set of all Lipschitz
p-summing mappings from X into Y .
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1 PRELIMINARIES ON LIPSCHITZ SUMMING MAPS 2

The proof of the following proposition can be found in ([15], Propo-
sition 1.2.3).

Proposition 1.1.3 ([15], Proposition 1.2.3)
Let X and Y be metric spaces, and X̂, Ŷ be their completions. If
T : X → Y is a Lipschitz map, then T has an extension T̂ : X̂ → Ŷ
such that

Lip(T ) = Lip(T̂ ).

An application of Proposition 1.1.3 gives the following proposition.

Proposition 1.1.4
Suppose 1 ≤ p < ∞. Let X and Y be metric spaces, and X̂, Ŷ be their
completions. If T : X → Y is Lipschitz p-summing, then T̂ : X̂ → Ŷ
is also Lipschitz p-summing with

πL
p (T ) = πL

p (T̂ )

where T̂ is the extension of T by density.

Proof.
For every (xi), (yi) ⊂ X, and all ai > 0,∑

i

ai∥Txi − Tyi∥p ≤
(
πp(T )

)p · sup
f∈B

X♯

(∑
i

ai|f(xi)− f(yi)|p
)
.

Let (x̂i), (ŷi) be sequences in X̂. Then, there exists (xi
(n)), (yi

(n)) with
limn ∥x̂i − xi

(n)∥ = 0 and limn ∥ŷi − yi
(n)∥ = 0.

By definition, T̂ (x̂i) = T̂ (limn xi
(n)) = limn Tx

(n)
i . Similarly, T̂ (ŷi) =

limn Ty
(n)
i . Hence, we have∑

ai∥T̂ x̂i − T̂ ŷi∥p =
∑

ai∥ lim
n
[Tx

(n)
i − Ty

(n)
i ]∥p

= lim
n

∑
ai∥Tx(n)

i − Ty
(n)
i ∥p

≤ πL
p (T )

p · sup
f∈B

X♯

(∑
i

lim
n

ai|f(x(n)
i )− f(y

(n)
i )|p

)
= πL

p (T )
p · sup

f∈B
X♯

(∑
i

ai|f̂(x̂i)− f̂(ŷi)|p
)

≤ πL
p (T )

p · sup
ĝ∈B

X̂♯

(∑
i

ai|ĝ(x̂i)− ĝ(ŷi)|p
)
.

Thus, πL
p (T̂ ) ≤ πL

p (T ) and by extension, πL
p (T ) = πL

p (T̂ |X) ≤ πL
p (T̂ ).

Therefore, T̂ is Lipschitz p-summing with πL
p (T̂ ) = πL

p (T ) and this
concludes the proof of the proposition. �
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1 PRELIMINARIES ON LIPSCHITZ SUMMING MAPS 3

1.2 IDEAL PROPERTY

Before we state and prove the Ideal Property for Lipschitz p-summing
maps, we have the following result which can be found in ([15], Propo-
sition 1.2.2).

Proposition 1.2.1 ([15], Proposition 1.2.2)
Let X, Y , and Z be metric spaces. If f : X → Y and g : Y → Z
are Lipschitz maps, then g ◦ f : X → Z is also a Lipschitz map and
Lip(f ◦ g) ≤ Lip(f) · Lip(g).

Proof.
Let f : X → Y and g : Y → Z be Lipschitz maps. Then for all
x, y ∈ X, we have the following set of inequalities

∥(f ◦ g)(x)− (f ◦ g)(y)∥ = ∥f(g(x))− f(g(y))∥
≤ Lip(f) · ∥g(x)− g(y)∥
≤ Lip(f) · Lip(g) · ∥x− y∥.

Hence, f ◦ g is a Lipschitz map and

Lip(f ◦g) ≤ Lip(f)·Lip(g). �

In the linear theory, a consequence of Definition 1.1.1 is that Πp

satisfies the Ideal Property for p-summing operators. This property
states that if v : X → Y is a p-summing operator between Banach
spaces X and Y , then for any Banach spaces X0 and Y0, and any
u ∈ L(Y, Y0) and w ∈ L(X0, X), the operator uvw : X0 → Y0 is
p-summing with

πp(uvw) ≤ ∥u∥ · πp(v) · ∥w∥.

This property with its proof can be found in [6] by Diestel et al as Ideal
Property of p-Summing Operators. In the non-linear setting, there is
also a version of the Ideal Property. This was observed by Farmer and
Johnson in their paper [8] as an immediate consequence of Definition
1.1.2 which we now state and prove.

Proposition 1.2.2 (Non-linear Ideal Property)
Let T : X → Y be Lipschitz p-summing, A : W → X and B : Y → Z
be Lipschitz mappings. Then, BTA : W → Z is Lipschitz p-summing
and

πL
p (BTA) ≤ Lip(A) · πL

p (T ) · Lip(B).
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1 PRELIMINARIES ON LIPSCHITZ SUMMING MAPS 4

Proof.

Let (xi) and (yi) be in W and ai be positive scalars such that ai = 1
for each i. The fact that T is Lipschitz p-summing and B is a Lipschitz
map implies that

∆ =
∑

∥BTAxi −BTAyi∥pZ ≤ Lip(B)p ·
∑

∥TAxi − TAyi∥pY
≤ Lip(B)p · πL

p (T )
p · sup

f∈B
X♯

∑
|f(Axi)− f(Ayi)|p

= Lip(B)p · πL
p (T )

p · sup
f∈B

X♯

∑
|f ◦ A(xi)− f ◦ A(yi)|p.

Since by definition, both f : X → R and A : W → X are Lipschitz
maps, then f ◦ A is a Lipschitz map by Proposition 1.2.1, with
Lip(f ◦A) ≤ Lip(f) · Lip(A) and f ◦A(0) = 0. So, f ◦A ∈ W ♯. Since
Lip(f) ≤ 1, it follows by normalizing that

∆ ≤ Lip(B)pπL
p (T )

p sup
f∈B

X♯

((
Lip(f ◦A)

)p∑∣∣∣∣ f ◦A(xi)

Lip(f ◦A)
− f ◦A(yi)

Lip(f ◦A)

∣∣∣∣p)

≤ Lip(B)pπL
p (T )

p sup
f∈B

X♯

(
Lip(f)pLip(A)p

∑∣∣∣∣ f ◦A(xi)

Lip(f ◦A)
− f ◦A(yi)

Lip(f ◦A)

∣∣∣∣p)
≤ Lip(B)p · πL

p (T )
p · Lip(A)p · sup

g∈B
W♯

∑
|g(xi)− g(yi)|p.

Therefore, BTA is Lipschitz p-summing, and

πL
p (BTA) ≤ Lip(B) · πL

p (T ) · Lip(A). �

Farmer and Johnson in their paper [8] showed that Definition 1.1.2 of
Lipschitz p-summing maps is the ’precise’ analogue of Definition 1.1.1 due
to the following Proposition 1.2.3. This proposition was proved by Farmer
and Johnson in ([8], Theorem 2).

Proposition 1.2.3 ([8], Theorem 2)
Suppose 1 ≤ p < ∞. Let T : X → Y be a bounded linear operator between
Banach spaces X and Y . Then, T is p-summing if and only if it is Lipschitz
p-summing and

πL
p (T ) = πp(T ).

Proof.
Suppose T is p-summing. Then, regardless of the natural number m and
the choice of x1, . . . , xm in X, we have

m∑
i=1

∥Txi∥p ≤ πp(T )
p · sup

f∈BX∗

( m∑
i=1

|f(xi)|p
)
.
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1 PRELIMINARIES ON LIPSCHITZ SUMMING MAPS 5

Since T is linear, then for {zi}mi=1 and {yi}mi=1 in X with xi = zi − yi and
taking ai = 1 for each i, we have

m∑
i=1

∥Tzi − Tyi∥p =

m∑
i=1

∥T (zi − yi)∥p

≤
(
πp(T )

)p · sup
f∈BX∗

( m∑
i=1

|f(zi − yi)|p
)

=
(
πp(T )

)p · sup
f∈BX∗

( m∑
i=1

|f(zi)− f(yi)|p
)

≤
(
πp(T )

)p · sup
f∈B

X♯

( m∑
i=1

|f(zi)− f(yi)|p
)
.

Hence

m∑
i=1

∥Tzi − Tyi∥p ≤
(
πp(T )

)p · sup
f∈B

X♯

( m∑
i=1

|f(zi)− f(yi)|p
)
.

This shows that T is Lipschitz p-summing and

πL
p (T ) ≤ πp(T ). (1.2)

Conversely, if T is Lipschitz p-summing, then it is p-summing by Theo-
rem 2 in [8] with

πp(T ) ≤ πL
p (T ). (1.3)

Combining (1.2) and (1.3), we have

πL
p (T ) = πp(T ). �

Remark 1.2.4
We also observe that since the operators in ([6], Examples 2.9(a)-(e)) are
bounded linear operators and p-summing, then by Proposition 1.2.3, all
these operators are also Lipschitz p-summing. We also observe from Proposi-
tion 1.2.3 that the multiplication operators as found in ([6], Example 2.9(a));
Mφ : C(K) → Lp(µ) : f 7→ f ·φ and Example 2.9(c); Mφ : L∞(µ) → Lp(µ)
: f 7→ f ·φ also satisfies πL

p (Mφ) = ∥φ∥p. Similarly, for the formal inclusion
operators as found in ([6], Example 2.9(b)); jp : C(K) → Lp(µ) where K
is a compact Hausdorff space and µ is a positive Borel measure on K, and
Example 2.9(d); ip : L∞(µ) → Lp(µ) for any finite measure space (Ω,Σ, µ)

also satisfies πL
p (jp) = µ(K)

1
p and πL

p (ip) = µ(Ω)
1
p respectively. Finally, for

the diagonal operators as found in ([6], Example 2.9(e)); Dλ : ℓ∞ → ℓp :
(an) 7→ (λnan) where λn is any member of ℓp also satisfy πL

p (Dλ) = ∥λ∥p.
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1.3 INJECTIVITY PROPERTY

In the linear setting, an application of the Ideal Property for p-summing op-
erators gives rise to the Injectivity Property of p-summing operators. This
property states that the operator v : X → Y is p-summing if and only if the
operator uv : X → Z is p-summing where the operator u : Y → Z is isomet-
ric, and X, Y and Z are Banach spaces. We even have πp(uv) = πp(v) in
such a case. This result of the Injectivity Property for p-summing operators
and its proof can be found in ([6], Injectivity of Πp). An analogue of this
property also exists in the non-linear setting. Before stating and proving
the non-linear version of the Injectivity Property, we have the following def-
initions and results. Theorem 1.3.3 is an analogue of the result obtained in
chapter 2 of [6] in the non-linear setting.

Definition 1.3.1
Let (X, δ) be a complete metrizable topological vector space and 1 ≤ p <
∞. A sequence (xn) in X is strongly p-summable if the scalar sequence
(δ(xn, 0)n) is in ℓp. We denote by ℓstrongp (X) the set of all such sequences in
X and the metric by

∥(xn)− (yn)∥strongp =
(∑

n

∥xn − yn∥p
) 1

p
.

Definition 1.3.2
Let (X, δ) be a complete metrizable topological vector space and 1 ≤ p < ∞.
A sequence (xn) in X is weakly p-summable if the scalar sequences ((fxn)n)
are in ℓp for every f ∈ X♯. We denote by ℓweakp (X) the set of all such
sequences in X and the metric by

∥(xn)− (yn)∥weakp = sup
f∈B

X♯

(∑
|f(xn)− f(yn)|p

) 1
p
.

Suppose u : X → Y is a Lipschitz map between complete metrizable topo-
logical vector spaces X and Y , the correspondence

û : (xn)n 7→ (uxn)n

induces Lipschitz maps ℓweakp (X) → ℓweakp (Y ) and ℓstrongp (X) → ℓstrongp (Y )
respectively. In both cases, the norm is clearly Lip(u). Indeed, we show
that u : X → Y is Lipschitz if and only if û : ℓweakp (X) → ℓweakp (Y ) is
Lipschitz. For this purpose, suppose u is Lipschitz and let (xn) and (yn) be
in ℓweakp (X). We then have

∥û(xn)n − û(yn)n∥ = ∥û(xn)− û(yn)∥weakp = ∥(uxn)n − (uyn)n∥weakp

= sup
g∈B

Y ♯

(∑
n

|g(uxn)− g(uyn)|p
) 1

p

≤ Lip(g ◦ u) · sup
f∈B

X♯

(∑
n

|f(xn)− f(yn)|p
) 1

p

≤ Lip(u) · ∥(xn)− (yn)∥weakp .
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1 PRELIMINARIES ON LIPSCHITZ SUMMING MAPS 7

Hence, û is Lipschitz and

Lip(û) ≤ Lip(u). (1.4)

Conversely, suppose û : ℓweakp (X) → ℓweakp (Y ) is a Lipschitz map. Let (xn)

and (yn) be in ℓweakp (X). We then have

∥(uxn)n − (uyn)n∥weakp = ∥û(xn)− û(yn)∥weakp ≤ Lip(û) · ∥(xn)− (yn)∥weakp .

In partcular, put xn = x, ∀n, yn = y, ∀n and consider length-1 sequences.
Then

sup
g∈B

Y ♯

|gux− guy| ≤ sup
f∈B

X♯

|fx− fy|

if and only if
∥ux− uy∥ ≤ Lip(u) · ∥x− y∥

and so, u is Lipschitz with

Lip(u) ≤ Lip(û). (1.5)

Combining (1.4) and (1.5), we have Lip(u) = Lip(û).

A similar argument shows that u : X → Y is Lipschitz if and only if
û : ℓstrongp (X) → ℓstrongp (Y ) is Lipschitz with Lip(u) = Lip(û). This process
may even produce a Lipschitz map û : ℓweakp (X) → ℓstrongp (Y ). This happens
precisely when u is Lipschitz p-summing.

Theorem 1.3.3
Suppose 1 ≤ p < ∞ and let X and Y be complete metrizable topological
vector spaces. A mapping u : X → Y is Lipschitz p-summing if and only if
û : ℓweakp (X) → ℓstrongp (Y ) is Lipschitz. In this case, πL

p (u) = Lip(û).

Proof.
Suppose first that u is Lipschitz p-summing. Then, for all (xn), (yn) in X
and all positive reals ai such that ai = 1 for each i, we have∑

n

∥uxn − uyn∥p ≤
(
πL
p (u)

)p · sup
f∈B

X♯

(∑
n

|f(xn)− f(yn)|p
)
.

Let (xn), (yn) be in ℓweakp (X), then we have

∥û(xn)− û(yn)∥strongp =
(∑

n

∥uxn − uyn∥p
) 1

p

≤ πL
p (u) · sup

f∈B
X♯

(∑
n

|f(xn)− f(yn)|p
) 1

p

= πL
p (u) · ∥(xn)− (yn)∥weakp .

Consequently, û : ℓweakp (X) → ℓstrongp (Y ) is Lipschitz and

Lip(û) ≤ πL
p (u). (1.6)
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Conversely, suppose û : ℓweakp (X) → ℓstrongp (Y ) is Lipschitz. Then for
finite sequences (xn), (yn) in X, we have(∑

n

∥uxn − uyn∥p
) 1

p
= ∥û(xn)− û(yn)∥strongp

≤ Lip(û) · ∥(xn)− (yn)∥weakp

= Lip(û) · sup
f∈B

X♯

(∑
n

|f(xn)− f(yn)|p
) 1

p
.

Hence, u is Lipschitz p-summing and

πL
p (u) ≤ Lip(û). (1.7)

Combining (1.6) and (1.7), we have

πL
p (u) = Lip(û). �

From the above theorem, we have shown that
ΠL

p (X,Y ) = Lip
(
ℓweakp (X), ℓstrongp (Y )

)
isometrically isomorphically.

We now have the the following injectivity property of Lipschitz p-summing
maps.

Theorem 1.3.4 (Injectivity of ΠL
p )

Let X, Y and Y0 be complete metrizable topological vector spaces. If
u : Y → Y0 is an isometric map, then v ∈ ΠL

p (X,Y ) if and only if

uv ∈ ΠL
p (X,Y0). In such a case, we also have

πL
p (uv) = πL

p (v).

Proof.
Suppose v ∈ ΠL

p (X,Y ). Since u : Y → Y0 is isometric, we have the following
commutative diagram

X

v
��>

>>
>>

>>
uv //Y0

Y

u

??�������

Let ûv : ℓweakp (X) → ℓstrongp (Y0) be a map. In order to apply Theorem 1.3.3,

we show that ûv is Lipschitz. For this purpose, let (xn)n, (yn)n ∈ ℓweakp (X)
with x = (xn)n and y = (yn)n. Since u is isometric and v is Lipschitz
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p-summing, we have

∥ûv(x)− ûv(y)∥strongp =
(∑

n

∥uvxn − uvyn∥pY0

) 1
p

=
(∑

n

∥vxn − vyn∥pY
) 1

p

≤ πL
p (v) · sup

f∈B
X♯

(∑
n

|f(xn)− f(yn)|p
) 1

p

= πL
p (v) · ∥x− y∥weakp .

Hence, ûv is Lipschitz and Lip(ûv) ≤ πL
p (v).

By Theorem 1.3.3, we conclude that uv is Lipschitz p-summing and

πL
p (uv) = Lip(ûv) ≤ πL

p (v) (1.8)

Conversely, suppose uv ∈ ΠL
p (X,Y0), we show that v ∈ ΠL

p (X,Y ).
Let (wn) and (zn) be in X, and since u is isometric, we have(∑

n

∥vwn − vzn∥pY
) 1

p
=

(∑
n

∥uvwn − uvzn∥pY0

) 1
p

≤ πL
p (uv) · sup

f∈B
X♯

(∑
n

|f(wn)− f(zn)|p
) 1

p
.

Hence, v is Lipschitz p-summing and

πL
p (v) ≤ πL

p (uv) (1.9)

By (1.8) and (1.9), we have

πL
p (v) = πL

p (uv) �
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2 PIETSCH THEOREMS

2.1 DOMINATION AND FACTORIZATION

The proofs of the following two theorems, that is, the Pietsch Domination
Theorem 2.1.1 and the Pietsch Factorization Theorem 2.1.2 can be found
in [6].

Pietsch Domination Theorem 2.1.1 (Linear version) ([6], Pietsch
Domination Theorem)
Suppose that 1 ≤ p < ∞. Let u : X → Y be a Banach space operator, and
K be a weak∗-compact norming subset of BX∗ . Then u is p-summing if and
only if there exists a constant C and a regular probability measure µ on K
such that for each x ∈ X

∥ux∥ ≤ C ·
(∫

K
|x∗(x)|pdµ(x∗)

) 1
p

.

In such a case, πp(u) is the least of all the constants C for which such a
measure exists.

Pietsch Factorization Theorem 2.1.2 (Linear version) ([6], Pietsch
Factorization Theorem)
Suppose 1 ≤ p < ∞. Let X and Y be Banach spaces, and K be a weak∗-
compact norming subset of BX∗ . Let B be BY ∗ (or a norming subset
thereof). For every operator u : X → Y , the following are equivalent

(1) u is p-summing.

(2) There exist a regular Borel probabilty measure µ on K, a (closed)
subspace Xp of Lp(µ) and an operator ũ : Xp → Y such that
(a) jpiX(X) ⊂ Xp and (b) ũjpiX(x) = ux for all x ∈ X.
In other words, if jXp is the map iX(X) → Xp induced by jp, then the
following diagram commutes:

X

iX
��

u //Y

iX(X)� _

��

jXp
//Xp

ũ

OO

� _

��
C(K)

Jp
//Lp(µ)

(3) There exist a regular probability measure µ on K and an operator
û : Lp(µ) → ℓB∞ such that the following diagram commutes:

C(K)
jp

//Lp(µ)

û
��

X

iX

OO

u //Y
iY //ℓB∞
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2 PIETSCH THEOREMS 11

(4) There exists a probability space (Ω,Σ, µ) and operators û : Lp(µ) →
ℓB∞ and v : X → L∞(µ) such that the following diagram commutes

L∞(µ)
ip

//Lp(µ)

û
��

X

v

OO

u //Y
iY //ℓB∞

Moreover, we may choose µ and ũ in (2) or µ and û in (3) so that
∥ũ∥ = ∥û∥ = πp(u); in (4) we may arrange that ∥v∥ = 1 and ∥û∥ =
πp(µ).

Inspired by the above two theorems, Farmer and Johnson introduced in
[8] the following theorem;

2.2 NON-LINEAR PIETSCH THEOREM

Non-Linear Pietsch Theorem 2.2.1 ([8], Theorem 1)
Suppose 1 ≤ p < ∞. Let T : X → Y be a mapping between metric spaces
X and Y . Then the following are equivalent for the mapping T and C ≥ 0.

(1) πL
p (T ) ≤ C. (that is, T is Lipschitz p-summing)

(2) There is a probability µ on BX♯ such that

∥Tx− Ty∥p ≤ Cp

∫
B

X♯

|f(x)− f(y)|pdµ(f)

(Pietsch Domination).

(3) For some (or any) isometric embedding J of Y into a 1-injective space
Z, there is a factorization

L∞(µ)
I∞,p

//Lp(µ)

B
��

X

A

OO

T //Y
J //Z

with µ a probability and Lip(A) · Lip(B)≤ C (Pietsch Factorization).

(4) There is a probability µ on K, the closure in the topology of pointwise
convergence on X of the extreme points of BX♯ such that

∥Tx− Ty∥p ≤ Cp

∫
K
|f(x)− f(y)|pdµ(f)

We shall also rely on the following result to prove the Non-linear Pietsch
Theorem.
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Remark 2.2.2
Suppose X is a set, (Y, d) is a metric space and f : X → Y is an injective
function. The injective function f and d induce a metric on X, namely
(a, b) 7→ d(f(a), f(b)). This metric makes X an isometric copy of the metric
subspace (f(X), d) of (Y, d) and f is an isometry. This result is an example
as can be found in ([14], Example 1.4.4).

Proof of the Non-linear Pietsch Theorem.

(2) implies (3): Since every space X embeds in a C(K) space, we have
the following commutative diagram by taking K = BX♯ ;

C(BX♯)
J∞ //L∞(µ)

I∞,p
//I∞,pAX

B1

��

� � //Lp(µ)

B
yysssssssssss

X
iX

eeKKKKKKKKKKK
A

OO

T //Y
J //Z

with B1 ◦ I∞,p ◦ A = J ◦ T . We are able to extend B1 to B because Z is
1-injective with Lip(B1) = Lip(B). Thus, B1 = B|I∞,pAX

. Since iX and
J∞ are Lipschitz maps and a composition of Lipschitz maps is Lipschitz
by Proposition 1.2.1, then A is also a Lipschitz map. Also, since J is an
isometry and by condition (2), we have for any x, y ∈ X

∥B1I∞,pAx−B1I∞,pAy∥pZ = ∥JTx− JTy∥pZ = ∥Tx− Ty∥p

≤ Cp ·
∫
B

X♯

|f(x)− f(y)|pdµ(f).

Since the functions f are Lipschitz, f ∈ BX♯ so that Lip(f) ≤ 1, and I∞,p◦A
is injective, then by Remark 2.2.2, we have

∥B1I∞,pAx−B1I∞,pAy∥pZ ≤ Cp · Lip(f)p · ∥x− y∥pX
≤ Cp · ∥x− y∥pX
= Cp · ∥I∞,pAx− I∞,pAy∥pLp(µ)

.

Therefore, B1 is Lipschitz, and Lip(B1) ≤ C. Also,

Lip(A) = Lip(J∞iX) ≤ Lip(J∞)Lip(iX) ≤ 1.

Since B1 has an extension, i.e., B1 extends to B with B1 = B|I∞,pAX
and

Lip(B1) = Lip(B), we have

Lip(A) · Lip(B) ≤ C.

(3) implies (1): Since I∞,p is Lipschitz p-summing with πL
p (I∞,p) = 1 by

Remark 1.2.4, and J is an isometry, then by condition (3) and the Non-
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linear Ideal Property, we have

πL
p (T ) = πL

p (JT ) = πL
p (B1 ◦ I∞,p ◦A)

≤ Lip(B1) · πL
p (I∞,p) · Lip(A)

= Lip(B1) · πp(I∞,p) · Lip(A)

= Lip(B1) · Lip(A)

= Lip(B) · Lip(A) ≤ C.

(1) implies (2): Suppose πL
p (T ) = 1. Let Q be a convex cone in C(BX♯)

consisting of all positive linear combinations of the functions of the form
∥Tx−Ty∥−Cp|f(x)− f(y)|p, as x and y range over X. Now condition (1)
says that Q is disjoint from the positive cone P = {F ∈ C(BX♯) : F (f) >
0 ∀f ∈ BX♯}. P is clearly an open and convex subset of C(BX♯). Indeed,
P is open since P =

∪
F F−1(0,∞) where F ∈ C(BX♯). P is convex since it

is a cone, and so Q ∩ P = ∅, otherwise, gM ∈ Q for some finite set M ⊂ X
and gM (f) > 0 for all f ∈ BX♯ where

gM (f) =
∑

x,y∈M
∥Tx− Ty∥p − Cp · |f(x)− f(y)|p.

Indeed on the contrary, if gM ∈ Q for some finite set M ⊂ X and gM (f) > 0
for all f ∈ BX♯ , then∑

x,y∈M
∥Tx− Ty∥p − Cp · |f(x)− f(y)|p > 0

so that ∑
x,y∈M

∥Tx− Ty∥p > Cp ·
∑

x,y∈M
|f(x)− f(y)|p.

Hence ∑
x,y∈M

∥Tx− Ty∥p > Cp · sup
f∈B

X♯

∑
x,y∈M

|f(x)− f(y)|p

contrary to T being Lipschitz p-summing. Therefore, Q ∩ P = ∅.
Hence, by the Separation Theorem and the Riesz Representation Theorem,
there is a finite signed Baire measure µ on BX♯ and a real number c so that
for all G ∈ Q and F ∈ P ,∫

B
X♯

Gdµ ≤ c <

∫
B

X♯

Fdµ.

Since 0 ∈ Q then c ≥ 0. Also, since all positive constant functions belong
to P , then c < 0 so that c = 0. Since

∫
B

X♯
.dµ is positive on the positive

cone P of C(BX♯), the signed measure µ is positive which we can assume
by rescaling is a probability measure. Hence∫

B
X♯

Gdµ ≤ 0 <

∫
B

X♯

Fdµ

so that ∫
B

X♯

∥Tx− Ty∥p − Cp · |f(x)− f(y)|pdµ(f) ≤ 0.
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Therefore

∥Tx− Ty∥p ≤ Cp ·
∫
B

X♯

|f(x)− f(y)|pdµ(f).

(1) implies (4): The proof that (1) implies (4) is like the proof that (1)
implies (2) since the supremum on the right hand side of (1.1), the definition
of the Lipschitz p-summing norm, is the same as

sup
f∈K

∑
ai|f(xi)− f(yi)|p. �

The strong form of the Pietsch Domination Theorem says that if X is
a subspace of a C(K) space for some compact Hausdorff space K, and if T
is a p-summing linear operator with domain X, then there is a probability
measure µ on K so that for all x ∈ X,

∥Tx∥pleqπp(T )p
∫
K
|x(t)|pdµ(t).

Unfortunately, a non-linear version for this result does not hold.

Indeed, letDn be the discrete metric space with n-points so that the distance
between any two distinct points is one. We now embed Dn into C({−1, 1}n)
in two different ways. First, define Dn = {x1, · · · , xn} with |Dn| = n. Let

d(xi, yj) =

{
1 if i ̸= j
0 if i = j

and f(xk) = 1
2rk, where rk is the projection onto the kth coordinate (i.e.,

rk(x) = kth-coordinate of x).
If x ∈ {−1, 1}n then x = (ε1, ε2, · · · , εn) and |{−1, 1}n| = 2n. Let E1 = {x ∈
{−1, 1}n : | ri2 (x)−

rj
2 (x)|

p = 1} and E2 = {x ∈ {−1, 1}n : | ri2 (x)−
rj
2 (x)|

p =
0}. Then

d(xi, yj) =
∥∥∥ri
2
− rj

2

∥∥∥
∞

= 1.

Let jp be the canonical injection from C({−1, 1}n) into Lp({−1, 1}n, µ)
where µ is the uniform probability on {−1, 1}n. We then have the following
commutative diagram;

C({−1, 1}n)
jp

//Lp({−1, 1}n, µ)

Dn
?�

f

OO

IDn //jpf(Dn)
?�

OO

Let µ(E1) = µ(E2) =
1
2 . Then

∥jpf(xi)− jpf(xj)∥pp =
∥∥∥jp(ri

2

)
− jp

(rj
2

)∥∥∥p
p

=

∫
{−1,1}n

∣∣∣ri
2
(x)− rj

2
(x)

∣∣∣pdµ
=

∫
E1

∣∣∣ri
2
(x)− rj

2
(x)

∣∣∣pdµ+

∫
E2

∣∣∣ri
2
(x)− rj

2
(x)

∣∣∣pdµ
= 1 · µ(E1) + 0 · µ(E2) =

1

2
.
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Since f is an isometry, we have∫
{−1,1}n

∣∣∣xi(x)− xj(x)
∣∣∣pdµ =

∫
{−1,1}n

∣∣∣f(xi)(x)− f(xj)(x)
∣∣∣pdµ

=

∫
{−1,1}n

∣∣∣ri
2
(x)− rj

2
(x)

∣∣∣pdµ =
1

2
.

Therefore∥∥∥jp(ri
2

)
− jp

(rj
2

)∥∥∥p
p
=

1

2
≤ 1 = 2 ·

∫
{−1,1}n

∣∣∣xi(x)− xj(x)
∣∣∣pdµ.

Hence

πL
p (IDn) ≤ 2

1
p so that πL

1 (IDn) ≤ 2. We also have πL
2 (IDn) ≤

√
2 and

so on. Therefore, πL
1 (IDn) ≤ 2.

Secondly, Let Dn = {g1, · · · , gn} = {gk : 1 ≤ k ≤ n} where the gk are
the unit vectors with disjoint support. i.e.,

{x ∈ {−1, 1}n : gi(x) ̸= 0} ∩ {x ∈ {−1, 1}n : gj(x) ̸= 0} = ∅.

Let Ei = {x ∈ {−1, 1}n : gi(x) ̸= 0} and Ej = {x ∈ {−1, 1}n : gj(x) ̸= 0}.
Then, ∥gi − gj∥∞ = 1.
Let jp be the canonical injection from C({−1, 1}n) into Lp({−1, 1}n, ν)
where ν is any probability measure on {−1, 1}n with ν(Ei) = ν(Ej) = 1

n .
Hence

∥jpgi − jpgj∥pp =

∫
{−1,1}n

|jpgi(x)− jpgj(x)|pdν

=

∫
{−1,1}n

|gi(x)− gj(x)|pdν

=

∫
Ei∪Ej

|gi(x)− gj(x)|pdν

=

∫
Ei

|gi(x)− gj(x)|pdν +

∫
Ej

|gi(x)− gj(x)|pdν

=

∫
Ei

|gi(x)|pdν +

∫
Ej

|gj(x)|pdν

≤ 1 · ν(Ei) + 1 · ν(Ej) =
1

n
+

1

n
=

2

n
.
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Therefore

∥jpgi − jpgj∥p ≤
( 2

n

) 1
p · 1 =

( 2

n

) 1
p ·

(∫
{−1,1}n

|(gi)(x)− (gj)(x)|pdν
) 1

p

=

( ∑
x∈{−1,1}n

∫
[x]

|(gi)(x)− (gj)(x)|pdν
) 1

p

=

( ∑
x∈{−1,1}n

∫
[x]

|(gk)(x)|pdν
) 1

p

=
(
2n · ∥gk∥p ·

1

2n

) 1
p

= 1 (gk unit vectors)

where k = i or j depending on x ∈ Ei or Ej . We therefore have πL
p (jp) ≤(

2
n

) 1
p
. Hence, πL

1 (IDn) = πL
1 (jp |IDn

) ≤
(

2
n

) 1
p
. As n → ∞, πL

p (IDn) ≤ 0.

Hence, πL
p (IDn) = 0.

But as shown in [8], πL
p (IDn) → 2

1
p as n → ∞. The extreme points Kn

of B♯
Dn

are of the form ±χA where A is a non-empty subset of Dn\{0}.
We now calculate πL

p (IDn) in the case that n is even. Let µ be the uni-
form measure on Jn

2
:= {χA : |A| = n

2 , A ⊂ Dn\{0}} (so that µ(e) = 0 for
e ∈ Kn\Jn

2
). Then µ is a probability measure on Kn and for each pair of

distinct points x and y in Dn, we have

∥IDn(x)− IDn(y)∥p =
(
d(x, y)

)p
= 1 =

2(n− 1)

n
·
∫
Kn

|f(x)− f(y)|pdµ(f).

Hence, πL
p (IDn) =

(
2 − 2

n

)p
since µ is a Pietsch measure. As n → ∞,

πL
p (IDn) → 2

1
p . Since IDn = jp|Dn , we would expect 0 = πL

p (jp) ≥
πL
p (jp|Dn) ̸= 0 and this is a contradiction. Therefore, the strong form of

the Pietsch domination theorem does not hold in the non-linear theory.
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3 APPLICATION OF THE NON-

LINEAR PIETSCH THEOREM

3.1 INCLUSION THEOREM

In their paper [8], Farmer and Johnson noted that one immediate conse-
quence of the Non-Linear Pietsch Theorem 2.2.1 is that πL

p is a monotonely
decreasing function of p. This is the non-linear version of the Inclusion
Theorem. Suppose X and Y are Banach spaces and 1 ≤ p ≤ q < ∞. If
u : X → Y is p-summing, then it is q-summing and

πq(u) ≤ πp(u).

This result is the linear version of the Inclusion Theorem and its proof can
be found in ([6], Inclusion Theorem 2.8). We now state and prove the Non-
linear Inclusion Theorem.

Non-linear Inclusion Theorem 3.1.1
Let 1 ≤ p ≤ q < ∞. If T : X → Y is a Lipschitz p-summing map between
metric spaces X and Y , then it is Lipschitz q-summing and

πL
q (T ) ≤ πL

p (T ).

Proof.
Let πL

p (T ) < ∞, then by the Non-Linear Pietsch Theorem 2.2.1, for some
probability measure µ on BX♯ , we have

∥Tx− Ty∥p ≤
(
πL
p (T )

)p · ∫
B

X♯

|f(x)− f(y)|pdµ(f).

By monotonicity of the Lp-metrics, we therefore have

∥Tx− Ty∥ ≤ πL
p (T ) ·

(∫
B

X♯

|f(x)− f(y)|pdµ(f)
) 1

p

≤ πL
p (T ) ·

(∫
B

X♯

|f(x)− f(y)|qdµ(f)
) 1

q

.

Hence

∥Tx− Ty∥q ≤
(
πL
p (T )

)q · ∫
B

X♯

|f(x)− f(y)|qdµ(f).

This shows that T is Lipschitz q-summing by the Non-Linear Pietsch The-
orem 2.2.1, and

πL
q (T ) ≤ πL

p (T ). �
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An immediate consequence of the Non-linear Inclusion Theorem is that
whenever a map T : X → Y between metric spaces X and Y is Lipschitz
1-summing for 1 ≤ p < ∞, then it is Lipschitz p-summing and

πL
p (T ) ≤ πL

1 (T ).

Another consequence of the Non-Linear Pietsch Theorem 2.2.1 is that
there is a version of the Grothendieck’s Theorem (linear version).

3.2 GROTHENDIECK’S THEOREM

The proof of the following theorem, that is, Grothendieck’s Theorem 3.2.1
(linear version) can be found in ([6], Theorem 3.4).

Grothendieck’s Theorem 3.2.1 (Linear version) ([6], Theorem 3.4)
Regardless of the measures µ and ν, every operator u : L1(µ) → L2(ν) is
1-summing with π1(u) ≤ KG · ∥u∥, where KG is Grothendieck’s constant.

Diestel et al in ([6], Remark 2.20) have noted a particular case, that is,
the natural inclusion map i : ℓ1 → ℓ2 is 1-summing. Applying Proposition
1.2.3, we also note from the above theorem (Grothendieck Theorem 3.2.1)
that a linear operator T from an L1 space into a Hilbert space is Lipschitz
1-summing with πL

1 (T ) ≤ KG · Lip(T ).

In the non-linear setting of Grothendieck’s Theorem, weighted trees play
a role analogous to that of an L1 space in the linear theory. This observation
is due to Farmer and Johnson in their paper [8]. The reason is that every
finite subset of a weighted tree has the lifting property, which is to say that
if X is a finite weighted tree, T : X → Y is a Lipschitz map from X into a
metric space Y , and Q : Z → Y is a 1-Lipschitz quotient mapping, then for
each ϵ > 0, there is a mapping S : X → Z such that Lip(S) ≤ Lip(T ) + ϵ
and T = Q ◦ S.

The following formal definitions of which are given in Definition 3.2.2
and Definition 3.2.3 can be found in ([7], Definition 3.1) and in [11] respec-
tively.

Definition 3.2.2
A metric space X is a finite metric tree if it is a finite connected graph T
that has no cycles endowed with an edge weighted path metric.

Definition 3.2.3
A Lipschitz map f between the metric spaces X and Y is called a Lipschitz
quotient map if there is a C > 0 (the smallest such C, the co-Lipschitz
constant, is denoted by co-Lip(f)) so that for every x ∈ X and r > 0,
f
(
BX(x, r)

)
⊃ BY (f(x),

r
C ).

If there is a Lipschitz quotient mapping from X onto Y with Lip(f) ·
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3 NON-LINEAR PIETSCH THEOREM’S APPLICATION 19

co-Lip(f) ≤ C, we say that Y is a C-Lipschitz quotient of X.

The following version of the Non-linear Grothendieck’s Theorem is due
to Chen and Zheng and its proof can be found in their paper ([4], Corollary
2.3). We will call this version of Chen and Zheng as Theorem 3.2.4.

Theorem 3.2.4 ([4], Corollary 2.3)
Suppose X is a metric tree and T is a Lipschitz map from X into ℓ2, then
for any 1 < p ≤ 2,

πL
p (T ) ≤ Bq ·A−1

1 · Lip(T ),

where 1
p + 1

q = 1 and Bq, A
−1
1 are the respective Khintchine constants.

Another slightly different proof of the Non-linear Grothendieck’s Theo-
rem to that of Chen and Zheng is given in the following theorem which we
now prove.

Non-Linear Grothendieck’s Theorem 3.2.5
Let T : X → Y be a Lipschitz mapping where X is a finite weighted tree
and Y a Hilbert space. Then, T is Lipschitz 1-summing and

πL
1 (T ) ≤ KG · Lip(T ).

Proof.
By the lifting property of X and Y being a quotient of an L1 space, there
exists a map S : X → L1 such that T = Q ◦ S

X

S ��?
??

??
??

T //Y

L1

Q

??��������

and for every ϵ > 0

Lip(S) ≤ Lip(T )+ϵ. (3.1)

By the notes after Grothendieck’s Theorem 3.2.1, Q is Lipschitz 1-summing
and

πL
1 (Q) ≤ KG · Lip(Q). (3.2)

By the Non-linear Ideal Property, T = Q ◦ S is also Lipschitz 1-summing
and

πL
1 (T ) ≤ Lip(S) · πL

1 (Q). (3.3)

By (3.1) and (3.2) and letting ϵ → 0, (3.3) becomes

πL
1 (T ) ≤ KG · Lip(Q) · Lip(T ).
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Since Q is a 1-Lipschitz quotient mapping, then co-Lip(Q) = 1 and
Lip(Q) · co-Lip(Q) ≤ 1, so that

πL
1 (T ) ≤ KG · Lip(Q) · Lip(T )

= KG · Lip(Q) · 1 · Lip(T )
= KG · Lip(Q) · co-Lip(Q) · Lip(T )
≤ KG · Lip(T ).

Therefore

πL
1 (T ) ≤ KG · Lip(T ). �
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4 FURTHER RESULTS ON

LIPSCHITZ p-SUMMING MAPS

4.1 BOURGAIN’S THEOREM

Before stating and proving Bourgain’s Theorem, we have the following def-
initions and results as can be found in [2] and [6].

Definition 4.1.1
Let (X, δ) and (Y, d) be finite metric spaces. Suppose f : X → Y is an
injective mapping, we denote the distortion of a map f by

dist(f) := inf

{
sup

x,y∈X
x̸=y

d(f(x), f(y))

δ(x, y)
· sup
x,y∈X
x̸=y

δ(x, y)

d(f(x), f(y))

}
.

Definition 4.1.2
Let 1 ≤ p < ∞. Suppose X and Y are Banach spaces. An operator u : X →
Y is said to be p-nuclear if there exists operators w ∈ L(ℓp, Y ), v ∈ L(X, ℓ∞)
and a sequence λ ∈ ℓp such that the following diagram commutes.

X

v

��

u //Y

w

��
ℓ∞

Mλ //ℓp

We denoted by Np(X,Y ) the collection of all p-nuclear operators from X
into Y . With each u ∈ Np(X,Y ), we define its p-nuclear norm by

νp = inf ∥v∥ · ∥Mλ∥ · ∥w∥

where the infimum is taken over all operators v and w as in the above dia-
gram.

Suppose X is a finite metric space. We denote for each positive number
s by Ps the set of all subsets of X with cardinal [s] and by 2X the set of
all subsets of X where [s] denotes the greatest integer less that or equal to

s. Let Λ : ℓ2
X

∞ → ℓ2
X

1 be the diagonal operator defined by Λ(A) = s−1|Ps|−1

where A ⊂ X and |A| = s. Define also the map u : X → ℓ2
X

∞ such that for
each x ∈ X, u(x) = {d(x,A)}A⊂X . The map u satisfies the condition that
Lip(u) ≤ 1. Indeed, for each x, y ∈ X with x ̸= y and every A ⊂ X, we
have

|u(x)(A)− u(y)(A)| = |d(x,A)− d(y,A)| ≤ d(x, y) = ∥(x)− (y)∥

so that

∥u(x)− u(y)∥ = sup
A⊂X

|u(x)(A)− u(y)(A)| ≤ d(x, y) = ∥x− y∥.
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4 FURTHER RESULTS ON LIPSCHITZ SUMMING MAPS 22

Therefore, Lip(u) ≤ 1.

In his paper [2], Bourgain proved that every diagonal operator Λ : ℓ2
X

∞ →
ℓ2

X

1 is Lipschitz 1-summing. The proof of Bourgain’s result will be given in
the following theorem which we will call as Bourgain’s Theorem.

Bourgain’s Theorem 4.1.3
The diagonal operator Λ : ℓ2

X

∞ → ℓ2
X

1 defined above is Lipschitz 1-summing
and

πL
1 (Λ) ≤ log |X|.

Proof.
Clearly, Λ is a linear operator. Indeed for every x, y ∈ X, let

∆ = Λ
{
{d(x,A)}A⊂X + {d(y,A)}A⊂X

}
so that

∆ = Λ{d(x,A) + d(y,A)}A⊂X

=

{
d(x,A) + d(y,A)

s|Ps|

}
A⊂X

=

{
d(x,A)

s|Ps|

}
A⊂X

+ Λ

{
d(y,A)

s|Ps|

}
A⊂X

= Λ{d(x,A)}A⊂X + Λ{d(y,A)}A⊂X .

Also

Λ
{
α · {d(x,A)}A⊂X

}
= Λ{α · d(x,A)}A⊂X

=

{
α · d(x,A)

s|Ps|

}
A⊂X

= α ·
{
d(x,A)

s|Ps|

}
A⊂X

= α · Λ{d(x,A)}A⊂X .

We now factor Λ through ℓ2
X

1 as follows

ℓ2
X

∞

v

��

Λ //ℓ2
X

1

w

��

ℓ2
X

∞
Λ1 //ℓ2

X

1

with v = id
ℓ2X∞

and w = id
ℓ2

X
1

.

Therefore, Λ is 1-nuclear by the definition of the nuclear operator, and

ν1(Λ)ℓ2X∞ →ℓ2
X

1
= inf ∥v∥ · ∥Λ1∥ · ∥w∥ = ∥Λ1∥

= ∥Λ∥
ℓ2X∞ →ℓ2

X
1

=

∫ |X|

1

ds

s
= log |X|.
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4 FURTHER RESULTS ON LIPSCHITZ SUMMING MAPS 23

By Remark 1.2.4, Λ is Lipschitz 1-summing and

πL
1 (Λ) = π1(Λ) =

∥∥∥( 1

s|Ps|

)∥∥∥
ℓ1

≤ ν1(Λ) = log |X|. �

We also observe by the Non-linear Inclusion Theorem for 1 ≤ p < ∞
that Λ is also Lipschitz p-summing and πL

p (Λ) ≤ log |X|.

4.2 APPLICATION OF BOURGAIN’S
THEOREM

If |X| = n, Bourgain in his paper [2] showed that X embeds in ℓ1 (that is,
X admits a Lipschitz embedding into ℓ1 with distortion at most C · log n
where C is an absolute constant). As a consequence of this known result
and an application of Bourgain’s Theorem, we have the following theorem.

Theorem 4.2.1
Let T : X → ℓ2

X

1 be the embedding with |X| = n. Then T is Lipschitz
1-summing and

πL
1 (T ) ≤ log n.

Proof.
Since T factors through ℓ2

X

∞ as follows

X

u
��?

??
??

??
?

T //ℓ2
X

1

ℓ2
X

∞

Λ

>>}}}}}}}}

and Λ is Lipschitz 1-summing by Bourgain’s Theorem, it follows by the
Non-linear Ideal Property that T = Λ ◦ u is also Lipschitz 1-summing.
Furthermore,

πL
1 (T ) = πL

1 (Λ ◦ u) ≤ Lip(u) · πL
1 (Λ) ≤ πL

1 (Λ) ≤ log |X| = log n. �

We also observe by the Non-linear Inclusion Theorem for 1 ≤ p < ∞
that T is also Lipschitz p-summing and πL

p (T ) ≤ log n.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4 FURTHER RESULTS ON LIPSCHITZ SUMMING MAPS 24

4.3 FURTHER STRUCTURAL RESULTS

In their paper [11], Johnson et al noted that if X is any separable Banach
space containing ℓ1, then there is a Lipschitz quotient map from X onto
any separable Banach space Y . They went on further by noting a partic-
ular case, that is, there is a Lipschitz quotient map from C[0, 1] onto ℓ1.
In fact, known results in the linear theory reduce the general theorem to
this special case. This provides also the first known examples of pairs of
separable Banach spaces X and Y so that there is a Lipschitz quotient map
from X to Y but no such linear quotient map.

Bates et al in ([1], Proposition 4.2) proved that if Y is any separable
Banach space, then there is a Lipschtz quotient T of ℓ1 onto Y .

These results by Johnson et al and Bates et al lead us to the following
theorem.

Theorem 4.3.1
Let 1 ≤ p < ∞ and H be a Hilbert space. Then the map u : C[0, 1] → H is
Lipschitz p-summing.

Proof.
Let q1 : C[0, 1] → ℓ1 and q2 : ℓ1 → H be the quotient maps as explained
above. Then the map u factors through ℓ1 as follows

C[0, 1]

q1
""E

EE
EE

EE
EE

u //H

ℓ1

q2

@@�������

By the Non-linear Grothendieck’s Theorem, q2 is Lipschitz 1-summing and

πL
1 (q2) ≤ KG · Lip(q2).

By the Non-linear Ideal Property, u = q2 ◦ q1 is also Lipschitz 1-summing
and

πL
1 (u) = πL

1 (q2 ◦ q1) ≤ Lip(q1) · πL
1 (q2) ≤ KG · Lip(q1) · Lip(q2).

Since 1 ≤ p < ∞, then by the Non-linear Inclusion Theorem, u is Lipschitz
p-summing and

πL
p (u) ≤ πL

1 (u) ≤ KG · Lip(q1) · Lip(q2). �

In the linear theory, we have the Π2-Extension Theorem as can be found
in ([6], Π2-Extension Theorem 2.15) which states that if X, Y , and W are
Banach spaces with X a subspace of W , then each 2-summing operator
u : X → Y admits a 2-summing extension û : W → Y with

π2(u) = π2(û).
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An application of Proposition 1.1.3 gives us an analogue of Π2-Extension
Theorem in the non-linear setting.

Theorem 4.3.2 (ΠL
2 -Extension Theorem)

If X, Y and W are metric spaces with X a metric subspace of W , then
each Lipschitz 2-summing map u : X → Y admits a Lipschitz 2-summing
extension û : W → Y with

πL
2 (u) = πL

2 (û).

Proof.
Any ΠL

2 -summing map u : X → Y has a factorization

L2(µ)

B
��

L∞(µ)
I∞,2

oo

Z Y
Joo X

uoo

A

OO

� � //W

Â
ccFFFFFFFFF

for some isometric embedding J of Y into a 1-injective space Z, where
µ is a probability and Lip(A) · Lip(B) ≤ C. By L∞(µ)’s injectivity, A
has an extension Â ∈ Lip(W,L∞(µ)) with Lip(Â) = Lip(A). Hence the
factorization

L∞(µ)
I∞,2

//L2(µ)

B
��

W

Â

OO

û //Y
J //Z

defines the map û by û |X= u such that û is ΠL
2 -summing with

πL
2 (û) ≤ Lip(Â) · Lip(B)

= Lip(A) · Lip(B).

It follows that
πL
2 (û) ≤ πL

2 (u).

On the other hand, since û extends u

πL
2 (u) = πL

2 (û |X) ≤ πL
2 (û)

and so

πL
2 (u) = πL

2 (û). �

The proof of the following proposition can be found in ([1], Proposition
4.2).

Proposition 4.3.3 ([1], Proposition 4.2)
For any separable Y , there is a Lipschitz quotient u of ℓ1 onto Y which
maps a hyperplane to zero.

An application of Proposition 4.3.3 and the ΠL
2 -Extension Theorem is

the following corollary.
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Corollary 4.3.4
Suppose that X is a Banach space such that ℓ1 is Lipschitz embeddable in
X, then, X admits a Lipschitz quotient which is Lipschitz equivalent to ℓ2
where the Lipschitz quotient is Lipschitz 2-summing.

Proof.
By Proposition 4.3.3, if Y is a subspace of X which is Lipschitz equivalent
to ℓ1, we are assured of a Lipschitz quotient map u into Lip(Y, ℓ2). By the
Non-linear Grothendieck’s Theorem, u is Lipschitz 2-summing. By the ΠL

2 -
Extension Theorem, u admits a ΠL

2 -extension û : X → ℓ2 which is surjective
with

πL
2 (u) = πL

2 (û). �

Recall [11] that a Lipschitz map f from a metric space X into a metric
space Y is said to be ball non-collapsing provided there is a c > 0 so that for
every r > 0, the image under f of any ball of radius r contains a ball of ra-
dius cr. If f is a Lipschitz map from a metric space X into Rn, it is said that
f is measure non-collapsing provided there is a c > 0 so that for every r > 0,
the image under f of any ball of radius r has Lebesgue measure at least Crn.

It has been shown that if X is finite dimensional and f : X → Rn is
measure non-collapsing, then f is ball non-collapsing. This concept was
noted as a weakening of the notion of Lipschitz quotient maps by G. David
and S. Semmes in [5]. In ([11], Theorem 2.4), we have the proof of the
following theorem.

Theorem 4.3.5 ([11], Theorem 2.4)
Let X be a separable Banach space which has a subspace isomorphic to ℓ1.
Then there is a measure non-collapsing mapping f from X into R2 whose
range is a closed set with empty interior.

The following theorem is an application of Theorem 4.3.5.

Theorem 4.3.6
Let X be a separable Banach space which has a subspace isomorphic to ℓ1.
Then, there is a Lipschitz p-summing map from X into R2 for 2 ≤ p < ∞
whose range contains a closed set with empty interior.

Proof.
If R2 is given the usual norm, it becomes a Hilbert space. Let Y be the
isomorphic copy of ℓ1 in X. The restriction to the isomorphic copy of ℓ1
in X of the map f alleged to in Theorem 4.3.5 is Lipschitz 1-summing by
the Non-linear Grothendieck’s Theorem. Applying the Non-linear Inclusion
Theorem, f |Y is also Lipschitz 2-summing. By the ΠL

2 -Extension Theorem,
f |Y has a ΠL

2 -extension F : X → R2. Applying the Non-linear Inclusion
Theorem once more, F is Lipschitz p-summing and its range contains a
closed set with empty interior. �
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4.4 METRIC TYPE

Bourgain et al introduced in their paper [3] the metric version of type p.
But first, suppose Y is an infinite dimensional Banach space and p ≥ 1,
then Y is said to be of Rademacher type p if there exists a constant C > 0
such that for sequences (y1, · · · , yn) ∈ Y , we have(

1

2n

∑
x

∥∥∥ n∑
i=1

xiyi

∥∥∥p) 1
p

≤ C ·
( n∑

i=1

∥∥yi∥∥p) 1
p

where the summing is over all x ∈ {−1, 1}n. Bourgain observed in [3] that
this definition of Rademacher type p is valid for 1 ≤ p ≤ 2.

The introduction of the theory of metric type by Bourgain et al in [3]
has implications on the geometric structure of Banach spaces. On the other
hand, it enables one to look for results in metric spaces which are extensions
of well known results. The metric type p is the analogue of the Rademacher
type p for metric spaces and is given in the following definition.

Definition 4.4.1
Suppose p ≥ 1. An (infinite) dimensional metric space (X, δ) has metric
type p if there is a constant α such that for every k and any k-cube defined
by any map φ : Ck

2 → X, we have the following inequality(∑
D

diag2
) 1

2

≤ α · k
1
p
− 1

2

(∑
E

edge2
) 1

2

where the summing is over all the diagonals and all the edges of the k-cube.
The least α for which the above inequality holds will be denoted by αp(X)
and is called the metric p-type constant of (X, δ). For a given k, the smallest
constant is denoted by αp(k,X).

In a similar manner, the metric type constant can also be defined for a
family of finite metric spaces (XN , δN ) where |XN | = N (N ↑ ∞) as the
best constant obtained simultaneously for all the spaces.

Suppose (XN , δN ) is a family of finite metric spaces where |XN | = N
(N ↑ ∞). Then such a family of finite metric spaces is atleast of type 1
with the 1-type constant atmost 1, that is, for every k-cube(∑

D

diag2
) 1

2

≤ k
1
2

(∑
E

edge2
) 1

2

.

Indeed, let diag(x) be any diagonal and we take the identity path Ex(Id).
Applying the triangle and Cauchy-Schwartz inequalities, we have

diag2(x) ≤
( ∑

Ex(Id)

edge
) 1

2 ≤ k

( ∑
Ex(Id)

edge2
)
. (4.1)
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Summing over all diagonals, we have∑
D

diag2(x) ≤ k
∑
D

( ∑
Ex(Id)

edge2
)
.

Therefore (∑
D

diag2
) 1

2

≤ k
1
2

(∑
E

edge2
) 1

2

since the edges belonging to the identity paths are all distinct.

Proposition 4.4.2 ([3], Proposition 2.2)
Suppose (X, δ) is a metric space of cardinality 2k such that there exists a
map φ : Ck

2 → X for which the following inequality holds(∑
D

diag2
) 1

2

= k
1
2

(∑
E

edge2
) 1

2

.

Then X is isometric to the Ck
2 cube with the usual ℓ1 (Hamming) metric.

Proof.
The above equality in the proposition means equality in (4.1) for every di-
agonal. For any x, we take the diagonal diag(x). Now the equality in the
Cauchy-Schwartz inequality (4.1) implies that all the edges in Ex(Id) are
mutually equal.
In a similar manner, for any given permutation λ, and every x, all the edges
of Ex(λ) are mutually equal. Therefore, all k · 2n−1 edges are equal. We
denote this length by β. The equality in the triangle inequality in (4.1)
implies that the length of every diagonal is kβ. We take any x, x′ in Ck

2

such that the Hamming distance h(x, x′) = h. Then

hβ = diag(x)− (k − h)β ≤ δ(φ(x), φ(x′)) ≤ hβ.

Hence δ(φ(x), φ(x′)) = hβ, that is βh(x, x′) = δ(φ(x), φ(x′)). This shows
that X is isometric to the Ck

2 cube with the usual ℓ1 (Hamming) metric.
�

The following theorem is the main result on metric type which is an
application of Proposition 4.4.2.

Theorem 4.4.3
Let 1 ≤ p < ∞. If a finite metric space X of cardinality 2k is of supremal
metric type 1, then every Lipschitz mapping from X into a Hilbert space is
Lipschitz p-summing.

Proof.
Let T be the Lipschitz mapping from X into a Hilbert space H. By Propo-
sition 4.4.2, X is isometric to the Ck

2 with the usual ℓ1 (Hamming) metric.
Let u : X → Ck

2 be the isometric mapping. By the lifting property of ℓ1
and H being a quotient of an ℓ1 space, there exists a mapping φ : Ck

2 → ℓ1
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4 FURTHER RESULTS ON LIPSCHITZ SUMMING MAPS 29

such that v = Q ◦ φ where Q is a Lipschitz quotient mapping from ℓ1 into
H. We therefore have the following factorization diagram;

X

u
��

T //H

Ck
2

v

88rrrrrrrrrrrr φ
//ℓ1

Q

OO

By the Non-linear Grothendieck’s Theorem, Q is Lipschitz 1-summing and

πL
1 (Q) ≤ KG · Lip(Q). (4.2)

where KG is Grothendieck’s constant. Applying the Non-linear Inclusion
Theorem for 1 ≤ p < ∞, Q is Lipschitz p-summing and by (4.2)

πL
q (Q) ≤ πL

1 (Q) ≤ KG · Lip(Q). (4.3)

By the Non-linear Ideal Property, v = Q ◦φ is Lipschitz p-summing and by
(4.3) we have

πL
p (v) ≤ Lip(φ) ·πL

p (Q) ≤ KG ·Lip(Q). (4.4)

Applying the Non-linear Ideal Property once more, T = v ◦ u is Lipschitz
p-summing and

πL
p (T ) ≤ Lip(u) · πL

p (v). (4.5)

By (4.4) and (4.5), we have

πL
p (T ) ≤ Lip(u) · πL

p (v) ≤ KG · Lip(φ) · Lip(Q) · Lip(u). �
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5 FUNDAMENTALS ON LIPSCHITZ

p-INTEGRAL MAPS

5.1 DEFINITIONS

The main purpose of this chapter is to present analogues of p-integral oper-
ators in the non-linear setting. The main result in this chapter is that the
natural inclusion map i : ℓ1 → ℓ2 is 1-Lipschitz summing but not 1-Lipschitz
integral. We now summarize some definitions and results as can be found
in [6] and [8].

Definition 5.1.1
Suppose 1 ≤ p ≤ ∞. A linear mapping u : X → Y between Banach spaces
X and Y is a p-integral operator if there are a probability measure µ and
(bounded linear) operators B : Lp(µ) → Y ∗∗ and A : X → L∞(µ) giving
rise to the following commutative diagram

L∞(µ)
I∞,p

//Lp(µ)

B
��

X

A

OO

u //Y
KY //Y ∗∗

where I∞,p : L∞(µ) → Lp(µ) is the formal identity and KY : Y → Y ∗∗ is
the canonical isometric embedding.

The collection of all p-integral operators from X to Y will be denoted by

Ip(X,Y ).

With each u ∈ Ip(X,Y ), its p-integral norm is defined by,

ιp(u) = inf ∥A∥ · ∥B∥,

where the infimum is taken over all measures µ and operators A and B as
in the above diagram.

Inspired by this useful concept, Farmer and Johnson introduced in [8]
the following definition;

Definition 5.1.2
Suppose 1 ≤ p ≤ ∞. A Lipschitz mapping u : X → Y between metric
spaces is Lipschitz p-integral if there are a probability measure µ and Lips-
chitz mappings B : Lp → (Y ♯)∗ and A : X → L∞(µ) satisfying the following
commutative diagram

L∞(µ)
I∞,p

//Lp(µ)

B
��

X

A

OO

T //Y
J //(Y ♯)∗
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5 LIPSCHITZ INTEGRAL MAPS 31

where I∞,p : L∞(µ) → Lp(µ) is the formal identity and J : Y → (Y ♯)∗ is
the canonical isometry.

The collection of all Lipschitz p-integral mappings from X to Y will be
denoted by

IL
p (X,Y ).

With each u ∈ IL
p (X,Y ), its Lipschitz p-integral semi-norm is given by

ιLp (u) = inf
(
Lip(A) · Lip(B)

)
.

5.2 STRUCTURAL RESULTS

Farmer and Johnson in their paper [8] noted the following important non-
linear results. Proposition 6.2.1 is the non-linear version of the Inclusion
Theorem for p-integral operators which is a consequence of Definition 5.1.1
as noted in ([6], Proposition 5.1). It states that if u : X → Y is a p-integral
operator between Banach spaces X and Y and 1 ≤ p < q < ∞, then u is
also q-integral and ιq(u) ≤ ιp(u). That is, Ip(X,Y ) ⊂ Iq(X,Y ). There is
also a version of the Ideal property for p-integral operators in the non-linear
setting which is Proposition 5.2.3 in this dissertation. This result was also
noted by Farmer and Johnson in their paper [8]. The proof of the Ideal
property for p-integral operators in the linear setting can be found in ([6],
Theorem 5.2(b)) which states that if v : X → Y is a p-integral operator
between Banach spaces X and Y and for w ∈ L(X0, X) and u ∈ L(Y, Y0),
the operator uvw : X0 → Y0 is also p-integral where X0 and Y0 are also
Banach spaces. Furthermore, ιp(uvw) ≤ ∥u∥ · ιp(v) · ∥w∥. Proposition 5.2.1
and Proposition 5.2.2 in this dissertation were noted by Farmer and John-
son in their paper [8] which we now state and prove.

Proposition 5.2.1
Let 1 < p ≤ q ≤ ∞. If T : X → Y is a Lipschitz p-integral map between
metric spaces X and Y , then it is Lipschitz q-integral and

ιLq (T ) ≤ ιLp (T ).

Proof.
Suppose T is Lipschitz p-integral, then we have the following factorization
diagram

L∞(µ)
I∞,p

//Lp(µ)

B
��

X

A

OO

T //Y
J //(Y ♯)∗

with ιLp (T ) = inf
(
Lip(A) · Lip(B)

)
.

Note that I∞,p can be obtained by composing Iq,p with I∞,q, that is,
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I∞,p = Iq,p ◦ I∞,q, so that we have the following commutative diagram

Lq(µ)
Iq,p

))RRRRRRRRRRRRRR

L∞(µ)

I∞,q

OO

I∞,p
//Lp(µ)

B
��

X

A

OO

T //Y
J //(Y ♯)∗

The above diagram now becomes

L∞(µ)
I∞,q

//Lq(µ)

B̃
��

X

A

OO

T //Y
J //(Y ♯)∗

with B̃ = B ◦ Iq,p.
Hence, T is Lipschitz q-integral and

ιLq (T ) ≤ Lip(A) · Lip(B̃) = Lip(A) · Lip(B ◦ Iq,p)
≤ Lip(A) · Lip(B) · πL

p (Iq,p)

= Lip(A) · Lip(B).

Passing to the infimum, we have

ιLq (T ) ≤ inf
(
Lip(A) · Lip(B)

)
= ιLp (T ). �

Proposition 5.2.2
Let 1 ≤ p < ∞. If T : X → Y is a p-integral linear operator between
Banach spaces X and Y , then, it is Lipschitz p-integral and

ιLp (T ) ≤ ιp(T ).

Proof.
Suppose T is p-integral. Then, we have a factorization

L∞(µ)
I∞,p

//Lp(µ)

B
��

X

A

OO

T //Y
KY //Y ∗∗

with
ιp(T ) = inf ∥A∥ · ∥B∥.

Since Y ∗∗ is norm one complemented in (Y ♯)∗ via a projection P , then we
have a factorization

L∞(µ)
I∞,p

//Lp(µ)

B
��

B̃

##HH
HH

HH
HH

H

X

A

OO

T //Y
KY //Y ∗∗

P|Y ∗∗
//(Y ♯)∗
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with P|Y ∗∗ = idY ∗∗ .
The above diagram now becomes

L∞(µ)
I∞,q

//Lp(µ)

B̃
��

X

A

OO

T //Y
J //(Y ♯)∗

with B̃ = P|Y ∗∗ ◦B and J = P|Y ∗∗ ◦KY .
Hence, T is Lipschitz p-integral and

ιLp (T ) ≤ ∥A∥ · ∥B̃∥
= ∥A∥ · ∥P|Y ∗∗ ◦B∥
≤ ∥A∥ · ∥P|Y ∗∗∥ · ∥B∥
= ∥A∥ · ∥idY ∗∗∥ · ∥B∥
= ∥A∥ · ∥B∥.

Passing to the infimum, we have

ιLp (T ) ≤ inf ∥A∥ · ∥B∥ = ιp(T ). �

Proposition 5.2.3 (Ideal Property of Lipschitz p-Integral maps)
Let v : X → Y be Lipschitz p-integral, w : X0 → X and u : Y → Y0
be Lipschitz mappings between metric spaces. Then, uvw : X0 → Y0 is
Lipschitz p-integral and

ιLp (uvw) ≤ Lip(w) · ιLp (v) · Lip(u).

Proof.
We first consider a composition of Lipschitz mappings

X0
w //X

v //Y
u //Y0.

Since v is Lipschitz p-integral, then we have a factorization

X0

w
##F

FFFFFFFF
A0 //L∞(µ)

I∞,p
//Lp(µ)

B
��

X

A

OO

v //Y
JY //(Y ♯)∗

with A0 = A ◦ w and ιLp (v) = inf
(
Lip(A) · Lip(B)

)
.

Taking note of the fact that we also have the following commutative di-
agram

Y

u

��

JY //(Y ♯)∗

(u♯)∗

��

Y0
JY0 //(Y ♯

0 )
∗
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with JY0 ◦ u = (u♯)∗ ◦ JY , we arrive at the following factorization

L∞(µ)
I∞,p

//Lp(µ)

B̃
��

X0

A0

OO

uvw //Y0
JY0 //(Y ♯

0 )
∗

with A0 = A ◦ w and B̃ = (u♯)∗ ◦B.
Hence, uvw is Lipschitz p-integral and

ιLp (uvw) ≤ Lip(A0) · Lip(B̃)

= Lip(A ◦ w) · Lip
(
(u♯)∗ ◦B

)
≤ Lip(A) · Lip(w) · Lip((u♯)∗) · Lip(B)

= Lip(A) · Lip(w) · Lip(u) · Lip(B).

Taking the infimum, we have

ιLp (uvw) ≤ inf
((

Lip(A) · Lip(B)
)
· Lip(u) · Lip(w)

)
= Lip(u) · ιLp (v) · Lip(w). �

Diestel et al proved in their book ([6], Proposition 5.1) that if an operator
v : X → Y between Banach spaces X and Y is p-integral for 1 ≤ p < ∞,
then, it is p-summing and

πp(v) ≤ ιp(v).

There is also an analogue of this proposition in the non-linear setting
which is Proposition 5.2.4 in this dissertation.

Proposition 5.2.4
Let 1 ≤ p < ∞. Suppose X and Y are metric spaces. If u : X → Y is
Lipschitz p-integral, then it is Lipschitz p-summing and

πL
p (u) ≤ ιLp (u).

Proof.
Since u is Lipschitz p-integral, then we have the following Lipschitz p-
integral factorization

L∞(µ)
I∞,p

//Lp(µ)

B
��

X

A

OO

u //Y
J //(Y ♯)∗

Since I∞,p is Lipschitz p-summing by Remark 1.2.4 with πL
p (I∞,p) = 1, then

by the Non-linear Ideal Property, Ju is also Lipschitz p-summing. Since J
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5 LIPSCHITZ INTEGRAL MAPS 35

is an Isometry, then by the Injectivity of ΠL
p , u is also Lipschitz p-summing

and

πL
p (u) = πL

p (Ju) = πL
p (B ◦ I∞,p ◦A)

≤ Lip(B) · πL
p (I∞,p) · Lip(A)

= Lip(A) · Lip(B).

Passing to the infimum, we have

πL
p (u) ≤ inf{Lip(A) · Lip(B)} = ιLp (u). �

We recall [6] that a linear map u : X → Y between Banach spaces X and
Y is p-summing if and only if it takes weakly p-summable sequences in X to
strongly p-summable sequences in Y . The class of linear maps u : X → Y
which take weakly null sequences in X to norm null sequences in Y are the
natural companion of p-summing operators and these maps are said to be
completely continuous.

If we take limits, the linear map u : X → Y is completely continuous
precisely when it takes weakly convergent sequences to norm convergent
sequences and this happens when u takes weakly compact sets into norm
compact sets. In fact, if u : X → Y is completely continuous, then u takes
each weakly Cauchy sequence into a norm Cauchy (and therefore conver-
gent) sequence.

Proposition 5.2.5 ([6], Example 5.11.)
The natural inclusion map i : ℓ1 → ℓ2 is 1-summing but not 1-integral.

Proof.
By a remark after Grothendieck’s Theorem 3.2.1, the natural inclusion map
i : ℓ1 → ℓ2 is 1-summing. Suppose on the contrary that it is also 1-integral.
Then, we have the following commutative diagram

L∞(µ)
I∞,1

//L1(µ)

B
��

ℓ1

A

OO

i //ℓ2
Kℓ2 //(ℓ∗2)

∗

with (ℓ∗2)
∗ = ℓ2 and ι1(i) = inf

(
∥A∥ · ∥B∥

)
.

We therefore have the following commutative diagram

L∞(µ)
I∞,1

//L1(µ)

B
��

ℓ1

A

OO

i //ℓ2

By Remark 1.2.4, I∞,1 ◦ A is 1-summing. Applying Gronthendieck’s
Theorem 3.2.1, B is also 1-summing. Therefore, i = B ◦ I∞,1 ◦ A would
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be a compact operator by a remark after Proposition 5.2.4. Since for all
(en) ∈ ℓ1, (ien) ∈ ℓ2, there exists a convergent subsequence enk

of (en)
which must then be a Cauchy sequence. But ∥enk

− enl
∥ =

√
2 9 0 as

k, l → ∞. Hence, we have a contradiction and therefore, i cannot be 1-
integral. �

The above proposition leads us to the main result of this chapter which
is an application of the p-summing and p-integral operators for 1 ≤ p < ∞
in the non-linear theory.

Proposition 5.2.6
The natural inclusion map i : ℓ1 → ℓ2 is 1-Lipschitz summing but not 1-
Lipschitz integral.

Proof.
By Proposition 5.2.5, i is 1-summing so that it is 1-Lipschitz summing by
Proposition 1.2.3. Since it is not 1-integral by Proposition 5.2.5, we see from
Proposition 5.2.2 that it cannot be 1-Lipschitz integral and this completes
the proof of the proposition. �
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