


The rabies virus genome

region, notably, encodes the HN protein in para-
myxoviruses or the NV protein in fish rhabdoviruses
(Kurath & Leong 1985). Despite its considerable size
in fyssaviruses (450 nucleotides), it encodes no sub-
stantial polypeptide and has been proposed as a
vestigial gene (pseudogene) (Tordo et al. 1986a).

The genome is also flanked by external signals: at
the 3" end there is the polyme :ation promoter, re-
cognized by the polymerase cu..iplex to initiate tran-
scription and replication; at the 5" end there is the
encapsidation promoter, recognized by the first mole-
cules of N protein for genome encapsidation (Tordo
etal. 1988c). The conservation of both promoters re-
sults in an inverted complementarity of about ten nu-
cleotides at the genome ends, although to date no
evidence of a "hairpin” structure has been obtained.

FUNCTIONAL FEATURES OF THE GENOME

The lyssavirus virion is composed of two distinct
structural units: a lipoprotein envelope of cellular
origin and an internal helically coiled ribonucleocas-
pid (RNP) structure embedding the genome so tightly
that it is largely insensitive to ribonuclease activity
(Tordo & Poch 1988b). The virion enters the cell by
pinocytosis (Tsiang 1993): the transmembrane G pro-
tein is presumed to bind to an as yet uncharacter-
ized receptor (Rustici, Bracci, Lozzi, Neri, Santucci,
Soldani, Spreafico & Neri 1993) on the cell surface
and, after fusion of the viral and lysosomal mem-
branes, the RNP is released into the cell cytoplasm.
The RNP possesses all the necessary viral elements
to ensure transcription and replication (Kawai 1977;
Flamand, Delagneau & Bussereau 1978): the N-pro-
tein-RNA genome template undergoes no uncoating
and the polymerase complex comprises the L pro-
tein (actual polymerase) and the M1 protein (co-
factor).

Chronologically, transcription preceeds replication.
Both mechanisms start at the 3" genome end promo-
ter and progress towards the 5" end (Flamand & De-
lagneau 1978). There is close synchrony between
polymerization and encapsidation, the growing RNA
being simultaneously coated with N protein from the
encapsidation promoter at the 5" genome end. Tran-
scription produces monocistronic transcripts in re-
sponse to start and stop signals (Tordo, Poch, Er-
mine & Keith 1986b; Bourhy, Tordo, Lafon & Sureau
1989). Replication ieads to the synthesis of a com-
plete positive-stranded genome that serves in turn
to amplify negative-stranded genomes for the proge-
ny virions. Put briefly, the transcriptative RNP is
switched to replicative RNP when it ignores the start
and stop transcription signals. The degree of replica-
tion is dependent on increasing amounts of N pro-
tein. Early in infection, only limited amounts of N
protein are available. The transcriptase releases a
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5" leader RNA which keeps the encapsidation pro-
moter uncoupled from the following mRNAs that are
consecutively transcribed and translated. Once suffi-
cient amounts N protein are produced, the tran-
scriptase is svw...ched into a replicase. The leader
region remains coupled with the rest of the positive-
stranded genome whose encapsidation proceeds by
virtue of the dual ability of the N protein to bind RNA
and to self-assemble. This regulation process per-
mits replication to begin only in the presence of suffi-
cient quantities of N protein to encapsidate the grow-
ing template.

Transcription produces monocistronic transcripts in
a cascade: first the non-capped, non-polyadenyiated
leader RNA and then the five ca; ed and polyade-
nylated mRNAs. A progressive loss of transcriptional
efficiency is observed from the 3" to the 5" encoded
genes, suggesting that the control of gene expres-
sion is related to genomic location. This possibility
is reinforced by the observation that all members of
the order Mononegavirales share a similar genomic
organization: the major "structural" proteins, such as
the N protein which is required in sufficient quanti-
ties to encapsidate the genome, are encoded at the
3" end while the L polymerase, required in catalytic
amounts, is always encoded at the 5 end (Tordo et
al. 1992a). Polycistronic events, attributed to recogni-
tion failures of the transcription signals by the run-
ning transcription complex, are occasionally observ-
ed. They occur either

« accidentally and at a very low frequency; or

» sequence specifically, such as the unorthodox M1
stop signal of Mokola which results in a large
amount of M1-M2 bicistronic mRNA (Bourhy et al.
1989); or

» by modulation of the signal recognition due to the
local secondary structure and/or as a result of fixa-
tion of transcriptional factors (proteins, peptides)
of viral or cellular origin.

The latter is notably the case during the alternative
termination of the G and M2 genes where the proxi-
mal stop signal must be weakly recognized to allow
the production of a long mRNA (Tordo & Poch
1988a; Tordo 1994). Modulation of this recognition
during the course of infection is inferred by the chang-
ing ratio of short to long MRNAs. This modulation
could involve tissue-specific factors because it is
different during infection of fibroblastic and neuronal
cell cultures. Within the context of sequential tran-
scription, the most likely function of alternative ter-
mination is the regulation of the expression of the
distal gene. This occurs by release of the transcrip-
tion complex more or less upstream of the corre-
sponding start signal, rendering reinitiation respec-
tively less, or more, efficient.
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