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Abstract: In this paper a bivariate generalisation of the gamma distribution is proposed by using an

unsymmetrical bivariate characteristic function; an extension to the noncentral case also receives attention.

The probability density functions of the product and ratio of the correlated components of this distribution are

also derived. The benefits of introducing this generalised bivariate gamma distribution and the distributions of

the product and the ratio of its components will be demonstrated by graphical representations of their density

functions. An example of this generalised bivariate gamma distribution to rainfall data for two specific districts

in the North West province is also given to illustrate the greater versatility of the new distribution.
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1 Introduction

A bivariate generalisation of the gamma distribution can be obtained by considering the joint distribution with

bivariate characteristic function

(1 2) = (1− 1)
−1(1− 2)

−2(1 +
12

(1− 1)(1− 2)
)
−3

 (1)

The parameter  in (1) is related to the density correlation  by the expression:  =
3√
11

. This bivariate

characteristic function (1) produces the marginals of characteristic functions of gamma variables. The first

major focus in this paper is to derive the corresponding bivariate distribution of (1) by using the inverse

Fourier transform; it uniquely determines the distribution. This generalised bivariate gamma distribution will

be extended to the noncentral case by introducing marginals of characteristic functions of noncentral gamma

variables.

The distributions of products and ratios of correlated gamma variables are of interest in many areas of

science for example in hydrology, rainfall and water quality (see e.g. Nadarajah and Kotz (2007a), (2007b)

and Loáiciga and Leipnik (2005)). The proposed generalised bivariate gamma distribution can be helpful in

constructing plausible models for such data. Therefore, in this paper we also study the product and the ratio

of the correlated components of this generalised bivariate gamma distribution.

The paper is organized as follows: The key idea is presented in Section 2, that is a generalised bivariate

gamma distribution by deriving the probability density function (p.d.f.) from (1). In section 3 and 4, the

exact expressions for the distributions of the product 12 and the ratios
1

2
and 1

1+2
are derived where

(12) has this generalised bivariate gamma distribution. In section 4 some percentage points of
1

2
are

also included - since the measure  (1  2) is of interest in the study of the stress-strength model that

describes the lifetime of a component with random strength 2 subjected to a random stress 1 In section 5
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we extend the generalised bivariate gamma distribution to the noncentral case. The benefits of introducing the

generalised bivariate gamma distribution and the distributions of the product and the ratio of its components

will be demonstrated by graphical representations of their density functions. An example to rainfall data is used

to compare this model with other bivariate gamma models.

2 A generalised bivariate gamma distribution

In this section the exact expression for the joint p.d.f. of the generalised bivariate gamma distribution is derived,

utilizing the inverse Fourier transform. Some properties of this distribution are also given.

2.1 Genesis of the distribution

Theorem 1

Given the bivariate characteristic function in (1) where 1 and 2 are standard gamma variables with para-

meters 1 and 2, the joint p.d.f. is given by

12
(1 2) = 1−11 2−12 −1−2

∞X
=0

(3) !


Γ(1 + )Γ(2 + )
1−1 [1]

2−1
 [2] (2)

for 1 2  0 1 2 3  00 ≤  ≤
√
12
3

and where  [] =

X
=0

(−1) ¡+
−
¢
!
is the Laguerre polynomial

of order  (see Gradshteyn and Ryzhik (2007), pp. 1000).

Proof:

The p.d.f. can be calculated by taking the inverse Fourier exponential transform of the bivariate characteristic

function in (1):

12
(1 2) =

1

(2)2

Z ∞
−∞

Z ∞
−∞

−11−22(1− 1)
−1(1− 2)

−2(1− 12

(1− 1)(1− 2)
)
−3

12

Replacing (1− 12
(1−1)(1−2) )

−3
with the binomial series

P∞
=0 (3)

(
12

(1−1)(1−2) )


!
, and using term wise inte-

gration, the p.d.f. can be written as

12
(1 2) =

∞X
=0

(3) 


!

1

2

Z ∞
−∞

−11(1)(1− 1)
−1− 1

1

2

Z ∞
−∞

−22(2)(1− 2)
−2− 2

The integrals are solved by using Gurland (1955, pp.124). After simplifying, we establish the result given by

equation (2).

Remarks 1.1

1. Using the characteristic function given in (1), various moments about the origin are calculated:

() =
− (1 2)

1

¯̄̄̄
¯ 1=2=0

=   for  = 1 2

(2
 ) =

− 2(1 2)

2

¯̄̄̄
¯ 1=2=0

= ( + 1)  for  = 1 2

(12) =
− 2(1 2)

12

¯̄̄̄
¯ 1=2=0

= 12 + 3
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Therefore we have () =  for  = 1 2 and (12) = 3. Pearson’s product moment correlation

coefficient is then given by 3√
12

. Consequently we have 0 ≤  ≤
√
12
3

. This shows that if two correlated

gamma variables are jointly distributed according to equation (2), then no negative value of the correlation

coefficient exists between the two variables.

2. To illustrate the dependence character of this generalised bivariate gamma distribution, note that (2) can

be expressed as follows:

12
(1 2) = 1 (1) 2 (2)

∞X
=0

(3) !


(1) (2)
1−1 [1]

2−1
 [2]

(1 2  0 1 2 3  00 ≤  ≤
√
12
3

) where  () =
1

Γ()
−1 −   = 1 2

3. Provided the variables 1 and 2 are transposed to 1 + 1 and 2 + 2, similarly to the transposed

bivariate gamma distribution discussed by Loáiciga and Leipnik (2007), the joint p.d.f. of 1 and 2 can

be calculated using (1) and is given by

12
(1 2)

= (1 − 1)
1−1(2 − 2)

2−1−(1−1)−(2−2)
P∞

=0

(3) !


Γ(1+)Γ(2+)
1−1 [1 − 1]

2−1
 [2 − 2]

for      = 1 2 (see van den Berg, 2010).

4. The bivariate characteristic function in (1) can easily be extended for two parameter gamma variables 1

and 2.

5. Note that

∞Z
0

∞Z
0

12
(1 2) 12 = 1 for 12

(1 2) defined in (2) by using equation (8) of Grad-

shteyn and Ryzhik (2007 pp. 809).

6. For 3 = 1,(1) reduces to the equicorrelated case of the bivariate characteristic function proposed by

Jensen (1970) (we refer to the latter model as the standardised Jensen model); and if 3 = 2 = 1 then

(1) is the bivariate characteristic function proposed by Kibble (1941) (see Balakrishnan and Lai (2009)

pp. 306; 315).

7. Figure 1 illustrates the effect of parameter 3 on the generalised bivariate gamma distribution with p.d.f.

(2). In figure 1 the presentations are for 3 = 4 12 and 20 respectively with 1 = 2 = 12 and = 05.

The parameter 3 influences the shape of the plot where higher values of 3 result in higher peaks. The

correlation of each example is also given. The programming was done by making use of built-in routines

of the package Mathematica.

3



0
5

10
15

20
x1

0

5

10

15

20

x2

0

0.01

0.02

0
5

10
15

20
x1

0
5

10
15

20
x1

0

5

10

15

20

x2

0

0.01

0.02

0
5

10
15

20
x1

0
5

10
15

20
x1

0

5

10

15

20

x2

0

0.01

0.02

0
5

10
15

20
x1

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

(a)3 = 4 (b)3 = 12 (c)3 = 20

corr(12) = 0166 corr(12) = 05 corr(12) = 0833

Figure 1: The generalised bivariate gamma distribution (see (2)) for 1 = 2 = 12 and  = 05 and

different values of 3

Remarks 1.2

The bivariate characteristic function:

(1 2) = (11+22)((1− 11)
−1(1− 22)

−2 + 12)
− (3)

was proposed by Loáiciga and Leipnik (2005, page 332, equation(15)) and is also a generalization of Kibble’s

model. For 1 = 2 = 1 1 = 2 = 0 it will be compared to our model in section 6.

3 Distribution of the product

In this section, the exact expression for the distribution of the product 12 is derived when (12) follows

this generalised bivariate gamma distribution (2).

Theorem 2

If 1 and 2 are jointly distributed according to equation (2), the p.d.f. of  = 12 is given by

() =

∞X
=0

X
=0

X
=0

22−1−+(2
√
) 

1
2
(1+2++)−1(3)

¡



¢¡



¢
(−1)+

!Γ(1 + )Γ(2 + )
(4)

for   0,1 2 3  00 ≤  ≤
√
12
3

and where () is the modified Bessel function of the second kind (see

section 8.4 of Gradshteyn and Ryzhik (2007)).

Proof:

Consider the transformation defined by  = 12. The p.d.f. of  and 2 is given by
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2
( 2) =

1

2
12

µ


2
 2

¶
=

1

2

µ


2

¶1−1
2−12 

− 
2
−2

∞X
=0

(3) !


Γ(1 + )Γ(2 + )
1−1 [



2
]2−1 [2]

Using the series expansion for the Laguerre polynomials 1−1 [ 
2
] and 2−1 [2] it follows that

2
( 2) =

∞X
=0

X
=0

X
=0

1+−12−1−+−12 
− 
2
−2 (3)

¡



¢¡



¢
(−1)+

!Γ(1 + )Γ(2 + )

Now, the p.d.f. of  is given by

() =

Z ∞
0

2
( 2) 2

=

∞X
=0

X
=0

X
=0

1+−1(3)
¡



¢¡



¢
(−1)+

!Γ(1 + )Γ(2 + )

Z ∞
0


2−1−+−1
2 

− 
2
−2 2

The integral is solved by equation (9) from Gradshteyn and Ryzhik (2007 pp. 368). After simplifying, we

establish the result given by equation (4).

Remark

Figure 2 displays the p.d.f. of  = 12 given by equation (4) for 3 = 4 12 and 20 respectively with

1 = 2 = 12 and  = 05. For fixed 1 2 and , the p.d.f. of  is stochastically increasing with respect to 3.

50 100 150 200 250 300
z

0.002

0.004

0.006

0.008
fz

n320

n312

n34

Figure 2: The p.d.f. of =12 (see (4)) for 1 = 2 = 12 and  = 05 and different values of 3

4 Distribution of the ratios

In this section the exact expressions for the distributions of the ratios 1

2
and 1

1+2
are derived when (12)

follows the generalised bivariate gamma distribution (2).

4.1 The distribution of 1

2

Theorem 3

If 1 and 2 are jointly distributed according to equation (2), the p.d.f. of  = 1

2
is given by

 () =

∞X
=0

X
=0

X
=0

1+−1(3)
¡



¢¡



¢
(−1)+Γ(1 + 2 +  + )

( + 1)1+2++ !Γ(1 + )Γ(2 + )
(5)
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for   0 1 2 3  00 ≤  ≤
√
12
3

.

Proof:

Consider the transformation defined by  = 1

2
. The p.d.f. of  and 2 is given by

2
(2) = 212

(2 2)

= 2(2)
1−12−12 −2−2

∞X
=0

(3) !


Γ(1 + )Γ(2 + )
1−1 [2]

2−1
 [2]

Using the series expansion for the Laguerre polynomials 1−1 [2] and 2−1 [2] we have

2
( 2) =

∞X
=0

X
=0

X
=0

1+−11+2++−12 −(+1)2
(3)

¡



¢¡



¢
(−1)+

!Γ(1 + )Γ(2 + )

Now, the p.d.f. of  is given by

 () =

Z ∞
0

2
(2) 2

=

∞X
=0

X
=0

X
=0

1+−1(3)
¡



¢¡



¢
(−1)+

!Γ(1 + )Γ(2 + )

Z ∞
0


1+2++−1
2 −(+1)2 2

The integral is solved by equation (3) from Gradshteyn and Ryzhik (2007) pp 340. After simplifying, we

establish the result given by equation (5).

Remarks

1. Figure 3 displays the p.d.f. of  = 1

2
given by equation (5) for 3 = 4 12 and 20 respectively with

1 = 2 = 12 and = 05. For fixed 1 2 and , the p.d.f. of  is stochastically decreasing with respect

to 3.

0.5 1 1.5 2 2.5
w

0.5

1

1.5

2

fw

n320

n312

n34

Figure 3: The p.d.f. of  =
1

2

(see (5)) for 1 = 2 = 12 and  = 05 and different values of 3

2. The stress-strength model describes the lifetime of a component with random strength 2 subjected to a

random stress 1 The measure  (1  2) is of interest, therefore we give some percentage points of

 =
1

2

in Table 1, where (12) has the generalised bivariate gamma distribution (2). The percentage

points  of  are obtained numerically by solving the equation

Z
0

() =  for 1 = 2 = 12 and

 = 05 The programming was done by making use of built-in routines of the package Mathematica. Note

the percentage points in Table 1 confirm the shapes for the densities in figure 3.
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Table 1: The percentage points  of  (see (5)).

n3 α = 0.01 0.1 0.25 0.5 075 099

4 0.406698 0.615181 0.775664 1 1.28922 2.45882

12 0.494215 0.685124 0.820873 1 1.12821 2.02341

20 0.675878 0.787844 0.879561 1 1.13693 1.47956

4.2 The distribution of 1

1+2

Theorem 4

If 1 and 2 are jointly distributed according to equation (2), the p.d.f. of  =
1

1+2
is given by

 () =

∞X
=0

X
=0

X
=0

1+−1(1− )2+−1(3)
¡



¢¡



¢
(−1)+Γ(1 + 2 +  + )

!Γ(1 + )Γ(2 + )
(6)

for 0    1,1 2 3  00 ≤  ≤
√
12
3

.

Proof:

If  = 1

1+2
and  = 1

2
, then  = 

1− . Because  () = 

³

1−

´


and 


= 1

(1−)2 , we have

 () =

∞X
=0

X
=0

X
=0

³

1−

´1+−1
(3)

¡



¢¡



¢
(−1)+Γ(1 + 2 +  + )

( 
1− + 1)

1+2++ !Γ(1 + )Γ(2 + )

1

(1− )2

After simplifying, we establish the result given by equation (6).

Remark

Figure 4 illustrates the p.d.f. of  = 1

1+2
(see (6)) for 3 =4 12 and 20 respectively for 1 = 2 = 12 and

= 05. Note that each p.d.f. is symmetric about its mean.

0.2 0.4 0.6 0.8 1
u

2

4

6

8

fu

n320

n312

n34

Figure 4: The p.d.f. of  = 1

1+2
(see (6)) for 1 = 2 = 12 and  = 05 and different values of 3

5 The noncentral case

In this section the noncentral case of the bivariate generalisation of the gamma distribution (2) is studied of

which the marginal distributions are noncentral gamma with p.d.f. given by


() =

∞X
=0

−
!

+−1 −

Γ( + )
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for     0 for  = 1 2

We propose the bivariate characteristic function with correlated noncentral gamma marginals 1 and 2 given

by

(1 2) = 11(1−1)
−1
(1− 1)

−122(1−2)
−1
(1− 2)

−2(1 +
12

(1− 1)(1− 2)
)
−3

(7)

Theorem 5

Given the bivariate characteristic function in (7) where 1 and 2 are noncentral gamma variables with para-

meters (1 1) and (2 2), the joint p.d.f. is given by

12
(1 2) = 1−11 2−12 −1−2

∞X
=0

∞X
=0

∞X
=0

(3)



1


2( + )!( + )!(−1)+

!!!Γ(1 +  + )Γ(2 +  + )
1−1+ [1]

2−1
+ [2] (8)

for 1 2  0 1 2 3 1 2  0, 0 ≤  ≤
√
(1+21)(2+22)

3
.

Proof:

The p.d.f. can be calculated by taking the inverse Fourier exponential transform of the c.f. given in (7).

12
(1 2) =

1

(2)2

Z ∞
−∞

Z ∞
−∞

−11−2211(1−1)
−1
(1− 1)

−1

· 22(1−2)−1(1− 2)
−2(1− 12

(1− 1)(1− 2)
)
−3

12

Replacing (1− 12
(1−1)(1−2) )

−3
with the binomial series

P∞
=0 (3)

(
12

(1−1)(1−2) )


!
and 11(1−1)

−1
and

22(1−2)
−1
with the exponential series

P∞
=0


11
1−1


!

and
P∞

=0


22
1−2


!

, and using term wise integration,

the p.d.f. can be written as

12
(1 2) =

∞X
=0

∞X
=0

∞X
=0

(3) 



1


2

!!!
· 1
2

Z ∞
−∞

−11(1− 1)
−1

µ
1

(1− 1)

¶+
1

· 1
2

Z ∞
−∞

−22(1− 2)
−2

µ
2

(1− 2)

¶+
2

The integrals are solved using Gurland (1955, pp.124). After simplifying, we establish the result given by

equation (8).

Remarks

1. Using the bivariate characteristic function given in (8), the following moments about the origin are calcu-

lated:

() =
− (1 2)

1

¯̄̄̄
¯ 1=2=0

=  +  for  = 1 2

(2
 ) =

− 2(1 2)

2

¯̄̄̄
¯ 1=2=0

= ( + )
2 + ( + 2) for  = 1 2

(12) =
− 2(1 2)

12

¯̄̄̄
¯ 1=2=0

= (1 + 1)(2 + 2) + 3
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Therefore we have () =  + 2 for  = 1 2 and (12) = 3. Pearson’s product moment

correlation coefficient is then given by 3√
(1+21)(2+22)

Consequently we have 0 ≤  ≤
√
(1+21)(2+22)

3
. This shows that if two correlated gamma variables are

jointly distributed according to equation (8), then no negative value of the correlation coefficient exists

between the two variables.

2. Figure 5 illustrates the shape of the p.d.f. (see (8)) for the case 1 = 2 = 3 = 12 and = 05

and for different values for the additional parameters (1 2) The plots for (1 2) = (0 0) (1 2) =

(6 0) (1 2) = (0 6) and (1 2) = (6 6) are given respectively. The plots show that for a fixed 1 2 3

and , 1 and 2 are stochastically increasing with respect to 1 and 2.
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Figure 5: The noncentral generalised bivariate gamma distribution (see (8)) for 1 = 2 = 3 = 12

and  = 05 and different values of (1 2)

3. The derivations for the exact expressions for the p.d.f.’s for 12
1

2
and 1

1+2
if (12) has the

noncentral generalised bivariate gamma distribution (see (8)) are similar to these in sections 3 and 4. The

graphical representations of the distributions of 12,
1

2
and 1

1+2
are given in figure 6 respectively

for different values for the noncentral parameters.
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Figure 6: The p.d.f. of (a) =12 , (b)
1

2
and (c) 1

1+2
for 1 = 2 = 3 = 12,  = 05 and different

values of 1 and 2

6 Example

The North West Province is a summer-rainfall region that lies in the northern part of South Africa next to the

Botswana border. The landscape is largely flat regions of scattered trees and grassland. The province is an

important food basket in South Africa. Maize is an important crop and the North West is the major producer of

white maize in the country. In order for farmers to have a successful harvest, rain needs to be evenly distributed

throughout the raining season. Not only is rain important when maize is planted (September to December),

but also before it is harvested (January to April).

The example concerns the rainfall of two districts, Klerksdorp and Wolmaransstad, in the North West province.

Variable 1 represents the total amount of rain (in centimeters) that fell during the first four months of the

raining season (September to December). Variable 2 represents the total amount of rain (in centimeters) that

fell during the four months that follow (January to April). Variable 2 is often correlated to 1. Our aim is

to analyse this data as follows:

• to compare this bivariate model (2) with other Kibble related bivariate models (see remark 1.1(6) and
remark 1.2);

• to investigate the distribution of  = 1

2
for Klerksdorp and Wolmaransstad.

To compare the fitted models the Akaike information criterion () was used; the fit is better when AIC is

lower. The maximum likelihood estimators were calculated numerically by using MATLAB. One of MATLAB’s

optimisation constraints is that it can only do minimisation. The likelihood function was therefore multiplied

by -1 and the minimisation function fminsearch was used to find the maximum likelihood estimators. The

infinite sum in the probability density function could not be programmed and a threshold for the number of

summations was set. In this application, a threshold of 30 was chosen. Table 2 shows the parameter estimates

and the values for AIC for Kibble related bivariate distributions. It can be noticed that the new model (2)

is more appropriate to model this rainfall data set. However, the performance of our model and the case of

Loáiciga and Leipnik is alike for this data set.
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Table 2: Parameter estimates and AIC for the rainfall data for Klerksdorp and Wolmaransstad.

City Model Parameter estimates AIC

Klerkdorp Kibble ̂1= 257031; ̂ = 07219 4818145

Klerkdorp Standardised Jensen ̂1= 218329; ̂2= 305621; ̂ = 0716 56 3645002

Klerkdorp Loáiciga and Leipnik bivariate gamma ̂1= 04691; ̂2 = 06486; ̂ = 462049; ̂ = 03479 3541529

Klerkdorp Generalised bivariate gamma ̂1= 215762; ̂2= 302684; ̂3= 391165; ̂ =0459 01 3530156

Wolmaransstad Kibble ̂1= 238281; ̂ = 08170 4598103

Wolmaransstad Standardised Jensen ̂1= 197264; ̂2= 291491; ̂ = 0620 47 3623551

Wolmaransstad Loáiciga and Leipnik bivariate gamma ̂1= 05288; ̂2 = 07851; ̂ = 372537; ̂ = 02990 3597768

Wolmaransstad Generalised bivariate gamma ̂1= 197274; ̂2= 291513; ̂3= 14227; ̂ = 0086025 3594678

Figure 7 displays the distribution of 1

2
for Klerksdorp and Wolmaransstad, using equation (5) with the

parameter estimates as in table 2 above. The probability that the rainfall in the late rain season will be less than

the rainfall in the early rain season,  (1

2
 1), is 000453021 for Klerksdorp and 0023692 for Wolmaransstad.

The graph shows a bigger spread for Wolmaransstad, which indicates that the summer rainfall in Wolmaransstad

is more evenly distributed throughout the raining season.
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Wolmaransstad
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Figure 7: The p.d.f. of  =
1

2

(see (5)) using parameter estimates for rainfall data from Klerks-

dorp and Wolmaransstad.

7 Conclusion

A generalised bivariate gamma distribution with correlated standard and noncentral gamma marginals were

proposed where the correlation coefficient is a function of the parameters. Balakrishnan and Lai (2009) give

various applications for bivariate gamma distributions which could possibly be extended to this generalised

bivariate gamma distribution. Exact expressions for the p.d.f.’s of the product and ratios of the correlated

components of (2) were also derived; some percentage points of  =
1

2

were given as well. The effect of the

parameter, 3, on the shapes of this generalised bivariate gamma p.d.f., as well as the p.d.f.’s of the product and

ratios were illustrated. An example to rainfall data two specific districts in the North West province illustrates

the value which is added by proposing this bivariate model. Several applications for the distributions of product

and ratio of components of bivariate gamma distributions exist in hydrology, rainfall and water quality. The
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applications could be used to analyse the effects and causes of different international problems facing the world

today, such as global warming and water pollution. The proposed generalised bivariate gamma distribution can

be helpful in constructing plausible models for such applications.
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