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ABSTRACT 
 

With the evolvement of modern Weigh-In-Motion equipment both in the field of sensor and 
logger technology the way in which calibration and verification is undertaken has also 
changed. This paper discusses some traditional calibration and verification methods and 
suggests how to implement more reliable in-field and statistical calibration and verification 
methods. In addition the paper discusses and presents a technique of correcting bias 
resulting from “binning” recorded axle weights. 
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1  INTRODUCTION 

 
With the evolution of High-Speed-Weigh-In-Motion (HSWIM) equipment both in the field of 
sensor technologies and logger technologies, the way in which calibration and verification 
of WIM data is undertaken has changed. The authors discuss some aspects of these 
changes. 
 
Also discussed is the effect of digital axle mass resolution of a logger on the discrete axle 
mass distribution produced by binning the individual axle masses of vehicles. 
 
Please note that the terms weight and mass are used interchangeable and that by weight 
is meant the gravitational force exerted downward multiplied by the gravitational constant 
resulting in an equivalent mass. All weights expressed in this paper Ton refers to the SI 
metric ton. 
 
2  IN-FIELD CALIBRATION AND VERIFICATION 
 
Most of today’s WIM systems use digital methods rather than a physical ‘turn-the-knob’ 
process to calibrate a WIM system. When a wheel moves over a given WIM sensor the 
signal from the sensor is digitized giving a set of signals (s1, s2, s3… sn) for the response 
generated by the wheel. These are then processed by the WIM logger using an 
appropriate signal processing relationship (f) to a single raw response (r) that is related to 
the weight of the wheel. The signal processing relationship (f) depends on the signals (s), 
on the type of sensors and may also depend on other variables, such as the speed, road 
surface deflection etc. (variables x). The actual weight of the wheel (w) or axle is then 
related to this signal response through a calibration constant (C). One can thus write 
 
  � = � ∗ 	�  where   � = �(	, �) 
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On old (pre-digital) WIM systems this calibration ‘value’ (C) was set on the logger by 
physically turning a knob on a gain amplifier or by adjusting some potentiometer/resistor 
values. These adjustments were not digitized and often involved setting factors that were 
not linear. On many modern loggers, all adjustments are digitized and saved as part of the 
raw vehicle data or as part of the logger setup.  The logger thus uses the digital calibration 
value C only to report on the final weight. It is thus possible to change the calibration value 
C in any given data set at any time by substituting the value used with a new value. 
 
For modern digital WIM loggers this implies two things. Firstly one can use the same runs 
needed to calibrate the WIM system to also verify the WIM system. And secondly, the 
urgency of calibrating a WIM system after installation falls away as one can now post-
calibrate all ‘non-calibrated’ WIM data after the WIM has been calibrated. 
 
Since WIM systems measure the instantaneous in-flight (i.e. dynamic) weight, the weight 
measured by the WIM (w) differs from the static weight (W) from run to run. Under normal 
conditions this difference follows a normal distribution and the aim of the calibration 
process is to reduce the mean weight error or mean weight difference to zero.  
 
The aim of the verification process is to determine the extent to which the WIM weights 
differ from the static weight. This is normally expressed as the standard deviation of WIM 
errors. This deviation gives information on how well the WIM determine the corrections 
required to relate a WIM weight distribution to the actual static weight distribution. 
 
On older WIM systems that required physical adjustments to the electronics a number of 
calibration runs had to be done, and the calibration ‘knobs’ turned, until the system was 
deemed calibrated; only then would one proceed with the verification runs. To get this 
calibration ‘run’ information is time consuming and also expensive. One is thus limited to 
the number of runs that one has available for either process and very often too few runs 
are actually done to determine the mean error (i.e. the calibration) with any degree of 
certainty. On a digital system one can use all runs to both calibrate and verify a system 
and thus increases the certainty without sacrificing any runs. 
 
Using classical statistics one can show how the number of runs affects the certainty with 
which one can determine the calibration and why it is advantageous to use both the 
‘calibration’ and ‘verification’ run information as one set. The relative error (ei) between the 
WIM weigh result (wi) and that of the statically weighed vehicle result (W) is defined as 
(expressed as a percentage) 
 
 
� = 100 ∗ (�� −�)/�       Equ. 1 
 
If there are (n) samples then the mean error (��) and standard deviation of error (s) are 
given by 
 
 �̅ = (∑ 
�)/�  and  	 = ((�	∑ 
�

�	) − (∑
�)�)	/		�(� − 1))�/� 
 
 
A WIM system is typically calibrated by adjusting the calibration factor C such that the 
mean error (��) is ZERO.  If one uses the individual axles for calibration, for example, then 
the calibration factor C is  
  
 � = (∑��)	/	(∑ ���) 
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If the number of samples (n) is large then the calculated mean error (��) approximates the 
true mean error (�) well, but if the number of samples is small then the difference between 
��  and �  can be quite significant. The same applies to the accuracy with which the 
calculated standard deviation (s) approximates the true standard deviation	�. Classical 
statistics tells us that the confidence interval �(� −  ) for the mean with n samples (and n 
small) is given by 
 
 �̅ − 	!"/�	/√�		 < 	%		 < 		 �̅ +	 !"/�	/√�     Equ. 2 
  
 
where ' /( is the value of the Students t distribution with n-1 degrees of freedom and 
leaving an area of  /( to the right of the distribution 
 
Similarly the certainty with which we can determine the true standard deviation (�) is also 
dependent on the sample size (n) and the confidence interval is given by 
 
 
 (� − 1)	�	/	)"/�

� 		< 	*� 		< 	 (� − 1)	�	/	)�+"/�
� 		    Equ. 3 

 
Where , /(

(  is the chi square distribution with n-1 degrees of freedom leaving and area of 
 /( to the right of the distribution. 
 
For example, if one is dealing with an ASTM Type I WIM system (Reference 2), then one 
expects that 95% of the individual axles weights fall between ±20% of the static weight i.e. 
one would expect a standard deviation of errors not to exceed 10.2%. That is, one expects 
the probability -(−(.% < 
 < +20%)  to be 0.95. For large samples the Student t 
distribution reduces to the normal distribution. For a zero mean (� = .) one has that 
-(−�. 23 < 4 < +1.96) = .. 27 where = 8/� . So � = 8/�. 23 i.e. 20%/1.96 or 10.2%. 
   
If one plots the expected uncertainty of the calibration at 95% confidence for the number of 
available samples and a standard deviation of 10.2% then one gets the plot in Figure 1 
where the results of equation 2 is plotted assuming a mean error of zero (which is the 
target of a calibration). In Figure 2, for the same conditions, the extreme ranges of 
equation 3 are plotted. 
  
Typically, a 5 axle vehicle with an axle grouping of (1 2 2) is used to calibrate and verify a 
WIM system. Usually 2 runs are done to ‘calibrate’ the system and 10 runs to verify the 
system. If one uses the individual axles to calibrate the system, then each ‘run’ adds 5 
samples to the sample set. After the first run one has a potential error on the calibration of 
13%, after the 2nd run the potential error is 7% while after 10 runs (a sample size of 50) the 
potential error has reduced to 3% (Figure 1).  
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Figure 1 – Potential % Error on the calibration of an ASTM Type I WIM as relates to 
sample size. 
 

 
 
Figure 2 – Potential % Error when estimating the * for axle weights on an ASTM Type I 
WIM 
 
To determine whether a system performs within specification the system is verified using 
10 runs, thus 50 axles. On an ASTM Type I WIM (± 20%) one could then end up 
overestimating the WIM performance (s) by 0.4% or underestimating its performance by 
2% (Figure 2).  
 
So, if one were to use only two runs to calibrate then there is a large risk that one does not 
get the WIM calibration right. Clearly more effort should be placed on the calibration of the 
system, rather than verifying the system. If the system is fully digital, then all sample sets 
can be used for both the calibration and verification of the WIM system. 
 
3  STATISTICAL VERIFICATION AND STATISTICAL CALIBRATION 
 
The signal from the WIM sensors of a WIM system can drift over time and the performance 
of the system can also degrade over time. One needs to correct for this drift and catch 
degradation of the WIM signals in time. 
  
3.1  Front Axle Mass Verification/Calibration Method 
 
Traditionally most WIM users were using the average Front Axle Mass (FAM), also 
referred to as steer axle weight,  from a given class of trucks as a reference to check the 
calibration of the WIM data and the standard deviation of the FAM to check for failure or 
degradation (not discussed here) (Reference 5). This method is dependent on the loading 
of the selected trucks (full or empty) and also dependent on the location of the WIM (i.e. 
whether it is located on an incline or decline and what the cross-fall at the WIM site is). 
Never-the-less, with site specific knowledge on the behaviour of the FAM at a given site, 
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this reference is still a good check to evaluate the potential drift and performance of a WIM 
system. 
 
As an example the authors chose a WIM site in Australia that has 4 WIM sensors; sensors 
1 & 3 in the left and 2 & 4 in right wheel track. The site was calibrated at the end of 
November 2010 using a 6 axle (123) uniformly loaded truck. In Figure 3 the daily average 
FAM of all 4 sensors for all 6 axle articulated trucks is plotted. The FAM is fairly stable over 
short periods (a month) except perhaps on Sundays and Mondays when it abruptly climbs. 
Over long term the FAM seems to slowly rise. 
 

 
 
Figure 3 – Average daily FAM for 6 axle articulated vehicles 
 
 
 
 
 
 
 
 
In Figure 4 the average FAM for December 2010 is shown as a frequency distribution. The 
mean FAM for these trucks is at around 5.5 Ton and has a standard deviation of 0.7 Ton. 
(The fact that the mean FAM is 5.5 Ton shortly after a calibration is going to be used later 
on to determine a value for the TT-Truck). 
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Figure 4 – Average FAM Frequency Distribution of 6 axle articulated vehicles 
 

If one splits up the trucks according to their GVM loading as Full (>80% of GVM legal 
limit), Half (>50% but <80%) and Empty (<50%) and plots these in the same fashion then 
on sees that the FAM is load dependent (Figure 5). The mean FAM for Empty, Half and 
Full trucks are 5.3, 5.6 and 5.8 Ton respectively. Clearly the mean FAM will depend on the 
loading of the selected trucks on a particular day.  
 

 
 
Figure 5 – FAM Frequency Distribution of Empty, Half and Fully loaded vehicles 
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Figure 6 – FAM Frequency Distribution of individual WIM sensors (February 2010) 
 
If one looks at the FAM from each individual sensor then one observes that the sensors in 
the left wheel track ‘under weigh’ while those in the right wheel track ‘over weigh’ (see 
Figure 6). This is partially due to the fact that the calibration was done using static weights 
measured on a flat surface while the WIM site is at a camber. The mean FAM for the left 
sensors is approximately 4.95, while that for the right is approximately 6.25 and the 
average is at 5.6 Ton. This is a variation of ±10% between what the left and right sensors 
weigh for the front axle. The authors have observed these differences at a number of other 
sites in South Africa, Australia and the US too. In the US where trucks drive on the ‘other’ 
side of the road (compared to South Africa or Australia) the effect is the same except that 
left and right swaps. Great care and an understanding of the FAM limits must thus be 
taken when selecting the FAM as a parameter to check long term ‘calibration’ drift of the 
WIM system.  
 
Notice that the means of sensor 2 and 4 do not coincide by approximately 100kg. When 
the system was calibrated at the end of November 2010 these did coincide (Figure 3). In 
Figure 3 one can observe a slow long term drift. Also, in December 2010 the average FAM 
was 5.5 Ton. By February this had drifted to 5.6 Ton. The exact mechanism is not known 
but the drift can probably be attributed to settling of the WIM installation into the road base 
as the WIM was only installed in November 2010. 
 
3.2  Truck-Tractor Verification/Calibration Method 
 
With the advent of faster computers, better methods, such as the Truck-Tractor (TT) 
method, have been developed (by De Wet and others, Reference 1) that allows one to 
verify WIM systems more reliably and to correct for long term drift. The principle of this 
method is that the whole tractor weight of a common loaded truck is used as a tracking 
and correction method. Their research on trucks in South Africa had shown that the mean 
Truck Tractor weight of ‘loaded’ trucks for a large sample was 21.8 Ton. The correction 
method is based on a multi-pass process whereby the ‘calibration’ of the WIM data is 
adjusted by a factor k until the mean TT weight of the sample is 21.8 Ton. A summary of 
the method is as follows: 
 
An TT-Truck is defined as a heavy vehicle with 6 or 7 axles with an axle spacing of 2.9 – 
3.9 m between the 1st and 2nd axle, 1.2 – 1.6 m between the 2nd and 3rd axle and 4.5 – 9.0 
m between the 3rd and 4th axle. 

Abstracts of the 32nd Southern African Transport Conference (SATC 2013) 
Proceedings ISBN Number: 978-1-920017-62-0  
Produced by: Document Transformation Technologies cc 

 
 
120

8-11 July 2013 
Pretoria, South Africa 
Conference organised by: Jacqui Oosthuyzen 



A Selected TT-Truck is defined as an TT-Truck with average axle mass between 6.5 t and 
8.5 Ton. 
The average truck-tractor mass of Selected TT-Trucks is used for calibration purposes. 
The target truck-tractor mass is 21.8 Ton. 
 
The method described by De Wet is for 6 and 7 axle trucks (123 and 1222) that are 
common in South Africa, but one finds, not so common in Australia and the US. One has 
to adapt these methods. The authors adapted the method to use a 6 axle articulated trucks 
that are common in Australia. Assuming that the target TT weight should be the same for 
left and right sensors the authors determined a TT-weight for the loaded trucks such that 
after the correction the mean Front Axle Mass (FAM) of all 6 axle articulated trucks for the 
month of December 2010 (shortly after an on-site calibration) was still 5.5 Ton (see 
previous section). The target TT weight was then found to be approximately 22.5 Ton. A 
summary of the method used by the authors is as follows: 
 
An TT-Truck is defined as a heavy 6 axle articulated vehicle with an axle spacing of 3.2 – 
5.3 m between the 1st and 2nd axle, 1.2 – 1.6 m between the 2nd and 3rd axle and 4.5 – 9.0 
m between the 3rd and 4th axle. 
A Selected TT-Truck is defined as an TT-Truck with average axle mass between 6.0 Ton 
and 8.5 Ton. 
The average truck-tractor mass of Selected TT-Trucks is used for calibration purposes. 
The target truck-tractor mass is 22.5 Ton. 
 
In Figure 7 the frequency distribution of the Truck Tractor portion of the trucks (TT Truck-
All) is plotted as well as the selected loaded trucks (TT Truck-SEL) for the raw data in 
February 2011. In Figure 8 the same information is plotted after post calibration was 
applied to the February 2011 data. 
 
The same method was applied to the data from December 2010 and January 2011. The 
result of the post-calibration is that the slow drift has been removed (see Figure 9 and 
compare to Figure 3), but the average FAM of the left sensors is still below that of the right 
sensors. Further investigations are required to explain this.  
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Figure 7 – TT Truck Frequency Distribution of the WIM sensors prior post calibration 
 

 
 
Figure 8 – TT Truck Frequency Distribution of the WIM sensors after post calibration 
 

 
 
Figure 9 – Average daily FAM after post calibration using the TT Method 
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Statistical post calibration using the TT-Method can remove slow drifts in the calibration of 
a WIM system but further research is required on the TT target mass and on how to deal 
with sensor in the left and right wheel tracks for WIM sites that have a camber, as most 
sites do.  
 
Statistical post calibration procedures hold great promise in ensuring the stability of WIM 
systems over a prolonged period of time. 
 
4  EFFECT OF LOGGER RESOLUTION  ON AXLE DISTRIBUTIONS 
 
When binning axle weight data to generate an axle distribution from data produced by 
WIM equipment one sometimes finds that certain weight bins are more likely to occur that 
others. In Figure 10 an example is given of axle weights from individual vehicles binned 
into 100 kg bins i.e. counts of how many axles fall into a given 100 kg section. The binned 
count data is then normalized with the total count and expressed as a percentage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 -  A typical axle mass distribution produced by a logger with digital resolution of 

≈ 15 kg 
 
If one zooms in on the section in the red circle then one gets the result shown in Figure 11, 
which clearly shows that certain weights seem to occur more than others. There seems to 
be a bias. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 - A portion of the axle distribution showing bias 

Abstracts of the 32nd Southern African Transport Conference (SATC 2013) 
Proceedings ISBN Number: 978-1-920017-62-0  
Produced by: Document Transformation Technologies cc 

 
 
123

8-11 July 2013 
Pretoria, South Africa 
Conference organised by: Jacqui Oosthuyzen 



 
4.1 DIGITAL LOGGER RESOLUTION LIMIT 

 

Most HSWIM loggers have digital resolutions limits ranging from 10 kg to 50 kg. When 
data is expected to be accurate to within 100 kg then such a resolution limit is quite 
acceptable. For a given logger type the actual resolution limit also depends on the 
individual sensor sensitivity and on the actual installation itself i.e. whether the final 
resolution is 20 kg or 16 kg for example. 
 
Take an example of a distribution where one has 1 axle per kg in the range 4 to 10 ton. 
One plots this normalizing each 1 kg bin to 1 Ton i.e. 1000 axles per ton (Figure 13). One 
then applies this to a logger with 16 kg digital resolution (Figure 13). Finally one takes the 
raw logger data and bins this into 100 kg bins (Figure 14). 
 

 

 

 

 

 

   

 

 

 

 

Figure 12 - Theoretical Axle Weight Distribution at 1 kg resolution 
 

 

 

 

 

 

 

 

 

 

Figure 13 - Theoretical Axle Weight Distribution as recorded by logger at 16 kg resolution 
 

 

 

 

 

 

 

 

 

 

 

Figure 14 -  Theoretical Axle Weight Distribution as recorded by logger and binned at 100                    
kg resolution 

 

One can clearly see that the distribution is no longer uniform and favours certain weight 
bins. Had the logger resolution been exactly 20 kg then the binning into a 100 kg bins 
would have reproduced the almost distribution exactly (see Figure 15). 

Abstracts of the 32nd Southern African Transport Conference (SATC 2013) 
Proceedings ISBN Number: 978-1-920017-62-0  
Produced by: Document Transformation Technologies cc 

 
 
124

8-11 July 2013 
Pretoria, South Africa 
Conference organised by: Jacqui Oosthuyzen 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 -  Axle Weight Distribution recorded by logger at 20 kg and binned at 100 kg 
resolution 

 

How does one solve this problem?  
 

4.2  METHOD TO IMPROVE THE BINNING OF DATA BY MAKING USE OF THE 
REESOLUTION 

 

If the logger resolution (R) is known, then one can make use of this fact. If one recognizes 
that the raw axle mass data (M say) as recoded by a logger can be anywhere between M 
and M+R (excluding M+R) then one can use a random number generator that generates a 
unity probability distribution x between 0 ≤ � < 1 on each raw axle mass as it is binned i.e. 
  
 :; = : + �< 
 
where MB is the mass that is then binned. 
 
Applying this idea to the 16 kg theoretical example of Figure 14 (16 kg resolution) one gets 
the result as shown in Figure 16. 

 

 

 

Figure 16 – Theoretical Axle Weight Distribution after randomization 
 

In the FHWA Card W and the SANRAL RSA Version 1.0 and Version 2.0 traffic data 
formats the weight data is presented to the nearest 100 kg. For such data this 
methodology cannot be applied because the actual logger weight data needs to be known 
to a resolution of at least the digital resolution limit of the logger or better. In the SANRAL 
RSA Version 3.0 format currently being proposed, however, the weights can be recorded 
to the nearest kg and. This format also makes provision to record the actual logger 
resolution. On such a data set this ‘smoothing’ technique can then be applied. 
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4.3 RESULTS AFTER ADJUSTMENT 
 

When binning axle weight data to generate axle weight distributions the weight resolution 
limit of a logger can cause unwanted bias. This can be removed by using a randomization 
technique based on the resolution of the logger.  
 
By applying this randomization technique to the same set of data as presented in the 
introduction one can clearly see that although the resulting distribution is not perfectly 
smooth it is greatly improved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 - Axle Mass Distribution smoothed by using resolution randomization 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 - A portion of the axle mass distribution showing virtually no bias 
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5  CONCLUSION 
 
Providing the WIM data logger ensures the integrity of actual recorded raw data and no 
physical modification is done at a WIM site, modern statistical verification and calibration 
techniques can greatly improve the stability of WIM data. On-going research is still 
required to determine the role local traffic mix and vehicle configuration in the population 
plays in selecting reference values. 
 
Regarding binning of Axle Mass data, one should be aware of the intrinsic resolution of the 
data logging system.  
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