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Abstract 

     In the research for this paper, a GA-PNN hybrid system was used for modelling the 

convective heat transfer characteristics and pressure drop of TiO2-water a nanofluid in a fully 

developed turbulent flow based on an experimentally obtained train and test data set. Models 

were developed for the Nusselt number and the pressure drop of the nanofluid as a function of 

Reynolds and Prandtl numbers, nanofluid volume concentration and average nanoparticle 

diameter. The results of the proposed models were compared with experimental data and with 

existing correlations. The validity of the proposed models was benchmarked by using 

statistical criteria and NSGA-II was used for multi-objective optimisation for the convective 

heat transfer. In the optimisation procedure model, the Nusselt number and pressure drop 

were considered as the objective functions. However, when the set of decision variables was 

selected based on the Pareto set, it ensures the best possible combination of objectives. The 

Pareto front of multi-objective optimisation of the Nusselt number and pressure drop 

proposed models were also shown and discussed. It was found that application of the multi-

objective optimisation method for the turbulent convective heat transfer characteristics and 

pressure drop of TiO2-water nanofluid could lead to finding the best design points based on 

the importance of the objective function in the design procedure.  

 

 

 

 

 

 



Nomenclature  

ai 

dp 

f 

F 

Lij 

n 

N 

Nu 

∆P 

Pr 

Re 

Xp 

Xa 

polynomial coefficient (weight) 

nanoparticle average diameter, nm 

friction factor 

non-dominated front 

i-th output in j-th layer for the GA-PNN model 
number of data points 

population size 

Nusselt number 

pressure drop, KPa 

Prandtl number 

Reynolds number 

predicted value 

actual (experimental) data  

 

Greek letters 

ϕ volume concentration, %  

 

Subscripts 

nf nanofluid 

 

Abbreviation 

GA-PNN 

GMDH  

NSGA-II 

MAE 

MRE 

RMSE 

genetic algorithm-polynomial neural network 

group method of data handling  

non-dominated sorting genetic algorithm II 
mean absolute error 

mean relative error                              

root mean squared error 
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1. Introduction 

     Due to the poor thermal properties of conventional heat transfer fluids, nanofluids as next-

generation ones have recently received significant attention, especially after the Masuda et al. 

[1] and Choi [2] reports. Nanofluids are a class of heat transfer fluids which consist of a 

conventional base fluid with suspensions of low concentrations (usually up to 5% of volume 

fraction) of nanometer-sized particles (1-100 nm). These particles are generally metals, metal 

oxides or carbon nanotubes which are suspended in a base fluid such as water, engine oil, 

ethylene glycol (and/or mixture of them). More contact area between particles and fluids, high 

dispersion stability and reduced wearing and clogging are the main advantages of nanofluids 

in comparison with conventional solid-liquid suspensions [3]. Over the past two decades, the 

potential of the nanofluid as an ideal candidate for enhancing heat transfer in comparison with 

the conventional working fluids has been shown in the literature. Most of the previous works 

focused on potential applications, nanofluid synthesis, nanofluid physical properties and the 

heat transfer characteristics and pressure drop in a laminar or turbulent regime [4-13].  

     The most practical applications are in the turbulent flow regime, however, the investigation 

into the heat transfer and pressure drop for nanofluids in this regime and the optimisation of 

the heat transfer characteristics versus pressure drop are vital for improving the existing 

heating or cooling systems. It was found in the literature that by adding nanoparticles into the 

base fluid, the heat transfer characteristics would be enhanced. On the other hand the adding 

of nanoparticles increase the pressure drop, demanding more pumping power, which is not 

favourable at all. This is a multi-objective optimisation problem that should be solved to find 

the best design parameters to maximise the heat transfer characteristics and minimise the 

pressure drop.  

     Duangthongsuk and Wongwises [5] experimentally investigated the heat transfer 

performance and friction factor of TiO2–water nanofluids for volume concentrations from 

0.2% to 2% in the turbulent flow regime. Their experiments showed that the heat transfer 

coefficients for a 1% concentration of TiO2–water nanofluid increased with 26% in 

comparison with the base fluid. It was also found that the pressure drop of nanofluid increased 

with the Reynolds number and was also greater than the pressure drop of the base fluid at the 

same Reynolds number.  

     Sajadi and Kazemi [6] investigated the convective heat transfer characteristics and friction 

factor of TiO2–water nanofluid in a horizontal circular tube. They dispersed TiO2 particles 



with an average diameter of 30 nm into water and measured the Nusselt number and pressure 

drop of the nanofluid with volume concentrations up to 0.25% in a fully-developed turbulent 

regime. Their result showed that the addition of small amounts of nanoparticles to the base 

fluid augmented heat transfer significantly. For the pressure drop, they observed the same 

result as that of Duangthongsuk and Wongwises [5], namely that the pressure drop increased 

as the volume concentration increased and that the pressure drop was higher than that of the 

base fluid.  

     Abbasian Arani and Amani [13] reported experimental data for the convective heat transfer 

characteristics in fully developed turbulent flow of TiO2–water nanofluids. The nanoparticles 

with average diameters of 10, 20, 30 and 50 were dispersed into the base fluid to investigate 

the effect of nanoparticle diameter on the Nusselt number and pressure drop of the nanofluid. 

Their experiments indicated that the nanofluid with a 20 nm nanoparticle size showed the best 

thermal performance in comparison with the others. Furthermore, they observed that adding 

nanoparticles did not have a significant effect on the nanofluid pressure drop compared with 

the base fluid.  

     During the last decade, there has been an interest in using soft computing methods which 

can transfer the knowledge and rules that exist beyond the empirical data into the network 

structure in order to use in applications. Recently, the application and capability of these 

methods, which are known as fuzzy logic, neural networks and genetic algorithms, to model 

and analyse engineering problems containing nanofluids have been increasingly developed. 

Santra et al. [14] predicted the average Nusselt number of the laminar natural convection of 

Cu-water nanofluid in a square cavity by using an artificial neural network which is trained by 

a resilient backpropagation algorithm. Hojjat et al. [15] modelled the thermal conductivity of 

γ-Al2O3, TiO2 and CuO nanoparticles in a 0.5 wt% of carboxymethyl cellulose (CMC) 

aqueous solution by using a three-layer feedforward neural network. Papari et al. [16] 

modelled the thermal conductivity of single-wall carbon nanotubes and multi-wall carbon 

nanotubes dispersed into several base fluids by using a diffusion neural network. Longo et al. 

[17] presented two neural network models for predicting the thermal conductivity of Al2O3-

water and TiO2-water nanofluids by considering the volume fraction, temperature, 

nanoparticle diameter and particle thermal conductivity as the input variables. Mehrabi et al. 

[18] offered two models in order to model the thermal conductivity of alumina-water 

nanofluids by using a FCM-based neuro-fuzzy inference system as well as a genetic 

algorithm-polynomial neural network. 



     The engineering optimisation problems consist of multiple, often conflicting objectives 

that are supposed to be optimised simultaneously. The process of optimising a set of objective 

functions is called multi-objective optimisation (MOO) which has been widely used for more 

than two decades in real-world problems, especially in economics and engineering. In multi-

objective optimisation problems there is a set of solutions (points) instead of a single 

optimised solution (point) in single-objective optimisation. All these points fit the Pareto 

optimality definition for an optimum result in a Pareto front [19]. 

     Recently, there have been many investigations about using evolutionary algorithms (EAs) 

to develop the MOO approaches. This interest is due to the population-based search method, 

simplicity and finding the Pareto front in a single run. Genetic algorithms (GAs) are the most 

popular EAs for multi-objective design and optimisation problems. There are different multi-

objective genetic algorithms (MOGAs) in the literature of which the differences are in the 

fitness assignment procedure, elitism or diversification approaches [20]. Among them, the 

non-dominated sorting genetic algorithm-II (NSGA-II) is one of the most efficient algorithms. 

The Pareto-based approach of NSGA-II has received significant attention after the first 

introduction by Deb et al. [21] to optimise a wide range of engineering problems [22-25]. In 

Section 6 of the present paper, this approach is described in detail. 

     In this paper, the Nusselt number and the pressure drop of TiO2-water nanofluid were 

simulated by using the GA-PNN hybrid system approach and three experimental data sets [5, 

6 and 13]. Next, the objective functions were used to obtain polynomial models for the effects 

of volume concentration, average particle diameter, Reynolds and Prandtl numbers on both 

the Nusselt number and the pressure drop. Finally, the obtained polynomial models were used 

in a Pareto-based multi-objective optimisation approach for finding the best possible 

combinations of the Nusselt number and pressure drop, known as the Pareto front. 

 

2. Genetic algorithm-polynomial neural network hybrid system 

     In the research for the present paper, a GA-PNN hybrid system was applied for the 

simulation of the Nusselt number and pressure drop of TiO2-water nanofluid in fully 

developed turbulent flow. The GA-PNN hybrid system was created by a combination of 

genetic algorithm and GMDH-type polynomial neural network approaches. In this hybrid 

system, a GMDH learning algorithm was used to instruct the polynomial neural network. The 

application of this learning algorithm to the polynomial neural network would introduce the 

GMDH-type polynomial neural network, which would be created for the neural network. On 



the other hand, the genetic algorithm was used to find the hidden layers and bias coefficients 

of the GMDH-type polynomial neural network for minimising the training error and finding 

the optimal structure of the network. Detailed information about the GMDH-type polynomial 

neural network structure and GA-PNN hybrid system is given in Pesteei and Mehrabi [27] 

and Mehrabi et al. [18, 26], respectively. 

3. Convective heat transfer of TiO2-water nanofluid 

     Most of the fluid flow regimes are turbulent in industrial applications. Due to the presence 

of unsteady vortexes, the turbulent flow has more potential to enhance heat transfer. 

Therefore, the investigations into turbulent heat transfer of nanofluids are crucial for practical 

applications. Therefore, there are several studies in the literature on the convection heat 

transfer of TiO2-water nanofluids in fully-developed turbulent flow regime [5, 6, 8, 12, 13 and 

28].  

     In the present work, a new model was obtained by using the GA-PNN hybrid system as a 

function of the Reynolds number, Prandtl number, volume concentration and average particle 

size, which gives better accuracy for predicting the heat transfer performance of the TiO2-

water nanofluids. In the proposed model, the Nusselt number is related to the parameters as 

follows: 

                   (1) 

     The results of the proposed model were compared against experimental data [5, 6 and 13] 

as well as available correlations. The correlations, which were developed by Pak and Cho [29] 

(eq. 2) and Maiga et al. [30] (eq. 3), can predict the Nusselt number for the nanofluids in 

fully-developed turbulent flow.  

                      (2) 

                        (3) 

The correlations determine the Nusselt numbers as a function of the Reynolds number and the 

Prandtl number. 

Sajadi and Kazemi [6] proposed a correlation for the Nusselt number of TiO2-water 

nanofluids in a fully developed turbulent regime as a function of the Reynolds number and the 

Prandtl number as: 

                                  (4) 



Duangthongsuk and Wongwises [5] and Abbasian Arani and Amani [28] offered correlations 

for the Nusselt number of TiO2-water nanofluids as a function of the Reynolds number, the 

Prandtl number and volume concentration respectively, as follows: 

                                (5) 

                                 (6) 

Unlike the present models for the Nusselt number, the dependence on the average particle 

diameter of the nanoparticles was not considered in these correlations. 

 

4. Pressure drop of TiO2-water nanofluid 

     For nanofluids to be used as next-generation heat transfer fluids in industrial applications, 

pressure drop information is also essential as it influences pumping power. In this paper, a 

new model was developed for the pressure drop of TiO2-water nanofluids in fully-developed 

turbulent flow by using a GA-PNN hybrid system as a function of Reynolds number, volume 

concentration and average particle size. In the model, the pressure drop is a function of 

Reynolds number, nanoparticle volume concentration and the diameter of nanoparticles, thus:  

∆               (7) 

 

5. Predictive ability of the models 

     A total of 168 input-output experimental data points obtained from literature [5, 6 and 13] 

were used in order to predict the Nusselt number for a TiO2-water nanofluid. The 

experimental data were divided into two subsets as 75% (127 data points) for training and 

25% (41 data points) for testing purposes. In order to model the pressure drop 151 

experimental data points from [5, 6 and 13] were divided to subsets as 81% (124 data points) 

for training and 19% (29 data points) for testing purposes. 

     The mean absolute error (MAE), mean relative error (MRE) and root mean square errors 

(RMSE) criteria were used as given in Table 1. It shows the accuracy of the GA-PNN models 

in order to predict the Nusselt number and pressure drop of TiO2-water nanofluid for various 

values of inlet variables. 

 

 

5.1. Nusselt number prediction  

     The structure of the GA-PNN model for predicting the Nusselt number of TiO2-water 

nanofluid is shown in Fig. 1, and corresponds to the genome representation of 

3312141411342222, in which 1, 2, 3 and 4 stand for volume concentration ϕ (%), average 



particle diameter dp (nm) , the Reynolds number Re and the Prandtl number Pr respectively. 

The corresponding polynomial representation of the model for the Nusselt number of TiO2-

water nanofluid is shown in Appendix I. 

 

5.1. Pressure drop prediction  

     The structure of the GA-PNN model for prediction the pressure drop of  TiO2-water 

nanofluid is shown in Fig. 2 corresponding to the genome representation of 

1211221333122323, in which 1, 2 and 3 stand for volume concentration ϕ (%), average 

particle diameter dp (nm) and the Reynolds number Re, respectively. The corresponding 

polynomial representation of the model for the pressure drop of TiO2-water nanofluid is 

shown in the appendix II. 

 

6. Multi-objective optimisation by using NSGA-II 

     In most real-engineering problems, a unique solution based on the single-objective 

optimisation techniques is unable to present an acceptable result for the other objective 

functions, especially when there is more than one objective function that may be in conflict 

with one another. Multi-objective optimisation is defined as a technique that gives a 

reasonable set of solutions for all objective functions by finding the vector of decision 

variables, when the constraints are satisfied. This set of solutions satisfies the objective 

functions at an acceptable level without being dominated by other sets. This set of non-

dominated solutions is called the Pareto optimal set. The corresponding objective function 

value for a given Pareto optimal set is referred to as the Pareto front. 

     Various multi-objective algorithms have been applied for solving engineering problems in 

the last two decades [20, 31-37], among them the non-dominated sorting genetic algorithm II 

(NSGA-II), which was chosen for this investigation.  

There are different operators for the NSGA-II algorithm including initialisation, evaluation, 

fast non-dominated sorting, crowding distance assignment, selection, crossover and mutation. 

The procedure and flow diagram of this algorithm are shown below: 

 

 

 



 

NSGA II Algorithm 

Step 1: generate a parent population    of size N, randomly 

Step 2: set     

Step 3: create offspring population    of size N, by application of crossover and mutation to    

Step 4: if the stop criterion is satisfied, stop and return    

Step 5: set           
Step 6: set                 fast-non-dominated-sort      
Step 7: for       do the following substeps: 

 7.1: calculate the crowding-distance-assignment      

 7.2: set       as follows: 

     |    |  |  |      
             

then ( |    |  |  |   ); 

            [     |    | ] 
Step 8: this step consists of the following two substeps: 

 8.1: select parent from      by using binary tournament selection on the crowding distance 

8.2: create offspring population      of size N, by application of crossover & mutation to      

Step 9: set       and go to the fourth step 

    

     The NSGA-II uses a fast non-dominated sorting operator for fitness assignments. In the 

process of fitness assignment, the solution set not dominated by any other solutions in the 

population is assigned as the first front and given the highest fitness value; the solution set 

dominated by solutions in the first front is assigned as the second front and given the second- 

highest fitness value. This procedure will iterate until all the solution sets are given a fitness 

value. The crowding distance is the normalised distance between a solution vector and its 

closest neighbouring solution vector in each of the fronts. 

     The selection is achieved in binary tournament of two solution vectors. The solution vector 

with the lowest front number is selected if the two solution vectors are from different fronts. 

If both the solution vectors are on the same front, then the solution with the highest crowding 

distance is selected. 

   In the NSGA-II algorithm, simulated binary crossover (SBX) and highly disruptive 

polynomial mutation approaches are used for crossover and mutation operators. The SBX 

applies to two parent solutions and creates two offsprings. The difference between an 

offspring and parent depends on the crossover index, which is a non-negative real number. A 

large value of the crossover index gives a higher probability for creating ‘near-parent’ 

solutions and a small value of it allows distant solutions to be selected as an offspring. The 

application of highly disruptive polynomial mutation gives the system the possibility of doing 

larger jumps in the search space and avoiding the local optimal points [38].  



     The detailed information about the NSGA-II Algorithm, fast non-dominated sorting operator, 

crowding-distance-assignment operator, selection method and simulated binary crossover (SBX) 

operator are fully described in Refs [21 and 38]. 

     The conflicting objectives in this study are the Nusselt number and pressure drop that are 

optimised with respect to the volume concentration ϕ, average particle diameter dp, the 

Reynolds number Re and the Prandtl number Pr, which are called design variables. In this 

two-objective optimisation problem, the goal is finding the best design variable value in order 

to maximise the Nusselt number and minimise the pressure drop simultaneously. 

 

7. Results and discussion  

     Fig. 3 shows the experimental results of Sajadi and Kazemi [6] compared with the GA-

PNN model for the Nusselt number of TiO2-water nanofluid and also correlations with a 

particle size of 30 nm, volume concentration of 0.1% at various Reynolds numbers ranging 

from 6 000 to 30 000. The model for Nusselt number is in very good agreement with the 

experimental data (MAE = 3.7, MRE = 3.5% and RMSE = 4.4). The proposed GA-PNN model 

is well matched with the experimental data and predicts the Nusselt number better than all 

correlations [5, 28, 29 and 30]. 

     Fig. 4 shows the experimental results of Duangthongsuk and Wongwises [5] compared 

with the GA-PNN model. Also, the correlations from literature for a particle size of 21 nm 

and volume concentration of 1% for a TiO2-water nanofluid over a Reynolds number range 

from 4 500 to 14 500. The GA-PNN model is in good agreement with the experimental data 

(MAE = 3.4, MRE = 3.7% and RMSE = 3.6), and the GA-PNN proposed model and Sajadi 

and Kazemi [6] correlation predict the Nusselt number better than other correlations [28, 29 

and 30]. 

     Fig. 5 shows the experimental results of Abbasian Arani and Amani [13] compared with 

the GA-PNN model. Also, the correlations from literature for a particle size of 50 nm and 

volume concentration of 1% for a TiO2-water nanofluid. The GA-PNN model is in great 

agreement with the experimental data (MAE = 5.9, MRE = 2.7% and RMSE = 6.9), and the 

GA-PNN proposed model and Maiga et al. [30] correlation predict the Nusselt number better 

than other correlations. 

     In Figs. 6 and 7, the experimental results of Abbasian Arani and Amani [13] are compared 

with those of the GA-PNN model and the correlations for the Nusselt number of TiO2-water 

nanofluid with particle sizes of 10 nm and 20 nm, and volume concentration of 1.5% and 2%, 

respectively. Based on the result of Fig.6 the GA-PNN model is well matched with the 



experimental data in comparison with the correlations (MAE = 5.6, MRE = 4.8% and RMSE = 

8.1), especially in the high Reynolds number range from 20 000 – 44 000. Fig.7 shows that 

the GA-PNN model is in a good agreement with the experimental data (MAE = 20.3, MRE = 

8.1% and RMSE = 21.3) and predicts the Nusselt number the best while the existing 

correlations significantly under-predicted the experimental data.  

     Considering figures 6 and 7, it can be concluded that for TiO2-water nanofluids with 

increase in Reynolds number as well as volume concentration the exciting correlations are 

unable to predict the Nusselt number properly and the GA-PNN model predicts the Nusselt 

number better than those of the correlations in literature in all cases.  

     Fig. 8a shows a comparison between the experimental results of Sajadi and Kazemi [6] and 

the GA-PNN model for the pressure drop of a TiO2-water nanofluid with a particle size of 30 

nm, volume concentration of 0.15% and Reynolds number ranging from 6 000 to 30 000. The 

GA-PNN model (MAE = 0.47, MRE = 5.0% and RMSE = 0.53) corresponds very well with 

the experimental data.  

     In Fig. 8b, the experimental results of Duangthongsuk and Wongwises [5] are compared 

with those of the GA-PNN model and the correlations for the pressure drop of TiO2-water 

nanofluid with a particle size of 21 nm, and a volume concentration of 1.5% and Reynolds 

number ranging from 4 500 to 14 500. The GA-PNN model predicts the pressure drop the 

best when compared with the measurements (MAE = 0.12, MRE = 2.0% and RMSE = 0.21). 

     Fig. 8c shows the experimental results of Abbasian Arani and Amani [13] compared with 

the GA-PNN model for a particle size of 30 nm and volume concentration of 1%. The GA-

PNN model is not in such a good agreement with the experimental data and the (MAE = 3.9, 

MRE = 54.4% and RMSE = 3.9). Although the proposed model is not well matched with the 

experimental data, the model trend is the same as experimental data and because the proposed 

model over-predicted the experimental data, it might give us more conservative result points 

in the optimisation part. 

     In Fig. 8d, the experimental result of Abbasian Arani and Amani [13] is compared with 

those of the GA-PNN model for a particle size of 50 nm and volume concentration of 1.5%. 

The GA-PNN model matches the data very well (MAE = 0.835, MRE = 8.9% and RMSE = 

1.01). 

     Fig. 9 shows the Pareto front of the Nusselt number and pressure drop. By choosing the 

appropriate value for one objective function may cause a poor value for the second objective 

function. In this Pareto front, all the points (Pareto sets) are optimum points based on the 



multi-objective optimisation concepts and the final design point should be chosen by the 

designer based on the importance of each objective function in the design procedure. In this 

Pareto front, the optimal design points are divided into three sections and the corresponding 

design variables (input variables) as well as objective functions for the six optimal points, 

which are shown in Table 2 (they are related to start and end points). In Section I, which is 

started at point A and ends at B, the Nusselt number increases by 45% (from 64.23 to 91.11) 

when the  pressure drop increases by 14% (from 2.42 to 2.75). In Section II which starts at 

point C and ends at D, there is a direct relationship between the increase in the pressure drop 

and increase in Nusselt number. In this section, the pressure drop increases by 271% when the 

Nusselt number increases by 179%. It is obvious that the design points in Section III should 

not be chosen as the best design points, because of the 19% increase in the pressure drop; 

while there is no significant increase in the Nusselt number from Point E to Point F. So, 

choosing the final design points from Section II is a better choice in comparison with the 

other sections. However, it is important to notice that all the points in this Pareto front are 

optimal points and the designer could choose any of these optimal points for the best design 

point. It is related to the importance of objective functions in the design procedure. 

 

8. Conclusions 

     In the present study, the GA-PNN hybrid system was used for modelling the convective 

heat transfer characteristics and pressure drop of TiO2-water nanofluid in fully developed 

turbulent flow based on an input-output experimental data set as function of the Reynolds 

number, the Prandtl number, nanoparticle volume concentration and average nanoparticle 

diameter. In the GA-PNN hybrid system, consisting of a neural network and genetic 

algorithm part, the genetic algorithm was used to find the best network weights for 

minimising the training error and finding the optimal structure for a GMDH-type polynomial 

neural network. In the neural network part of this hybrid system, the group method of data 

handling (GMDH) learning approach was used to learn a second-rate polynomial neural 

network. The structure of the proposed models based on the genome representation for the 

Nusselt number as well as pressure drop with respect to effective (input) parameters has been 

developed. The results of the models were compared with the experimental data points and 

with existing correlations from literature. The statistical error analysis shows that the 

proposed models are in good agreement compared with experimental data and shows better 

accuracy with experimental data in comparison with the existing correlations. 



     The proposed models for the Nusselt number and pressure drop were used in a multi-

objective optimisation problem based on the NSGA-II algorithm. The Pareto front of these 

two conflicting objective functions was shown and discussed. The combination of the GA-

PNN hybrid system for the modelling part and the use of the NSGA-II algorithm for multi-

objective optimisation for turbulent convection heat transfer of TiO2-water nanofluids showed 

very interesting results. 
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Figure captions 

Fig. 1 Structure of the GA-PNN hybrid system for the Nusselt number of TiO2-water 

nanofluid modelling 

Fig. 2 Structure of the GA-PNN hybrid system for pressure drop of TiO2-water nanofluid 

modelling 

Fig. 3 Comparison of the experimental data of Sajadi and Kazemi [6] with the GA-PNN 

proposed model for the Nusselt number and existing correlations (TiO2-water nanofluid, with 

an average particle size of 30 nm at a volume concentration of 0.1%) 

Fig. 4 Comparison of the experimental data of Duangthongsuk and Wongwises [5] with the 

GA-PNN proposed model for the Nusselt number and existing correlations (TiO2-water 

nanofluid, with an average particle size of 21 nm at a volume concentration of 1%) 

Fig. 5 Comparison of the experimental data of Abbasian Arani and Amani [13] with the GA-

PNN proposed model for the Nusselt number and existing correlations (TiO2-water nanofluid, 

with an average particle size of 50 nm at a volume concentration of 1%) 

Fig. 6 Comparison of the experimental data of Abbasian Arani and Amani [13] with the GA-

PNN proposed model for the Nusselt number and existing correlations (TiO2-water nanofluid, 

with an average particle size of 10 nm at a volume concentration of 1.5%) 

Fig. 7 Comparison of the experimental data of Abbasian Arani and Amani [13] with the GA-

PNN proposed model for the Nusselt number and existing correlations (TiO2-water nanofluid, 

with an average particle size of 20 nm at a volume concentration of 2%) 

Fig. 8 Comparison of the experimental data [6, 5 and 13] with the GA-PNN proposed model 

for pressure drop (a-TiO2-water nanofluid, with an average particle size of 30 nm at a volume 

concentration of 0.15% [6] b-TiO2-water nanofluid, with an average particle size of 21 nm at 

a volume concentration of 1.5% [5] c-TiO2-water nanofluid, with an average particle size of 

30 nm at a volume concentration of 1% [13] d-TiO2-water nanofluid, with an average particle 

size of 50 nm at a volume concentration of 1.5% [13]) 

Fig. 9 Multi-objective Pareto front of the Nusselt number and pressure drop 

 

 



   Table 1 

Statistical criteria used for the analysis of the results 

Statistical criterion Equation 
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Table 2 

The value of design variables (input variables) and objective functions of the start and end 

section points  

Points ϕ (%) dp (nm) Re Pr Nu ∆  (kPa) 

A 1.93 50 6010 3.19 64.234 2.422 

B 1.68 40 8768 4.12 93.106 2.754 

C 1.52 35 10143 4.31 106.666 3.284 

D 1.31 20 30857 3.5 297.864 12.199 

E 1.28 20 32238 3.47 307.299 12.99 

F 1.15 20 35120 3.72 313.878 15.521 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 1 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 2 

 

 

 

 

 

 

 

 

 



0

50

100

150

200

5000 10000 15000 20000 25000 30000 35000

0.1% Experimental Data [6]

GA-PNN Model

Pak & Cho [29]

Maiga et al. [30]

Duangthongsuk & Wongwises [5]

N
u

n
f

Reynolds Number  

Fig.3 

 

 

 

 

 

 

 

 

 

 

 



20

40

60

80

100

120

140

160

2000 4000 6000 8000 10000 12000 14000 16000

1% Experimental Data [5]

GA-PNN Model

Pak & Cho [29]

Maiga et al. [30]

Abbasian Arani & Amani [28]

N
u

n
f

Reynolds Number  

Fig.4 

 

 

 

 

 

 

 

 

 

 

 



0

50

100

150

200

250

300

350

400

0 10000 20000 30000 40000 50000

1% Experimental Data [13]

GA-PNN Model

Pak & Cho [29]

Maiga et al. [30]

Abbasian Arani & Amani [28]

Duangthongsuk & Wongwises [5]

N
u

n
f

Reynolds Number  

Fig.5 

 

 

 

 

 

 

 

 

 

 

 



0

100

200

300

400

0 10000 20000 30000 40000 50000

1.5% Experimental Data [13]

GA-PNN Model

Pak & Cho [29]

Maiga et al. [30]

Abbasian Arani & Amani [28]

N
u

n
f

Reynolds Number  

Fig.6 

 

 

 

 

 

 

 

 

 

 

 



0

100

200

300

400

500

0 10000 20000 30000 40000 50000

2% Experimental Data [13]

GA-PNN Model

Pak & Cho [29]

Maiga et al. [30]

Abbasian Arani & Amani [28]

N
u

n
f

Reynolds Number
 

Fig.7 

 

 

 

 

 

 

 

 

 

 

 



0

4

8

12

16

20

24

0 10000 20000 30000 40000

0.15% Experimental Data [6]

GA-PNN Model

Reynolds Number    

0

2

4

6

8

10

12

0 5000 10000 15000

1.5% Experimental Data [5]

GA-PNN Model

Reynolds Number  

0

5

10

15

20

25

30

35

10000 20000 30000 40000 50000

1% Experimental Data [13]

GA-PNN Model

Rynolds Number     

0

5

10

15

20

25

30

10000 20000 30000 40000 50000

1.5% Experimental Data [13]

GA-PNN Model

Reynolds Number  
 

Fig.8 

 

 

 

 

 

 

 

 

Δ
P

n
f 
(k

P
a

) 

Δ
P

n
f 
(k

P
a

) 

Δ
P

n
f 
(k

P
a
) 

Δ
P

n
f 
(k

P
a
) 

a b 

c d 



 

Fig.9 

 

 

 

 

 

0

5

10

15

20

0 100 200 300

Δ
P

n
f 

(K
P

a
) 

Nunf  

B 

I 

II 

III 

A 
C 

D 

E 

F 


