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Abstract
The K-means clustering algorithm has been intensely researched owing to its simplic-

ity of implementation and usefulness in the clustering task. However, there have also been
criticisms on its performance, in particular, for demanding the value of K before the ac-
tual clustering task. It is evident from previous researches that providing the number of
clusters a priori does not in any way assist in the production of good quality clusters. Our
investigations in this paper also confirm this finding.

The objective of this paper is to investigate further, the usefulness of the K-means
clustering in the clustering of high and multi-dimensional data by applying it to biological
sequence data. The squared Euclidean distance and the cosine measure are used as the sim-
ilarity measures. We use the silhouette validity index first to show that K-means algorithm
is not suitable for clustering high and multi-dimensional biological data irrespective of the
distance or similarity measure employed. A preprocessor scheme is then added to the K-
means algorithm. The scheme is used to automatically initialize a suitable value of K prior
to the execution of the K-mean algorithm. Central to the preprocessor is the average sil-
houette value of the clusters. Our investigation suggests that the use of the silhouette value
in the preprocessor improves the quality of clusters significantly for the biological datasets
considered.

Furthermore, we suggest a scheme which maps the high dimensional data into low di-
mensions. We have then shown that the K-means algorithm with preprocessor produces
good quality, compact and well-separated clusters of the biological data mapped in low di-
mensions. For the purpose of clustering we conduct a character-to-numeric conversions to
transform the nucleic/amino acids symbols to numeric values.

Keywords: Clustering, Dimensionality, Categorical data, Silhouette validity index.

1 Introduction
Clustering is a statistical concept that has to do with the problem of identifying interesting
distribution patterns and similarities between objects in a data set [1, 2]. It is an optimiza-
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tion problem that seeks to classify objects based on their proximity to one another. In this
sense, objects that are most similar are grouped together forming groups of similar ob-
jects referred to as clusters. Clustering tasks involve generating clusters that are compact
and well-separated from one another. It follows then that clustering task has to do with
minimizing the intra-cluster distance or the within-cluster dispersion and maximizing the
inter-cluster distance or the between-cluster dispersion.

There are two broad categories of clustering algorithms, namely hierarchical and partition-
based clustering. K-means [4] is a well known partition-based clustering technique. It has
been widely used since it was first introduced in 1967. It, as a general rule, demands the
value of K, the number of clusters expected, to be provided before the actual clustering.
This is common to partition-based clustering algorithms [5]. Besides the provision of the
value of K a priori, it is actually expected that the clusters centers are also to be identified,
and then the algorithm performs the partitioning tasks iterative until a solution is achieved.
On the contrary, hierarchical clustering algorithms group objects into clusters without any
knowledge of how many clusters there should be in the clustering task. This paper deals
with the partition-based K-means clustering.

The task of determining K a priori actually results into the problem of determining
which cluster each object belongs. Clearly, the initial K has impact on the performance of
the algorithm. A wrong choice ofK results in the algorithm converging to a local minimum
instead of an expected global minimum solution. Running the algorithm several times with
different initializations tend to overcome this problem. However, this process results in
high computational time. A number of algorithms have been suggested to determine a
suitable value of initial K, see for example ISODATA [3], SYNERACT [7], DYNOC [8]
and MLBG [9]. However, all these algorithms contain sensitive parameters, and this means
that trying to solve one problem creates another of similar nature.

Under the above circumstances, we incorporate a preprocessor prior to the execution
of K-means. The silhouette validity index [20] plays an important role in determining the
initial K in the preprocessor. We have shown that this optimizes K-means’ performance in
clustering the high dimensional data sets.

The remaining part of this paper is divided into sections as follows: Section 2 focuses
on the preliminaries and related literature; Section 3 describes the new approach suggested
for high dimensional data. Section 4 briefly presents the silhouette validity index. Section 5
shows the experimental results and Section 6 presents the concluding remarks.

2 The clustering task: data sets, similarity measures
and algorithms

2.1 The data set
Associated with a given data set

S =
{
x1, x2, · · · , xN

}
, (1)

that needs clustering, are the attributes (xi1, x
i
2, · · · , xiD) of xi ∈ S and N is the maxi-

mum number of items in the data set. For a numerical data set S, each j-th attribute xij
in xi is real and hence xi ∈ RD. However, for a mixed data set features of xi are gen-
erally two: numerical and categorical. Therefore, the attributes of xi can be written as
(xi1, x

i
2, · · · , xip, yi1, yi2, · · · , yiq), p+ q = D, where yi1, y

i
2, · · · , yiq are categorical values.

Biological data being considered in this paper are that of nucleic acids - Deoxyribonu-
cleic acid (DNA) and ribonucleic acid (RNA). Thus the categorical biological data set S

xi = (AAAAUUUUGGGCCAAAGGCCCUUUAAGCCCGG) for RNA (2)
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and

xi = (AAAATTTTGGGCCAAAGGCCCTTTAAGCCCGG) for DNA. (3)

DNA is a double helix structure with two strands of re-occurring nucleotides held together
by base pairing. The top of the helix consists of a Guanine-Cytosine (GC) pair, referred
to as purines, while the bottom consists of an Adeline-Thymine (AT) pair, referred to as
pyrimidines. The GC base pair forms three hydrogen bonds, whereas the AT base pair
forms two hydrogen bonds. DNA is a polymer with the nucleotides forming the monomer
units. In its double stranded form, DNA is the genetic material of most organisms. The two
strands form a double helix with the strands running in opposite directions as determined by
the sugar-phosphate backbone of the molecule. DNA is represented in chains of symbols
- AGCT (Adenine, Guanine, Cytosine, Thymine). For the purpose of this research they
are represented as in (3). RNA is a bi-molecule made up of a chain of nucleotides as
DNA, except that RNA introduces uracil (U) in place of Thymine (T). RNA and DNA are
functionally and structurally different. A RNA strand folds onto itself. The folds form
hydrogen bonds between G and C, A and U, and G and U, and their respective mirror
images. The hydrogen bonds bind the base pairs to form DNA. There are enough literature
for those interested in studying more of the structure of nucleic acids [12, 13, 14, 15].

The clustering process involved in this paper uses the above type of data. However,
for the clustering purpose the biological sequence data have been converted into numerical
data. Nucleic acids are represented in 3 dimension. During the sequencing process (that is,
the process of converting nucleic acids into readable sequences) the 3 dimensional structure
is rendered in a chain of nucleotides. The sequencing process renders the sequences in high-
and multi-dimensions.

2.2 The similarity measure
An important component of a clustering algorithm is the distance measure between data
points, say xi and xj . For continuous numerical data sets the squared Euclidean distance

dij = d(xi, xj) =
D∑

k=1

(xik − x
j
k)2 (4)

is often used. The other well known similarity measure is the cosine similarity measure:

dij = d(xi, xj) =
xi·xj

‖xi‖‖xj‖
, (5)

where ‖xi‖ is the length of the vector xi, and xi·xj is the dot product between vectors xi

and xj . We have implemented both measures for comparison purposes.

2.3 The K-means algorithm
The minimization problem involved in the K-means algorithm for numerical data set can
be formally written as follows [10]:

min
K∑

m=1

N∑
i=1

rim d(xi, Cm), rim ∈ {0, 1}, subject to

K∑
m=1

rim = 1, ∀i, and
N∑
i=1

rim > 0, ∀m,
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where Cm is the centroid of the m-th cluster and d(xi, Cm) is defined by equation (4) or
(5). If xi is assigned to cluster m then rim = 1. The clustering process partitions a data set
into K clusters Si (i = 1, 2, · · · ,K) such that

(i) Si 6= ∅, i = 1, · · · ,K;
(ii)
⋃K

i=1 S
i = S

(iii) Si ∩ Sj = ∅,∀ i, j = 1 · · · ,K and i 6= j.

The basic steps of the K-means algorithm for numerical data set are as follows.

Algorithm 1: K-means clustering

Step 1. Assign K initial centroids C1, C2, · · · , CK , one for each cluster Sm.

Step 2. For each data element xi ∈ S find the nearest Cm according to some similarity
measure, e.g. the measures (4) or (5), and assign xi to the cluster Sm.

Step 3. For each cluster Sm calculate a new centroid Cm.

Step 4. If some stopping condition λ is reached stop Algorithm 1 else goto Step 2 with the
new centroids C1, C2, · · · , CK .

2.4 The modified K-means algorithms
A number of modified K-means algorithms have been proposed in the literature. The
purpose of these modified versions is to handle the problem related to initial K value.

Turi [6] proposed a K-means algorithm by dynamically changing the value of K as
the iterations progress. Central to this algorithm are the merging and splitting of clusters.
However, the algorithm requires the user to specify the values of several parameters (e.g.
the merging and splitting thresholds). These parameters have a profound effect on the
performance of making the result subjective.

Huang [7] proposed a K-means algorithms, referred to as SYNERACT. SYNERACT
combinesK-means algorithm with hierarchical divisive approaches to overcomeK-means’
setbacks. SYNERACT employs a hyper-plane to split a cluster into two smaller clusters
and then compute their centroids, performs an iterative clustering to assign objects into
clusters, and constructs a binary tree to store clusters generated from the splitting process.
This method does not demand the initial provision ofK and the initial location of centroids
before the clustering task. However, the user is expected to specify the values of two
parameters needed for the splitting process.

The dynamic optimal cluster-seek (DYNOC) algorithm was introduced by Tou [8].
DYNOC is a dynamic clustering algorithm. It achieves a maximization of the ratio of
the minimum inter-cluster distance to the maximum intra-cluster distance through an iter-
ative procedure with the capability of splitting and merging clusters. There are however
user-specified parameters that suggest whether splitting or merging are necessary.

Rosenberger and Chehdi [9] attempted an improvement on K-means by introducing an
iterative procedure known as the modified Linde-Buzo-Gray (MLBG) algorithm. MLBG
automatically finds the number of clusters in a data set by using intermediate results. A
cluster maximizing an intra-cluster distance measure is chosen for splitting iteratively. In
the process, two cluster centroids are generated from the initial cluster. The first cluster
centroid, C1, is initialized to the centroid of the original (initial) cluster. The second cluster
centroid, C2, is chosen to be the object in the original cluster which is the most distant from
C1. At this point, K-means is on the new K + 1 centroids. The acceptance of the new set
of centroids depends on if an evaluation criterion based on a dispersion measure is satisfied.
This process is repeated until there are no valid partitions in the data set. The main problem
with this method is that it requires the specification of the values of four parameters which
have a fundamental effect on the resultant number of clusters [11].
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The K-means algorithm is found to be the best applied to numeric data [16], and
the modifications, discussed above, dealing with numerical data set are very encourag-
ing. However, the application of the K-means algorithm to mixed data set are extremely
limited. An attempt is made by Gupta et. al. [17] to apply the K-means algorithm by
adopting two different similarity measures. An integrated cost function is suggested which
has two components. A cost owing to numeric attributes is minimized by usual way i.e.
assigning elements to clusters, while the other cost, owing to categorical attributes, is min-
imized by selecting the categorical elements of centroid. However, the method of Gupta
et. al. [17] has neither been justified by mathematical means nor has it been validated
by sufficient numerical testing. In addition, the method is not parameter-free. Finally,
although Andreopoulos, et al. introduced a bi-level clustering of mixed categorical and
numerical biomedical (gene expression) data [24], the clustering of categorical biological
data set (nucleic or amino acids) is not so much addressed in the literature. This paper
is concerned with the investigation of the performance of K-means in the clustering of
high/multi-dimensional data of which biological sequence data is one. Biological data sets
investigated in this paper contains high and multi-dimensional data sequence xi, and to the
best of our knowledge, there is no K-means algorithm developed for clustering of these
data sets. Also, conventional clustering methods cannot be applied to the clustering of bi-
ological data owing to the structural nature of the data [25]. Hence, we have decided to
study this clustering problem.

3 Application of K-means to biological sequence data
In this paper, we investigate the ability of K-means in the clustering of high and multi-
dimensional data sets - a situation where the input data are of several dimensions. In addi-
tion, the biological sequence data sets we consider are naturally not numeric. The original
objective of the K-means algorithm [4] and the subsequent findings [16] suggest that the
numerical presentations of the categorical biological data set is needed for successful appli-
cations ofK-means. For this, we use conversions from symbols to numeric by representing
each sequence in the data set in a D-dimensional space through the application of a comma
delimited conversion format. In particular, the nucleic acid symbols are represented numer-
ically as follows: A = 1, C = 2, G = 3 and U or T = 4. For the clustering of a biological
sequence data set, we adopt the following two separate approaches.

• Firstly, the sequences in the data set were truncated to a uniform dimension before
the clustering, leaving the sequences in their high-dimensional state.

• Secondly, the dimension of each of the sequences was reduced to a uniform low
dimension (Dr) before clustering.

We define the dimension reduction by introducing the following concepts and definitions.
LetN represent the number of nucleotides in a sequence; l, the sequence length; ni, the i-th
individual nucleotides (symbols) in a sequence already represented in numeric format. It is
important to note that it is conventional to state that N = l in cases where the delimiters
are not counted to constitute part of the length e.g. as presented by equations (2) and (3).
We calculate the coordinates of a sequence xi ∈ S as follows:

Qi =

 d̄1∑
i=1

ni,

d̄2∑
i=d̄1+1

ni, · · · ,
D∑

i=d̄j+1

ni

 , (6)

where d̄p =
∑p

i=1 di with d̄1 = d1, p = 1, 2, · · · , j. We use dp = dq, p 6= q for all p, q =
1, 2, · · · , j, whenever possible. When this is not possible an integer in {d1, d2, · · · , dj} is
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selected at random and its value is adjusted so that(
j∑

k=1

dk

)
+
(
D − d̄j

)
= D.

where di is any converted nucleotide in xi.
A two dimensional representation of Equation (6) is given by:

Qi =

 d1∑
i=1

ni,
N∑

i=d1+1

ni

 . (7)

If the coordinates ofQi become large then they can be represented in ratios of least common
multiples, but this was not required for the data sets we considered for numerical testing.
We have implemented both the above procedures for the clustering of the nucleic acid
sequences.

4 The silhouette index
The silhouette validity index for each data element is simply a measure of how similar
that data element is to elements in its own cluster compared to elements in other clusters
[18, 19]. It ranges from -1 to +1. The silhouette validation index is particularly useful when
seeking to know the number of clusters that will produce compact and clearly separated
clusters [21, 22, 20]. The silhouette index [20, 23] of the element xi of a cluster Sj is
defined as

qi =
b(i)− a(i)

max {a(i), b(i)}
, −1 ≤ qi ≤ 1, (8)

where a(i) is the average similarity between xi and the rest of the objects in cluster Sj and
b(i) is the minimum average similarity between object xi and the rest of the objects in all
the clusters, defined as

min
Sm 6=Sj

d(xi, Sm) (m = 1, 2, · · · ,K;m 6= j).

Every object xi with a silhouette index close to 1 indicates it belongs to the cluster being
assigned. A value of zero indicates that the object could also be assigned to another closest
cluster. A value close to -1 indicates that the object is in a wrong cluster or somewhere
in between the clusters. The highest value indicates the best clustering, meaning that the
number of clusters selected for the clustering is the best [20].

5 Experimental results and performance analysis

5.1 Application to high dimensional data
We begin with the application of theK-means algorithm on high dimensional data sets. Six
datasets were used, namely emblFasta Rickettsia typhi str. RNA sequences with Accession
Number AE017197 from Wilmington Complete Genome of 1111500 nucleotides, Homo
sapiens’ melanatonic melanoma DNA sequences, mRNA bos taurus sequences from Ge-
netic Sequence Databank with Accession Number BE484664 obtained from the work of
Sonstegard, et al [26], and DNA dental sequences from Department of Micro-biology, Uni-
versity of Pretoria, South Africa. Each data set contains data elements (sequences) of equal
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length, due to the truncation mentioned earlier. The K-means algorithm was applied more
than once on a data set to see the effect of K in the clustering process. Results of this
investigation is presented in Table 1. In Table 1, the following symbols are used: i (data
set), N (size of data set), D (dimension), K (number of clusters), IE (number of iterations
required when using squared Euclidean distance), IC (number of iterations required when
using cosine similarity measure), TdE (distance using squared Euclidean), TdC (distance
using cosine measure), ShE (silhouette mean under Euclidean distance) and ShC (silhou-
ette mean under cosine measure). The data in columns under ‘Total distance’ are the total
intra cluster distance from the centroid of formed clusters1. That is if there are three clus-
ters and dij is the distance the i-th element (of the j-th cluster Sj with nj elements) and
its centroid Cj , then the total is calculated over the three centroids of clusters of the data
set, generated during the iteration process. This means that the total sum of distance is the
value realized at the last iteration when the algorithm reaches a minimum, and the total is
calculated over the set {

n1∑
i=1

d1i,

n2∑
i=1

d2i,

n3∑
i=1

d3i

}
.

The data in columns under ‘Silhouette mean’ are the average of the silhouette values. For
example, the average silhouette index values for the m-th cluster is given by

Q(m) =
1

n(m)

n(m)∑
i=1

qi(m),

where qi(m) is the silhouette value for the i-th member of them-th cluster, and n(m) is the
total number of elements in the m-th cluster. The values presented in the last two columns
in Table 1 are therefore the values 1

K

∑K
m=1Q(m), whereK is the total number of clusters.

Table 1: Effects of K in the K-means algorithm applied to the high dimensional data
Iterations Total distance Silhouette mean

i N D K IE IC TdE TdC ShE ShC
1 117 128 5 7 11 16264.3 8.71803 0.0335 0.0338

117 128 10 11 9 14791.7 7.99373 0.0533 0.0396
2 117 198 5 20 10 25844.5 9.03496 0.0180 0.0288

117 198 10 11 7 23776.3 8.32794 0.0309 0.0318
3 100 50 4 12 10 4654.08 6.19611 0.0622 0.0561

100 50 6 7 11 4968.8 7.8109 0.0663 0.0656
4 50 50 5 8 5 2366.79 3.24409 0.0916 0.0742

50 50 4 7 11 2512.22 3.3818 0.0707 0.0720
5 50 20 5 6 5 865.011 2.93337 0.1260 0.1270

50 20 4 4 11 937.727 3.13017 0.0995 0.1281
6 20 50 4 4 3 829.083 1.16313 0.1193 0.1134

20 50 3 3 4 919.786 1.30774 0.0962 0.1077

To see the effect of K we study the the 4th and 5th major columns (Total sum of dis-
tances and Silhouette mean) in Table 1. The total sum of distances should be as low as
possible–a better clustering should give a lower value of the total sum of distances. How-
ever, these values seem quite high. We therefore study the silhouette means in Table 1.

1The total sum of distances decreases at each iteration as K means reassigns points between clusters and
recomputes cluster centroids.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: The Silhouette plots for clusters of high dimensional data with various values of K,
with the squared Euclidean distance measure [(Figs. 1(a), (c) - (128D) and (f) - (50D)) and the
Cosine similarity measure (Figs. 1(b) and (d) - (128D) and (e) - (50D))].
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These values determine how far apart the clusters are. With a high value, the cluster qual-
ity is near optimal. Again these values seems non-optimal. To visualize the cluster-wise
silhouette index values, we present in Figure 1 the silhouette plot of generated clusters.
For this we have used data sets 1 and 3 in Table 1. Figures 1(a) and 1(c) are, respectively,
for K=5 and 10 using squared Euclidean measure, data set 1. Figures 1(b) and 1(d) are,
respectively, for K=5 and 10 using cosine measure, data set 1. Figures 1(e) and 1(f) are
for the data set 3 using cosine and Euclidean measures respectively, K=4. Figure 1 clearly
shows that the many silhouette values are negative and the overall results are unsatisfactory.
Observe from Table 1 and Figure 1 that as the dimension decreases, the result of the clus-
tering becomes better. It is clear from the figures that the value of K greatly determines the
cluster quality.

5.2 The preprocessor of the K-means algorithm
To deal with the initialization problem ofK, we suggest an automatic initialization scheme.
The silhouette mean under Euclidean distance measure, ShE , presented in Table 1 plays
the most important role in the scheme. For an initial value of K, provided by the user, the
Algorithm 1 (the K-means algorithm) is run for a small number of iterations (e.g. typically
3) three times, respectively using K − 2, K and K + 2. Three corresponding ShE values
corresponding to K − 2, K and K + 2 are found (hereafter denoted as ShE(K − 2),
ShE(K) and ShE(K + 2), respectively). The initial value, Ko, of K is then assigned
using the following procedure:

1. If ShE(K − 2) < ShE(K) and ShE(K) > ShE(K + 2) then the Algorithm 1
is run again twice (each time for 3 iterations) using K + 1 and K − 1 and the cor-
responding ShE(K − 1) and ShE(K + 1) are found. The maximum value of three
{ShE(K−1), ShE(K) andShE(K+1)} then determinesKo. For example if ShE(K−1)
is the maximum then we assign Ko = K − 1.

2. If ShE(K + 2) > ShE(K) and ShE(K + 2) > ShE(K − 2) then the Algorithm 1 is
run again using K + 1, K + 3 and K + 4. The K value corresponding to the maximum in
{ShE(K + 1), ShE(K + 2), ShE(K + 3), ShE(K + 4)} is then assigned to Ko.

3. If ShE(K + 2) < ShE(K − 2) and ShE(K) < ShE(K − 2) then the value corre-
sponding to the maximum in {ShE(K − 1), ShE(K − 2), ShE(K − 3), ShE(K − 4)} is
then assigned to Ko.

The initial value2, Ko, of K found using the above procedure is then used to find Ko

clusters using K-means algorithm, i.e. the Algorithm 1. To test the effectiveness of the
above procedure we use two data sets from Table 1, namely the first and the third data sets.
We have used the initial K in the preprocessor as given in Table 1. Results obtained are
presented in Table 2. Table 2 clearly shows that the results have been improved for both

Table 2: Effects of preprocessor in the K-means algorithm
Iterations Total distance Silhouette mean

i N D K Ko IE IC TdE TdC ShE ShC
1 117 128 5 8 10 7 14576.1 7.8258 0.0437 0.0415
3 100 50 4 5 6 5 3052.75 3.05384 0.1163 0.1143

2The above process consisting of steps 1-3 can be repeated anew (with a new K) if the ShE increases mono-
tonically. However, this was not needed for our implementation.
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(a) (b)

Figure 2: The silhouette plots for clusters derived for reduced dimension e.g for Dr=2 and
without preprocessor: K = 10, N= 117, [(a) Euclidean], [(b) Cosine].

data sets, although the problem dimension is very high.

5.3 Application to reduced dimensional data without preproces-
sor
A further test was done on K-means algorithm without the preprocessor scheme using the
data sets presented in Table 1, but with reduced dimensions (Dr). We first test data sets
of dimension two obtained by equation (7). We use the data sets presented in Table 1 and
present the results obtained in Table 3. To see the effect of reduced dimensionality we do
not incorporate the preprocessor in this experiment. We also use the same K values as in
Table 1 as this will allow us to compare Tables 1 and 3 directly. The results in Table 3 show
significant improvement in all data sets with high silhouette means than those in Table 1.
We present two figures, both for the data set 1 (K=10), corresponding to two different
measures. Figures 2(a) and (b) correspond to the corresponding Figures 1(a) and (c). This
comparison also establishes positive effect of dimension reduction.

Table 3: Effects of reducing D in the K-means clustering, Dr=2
Iterations Total distance Silhouette mean

i N Previous D K IE IC TdE TdC ShE ShC
1 117 128 5 8 12 7021.1 0.0110784 0.5377 0.7014

117 128 10 16 6 3240.82 0.00461887 0.5184 0.6808
2 117 198 5 12 9 10019.5 0.00600523 0.5879 0.7000

117 198 10 9 12 5678.06 0.00242334 0.5118 0.6507
3 100 50 4 15 5 2461.83 0.0221821 0.5103 0.7254

100 50 6 9 13 1697.71 0.0106729 0.4941 0.7253
4 50 50 4 9 4 1018.37 0.0074717 0.5014 0.7700

50 50 5 6 4 815.016 0.00648176 0.5038 0.7492
5 50 20 5 4 4 291.551 0.0144597 0.4524 0.6780

50 20 4 13 5 350.375 0.0275186 0.4736 0.6206
6 20 50 4 3 3 184.571 0.00327066 0.6619 0.5042

20 50 3 2 6 329.19 0.00360131 0.5612 0.7446
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(a) (b)

(c) (d)

Figure 3: The silhouette plots for clusters of 50 data points (data set 4)[(a) Ko= 4 (Cosine
measure) and (b) Ko=4 (squared Euclidean measure)] and 88 data points (data set 10)[(c) Ko=3
(cosine measure), and (d) Ko=3 (squared Euclidean measure)]

Table 4: Optimal Ko in the K-means algorithm
Iterations Total distance Silhouette mean

i N Ko K IE IC TdE TdC ShE ShC
1 117 7 5 6 7 3940.84 0.146286 0.6587 0.8110
2 117 6 5 5 5 5767.98 0.608631 0.6837 0.7358
3 100 5 6 6 7 6142.24 0.453146 0.6687 0.7923
4 50 4 5 9 6 7338.64 0.625917 0.7508 0.7859
5 50 6 4 10 7 12943.3 0.967989 0.7246 0.8021
6 20 7 3 13 7 3322.21 0.137556 0.7537 0.7898
7 88 6 7 5 9 4017.84 0.148084 0.6869 0.8072
8 88 5 5 5 4 4210.39 0.319518 0.7433 0.8143
9 88 4 3 6 5 8646.92 0.46525 0.6207 0.7772

10 88 3 6 6 3 9514.41 0.64087 0.7546 0.8348

5.4 Application to reduced dimensional data with preprocessor
We now study the effect of both reduced dimension and preprocessor on 10 data sets. We
first consider Dr=2 and present the results in Table 4, where the first 6 data sets are the
same data sets considered before.

To see the effect of the dimension reduction we now compare the same data set in
Tables 2 and 4, i.e. the data set 1 in Tables 2 and 4. Results show that Ko corresponding
to this data set in both tables are very close. This proves the effect of preprocessor as well
as the dimension reduction in K-means for categorical biological data sets. Notice that for
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data set 8, K and Ko are the same. This means that the initial K assigned to preprocessor
remained the same.

We further present the silhouette values in Figure 3 for two data sets of 50 and 88
data points, respectively, with reduced dimensions. These are respectively the 4th and 10th
data sets presented in Table 4. These figures clearly shows well separated clusters. The
usefulness of the silhouette value in the clustering task as well as the incorporation of the
preprocessor are now evident.

An obvious question that one may rise is how to identify an appropriate value for the
reduced dimension, Dr. To address this question, we reproduce the values of the data set 1
in Table 3 using Dr=3. Results obtained are very similar. For example, for K=10 we ob-
tained the following values: TdE=5448.01, TdC=0.1872, ShE=0.4210, and ShC=0.6062.
We present the corresponding graph for K=10 in Figure 4. In addition, we present a graph
for the data set 3.

(a) (b)

Figure 4: The silhouette plots for clusters of 117 data points (data set 1)[(a) K= 10 (Euclidean
measure) and (b) K=4 (Euclidean measure)] and 100 data points (data set 3)

Although preprocessor has not been used for this experiment, the graphs produced show
that silhouette values are fairly acceptable. These results can be further improved by the
use of preprocessor. Our experiments have shown that the optimized values are not exactly
the same, for Dr=2 and 3, but they are within an acceptable level of closeness. Hence, we
suggest that Dr=2 is a good value to choose.

6 Conclusion and further research
We have studied the usefulness of the K-means algorithm for clustering the categorical
biological sequence data. These sequences consist of alphabets and are of high and multi-
dimensional in nature. We introduced a numerical equivalence sequence of the categorical
data. To reduce the effect of initial K in K-means we have introduced a preprocessor
scheme. We have shown that significant gains in optimality can be achieved by using the
preprocessor. In addition, we introduced a dimension reduction technique which when
applied with the preprocessor produces well separated clusters.

It is necessary to state here that the work presented in this paper is not about comparing
the performance of algorithms. We have not also said that K-means is better than any other
algorithm. Since K-means clustering algorithm have been widely researched, we have only
investigated its performance in the clustering of high and multi-dimensional categorical
data (in this case biological sequence data were used). Suffice us to say that the clustering
technique introduced in the paper is new and thus can be applied to many similar practical
problems.
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