Benefits of Optimisation and Model Predictive Control
on a Fully Autogenous Mill with Variable Speed

C.W. Steyn, C. Sandrock*

Department of Chemical Engineering, University of Pretoria, ¢/o Roper and Lynwood
Road, Pretoria, South Africa
corresponding author: carl.sandrock@up.ac.za

*

Abstract

Autogenous (AG) milling is utilised around the world for particle size reduc-
tion. The system exhibits highly non-linear behaviour in addition to being
subject to unmeasured variability associated with most ore bodies. Anglo
American Platinum aimed at improving online optimisation of the circuit
by implementing industrial model predictive control (MPC) to reduce sys-
tem variability and continuously drive towards the optimal operating point
within system constraints.

The industrial dynamic matrix controller commissioned on the AG mill
with a variable speed drive resulted in a 66 % reduction in power and a
40 % reduction in load standard deviation. These are the main controlled
variables of the mill. The controller also improved the objective function,
effective power utilisation, by 11 %. This reduction in operated variable
variability enabled a test campaign where the mill was controlled at various
operating regions in order to establish the conditions conducive to the finest
product size at a given mill feed rate.

Moving the mill operating region from the benchmarked plant to the
optimal grind environment and stabilising the mill at this point with the
model predictive controller provided an estimated potential recovery increase
of 0.32 % (absolute) due to better liberation.

Keywords: autogenous, milling, optimisation, response surface analysis,
model based control, benefit analysis, variable speed
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Table 1: List of Variables

Symbol  Description

CV Controlled variable

MV Manipulated variable

J Objective function

f Open loop response vector of the system

SSCost; Steady state cost for MV ¢

G The multi-variable free response matrix of the system

y System outputs (CVs)

u System inputs (MVs)

Npower Effective power utilisation of the milling circuit in
kWh/t(passing 75 um) produced

S Mill speed in % critical speed

W, at Mill inlet water ratio

F Mill ore feed in tph

G Product grind in % passing 75 pum

PR Potential Recovery

P(7) Profit function in terms of variable i

C(1) Cost function in terms of variable i

PNP Potential net profit

PF Performance function

1. Introduction

A large portion of the total operating cost in the mineral beneficiation
process is associated with comminution circuits. The highest costs in these
operations are normally grinding media and energy. Since the global eco-
nomic downturn at the end of 2008, the control of these cost elements, to-
gether with optimised performance especially on the milling component of
these circuits, has become increasingly important.

Anglo American Platinum employs numerous fully autogenous (AG) pri-
mary mills. All are under Neuro-Fuzzy control, applied in a manner suitably
robust to perform in the non-linear, highly unmeasured environment of pri-
mary milling (Steyn et al., 2010). These mills have recently been fitted with
model predictive controllers that enable real-time optimisation and minimise



a power utilisation objective function (kWh/t_z5,,). The algorithm was
originally piloted on one of Anglo American Platinum’s ROM mills, Mototolo
JV. The success of the controller was immediately evident, demonstrating a
reduction in variability of between 15 % and 20 % on the primary milling
parameters (see figure 1) and also improving energy efficiency. A reduction
in controller input variance with a clear bias towards the local optimum in
the top left corner of the feasible region is indicated in figure 1.
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Figure 1: A 2D density plot of the power and load for Mototolo (JV) ROM primary mill
on data a)two weeks prior and b) two weeks post MPC implementation.

The next step in the milling optimisation initiative was to implement a
similar solution on its AG mills with the following objectives:

1. Obtain similar variability reduction in the system’s main controlled
variables, power and load

2. Find the optimal operating using grindcurves (Powell and Mainza,
2006; van der Westhuizen and Powell, 2006) and exploit this in the
MPC algorithm to operate the mill in a way that maximises financial
benefit

3. Quantify the real benefits of reducing the variability in the mill and
stabilising the circuit at the optimum operating conditions



The primary AG mill at Rustenburg Platinum Mines Amandelbult UG2 No2
(RPMAZ2) plant was selected for this application due to the additional po-
tential of its variable speed facility. To achieve the objectives listed above,
the following goals were established:

Benchmark the system based on the key performance indicators that have
been established for comminution circuits.

Model the relationship between the identified variables in a dynamic em-
pirical model suitable for use in an online controller.

Optimise the operation of the mill by utilising the improved circuit stability
in a trial to determine the optimal operating region.

Analyse the benefits that the advanced controller introduces to the sys-
tem.

2. Circuit Benchmark

2.1. Process Description

Rustenburg Platinum Mines Amandelbult UG2 No.2 (RPMA2) is one
of Anglo American Platinum’s mineral ore processing plants situated in the
North West province of South Africa. Ore from the mine undergoes one
stage of top size reduction in a primary jaw-crusher before it is classified by
a 100 mm grizzly screen and conveyed to the fine and coarse ore silos. The
fine and coarse ore is treated by a 6.1 m ¢ x 8.5 m fully autogenous primary
mill (see figure 2). Autogenous mills are defined by the ore being the only
source of grinding media and the absence of a secondary media such as steel.
The circuit is operated in a closed loop with a horizontal vibrating screen
fitted with 630 pum polyurethane classification panels. The oversize from the
screen is recycled to the feed of the mill while the undersize particles are
gravity fed to an agitated 200 m® flotation feed surge vessel (rougher feed
tank).

2.2. Control Infrastructure

Anglo American Platinum follows a two-tiered approach when controlling
its primary mills. The top tier consists of an in-house developed supervisory
advanced control system that is based on fuzzy-logic rules and cascades to
the bottom tier base-layer control schema (Steyn et al., 2010). The base-layer
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control of the circuit runs on the PLC which accounts for the PID control
algorithms, interlocks and sequences. The mill is controlled by providing
three manipulated variables (MVs) with setpoints from either the human-
machine interface (HMI) or the advanced control layer. These MVs are (use
figure 2 as reference):

Total ore feed-rate Controlled by a PID controller that cascades down
to a coarse ore ratio controller. The total ore process variable PV is
obtained from a weightometer situated on the combined ore (fine +
coarse) feed belt.

Coarse ore ratio This is the ratio of coarse ore mass flow to total ore
mass flow (excluding the recycled ore). The ratio controller cascades
to two ore feed rate PID controllers, which both receive their PVs from
weightometers situated on the coarse and fine ore feed conveyor belts
and actuate the respective ore feeders.

Inlet water ratio The PV of this controller is the calculated ratio of inlet
water flow to total ore fed to the mill. The SP is assigned to a ratio
controller that cascades down to a flow PID controller which actuates
the inlet water control valve.

The advanced milling controller at RPMA2 utilises a 3x3 Quasi-Fuzzy
Rules-Based controller that uses the same SP as the base layer to control
the power, load and screen current of the circuit. An MPC with real-time
optimisation was added to the advanced layer. The MPC is used during
normal operation, but control is switched to the fuzzy system during abnor-
mal situations. The selection between the two algorithms is governed by the
supervisory controller that detects normal or abnormal conditions based on
process state rules.

2.3. Controller Design and Implementation

In this instance, Anglo American Platinum has used AspenTech DMCplus™
as the platform to develop its model predictive control infrastructure.

2.3.1. Control Law for DMCplus™

The model predictive control solution is computationally intensive and
in some cases it is difficult to ensure feasibility when solving the quadratic
objective function given in equation 1.
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Figure 2: Anglo American Platinum’s primary milling base-later control infrastructure at
RPMA2



J(Ny, Na, N, 25 G+t —w(t+5)] +Z>\ [Au(t+j—1)? (1)

j=Ny

In an attempt to industrialise the algorithm, AspenTech developed a staged
procedure where feasibility is ensured upfront (possibly by relaxing con-
straints). This enables an analytic solution of the MV trajectory. This
four staged procedure is explained as follows with each cycle abiding to the
routine (AspenTech, 2000):

1. Open Loop Prediction The open-loop prediction or free response of the
system can be extended as the sum of four effects; f, the response of the
system due to past control movement, Dd + f; the response to known
disturbances and f,, unmeasured system disturbances or model error.

f=f,+Dd+f+f, (2)

2. Obtaining a Feasible Solution The next step in the DMCplus™ con-
trol law is to determine whether a feasible solution is possible for any
combination of inputs. A feasible solution is possible when the allowed
MV movement within the MV constraints can bring all the CVs within
limits (figure 3). If no solution is available, the algorithm will relax its
CV limits in accordance to a rank of importance.

As soon as a solution is available, the algorithm proceeds to the next
step with an updated set of CV limits required for a feasible solution.

3. Steady-State Optimisation The aim of optimisation is to minimise the
objective function for a given system within the allowable process con-
straints (Snyman, 2005). The mathematical form of this constrained
problem is given as follows:

Hlll’lf(-f), x:[mlanV":mn]TeR (3>
Subject to constraints usually of the form:

gj(xz) <0, ji=12,....m
hj(xz) =0, ji=12...,r
The AspenTech framework (DMCplus™) allows for the usage of ei-

ther linear or quadratic programming (AspenTech DMCplus™ course
notes):
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Figure 3: Graphical representation of the feasible region defined by MV and CV constraints



(a) Linear Programming A special case of general optimisation arises
when both the objective function and the constraints are linear
functions (Snyman, 2005). Such an instance is called linear pro-
gramming, stated in the following form:

min f(r) = cTx

such that (4)
Ax<b

Within DMCplus™ the vector ¢ in equation 4 is an n-vector con-
taining the steady-state cost parameter SSCost allocated to each
manipulated variable. The SSCost vector represents the direction
of minimising the linear programming objective function. Aug,
represents the steady state MV step conducive to the lowest J:

min J = Zn(SSC’osti X Atig) (5)

i=1

(b) Quadratic Programming The objective function is defined as a
positive-definite quadratic function subject to these linear con-
straints (Snyman, 2005). The minimisation function in DMCplus™
is given by:

2
min J = (Z n(SSCost; x Augs) — M) (6)
i=1
Where the maximum profit, M, is defined as the point on a plane
only subject to MV constraints (represented as “Optimum Point”
in figure 3)
4. Future MV movement The next step in the DMC control law is to
calculate the future input movement in order to get the outputs to the
steady-state end values.

(a) Minimise CV Error
CV error e in this instance is defined as the difference between
the open loop response and the steady state value (or SP). MV
movement to achieve minimum CV error is given as:

Au = [GTG]1G e (7)



(b)

Minimise MV movement

Minimising CV error in the most aggressive manner might provide
the best control solution. Model error, circuit constraints etc. can
however, induce cycling and other unwanted control effects if ag-
gressive MV movement is allowed. An MV movement suppression
parameter K is added to equation 7 where:

K-Au=0 (8)

The components in equation 7 change as a result of MV minimi-
sation (equation 8) to:

, |G
G = {KJ ©)
C'V Importance

To distinguish between the importance of various CVs, a weight
W; is assigned to the error of each CV.

Au = [GTCI\GTeW (10)

2.8.2. Modelling

DMCplus™ conducts its process modelling by means of a step-test cam-
paign where all the independent parameters are moved in order to produce
responses from the dependent variables. Furthermore, DMCplus™ utilises
finite-impulse-response as well as state-space modelling (Camacho and Bor-
dons, 2007), as techniques to determine the matrix of linear models describing
the milling circuit relationships.

The following characteristics are observed from the response matrix ob-
tained during September 2010:

General.

1. The model horizon (or prediction horizon) of the controller that pro-

2.

duced the most reliable models was 60 minutes.

One of the most significant observations is that the mill load behaviour
is described as an integrator over the allocated model horizon.

The inlet water ratio to mill power model presented a positive gain for
the operating region of the mill. This indicates, according to Morell
and Kojovic (1996), that the flowrate through the mill is low enough
for the interstices within the charge not to be completely occupied and
that no slurry pool has formed.
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4. Speed increases produced a positive, higher order, underdamped re-
sponse from power which concurs with the findings of van der West-
huizen and Powell (2006).

Model Gain. If the system is scaled according to input range and output
error (Skogestad and Postlethwaite, 2005), the ore feed yields the largest
power gain with inlet water the second highest. Mill speed yields the largest
gain on mill load for both scaled and unscaled models with inlet water ratio
in second. It is noticeable that the coarse ore ratio produced the lowest scaled
gain for both power and load.

Mill Power Step-Response Gain Mill Load Integrating Rate

20 0 -
tio Feed d CORatio fee
10 — I 1)
0 N 004

IWRatio Feed Speed CORatio

FeedSize

B Engineering Units (kW)  OlInput/Error Scaled (x30) M Engineering Units (t/min) O Input/Error Scaled

Figure 4: The step-response model gain and integrating rate for mill power and load
respectively

2.3.3. Objective Function

The objective of this controller is to minimise the effective power usage
TNpower Of the milling circuit, in units kWh/t_z5,,,,. The direction and mag-
nitude of the SSCost vector in equation 5 are obtained by modelling the
effective power usage of the mill to the speed and inlet water ratio.

In the absence of an online measurement, the 8 hour (shiftly) composite
grind samples are used to calculate 7,oper. This calculation is used to model
the objective function using the manipulated variables speed S, inlet-water
ratio W,4 and mill feed rate F'. A linear fit was performed where, as per
equation 5, the SSCost vector is defined by the model coefficients. 450 valid
shiftly samples were obtained during the period 1 January 2010 to 1 October
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2010. The linear regression model achieved an R? = 20 % which is fairly low
under normal circumstances. However, taking into account that composite
average samples over an 8 hour period were used, this model was assumed
to be good enough to serve as an indication for the optimisation directions.
A pure-quadratic regression was also carried out in order to validate the di-
rectionality of the linear model. A root-mean-square-error (RMSE) equal
to 1.7 kWh/t_75,,,, was achieved, which relative to 7pouer equates to an ac-
ceptable RMSE,.;, equal to 7 %. Both the linear and pure-quadratic model
resulted in positive coefficients for water and speed but negative for feed.
The linear objective function obtained used for the DMCplus™™ controller’s
steady-state optimisation can thus be presented dynamically as:

AJ = Ajpower = 6.6 4 0.27AS + 0.165AW, 4 — 0.022AF (11)

3. Optimisation

3.1. Optimisation Strategy

As explained, the mill feed maximisation is regarded as the primary ob-
jective and mill speed minimisation as secondary. In doing this, the mill inlet
water will be moved and kept at its high limit, to allow maximum speed re-
duction. This is due to the fact that the inlet water ratio shares a gain and
optimisation directionality with speed (considering load). The three degrees
of freedom available to the system are consumed by the feed high limit, the
load high limit due to reducing speed and the inlet water ratio high limit.
This optimisation strategy means that the mill will be fed at the target feed
rate while operated at an optimum viscosity (Klimpel, 1983; Napier-Munn
et al., 1999), optimum volumetric fill and lowest speed (van der Westhuizen
and Powell, 2006). The last three factors ensure the highest possible grind
for the given ore target.

3.2. Optimisation Framework

The objective of this framework is to verify the optimum operating region
of the mill, defined for a certain throughput, at the load and inlet water ratio
high limits. As the benefit of milling circuits is usually expressed in terms of
liberation or particle size distribution of the product (Hulbert, 2002; Sosa-
Blanco et al., 2000; Hodouin et al., 2001), the optimal operating region is
defined as the limits conducive to the best grind. These limits were obtained
by conducting two optimisation trials.
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First, the grind to load relationship was determined by operating the mill
at three different load high limits. The grindcurves which resulted from the
first trial suggest a second order polynomial grind/load model:

G(L)|w,p—024 = —0.0112% + 4.47 — 421.4 (12)

The maximum grind is obtained at % = —0.0222+4.4 = 0 which equates to a
mill load of Vigrindmaz = 211.2 ton mill load (see figure 5). The average power
obtained at these operating regions also formed a parabola with maximum
power of 2900 kW achieved to the left of Viring maz-
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Figure 5: RPMA2 primary AG Mill grindcurves

Next the effect of inlet water on grind was determined. Note that this
trial was aimed at expanding the response surface on the inlet water axis.
The response surface of the load and inlet-water resulted in a model that
obtained a root-mean-square-error value of 1.06 % or 3 % relative to the
mean of the grind. The pure-quadratic relationship of load and inlet water
ratio on grind is given as follows:

G'(L,W,q) = —0.0076 - L? + 3.2 - L+ 266 - W, — 592.48 - W2 —336.6 (13)

rat
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The point which maximised the grind based on equation 13 is obtained
at 2% = (0 and 8?@ = 0 for load and inlet water ratio, respectively. This
amounts to a load of L,, = 213 ton and an inlet water ratio of W, = 0.224.
It is important to note that this is only an empirical model, applicable to the
primary mill and UG2 ore body of RPMA2 at a nominal feed rate of 350 t/h.
Due to the seemingly high model error this optimum is not considered exact
but rather an approximate optimal operating region of the mill.

3.3. Performance Results

As a preliminary indication of the MPC performance, the first month of
operation (19 October to 22 November 2010) was compared to the baseline
Fuzzy-logic Controller (FLC) performance during the period 1 August 2010
to 9 September 2010. Only good quality data at a sampling rate of 1 point
per minute was used. This produced 16430 good data points during the
MPC period and 17180 during the FLC period. Good data was defined as
plant running data, determined by whether the mill was receiving a feed rate
higher than 100 tph.

The following results were observed:

Mill Load and Power The mill load standard deviation was decreased
from 6.8 ton to 2.3 ton, a 66 % decrease (figures 6). The standard
deviation of the mill power was reduced by 145 kW, from 364 kW to
219 kW. The 2D density plot illustrates how both the load and power
plots are more dense and closer to the load high limit as a direct result
of the reduction in deviation.

Hulbert (2002) and Craig and Koch (2003) warn that comparing the
performance of the improved, post-project circuit to the benchmarked
plant can lead to bias. The reason for this bias is due to unmeasured
external factors such as ore properties that might be different for the
two cases. The recommended way of removing such bias is to reducing
the effect of these external factors by conducting an experiment where
both the cases are utilised in a structured ON/OFF manner. This could
however not be performed due to the expense and time demands of a
properly designed ON/OFF experiment on an entire circuit. In order to
confirm the significant reduction in variability observed in figure 6, the
theoretical minimum variance of the load was investigated to determine
whether any change in ore properties are observed.
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Figure 6: Primary mill power to load curve as a 2D histogram with controller limits (red)
a) base-case (1 August to 9 September 2010) and b) first month of MPC operation (19
October to 22 November 2010)

The power spectral density of the mill load indicates a decrease in am-
plitude during MPC operation at frequencies w < 3 x 10~* (figure 7).
The mill load appears to converge on the minimum variance approxi-
mation at lower frequencies (see figure 7). This concurs with the results
shown in figure 6. The minimum variance of the load indicated very
little difference between data for before and after the project. This
implies that best-case control performance were similar during the two
periods in question and that ore-properties can be considered similar.

To further verify the reduction in variance, the historical standard devi-
ation of load on a month to month basis was compared to that observed
as a result of the project. A load standard deviation consistent with
the 6.8 ton observed in figure 6 was obtained for the 10 months be-
fore the project (figure 8). The reduction in load standard deviation
from 6.8 ton to 2.3 ton are observed for three months after commis-
sioning the MPC. This constitutes a 66 % reduction in load variability,
which is comparable to the 64 % reduction achieved by Rogers et al.
(2010) during a similar MPC application at Lumwana Copper. Further
reductions in variability of both MVs and CVs were reported in the lit-
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Figure 7: The mill load frequency comparison between pre and post MPC as well as the
load’s theoretical minimum variance response of the pre and post MPC. The theoretical
variance remains similar, while the actual obtained variance is lower than the pre-MPC
condition.
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erature when moving from fuzzy-logic expert systems to MPC (Jonas,
2008; Rogers et al., 2010).

Controller Commissioning
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Load Standard Deviation [ton]

Figure 8: The mill load standard deviation comparison between pre and post MPC over
time

Objective Function The effective power utilisation 7y, Was reduced by
11 %, from 25.2 kWh/t_75,m to 22.4 kWh/t_z5,,,,. The zero-hypothesis
of no difference between the means was rejected with a 99 % confidence
using a two-sample t-test, assuming unequal variance. A time based
plot of the normalised shiftly averages shows that this reduction in
Npower Was probably as a result of a change in operating philosophy
with a visible change in operating areas for MVs speed and inlet water
(figure 9). Note that the measured disturbance feed size remained
unchanged which indicates that the change in objective function was
probably not due to external factors.

3.4. Assessment of Neuro-Fuzzy and MPC Performance

It can be argued that the success of the MPC over the Neuro-Fuzzy
controller was due to insufficient tuning or bad design on the part of the latter.
There are however fundamental differences between the two algorithms which
should lead to more favourable results during MPC operation. The feed-
forward capability of the MPC allowed for better disturbance rejection with
the inclusion of the ore feed size. The MPC uses future prediction to obtain
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a feasible solution and to avoid possible constraints where the Neuro-Fuzzy
relies predominantly on feed-back (Jonas, 2008; Moyano et al., 2010). The
minimisation of the effective power utilisation objective is directly included
in the MPC algorithm. It is certainly possible to add the above mentioned
functionality to the Neuro-Fuzzy controller. However, due the poor scaling of
Fuzzy controllers, this will probably result in rule explosion and substantial
engineering hours to design and maintain.

4. Benefit Analysis

The purpose of this analysis is to determine the financial benefits achieved
by stabilising the milling circuit at its optimum. The financial benefit of the
milling circuit will be determined using the performance function method
devised by Wei and Craig (2009). Note that this benefits analysis reports on
potential recovery and hence potential benefit of the project.

4.1. Performance Functions

4.1.1. Profit Function

The economic consequence in terms of profit is defined by the effect of
primary grind on PGM recovery in the flotation circuit (Wei and Craig, 2009;
Sosa-Blanco et al., 2000). Due to numerous factors influencing the final PGM
recovery of a concentrator, extracting a representative model of the primary
mill product size to overall plant performance alone is not a trivial task. The
potential recovery to grind relationship for RPMA2 UG2 ore was obtained
from laboratory test work. Note that this grind represents the final grind and
hence the final plant recovery by assuming perfect flotation operation and a
linear recovery-grind relationship within the operating region. The next step
is to obtain a model between primary and final grind. A linear model was
used which resulted in an RMSE of 1.5 % passing 75 pm. The RMSE of the
model relates to 20 % of the range of the filtered final grind and is therefore
considered a poor model. Due to the model quality, the relationship between
primary and final grind remains an assumption rather than a proven fact.
The effect of primary grind G(L, IW) on potential recovery PR can then be
deduced by means of convolution:

PR =0.134-G(L,W,4) + 79.61 (14)
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with model boundaries:

185 < L < 230
0.13 < Wyt < 0.26

G(L,W,4t), obtained from the optimisation framework (equation 13).
The profit PF in terms of the main process variables are defined as:

P(L,W,u) =+ PR (15)

with o = oy - F' - HG.
a1 is equal to the monetary value of a gram of PGMs in the final concentrate
at a certain grade ¢;. F represents the amount of ore treated by the mill in
ton per unit time and HG the head grade in g/t.

4.1.2. Cost Function

As the purpose of this financial benefit model is to provide a metric to
compare various optimisation or control strategies, only the operating cost
will be included in the cost PF. Fixed costs are considered to be constant.
Energy and grinding media are the two highest operating cost factors asso-
ciated with comminution. As the RPMA2 primary mill is a fully autogenous
mill, the economic effect of cost is defined only by the energy consumption
of the mill. Note that the cost of liners and the performance of the discharge
sump are not included in the scope of this benefit analysis and are considered
negligible. The cost function is defined as follows:

C(L7 Wrat) = _6 : P(L> WTat) (16>
Where ( represents the cost of power in $§/kWh and,

dP dp
P(L,Wya) = —L +

— 1
dL AW, o Wrat (17)

The effect of load on power P is described by the parabola obtained during
trial 1 with € = —2.39L + 497.4 kW /ton (see figure 5). The inlet water
ratio to power relationship is obtained from the linear step-response model

where the steady-state gain represents dSVP - =43 kW.
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4.1.3. Querall Performance Function
The potential nett profit (PNP) given as profit - cost are presented as:

PNP =« PR<L7 Wrat)f(La Wrat) + 6 : P(Lv Wrat)f(L7 Wrat) (18>

The probability density function (PDF) of the grind is defined by the
PDF of the load and inlet water ratio which relationship was found to be
quadratic (equation 13).

4.2. Comparing Financial Performance

One of the main objectives of this project is to determine the finan-
cial benefit of stabilising and optimising the primary milling circuit. The
PNP function indicates that only load and inlet water ratio are necessary
to determine financial impact. Comparing financial performance in terms
of minimising PGM losses in the concentrator, «; is considered a function
of basket price of refined PGMs, less the operating cost to treat the addi-
tional recovered material in the subsequent smelting and refining processes.
These costs are confidential. The financial benefit of recovering more PGMs
far outweighs the cost of power, therefore o ~ 10°3. The highest financial
benefit is achieved at the maximum grind and hence potential recovery.

The financial benefit is derived by considering the impact of load and
inlet water ratio separately:

4.2.1. Financial Benefit - Load

As mentioned, the standard deviation of the load was reduced from 6.8 ton
to 2.3 ton with the implementation of the MPC. The financial impact of
this project in terms of load is estimated by comparing the following three
scenarios at the optimum water ratio W,,;, = 0.224:

1. The benchmarked plant with load at a mean of 204 ton and standard
deviation of 6.8 ton.

2. The benchmarked stability at the optimum load, a mean of 213 ton
and at deviation of 6.8 ton.

3. MPC performance at the optimum load, a mean of 213 ton and a
deviation of 2.3 ton.

To derive the distribution of the grind, potential recovery and power from
the distribution of load, the change of variables for distributions equation is
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used. The distribution of variable Y = ¢(X), X with probability density
function fx(X), is calculated as follows:

Foly) = d%@—l(y))] el @) (19)

Where g~! denotes the inverse function

A grind increase of 0.56 % passing 75 pm or a potential recovery increase
of 0.1 % from 87.2 % to 87.3 % (equation 14) was observed by moving the
load mean from 204 ton to the optimum 213 ton (comparing scenarios 1 and
2). A further 0.35 % passing 75 pm grind or 0.05 % PR increase was observed
when reducing the load variance around the optimum from 6.8 ton to 2.3 ton
(comparing scenarios 2 and 3). Figure 10 illustrates how the financial impact
manifests by reducing the operating region of the mill and then moving it
higher up on the PNP surface.

In order to interpret the benefits analysis plots in figures 10 and 11, it
is important to note that due to the high amount of noise in the data, the
correlations presented in these plots could not be considered exact. The
distributions of the parameters power, potential recovery and grind were
thus assumed to be independent. The contours of the various scenarios on
all the power to potential recovery plots, represents the 80 % probability
of the relative distribution. A one standard deviation distribution of the
exact model value is presented as a dotted line in the colour of the respected
scenario on the power to recovery contour plot.

4.2.2. Financial Benefit - Inlet Water Ratio

Since no significant difference in water ratio variability was observed (W,
standard deviation difference of 0.001 is considered negligible), the financial
benefits for water will be estimated by investigating two scenarios both at
the optimum load of 213 ton:

1. At the benchmarked inlet water ratio mean of 0.178,
2. the optimum inlet water ratio, W, = 0.224

Equation 19 is used to derive the distribution for power, grind and po-
tential recovery from the distribution of inlet water ratio. A grind increase
of 1.3 % passing 75 pym from 34.0 % to 35.3 % was observed by increasing
the inlet water to the optimum. This results in a PR increase of 0.17 %
from 87.17 % to 87.33 % and an increase on the PNP curve as illustrated in
figure 11.
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Figure 10: Comparing the potential financial benefit of the benchmarked plant (red),
benchmarked controller performance at the optimum load (green) and the performance of
the MPC at the load optimum (blue). a) Normal distribution (ND) of potential recovery,
b) ND of load, ¢) ND of power, d) 2D projection of the potential net profit function, e)
power to load curve, f) ND of grind, g) grind to potential recovery curve and h) grind to
load curve. The contours in d) represent 80 % confidence intervals
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Figure 11: Comparing the potential financial benefit of the benchmarked plant (red) and
the inlet water ratio optimum (blue). a) Normal distribution (ND) of potential recovery,
b) ND of water ratio, ¢) ND of power, d) 2D projection of the potential net profit function,
e) power to inlet water ratio curve, f) ND of grind, g) grind to potential recovery curve
and h) grind to water ratio curve. The contours in d) represent 80 % confidence intervals

The total grind increase observed by moving the load and water ratio
mean to 213 ton and 0.224 respectively and stabilising load at a standard
deviation of 2.3 ton was calculated at 2.2 % passing 75 pm. This equates to
a potential recovery increase of 0.32 %. Recovery increases of smaller than
1 % are very difficult to prove on an industrial site. The benefit calculated
from this project remains therefore a theoretical construct, which is subject
to various assumptions.

4.3. Benefit of Variable Speed Milling (VSD)

The majority of the primary mills in Anglo American Platinum do not
have a VSD and hence only have two degrees of freedom for control, they
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are, ore and water feed rate. Since ore feed rate is expected to be at the
target throughput, the water is utilised more often to reject any system dis-
turbances. The additional degree of freedom made possible by the mill VSD
allows the controller more leverage to reject disturbances while maintaining
volumetric fill and viscosity at the respective optimum. The cost of deviating
from the optimum during upset conditions can be severe, as was explained in
section 4.2. It is therefore important to appreciate that the potential benefit
is as a result of the VSD.

5. Conclusions

5.1. Control

A model predictive controller that utilises the step-response models was
implemented and commissioned. The objective function of the controller was
designed to optimise effective power utilisation. The controller improved the
circuit stability by reducing the standard deviation of the mill load and power
by 66 % and 40 % respectively. The controller also reduced its objective
function, effective power utilisation by 11 %, from 25.2 kWh/t passing 75 ym
to 22.4 kWh/t passing 75 pm.

5.2. Benefit Analysis

The impact of this AG mill optimisation project was to improve the
grinding efficiency of the mill, which, resulted in a theoretical increase in
overall the PGM recovery of 0.32 %. This was achieved by operating the mill
at the optimum volumetric fill and viscosity for a given throughput, made
possible by the presence of a VSD:

e moving the load from an average of 204 ton to 213 ton (contributed
26% of total benefit)

e stabilising the load at the optimum grind by reducing the standard
deviation from 6.8 ton to 2.3 ton (contributed 16% of total benefit)

e moving the inlet water ratio average from 0.178 to 0.224 (contributed
58% of total benefit)
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