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Abstract

This dissertation is concerned with aspects of the newly-proposed approach to nonlinear acoustics

in which the Lagrangian description of gas motion is followed. It contains a systematic survey of the

approach which leads to the so-called dynamic piston problem. Then new situations regarding the piston

problem are studied. These situations cover cases of varying applied pressure and results concerning the

formation of shock discontinuities are presented.
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Chapter 1

Introduction

Classical acoustics as recorded in the published literature began with the question of determining the

speed at which a sonic disturbance was propagated in air. The first reported experiment was by the

French intellectual Pierre Gassendi (1592 – 1655) who, in 1635 measured the time taken to observe the

sound of a canon shot fired a known distance away. The result was a “sound speed” of 475 m/s [6,

Historical Introduction, p. xviii]. Shortly afterwards Newton had the experiment repeated in England

and then proceeded to find a theoretical basis for calculating sound speed [5]. The theoretical predictions

were, however, not in accordance with observations. Much later Pierre-Simon Laplace [3] realized that

the compressibility of whatever gas transmitted sonic disturbances had to be taken into account and

produced results still used today.

It was in 1858 that Earnshaw [7] returned to the matter of sound speed and suggested that the concept

may not be as simple as it seemed. He argued that if a piston were pushed into a gas-filled pipe with the

gas initially at rest the gas movement ahead of the piston would catch up with the gas further along in the

pipe and a discontinuity of motion would result. He goes on to suggest that the speed of the disturbance

generated in this way could be higher than the theoretical speed of sound. At the time this phenomenon

was well described within the context of water waves [14] and was called a bore. Earnshaw [8] and

Riemann [9] investigated the problem by using the Euler-description for gas/fluid motion. Their work

gave rise to the so-called Earnshaw-Riemann invariants [1] which is intimately connected to the method

of characteristics prominent in the investigation of hyperbolic partial differential equations. Somewhat

later Lord Rayleigh [6] attempted a mathematical discussion of Earshaw’s ideas but soon reverted back to

the wave equation as a means of studying the nature of sonic disturbances. In this approach the Laplace

sound speed (about 335 m/s for air) is central. The approach is still used by most acoustic engineers.

3

 
 
 



4 CHAPTER 1. INTRODUCTION

In 2010 the theoretical description of sonic disturbances was re-opened by Sauer [10] this time using

the Lagrange-description of gas motion. The reason for this was that the notion of a “closed system”

from thermodynamics was much more natural since the motion of a single or an identified collection of

gas particles could be followed as they travelled in time. The result was a system of nonlinear partial

differential equations that could not be easily related to linear wave motion. In addition, an inequality

constraint that represents the physical fact that a body of gas cannot be compressed to zero volume, was

identified. Computed results showed that sonic disturbances predicted from this approach could not be

approximated by linear theory. The same paper also touched upon Earnshaw’s image of a piston being

moved onto a gas-filled pipe. The approach models the piston as a physical body interacting with the

gas in the pipe and indicates that shock-discontinuities will result. This dynamic piston problem was

taken further in a subsequent paper [11] where jump conditions were derived and applied to the case of

a positive constant external force acting on the piston.

The aim of this thesis is to further investigate and analyse the interaction that occurs between the

solid and a gas. In particular we investigate a class of cases in which the applied force is positive and

decreasing. For the sake of completeness and coherence, we give a detailed presentation of the underlying

theory which is only described in the briefest of ways in the Sauer papers.

In Chapter 2 we deal with classical thermo-statics. The chapter motivates the theory discussed in

Chapter 3 where the Lagrange approach is followed. This is in line with the discussion in Chapter 2 where

we also consider volumes consisting of the same gas particles. Here we introduce the notion of compression

in a static/global sense. It is defined as a ratio of volumes which could be viewed as purely geometrical

but later it joins with the relevant physical concepts. This leads to a constraint and a relationship between

compression and pressure which may be very fruitful in the study of acoustic phenomena.

In Chapter 3 we discuss the basic ideas of the Lagrange approach. This will be the underlying

framework for the derivation of equations. We also introduce the physical principle of conservation of

mass which tells us that the mass of a body consisting of the same gas particles does not change as

particles move from one configuration to another. The notion of compression as described in the previous

chapter is now localized by letting the ratio of volumes consisting of the same gas particles shrink to a

point (single particle). This leads to a localized version of the compression-pressure relation which we put

forward as the basic acoustic postulate ([10]). The consideration of kinematics of volume then leads to

our first dynamic equation for pressure and an inequality constraint on pressure which shows that there

is a lower bound on the pressure that can develop which in turn implies that it is impossible to compress

a body of gas until there is no volume.

In Chapter 4 the principle of balance of linear momentum is described and combined with the principle
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of conservation of mass in a manner that suits our purpose. This yields the second dynamic equation for

velocity which is then augmented with the dynamic equation for pressure obtained in Chapter 3. These

equations are then scaled to dimensionless form and this shows that the acoustic hypothesis resembles

the classic Boyle-Marriot law. The scaling will also enable us to “mix” variables at a later stage. After

this we analyse the special case of one-dimensional motion in order to compare the consequences with

the well known behaviour derived from the linear wave equation. One-dimensional consideration reduces

the system of equations to two equations for two unknowns, velocity and pressure.

It is immediately seen that the linear system cannot possibly yield solutions for the nonlinear system.

One reason is that the linear system is symmetric in velocity and pressure while the nonlinear system

is not. Moreover, the constraint is not found in the linearized equations while the whole character of

the nonlinear system is no longer hyperbolic ([2, p. 42]) and the wave-like behaviour of the solutions

may be at risk if the constraint is not considered. This constraint is then utilized to transform the one-

dimensional equations into a symmetric hyperbolic system which exhibits the true nonlinear character of

the problem.

In Chapter 5 the scaled system of equations is applied to the piston problem. We formulate the

dynamic piston problem and use the method of characteristics to reduce the equations to a single nonlinear

transport equation with a dynamic condition at the boundary x = 0. A point overlooked in [11] is that

the basic physical constraint is not sufficient to ensure that one of the families of characteristics gives

a boundary condition on the axis x = 0. This is cleared up and it is shown that positive lower and

upper bounds for the pressure are needed. Physically this means that a given volume of gas can only be

compressed to a positive lower value and rarefied to a positive upper value. Under these circumstances

the dynamic boundary condition at x = 0 reduces to a single nonlinear ordinary differential equation for

the piston velocity that can be solved explicitly in terms of the externally applied force expressed as a

pressure. We then proceed to find results that give bounds for the piston velocity and will ensure that

the piston velocity is increasing/decreasing.

In Chapter 6 characteristics emanating from the t axis (x = 0) are studied and these characteristics will

give the motion of the gas ahead of the piston. Intersection of characteristics and the point of intersection

is analysed and it is shown that on the portion where the piston velocity is increasing discontinuities in

the solution will develop. Finally the bounding curve (envelope) is discussed and it is shown how to

compute it.

Chapter 7 is concerned with jump curves. These are curves along which jump discontinuities occur.

Under such circumstances the basic differential equations are replaced by jump conditions that are derived

from the fundamental balance and conservation laws. We derive the jump condition for the dynamic

 
 
 



6 CHAPTER 1. INTRODUCTION

piston problem from balance of linear momentum and conservation of mass. This condition is then used

to derive properties of the jump curve involved and the calculation of the jump curve. This leads to the

calculation of the gas motion under shock conditions.

In several instances we used numerical methods to calculate illustrative examples. In most cases the

numerical methods are of an elementary nature with no doubt about the accuracy of the outcomes. In

the case of the jump curve, the method employed is the same as that used in [11] where an ordinary

differential equation with initial condition is first transformed into an integral equation of Volterra type

which is then handled by means of numerical quadrature procedures. The quadrature used in this case

is the trapezium rule and this leads to the numerical solution of a nonlinear equation by the regula falsi

(secant) method. For this complex procedure the accuracy of the outcome is not established and we relied

on stability obtained by decreasing time steps. It turned out that even fairly big steps yielded results

that did not show remarkable differences on plots.

 
 
 



Chapter 2

Thermo-statics and classical

acoustics

2.1 Elementary considerations

In order to motivate the theory described in Chapter 3 we consider the thermo-static situation as depicted

in Figure 2.1 below. What we see is a closed container with gas in different states of compression and

what we intend to do is to compare the states. For this purpose a fixed state, the “reference state”, is

chosen and other states in “general” are compared to it. The comparison is static and bears no reference

to time. The dynamics of change is not an issue. A most important point is that the gas in the different

states consists of the same material particles. We refer to the geometry of each state as the configuration.

States of configurations are described mathematically by the thermostatic variables Volume, Mass

density and Pressure. For these the following notations are used respectively

Reference state: V0, ρ, p0.

Generic state: V , σ, p.

Suppose the gas experiences compression, possibly as the result of external pressure, so that its volume

changes to V and density to σ. The compression r of the gas (relative to the reference state) is defined

as the ratio of increase in volume to the “original” volume. That is,

r =
V − V0
V0

=
V

V0
− 1. (2.1)

7

 
 
 



8 CHAPTER 2. THERMO-STATICS AND CLASSICAL ACOUSTICS

Reference
configuration configuration

Generic

Figure 2.1: Static configurations and states

If it is assumed that gas volumes must always be positive, we have from (2.1) that there is a constraint

on r namely

1 + r > 0. (2.2)

This means that there is a lower bound to the compression. In fact, a given physical volume of gas V0

cannot be compressed to zero.

Since the gas in the different states consists of the same physical material, we can invoke the principle

of conservation of mass which proclaims that in both states the mass of gas in the container is the same.

Mathematically this is expressed in the following way: ρV0 = σV . Therefore, by (2.1),

V

V0
=
ρ

σ
= 1 + r. (2.3)

The expression (2.3) gives the relationship between compression and density.

2.2 The acoustic assumption

The standard thermo-static assumption is that the density of the gas in a given state is determined by

the pressure p in that state. That is

σ = f(p). (2.4)

The static acoustic assumption is that for an isentropic gas the rate of change of density with pressure

 
 
 



2.2. THE ACOUSTIC ASSUMPTION 9

is constant and positive:
dσ

dp
= f ′(p) = c−2. (2.5)

The constant c has the dimension of speed. It is called the static sound speed. The static sound speed is

a property of the kind of gas under consideration.

Combination of (2.4) and (2.3) gives

f(p) =
ρ

1 + r
, (2.6)

which shows that the compression r is a function of pressure. Differentiation of (2.6) with respect to p

and combination of the result with (2.5) leads to the differential equation

−ρ(1 + r)−2 dr

dp
=

1

c2
. (2.7)

The equation (2.7) can immediately be put into integrable form:

d

dp

[

(1 + r)−1
]

=
1

ρc2
. (2.8)

By definition, r(p0) = 0 (in the reference state there is no compression). Hence, integration of (2.8) from

p0 to p gives
1

1 + r
=
p− p0
ρc2

+ 1. (2.9)

The identity (2.9) will become, in localized form, the acoustic assumption of Chapter 3.
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Chapter 3

Classical acoustics

3.1 The Lagrange approach in hydrodynamics

In this approach we follow the motion of individual fluid particles and volumes consisting of the same

particles as they move in space as opposed to the Euler approach whereby the state of the fluid motion

at arbitrary fixed points x = (x1, x2, x3) in 3-dimensional Euclidean space is considered. This is in line

with the discussion in Chapter 2 where we considered a volume consisting of the same gas particles.

For this reason, let Φ ⊂ R
3 be the reference configuration of fluid particles. Particles in the fluid

are identified by their position x ∈ Φ. The motion of the fluid is described by a function χ(., t) : x ∈

Φ 7→ X(t) := χ(x, t) with X(t) the position of x at time t. We shall not be concerned with situations in

which different particles can be in the same place at the same time. Also the same particle cannot be in

different places at the same time and therefore we may assume that χ is one-to-one.

For the fluid to have ‘bulk’ at all, we assume that the reference configuration Φ is an open subset

of R3 and we consider only smooth motions. That is χ and its inverse χ−1 have continuous derivatives

with respect to all variables. The derivatives will be denoted by ∂t :=
∂
∂t

and ∂k := ∂
∂xk

. Since χ(x, t) =

(χ1(x, t), χ2(x, t), χ3(x, t)), ∂tχ(x, t) is a vector quantity.

χΦ
x

X

Figure 3.1: The motion of a volume of gas

11

 
 
 



12 CHAPTER 3. CLASSICAL ACOUSTICS

Our first objective is to find, on the basis of classical physics, a system of partial differential equations

that will enable us to determine the motion χ. We prepare for this by introducing the notion of the

gradient of 3-vector fields. Let f(x) = (f1(x), f2(x), f3(x)) be a differentiable 3 - vector field defined

for x ∈ Ω ⊂ R
3, with Ω an open set. Then the gradient Lx of f is defined as the matrix function

with components Lx,ij(f)(x) = ∂jfi(x). The transpose matrix function LTx f is defined as the transpose

of Lxf(x). The motion χ(., t) is simply an invertible transformation from one coordinate system x to

anotherX with Jacobian J(x, t) := det[Lxχ(x, t)]. The Jacobian can never be zero because χ is invertible.

By suitable choices of the directions of coordinate axes, it may be assumed that J(x, t) is positive.

We need some calculus-identities given below. In order to make notations clear, we explain as follows:

If an n× n matrix A is invertible, its transpose AT is also invertible and [AT ]−1 = [A−1]T . We shall

use the notation A−T = [AT ]−1. If A and B are n × n matrices with components aij and bij we use

notation A : B =
∑n

i,j=1 aijbij , the so-called Frobenius inner product.

Suppose that F (X, t) is a scalar field defined on the configuration of fluid particles at time t. Let

f(x, t) := F (χ(x, t), t). Then it follows from the chain rule that the gradients of F and f are related in

this way:

∇XF (X, t) = Lxχ(x, t)
−T∇xf(x, t). (3.1)

If F (X, t) is a vector field defined on the configuration at time t and f(x, t) = F (χ(x, t), t) we have

the following for the divergence of F :

∇X · F (X, t) = Lxχ(x, t)
−T : Lxf(x, t). (3.2)

3.2 Compression and Conservation of mass

As already remarked, the Lagrangian description is very much in line with the thermo-static considerations

of Chapter 2. We proceed to follow that development within the present context, but localize the concepts

by letting moving volumes “shrink to a point”.

To begin with, we define compression at a point taking our cue from the previous chapter. The

compression r(x, t) experienced by particle x at time t is defined as

r(x, t) := lim
|Υ|→0

|Υ(t)| − |Υ|

|Υ|
;x ∈ Υ. (3.3)

Here the absolute value denotes volume. |Υ| represents an arbitrary volume of particles in the reference

configuration/state and |Υ(t)| represents the volume of particles in the configuration at time t. The only

 
 
 



3.2. COMPRESSION AND CONSERVATION OF MASS 13

restriction is that x ∈ Υ. We note that Υ and Υ(t) = χ(·, t)[Υ] are representations of the same material.

From the expression (3.3) we have the following:

1 + r(x, t) = lim
|Υ|→0

[
|Υ(t)|

|Υ|
] = lim

|Υ|→0
[

∫

Υ Jdx
∫

Υ
dx

] = J (3.4)

in which the final step is a result of the Radon-Nikodým Theorem.

Next, the principle of conservation of mass states that the mass of an arbitrary collection of particles

is constant as it moves along in time. In other words, the mass of a collection of particles will never

change, regardless of how the constituent parts rearrange themselves. We can express this principle as

follows: let Υ be an open set of Φ, and let Υ(t) := χ(., t)[Υ] be its configuration at time t. With this

definition Υ(t) is the image of Υ under χ. Then the principle of conservation of mass tells us that the

mass of Υ is the same as the mass of Υ(t).

To make the principle mathematically workable we use the notion of mass density. This is a function

from which the mass of a given configuration of fluid particles may be computed. Since the fluid is

compressible, the mass density (mass per unit volume) may change. Let ρ(x) be the density function

in the reference configuration and σ(X, t) the density function in the configuration at time t. The

conservation of mass then simply states that

∫

Υ

ρ(x)dx =

∫

Υ(t)

σ(X, t)dX. (3.5)

The integrals in this expression are volume integrals and the volume measures such as dx should be

thought of as being dx = dx1dx2dx3. The right of (3.5) may be transformed into an integral over the

reference volume Υ by letting X = χ(x, t). By the substitution rule we then obtain

∫

Υ

ρ(x)dx =

∫

Υ

σ(χ(x, t), t)J(x, t)dx. (3.6)

Since the expression (3.6) holds for arbitrary open subsets of Φ, a standard theorem on Lebesgue inte-

gration states that the integrands must be equal. We therefore have

ρ(x) = J(x, t)σ(χ(x, t), t), (3.7)

which is the principle of conservation of mass expressed in terms of mass densities.

We see that the compression r only involves the motion χ. It is, however, related to the physical

principle of conservation of mass as expressed in (3.7). By eliminating the Jacobian J from (3.4) and

 
 
 



14 CHAPTER 3. CLASSICAL ACOUSTICS

(3.7) we obtain

1 + r(x, t) =
ρ(x)

σ(χ(x, t), t)
. (3.8)

The expression (3.8) is the local version of (2.3). Once again, taking (3.7) as well as the positivity of J

into account, we find the local version of the constraint (2.2):

1 + r(x, t) > 0. (3.9)

3.3 The acoustic assumption in continuous form

We now introduce the localized acoustic assumption by postulating the relation

1

J(x, t)
=

1

1 + r(x, t)
= 1 +

p(x, t) − p0
ρc2

(3.10)

which is simply is the result (2.9) localized to the point (x, t). It assumes that the static sound speed c

and the reference pressure p0 are constants. The relation (3.10) together with (3.9) leads to an equivalent

form of the constraint namely

ρc2 + [p(x, t)− p0] > 0. (3.11)

3.4 The kinematics of volume

The kinematic property of compression is found in the balance of volume which states that the rate

of change of volume of any piece of material is explained by the normal components of velocity at its

boundary. In precise terms, this is

d

dt

∫

Υ(t)

dX =

∫

∂Υ(t)

V (Y, t).n(Y )ds(Y ) =

∫

Υ(t)

∇X · V (X, t)dX (3.12)

having made use of the divergence theorem.

If we transform back to the reference configuration and make use of (3.2) the result is

d

dt

∫

Υ

J(x, t)dx =

∫

Υ

J(x, t)Lxχ(x, t)
−T : Lxv(x, t)dx (3.13)

If we assume that the time derivative and the integral can be interchanged and that J has an integrable
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time derivative, we obtain

∫

Υ

Jt(x, t)dx =

∫

Υ

J(x, t)Lxχ(x, t)
−T : Lxv(x, t)dx (3.14)

Since Υ is arbitrary it follows from (3.14) that

Jt(x, t) = J(x, t)Lxχ(x, t)
−T : Lxv(x, t) (3.15)

which is the analogue of Euler’s formula [13, p. 131 ] in the Lagrangian description.

From (3.10) we have

J(x, t) =
ρc2

ρc2 + p(x, t)− p0
. (3.16)

Differentiation of (3.16) with respect to t yields

Jt(x, t) =
−ptρc

2

(ρc2 + p(x, t)− p0)2
. (3.17)

If (3.16) and (3.17) are substituted into (3.15) the result is

−ptρc
2

(ρc2 + p(x, t)− p0)2
= [

ρc2

ρc2 + p(x, t)− p0
]Lxχ(x, t)

−T : Lxv(x, t)

This can be simplified to

pt(x, t) + [ρc2 + p(x, t)− p0]Lxχ(x, t)
−T : Lxv(x, t) = 0 (3.18)

which is a dynamic equation involving the rate of change of pressure.

It should be noted that, since ρc2 has the unit of pressure, the expression (3.18) is dimensionally

correct.
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Chapter 4

Continuum mechanics

4.1 Balance of linear momentum

So far we have investigated only the notions of compression, density and pressure and the way they are

inter-related. The dynamics of the underlying motion — the underlying causes of the motion — now come

into focus. The basic principle here is balance of linear momentum which is the extension of Newtons

second law of motion for a single particle.

Balance of linear momentum states that: The rate of change of total linear momentum in the con-

sidered control volume is equal to the total force acting on the mass in that volume. To formulate the

principle of balance of linear momentum mathematically the notions of velocity and mass density as

discussed in Chapter 3 are essential.

Since we deal with an ideal gas (no viscosity) the internal force observed at X at time t is due to

pressure only. We assume that there are no external forces. If Υ is an arbitrary open set of the reference

configuration and Υ(t) = χ(., t)[Υ] its image at time t, the principle of balance linear momentum may be

expressed by

d

dt

∫

Υ(t)

σ(X, t)V (X, t)dX = −

∫

∂Υ(t)

P (X, t)n(X)dS(x) = −

∫

Υ(t)

∇XP (X, t)dX (4.1)

Here P(X,t) is the pressure at X at time t and n(X) the unit exterior normal at X to the surface ∂Υ(t).

The minus sign on the right is due to the use of the exterior normal in the expression. The final expression

in (4.1) is obtained from the divergence theorem.

Balance of linear momentum can under certain assumptions be expressed as a partial differential

equation. We can transform the expression (4.1) to the reference coordinates x by letting X = χ(x, t).

17
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The result is

d

dt

∫

Υ

σ(χ(x, t), t)v(x, t)J(x, t)dX = −

∫

Υ

Lxχ(x, t)
−T∇xp(x, t)J(x, t)dx, (4.2)

having made use of (3.1). If conservation of mass as expressed in (3.7) is combined with (4.2) the result

is
d

dt

∫

Υ

ρ(x)v(x, t)dx = −

∫

Υ

Lxχ(x, t)
−T∇xp(x, t)J(x, t)dx. (4.3)

If we assume that the time derivative and the integral in (4.3) can be interchanged and that v has an

integrable time derivative, we obtain

∫

Υ

[ρ(x)vt(x, t) + J(x, t)Lxχ(x, t)
−T∇xp(x, t)]dx = 0. (4.4)

Since Υ is an arbitrary open subset of Φ, it follows that the integrand in (4.4) is zero. Thus we obtain

the dynamic equation

ρ(x)vt(x, t) + J(x, t)Lxχ(x, t)
−T∇xp(x, t)dx = 0. (4.5)

The acoustic postulate (3.16) enables us to eliminate the determinant J from (4.5) to obtain, after

some simplification,

vt(x, t) +
c2

ρc2 + p(x, t)− p0
Lxχ(x, t)

−T∇xp(x, t)dx = 0. (4.6)

It should be noted that the equation (4.6) represents a combination of balance of linear momentum,

conservation of mass and the acoustic postulate.

4.2 Scaling of the system

In our considerations so far we have found the partial differential equations (4.6), (3.18) and the con-

straint (3.11). This will be the system we shall work with. The next step is to scale the equations to

dimensionless form. In scaled form the equations and the constraint will be stripped of constants so

that they will be mathematically clearer. In addition dimensionless entities can be algebraically “mixed”

without inadmissible consequences. All of this will come to fruit in Sections 4.3 and 4.6. We shall take

the reference density ρ as a constant. That is to say that in the reference configuration the mass density

is constant.
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For the purpose of scaling we assume that there is some length parameter L in terms of which position

will be scaled. This parameter is free at this stage. Later a specific choice will be made. Time is scaled

in terms of T = L/c, velocity in terms of c and pressure in terms of ρc2. The details of scaling are shown

in Section 8.1. The following substitutions will be used:

Position: x −→ x
L
;

Time: t −→ t
T
;

Velocity: v −→ v
c
;

Pressure: p −→ p−p0
ρc2

This leads to

vt(x, t) + [1 + p(x, t)]−1Lxχ(x, t)
−T∇xp(x, t) = 0; (4.7)

pt(x, t) + [1 + p(x, t)]Lxχ(x, t)
−T : Lxv(x, t) = 0. (4.8)

In addition the constraint (3.11) now takes the form

1 + p(x, t) > 0. (4.9)

Since the compression r, being a ratio of volumes, is already dimensionless and therefore insensitive to

scaling, the scaled form of the acoustic assumption (3.10) is

[1 + p(x, t)][1 + r(x, t)] = 1, (4.10)

which is analogous to the Boyle-Marriott law. Detailed calculations are shown in Section 8.1.

In the sequel we shall work with these equations, but they are still insufficient in number since the

three components of the motion χ are unknown. In the remaining sections we study a particular form of

the motion in which the problem of the determination of the motion itself is remedied. From the system

(4.7), (4.8) of transport equations it is seen that there are propagation speeds which depend on pressure

in a very specific way.

4.3 System in one-dimensional motion

The consideration of the one-dimensional motion results in the system of equations being reduced to two

equations for two unknowns, velocity and pressure. The original studies of the propagation of sound
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were very much focused on one-dimensional motions. Let us therefore consider motions of the form

χ(x, t) = (ψ(x1, t), x2, x3) = (χ1(x, t);χ2(x, t);χ3(x, t)).

For this motion by definition Lxχ(x, t) =
∂χi

∂xj
so that we have

Lxχ(x, t) =











∂ψ(x1,t)
∂x1

0 0

0 1 0

0 0 1











= diag(∂1ψ, 1, 1)

Also, v(x, t) = χ
t
(x, t) = (ψt(x1, t), 0, 0). Since 1+r(x, t) = J(x, t) and by (4.10) we have 1+r(x, t) =

(1 + p(x, t))−1 = ∂1ψ(x1, t), and

Lxv(x, t) =











∂1ψt(x1, t) 0 0

0 0 0

0 0 0











= diag(∂1v1, 0, 0), (4.11)

Lxχ(x, t)
−1 =

1

∂1ψ











1 0 0

0 ∂1ψ 0

0 0 ∂1ψ











=











1 + p(x, t) 0 0

0 1 0

0 0 1











= Lxχ(x, t)
−T . (4.12)

If we substitute back into (4.7) the result is











∂tv(x1, t)

0

0











+
1

1 + p(x, t)











1 + p(x, t) 0 0

0 1 0

0 0 1





















∂1p

∂2p

∂3p











= 0

and if we work out this equation we obtain, since 1 + p(x, t) > 0,

∂tv1(x, t) + ∂1p(x, t) = 0, (4.13)

and ∂2p(x, t) = ∂3p(x, t) = 0. Hence p does not depend on x2 and x3.

The equation (4.8) becomes

pt(x, t) + [1 + p][1 + p]











1 0 0

0 (1 + p(x, t))−1 0

0 0 (1 + p(x, t))−1











:











∂1v1 0 0

0 0 0

0 0 0











= 0

which turns out to be
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pt(x, t) + [1 + p(x, t)]2











∂1v1 0 0

0 0 0

0 0 0











= 0

and this reduces to

∂tp(x1, t) + [1 + p(x1, t)]
2∂1v1 = 0. (4.14)

For the one dimensional case the notation can be simplified by writing x for x1 and v for v1. Also, in

suitable notation for partial derivatives, the equations (4.13) and (4.14) are now written in the form

vt(x, t) + px(x, t) = 0; (4.15)

pt(x, t) + [1 + p(x, t)]2vx(x, t) = 0. (4.16)

The assumption of one-dimensionality of the motion therefore leads to a very simple system of first

order partial differential equations (4.15), (4.16) which is essentially nonlinear as will become clear in

Section 4.5.

4.4 Linearization

The system (4.15), (4.16) can be linearized by a “plausibility” reasoning based on the assumption that

the compression is “small”. When it is assumed that the compression is “small” (|r| ≪ 1), it follows from

(4.10) that the same is true for pressure because

p(x, t) =
−r(x, t)

1 + r(x, t)
.

Therefore, if 0 < |r| < ε < 1,

|p(x, t)| =
|r(x, t)|

1 + r(x, t)
≤

|r(x, t)|

1− ε
≪ 1.

The plausibility argument is that the term (1+ p)2 in (4.16) can “safely” be replaced by 1 and this leads

to the linearized system

vt(x, t) + px(x, t) = 0; (4.17)

pt(x, t) + vx(x, t) = 0. (4.18)
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This leads to the wave equation through elimination of either v or p by taking suitable derivatives. But

it is not necessary to do that since as we know that by taking more derivatives one loses information. If

we let u1 := [v + p]/2 and u2 := [v − p]/2, addition and subtraction of the two linear equations (4.17),

(4.18) lead to the decoupled equations

u1,t(x, t) + u1,x(x, t) = 0; (4.19)

u2,t(x, t)− u2,x(x, t) = 0. (4.20)

For −∞ < x <∞ and t > 0 the Cauchy problem, (4.19), (4.20) to which the initial conditions

u1(x, 0) = u10(x);

u2(x, 0) = u20(x),







(4.21)

are added, is readily solved by the method of characteristics (see e.g. [12, Chapter 3]). The solutions are

u1(x, t) = u10(x− t);

u2(x, t) = u20(x+ t).







(4.22)

It is quite simple to obtain the initial states u10, u20 from the initial states of v and p and equally

simple to translate from the solutions u1, u2 back to v and p. Thus the linearized equations pose no formal

difficulties and the solutions obtained are typical “sound waves” in a traditional sense. One difficulty

however, would be obedience to the constraint (4.9).

Comparison of the system (4.15), (4.16) with the linearization (4.17), (4.18) shows another problem.

In the nonlinear system the roles of v and p cannot be interchanged while in the linearized system they

can.

4.5 The system plus the constraint

Let us incorporate the constraint 1 + p > 0 into the equations by making the substitution

1 + p(x, t) = exp{q(x, t)} > 0 (4.23)
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Since pt(x, t) = exp{q(x, t)}qt(x, t) and px(x, t) = exp{q(x, t)}qx(x, t), the equations (4.15) and (4.16)

now become

vt(x, t) + exp{q(x, t)}qx(x, t) = 0

qt(x, t) + exp{q(x, t)}vx(x, t) = 0.







(4.24)

The transformed system (4.24) has gained a remarkable symmetry even though the new equations are

both nonlinear. The other advantage is that the substitutions

u1(x, t) =
1
2 [v(x, t) + q(x, t)];

u2(x, t) =
1
2 [v(x, t) − q(x, t)],







(4.25)

which works so well in the linear system, at least have some effect although the system is not decoupled.

The resulting equations are

u1,t(x, t) + exp{q(x, t)}u1,x(x, t) = 0;

u2,t(x, t)− exp{q(x, t)}u2,x(x, t) = 0;

q(x, t) = u1(x, t)− u2(x, t).



















(4.26)

Still the roles of u1 and u2 cannot be interchanged. These are the equations we shall use to analyse the

nonlinear acoustic problem.

4.6 Characteristics of the system

The characteristics of the system of Equations (4.26) are the level curves of the functions u1 and u2 (see

e.g. Courant-Friedrichs [1], Jeffrey [2]). Let us denote the curves by C1 and C2.

Let the C1-curve, on which u1 is constant, be represented parametrically by

x = Ξ1(τ), t = T (τ),

and let U1(τ) = u1(Ξ1(τ), T (τ)). Then

dU1

dτ
= u1,x(Ξ, T )Ξ

′
1(τ) + u1,t(Ξ, T )T

′(τ) = 0

If we compare this equation and the first equation in system (4.26) we see that

Ξ′
1(τ) = exp{q1(x, τ)} and T ′(τ) = 1
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From this it follows that t = τ so that

Ξ′
1(t) = exp{q1(x, t)}

with q1 the evaluation of q on the C1 curve.

For a C2 curve, let

x = Ξ2(τ), t = T (τ).

Then, as above but comparison with the second equation in (4.26) yields

Ξ′
2(t) = − exp{q2(x, t)}

with q2 the evaluation of q on C2. Put together as a system we have

Ξ′
1(t) = exp{q1(x, t)},

Ξ′
2(t) = − exp{q2(x, t)}







(4.27)

 
 
 



Chapter 5

The Dynamic Piston problem

5.1 Introduction

Within the context of Euler’s description of fluid motion, the effects of the motion of a piston in a semi-

infinite tube is well studied see e.g. Courant-Friedrichs [1]. The approach is to let the piston perform a

prescribed motion. To realize such a motion may be impossible. We approach the problem differently by

viewing the piston as a physical body with mass and surface area which is moved as the result of external

forces. The applied external force will be in the form of an applied pressure. A schematic of the problem

is shown in Figure 5.1 below.

AP(t) Ap(0,t)

Figure 5.1: The dynamic piston problem

Let the reference configuration be the interval (0,∞) and assume the piston acts at the point x = 0.

IfM is the mass of the piston, A its surface area, w(t) its velocity at time t and P (t) the applied pressure,

then the equation of motion for the piston is

Mw′(t) = AP (t) −Ap(0, t) (5.1)

with p the unscaled internal pressure. The minus-sign on the right of (5.1) is in accordance with the

pressure term in the formulation of balance of linear momentum as expressed in (4.1). This shows that

internal pressure will oppose motion of the piston.

25
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To this we add the contact condition

w(t) = v(0, t) (5.2)

with v once again the unscaled internal velocity, (w(t) is actually the limit as x→ 0+ of the gas velocity).

The condition (5.2) means that the velocity of the piston is the same as that of the particles directly

ahead of it.

Scaling and combination of (5.1), (5.2) is in accordance with Section 4.2 but with the choice L = M
ρA

gives the dimensionless equation
d

dt
[v(0, t)] = P (t)− p(0, t). (5.3)

This scaling is shown explicitly in Section 8.2. The problem we shall study in the following sections

will be in terms of the functions u1, u2 introduced in Section 4.5. That is, the system (4.26) defined

for x > 0; t > 0 together with the initial conditions v(x, 0) = 0; p(x, 0) = 0, and the dynamic boundary

condition (5.3). Thus the system of differential equations in this case is:

u1,t(x, t) + exp{q(x, t)}u1,x(x, t) = 0; x > 0; t > 0;

u2,t(x, t) − exp{q(x, t)}u2,x(x, t) = 0; x > 0; t > 0;

q(x, t) = u1(x, t) − u2(x, t).



















(5.4)

The initial conditions can be found from (4.23) and (4.25). Indeed, by (4.23) p(x, 0) = 0 implies that

q(x, 0) = 0. In addition, v(x, 0) = 0, and it follows from (4.25) that u1(x, 0) and u2(x, 0) are both zero.

That is

u1(x, 0) = u2(x, 0) = 0 for x > 0. (5.5)

By the same token, since v = u1+u2, q = u1−u2 and p = exp{q}−1, the terms in the dynamic boundary

condition (5.3) can all be expressed in terms of u1 and u2. With some re-arrangement this condition now

takes the form
d

dt
[u1(0, t) + u2(0, t)] + exp{u1(0, t)− u2(0, t)} = 1 + P (t). (5.6)

5.2 Reduction of equations by use of characteristics

Under special circumstances consideration of the characteristics of the system (5.4) as discussed in Section

4.6 yields information that reduces the present problem to a single nonlinear transport equation with a

dynamic boundary condition.

In [10] and [11] it is assumed without proof that the C2-characteristics emanating from the positive
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x-axis cover the quadrant {x > 0; t > 0}. If that is the case, the fact that u2 is constant along these

characteristics and the homogeneous boundary conditions (5.5) shows that u2 = 0 on the whole quadrant.

If that is the case, the reduction is achieved with u1 the only unknown function.

To find sufficient conditions for the C2-characteristics to cover the quadrant in question, we revert

to the very beginning in Chapter 2 where the notion of compression was first introduced. According to

(2.1),

1 + r =
V

V0
. (5.7)

Physical considerations tell us that the volume of gas cannot be compressed to below a certain volume or

the gas may liquefy. Also, it cannot be rarefied to a vacuum. All this is relative to the reference volume

V0. Thus we are lead to the strict constraints

0 < R0 ≤
V

V0
≤ R1 <∞, (5.8)

with R0 and R1 physical constants for the particular gas. Combination of (5.7) and (5.8) leads to

0 < R0 ≤ 1 + r ≤ R1 <∞. (5.9)

We shall carry the inequalities (5.9) over to the continuum-situation. This is still in accordance with the

constraint 1 + r > 0. From the Boyle-Mariott analogy (4.10) it follows that

R0(1 + p) ≤ 1 ≤ R1(1 + p) and we obtain the inequalities

R−1
1 ≤ (1 + p) ≤ R−1

0 . (5.10)

Theorem 5.2.1. Under the strict constraints (5.10) the C2-characteristics emanating from the positive

x-axis cover the quadrant {x > 0, t > 0}. If this is the case, u2 = 0 on the quadrant and u1(x, t) = 0 in

the region {t > 0, x > t}.

Proof. From the definition of q (4.23) and the differential equations for the characteristics (4.27) it is seen

that −R−1
0 ≤ −(1 + p(Ξ2(t), t) = Ξ′

2(t) ≤ −R−1
1 . Thus, for a point y > 0 on the x-axis where Ξ2(0) = y

we have y − R−1
0 t ≤ Ξ2(t) ≤ y − R−1

1 t. It follows that Ξ2(t) = 0 for some t such that R0y ≤ t ≤ R1y.

If we let y run through all positive values, we see that at every point on the t-axis a C2-characteristic

emanating from the positive x-axis will meet. Thus, since C2 is a decreasing curve, the covering of the

quadrant by C2-curves is proved which means that in the quadrant u2 = 0 since u2(x, 0) = 0 for x > 0.

Finally we consider a C1-characteristic emanating from a point y > 0 on the x-axis. Along such a
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characteristic, u1 = 0. But we have already shown that u2 = 0 everywhere. Hence q = u1 − u2 = 0 along

the characteristic, and therefore, by (4.27), the slope of the characteristic is 1. In fact the equation of the

characteristic is x = y + t. By letting y vary over the positive x-axis we see that the octant in question

is covered by the C1-characteristics.

Remark 5.2.2. The strict constraints (5.9) impose restrictions for initial conditions. Since the initial

values of u1 and u2 are carried along the characteristics, care should be taken that these constraints are

obeyed at time zero. This means that R−1
1 ≤ 1+p(x, 0) = exp{q(x, 0)} = exp{u1(x)−u2(x)} = 1 ≤ R−1

0 .

This will be satisfied if R0 ≤ 1 ≤ R1 which seems to be physically reasonable if the reference volume can

be compressed.

In the following we shall assume that the C2-characteristics coming from the positive x-axis cover

the whole quadrant on which the problem is defined. If this is the case, the second of the equations in

(5.4) is satisfied in a way consistent with the homogeneous initial state u2(x, 0) = 0. What remains to be

solved is the first equation together with the dynamic boundary condition (5.6). The only unknowns are

now u1(x, t) and the boundary value w(t) = v(0, t) = u1(0, t) + u2(0, t) = u1(0, t). Let us use the easier

notation u(x, t) = u1(x, t). Then the problem to be solved is

ut(x, t) + exp{u(x, t)}ux(x, t) = 0, x > 0; t > 0,

u(x, 0) = 0,

u(0, t) = w(t)



















(5.11)

and

w′(t) + exp{w(t)} = 1 + P (t). (5.12)

5.3 Analysis of the piston velocity

The behaviour of the solutions of (5.11) is determined by the piston velocity w. The ordinary differential

equation (5.12) can be solved explicitly by using the substitution

g(t) = exp{−w(t)}. (5.13)

Indeed we have, g′(t) = −g(t)w′(t) = g(t)[1+P (t)+1/g(t)] by (5.12). This leads to the linear differential

equation

g′(t) + [1 + P (t)]g(t) = 1. (5.14)
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If we assume, as we shall do from now on, that the function P is continuous, the equation (5.14) can be

uniquely solved by integrating factor provided the initial value g(0) is known. To find that, we let w(0)

be compatible with the initial state v(x, 0) = u(x, 0). Thus we let w(0) = limx→0+ u(x, 0) = 0. From

(5.13) it is seen that

g(0) = exp{−w(0)} = 1. (5.15)

With the integrating factor I defined by

I(t) := exp{t+

∫ t

0

P (τ)dτ}, (5.16)

the solution is

g(t) =
1 +

∫ t

0
I(τ)dτ

I(t)
> 0. (5.17)

Thus the piston velocity w(t) = − ln{g(t)} is well defined. This is a general expression for g and we can

see that g, and therefore w, depends on the history of the applied pressure. Let us continue to study this

dependence to see in what way the applied pressure affects the piston velocity.

To begin with we note that from (5.14) and (5.15)

g′(0) = 1− [1 + P0] = −P0, (5.18)

where P0 = P (0). Hence, if P is initially positive, g will decrease for some time and w will therefore

increase during the same time interval. If the applied pressure is not kept at a sufficiently high level, the

piston may eventually run out of steam as we shall see later.

A first concern is to obtain upper bounds and positive lower bounds for g. This may appear to be

easy since we already have an explicit expression embodied in (5.16) and (5.17), but this is not as easy

as it may seem. Instead we take an indirect approach by comparing solutions corresponding to different

applied pressures. Let γ(t) be the solution of

γ′(t) + [1 +Q(t)]γ(t) = 1,

γ(0) = 1.







(5.19)

We compare g and γ by letting h(t) = g(t) − γ(t). Subtraction of (5.14) and (5.19) gives, after some

manipulation,

h′(t) + [1 +Q(t)]h(t) = [Q(t)− P (t)]g(t),

h(0) = 0.







(5.20)
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We can now formulate the Comparison Theorem [11].

Theorem 5.3.1. If for all t > 0, Q(t) ≥ P (t), then γ(t) ≤ g(t).

Proof. Since g(t) > 0, it follows from the first equation in (5.20) that h′(t)+[1+Q(t)]h(t) ≥ 0. To resolve

this inequality we consider the “integrating factor” K(t) given by

K(t) = exp{

∫ t

0

(1 +Q(τ))dτ} = exp{t+

∫ t

0

Q(τ)dτ} > 0, (5.21)

and note that
d

dt
[K(t)h(t)] = K(t)[h′(t) + [1 +Q(t)]h(t)] ≥ 0. (5.22)

Integration of the inequality (5.22) from 0 to t and the initial condition in (5.20) leads to the conclusion

that K(t)h(t) ≥ 0. Since K(t) is always positive, h(t) cannot be negative.

Remark 5.3.2. It is readily seen from the proof of Theorem 5.3.1 that Q(t) ≤ P (t) implies that γ(t) ≥

g(t).

Corollary 5.3.1. If for all t > 0, there are constants m > −1 and M such that m ≤ P (t) ≤M , then

1 +M exp{−(1 +M)t}

1 +M
≤ g(t) ≤

1 +m exp{−(1 +m)t}

1 +m
.

Proof. For a constant applied pressure P (t) = f > −1 the expression (5.17) can readily be evaluated.

The result is

g(t) =
1 + f exp{−(1 + f)t}

1 + f
(5.23)

Now apply Theorem 5.3.1 with γ(t) = m and γ(t) =M

Corollary 5.3.2. Nonnegative applied pressures produce nonnegative piston velocities.

Proof. For m = 0 it follows that g(t) ≤ 1 and therefore w(t) = − ln g(t) ≥ 0.

The next dependency result [11] is

Theorem 5.3.3. Suppose that P is continuously differentiable. If either P0 > 0 and P ′(t) ≥ 0 or P0 = 0

and P ′(t) > 0,the piston velocity w(t) will be strictly increasing. Likewise if either P0 < 0 and P ′(t) ≤ 0

or P0 = 0 and P ′(t) < 0, the piston velocity will be strictly decreasing.

Proof. Let h(t) := g′(t). Differentiation of (5.14) and re-substitution in the result shows that

h′(t) + [1 + P (t)−
P ′(t)

1 + P (t)
]h(t) = −

P ′(t)

1 + P (t)
. (5.24)
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Also, from (5.18), h(0) = −P0. The integrating factor for the (linear) equation (5.24) is found to be

J(t) = (
1 + P0

1 + P (t)
)I(t), (5.25)

with I(t) defined in (5.16). By following a standard procedure, we obtain

J(t)h(t) = −P0 −

∫ t

0

(
P ′(t)

1 + P (t)
)J(τ)dτ. (5.26)

It is seen from (5.25) that J(t) > 0 and it follows from (5.26) that h(t) < 0. Hence g(t) is strictly

decreasing. The second statement follows in precisely the same way from the calculations already made.

The following result [11] gives a sufficient condition for the derivative of g to be increasing when g

itself is decreasing.

Theorem 5.3.4. If g′(t) < 0 and P ′(t) ≤ 0 then g′′(t) > 0

Proof. By using (5.14) the expression (5.24) can be re-phrased as

g′′(t) = P ′(t)
g′(t)− 1

1 + P (t)
− [1 + P (t)] = −P ′(t)g(t)− [1 + P (t)]g′(t). (5.27)

Again, by (5.14), g′(t) < 0 if and only if [1 + P (t)]g(t) > 1. Thus, 1 + P (t) > 0 and by (5.27) the

proof is complete.

Example 5.3.5. This example is crucial in the rest of the work. We consider the case of a decreasing

positive applied pressure given by

P (t) =
1

1 + t
. (5.28)

Since P (t) is strictly decreasing P ′(t) < 0 for all t. In this case the expressions involved in (5.17) can be

obtained explicitly:

I(t) = exp{t+ ln(1 + t)} = (1 + t) exp{t};
∫ t

0

I(τ)dτ =

∫ t

0

(1 + τ) exp{τ}dτ = t exp{t},

which leads to

g(t) =
1 + t exp{t}

(1 + t) exp{t}
=
t+ exp{−t}

1 + t
. (5.29)

The behaviour of the functions g(t) and w(t) = − ln g(t) is shown in Figures 5.2 and 5.3 below.
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Figure 5.2: Plot of the function g(t)
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Figure 5.3: Piston velocity with positive decreasing input

This is evidently a case, as mentioned earlier, where the piston loses speed after a while because the

driving force is not sufficiently sustained.

Figure 5.2 furthermore illustrates Theorem 5.3.4: Suppose g′(tc) = 0. In the time interval [0, tc);

tc ≈ 1.1462, g′(t) < 0 and P ′(t) < 0 for all t. Therefore, in the mentioned time interval, g′′(t) > 0. The

“critical” time tc is calculated by numerically solving the equation

g′(t) =
1− (2 + t) exp{t}

(1 + t)2
= 0.

It is also seen that g′ increases from -1 to a positive maximum then decreases to zero as t goes to infinity.

Verification of this is by elementary calculus.

 
 
 



Chapter 6

Characteristics and the piston

problem

6.1 Characteristics emanating from the t-axis

In Chapter 5 we saw that when the quadrant Q = {(x, t) : t > 0, x > 0} is covered by C2-characteristics

the piston problem reduces to the single transport equation (5.11) for velocity. The boundary velocity

w(t) represents the velocity of the piston and is determined by the dynamic equation (5.12). This equation

could be solved explicitly by the substitution w(t) = exp{−g(t)} under the initial condition w(0) = 0

which is the same as the initial condition g(0) = 1. We also analysed the piston velocity. In this chapter

and the next we turn our attention to the motion of the gas ahead of the piston. Let us, by way of

re-capitulation, state the dynamic problem under investigation:

ut(x, t) + exp{u(x, t)}ux(x, t) = 0, x > 0; t > 0;

u(x, 0) = 0;

u(0, t) = w(t) = − ln{g(t)}.



















(6.1)

The problem (6.1) will be analysed by the method of characteristics. The characteristics emanating from

the x-axis (t = 0) are, because of the homogeneous initial condition, found to be the family of straight

lines x = t + y; y > 0 (see e.g. [4], [12]). They cover the upper octant {(x, t) : x > t > 0} and there

u(x, t) = 0.

The more intricate problem is to study the characteristics emanating from the t-axis (x = 0). They

will give the motion of the gas ahead of the piston. Let us represent those characteristics (u is constant

33
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along them) in the form t = T (x). Along these curves U(x) := u(x, T (x)) is constant and it follows that

U ′(x) = ux(x, T (x)) + T ′(x)ut(x, T (x)) = 0. (6.2)

Comparison of the partial differential equation in (6.1), evaluated on the curve, with (6.2) gives

T ′(x) = exp{−U(x)} = exp{−U0}, (6.3)

where U0 = U(0). From (6.3) we deduce that the characteristics in question are straight lines given by

t = T (x) = s + x exp{−U0}. On such a characteristic U0 = u(0, s) = w(s) and hence the equation of a

characteristic coming from the t− axis is, by the boundary condition in (6.1),

t = s+ x exp{−w(s)} = s+ xg(s). (6.4)

Thus, to calculate the solution of (5.11) for given (x, t) in the quadrant Q of the (xt) plane it is necessary

to solve (6.4) for s. At such a point u(x, t) = w(s). The point s on the line x = 0 depends on x and t.

From (6.4) we see that

sx(x, t) = −
g(s)

1 + xg′(s)
. (6.5)

The spatial derivative of the velocity u(x, t) may now be expressed entirely in terms of the known function

g. Indeed, since u(x, t) = w(s(x, t)) = − ln(g(s(x, t))), we find that ux = − g′(s)
g(s) sx. This combined with

(6.5) yields

ux(x, t) =
g′(s(x, t))

1 + xg′(s(x, t))
. (6.6)

In the same way, since 1 + p(x, t) = exp{w(s(x, t))}, we find that

px(x, t) =
g′(s(x, t))

g(s(x, t))[1 + xg′(s(x, t))]
. (6.7)

It should be noted that, by (5.14), the derivative g′ can be expressed in terms of the applied pressure

P and g itself. Since, by (5.16) and (5.17), g itself depends entirely on P . Thus the expressions above

depend solely on P .

6.2 Characteristics intersecting

Next we consider the case where the piston velocity is strictly increasing in some time interval. Then

there must be s1 < s2 such that w(s1) < w(s2). Since the function g is strictly decreasing in that
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interval, the characteristic passing through 0, s1 will have a slope which is larger compared to the one

passing through 0, s2 and consequently they will intersect at some point (x, t)with x, t > 0. Indeed, from

(6.4), t = s1 + xg(s1) = s2 + xg(s2). We can solve for x:

x = −
s2 − s1

g(s2)− g(s1)
= −

1

g′(s)
≥ 0; s1 ≤ s ≤ s2, (6.8)

where the last two inequalities follow from the mean value theorem. By (6.4) the t− coordinate of the

point of intersection is given by

t = si −
g(si)

g′(si)
; i = 1, 2. (6.9)

Thus the existence of an increasing part of the piston velocity w(t) (or a decreasing part of the function

g(t)) leads to the intersection of characteristics. This implies that the solution function u(x, t) may

become multi-valued or discontinuous. Also (6.8) ⇒ xg′(s) + 1 = 0 resulting in the non-existence of the

spatial derivatives ux and px from (6.6) and (6.7),respectively. Figure 6.1 depicts the situation described
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Figure 6.1: Characteristics emanating from the t- axis

in Example 5.3.5 (specifically Figures 5.2 and 5.3) where g(t) is strictly decreasing in the time interval

[0, tc) and therefore some of the characteristics will intersect. Because of the representation t = T (x) for

the characteristics we chose the t-axis vertically.
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6.3 Where do characteristics intersect?

When viewing a plot of characteristics such as in Figure 6.1 the question of the location of the points of

intersection comes up. We approach this question by investigating the equation

F (s;x, t) := s+ xg(s)− t = 0; (x, t) ∈ Q. (6.10)

Here (x, t) is the point through which a characteristic passes. Thus x and t are parameters while s is the

variable. The definition (6.10) is in accordance with the representation (6.4) of characteristics in general.

The analysis of the zero’s of the function F (s;x, t) as defined in (6.10) can yield much more because

the number of zero’s is precisely the number of characteristics through the point (x, t) ∈ Q while the

solution(s) s tell us where the characteristic(s) emanate from. The index i(x, t) of a point (x, t) is defined

as the number of solutions of the equation (6.10).

The analysis for general g(t) would be a tremendous task. We therefore restrict the investigation to

a simpler class of cases, in line with Example 5.3.5. These restrictions will be as follows:

1. P (t) ≥ 0; P0 > 0;

2. P ′(t) < 0;

3. For some tc > 0, g′(t) < 0 for 0 < t < tc; g′(t) > 0 for t > tc.

The analysis in [11] pertains to the much simpler case when g′ < 0 and g′′ > 0. In this analysis provision

is made for the possibility that g′′ can change sign. The following result is needed to be able to cope with

the more complex situation at hand:

Lemma 6.3.1. Under the restrictions above the following is true:

g′′(t) > 0; for 0 < t < tc;

g′(tc) = 0;

g∞ = lim
t→∞

g(t) exists, and
1

1 + P0
≤ g∞ ≤ 1;

lim
t→∞

g′(t) = 0;

Let P∞ = lim
t→∞

P (t). Then g∞ =
1

1 + P∞
.

Proof. Under the restrictions above g′(t) < 0 for 0 < t < tc and P ′(t) < 0 for all t. By Theorem 5.3.4,

g′′(t) > 0 for 0 < t < tc.
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If g′(t) < 0 for 0 < t < tc and g
′(t) > 0 for t > tc it follows from continuity that g′(tc) = 0

By Corollary 5.3.1 the function g is bounded. In fact, since 0 < P (t) ≤ P0, [1 + P0]
−1 ≤ g(t) ≤ 1 for

all t. Since g(t) is increasing for t > tc, it follows that the supremum g∞ = supt>tc g(t) exists. By the

definition of supremum g∞ is the limit we have in mind.

Now we can prove that limt→∞ g′(t) = 0 by using the mean-value theorem. Let a > 0 be fixed. Then

g(t+ a)− g(t) = ag′(ξ) with t ≤ ξ ≤ t+ a. Therefore, g′(ξ) = g(t+a)−g(t)
a

→ 0 as t→ ∞.

The final expression is derived by noticing, as above, that the limit P∞ = inft>0 P (t) exists. When

the results we have already obtained are applied to the differential equation g′(t) = 1 − [1 + P (t)]g(t)

(5.14), the resulting expression is 1− [1 + P∞]g∞ = 0 which is what we want.

For further reference we record the following:

F (0;x, t) = x− t;

Fs(s;x, t) = 1 + xg′(s);

Fs(0;x, t) = 1− P0x;

Fs(tc;x, t) = 1;

Fss(s;x, t) = xg′′(s);

F (s;x, t) ∼ s+ x
1+P∞

− t as s→ ∞.























































(6.11)

The asymptotic behaviour of F for large s follows from Lemma 6.3.1. Indeed, if F∞(s;x, t) = s+xg∞− t,

then |F∞(s;x, t)−F (s;x, t)| = x[g∞ − g(s)] which tends to zero when s→ ∞. The next result is crucial:

Lemma 6.3.2. If P0x ≥ 1, there is precisely one point s = sm(x, t) ∈ [0, tc) where Fs(s;x, t) = 0. If

P0x = 1, sm = 0. Otherwise sm > 0. At s = sm, F (s;x, t) has a local minimum. In addition, sm ∈ [0, tc).

If P0x < 1 there is no such point as sm.

There are no local maxima of F .

Proof. Since, by Lemma 6.3.1, g′(s) → 0 as s → ∞; Fs = 1 + xg′(s) → 1 as s → ∞. Therefore since

Fs(0;x, t) = 1 − P0x, Fs has values in the interval [1 − P0x, 1]. Possibly some values are not in this

interval. From the continuity of Fs as function of s it is seen that the possibility of zero’s of Fs exists.

We investigate the three possibilities pertaining to the signature of 1− P0x. With this in mind, we note

that for s ∈ [0, tc], 1 − P0x ≤ Fs(s;x, t) = 1 + xg′(s) ≤ 1. In addition, g′′(s) > 0 in this interval, and

g′(s) > 0 for s > tc. We investigate the three possibilities pertaining to the signature of 1− P0x.

Case 1: If P0x > 1 then Fs(0;x, t) = 1 − P0x < 0. Hence Fs increases from a negative to a

positive value in the interval [0, tc] and remains positive thereafter. Therefore it can have only one zero
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sm ∈ (0, tc).

Case2: If P0x = 1, Fs(0;x, t) = 1−P0x = 0. Since Fs(s;x, t) > 0 for all other values of s, this is the

only zero.

Case3: If P0x < 1, Fs will start with a positive value and will remain positive. In this case there

cannot be a zero.

Finally, since Fss > 0, there cannot be local maxima.

We shall consider points (x, t) ∈ Q in certain subsets, namely

S+ = {(x, t) ∈ Q : t > x > 0};

S0 = {(x, t) ∈ Q : 0 < x < 1/P0};

S− = {(x, t) ∈ Q : x ≥ t > 0}.

These regions S+ and S− cover the whole quadrant Q. S+ is the region above and S− below the line

t = x. The set S0 plays a very definite role in Lemma 6.3.2. Indeed, for (x, t) ∈ S0, F has a local

minimum Fm at s = sm ∈ [0, tc). The different regions are shown in Figure 6.2 below.

We will deal with points in S+ and S− separately.

The region S+: In this region, by (6.11) F (0, x, t) = x− t < 0 and F (s, x, t) → ∞ as s→ ∞. This

means there is at least one positive solution of F (s, x, t) = 0. In order to investigate the existence of

multiple solutions, we consider the derivative Fs = 1+ xg′(s). By Lemma 6.3.2 there can be at most one

minimum-point of F in this region and at that point F can only have a negative value otherwise it must

be positive everywhere, in conflict with F (0, x, t) =< 0. Thus, in this region i(x, t) = 1.

The region S−: In this region F (0, x, t) = x − t ≥ 0 and Fs(0, x, t) = 1 − P0x (from (6.11)). By

Lemma 6.3.2 the function F can therefore have only one zero for (x, t) ∈ S− ∩ S0 and that is on the line

t = x. That zero is s = 0. In S− ∩ S0\{t = x} there can be no zeros.

For (x, t) ∈ S−\S0 the function F has a minimum at s = sm ∈ (0, tc). The number of zero’s of F is

therefore determined by the minimum-value Fm = F (sm;x, t). The conclusion is

i(x, t) = 0 if Fm > 0;

i(x, t) = 1 if Fm = 0;

i(x, t) = 2 if Fm < 0.

The case Fm = 0 is of special interest as it defines a “bounding curve” in the quadrant Q. Indeed,
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1/P0x

tt

x

S+

−S

S0

Figure 6.2: The regions in question

we have remarked earlier that sm depends on the point (x, t). The curve we refer to is therefore of the

form E(x, t) = F (sm(x, t);x, t) = 0 and is represented as an implicit relation between t and x. From our

discussion above it is seen that the bounding curve is defined for x ≥ x0 = 1/P0 and t ≥ t0 = 1/P0.

Furthermore, the curve is below the line t = x, only touching the line at the point (x0, t0). The bounding

curve therefore is the interface between the regions where i = 0 and i = 2.

6.4 The bounding curve

If the point (x, t) is on the bounding curve, it is seen from the previous section that F (sm(x, t);x, t) = 0

and Fs(sm(x, t);x, t) = 0. This means that the bounding curve is an envelope of characteristics emanating

from the t-axis. We further investigate the envelope by calculating its slope. The following calculation is

essential:

Ex = Fs(sm)
∂sm
∂x

+ Fx(sm) + Ft(sm)
dt

dx
= Fx(sm) + Ft(sm)

dt

dx
= 0. (6.12)

Thus we can solve for dt/dx from (6.12) to obtain

dt

dx
= −

Fx(sm)

Ft(sm)
= g(sm). (6.13)

From (6.13) we immediately see that the envelope is an increasing curve since g is always positive. In

addition, from Lemma 6.3.2 it is seen that at the point (x0, t0), sm = 0 so that at this point dt/dx =

g(0) = 1. This means that at the starting point the envelope is tangential to the line t = x. In turn this

means that the envelope E(x, t) = 0 and the curve t− x = 0 form a cusp at (x0, t0).

We need to examine what happens below the envelope. Suppose that E(x, t) = 0 and 0 < t∗ < t. In
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other words, the point (x, t∗) is below the envelope. Now, F (0; t∗, x) = x − t∗ > x − t > 0. Hence, the

minimum value of F at this point will be positive, and no characteristic emanating from the t-axis will

go through this point.

Our findings in this and the previous section can be summarized as follows:

Theorem 6.4.1.

If t > x > 0, i(x, t) = 1;

if t = x > 0 and 0 < x ≤
1

P0
, i(x, t) = 1;

if 0 < t < x and 0 < x ≤
1

P0
, i(x, t) = 0.

Suppose that x > 1/P0 and E(x, t†) = 0, then

if x ≥ t > t†, i(x, t) = 2;

i(x, t†) = 1;

if t < t†, i(x, t) = 0.

6.5 Computing an envelope of characteristics

The objective here is to find points (x, t) ∈ Q for which E(x, t) = 0. From Sections 6.3 and 6.4 we see

that it is only feasible for x > x0 = 1/P0. For x = x0 we already know that t = t0 = 1/p0. The equations

at hand for the task are

F (s, x, t) = s+ xg(s)− t = 0;

Fs(s, x) = 1 + xg′(s) = 0.







(6.14)

The task of finding the points (x, t) on the envelope will therefore entail the elimination of s from the

equations (6.14). In the case treated in [11] it was possible to do this explicitly. In the situation of

Example 5.3.5 explicit elimination of s does not seem to be possible. The envelope has to be found by a

numerical algorithm which is based on the following:

1. Choose x > x0.

2. Solve for s from 1 + xg′(s) = 0.

3. Calculate t from t = s+ xg(s).
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It is the second step of the algorithm that may be analytically difficult and will then require a numerical

procedure. We illustrate by continuing with Example 5.3.5 where P (t) = 1/(1 + t). From the expression

(5.29) for g(t) we obtain

g′(s) =
1− (2 + s) exp(−s)

(1 + s)2
. (6.15)

Use of (5.12) in Step 2 of the algorithm leads to the equation

x[1 − (2 + s) exp(−s)] + (1 + s)2

x(1 + s)2
= 0,

and this reduces to

f(s;x) = x[1− (2 + s) exp(−s)] + (1 + s)2 = 0, (6.16)

with s the unknown (x having been chosen in Step 1).

In order to find a suitable numerical method for solving the equation (6.16) we investigate the function

f for s ≥ 0. First we note that f(0;x) = 1−x. Since x > 1/P0 = 1 in this case, it is seen that f(0;x) < 0.

Next, we consider fs which turns out to be fs(s;x) = (1+s)[x exp(−s)+2] > 0. We see that the function

f increases from a negative value at s = 0 and will eventually become positive. Thus the Newton-Raphson

algorithm

sn+1 = sn −
f(sn;x)

fs(sn;x)

would be quite suitable.

Once a sufficiently accurate approximation for the solution of (6.16) is found, the value of t on the

curve can be calculated by Step 3 above. The result of the calculation with added perspectives can be

seen in Figure 6.3
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x0

t =
 x

E(x,
t) 

= 0

i(x
,t)

 =
 2

x

t

i(x,t) = 1

i(x,t) = 0

 0 0 0 0 0 0 0 0 0 0 0

Figure 6.3: Characteristics emanating from the t-axis, their envelope and the index i in various regions.
In this case P (t) = 1/(1 + t).

 
 
 



Chapter 7

Jump curves

7.1 The jump condition

Under circumstances when the piston velocity increases, jump discontinuities in the solution u(x, t) of

the problem (5.11) will develop. The resulting discontinuous function cannot be a classical solution of

a differential equation. In fact, the underlying differential equations were derived from the fundamental

physical principles of conservation of mass and balance of linear momentum under the assumption that

the entities involved were differentiable. These principles as formulated can hold even when the functions

involved are not smooth. We can therefore revert to them and abandon the differential equations.

In the problem at hand, the function u(x, t) is the scaled velocity of particle x at time t. We therefore

deal with the case of a velocity function that can have a jump discontinuity. We first go back to the

balance of linear momentum in unscaled form as set out in Section 4.1. In the one-dimensional case

this has a particular form: Let [a, b] be an arbitrary subinterval of the reference configuration (0,∞)

and, as in Section 4.3, let ψ(x, t) define the one-dimensional motion. The equation (4.1) should be

re-interpreted. For this purpose we need to realize that if A = ψ(a, t) and B = ψ(b, t) then the unit

exterior normals at A and B are −1 and 1 respectively. Thus the boundary term in (4.1) is replaced by

−[P (B, t)n(B) − P (A, t)n(A)] = P (A, t) − P (B, t) = p(a, t) − p(b, t). Here we still use the notation: if

F (X, t) is a function defined for X in the configuration at time t then f(x, t) := F (ψ(x, t), t). Hence,

43
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(4.1) for one dimensional motion, can be stated in the form

d

dt

∫ ψ(b,t)

ψ(a,t)

σ(X, t)V (X, t)dX =

∫ ψ(b,t)

ψ(a,t)

P (X, t)n(X)dS

= P (ψ(a, t), t)− P (ψ(b, t), t)

= P (A, t)− P (B, t)

= p(a, t)− p(b, t). (7.1)

Let us assume that a jump discontinuity in the particle velocity occurs over the smooth curve x = j(t) in

the reference configuration. Suppose that a < j(t) < b and let J(t) = ψ(j(t), t). For ε > 0 but sufficiently

small, we have that a < j(t)− ε < j(t) + ε < b. We deal with integrals such as on the left of (7.1) in the

following way: Let J−(t) = ψ(j(t) − ε, t) and J+(t) = ψ(j(t) + ε, t). Then, since ψx > 0, it follows that

A = A(t) < J−(t) < J(t) < J+(t) < B −B(t). In general we resort to improper integrals and write

∫ B(t)

A(t)

F (X, t)dX = lim
ε→0

[

∫ J−(t)

A(t)

F (X, t)dX +

∫ ψ(b,t)

J+(t)

F (X, t)dX.

]

(7.2)

If it is assumed that below and above the curve of discontinuity everything is fine, then transformation

of (7.2) back to the reference configuration yields

∫ B(t)

A(t)

F (X, t)dX = lim
ε→0

[

∫ j(t)−ε

a

f(x, t)ψx(x, t)dx +

∫ b

j(t)+ε

f(x, t)ψx(x, t)dx

]

. (7.3)

If we apply (7.3) to the integrand F (X, t) = σ(X, t)V (X, t) and take into account the conservation of

mass (3.7) in the form ρ(x) = ψx(x, t)σ(ψ(x, t), t), we obtain from (7.3) the expression

d

dt

∫ b

a

ρ(x)v(x, t)dx =
d

dt

(

lim
ε→0

[

∫ j(t)−ε

a

ρ(x)v(x, t)dx +

∫ b

j(t)+ε

ρ(x)v(x, t)dx

])

. (7.4)

If it is assumed that in (7.4) the limit and time derivative can be interchanged, we can proceed to evaluate

the time derivatives. From the chain rule it follows that

d

dt

∫ j(t)−ε

a

ρ(x)v(x, t)dx = j′(t)ρ(j(t) − ε)v(j(t)− ε, t) +

∫ j(t)−ε

a

ρ(x)vt(x, t)dx, (7.5)

and
d

dt

∫ b

j(t)+ε

ρ(x)v(x, t)dx = −j′(t)ρ(j(t) + ε)v(j(t) + ε, t) +

∫ b

j(t)+ε

ρ(x)vt(x, t)dx. (7.6)

By (4.5) (in one-dimensional form), ρ(x)vt(x, t) = −px(x, t) in [a, j(t) − ε] and in [j(t) + ε, b]. This,
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substituted into (7.5) and (7.6) and use of the fundamental theorem of the calculus yields

d

dt

∫ j(t)−ε

a

ρv(x, t)dx = j′(t)ρ(j(t)− ε)v(j(t) − ε, t)− [p(j(t)− ε)− p(a, t)], (7.7)

and
d

dt

∫ b

j(t)+ε

ρv(x, t)dx = −j′(t)ρ(j(t) + ε)v(j(t) + ε, t)− [p(b, t)− p(j(t) + ε)]. (7.8)

Substitution of (7.7) and (7.8) into (7.4) yields the following:

d

dt

∫ b

a

ρ(x)v(x, t)dx = lim
ε→0

−j′(t) [ρ(j(t) + ε)v(j(t) + ε, t)− ρ(j(t)− ε)v(j(t) − ε, t)]

+ lim
ε→0

[p(j(t) + ε)− p(j(t)− ε)] + [p(a, t)− p(b, t)] . (7.9)

Next we define the jump of a function f(x, t) over the curve x = j(t) as follows:

[f ](t) := lim
x↓j(t)

f(x, t)− lim
x↑j(t)

f(x, t).

If the function f is continuous, the jump is zero. With this notation and the additional assumption that

the reference density ρ(x) is a continuous function, it follows from (7.9) that

d

dt

∫ b

a

ρ(x)v(x, t)dx = −ρ(j(t))j′(t)[v](t) + [p](t) + [p(a, t)− p(b, t)], (7.10)

see e.g. [4]. Comparison of (7.1), (7.4) and (7.10) leads to the unscaled jump condition

ρ(j(t))j′(t)[v](t) − [p](t) = 0. (7.11)

Scaling of the equation (7.11) in accordance with Section 4.2, taking ρ to be constant, gives the scaled

jump condition

[v](t)j′(t)− [p](t) = 0. (7.12)

The scaling is explained in Section 8.3. It should be noted that the constant density ρ is absorbed into

the scaling.

Remark 7.1.1. The jump condition (7.11) was derived under a number of assumptions such as the

commutation of derivatives and limits, continuity of the density function and switching of integrals and

derivatives. Thus the jump conditions above should be seen as other expressions of physical laws rather

than consequences of the principles of conservation of mass and balance of linear momentum.
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7.2 The jump condition for the piston problem

The jump condition (7.12) derived in the previous section is general and does not specifically pertain to

the piston problem we began studying in Chapter 5. What we saw in Chapter 5 is that for the piston

problem, characteristics emanating from the t-axis can intersect. Here we specifically refer to the situation

described in Lemma 6.3.1 that formed the backdrop to our study further on. We also remind ourselves

that the characteristics emanating from the x-axis also exist, are the straight lines of the form x = y + t

(or t = x − y), cover the whole first quadrant and carry with them zero-values of the function u(x, t)

(Theorem 5.2.1). This is depicted in Figure 7.1 below

x

t

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7.1: Characteristics emanating from the t and x-axes for the case P (t) = 1/(1 + t). Refer also to
Figure 6.3.

From Section 5.2 we have v = u1 + u2 = u1 = u. So the jump in v is the same as the jump in u. (i.e.

[v](t) = [u](t)). We also have that q = u1 − u2 = u1 = u. Since, by (4.23), p = exp{q} − 1 = exp{u} − 1,
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it follows that [p](t) = [exp(u)]. Hence the jump condition (7.12) for the piston problem becomes

[u](t)j′(t)− [exp{u}](t) = 0. (7.13)

We shall use relationship (7.13) to calculate the jump curve from the initial condition j( 1
P0

) = 1
P0

which means that the jump curve begins at the point (1/P0, 1/P0) where the bounding curve starts.

For the piston problem the jumps in (7.13) can be further simplified. If we refer to Figure 6.3 and

recall the arguments of Sections 6.2 and 6.3, it becomes clear that the jump curve can only occur in the

shaded region in Figure 6.3. Figure 7.1, shows that on one side of the jump curve (the one reached by

characteristics from the x-axis) u = p = 0. Thus the jump in u is determined by a characteristic from the

t-axis. This means that [u](t) = 0− w(s) = ln{g(s)} is determined by a characteristic through the point

(j(t), t) emanating from a point 0, s on the positive t-axis. Also, [exp{u}](t) = exp{0} − exp{w(s)} =

1− exp{w(s)} = 1− 1/g(s). Thus (7.13) simplifies to

j′(t) =
exp{w(s)} − 1

w(s)
=

1− g(s)

−g(s) ln{g(s)}
. (7.14)

7.3 Properties of the jump curve

We are now in a position to derive some important properties of the jump curve x = j(t).

Theorem 7.3.1. Under the restrictions 1–3 of Section 6.3 the jump curve for the piston problem is defined

for t > t0 = 1/P0 and is strictly increasing. Furthermore, limt→tc j(t) = x0 = 1/P0 and limt→tc j
′(t) = 1.

Proof. The jump curve is defined for t > t0 because at t0 we have the initial condition. From Lemma

6.3.1, 0 < g(s) < 1. ln{g(s)} < 0, as a result −g(s) ln{g(s)} > 0 and therefore j′(t) = 1−g(s)
−g(s) ln{g(s)} > 0

which implies j(t) is strictly increasing. At the point (x0, t0), s = 0. Hence,

lim
t→t0

j′(t) = lim
s→0

1− g(s)

−g(s) ln{g(s)}

= lim
x→1

1− x

−x lnx
, because g → 1.

By L’Hospital’s rule if f(x) = 1−x and h(x) = −x lnx then limx→1
f ′(x)
h′(x) = limx→1

−1
−[1+ln x] = 1, therefore

limx→1
1−x

−x ln x = 1. At the point (x0, t0) we have the initial condition that j(t0) = j( 1
P0

) = x0 = 1
P0

.

Theorem 7.3.2. The bounding curves x = t, E(x, t) = 0 cannot be the jump curve.
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Proof. The only characteristic through a point on the bounding curve E(x, t) = 0 is tangent to the curve

and is not intersected by any other characteristic. Therefore the envelope cannot be a jump curve.

If the line t = x is the jump curve then at every point on the line two characteristics must intersect.

We can use Theorem 6.4.1 which says that if x = t and x ≤ 1
P0

then i(x, t) = 1 to show that the curve

x = t is not the jump curve.

Theorem 7.3.2 is important in subsequent considerations in the following sense: Through every point

(j(t), t) of the jump curve precisely two characteristics from the t-axis will pass. The question is, which

one of the two should be used to calculate the value of u? This question can be re-phrased by observing

that u = w(s). There will be two s-values involved. From the theorem in question we deduce that

the correct s-value must be such that s > sm where F (sm;x, t) = 0 determines the point (x, t) on the

bounding envelope curve at t > t0.

7.4 Calculating the jump curve

For a point (x, t) on the jump curve, let s(x, t) be the s-value from which u = w(s) is determined according

to the previous section. The ordinary differential equation (7.14) can then be re-formulated as

j′(t) =
1− g(s(x, t))

−g(s(x, t)) ln{g(s(x, t)})
:= G(s(j(t), t)).; x = j(t). (7.15)

An apparently accurate way of numerically solving (7.15) is to rewrite it as an integral equation and to

approximate the integral with the trapezium rule. Thus

∫ t+h

t

j′(τ)dτ = j(t+ h)− j(t) =

∫ t+h

t

G(s(j(τ)))dτ ≈
h

2
[G(s(j(t), t)) +G(s(j(t+ h), t+ h))].

From here we obtain the approximate equation

x2 − x1 =
h

2
[G(s(x1, t)) +G(s(x2, t+ h))] (7.16)

with x1 = j(t) and x2 = j(t+ h). Thus, if x1 is known, x2 can in principle be found by solving (7.16). If

we start at t = t0 = 1/P0 where, by Theorem 7.3.1, x1 = j(t0) = 1/P0, the value x2 = j(t0 + h) can be

calculated. There is a problem, though, because we need to find s(x2, t0 + h). This is overcome by use of

the regula falsi (secant) method which we describe next.

Suppose that t > t0 is given, that x1 is known and that s1 = s(x1, t) has been calculated. Let
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G1 = G(s1) and set

H(x2) =
h

2
[G1 +G(s(x2, t+ h))]− [x2 − x1].

The problem is to find x2 for which H(x2) = 0. The algorithm is as follows:

1. Calculate the number xm such that E(xm, t + h) = 0. That is, the point (xm, t + h) lies on the

envelope curve.

2. By stepping through values of x ∈ (xm, t + h) find x− and x+ for which H− = H(x−) < 0 and

H+ = H(x+) > 0.

3. Apply the regula falsi estimate:

x =
x−H+ − x+H−

H+ −H−
.

4. Evaluate H = H(x). If H < 0, let x− = x and H− = H . If H > 0, let x+ = x and H+ = H .

5. Go back to Step 3 and repeat until |H | < δ for some pre-determined error limit δ > 0. Let x2 = x.

Remark 7.4.1. In performing Steps 2 and 4 above the most delicate point is to find the appropriate

zero of the function F (s;x, t) = s + xg(s) − t defined in (6.10). An example of this function for x and

t in the appropriate range is shown in Figure 7.2 below. From the observations in Section 7.3, it is

s0 t c

s

−0.4

 0

 0.4

 0.8

 1.2

Figure 7.2: The function F

clear that we will be looking for the larger root s indicated in the sketch. Since Fs > 0 for s > s0, the

Newton-Raphson algorithm would be most efficient provided that the starting point is to the right of

the minimum point s0. To find the minimum point, in turn we note from (6.11) that it is found from

Fs(s0;x, t) = 1+ xg′(s0) = 0. Evidently, s0 is to the left of the critical point s = tc (Lemma 6.3.1) where

g′ = 0 for g′(s0) = −1/x < 0. So the Newton-Raphson iterations could start to the right of s = tc.
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To calculate the jump curve numerically, a small time increment h > 0 is chosen. At times t0 = 1/P0

and tn = t0 + nh, n = 1, 2 . . . the x-coordinates xn on the jump curve are calculated according to the

algorithm described above. We begin at t0 where j(t0) = 1/P0 and calculate x1. With j(t1) = x1 we can

proceed to calculate x2 and so on. The jump curve for case P (t) = 1/(1+ t) of Example 5.3.5 calculated

with h = 0.05 is shown in Figure 7.3 below. It lies, as expected, between the two bounding curves. C++

code for the procedure is given in Section 8.4.

t

x
 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7.3: The jump curve for the case P (t) = 1/(1 + t), the bounding curves and some characteristics.
Refer also to Figures 6.3 and 7.1.

7.5 Motion of the gas

Once the jump curve x = j(t) has been calculated, the gas velocity u(x, t) at a given point (x, t) in the

quadrant {x > 0, t > 0} can be calculated.

Theorem 7.3.1 shows that the jump curve plays no role when 0 < x < x0 = 1/P0. In this case we are
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looking at the region S0 (Figure 6.2). Below and on the line t = x only the characteristics coming from

the x-axis play a role and therefore u = 0 there. At points above this line the characteristics emanating

from the t-axis come into play. For points (x, t) with 0 < x < x0 and t > t0 = x0, only a single such

characteristic will pass through the point (Figure 6.3). If this characteristic emanates from the point

s(x, t) on the t− axis, then u(x, t) = w(s(x, t)).

From the considerations in Section 7.2 it is seen that for the case x > x0 the region below the jump

curve carries the value u = 0 (Figure 7.1). In the region above the jump curve a characteristic passing

through the point (x, t) emanating from the point s(x, t) on the t-axis was identified and once again

u(x, t) = w(s(x, t)). Thus the velocity u(x, t) can be calculated throughout the positive quadrant.

Once the velocity u(x, t) is known, one can calculate the pressure. Indeed, from (4.26) it is seen that,

since u2 = 0, q(x, t) = u(x, t). Hence, by (4.23), p(x, t) = exp{u(x, t)} − 1. Thus, since the exponent is

an increasing function, the pressure would follow a pattern similar to the velocity.

A graphic way of depicting the development of the velocity profile is to obtain the curves x→ u(x, t)

for a number of fixed values of t. For the special case of Example 5.3.5 the results are shown in Figure

7.2. Following [11] we shall refer to the developed discontinuity as Earnshaw’s bore.
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Figure 7.4: The development of Earnshaw’s bore

It is seen that, for the particular example, the velocity profiles follow a pattern. The velocity (as a

function of x) after some time reaches a local maximum before the discontinuity occurs. After some stage

the discontinuity occurs before a maximum is reached and then the supremum seams to decay. This

observation needs further clarification.

In the first place we notice that, by the contact condition (5.2) and by the notation adopted in Section

5.2, that at x = 0 we have

u(0, t) = v(0, t) = w(t). (7.17)
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Thus every curve (such as in Figure 7.2) begins at the value w(t).

In the second place we note that if the characteristic through the point (x, t) emanates from the point

s(x, t) on the t-axis, then

u(x, t) = w(s(x, t)). (7.18)

Also (6.6) states that

ux(x, t) =
g′(s(x, t))

1 + xg′(s(x, t))
. (7.19)

Thus ux(0, t) = g′(s(0, t)) = g′(t) and this implies that ux(0, t) < 0 if t < tc, ux(0, t) = 0 if t = tc and

ux(0, t) > 0 when t > tc. We see therefore that the velocity curves decrease initially if t < tc. For t > tc

they will increase.

Lastly we concentrate on the case t > tc and look for places where they will reach a local maximum.

From (7.19) we see that this will be the case when s(x, t) = tc for t = tc is the unique time when g′(t) = 0.

Suppose that xmax is the x-value where u(x, t) reaches a local maximum. By (7.18) the maximum value

of u will equal the maximum value wmax of w which is given by

umax = wmax = − ln(g(tc)). (7.20)

In the special case of Example 5.3.5, umax ≈ 0.3825 and is shown in Figure 7.4. Finally, the characteristic

passing through the point (xmax, t) also passes through the point s = tc on the t-axis and, by (6.4),are

of the form t = tc + xmaxg(tc). From this we can solve for xmax to obtain

xmax =
t− tc
g(tc)

. (7.21)

From (7.21) we see that a local maximum cannot be reached if t < tc. If t > tc a maximum is only

achieved if xmax < j(t) which explains why some of the curves in Figure 7.2 do not reach the maximum

possible value.

It should be noted that, by Lemma 6.3.1, g(t) decreases to the limit g∞ = 1/(1 + P∞) as t → ∞.

This means that w(t) decreases to w∞ = ln(1 + P∞) as t→ ∞. Thus is follows that the solution curves

will decay to a constant value when t→ ∞. For the case of Example 5.3.5 where P∞ = 0, the decay will

be to zero. The decaying applied pressure will not be able to sustain any motion in the long run.
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Appendices

8.1 Scaling of the dynamic equations

Here we give details of the results that are given in Section 4.2 and for convenience, we recall some

details/proofs.

For the purpose of scaling we assume that there is some length parameter ℓ in terms of which position

will be scaled. We shall scale velocity in terms of the static sound velocity c. To find a measure of

pressure, we note that (with units expressed in square brackets)

[ρc2] =
kg

m3
.
m2

s2
= kg.m−1s−2 =

kg.m.s−2

m2
=

Newton

m2
= Pressure.

We shall therefore scale pressure in terms of the quantity ρc2. Time will be scaled in terms of T = ℓ
c
.

We now make the following substitutions

x = ℓy where y is dimensionless ;

t = Tτ ;

v(x, t) = cV (y, τ);

p− p0 = ρc2P (y, τ)

χ = ℓχ̃

Now, by the chain rule,

vt =
∂V

∂τ

∂τ

∂t
=

c

T
Vτ .

∂p

∂xi
=

∂

∂xi
(p− p0) = ρc2

∂P

∂yi

∂yi
∂xi

=
ρc2

ℓ

∂P

∂yi
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Thus

∇xp =
ρc2

L
∇yP

The vector quantity χ is more complicated:

Lxχ =

(

∂χi
∂xj

)

= ℓ
n
∑

k=1

∂χ̃i
∂yk

∂yk
∂xj

= ℓ
1

ℓ

∂χ̃i
∂yj

= Lyχ̃,

because
(

∂yk
∂xj

)

=
1

ℓ
I,

with I the unit 3× 3 matrix.

Substitution into the equation (4.6) now gives

c

T

∂V

∂τ
+

c2

ρc2 + ρc2P
L−T
y χ̃(

ρc2

ℓ
)∇yP,

which upon re-arrangement becomes

Vτ +
cT

ℓ
(

1

1 + P
)L−T

y χ̃∇yP = 0.

By the definition of T , however, cT/ℓ = 1, and we end up with the scaled equation

Vτ + (
1

1 + P
)L−T

y χ̃∇yP = 0.

The equation (3.18) is scaled in precisely the same way and the outcome is

Pτ + [1 + P ]L−T
y χ̃ : Vy = 0.

We note at this stage that the unit ℓ of length is still free.

8.2 Scaling of the Dynamic Boundary Condition

IfM is the mass of the piston, A its surface area, w(t) its velocity at time t and P (t) the applied pressure,

then the equation of motion of the piston is

Mw′(t) = AP (t) −Ap(0, t)
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With p the unscaled pressure. To this we add the contact condition

w(t) = v(0, t)

With v once again the unscaled velocity. The scaling is done as in the previous section. We let

w(t) = cW (τ);

t = Tτ where T = ℓ
c
;

p(0, t)− p0 = ρc2P (0, τ);

P (t)− p0 = ρc2Π(τ);

As before we obtain

w′(t) = c
dW

dτ

dτ

dt
=

c

T
W ′(τ).

Substitution into the equation of motion of the piston (5.1) yields

M
c

T
W ′(τ) = Aρc2[Π(τ) − P (0, τ)],

which simplifies to
M

lρA
W ′(τ) = Π(τ) − P (0, τ).

If we now choose the length ℓ = M
ρA

and use the fact that W (τ) = V (0, τ) the result is

d

dτ
[V (0, τ)] = Π(τ) − P (0, τ).

8.3 Scaling of the jump condition

The scaling of the jump condition (7.11) is done in the same way as all the others if we notice that the

scaling of the jump is simply

j(t) = ℓJ(τ),

that the jump in pressure is given by

[p](t) = ρc2[P (τ),

and the jump in velocity should be

[v](t) = c[V ](τ).
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The result, after some simplification, is

J ′(τ)[V ](τ) = [P ](τ).

8.4 C++ code: Jump Curve

The following is C++ code used to calculate points on the jump curve for the case

P (t) =
1

1 + t
.

Part of the calculation yields the envelope of characteristics emanating from the t-axis. Inputs are tmax,

the time span for the plot, and tincr = h, the time step for the calculations. The output was used to

produce Figure 7.3.

jump.cc

#include <complex >

#include <iostream >

#include <fstream >

#include <stdlib .h>

using namespace std;

// Identify defined functions here; e.g.

int sgn (double ); /* Calculates the sign of x */

double gee(double ); /* Calculates g(s) */

double gee_p(double ); /* Calculates g ’(s) */

double ef(double , double ); /* Calculates f(s,t) = (s-t)g ’(s) - g(s) */

double aitch(double , double , double ); /* Calculates h(s,x,t) = s-xg(s)-t */

double envpt(double ); /* Calculates envelope point for t>1 given.*/

double comp_s (double , double ); /* Calculates s-value for x,t given */

main()

{

double s, x, t, t_max , x_plus , h, h_2 , h_fin , h_fin2 , h_x ;

double G, X_0 , gamma , x_1 , x_2 , F, F_1 , F_2 ;

double epsilon = 1e-9;

// Edit Name.dat; e.g.

ofstream outfile ("env_jump .dat", ios ::out );

if (! outfile ) {

cerr << "Error: file could not  be opened . \n";

exit (1);}

// Dialogue (inputs )

cout << "t_max = ";

cin >> t_max;

cout << "t_incr = ";

cin >> h;

// End dialogue
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// Initialize

h_2 = h/2;

t = 1; x = 1; x_plus = 1, s = 0;

outfile << t << "\t" << x << "\t" << x_plus << "\t" << s <<"\n";

G = 1;

// Init done

// Main loop starts here

while (t < t_max ){

X_0 = x + h_2*G;

t += h;

x_plus = envpt (t);

h_x = (x_plus - t)/10;

// Localize zero

x_1 = x_plus -h_x ;

x_2 = x_1 - h_x;

s = comp_s (t,x_1 );

gamma = 1/gee(s);

G = (gamma -1)/ log (gamma );

F_1 = X_0 + h_2*G - x_1 ;

s = comp_s (t,x_2 );

gamma = 1/gee(s);

G = (gamma -1)/ log (gamma );

F_2 = X_0 + h_2*G - x_2 ;

while(sgn(F_1) == sgn(F_2 )){

x_1 = x_2;

x_2 = x_1 - h_x;

F_1 = F_2;

s = comp_s (t,x_2 );

gamma = 1/gee (s);

G = (gamma -1)/ log(gamma );

F_2 = X_0 + h_2*G - x_2 ;}

// Localization done

// Regula -falsi

F = F_1;

while (abs(F) >= epsilon ){

x = (F_2*x_1 - F_1*x_2 )/( F_2 - F_1 );

s = comp_s (t,x);

gamma = 1/gee (s);

G = (gamma -1)/ log(gamma );

F = X_0 + h_2 *G - x;

if(sgn(F) == sgn (F_1 )){

x_1 = x;

F_1 = F;}

else{

x_2 = x;

F_2 = F;}

}

outfile << t << "\t" << x << "\t" << x_plus << "\t" << s << "\n";}

// Main loop ends

outfile .close ();

return 0;

}

/* Defined functions */
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/* Sign function */

int sgn (double x)

{

int sign;

sign =1;

if (x==0) sign = 0;

else if (x <0) sign = -1;

return sign;

}

/* The function g(s)*/

double gee(double s)

{

return (s+exp(-s))/(1+ s);

}

/* The function g ’(s)*/

double gee_p(double s)

{

double sigma;

sigma = 1+s;

return (1 -(1+ sigma )* exp(-s))/( sigma*sigma );

}

/*The function f(s,t) = (s-t)g ’(s) - g(s) */

double ef(double s, double t)

{

return (s-t)* gee_p(s) - gee(s);

}

/* The function h(s,x,t) = s + xg(s) -t */

double aitch(double s, double x, double t)

{

return s + x*gee (s) -t;

}

/* To calculate envelope point (t given) */

double envpt(double t)

{

double h, s_1 , s_2 , s, f_1 , f_2 , f, epsilon ;

// Prepare for Regula -falsi

// Init

epsilon = 1e-9;

h = 0.01;

s_1 = 0;

s_2 = h;

f_1 = ef(s_1 ,t);

f_2 = ef(s_2 ,t);

// Localize zero

while (sgn(f_1) == sgn (f_2 )){

s_1 = s_2;

f_1 = f_2;

s_2 += h;

f_2 = ef(s_2 ,t);}

// Localization done
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// Regula -falsi

f = f_1;

while (abs(f) >= epsilon ){

s = (f_2*s_1 - f_1*s_2 )/( f_2 - f_1 );

f= ef(s,t);

if(sgn(f) == sgn(f_1 )){

s_1 = s;

f_1 = f;}

else{

s_2 = s;

f_2 = f;}

}

return -1/ gee_p(s);

}

/* To find s, given x and t */

double comp_s (double t, double x)

{

double h, s_1 , s_2 , h_1 , h_2 , s, ah;

double epsilon = 1e-9, s_c = 1.14619 , g_c = 0.682156 , g_pm = 0.0460764;

double c = g_c - s_c*g_pm;

// Init

s_1 = t - c*x;

h = s_1 /100;

s_2 = s_1 - h;

h_1 = aitch (s_1 ,x,t);

h_2 = aitch (s_2 ,x,t);

// Localize zero

while (sgn(h_1) == sgn (h_2 )){

s_1 = s_2;

h_1 = h_2;

s_2 -= h;

h_2 = aitch(s_2 ,x,t);}

// Localization done

// Regula -falsi

ah = h_1;

while (abs(ah) >= epsilon ){

s = (h_2*s_1 - h_1*s_2 )/( h_2 - h_1 );

ah= aitch (s,x,t);

if(sgn(ah) == sgn (h_1 )){

s_1 = s;

h_1 = ah;}

else{

s_2 = s;

h_2 = ah;}

}

return s;

}
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