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SUMMARY

Music perception in cochlear implant (CI) listeners has beenfound to be generally unsatisfac-

tory. An improved understanding of music perception in CIs isthus required, where research

into the perception of timbre, an important aspect of music,could assist in improving this

knowledge base. The aim of this study was to determine what underlies measured timbre

perception in cochlear implantees. This was investigated by means of an experimental com-

ponent and the development of a model of timbre perception inthe electrically stimulated

auditory system. Timbre perception was first measured in fivenormal-hearing (NH) and five

CI listeners by means of three important timbre features, namely the spectral centroid, the

logarithm of the rise time and the spectral irregularity. Discriminations of synthesised tones

where these features were independently varied revealed that CI listeners had substantially

larger threshold values than NH listeners for each of the timbre features investigated. Con-

fusions of musical instrument timbres were also determinedin five CI and five NH listeners

by similarity ratings of original and acoustic simulationsof musical instrument timbres, re-

spectively. An acoustic model based on a six-channel advanced combination encoder (ACE)

processor was developed in order to process 10 musical instrument timbres. The results of

the similarity ratings revealed differences in the information conveyed through the timbre

features for NH and CI listeners, and indicated that the acoustic model did not accurately
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represent timbre in the electrically stimulated auditory system, but provided reasonable mea-

surable results which could be compared to timbre perception model predictions. A model of

timbre perception was developed by combining the results ofthe discrimination tasks with

signal detection theory, in an attempt to predict the amountof information conveyed through

each of the timbre features to both NH and CI listeners. The model was found to predict

the experimental results obtained from the similarity ratings for both NH and CI listeners

acceptably for each of the three timbre features. This outcome also confirmed the validity of

the choice of the three timbre features as the primary features contributing to timbre percep-

tion, implying that timbre perception through a CI would be improved if CI processors could

be optimised for the transmission of these three important timbre perception features. The

model of timbre perception therefore has application in advancing CI research to facilitate

music perception in the electrically stimulated auditory system.

KEY WORDS

timbre perception, cochlear implants, acoustic model, discrimination tasks, similarity

ratings, model of timbre perception
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Graad : M.Ing (Bio-Ingeniersewese)

OPSOMMING

Kogleêre implanting (KI)-luisteraars ervaar oor die algemeen onbevredigende musiekpersep-

sie. Beter begrip aangaande KI-luisteraars se musiekpersepsie vermoë, met spesifieke ver-

wysing na timbrépersepsie, kan bydra tot die ontwikkeling van beter musiek prosessering

stratgeieë. Hierdie studie het ten doel gehad om die onderliggende eienskappe van tim-

brépersepsie in KI-luisteraars te ondersoek. Ingesluit indie studie is ’n eksperimentele kom-

ponent, sowel as ’n modellerings-komponent om timbrépersepsie in die elektries gestim-

uleerde gehoorstelsel te simuleer. Drie belangrike eienskappe wat timbrépersepsie onderlê,

naamlik spektrale swaartepunt, logaritme van die piektyd en spektrale onreëlmatigheid, is

gebruik om die timbré van gesintetiseerde klanke te manipuleer. Tydens onderskeidingstake

waaraan vyf normaalhorende (NH) en vyf KI-luisteraars deelgeneem het, het KI-luisteraars

aansienlik hoër onderskeidingsdrempels as NH-luisteraars vir elk van die gemanipuleerde

eienskappe getoon. Voorts is luisteraars se onderskeidingsvermoë ten opsigte van musiekin-

strument timbrés ondersoek deur KI- en NH-luisteraars na onderskeidelik ware en ges-

imuleerde instrument timbrés te laat luister. Tien gesimuleerde musiekinstrument timbrés is

geskep met behulp van ’n akoestiese model wat op ’n seskanaalACE-prosesseerder gebaseer

is. Eendersheidskattings het getoon dat die aard van die inligting wat KI-luisteraars ontvang

het, nie soortgelyk was aan dié wat deur die gesimuleerde klanke aan die NH-luisteraars

oorgedra is nie. Ten spyte daarvan dat die akoestiese model dus nie die omskakeling van

iii



timbré-inligting soos deur ’n KI-prosesseerder bewerk, suksesvol benader het nie, het dit wel

meetbare uitkomste daar gestel waarteen die uitsette van die timbrépersepsie-model vergelyk

kon word. ’n Model van timbrépersepsie is geskep deur resultate van die onderskeidingstake

met beginsels uit seindeteksie teorie te kombineer en sodoende die hoeveelheid inligting aan-

gaande elk van die drie timbré eienskappe wat na die gehoorstelsel oorgedra word, te voor-

spel. Die model kon eendersheidskattings ten opsigte van die drie timbré eienskappe soos

bepaal vir NH- en KI-luisteraars tot ’n aanvaarbare mate voorspel. Die bevinding bevestig

dus dat die gekose eienskappe primêre bydraende eienskappevir timbrépersepsie is. Indien

KI prosesseerders dus beter oordrag van dié eienskappe daarkan stel, kan dit die weg baan

vir verbeterde timbrépersepsievermoë van KI-luisteraars. Hierdie model van timbrépersep-

sie kan dus bydra tot navorsingspogings wat ten doel het om die musiekpersepsie vemoë van

KI-luisteraars te bevorder.

SLEUTELWOORDE

timbrépersepsie, kogleêre implantings, akoestiese model, onderskeidingstake,

eendersheidskattings, model van timbrépersepsie
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

The sensation of hearing is experienced when sound is presented to the auditory system,

which consists of the outer ear, middle ear and inner ear. Theprimary mechanism in the

process of hearing is the variation of air pressure, and the mechanical effect thereof on the

tympanic membrane or ear drum (Fletcher and Rossing, 1998). The vibration of the tympanic

membrane as a result of sound waves that pass along the ear canal causes the movement of

a triplet of small, linked bones, which is then communicatedto the fluid inside the spiralled

cochlea. The pressure variations in the fluid of the cochlea result in the movement of the

sensory hair cells that are in contact with the basilar membrane, inducing nerve impulses that

are deciphered by the brain as the sense of sound (Clark, 2003;Fletcher and Rossing, 1998).

Sound has many forms and is an important part of life, whetheras an essential part of com-

munication, or for enjoyment purposes, such as listening tomusic. Most cultures across the

world include music as a form of entertainment and art, whichillustrates both its diversity

and importance in life. Sound is a sensory experience that connects people in various facets

of life, creating enriching experiences which would not be possible without the instrument

of hearing.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 INTRODUCTION

Hearing loss may occur as a result of the functionality of theelements involved in the process

of hearing being detrimentally affected. Examples of factors that may cause this include age,

loud noise and certain drug treatments (Wilson and Dorman, 2008). Additionally, hearing

loss can be caused by medical conditions, including environmental factors such as infections

or head traumas, as well as genetic factors such as diseases (Willems, 2000; Loizou, 1999a).

Conductive hearing losses refer to problems encountered with the outer ear and middle ear.

Either a hearing aid or surgery can often assist with this type of hearing impairment (Fearn,

2001). Sensorineural hearing losses are primarily associated with a diminished number of

hair cells in the inner ear (Clark, 2003), but can also refer tofaults that hamper the neural

communication of sound to the auditory temporal lobe (Fearn, 2001). A cochlear implant

(CI) assists in restoring hearing by bypassing the hair cellsthat perform mechanical to neural

translations, and instead stimulating the auditory nervesdirectly.

Generally, a CI consists of a microphone, a speech processor,a transmitter, a receiver and

an electrode array. An ear level microphone transforms the sound into a waveform that can

be interpreted by a speech processor worn on the body (Loizou, 1999a; Clark, 1996). The

processor then encodes the sound into appropriate stimulusparameters which are transmitted

inductively to the receiver (Clark, 2003). The receiver is placed under the skin and allows for

communication with the external equipment (Wilson and Dorman, 2008). The receiver then

directs the stimuli to the appropriate electrodes on the array positioned inside the cochlea,

thus exciting nerve fibre populations and simulating the auditory nerve activity in response

to sound in normal hearing, as discussed by Clark (1996).

CIs have developed rapidly over the past few decades, providing effective improvements in

restored hearing to profoundly deaf people and enabling routine achievement of language

perception in many candidates (Wilson and Dorman, 2008; Loizou, 1999b). Due to the

success of CI development, research focus has recently shifted towards achieving perception

in more difficult listening conditions, such as music (Pressnitzer, Bestel and Fraysse, 2005),

in an attempt to provide CI users with advanced listening abilities and enjoyment (Lassaletta,

Castro, Bastarrica, Pérez-Mora, Madero, de Sarriá and Gavilán, 2007).

Music and speech are both composed of complex structures of sounds and have many sim-

ilarities (Limb, 2006). However, music is abstract and highly subjective in comparison to

a spoken language, and this poses difficulties in defining andassessing the perception of

music. Additionally, limitations imposed by CIs, such as thepoor transmission of spectral

information (McDermott, 2004; Kong, Cruz, Jones and Zeng, 2004; Pressnitzeret al., 2005),

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 INTRODUCTION

imply that musical characteristics may not be conveyed wellor at all to the listener. The

combination of the above factors illustrates the difficulties associated with understanding

music perception in CIs.

Recently, research regarding music perception abilities inCI recipients has been carried

out. Examples include work by McDermott (2004), Gfeller, Olszewski, Rychener, Sena,

Knutson, Witt and Macpherson (2005), Leal, Shin, Laborde, Calmels, Verges, Lugardon,

Andrieu, Deguine and Fraysse (2003), Konget al. (2004), Fearn (2001) and Limb (2006).

Such studies may serve as an entry-point into the understanding and development of CIs that

are suited for musical perception and enjoyment.

1.1.2 Research gap

Simple perceptual inadequacies of the music perception abilities of CI listeners have been

highlighted by music perception studies such as those listed above, in which perceptual abil-

ities and differences in rhythm, pitch and timbre have been explained well for CI listeners.

However, the results of such studies are often not quantitative, given the multidimensionality

and subjectivity of music and, as a result, methods to overcome these perceptual inadequa-

cies and improve the perception of musical sounds have not been sufficiently explored. To

develop this area of research, quantitative results and conclusive methods to compensate for

perceptual inadequacies in music perception for CI listeners are required.

Timbre has been highlighted as an important aspect of music,as it encompasses the charac-

teristic quality of a sound (Risset and Wessel, 1982; Clarkson, Clifton and Perris, 1988) and

includes the perceptual effects of a wide range of properties of acoustic signals. Therefore,

research into timbre perception has the potential to facilitate an improved understanding of

overall music perception in CIs. The existing knowledge of timbre and timbre perception

in normal-hearing (NH) listeners may be applied to the case of the electrically stimulated

auditory system as a basis for understanding timbre perception in CIs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 INTRODUCTION

Characteristics of CIs can be investigated using methods suchas psychoacoustic and speech

recognition experiments with CI recipients. In terms of speech perception research, these

methods can be effective and provide quantitative results.However, music is complex and

difficult to define and this makes it very difficult for listeners, and in particular CI listeners,

to explain what is heard from a piece of music. This highlights the need for a quantitative

definition of music perception, especially in CI recipients,and a modelling approach could

be the solution.

Models have been applied successfully in CI research to provide a quantitative understanding

of speech perception in implant recipients. Examples include acoustic modelling, a method

of representing acoustically what a CI recipient may hear as aresult of electrical stimulation

(Blamey, Dowell, Tong and Clark, 1984; Clark, 2003), allowing individual factors that affect

auditory performance to be investigated without the complications of aspects such as subject

variability and period of deafness. As a result, improved understandings of implant charac-

teristics, leading to improvements in speech processing techniques for speech perception in

CIs, have been achieved through acoustic modelling (Clark, 2003). Acoustic models have

been applied effectively in speech perception improvements of CIs, but have yet to be applied

for the purpose of advancing music perception in CIs. An acoustic model applied in this way

would potentially achieve the same insight and advances in CIs suited to music perception

as acoustic modelling has already achieved for speech perception. The implementation of

an acoustic model in this study may provide a tool with which to test how changes in the

processing may influence timbre perception, before this is tested directly on implantees.

Additionally, models of speech perception in CI listeners have been developed (e.g. Svirsky,

2000) and can be of great value in the stages of speech processor development preceding

testing with cochlear implantees. Such a modelling approach applied to music perception in

CIs may be the key to gaining a quantitative understanding of music as perceived through an

implant. The development of a timbre perception model to provide a quantitative description

of how listeners perceive timbre would provide insight intohow a listener makes use of

timbre information to perceive the timbre of the sound that was heard, allowing specific

hypotheses regarding timbre perception to be tested in a rigorous manner. Specifically, a

model that predicts the outcomes of timbre perception experiments correctly from features

deemed important for timbre perception would allow conclusions to be drawn as to whether

or not such features are in fact the primary features from which timbre is perceived, and

whether or not CI listeners use these same features (to the extent that they are available) to

perceive timbre.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 INTRODUCTION

1.2 RESEARCH OBJECTIVE AND QUESTIONS

Based on the discussion in the previous section, the primary objective of this study was to

gain quantitative insight into the abilities of CI users to perceive timbre by developing a

model of timbre perception to predict such abilities. To develop this idea, it is essential to

understand the important characteristics of timbre. This understanding can be facilitated by

studies that define timbre by a number of dimensions or features that are important for the

correct perception of a musical sound (Grey, 1977; Krimphoff, McAdams and Winsberg,

1994; McAdams, Winsberg, Donnadieu, De Soete and Krimphoff, 1995). Important timbre

features are also explained in studies pertaining to modelsof timbre, such as the model

developed by Jensen (1999b).

To utilise existing timbre research to better understand timbre perception in CI users, an

acoustic model approach is the most intuitive and would provide insight into the effects of

the processing of a sound through a CI on the timbre of the sound. Important timbre per-

ception features can be extracted from both the original sounds and the sounds processed

through the acoustic model, with the aim of providing a quantitative representation of how

CI listeners perceive timbre. Obtaining quantitative results of timbre perception using an

acoustic model as a foundation, and in conjunction with psychoacoustic experiments, would

then be possible. This could further be expanded on by developing a model of timbre per-

ception, which could predict timbre perception abilities of both NH and CI listeners.

To facilitate the achievement of this main objective, the following tasks were set up to be

accomplished.

• The decomposition of the timbre of a musical sound into quantitative features must

be implemented, based on an existing model of timbre and knowledge of important

timbre attributes.

• Measurements of timbre perception features in both NH and CIlisteners must be per-

formed to gain insight into the perceptual abilities of listeners and to provide a platform

on which to develop a model of timbre perception.

• An acoustic model must be developed, based on existing acoustic models, through

which musical instrument sounds can be processed to sufficiently represent timbre as

conveyed to CI listeners.
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• The timbre perception features extracted from both unprocessed musical instrument

sounds and instrument sounds processed through the acoustic model, in conjunction

with specifically formulated psychoacoustic experiments,should be used in the devel-

opment of a model of timbre perception, to adequately predict the outcomes of timbre

perception experiments for both NH and CI listeners.

• The model predictions should be compared to experimental results obtained from tim-

bre perception studies performed with both NH and CI listeners, in order to draw con-

clusions regarding the validity of the acoustic model and the timbre perception model

predictions.

The following main research question could be formulated and addressed to achieve the

objectives of this study.

• Is it possible to develop a model of timbre perception that quantitatively represents

timbre perception in both NH and CI listeners, that adequately predicts how a listener

perceives musical instrument timbres?

To achieve the main objective of the study, several smaller objectives needed to be accom-

plished, as listed in the following points.

• Is it possible to correctly define and extract the most important timbre features from

original and processed musical instrument sounds, to be used as a basis for predicting

timbre perception?

• Can the acoustic model adequately predict which features important for timbre per-

ception are transmitted to the auditory system of a cochlearimplantee?

• Can quantitative conclusions be drawn as to how well important timbre features are

conveyed to CI listeners?

• Can quantitative conclusions be drawn as to the differencesin timbre perception for

NH and CI listeners?

• Can these quantitative findings be adequately implemented in the development of a

model of timbre perception that sufficiently predicts the outcomes of timbre perception

experiments for both NH and CI listeners?
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From the objectives and research questions posed it was intended that a quantitative descrip-

tion of timbre perception, forming a foundation for music perception, in CI recipients could

be determined.

1.3 HYPOTHESIS AND APPROACH

To address the research questions that were posed in the previous section, it is important to

have a model that defines the core characteristics of timbre according to measurable features.

The effect of electrical stimulation on these features could then provide insight into timbre

perception abilities of CI listeners.

Extensive research studies regarding timbre have been carried out over the past few decades,

for example, those by Grey (1977) and McAdamset al. (1995), which have facilitated the

development of a model of timbre by Jensen (2001). This timbre model encompasses what

was found from the psychoacoustic experimental results in literature to be the most impor-

tant characteristics of timbre. Using this model as a basis,an investigation into the timbre

characteristics conveyed to the electrically stimulated auditory system was a possibility, with

the ultimate aim of developing a model to quantitatively predict timbre perception abilities.

Figure1.1 illustrates the approach that was followed in this study to achieve this, with a

description provided in the paragraphs that follow.

The important timbre features were extracted from the original instrument sound by using

the methods of the existing timbre model by Jensen (1999b) and Jensen (2001), and timbre

perception research by Krimphoffet al.(1994) and McAdamset al.(1995). Important timbre

features that could be extracted are the spectral envelope,from which the perceptual feature

of brightness can be extracted, the frequency envelope, from which the perceptual attribute

of inharmonicity can be found, and the amplitude envelope, which is a substantial factor in

discriminating between different musical instruments. These features can be used directly as

inputs to the existing timbre model to resynthesise the sound (Jensen, 2001). This sound will

be very similar to the original sound, thus representing thetimbre features that are conveyed

to a NH listener.
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Figure 1.1.
Block diagram of the basic approach that was followed in this study for the
representation of timbre in the electrically stimulated auditory system.

An acoustic model was developed, through which musical instrument sounds can be pro-

cessed according to the effect of electrical stimulation. The model was based on existing

acoustic models, some of which were presented by Clark (2003), and incorporated effects

such as the limitations imposed by the number of electrodes as well as the speed at which a

CI samples sound. These aspects are discussed in detail in section 2.4.3. The output of the

acoustic model provided an estimation of what a cochlear implantee hears when listening to

an instrument sound.

The use of an acoustic model is beneficial in that it allows fora large number of variations

to be made in the model parameters, assisting in establishing the different effects on the

recognition of a sound. Parameters can also be adjusted individually, which allows the effect

of each parameter to be investigated independently.
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The repeatability of acoustic models is an appealing feature, because factors such as the sub-

jectivity of different CI listeners is ruled out. The variability of parameters is easier to control

in NH listeners, without the complication of factors such aselectrode placement in cochlear

implantees. Additionally, there are more NH listeners available than CI listeners, indicating

that experiments carried out with acoustic models can be conducted in larger quantities and

in a much shorter time than experiments with implantees.

Using the output of the acoustic model, modified timbre perception feature values were ex-

tracted from the processed sound, by using the same existingtimbre models and timbre

feature calculations as those applied to the original musical instrument sound. This approach

facilitated a quantitative comparison of the timbre features for CIs with the timbre model

developed for NH conditions, to assess how well important timbre features are conveyed to

cochlear implantees.

The extraction of timbre features from a sound allowed for synthesised sounds to be con-

structed from these basic features. Discrimination tasks for variations in important timbre

features of synthesised sounds for both NH and CI listeners provided measurable timbre per-

ception results in the form of discrimination threshold or just noticeable difference (JND)

measurements, and comparisons between the abilities of thelistener groups could then be

made. Additionally, the JND measurements could also be usedas parameters for the timbre

perception model, assisting in defining the range in which instrument sounds were likely to

be confused.

The timbre perception model was based on signal detection theory methods as presented by

Svirsky (2000), and on the model by van Zyl (2008). The timbreperception model utilises

the JND results of the discrimination tasks for each of the important timbre features, as well

as the values of the timbre features extracted from the original and processed sounds, to make

predictions as to the level of confusion between each possible combination of sound pairs.

The formulated predictions of timbre perception resultingfrom the model were compared to

psychoacoustic experiments in the form of similarity ratings of musical instrument timbres,

to validate the model. With NH subjects listening to acoustically modelled sounds and CI

subjects listening to unprocessed instrument sounds, a comparison of these results to the

predictions made by the timbre perception model could be made. The development of a

model of timbre perception is a promising approach to quantitatively understanding timbre

perception, and music perception in general, in CI listeners.
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1.4 RESEARCH CONTRIBUTION

The limited understanding of music perception in CI listeners provides an unexplored field

of research. Both a simple understanding of the perceptual abilities of CI users and quanti-

tative models of musical sounds that already exist indicatethat much of the knowledge basis

required to better understand music perception in cochlearimplantees already exists. By

combining these aspects, the development of methods to improve music perception in CIs

is feasible. This study is an entry-point to achieving the above, by making the following

contributions.

• The extraction of important timbre perception features from both original sounds and

those processed through the acoustic model, in conjunctionwith measurements of im-

portant timbre perception features obtained from discrimination tasks, could provide

quantitative descriptions of timbre perception in both NH and CI listeners.

• These quantitative results could be implemented in the development of a model of tim-

bre perception that could adequately predict the outcomes of timbre perception exper-

iments and reveal, in measurable terms, how well timbre is transmitted to CI listeners.

As a result, this model would present the possibility of accelerating CI research, with

factors such as model repeatability making it a favourable option.

• The quantitative findings extracted from this study could offer insight into how the

timbre features should be compensated for so that they may betransmitted effectively

through a CI. This could assist in future endeavours for developing CI processing

strategies suited to music perception, in the hope of advancing CIs and providing suc-

cessful communication of music to cochlear implantees.
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The content of each chapter is described briefly in the paragraphs that follow.

Chapter 2 presents the background necessary for understanding the research problem. As

an introduction, definitions of music and some of its components are presented, with

the focus on timbre. Following this, an overview of perceptual timbre research is

given, a large part of which is based on MDS techniques. Analysis of musical sounds,

with emphasis on the modelling of timbres of musical sounds,are discussed next. A

background on CIs makes up the remaining sections of this chapter, providing a gen-

eral literature study on the processing strategies employed in CIs, as well as acoustic

model implementations, taking into account various CI characteristics. Music process-

ing techniques employed in CIs are discussed briefly, with research regarding music

perception in cochlear implantees concluding the literature study. Focus is placed on

timbre perception research in CI listeners.

Chapter 3 discusses the methods employed in this study. This chapter is broken down into

a number of main sections, each providing a description of the method followed to

implement the particular aspect of the study. The first part introduces the musical in-

strument sounds that are used in the study. The relevant aspects of timbre modelling

employed are described next, followed by a description of the important timbre fea-

tures that form the basis of this study. The CI aspects of the study are discussed next,

with the development of the acoustic model implemented explained in detail. This

chapter presents the methods that form a basis for this study, on which the experimen-

tal and modelling components can be formulated.

Chapter 4 describes the experimental component of this study in detail. A large part of

the content of this chapter has been submitted to Ear and Hearing in the form of a

journal article for review and possible publication. This chapter thus includes spe-

cific methods, results and discussion sections for the experimental component of this

study. Quantitative measurements of timbre perception forboth NH and CI listeners

are presented, obtained from psychoacoustic experiments.The experimental compo-

nent consisted of two experiments, in the form of discriminations of timbre perception

features and similarity ratings of musical instrument timbres, the results of which are

discussed fully in chapter4. Comparisons between these experimental results and the

predictions of the timbre perception model can then be made,and are presented in

chapter5.
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Chapter 5 describes the modelling component of this study in detail. The content of this

chapter forms part of an article which will be submitted to Ear and Hearing as a con-

tinuation of the experimental findings of the article relating to the work of chapter4.

Chapter5 thus also includes specific methods, results and discussionsections relat-

ing to the modelling work performed in this study. The development of the model of

timbre perception, along with the analysis techniques usedto assist in interpreting the

model results are presented in this chapter. A full discussion of the developed timbre

perception model is given, by comparing the predictions to the experimental results as

well as to existing literature.

Chapter 6 presents a general discussion and conclusion of the study. The main discussion

points from chapters4 and5 are summarised to provide a general discussion of the

outcomes of the study with respect to the research questionsposed in section1.2 of

this chapter. Following this, the main findings of the study overall are summarised. A

critical analysis of the study is also presented, encompassing the implications of the

study and directives for future research which may expand onthe work in this study.

In summary, this chapter has provided an introduction to thework that will be addressed in

this dissertation. A contextual background on hearing and CIs has been provided to present

a framework for the study and to highlight the research gaps that will be addressed. In

addition, a more focussed description of the research objectives and questions tackled in this

study have been presented, as well as the basic approach followed to achieve these objectives.

A contribution of the research to the field of CI technology hasalso be discussed, providing

an indication of what this study aims to accomplish.
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CHAPTER 2

LITERATURE STUDY

2.1 CHAPTER OBJECTIVES

To address the problem of quantitatively assessing timbre perception in the electrically stim-

ulated auditory system as described in the previous chapter, an overview of existing related

literature is required. This chapter presents and discusses the relevant literature required as a

basis for this study and consists of a number of sections. Firstly, a brief introduction to music

and music perception is given in section2.2, followed by a more thorough background on

timbre in section2.3. This information serves as an entry-point to understanding music and

timbre, as well as the perception thereof. Analysis of musical sounds as well as models of

timbre are also be discussed, to gain insight into the physical characteristics and features

of timbre. Section2.4 provides an overview of CIs, describing the processing strategies

that are relevant to this study, as well as a background on acoustic modelling to enable an

understanding of sounds as processed through the electrically stimulated auditory system.

Lastly, a background on music and timbre perception in CI listeners is presented, to provide

an overview of the research findings on which this study is based.
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2.2 MUSIC

To gain a better understanding of timbre, a brief backgroundregarding music is required.

Definitions of music and each of its components are necessary, and will be discussed briefly

in section2.2.1, followed by factors that may affect music perception and musical enjoyment

in listeners, emphasising the subjectivity of music, in section 2.2.2.

2.2.1 Elements of music

Music is made up of complex structures of sound that can be produced by either instru-

ments, or voice, or combinations thereof (Bregman, 2001; Clark, 2003). Music has many

similarities with spoken language (Patel, 2003). Simply described, both speech and music

employ sounds of varying frequencies presented over periods of time to convey a message

(Limb, 2006; Bregman, 2001; Jensen and Marentakis, 2001), with the goal of communica-

tion and expression. The message conveyed can be either concrete, as in the case of speech,

or abstract, as in the case of music (Donnelly and Limb, 2009). Music consists of several

elements, regardless of genre or type (Limb, 2006), and can be basically categorised into

pitch, rhythm and timbre (Clark, 2003), as discussed briefly in the following paragraphs.

Rhythm describes the temporal patterns in musical sounds with the time scale perception

thereof usually in the order of seconds to minutes (Limb, 2006; Donnelly and Limb, 2009).

As described by Ross (2008), rhythm is the grouping of a numberof beats or steady sound

pulses to create any series of durations of sound which may compel people to clap their

hands or tap their toes in time. Temporal patterns that give rise to a distinctive rhythm occur

in the approximate frequency range of 0.2 - 20 Hz (McDermott,2004). Higher frequency

components of acoustic signals convey pitch information.

Pitch describes the frequency of a musical sound, perceivedas a note in a musical scale

(Limb, 2006). A series of pitches that are structured into different musical contours and in-

tervals form a melody (Clark, 2003; Donnelly and Limb, 2009; Ross, 2008). The perception

of melody is very subjective, as any series of pitches that creates a sense of organisation or

unity may be described as a melody (Ross, 2008).
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Timbre is formally defined by the American Standards Association (1960) as “that attribute

of auditory sensation in terms of which a listener can judge that two sounds similarly pre-

sented and having the same loudness and pitch are dissimilar”. Simply put, timbre is the

quality that allows the distinction between two sounds withthe same pitch, loudness and du-

ration (Jensen and Marentakis, 2001), making the identification of several different musical

instruments played simultaneously possible (Clark, 2003; McDermott, 2004). As discussed

by Limb (2006), timbre results from spectral and temporal envelopes of a sound that interact

in a complicated manner, allowing music to be defined as sounds of varying timbres that are

organised in terms of rhythm, pitch and harmony (Limb, 2006). Timbre is involved in both

the recognition of a familiar voice and the identification ofa musical instrument (Donnelly

and Limb, 2009) and is a complex and important element of music and sound in general

(Krumhansl, 1989).

Harmony and counterpoint are additional important music components, as they consist of

the basic elements of music. Harmony occurs when more than one pitch is played simulta-

neously and allows for the differentiation of the qualitiesof superimposed sound. This gives

rise to other musical features such as counterpoint, which is a combination of multiple un-

folding melodies in a musical piece (Limb, 2006; Clark, 2003). Most musical traditions have

rules for the combination of notes that sound pleasant, known as consonance, or unpleasant,

known as dissonance (Clark, 2003).

2.2.2 Factors that influence music perception

Although music can be structured into basic elements, musicis perceived as a whole, which

suggests that all aspects of music are equally important, asopposed to speech, in which there

is a great deal of redundancy (Clark, 2003). The aim of research in music perception is to

explain how a listener responds subjectively to musical sound signals, as stated by Rasch

and Plomp (1982). Musical psychoacoustics are concerned with the relationship between

the objective, physical properties of auditory stimuli in our environment, and the subjective,

psychological responses evoked by them. In addition to the elements of music discussed in

section2.2.1, a number of subjective factors that influence music perception can be identi-

fied, and are discussed briefly in the following paragraphs.

Music is ultimately abstract and its interpretation is subjective, depending on a variety of

factors. These factors include dynamics such as musical training and musical background,
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which may heighten sensitivity towards a musical piece. Music listening habits and musi-

cal tastes, where the appraisal of musical genres may vary amongst different listeners, also

reflect the diversity of musical listening experiences (Lassalettaet al., 2007). This indicates

that even cultural backgrounds may even affect the resulting perception of music.

The perception of music involves complex brain functions, as discussed by Koelsch and

Siebel (2005), potentially affecting emotion and influencing the nervous, hormonal and im-

mune systems. This suggests that personal emotional backgrounds and experiences are also

likely to affect the resulting perception of music (Donnelly and Limb, 2009).

2.3 TIMBRE

The important timbre attributes extracted from perceptualfindings as well as from physical

models of musical instruments have led to the development ofthe timbre model by Jensen

(2001). To model musical instrument sounds appropriately,a sufficient understanding of

timbre perception is necessary (Jensen, 2002b). This section places the timbre model that

will be used as a basis for this study into context, by providing an overview of the literature

regarding timbre perception in section2.3.1. The analysis of musical sounds is also reviewed

in section2.3.2, as the derivation of the timbre model results from an analysis by synthesis

approach. From the literature on perceptual timbre research and the method of analysis of

timbre by synthesis, important features of timbre have beenextracted in order to implement

the timbre model by Jensen (2001), which is highlighted in section2.3.3.

2.3.1 Perceptual timbre research

Timbre is an auditory attribute that has been inadequately understood from a psychophysical

perspective in the past, having been considered vaguely as acomplex and multidimensional

perceptual parameter of sound (McAdamset al., 1995). Definitions of timbre, such as the

standard given in section2.2.1, tend to define timbre by what it is not rather than what it

is (Risset and Wessel, 1982; McAdamset al., 1995) in comparison to other well defined

perceptual attributes of music. The multidimensionality of timbre makes it impossible to

measure timbre on a single scale, such as soft to loud as in loudness perception, or low to high

as in pitch perception (Rasch and Plomp, 1982), and introduces the difficulty of establishing,
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through experiments, the number of dimensions and featuresrequired to represent timbre

(McAdamset al., 1995). Only in the past few decades has an improved understanding of

timbre begun to emerge, with a number of different techniques utilised to facilitate this.

In the past, many studies regarding timbre and timbre perception have utilised forms of mul-

tidimentional scaling (MDS) techniques. These methods areuseful for the study of complex

stimuli, of which the perceptual or psychophysical characteristics are inadequately under-

stood (Lakatos, 2000; Grey, 1977), thus finding effective application in understanding tim-

bre perception. The MDS approach involves musical sounds asthe starting point from which

perceptual distances are measured, in an attempt to formulate a representation or coordinate

system that explains the MDS axes (Terasawa, Slaney and Berger, 2005). This is achieved by

applying MDS to data obtained from listeners rating differences between pairs of sounds for

a number of musical timbres (Jensen and Marentakis, 2001). These results are then used with

the aim of creating a map between the physical aspects of a musical instrument sound and the

perceptual representation of each timbre attribute to a listener (Lakatos, 2000). Generally,

MDS techniques generate two or three perceptual dimensionsthat can be interpreted.

Early examples of timbre research using the dimensional research approach are presented by

Plomp (1969), where it was found for steady state musical tones that the three-dimensional

map of musical tone similarities that was obtained could be interpreted entirely in terms of

the amplitude pattern of the harmonics. Reports in other literature have shown consistent

findings regarding the primary factors, namely spectral information, that facilitate timbre

perception. Wedin and Goude (1972) performed analyses on musical sounds with attack

and decay portions included and found their structure of perceptual dimensions of musical

instrument tones to have a clear correspondence to the spectral envelope properties of the

sounds. Miller and Carterette (1975) used a set of defined timbre attributes to create syn-

thetic sounds and varied temporal and spectral properties,namely the amplitude envelope

and number of harmonics, respectively, as well as the onset patterns of the harmonics. They

found that important factors for the perception of timbre similarities were the number of har-

monics as well as the amplitude envelopes and onset rates of the harmonics, which suggests

that spectral characteristics were dominant in the perception of timbre.

Grey (1977) developed a three-dimensional perceptual model of timbre, in which the first

dimension related to the spectral energy distribution, andthe other two dimensions related

to a number of temporal patterns of the tones. These includedsynchronicity in the higher

harmonic rise and decays and thus levels of spectral fluctuations, as well as the presence
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of low-amplitude, high-frequency energy in the initial attack segments. Grey and Gordon

(1978) experimented with the effect of spectral modifications on musical timbres and com-

pared the MDS analysis of the modified sounds to the MDS analysis of the original sounds in

Grey (1977). They found that the sounds that exchanged spectral energy shapes exchanged

orders along the spatial axes acquired in Grey (1977), validating the interpretation of the

perceptual space using MDS analyses.

Krimphoff et al.(1994) analysed three-dimensional spaces and found the centre of the sound

spectrum, the logarithm of the rise time, and the spectral flux to be the important acoustic

correlates. McAdamset al.(1995) illustrated a new MDS technique to assign a large number

of listeners with varying musical experience into a small number of underlying classes. Five

class structures were found for a three dimensional spatialmodel, where musical training

showed an ambiguous relation to this classification. The common dimensions of their model

were quantified psychophysically in terms of the logarithm of the rise time, spectral centroid

and degree of spectral variation or spectral flux. Lakatos (2000) attempted to better isolate

the dimensions of timbre, generalised over a wide range of timbres and psychophysical tech-

niques including MDS analyses. It was found that the spectral centroid and rise time alone

adequately represented the most important perceptual dimensions of timbre, independent of

musical training.

Studies by Samson, Zattore and Ramsay (1997) and Caclin, McAdams, Smith and Wins-

berg (2005) involved MDS analyses from the perception of synthesised tones by means of

dissimilarity ratings of sound pairs. Samsonet al. (1997) varied the spectral and temporal

properties of their synthesised sounds and from MDS found that spectral information and

rise time were the two independent perceptual dimensions that emerged, in accordance with

studies mentioned previously. The study by Samsonet al. (1997) included experiments with

both single tones and melodies, and no distinct differenceswere noted between the two cases

in defining the perceptual space. This indicates that enoughinformation may be transmitted

in single tones alone, and that the intricacies of a melody donot provide additional informa-

tion in such a task.

Caclin et al. (2005) used synthesised sounds to vary the spectral centroid, rise time and

other spectral properties deemed important features for timbre perception in past literature.

Their findings indicate that the spectral centre of gravity,the logarithm of the rise time and

the spectral fine structure or irregularity in the spectrum of the sound are the three most

important dimensions in timbre perception.
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Loureiro, de Paula and Yehia (2004) branched away from research involving comparisons

of isolated notes of different musical instruments and focussed on the mapping of spectral

characteristics of musical timbres produced by one instrument. A large variety of sounds

produced by the clarinet were investigated by means of principal component analysis (PCA)

techniques, to obtain a set of spectral bases or dimensions from which the different tim-

bres could be categorised. It was shown that timbre classes were dependent on the spectral

brightness of each sound.

Although MDS and related analyses have been the primary toolin forming an understanding

of timbre perception, other methods have been implemented to achieve this. Examples in-

clude work by Terasawaet al. (2005) and Terasawa, Slaney and Berger (2006), in which, as

opposed to MDS, a defined coordinate system is used as a basis from which different sounds

are created according to this representation. Each sound representation is then measured to

determine a fit to the defined perceptual space (Terasawaet al., 2005). This method is known

as the Mel-frequency cepstral coefficients (MFCC) model and isshown to be a good model

of timbre perceptual space (Terasawaet al., 2005; Terasawaet al., 2006). These studies ad-

dress the representation of timbre, but only in a static form. However, sound is not static and

factors such as rise and decay times have been shown to be important in timbre percpetion,

thus these works only form a basis on which to build a completemodel of timbre (Terasawa

et al., 2006).

De Poli and Prandoni (1997) conducted a series of experiments in which they attempted to

algorithmically develop timbre spaces from a defined experimental framework. The results

exhibited similarities to past literature making use of MDSanalysis, and showed potential in

exploring timbre qualities through an analytical approachwhich would not require subjective

ratings of listeners. Other methods to gain insight into timbre perception include spectral

simplifications to establish the discrimination thresholds or JNDs of acoustic signal changes

(e.g. Jensen and Marentakis, 2001).

Other focussed research regarding timbre perception by Clarksonet al.(1988) studied timbre

perception in infants. This enabled an identification of thespectral cues that infants make use

of, by presenting complex tones with spectral and temporal information selectively added.

The results indicated that infants can analyse the spectra of complex tones and discriminate

differences in the spectral envelopes, one of the most important cues in timbre perception.
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The studies discussed in the above paragraphs each employ a type of perceptual test that

may be used to evaluate timbre perception. These tests can becategorised into a few groups,

including verbal attributes, where the listener has to describe a musical sound by means

of words such as sharp or dull, full or empty and colourful or colourless (Jensen, 2002b).

Additional test categories are dissimilarity and discrimination tests, as discussed by Jensen

(2001) and Jensen (2002b), where judgements in differencesbetween musical sounds are

made. Dissimilarity tests involve analysing judgements made regarding differences between

the timbres of two different musical instruments and discrimination tests analyse judgements

in differentiating between original and modified musical timbres of the same instrument.

Bregman (2001) discusses auditory stream segregation as another method of examining the

qualities of timbre in relation to the perception thereof. Asequence of sounds may be heard

as either originating from a single source, such that it is perceived as one integrated stream,

known as fusion, or as originating from distinct sources, such that it is perceived as two

segregated audio streams, known as fission (Cooper and Roberts, 2007). Auditory stream

segregation or auditory streaming is an occurrence in whicha quick sequence of high and

low tones separates into two distinct perceptual streams, one with the high tones and the

other with the low tones (Dannenbring and Bregman, 1976; Chatterjee, Sarampalis and Oba,

2006).

In experiments by Singh and Bregman (1997), a distinct lowering effect on both the fission

and fusion boundary fundamental frequency value could be noted when adjusting the timbre

properties of the middle tone in a repeating three-tone sequence. It was shown that spectral

differences in timbre were significant for stream segregation, whereas there was some debate

as to whether or not temporal differences, for example, in the attack and decay of the timbres,

were important in stream segregation. These results provided leads to important features of

timbre that could be used as a basis on which to develop a modelof timbre.

2.3.2 Analysis of musical sounds

In addition to the perceptually important timbre features that have been investigated in sec-

tion 2.3.1, other physical aspects of timbre should also be considered, and form part of the

timbre model implemented by Jensen (1999b) and Jensen (2001). One of the most well

known methods of analysing the physically important features of sounds is by means of ad-

ditive parameters which constitute a good analysis and synthesis model of voiced sounds
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(Jensen, 2002b). In the paragraphs that follow, some physical attributes of timbre are noted,

and a description of the analysis by synthesis approach of investigating the physical proper-

ties of musical instrument sounds is provided.

As described by Hartmann (2005), tone colour refers to the timbre of the steady state segment

of a sound, that is, the part of the sound without onset and offset transients. This entails

the part of the sound that is not related to sensations of loudness or pitch (Zwicker and

Fastl, 1999). By this definition, it is necessary to extract from the mixture of sensations the

features that may be relevant in recognising timbre. According to Zwicker and Fastl (1999)

these may be qualities such as sharpness, or inversely pleasantness, which in turn depend

on sensations such as tonalness and roughness. In the case ofa pure tone, the tone colour

depends only on frequency, i.e. a low frequency (below 200 Hz) will sound dull, while a

high frequency (above 2000 Hz) will sound sharp or piercing.This indicates that it is the

frequency content and not the shape of the waveform that determines tone colour. Risset and

Wessel (1982) and Zwicker and Fastl (1999) confirm this by stating that sharpness relates

to the spectral content, specifically the position of the spectral envelope along the frequency

axis.

Most musical instrument sounds are composed of a fundamental tone and a number of har-

monics. String, woodwind and brass musical instruments generally act as lowpass filters that

attenuate harmonics with frequencies greater than 1000 Hz (Hartmann, 2005). The differ-

ence in timbre produced by different musical instruments, as described by Zwicker and Fastl

(1999), is a result of the frequency spectra or relative amplitudes of their harmonics. For

example, the flute produces mainly one frequency component (the fundamental frequency),

while the trumpet produces a number of harmonic components and a broader frequency

spectrum.

Rasch and Plomp (1982) discuss temporal characteristics, such as onset effects, as well as

steady state effects, being important in the recognition oftimbre. These may include factors

such as the rise time and shape of the rise curve and the presence of noise during the onset

times, as well as factors such as pitch instability over time. Jensen (1996) also discusses how

the amplitude envelopes over time are affected by the control of musical instruments. For

example, the envelope of a piano tone depends on the speed at which the note is played, and

factors such as the decay depend on how long the note is held for, affecting the important

temporal timbre features.
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An additional relevant point is that acoustical instruments can be divided into two classes,

envelope-based instruments, and continuous-control instruments (Jensen, 1996). Some in-

struments, such as bowed string instruments like the violin, are capable of both techniques,

where plucking the string forms part of the envelope-based class and stroking the bow on the

strings constitutes continuous-control.

Due to the complex physical behaviour of musical instruments, it is difficult to isolate spe-

cific fixed characteristics of musical instrument sounds. Asdiscussed by Risset and Wessel

(1982), this highlights the need to extract important features from a complex physical struc-

ture, which may be achieved by exploring timbre by means of analysis and synthesis. The

analysis and synthesis of musical instruments are generally achieved by using a model of

a sum of sinusoidals (Jensen, 1999b), known as an additive model. This method has also

been implemented in speech analysis (McAulay and Quatieri,1986), and is a practised and

effective method of analysing sounds. Jensen (1999b) summarises the early techniques for

analysing the additive parameters of musical sounds, dating back to more than a century ago,

that provided insight into musical instrument tones.

More recent research regarding the study of musical instruments by analysis of additive pa-

rameters includes work by Ando and Yamaguchi (1993), in which a statistical study of the

spectral parameters in musical instrument tones was performed. Here an initial decomposi-

tion of musical sounds into additive parameters was carriedout, from which it was concluded

that by incorporating the statistical properties of musical tones into the synthesis of sounds,

a high sound quality would potentially be achieved.

The additive model approach is implemented in the timbre model (Jensen, 2001) used in

this study. The additive model was chosen due to the existingknowledge regarding analy-

sis/synthesis properties, with well understood parameters such as time, frequency and am-

plitude, as well as the perceptually expressive parametersof this model (Jensen, 2002b). As

discussed by Jensen (2002b) and Jensen (2001), the additiveanalysis consists of associating

a number of sinusoids with a sound, and estimating the time-varying amplitudes and fre-

quencies of these sinusoids. The sound can then be resynthesised by summing the sinusoids

to produce a highly realistic sound.

Jensen (1999b) explains that the sinusoids correspond to the harmonic overtones when the

sound is harmonic, in which case the frequencies of the sinusoids are multiples of the fun-

damental frequency and are equally spaced in distance in thefrequency domain. The first
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number of extracted frequencies correspond closely to the notes in the 12 tones per octave

scale and therefore the relationship between the frequencies of compound musical sounds

determines the consonance of the musical interval (Kameokaand Kuriyagawa, 1969). The

additive parameters can best be visualised in the form of a three-dimensional plot, as shown

in figure 2.1, with axes corresponding to time, frequency, and amplitude. The lines in the

plot, known as partials, indicate the time evolution of the amplitude and frequency of each

sinusoid. As an example, a harmonic test signal with a fundamental frequency of 100 Hz is

shown.

Figure 2.1.
Example of the additive parameters of a harmonic sound with a fundamental
frequency of 100 Hz.

The closest line on the frequency axis in figure2.1is the fundamental frequency. The ampli-

tude of the fundamental component is first zero for 100 ms, then it follows a linear rise for

200 ms, a plateau for 300 ms, then a linear decay for another 200 ms and returns to zero for

the remainder of the one second length of the sound. A total of10 partials are shown, with

each component having an amplitude that is half the amplitude of the preceding partial.
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2.3.3 Models of timbre

Most of the parameters of the timbre model (Jensen, 2001) have an intuitive perceptual qual-

ity due to their relation to timbre perception, and many of them can be related to the physics

of musical instruments (Fletcher and Rossing, 1998). The timbre model by Jensen (1999b)

and Jensen (2001) was inspired by perceptual research on timbre, as described in section

2.3.1, but was derived from the analysis of musical sounds using the method of analysis by

synthesis, as described in section2.3.2. Based on these research findings and methods, gen-

eral conclusions can be made regarding the most important timbre features that are included

in the timbre model. These conclusions are described in the following paragraphs, along

with other timbre models that have been developed based on similar concepts.

Jensen (2002a) states that, in general, the most important timbre features can be extracted

from the amplitudes and frequencies of a sound. These features are loudness, defined as the

maximum of the amplitude in a log scale, and brightness, as extracted from the amplitudes,

and the fundamental frequency and inharmonicity as extracted from the frequencies. In

summary, the spectral envelope, temporal envelope and irregularities of a sound can be high-

lighted as the most important timbre features (Jensen and Marentakis, 2001; Jensen, 2001).

The timbre model (Jensen, 1999b; Jensen, 2001) incorporates the most significant timbre

attributes, as listed below, which will be elaborated on in the paragraphs that follow. The

timbre attributes as given by Jensen (2001) that are incorporated into the timbre model are:

• the spectral envelope, associated with the brightness andresonances of the sound,

• the frequency envelope, associated with the pitch and inharmonicity of a sound,

• the amplitude envelope, consisting of five segments: start, attack, sustain, release and

end, each segment with an individual start and end relative amplitude and time, and

• irregularities, separated into amplitude irregularities, known as shimmer, and frequency

irregularities, known as jitter.

The spectral envelope has been found to be one of the most important timbre features

(Grey, 1977; McAdamset al., 1995). The shape of the frequency spectrum is the key to this

attribute, as it shows the amount of energy present at each frequency across the audible range

(Clark, 2003). The perceptual feature of brightness is associated with the centre of gravity
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of the spectral envelope (Jensen and Marentakis, 2001; Marentakis and Jensen, 2001). Res-

onances occur as a result of the shape or structure of a musical instrument (Clark, 2003) and

give rise to formants, the composition of which is importantto the timbre of an instrument.

It is noted by Clark (2003) that there is no significant change in the formant structure as the

notes of an instrument change, indicating that all pitches played on a particular instrument

have similar timbres.

The frequency envelope encompasses the simplicity of the behaviour of the harmonics over

the course of the note (Bregman, 2001). Clark (2003) states that the steady-state frequency is

an important component in an instrument’s timbre as, for example, the frequency spectrum

of a clarinet contains almost only odd-numbered harmonics.The frequency envelope models

the deviation of each partial from the harmonic case (Marentakis and Jensen, 2001), which

relates to the perceptual attribute of inharmonicity. In the case of a piano, for example, the

stiffness of the strings causes the higher partial components to have much higher frequencies

than in the harmonic case, and produces a degree of inharmonicity in the sound (Jensen,

1999b).

The amplitude envelope is important as there is a strong continuity of the frequency spectra

over time for musical instruments (Clark, 2003). Figure2.2illustrates the different segments

in a typical amplitude envelope model, using the fundamental partial of the test signal of

figure2.1.
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Figure 2.2.
Example of the five amplitude envelope segments for a musical instrument, as
implemented in the timbre model by Jensen (1999b).

Bregman (2001) and McAdamset al. (1995) state that the attack or rise time is possibly

the most important amplitude envelope parameter, with the time of this segment resulting

in a specific slope, as well as the irregularities present in the attack segment playing an

important role in the recognition of timbres. According to Marentakis and Jensen (2001),

the slope of the sustain segment can be used to distinguish between instrument sounds that

are played continuously, for example, that of the flute, fromsounds that decay automatically,

for example, that of the piano. In addition, the duration of the release segment allows a

distinction to be made between damped and non-damped sounds.

The timbre model finds the start and end points of each of the five segments and then fits a

curve between each of these points to represent an approximation of the amplitude envelope

for each partial. Irregularities can then be added to the smooth approximated envelopes to

represent the sound more accurately.

Irregularities in the sound (both shimmer and jitter) provide for slow random variations of

the frequencies and amplitudes and also for additive noisesthat may occur in the instrument
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sound (Jensen and Marentakis, 2001), which give a real quality to the sounds (Jensen, 2001).

The timbre model by Jensen (1999b) includes a model for shimmer and jitter in the form

of low pass filtered Gaussian noise with a given standard deviation (SD) and bandwidth.

Marentakis and Jensen (2001) observe that the perceptual effect of altering the SD of the

noise can be likened to altering the signal to noise ratio, which eventually results in the

sound becoming unvoiced. The bandwidth of the noise is a way of adjusting the speed of

the noise signal fluctuations. This can range from slow random variations to uncorrelated

noise, depending on the filter bandwidth. Finally, there arethe shimmer and jitter correlation

groups, the purpose of which is to control how much the shimmer or jitter noise signal of

each partial is correlated to the noise of the fundamental partial. The modelling of the noise

parameters adds liveliness and a real quality to the sound.

The timbre model consists of a number of partials, of which the amplitudes are the sum

of a clean envelope made up of an attack, sustain and release segment, with irregularity

(shimmer) added. This amplitude is then multiplied with thespectral envelope value, where

the frequency is the sum of a static value and irregularity (jitter). The timbre features used to

model timbre can then be described as:

• the maximum amplitudes of each partial,

• envelope model times, amplitudes and curve form coefficients for each partial for the

attack, sustain and release segments,

• the mean frequencies, and

• irregularity SD, bandwidth and correlation.

Timbre models find application in the automatic classification of musical instruments. This is

a difficult procedure to carry out, but has become the focus ofresearch pertaining to computer

music and grouping of music into genres. Attempts in this field of research have been made

by Herrera-Boyer, Peeters and Dubnov (2003), using the concept of a model of timbre, such

as the model by Jensen (2001), to achieve automatic musical grouping. Other models such

as that of Bensa, Jensen and Kronland-Martinet (2004), have developed a detailed but very

specific model of a realistic piano sound, which provides a good representation of the timbre

of the piano, but lacks a generalised description encompassing many timbres. As asserted by

Jensen and Marentakis (2001), the timbre model by Jensen (2001) models all voiced isolated
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musical instruments and has an intuitive parameter set of a fixed size, which separates the

sound into dimensions that relate to the timbre dimensions proposed in research, providing

a promising, well established representation of timbre.

2.4 COCHLEAR IMPLANTS

With an understanding of timbre and the timbre model of Jensen (2001) in place, a back-

ground on CIs is required on which to base an adequate representation of timbre perception

in cochlear implantees. A background on CI processing strategies will be presented in sec-

tion 2.4.1, focussing on strategies used in the implementation of the acoustic model in this

work. The factors that may influence the performance of CIs arepresented next, followed

by an overview of acoustic modelling, which will be used to provide a CI-mediated repre-

sentation of timbre. Following this general background, a more specific overview of music

processing in CIs will be given, as well as factors that may influence music perception in

implant recipients.

2.4.1 Processing strategies

The speech processor plays an important role in the success of CIs because it is responsible

for deriving the most appropriate stimuli to be presented tothe electrodes. Many signal

processing strategies have been developed over the years, as discussed in detail by Loizou

(1999b) and Clark (2003). In general, speech processing strategies involve dividing the input

signal into a number of different channels in an attempt to present stimuli to the electrodes to

effectively imitate the natural firing patterns inside the cochlea, thus optimising the speech

intelligibility of the listener.

The frequency of a sound is encoded through both rate coding and place coding, as described

by Clark (1996). Rate coding refers to the encoding of the frequency of sound by varying

the rate of electrical stimulation on the cochlea. Place coding refers to the encoding of the

frequency of sound using multiple electrodes placed according to the tonotopic organisation

of frequencies in the cochlea. Initially, CIs were implemented using single-channel implants

(House and Berliner, 1982), whereby electrical stimulationwas provided at a single site in

the cochlea using one electrode (Loizou, 1999b). With the development of CIs, multichannel
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implants became the norm, to allow spectral information to be transmitted more readily by

making use of the place mechanism for coding frequencies (Loizou, 1999a).

In multichannel CIs, different electrodes are stimulated depending on the frequency of the

signal. High frequency signals cause stimulation of electrodes situated close to the base of

the cochlea, while low frequency signals stimulate the electrodes situated close to the apex.

The main function of a CI signal processor is to filter the inputaudio signal into different

frequency bands or channels, which can then be applied to thecorresponding electrodes, in

an attempt to mimic the function of a healthy cochlea (Loizou, 1998). Many design consid-

erations in the development of CIs arise as a result of multichannel implants. These include

the number of channels that are sufficient for adequate speech understanding (Friesen, Shan-

non, Baskent and Wang, 2001; Dorman, Loizou and Rainey, 1997b), as well as the type

of information that should be transmitted to each electrode(Whitford, Seligman, Blamey,

McDermott and Patrick, 1993). To address these design considerations, different signal pro-

cessing devices with varying numbers of spectral channels have been developed. Generally,

a CI consists of a fixed number of implanted electrodes with a selection of these electrodes

activated depending on the number of spectral channels of the implemented processor.

The many different types of signal processing strategies for CIs can be classified into three

main groups, namely: waveform strategies, feature extraction strategies and hybrid strate-

gies, as discussed by Loizou (1999b). In waveform strategies, such as the continuous in-

terleaved sampling (CIS) approach, a waveform is derived from filtering the speech sig-

nal and presented as the stimuli. In feature extraction strategies, such as the F0/F1/F2

and multipeak (MPEAK) strategies, spectral features such as formants are derived using

algorithms and presented as the stimuli. In hybrid strategies, such as “n-of-m” strategies,

both waveform and feature extraction aspects are included and presented as the stimuli

(Loizou, 1999b; Clark, 2003).

In “n-of-m” strategies in CIs, the speech signal is separatedinto m frequency bands and

envelope information is derived from each band (Nogueira, Büchner, Lenarz and Edler, 2005;

Loizou, 1999b). In traditional “n-of-m” strategies such asspectral peak (SPEAK) and the

advanced combination encoder (ACE) strategies, then envelope outputs with the largest

energy out of them bands are selected for stimulation (Loizou, 1999b). These strategies

aim to neglect the less important features of speech and concentrate only on the significant

spectral components to increase temporal resolution (Nogueiraet al., 2005).
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The spectral maxima sound processor (SMSP) was the first technique to branch away from

formant extraction techniques (Fearn, 2001) and form an “n-of-m” or peak picking strategy.

It consists of 16 band pass filters analysed at a rate of 250 Hz.The commercial implemen-

tation of SMSP was expanded to form the SPEAK strategy, whichincludes 20 bandpass

filters, as discussed by Whitford, Seligman, Everingham, Antognelli, Skok, Hollow, Plant,

Gerin, Staller, McDermott, Gibson and Clark (1995). Once themaxima are selected, the cor-

responding electrodes are stimulated at an average rate of 250 Hz, but this may vary in the

range of 100 Hz. The ACE processing strategy is an extension ofthe SPEAK strategy, with

the stimuli either presented at higher rates or with more channels (Clark, 2003; Fearn, 2001).

As outlined by Wilson (2006), the ACE strategy generally makes use of a linear distribu-

tion of frequencies up to approximately 1300 Hz, after whicha logarithmic distribution of

frequencies is used, ranging up to the maximum frequency. Intypical fittings of ACE pro-

cessors, the number of electrodes,m, ranges from 20 to 22 and the number of activated chan-

nels,n, ranges from six to 16, depending on the implementation (Skinner, Holden, Whitford,

Plant, Psarros and Holden, 2002). The maximum rate of stimulation with an ACE processor

is 14400 Hz (Clark, 2003). In general, speech perception scores have indicated better results

with the ACE processing strategy than with the CIS strategy, but did not show significantly

different results from the SPEAK processing strategy (Skinneret al., 2002; Clark, 2003).

2.4.2 Factors influencing the performance of cochlear implants

Given the many different processing strategies implemented in CIs, as well as subject vari-

ability, there is a great deal of inconsistency in the performance of CI recipients. Loizou

(1999a) discusses some of the factors responsible for the variability of auditory performance,

which are briefly outlined in the following paragraph.

Factors such as the duration of deafness of a subject prior toreceiving a CI, relating to the age

at which the onset of deafness occurred, generally affect auditory performance. For example,

prelingual deafness will affect the learning of speech and language, as opposed to postlingual

deafness, with detrimental effects on auditory performance. The duration of CI use may also

affect auditory performance. Additional factors that affect auditory performance include the

electrode placement and insertion depth of the electrode array inside the cochlea and the type

of signal processing strategy employed (Loizou, 1998).
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2.4.3 Acoustic modelling

The inconsistency of auditory performance among CI recipients makes it difficult to assess

the various factors that affect speech perception. These factors may also not be independent

of one another, heightening the difficulty of assessing auditory performance factors individ-

ually (Loizou, 1999a). To address this problem, acoustic simulations are of great assistance

as they represent acoustically what a CI recipient may hear asa result of electrical stimu-

lation (Clark, 2003). This allows individual factors that affect auditory performance to be

investigated without the complications of aspects such as subject variability and period of

deafness.

An acoustic model may include different parts to emulate theeffect of a CI on a sound,

which can be separated into the processing part of the CI and the part of the CI that simulates

the biophysical characteristics of the electrode-neural interface. To gain insight into the

factors that influence the performance of CIs, acoustic models such as the model developed

by Blameyet al. (1984), may be implemented. Generally, acoustic simulations involve the

processing of speech in a similar fashion to a CI processor, whereby the speech signal is first

filtered into different frequency bands or channels, which are used to stimulate the different

electrodes spaced along the array inside the cochlea. However, in the case of an acoustic

model, the output is presented acoustically as a sum of noisebands or a sum of sinusoids

to NH listeners. Acoustic models have provided quantitative insight into speech perception,

and even music perception in more recent research, such as that of Rubinstein and Turner

(2003), in which the interaction between the number of spectral bands and the amount of

temporal fine structure conveyed within each band was assessed. The results suggested that

CI processing strategies that improved the coding of temporal fine structure were likely to

improve both speech perception, especially in noise, and music perception in CI listeners.

The development of an acoustic model requires that both the signal processing factors and

biophysical characteristics of the electrode-neural interface of CIs be considered. The latter

encompasses effects regarding the physical location of theelectrode array inside the cochlea,

and includes factors such as current spread and insertion depth. A discussion of some spe-

cific acoustic modelling aspects that are addressed in this study is given in the following

paragraphs, along with the effect of each of these modelled factors on the auditory perfor-

mance of CI recipients.
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2.4.3.1 Number of channels

An important factor that can be included in an acoustic modelis the number of channels.

The number of channels refers to the number of areas that are stimulated in the cochlea,

and affects the level of speech perception. An optimum number of independent channels

required for high levels of speech understanding must be found, and may be facilitated by

means of acoustic simulations. Studies such as those by Dormanet al.(1997b) and Friesenet

al. (2001) have investigated the effect of the number of channels on speech recognition in CI

recipients. Nie, Barco and Zeng (2006) found that increasingthe number of electrodes from

four to 12 generally improved speech recognition, specifically regarding closed-set vowel

recognition and sentence recognition in quiet. Additionally, eight to 10 electrodes were

found to be optimal for speech intelligibility in noise (Fishman, Shannon and Slattery, 1997).

However, as the channels increased between seven, 10 and 20,no difference was found in

speech performance.

General conclusions from studies such as those mentioned above indicate that between five

and eight independent channels are needed for good speech recognition (Loizou, 1998;

Fearn, 2001), and so should be the number of channels typically implemented in an acoustic

model.

2.4.3.2 Insertion depth

The insertion depth of the electrode array substantially affects speech performance in CIs.

As explained by Loizou (1999a), electrode arrays are typically only partially inserted into the

cochlea, usually 22 - 30 mm deep. This creates a frequency mismatch between the analysis

frequency and the stimulating frequency. For example, as described by Dorman, Loizou

and Rainey (1997a), if an electrode array is only inserted 22 mm into the cochlea, the most

apical electrode will lie close to the 800 Hz frequency area of the cochlea. However, a typical

centre frequency of 250 Hz of the first filter in the CI processorwill then be used to stimulate

the 800 Hz area, indicating that an upwards shift in frequency will take place, affecting the

perception of speech.

Acoustic simulation studies that have been carried out to investigate the effect of the insertion

depth of the electrode array on the performance of CI recipients include those by Dorman

et al. (1997a), Faulkner, Rosen and Stanton (2003) and Baskent and Shannon (2005). As
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discussed by Dormanet al. (1997a) and Loizou (1999a), it was concluded that the inser-

tion depth significantly affects speech perception, as insertion depths of 23 mm and lower

generally result in very poor speech recognition. Studies by Baskent and Shannon (2005)

and Faulkneret al. (2003) showed that better speech recognition results are obtained when

acoustic frequency information is mapped onto the corresponding cochlea place, using the

frequency-to-place equations found in Greenwood (1990).

2.4.3.3 Channel interactions

As explained by Vanpoucke, Zarowski and Peeters (2004), an electrode on an electrode array

inside the cochlea should ideally only excite neural fibres located in the immediate area of the

electrode. However, the current that is injected spreads through the cochlea, exciting fibres

that may be situated at a distance from the stimulating electrode. This occurrence results

in channel interactions, a limitation which causes the number of perceptually independent

frequency channels to be lower than the number of available electrodes (Friesenet al., 2001).

Many factors can influence channel interactions in CIs, including the electrode configura-

tion, e.g. bipolar or monopolar, as well as the placement anddesign of the electrode ar-

ray, e.g. the distance between the electrode and the nerve cells (Bingabr, Espinoza-Varas

and Loizou, 2008; White, Merzenich and Gardi, 1984). Vanpoucke et al. (2004) developed

a model for an approximation of the current spread as a function of distance through the

cochlea for each electrode stimulated separately. They found the current spread to be very

wide and not strongly dependent on the place of stimulation.Throckmorton and Collins

(2002) conducted an extensive study on the effect of channelinteractions on speech recog-

nition. It was found that various channel interactions, simulated by means of pitch reversals,

forward masking and electrode discrimination, affect speech recognition to different degrees.

In general, spectral interactions degraded speech recognition more than temporal interac-

tions. The spectral interactions affecting lower-frequency information also caused a more

detrimental effect on speech recognition than those affecting higher-frequency information.

Channel interactions may occur where neural populations associated with different elec-

trodes overlap, with the degree of overlapping varying fromsubject to subject (Throckmorton

and Collins, 2002). Research by Whiteet al. (1984) presents a number of possible methods

for reducing channel interactions, including the use of asynchronous stimulation as well as

bipolar electrodes instead of monopolar electrodes. The use of biphasic pulses also stimu-
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lates a smaller group of nerve cells, reducing channel interactions. Fu and Galvin III (2001)

developed a model to desynchronise channels by introducingdifferent delays for each chan-

nel. The study indicated that in the case of CI recipients where fine spectral structures are

not available, cross-channel asynchrony in speech signalscan be overcome by an increased

spectral resolution. A recent study by Bingabret al. (2008) showed the development of a

new simulation for the effect of spread of excitation in CIs. Models such as these find strong

applications in acoustic modelling, where the effect of thespread of excitation is included.

2.4.3.4 Rate of stimulation

There has been much debate regarding the optimal rate at which the electrodes of a CI should

be stimulated. Vandali, Whitford, Plant and Clark (2000) studied the effect of different stim-

ulation rates on speech recognition. The study found that higher stimulation rates sometimes

showed improvements in speech performance, but could also produce undesirable effects, in-

dicating the subject-specificity of this factor. The study also found no differences in speech

perception when the pulse rate varied between 250 and 1615 pulses per second (pps) per

channel (Fearn, 2001). However, as discussed by Fearn (2001), contradictory findings were

recorded by Loizou, Poroy and Dorman (2000b), who found thata higher pulse rate always

resulted in a positive effect. Stimulation rates of 2100 pps/channel resulted in improved

speech scores when compared with rates of 800 pps/channel. Holden, Skinner, Holden

and Demorest (2002) also studied the effect of stimulation rates and found that group mean

speech perception scores for sentences and phonemes in noise across periods of time were

significantly higher for a higher stimulation rate of 1800 pps/channel, compared to a stimu-

lation rate of 720 pps/channel. Nieet al. (2006) found that increasing the rate from 1000 Hz

to 4000 Hz for each electrode improved sentence recognitionin quiet, but that this increase

could degrade sentence recognition in the presence of competing voice. It was found that

high-rate stimulation up to 2000 Hz is beneficial to speech perception, but an increase up to

4000 Hz may affect performance detrimentally due to the electrode interactions at this high

rate.
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2.4.3.5 Other factors

CI listeners (as opposed to NH listeners) have a limited dynamic range and spectral resolu-

tion. The large acoustic dynamic range of approximately 120dB for NH listeners (Fu and

Shannon, 1999) is compressed by a logarithmic function to assmall an electrical dynamic

range as 5 - 15 dB in CI processors (Loizou and Poroy, 2001). Loizou, Dorman and Fitzke

(2000a) found that speech understanding in CI listeners could be severely impaired as a re-

sult of a reduced dynamic range, especially for vowel recognition. A study by Zeng, Grant,

Niparko, Galvin, Shannon, Opie and Segel (2002) revealed that for optimal speech recogni-

tion in CIs, an input dynamic range of 50 - 60 dB is required. To accommodate this finding,

a new amplitude mapping technique was presented by Zenget al. (2002) to assist CI users

with speech performance, where a logarithmic map is used forlow frequency channels and

a more compressed map is used for the higher frequency channels. Fu and Shannon (1998)

investigated the effects of non-linear amplitude mapping in both CI users and NH listeners,

concluding that inadequate amplitude mapping functions could cause the loudness growth to

be unnatural, resulting in poor speech recognition. However, Fu and Shannon (1998) suggest

that the application of simple logarithmic mapping functions could be sufficient to provide

CI listeners with adequate speech recognition.

For high auditory performance, specifically for vowel identification, the spectral contrast,

which is the difference between the spectral peak and the spectral valley, must be preserved

to a certain degree (Loizou and Poroy, 2001). The spectral contrast is reduced in CI listeners

mainly due to the reduced dynamic range, as well as due to amplitude compression. As dis-

cussed by Loizou and Poroy (2001), the steepness of the compression function used to map

the amplitudes of the acoustic signal to the electric amplitudes presented to the electrodes is

a contributing factor to reduced spectral contrast. Loizouand Poroy (2001) found that for

high vowel recognition, CI listeners needed about 4 - 6 dB higher spectral contrast than NH

listeners.

The factors discussed above that may affect the performanceof CIs have also been jointly

investigated. Loizouet al. (2000b) studied the effect of different CI processors on speech

understanding by varying the parameters of the processors.It was found that the pulse rate

and the pulse width had the most positive effect on speech recognition, where joint variations

of these two parameters yielded higher speech performance in CIs. Other signal processing

factors such as filter overlap and the shape of the amplitude mapping function were also

investigated, but did not generate significant results.
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Nie et al. (2006) investigated the contribution of spectral and temporal cues to CI speech

perception. The effect of the number of electrodes, stimulation rate and temporal envelope

extraction on speech perception in quiet and noise were evaluated. They found that a linear

trade-off exists between the number of electrodes and the stimulation rate for consonant and

sentence recognition in quiet, but not for vowel and sentence recognition in the presence of

competing voice.

Acoustic models of CIs provide insight into the various parameters of CIs. The above-

mentioned studies indicate that the limitations of CIs can bebetter located with acoustic

simulations, allowing improvements in CIs to be more readilyachieved. Acoustic models

may also be used to test new CI design aspects (Rubinstein and Turner, 2003) to accelerate

the development of CI technology.

2.4.4 Music processing in cochlear implants

Although speech and music differ, as described in section2.2.1, they have structural simi-

larities (Limb, 2006), introducing consequent difficulties in understanding speech and mu-

sic processing independently. Recent studies by Peretz and Coltheart (2003) have shown

that music processing in the central auditory system can be defined by a modular struc-

ture, by means of which differences and similarities between the modules used for speech

and music processing are formulated. Essentially, the maindifferences appear to be in the

different spectral and temporal requirements for music andspeech (Zattore, Belin and Pen-

hune, 2002; Zattore, 2001), indicating that the processingfeatures required for music differ

from those for speech. As discussed by Zattore (2001), Pretorius and Hanekom (2005) and

Zattoreet al. (2002), speech requires fine temporal information processing to which the left

auditory cortex regions are better suited, and music requires fine spectral or tonal informa-

tion processing, for which the right auditory cortex regions are specialised. This indicates

that a processing system that can manage both temporal and spectral information with equal

accuracy is required for correct speech and music perception (Pretorius and Hanekom, 2005).
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Due to the inadequate spectral resolution of CIs, pitch processing capabilities appear to be the

major downfall regarding music processing in CIs, because the perception of pitch changes,

which essentially make up a melody, is drastically affectedby the pitch processing resolution

(Pretorius and Hanekom, 2005). The tonotopic organisationof the electrode array also con-

tributes to poor pitch perception (Konget al., 2004), adding to the challenge of improving

pitch resolution in cochlear implantees.

2.4.5 Music perception in cochlear implant recipients

Music perception abilities of cochlear implantees are still limited (McDermott, 2004), de-

spite numerous research efforts in this field (Lealet al., 2003; Gfelleret al., 2005). In both

speech and music perception tasks for cochlear implantees,the general approach is to per-

form psychoacoustic experiments, in which physical, measurable acoustic parameters are

provided as inputs to the experiment and a subjectively based output is obtained from the

listener’s response to the task. This approach has been successful in measuring speech intel-

ligibility in CI users, as the limited phonetic alphabets that exist in most languages provide

listeners with a frame of reference through which sounds canbe identified (van Wieringen

and Wouters, 1999). This enables postlingually deafened listeners to distinguish between dif-

ferent speech sounds that are perceived, for example, different consonant sounds, providing

distinct, conclusive information regarding the perception of specific speech components.

However, psychoacoustic experiments have revealed far less conclusive evidence regarding

music perception abilities in cochlear implantees. This ismainly due to the fact that music

perception cannot be measured in the same way that speech canfrom psychoacoustic ex-

periments. Language perception is acquired from an early age, implying that the auditory

system is trained to perceive speech (Shannon, 2005). Unlike language, music is not a ne-

cessity for communication and survival and is thus not developed as early or to the same

degree as speech, as discussed by Limb (2006) and Shannon (2005). This creates difficulties

in music perception tasks as listeners generally have an untrained musical ear. Furthermore,

the fact that music is unrestricted in style and sound makes it difficult to measure exactly

what is perceived by listeners.
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In addition to these challenges in understanding music perception in cochlear implantees,

music perception is also far more subjective than speech (Gfeller et al., 2005; Limb, 2006),

based on individual preferences and factors such as the listening habits of the CI user be-

fore and after receiving the implant (Gfeller, Woodworth, Robin, Witt and Knutson, 1997).

Aspects such as memory of music would therefore play an important role in CI-mediated

music perception. Lassalettaet al. (2007) and Gfeller, Christ, Knutson, Witt, Murray and

Tyler (2000) discuss the fact that listening habits, including the number of hours spent lis-

tening to music and music enjoyment, decreased substantially after implantation. It was

found, however, that more than half of the CI subjects still enjoyed listening to music fol-

lowing implantation. Additionally, numerous studies haveshown that musical training for

implantees can improve perception and enjoyment of musicallistening, as noted by Don-

nelly and Limb (2009) and McDermott (2004). The above-mentioned subject-specific fac-

tors make it difficult to pinpoint the reason for the different perceptual capabilities regarding

music in cochlear implantees.

Existing music perception studies, such as that of Gfelleret al. (2005), utilised real-world

pieces of music, combining various elements of music such asrhythm, pitch and timbre, to

measure perception of music in cochlear implantees, while other methods have focussed on

separate elements of musical pieces (Galvin III, Fu and Nogaki, 2007; Gfeller, Witt, Wood-

worth, Mehr and Knutson, 2002c). Even though numerous experiments have been carried

out, research has generally not provided measurable or conclusive results, but rather a gener-

alisation of the abilities of cochlear implantees regarding music perception. For example, the

addition of lyrics to a melody usually improves the performance of implantees in perception

tasks (Gfelleret al., 2005). However, it is still unclear which aspect of music perception

enables this: the memory of the lyrics or of the speech processing capabilites of the implant

(Pretorius and Hanekom, 2005).

However, according to Martin, Scheirer and Vercoe (1998), psychoacoustic studies provide

great potential for better understanding musical content,as the limitations of music percep-

tion are highlighted as a result. Such studies provide useful resources from which important

features that can be used in systems to understand music may be extracted.
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General findings have concluded that rhythm is the attributeof music most readily perceived

by CI listeners (Gfelleret al., 1997; Lealet al., 2003; McDermott, 2004). Studies such as

those by Konget al. (2004) and Lealet al. (2003) show that there is a correlation between

performance scores in rhythmic tasks and speech perceptiontasks. The fine temporal resolu-

tion that is necessary for accurate speech perception in CI processors allows rhythm, which

is made up of temporal components, to be perceived with higher performance levels.

Pitch and melody perception, however, are more challengingaspects for CI listeners (Limb,

2006), and without rhythmic cues, recognition of melodies may be severely impaired (Kong

et al., 2004; McDermott, 2004). Common methods of evaluating pitchperception consist

of testing the recognition of familiar tunes or obtaining performance measures using simple

pitch discrimination tasks (Pressnitzeret al., 2005). Other studies, such as those carried

out by Pijl and Schwarz (1995), used a single electrode stimulated by varying pulse rates

and showed that temporal cues are capable of providing pitchinformation similar to NH

subjects up to approximately 300 Hz (McKay, 2005). However,this approach uses a different

technique from the normal process of sound transmission in the cochlea during acoustic

sound perception (Limb, 2006). Pitch perception research in CI listeners has been performed

by McDermott and McKay (1997), while melody perception studies have been carried out by

Gfeller, Turner, Mehr, Woodworth, Fearn, Knutson, Witt andStordahl (2002a) and Galvin III

et al.(2007). Gfeller, Turner, Oleson, Zhang, Gantz, Froman and Olszewski (2007) provide a

study that summarises how well CI recipients perform in musicperception tests with different

processing strategies, as well as with combined acoustic-electrical hearing compared to only

electrically stimulated hearing.

Studies that have been carried out by Koelsch, Wittfoth, Wolf, Müller and Hahne (2004) in-

dicate that similar potential brain response patterns occur in NH and CI listeners in detecting

irregular-sounding musical sequences. These results suggest that the neural mechanisms to

detect pitch and timbre relationships are active in implantusers, implying that the pursuit

of the improvement of music perception in CIs would be feasible, as the mechanisms to

interpret music are present.
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2.4.6 Timbre perception in cochlear implant listeners

In general, timbre perception is found to be unsatisfactoryin CI users (Limb, 2006; McDer-

mott, 2004), implying that in addition to pitch, timbre remains one of the more challenging

aspects of music perception in cochlear implantees (Donnelly and Limb, 2009). Research

on timbre perception in CI listeners can be separated into twomain paths: timbre recogni-

tion and discrimination, and timbre appraisal, the subjective rating of the pleasantness of the

timbre, as discussed in the following paragraphs.

2.4.6.1 Timbre recognition and discrimination

In general, studies on the perception of timbre in CI listeners have focused on the ability of

listeners to either identify or discriminate different musical instrument sounds (McDermott,

2004). Examples of such studies include work by Lealet al. (2003) and reviews by McDer-

mott (2004), resulting in findings that NH listeners regularly mistake musical instruments

from the same family, such as different brass instruments (Donnelly and Limb, 2009). How-

ever, CI users show error patterns in identifying timbres that do not correspond to the type of

instrument family (Donnelly and Limb, 2009), indicating poor timbre perception in cochlear

implantees in general.

Gfeller, Knutson, Woodworth, Witt and DeBus (1998) studied timbre recognition and ap-

praisal. Simple melodic patterns were played as solos on each of four musical instruments,

namely the clarinet, the piano, the trumpet, and the violin.For timbre recognition, subjects

were asked to identify the type of instrument producing the melody. The results showed that

NH listeners recognised all of the instruments with a significantly higher accuracy than CI

listeners. Errors in the recognition tasks of the NH listeners were most often within the same

instrument family, while for CI listeners, the errors in recognition were more scattered.
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A study by Gfelleret al. (2002c) showed that cochlear implantees found it more difficult to

identify timbres when musical instruments were played in the higher frequency ranges than

when those instruments were played in the lower frequency ranges. Cochlear implantees also

found it more challenging to identify timbres from the family of string instruments (Gfeller

et al., 2002c), with percussion instruments the most readily identified (Limb, 2006). This

again indicates that temporal cues are important in cochlear implantees for improved timbre

perception (Donnelly and Limb, 2009).

General findings from the study by Gfelleret al.(2002c) revealed that under 50 % correct re-

sponses in identifying musical instruments were obtained by CI listeners, while NH listeners

obtained more than 90 % correct responses. In support of thisfinding, a study by McDermott

and Looi (2004), where subjects were asked to identify 16 different musical instruments, re-

vealed similar findings. The results varied greatly across subjects as well as instrument types,

with an approximate average of 44 % correct identification ofall the musical instruments by

the CI users and a significantly higher average of 97 % correct identification by the NH

listeners (McDermott, 2004).

As discussed by Pressnitzeret al. (2005), the familiarity of the listener with the stimulus

is essential for recognition tasks, implying that musical memory may have been measured

unintentionally in the studies mentioned in the previous paragraphs. This again illustrates

the inconclusive nature of the outcomes of timbre perception experiments for CI listeners.

In addition to timbre identification tasks, timbre perception in CIs has also been investigated

by methods of forward masking (Stainsby, McDermott, McKay and Clark, 2002), where the

perception of the steady-state envelopes of different musical instruments was examined. The

shape of the internal spectrum was measured using forward masking, and in addition the

ability of listeners to identify and discriminate between the same stimuli was also measured.

Results showed that the strengths of the correlations of the better performing CI listeners

compared well to NH listeners. This indicated that some CI users may have frequency se-

lectivity that is comparable to that of NH listeners. Stainsby et al. (2002) also concluded

that a large amount of spectral information seems to be available to CI listeners, which can

be noted from their discrimination abilities. However, theperformance in the identification

experiments was poor, illustrating that steady-state spectral cues alone are not necessarily

adequate to identify a musical instrument sound.
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A recent study by Emiroglu and Kollmeier (2008) attempted toquantify differences in object

separation and timbre discrimination between NH and hearing-impaired listeners. The ex-

periments determined JNDs of timbre in NH and hearing-impaired subjects along continua

of “morphed” musical instruments and investigated the variance of JND in silence and dif-

ferent background noise conditions and on different sound levels. Emiroglu and Kollmeier

(2008) used the same database of sound recordings as those used in this study (described in

section3.2), but cut out the attack time for their stimuli. They investigated pairs of sounds

that differed along three dimensions: spectral centroid, temporal flux, and a pair of sounds

that varied in both temporal and spectral aspects. Morphingof the sounds was then car-

ried out between these pairs, and JND values of the morphing parameter were investigated

each time. A similar approach will be used in this study to investigate individual JNDs of

perceptual features important for timbre perception.

2.4.6.2 Timbre appraisal

Timbre appraisal evaluations require that the listener describe the quality of musical instru-

ment sounds to assess the pleasantness of a sound (McDermott, 2004; Gfelleret al., 1998).

This can be achieved by requesting the listener to assign either ratings, in terms of numbers,

or adjectives, such as “clear” or “beautiful” to the sound quality. Gfeller and Lansing (1991)

asked subjects to rate nine musical instruments to obtain descriptors of the perceived quality

of musical instruments. The study took everyday life listening conditions into account in

obtaining the quality ratings.

The timbre appraisal component of the study conducted by Gfeller et al. (1998) involved

subjects rating different timbre samples on a sliding scaleon the basis of how much they

liked the sound. The resulting differences in appraisal between NH and CI listeners were

substantial for two of the four instruments played, namely the trumpet and the violin, which

were found to be far more pleasant to NH listeners.

Gfeller et al. (2002c) obtained measures of timbre appraisal when comparing CI listeners to

NH listeners by means of numerical scales for overall pleasantness as well as for perceptual

dimensions of dull-sharp, compact-scattered and full-empty. Average findings showed that

the ratings of CI listeners were substantially lower than forthe NH listeners, particularly in

the ratings of string instruments.
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Musical pieces from three genres of music, namely classical, country-western and pop, were

presented to both CI and NH listeners in a study by Gfeller, Christ, Knutson, Witt and Mehr

(2003), to rate the complexity and pleasantness of musical timbres. It was found that the CI

users rated the musical excerpts to be more complex than did the NH listeners, with the least

appraisal found for classical music.

In an attempt to improve the music perception abilities of CI listeners, researchers have

explored the effects of training implant users. McDermott (2004) provides a summary of

the training effects of CI recipients on music perception in general, while Gfeller, Witt,

Adamek, Mehr, Rogers, Stordahl and Ringgenberg (2002b) focusspecifically on the effects

of training on timbre perception in CI recipients. The music training program used in the

study by Gfelleret al. (2002b) was developed and described in detail by Gfeller, Witt, Kim,

Adamek and Coffman (1999). In summary, the training program consists of 48 lessons

(approximately 10 minutes of listening and responses per lesson) for a period of 12 weeks,

and information regarding the families of musical instruments is incorporated. The results of

the study by Gfelleret al. (2002b) showed that listeners that completed the training program

showed significant improvements in their average timbre recognition and timbre appraisal

scores when compared to the control group in which no improvements were recorded.

2.5 SUMMARY

Chapter 2 presented the literature on which this study was based. Using the existing timbre

perception findings for both NH and CI listeners as discussed in this chapter as a foundation,

experiments and models to assist with timbre perception measurements were developed. A

foundation for the definition and extraction of important timbre perception features was pro-

vided, as well as methods of implementing acoustic models torepresent sounds through the

electrically stimulated auditory system. A summary of timbre perception literature as pro-

vided in this chapter enables the structured development ofan approach to follow to achieve

the objectives of this study. The methods followed to implement experimental procedures to

measure timbre perception, as well as to develop a model of timbre perception, are discussed

in detail in chapter 3.
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METHODS

3.1 CHAPTER OBJECTIVES

Using the background given in chapter 2 as a basis, the approach followed to quantitatively

understand timbre perception in cochlear implantees and thus to be able to develop the model

of timbre perception for electrically stimulated hearing is given in this chapter. The objec-

tive was to first implement fundamental parts of the existingtimbre model of Jensen (1999b).

This was done to enable the definition and extraction of important timbre features from orig-

inal musical instrument sounds, as well as from acoustically modelled sounds, to investi-

gate the effect of the electrically stimulated auditory system on the parameters of the timbre

model. An acoustic model implemented to alter sounds according to the effect of electrical

stimulation was developed in Matlab1 version 2007b. The effect of electrical stimulation on

the timbre features deemed important for timbre perceptionin NH conditions could then be

used to predict the outcomes of timbre perception experiments for both NH and CI listeners

by developing a model of timbre perception. This chapter presents the methods used to form

a foundation on which to be able to address the research questions posed in chapter 1, lead-

ing up to the experimental and modelling components developed in this study, which will be

discussed in detail in chapters4 and5.

1Matlab is a product of the MathWorks company (www.mathworks.com)
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3.2 DATABASE OF MUSICAL INSTRUMENT SOUNDS

Ten different instrument sounds were used in the study to introduce a variety of musical

timbres. These were obtained from the sound database of the University of Iowa (Fritts, No

date) and were used throughout the study. The perceived loudness was very different across

the stimuli presented in this database. Such vast differences in loudness would possibly have

had a drastic effect on the similarity rating experiment results obtained. Thus, peak normali-

sation of the sounds was performed in an attempt to provide a more balanced perceptual level

of loudness across the musical instrument sounds. Extensive details of the instrument sounds

are given in section4.2.2, as implemented in one of the experimental studies. These musical

instruments included four main instruments, namely the piano, trumpet, clarinet and violin,

as these can be played in a similar frequency range and each isa commonly recognised ex-

ample of an instrument family (Gfelleret al., 1998; Nimmons, Kang, Drennan, Longnion,

Ruffin, Worman, Yueh and Rubinstein, 2008). These four musicalinstruments are used

throughout sections 3.2 to 3.5 to illustrate the timbre parameters extracted and calculations

performed on the musical instrument sounds. The note of eachof these sounds was C4 (F0 =

262 Hz), and in each case the peak amplitudes of the sound werenormalised. The sounds are

illustrated in figure 3.1. In addition to these four primary musical instruments, six other mu-

sical instruments were included to encompass a range of musical timbres. The instruments

were selected to include a variety of spectral and temporal properties, as well as representing

more familiar musical instruments and their families (Galvin III, Fu and Oba, 2008).

The piano makes up the first family of instruments, namely pitched percussion or percussive

string instruments (Gfelleret al., 1998). The piano is the only sound of this family included

in this study, as others (e.g. the harpsichord) are uncommoninstruments and samples of

the sounds are not readily available. Pitched percussion instruments are defined as having a

string fixed at both ends as the primary source of vibration, with most of the energy radiated

by the body of the instrument. Usually, all the frequency components (both even and odd)

are present with inharmonic components prominently found (Strong and Plitnik, 1992). The

attack or rise of the piano sound is very short, with a prominent key “thump” noise generated

by string vibrations. The sustain part of the sound is brief or non-existent, and the funda-

mental component usually dominates the sound spectrum (Fletcher and Rossing, 1998).
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The trumpet represents the brass family of instruments. Other instruments of the brass family

included in this study were the French horn and the trombone.In these instruments, sound is

produced by the vibration of the lips against a mouthpiece and along sections of cylindrical

tubes (Gfelleret al., 1998). The frequency components are again usually all present in brass

instruments. For the trumpet specifically, a clearer and louder sound may be produced than

in other brass instruments, changing the number of resonating frequencies in the tone (Strong

and Plitnik, 1992).

The clarinet represents the woodwind family of instruments, with the flute and saxophone

constituting the other two members of this group for this study. These instruments produce

sound from oscillations in the air column as a result of a vibrating reed. In general, the

odd frequency components of a clarinet are predominant up toaround 2000 Hz, after which

even and odd components are both present (Gfelleret al., 1998). The violin represents

the last family of instruments, the string family, with the cello and viola included as other

examples of this group. The violin is the highest pitched instrument of the string family.

Similarly to the pitched percussion instrument family, theprimary vibrations in the string

instrument family originate from a string fixed at both ends,with most of the energy produced

by the body of the instrument, and to a smaller degree, by the string. All of the frequency

components are usually present for string instruments, excepting those that contain a node at

the point of excitation (Strong and Plitnik, 1992).

As discussed by Houtsma (1997), pitch is often confused withtimbre and therefore, for

the purposes of this study, all musical instrument sounds were played at the same pitch,

chosen as Middle C or C4 (262 Hz). The octave surrounding and including C4 is the most

common octave among the frequency ranges for western musical instruments, as discussed

by Nimmonset al. (2008). F#3 (185 Hz) is the lower limit of the octave surrounding middle

C (Nimmonset al., 2008), with E4 (330 Hz) and G4 (391 Hz) being the other most common

notes in familiar melodies such as nursery rhymes.

Examples of the original musical instrument sounds are illustrated for both the time and

frequency domains in figures3.1 and3.2, respectively, for the four main families of instru-

ments. These are represented by the piano, trumpet, clarinet and violin. The sounds are

approximately two seconds in length, where in each case a single C4 note of the specific

musical instrument is played. Illustrations of the other 6 instruments are given in Appendix

A.
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Figure 3.1.
Time domain representations of a selection of musical instrument sounds from each
family of instruments with (a) the piano representing pitched percussion, (b) the
trumpet representing brass, (c) the clarinet representingwoodwinds, and (d) the violin
representing the strings.
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Figure 3.2.
Frequency domain representation of a selection of musical instrument sounds of (a)
piano, (b) trumpet, (c) clarinet and (d) violin.

3.3 MODELLING TIMBRE

The implementation of the timbre model by Jensen (1999b) wasused as a basis to extract

various features of timbre to be used in the model of timbre perception developed in this

study. The important steps in decomposing and analysing a musical instrument sound to

extract the features that define the timbre are discussed in sections3.3.1to 3.3.5.
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3.3.1 Fundamental frequency and frequency component estimation

The first step in analysing the timbre of a musical instrumentsound is to decompose the

sound into its frequency components. The original sound data are read from .wav files. The

frequency analysis is performed over the strong segment of each sound (the entire sound

after transient effects have been neglected). The fundamental frequency is generally defined

as the first strong frequency component of a sound, or as the frequency difference between

consecutive frequency components or overtones. In the timbre model by Jensen (1999b),

these frequency differences are used to estimate the fundamental frequency. An additional

improved method that fits the estimated frequencies to the ideal quasi-harmonic frequencies

is also presented by Jensen to refine this procedure.

From the fast Fourier transform (FFT), the important frequency candidates of the sound

are isolated by detecting the maximum points of the FFT. Using these candidates, the first

estimation of the fundamental frequency can be made from equation3.1, by calculating the

mean of the differences between consecutive frequency candidates as

ffund1 =

f1 +
N
∑

n=2
fn− fn−1

N
, (3.1)

where f1 is the first frequency candidate andN is the total number of selected frequency

candidates from which the first fundamental frequency estimation, ffund1, is calculated.

To refine this estimation, frequency difference anomalies are removed by comparing fre-

quency differences to the calculated fundamental frequency. If the differences between these

frequency values exceed a certain threshold, the corresponding frequency difference value

is discarded. This process is repeated, making the threshold smaller each time, until a de-

sired small number,n, of frequency difference points are obtained. This gives fewer and

more accurate frequency candidates which define the sound. The second refined fundamen-

tal frequency estimation can then be made by calculating themean of the reduced frequency

differences, again by using equation3.1.
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For some musical instrument sounds, for example the piano, the frequency difference of

higher overtones can vary greatly from the fundamental. This characteristic is known as

inharmonicity, and has been incorporated into the model of timbre by Jensen (1999b) to

improve fundamental frequency estimation. To estimate thefundamental frequency, the fre-

quency differences as described above, and here denoted asf d, are used. First, the dif-

ferences between consecutivef d values are calculated and denoted asfdd. Next, the local

average of the differences betweenfdd values over a few overtones is removed, shown in

equation3.2as

f d
′
n = f dn−

L
∑

l=1
f ddn−l

L
, (3.2)

whereL is the number of overtones over which the local mean is calculated and removed, set

as 3, giving the new frequency difference vectorf d
′
, taking into account inharmonicity. The

improved fundamental frequency estimate can then be made bycalculating the mean off d
′
.

With this fundamental frequency estimation, it is possibleto recognise the frequency compo-

nents, as found by the maximum peaks of the FFT, that are indeed harmonic components, as

indicated byf d
′
. Peak frequency values found to be harmonic values or close to harmonic

values are retained. Frequency peaks that are not close enough in value to the harmonic

components are eliminated.

It is also necessary to add harmonic components, as calculated from the fundamental fre-

quency, that may be missing from the FFT analysis. To do so, the difference between the

two overtone frequency values that precede the missing harmonic is calculated and added

to the previous frequency component value to indicate the frequency at which the missing

frequency component or overtone should be positioned.

Once all the overtone values have been included, the final fundamental frequency estimation

can be made by fitting a stretched harmonic curve to the harmonic frequency points. The

frequencies that are not exactly harmonic are said to be quasi-harmonic and can be expressed

by the formula for a stiff piano string given by equation3.3as

fk = k f0

√

1+βk2, (3.3)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

50



Chapter 3 METHODS

where fk is the frequency for a specific overtone index,k, f0 is the fundamental frequency

andβ is the inharmonicity value. By performing a non-linear least-squares curve fit to the

harmonic frequency data, the values forf0 andβ can be found. The curve fitting is performed

by the lsqcurvefit function in the Matlab Optimization Toolbox. To minimise errors in the im-

portant low partial components, the curve fitting is performed on the frequency components

divided by the overtone index. Please refer to Jensen (1999b) for detailed documentation on

the frequency estimation procedure.

3.3.2 Analysis of musical sounds by additive parameters

Once the fundamental frequency and frequency components have been obtained, the musical

sounds can be analysed by means of an additive model. The musical sounds can then be

modelled as a sum of sinusoidals constructed from the partial components of the sound, with

time-varying amplitude and frequency, which when summed together resynthesise the sound

with minimal loss of quality.

In this work, an FFT-based sliding time-domain window analysis is employed, whereby the

FFT peaks are found by analysing the FFT of a windowed time signal. The peaks for a

specific time segment are then attached to the partial tracksof the previous time segment.

An optimum window length of four times the period of the fundamental is chosen (Jensen,

1999b), over which the FFT analysis for one time period is performed. The FFT is performed

using a hamming window of the chosen length to avoid discontinuities.

Thus, the FFT of the sound signal multiplied by the hamming window is obtained for each

time window. The window is shifted by 1/3 of the window lengthfor each time interval

and the FFT is calculated for each of these intervals. For each windowed FFT calculation,

the maximum peaks that fall within a range of frequencies that correspond to the harmonic

frequency components are calculated, as described in section 3.3.1. For each FFT peak

located in this way, the respective frequency and amplitudevalues of these peaks are recorded

for each time segment or window. This procedure gives rise tothe time-varying amplitudes

and frequencies for each frequency component, and allows the signal to be represented as a

number of partials in time, frequency and amplitude.

The analysis described above results in the following representation in the form of additive

parameters for each of the four instruments of figure3.1, as shown in figure3.3.
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Figure 3.3.
Additive parameters for (a) the piano, (b) the trumpet, (c) the clarinet and (d) the
violin.

3.3.3 Spectral envelope parameters

As discussed in section2.3.1 in chapter2, the spectral envelope is considered one of the

most important features in defining the timbre of a musical instrument sound. Using the

additive parameters as extracted in section3.3.2, the spectral envelopes for each sound can

be calculated by finding the maximum amplitude,ak, of each partial,k. This results in the

following spectral envelopes for each of the four musical instrument sounds as a function of

partial index, as illustrated in figure3.4.
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Figure 3.4.
Spectral envelopes represented as a function of the partialindex for (a) the piano, (b)
the trumpet, (c) the clarinet and (d) the violin, extracted from the additive parameters
of figure 3.3.

Noticeable features from figure3.4include the slope of the envelope in each case, as well as

the amplitude variations or irregularities of the spectrum. These and other important timbre

features can be extracted from the spectral envelopes, based on the work of Jensen (1999a),

and are discussed in sections3.3.3.1to 3.3.3.4.
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3.3.3.1 Brightness

The brightness or spectral centroid is calculated and modelled by Jensen (1999a) from the

spectral envelope from equation3.4as

brightness=

N
∑

k=1
k.ak

N
∑

k=1
ak

, (3.4)

whereN is the total number of partial components of the sound that are used to model the

timbre. This brightness value is closely related to the attribute of sharpness, and is correlated

with the subjective quality of brightness (McAdamset al., 1995), which can be used to

describe a sound as being “sharp” or “bright”, compared to “dull”. Typical brightness values,

as extracted for the four musical instrument sounds of figure3.1, are around 2.3 for the piano,

6.6 for the trumpet, 3.7 for the clarinet, and 6.5 for the violin. In the event that the partial

index,k, in equation3.4is replaced with the frequency of the particular partial, the brightness

would be expressed in Hz.

3.3.3.2 Irregularity

The irregularity of the spectrum of a musical sound has been found to be an important timbre

feature (Krimphoffet al., 1994; Caclinet al., 2005). In the log domain, irregularity can

be calculated as in equation3.5, as the sum of the partial amplitude less the mean of the

preceding, same and next partial amplitude.

irregularity=
N−1

∑
k=2

∣

∣

∣

∣

ak−
ak−1 +ak +ak+1

3

∣

∣

∣

∣

(3.5)

Alternatively, irregularity can be calculated as the sum ofthe squared difference in amplitude
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between adjacent partials, as shown in equation3.6by

irregularity=

N
∑

k=1
(ak−ak+1)

2

N
∑

k=1
a2

k

, (3.6)

where the N+1 partial is set to zero. In general, the irregularity value calculated by equation

3.6 is below 1, and it is always below 2.

3.3.3.3 Tristimulus

The tristimulus values can be viewed as the equivalent of thecolour attributes of vision

(Jensen, 1999a) and can be used to investigate the transientbehaviour of musical sounds.

The values for tristimulus 1, 2 and 3 can be calculated as in equations3.7, 3.8 and 3.9,

respectively. The sum of the three tristimulus values equals 1.

tristimulus 1=
a1

N
∑

k=1
ak

(3.7)

tristimulus 2=
a2 +a3 +a4

N
∑

k=1
ak

(3.8)

tristimulus 3=

N
∑

k=5
ak

N
∑

k=1
ak

(3.9)

For the purpose of illustration, a tristimulus diagram withtristimulus 2 as a function of

tristimulus 3 is usually constructed. In such a diagram, thethree corners are indicative of

the partial strength distribution, as shown in figure3.5 for a tristimulus diagram of the 10

musical instruments used in this study.
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Figure 3.5.
Tristimulus values shown for 10 musical instrument sounds.The three corners denote
strong fundamental partials, strong mid-range partials and strong high-frequency
partials. The abbreviations for the 10 instruments are defined as piano (pno), trumpet
(tpt), French horn (hrn), trombone (tbn), clarinet (cnt), saxophone (sax), flute (flt),
violin (vln), cello (clo) and viola (vla).

3.3.3.4 Odd and even relationships

The odd and even relationship has been used to investigate instruments such as the clarinet,

where the energy of the even partials is less than that of the odd partials (Jensen, 1999a;

Gfelleret al., 1998). The calculation of the odd parameter does not include the fundamental

partial, so as to avoid too high a correlation between the oddparameter and the tristimulus 1

parameter. Equations3.10and3.11show the calculations for the odd and even relationships

respectively.

odd=

N/2

∑
k=2

a2k−1

N
∑

k=1
ak

(3.10)
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even=

N/2

∑
k=1

a2k

N
∑

k=1
ak

(3.11)

The sum of tristimulus 1, odd and even, equals 1; thus, only the odd parameter needs to be

calculated and saved when modelling timbre with as few parameters as possible.

3.3.4 Amplitude envelope times: attack, sustain and release

The amplitude envelope is another important attribute of timbre, as discussed in section2.3.1,

and defines the evolution of the amplitude of a sound over time. To model the amplitude

envelope of a musical sound, a number of steps need to be implemented, as discussed in

detail by Jensen (1999a). The procedure is briefly describedin the following paragraphs.

As a first step, a Gaussian window is convolved with each partial of the instrument sound

to be modelled to obtain a smoothed version of each partial. From the smoothed partial,

start of attack (soa), end of attack (eoa), start of release (sor) and end of release (eor) points

of the partial envelope can be estimated. This is achieved byfinding the maximum and

minimum points of the first derivative version of the smoothed partial. The maximum value

corresponds to the middle of the attack segment, while the minimum value corresponds to

the middle of the release segment. From these middle points,the split points of the smoothed

partial, soa, eoa, sor and eor, can be calculated as a percentage of the middle point on either

side (usually set at 10 % above or below the middle point).

The zero-crossings of the third derivative of the smoothed partial correspond to the start and

end points of the segments (Lindeberg, 1996). The zero-crossing points closest to the attack

and release values found from the first derivative values arethen used as the initial smoothed

soa, eoa, sor and eor values. However, the split point times found from the smoothed version

of the partial obviously do not correspond to the original slope times, so these must be

traced back to correspond to the original, unsmoothed partial. This is done by following

the split points from the smoothed version to the unsmoothedversion of the partial in steps

of different degrees of smoothing of the partial. Steps of smoothing are implemented by

Gaussian windows with changingα values, where a smallα value corresponds to a smooth
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signal and a highα value corresponds to an unsmoothed signal. Thus, for each smoothing

step, the zero-crossing values closest to the previous (more smooth) zero-crossing values are

followed through to the unsmoothed case, giving the correctslope times.

The process described above was implemented as a preliminary approach to this study. How-

ever, although the calculation of these split times is important in modelling the timbre of

musical instrument sounds, these were not included in this study. Rather, a logarithm of the

rise time of the sound envelope was found to be an important feature for timbre perception

and was used instead. This will be discussed in detail in section 3.4.2.

In the modelling of timbre, noise components or irregularities are often added to the en-

velopes, in terms of shimmer (irregularities of the amplitudes of the partials) and jitter (ir-

regularities on the frequencies of the partials), as discussed in section2.3.3. Again, in this

study this approach was not followed, as only three primary timbre features were focussed

on, with noise components not playing as important a role.

3.3.5 Resynthesis: summation of the sinusoids

The additive analysis, as explained in section2.3.1in chapter2, involves the association of a

number of sinusoids with a sound. The time varying amplitudes,ak(t) and frequenciesfk(t)

of theN partials of the sound are estimated, from which the originalsound can be resynthe-

sised with a high degree of realism in terms of sinusoids. This is achieved by implementing

equation3.12(Jensen, 2002b; Jensen, 2001; Andersen and Jensen, 2001) as

s(t) =
N

∑
k=1

ak(t).sin(φk(t)), (3.12)

where a summation of theN sinusoids is performed over all time,t, to produce the resynthe-

sised sound,s(t), in time. The integral of the frequency in equation3.12is the phase,φk(t)

of the particular sinusoid, defined by equation3.13as

φk(t) = 2π
∫ t

τ=0
fk(τ)dτ. (3.13)
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For the correct implementation of the resynthesis, the integral of equation3.13was approx-

imated using a summation of the frequencies up untilτ. The midpoint rule was used as the

summation method to approximate the integral, due to the lowerrors incurred by this method

(Stewart, 1999).

3.4 IMPORTANT TIMBRE FEATURES

Many studies on timbre perception features for acoustic hearing have been performed, as

discussed in2.3.1. A number of possible acoustic correlates of timbre-space dimensions

have been presented in the psychoacoustic literature, including the spectral centre of gravity

or spectral centroid, various forms of the attack time, the spectral flux, and the spectral fine

structure of the sound (Caclinet al., 2005). An important conclusion that can be drawn

from literature is that three main important features for the perception of timbre in acoustic

hearing can be assumed . For the purpose of this study, the features for acoustic hearing will

be assumed to be the important features for hearing in CI listeners. The three most important

features, as investigated and summarised by Krimphoffet al.(1994), McAdamset al.(1995)

and Caclinet al. (2005) that were thus extracted from the acoustically modelled sounds are:

• the spectral centroid or brightness (B)

• the logarithm of the rise time (LRT)

• the spectral irregularity (IRR)

The calculations implemented to extract each of these features are discussed in sections

3.4.1to 3.4.3that follow. Although the units of the three important timbre features will be

defined in the calculations that follow, it should be noted that throughout the remainder of

the dissertation these features will be referred to withoutunits for the ease of illustration, as

well as for the sake of consistency with existing literatureinvolving these parameters.
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3.4.1 Brightness or spectral centroid

The spectral centroid calculations are implemented according to the methods described by

Krimphoff et al. (1994), McAdamset al. (1995), Lakatos (2000), Iverson and Krumhansl

(1993) and Beauchamp and Lakatos (2002). These calculationsfind the average spectral

centroid over the duration of the tone, using instantaneousspectral centroid values calculated

over individual time windows. This gives the spectral centroid as a function of time,Bt ,

from which a time-average can be found as B. Beauchamp (1993) implements an algorithm

to calculate this feature. The spectral centroid valuesBt and B can be expressed by equations

3.14and3.15as

Bt =

N
∑

k=1
k.ak(t)

N
∑

k=1
ak(t)

(3.14)

and

B =

T
∑

t=1
Bt

T
, (3.15)

wherek is the partial index andak(t) is the amplitude of each partial for each time window,t,

with T being the total number of time windows. The time windows are represented by each

element of the matrix that holds the partial amplitude values. The above equations show that

the units of B can be defined as the partial number or index. Theglobal spectrum with the

B values indicated for each of the four instruments of figure3.1 is illustrated in figure3.6.

Only the first 15 partial components are shown, for the purpose of illustration.
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Figure 3.6.
B values indicated for each of the four musical instrument sounds: (a) piano, (b)
trumpet, (c) clarinet and (d) violin. The arrows indicate the position of the spectral
centroid in relation to the global spectrum of each instrument, with the units of B as
defined in section3.4.1.
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3.4.2 Logarithm of rise time

As discussed in section2.3.1, the rise time of an instrument sound is an important feature

for timbre perception, as it distinguishes impulsive tonesfrom sustained tones (Caclinet

al., 2005). Krimphoffet al.(1994) and McAdamset al.(1995) conclude that the LRT value,

the logarithm of the time taken for the sound to reach a maximum from the time it reaches

10 % of the maximum, correctly defines this timbre dimension.The envelope of the sound

signal from which LRT can be calculated is obtained by findinga quadratic sum of all the

partial amplitudes over the duration of the sound and findingthe square root of this sum.

Alternatively, as discussed by Krimphoffet al. (1994), a linear sum of the partials can be

used.

The calculation for the temporal envelope,Env(t), of the sound is found by equation3.16as

Env(t) =

√

√

√

√

N

∑
k=1

(ak(t)2). (3.16)

LRT can be found from the sound signal envelope,Env(t) and can be calculated from equa-

tion 3.17as

LRT = log(tmax− t0.1max), (3.17)

wheret0.1maxandtmaxare the times (in seconds) at which the temporal envelope of the sound,

Env(t), reaches 10 % of its maximum value and its maximum value, respectively. The units

of LRT are thus given as the logarithm of time in seconds, or log(s). Figure3.7 shows the

LRT values calculated for each of the four instruments of figure 3.1, as indicated on the

sound envelopes.
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Figure 3.7.
LRT values indicated for each of the four musical instrument sounds: (a) piano, (b)
trumpet, (c) clarinet and (d) violin. The amplitude envelopes of each of the sounds are
shown. The two filled circles indicate the start of the rise time and end of the rise time
in each case, with the units of LRT as defined in section3.4.2.
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3.4.3 Spectral irregularity

The third most important feature in timbre perception is theirregularity in the spectrum of

the sound, as discussed by Krimphoffet al. (1994), Caclinet al. (2005) and Beauchamp

and Lakatos (2002). Caclinet al. (2005) discuss how this feature involves the attenuation of

even harmonics relative to odd harmonics. Mathematically,IRR can be defined as the SD

of a running mean of three adjacent partial amplitudes from aglobal spectral envelope; that

is, the spectral envelope over the entire duration of the sound (McAdamset al., 1995). The

logarithm of this value then gives the IRR value, as expressedby Krimphoff et al.(1994) and

shown by equation3.18as

IRR = log

(

N−1

∑
k=2

∣

∣

∣

∣

20log(ak)−
20log(ak+1)+20log(ak)+20log(ak−1)

3

∣

∣

∣

∣

)

, (3.18)

whereak is the sum of the amplitudes for partialk over all time. This equation indicates

that the units of IRR are defined as the logarithm of decibels, or log(dB).The IRR values

calculated for each of the four musical instrument sounds offigure3.1 are shown in figure

3.8, with the corresponding logarithm of the global spectrum for each sound, from which

IRR is calculated. The first 20 partial components are shown for each spectrum for the

purpose of illustration.

It can be noted that the spectrum of the trumpet is very smooth, with little to no irregularity

in adjacent harmonics, as the components follow similar patterns. This indicates a low IRR

value in contrast with the clarinet, for example, where the spectrum is jagged and the odd

and even harmonics differ substantially, thus giving a higher IRR value.
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Figure 3.8.
IRR values indicated for each of the four musical instrumentsounds: (a) piano, (b)
trumpet, (c) clarinet and (d) violin. The relative logarithm amplitudes of the sound
spectra are shown, from which the IRR values are calculated and given with units as
defined in section3.4.3.
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3.5 DEVELOPMENT OF THE ACOUSTIC MODEL

The approach followed in developing the acoustic model was to separate the model into the

signal processing aspects and the biophysical characteristics of the electrode-neural interface.

The biophysical characteristics of the electrode-neural interface are more complicated to

implement generically, and many assumptions must be made inorder to model this part of

the acoustic simulation. For the acoustic model implemented in this study, emphasis was

placed on the processing part of the model, as the correct implementation of the processor

functioning is a necessity in understanding how the sound signal is affected. To obtain an

accurate simulation of the CI speech processor, the Nucleus Matlab Toolbox (NMT) from

Cochlear Pty Ltd2 was used.

The Matlab toolbox developed by Cochlear Pty Ltd was designedto emulate the processing

of speech by a CI. The toolbox allows for the generation of current signals that can be applied

directly as the stimulus to a CI electrode array, facilitating experiments performed with CI

users. By examining the processing steps of the NMT, the important steps to be implemented

for the acoustic simulation could be extracted.

In the sections that follow, the development of the acousticmodel is described in detail, based

on the processing steps presented in the NMT as well as on previously developed models.

2www.cochlear.com
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3.5.1 Processing steps of the Nucleus speech processor

The Nucleus CI processor incorporates different types of speech processing strategies, which

are implemented by the NMT. The CIS strategy focusses on the temporal information of the

sound signal, while the SPEAK and ACE strategies focus on the spectral information. The

ACE strategy was selected as the approach to follow in the implementation of the acoustic

model. In this strategy, the incoming sound is usually divided into 22 frequency bands or

channels, and the six channels with the highest energy content for a given time window are

used for stimulation during that time.

In the ACE processing strategy, the sound signal is divided into fixed 8 ms time windows with

a 75 % overlap. These time windows are weighted by a Hanning window to avoid abrupt

transitions in the time domain of the sound signal, and thus reduce the resulting spectral

spread of the sound spectrum. Following this, the signal is divided into frequency bands

using a FFT, whereby the frequency bins for each of the strategies are predetermined using

a filter analysis table (FAT). Alternatively, a number of bandpass filters may be used instead

of frequency bins to filter the sound into channels. This method has been used in existing

acoustic models, as discussed by Loizou (1998), and is the approach followed in this model.

Once the sound has been filtered into channels for each time window, the energy content of

each band for a specific time window is determined. The lengthof one time window is 128

samples, corresponding to 8 ms for a sampling rate of 16 kHz. This is the standard sampling

rate of the analogue-to-digital converter (ADC) of the processor that digitises the analogue

input sound. As a result of the 75 % overlap of the time windows, new samples will be

available every 2 ms. For each of these time windows, the envelopes of the filtered signals

are determined, representing an estimate of the instantaneous power in the corresponding

channel (Cochlear Pty Ltd, 2002).

In the ACE strategy, only the subset of channels with the highest energy content for a specific

time window are selected, and the corresponding channels are stimulated sequentially for

that time. The maximum overall stimulation rate of the Nucleus speech processor is 14400

pps. The stimulation rate of an individual electrode is dependent on the number of channels

in use. For example, if six channels are selected for each stimulation cycle, the resulting

maximum stimulation rate of a single electrode would be 2400pps (14400 pps divided by

six channels). A typical setting for the ACE strategy is to select eight maxima out of the 22

channels and stimulate at a rate of 1200 Hz (Cochlear Pty Ltd, 2002).
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Once the subset of channel maxima has been selected, the calculated energy levels for these

channels are mapped to current levels which will be used to stimulate the nerve cells in the

cochlea through an electrode array. These current levels must adhere to a range between a

minimum current level, known as the threshold level, T, and amaximum current level, known

as the comfort level, C. The threshold level is the minimum current value that produces

a stimulus that is only just audible. The comfort level is themaximum current value that

can be used just before the stimulus becomes uncomfortably loud. Current levels that fall

outside of the range are clipped in the NMT to ensure that all the values fall within the C

and T levels. The C and T levels are user dependent for each electrode pair in a CI and

can be changed in the NMT according to individual requirements. The NMT implements a

logarithmic function, which is referred to as a loudness growth function (LGF), that maps

the energy levels to current values between the C and T levels.

Once the current levels have been obtained, the selected channels are stimulated, with default

activation in the NMT starting from the most basal position and moving to the most apical

position. This approach is also followed for the developed acoustic model, by ordering the

channels according to their centre frequencies. Finally, the current values are mapped to

electrodes along the array that will stimulate specific places along the cochlea.

3.5.2 Processing steps implemented in the acoustic model

The processing steps in the acoustic model must be as true to the actual processing performed

in a CI as possible. All the processing steps were implementedin Matlab, following the

processing methods of the NMT as described in the previous section. The instrument sound

signals used for this study were processed by Matlab code, with the output saved as a .wav

file for each sound.

The block diagram in figure3.9 illustrates the steps of the acoustic model, clearly showing

the processing aspects (labelled as Processor model) and the biophysical characteristics of

the electrode-neural interface (labelled as Biophysical model) of the acoustic model. A de-

scription of each functional block is given in the sections that follow, with the processing

aspects continuing in section3.5.2and a discussion of the biophysical characteristics of the

electrode-neural interface following in section3.5.3. The shaded blocks in figure3.9indicate

the biophysical characteristics of the electrode-neural interface that were not included in the

final implementation of the acoustic model in this study, as discussed in section3.5.3.
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Figure 3.9.
Block diagram illustrating the implementation of the acoustic model. The biophysical
model characteristics of the electrode-neural interface indicated by the shaded blocks
were not included in the final implementation.

Illustrations of each processing step are given where possible for a single 2 s long C4 note

of a piano sound. The original instrument sound signal is shown in the time and frequency

domain in figures3.1(a) and3.2(a), respectively, which are reproduced here in figures3.10

and3.11for the purpose of comparison with the processing steps illustrated in this section.
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Figure 3.10.
Time domain representation of the unprocessed piano sound as shown in figure3.1(a)
previously.

Figure 3.11.
Frequency domain representation of the unprocessed piano sound as shown in figure
3.2(a) previously, displayed up to 12 kHz.
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Signal pre-emphasis generally forms part of CI processing and CI simulations as the first

processing step. This process de-emphasises the low-frequency content of the sound, so

that peak-picking strategies such as ACE are less low-pass innature. This promotes higher

frequency channels to be selected and included in the stimulation pattern. It was decided not

to include signal pre-emphasis in the implementation of theacoustic model in this study, as

this is usually implemented with speech signals in mind. Speech contains important higher

frequency cues and for these not to be lost, pre-emphasis is employed. However, as this

study involved musical instrument sounds, with the lower frequency elements being the most

prominent, pre-emphasis of the sound signals was omitted. Additionally, the focus of this

study was not on the acoustic model implementation, as will be discussed in a later stage,

and thus processing phases such as signal pre-emphasis and biophysical characteristics of

the electrode-neural interface were omitted from the acoustic model.

3.5.2.1 Bank of bandpass filters

The first step of the processing side of the acoustic model is to filter the original musical

instrument sounds, which are read from a .wav file, into 22 frequency bands. The filter

configurations that will be used in this study are the standard bandpass filters used by the

ACE strategy. Laneau and Wouters (2004) investigate different filter bank configurations

employed in CIs, including the configuration usually implemented for the ACE strategy, and

show how they affect fundamental frequency discrimination.

The filter allocation tables for the ACE strategy, also corresponding to to the ACE imple-

mentation example given by the NMT, were implemented. Table3.1 shows the values for

the lower and upper cut-off frequencies as well as the centrefrequencies of the bandpass

filters, as calculated for the ACE strategy for 22 frequency bands.

The 22 bandpass filters were chosen to be sixth-order Butterworth filters, as a result of the

flat bandpass response obtained by this type of filter. The number of filters corresponds to

the number of possible places in the cochlea that may be stimulated with the electrode array,

with a 22 electrode array commonly being found in Nucleus CIs.
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Table 3.1.
-3 dB cut-off and centre frequencies for the bandpass filters.

Lower cut-off Upper cut-off Centre
Channel frequency frequency frequency

(Hz) (Hz) (Hz)
1 188 313 250
2 313 438 375
3 438 563 500
4 563 688 625
5 688 813 750
6 813 938 875
7 938 1063 1000
8 1063 1188 1125
9 1188 1313 1250
10 1313 1563 1437.5
11 1563 1813 1687.5
12 1813 2063 1937.5
13 2063 2313 2187.5
14 2313 2688 2500
15 2688 3063 2875
16 3063 3563 3312.5
17 3563 4063 3812.5
18 4063 4688 4375
19 4688 5313 5000
20 5313 6063 5687.5
21 6063 6938 6500
22 6938 7938 7437.5

An illustration of the frequency response of the filter bank configuration is shown in figure

3.12. The filters were implemented as infinite impulse response (IIR) filters. Figure3.13

gives an example of the transfer function of the bandpass filter implemented for channel

3, with the resulting instrument sound signal as filtered by this channel shown in the time

domain (figure3.14) and the frequency domain (figure3.15).
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Figure 3.12.
Frequency response of the filter bank configuration that willbe implemented in the
acoustic model.

Figure 3.13.
Transfer function of the bandpass filter for channel 3.
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Figure 3.14.
Time domain representation of the bandpass filtered piano sound through channel 3.

Figure 3.15.
Frequency domain representation of the bandpass filtered piano sound through
channel 3.
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3.5.2.2 Energy calculations in each channel

Once the musical instrument sound has been filtered into 22 channels, a representation of

the energy in each channel is calculated. This is achieved byextracting the envelope of each

channel by means of full wave rectification and lowpass filtering, followed by root-mean-

square (RMS) calculations. The envelopes of each of the 22 bands can be obtained by first

implementing full wave rectification of the signals of each channel, calculated by equation

3.19as

Achannel FWR= |Achannel| , (3.19)

whereAchannelis the signal amplitude of a specific channel or band andAchannel FWRis the

resulting full wave rectified signal amplitude for the channel, as illustrated in figure3.16.

Figure 3.16.
Example of time domain representation of the full wave rectified piano sound for
channel 3.
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Full wave rectification causes additional frequency components of the signal to appear at

0 Hz and at double frequencies of the signal. By lowpass filtering the rectified signal data,

only the lower frequency components will remain. This results in an envelope of the rectified

signal, from which a representation of the energy content ofthe signal can be determined by

RMS calculations.

A second order Butterworth lowpass filter with a -3 dB cut-off frequency of 125 Hz was

used to filter the rectified signal of each channel. This ensures that the double frequency

components generated as a result of signal rectification areremoved. An illustration of the

transfer function of the lowpass filter that was implementedas an IIR filter in Matlab is

shown in figure3.17, followed by an illustration of the resulting envelope of the lowpass

filtered signal through channel 3 in figure3.18.

Figure 3.17.
Transfer function of 125 Hz lowpass filter used to filter the full wave rectified signal of
each channel.
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Figure 3.18.
Example of time domain representation of full wave rectified and lowpass filtered
sound for channel 3.

3.5.2.3 Root mean square calculations

The energy content of the signal can be represented by the calculated RMS of the rectified

and lowpass filtered data in each channel. Each channel is divided into a number of time

windows with an overlap of 75 %, and the RMS is calculated for each of these time windows.

To compensate for the spectral spread that is introduced by dividing the signal into windows

of time, a Hanning window is used to smooth each time window ofthe signal before the

RMS calculations are performed. This is to ensure that no abrupt signal transitions occur,

and that the high frequency components are removed. The timewindows are fixed to be 8 ms

long, regardless of the number of channels being used or the rate of stimulation. The number

of samples in an 8 ms time window depends on the sampling frequency of the original signal,

and can be calculated as shown in equation3.20by

N = 8(ms)× fs(samples/ms), (3.20)
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where N is the number of samples in the Hanning window andfs is the sampling frequency

in kHz. The instrument sounds used in this study all have a sampling frequency of 44.1

kHz, resulting in 353 samples for each time window. The Hanning window weights for the

calculated sample length are illustrated in figure3.19.

Figure 3.19.
Hanning window values for a window length of 353 samples (8 msfor a sampling
frequency of 44.1 kHz).

The signal envelopes of each channel are divided into overlapping time windows of 353

samples and are multiplied by the Hanning window values of figure3.19for each window.

The weighted time window signal envelopes can then be used tocalculate the RMS values

for each time window. The RMS is an indication of the energy content in a specific frequency

channel for a given window of time, and can be calculated fromequation3.21as

ARMS =

√

1
N ∑A2

n n = 1, ...,N, (3.21)

whereN is the number of samples in the time window andAn is the amplitude of thenth

sample of the signal in the time window for a specific channel.
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To illustrate the above-mentioned procedure, figure3.20shows the signal envelope of chan-

nel 3, with the resulting RMS values extracted from the signalindicated in red. Figures3.21

and3.22display the calculated RMS values over 2 ms time windows.

Figure 3.20.
Example of time domain representation of full wave rectified and lowpass filtered
sound for channel 3, with calculated RMS values in a 2 ms windowindicated in red.

3.5.2.4 Maximum energy calculations

Once the RMS values for each 2 ms time window have been calculated for each channel, the

6 channels with the highest RMS values are found for each time window. For each channel,

the RMS value for a specific time window represents the energy content of that channel for

that specific time window. Thus the 6 channels with the highest RMS values for a specific

time window are chosen to be the stimulating channels for that particular time window. In

this way, 6 channels and their corresponding RMS values are selected for each time window

across the duration of the sound. The 6 maximum RMS values found for each time window

can then be mapped to current amplitudes that will be used as stimuli for each time window.
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Figure 3.21.
Calculated RMS values for sound signal of channel 3, as shown in figure 3.18.

Figure 3.22.
Close-up of RMS values from figure3.21, illustrating that the RMS values remain
constant for 2 ms, which is the effective window length due tothe overlap of the time
windows.
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3.5.2.5 Current to loudness mapping

The calculated RMS values that represent the energy content in each channel for each win-

dow of time must be translated into current magnitudes to be used as stimuli. The current

values are used in the remaining steps of the model, including the reconstruction of the sound

signal using sinusoidal signals.

The RMS values obtained must first be scaled to the input dynamic range (IDR). The input

dynamic range for CI listeners is approximately 30 dB or less for an optimal microphone

input (Van Hoesel and Tyler, 2003; Zenget al., 2002; Shannon, 1983). Assuming a gener-

alised dynamic range of 30 dB as set for the CI listener, this can be interpreted as base and

saturation input levels of 4 and 150, respectively. The maximum RMS value obtained over

all channels is set to the maximum input magnitude of 150. Theremaining RMS values are

scaled accordingly. In this way, no values will exceed the saturation level, and clipping of

input values to the comfort current level, C, will be prevented.

The input values ranging between the base and saturation levels are mapped to current levels

by means of a logarithmic function shown in equation3.22by

Imag=

log

(

1+α
(

m−b
s−b

))

log(1+α)
, (3.22)

whereImag is the mapped current magnitude, calculated using the RMS values scaled to the

IDR magnitudes,m, the base and saturation levels,b ands, and theα parameter that controls

the steepness of the curve. The parameterα is related toQ, which is known as the steepness

factor and is defined as the percentage decrease in the outputfor a 10 dB decrease in the

input. For this study,Q was set to a typical value of 20, implying a 20 % decrease in output

level for a 10 dB decrease in the input. This results in a valueof 416.2063 forα.

The minimum and maximum current levels, T and C, are assumed tocover a current range

of 12 dB, falling within the typical dynamic range of 5 - 30 dB found for CI listeners by

Shannon (1983). Thus, the maximum comfort level, C, is set as 1mA, a typical comfort

level value (Clark, 2003; Bruce, White, Irlicht, O’Leary, Dynes, Javel and Clark, 1999).
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The minimum or threshold current value would then fall 12 dB below this maximum, to

give a corresponding range of current values from 0.215 mA to1 mA. If the RMS input

magnitude is less than the minimum input base level of 4, the mapped current value will be

clipped to the T value to ensure that all current levels fall within a 12 dB range.

An illustration of the loudness growth function implemented is given in figure3.23, followed

by an example of the resulting mapped current values for the sound signal of channel 3 in

figure3.24.

Figure 3.23.
Loudness growth function applied to the scaled RMS values to linearise the
relationship between stimulus current and perceived loudness for CI listeners.
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Figure 3.24.
RMS magnitudes mapped to current levels for the piano sound processed through
channel 3, as in figure3.14.

3.5.2.6 Quantisation of current levels

The quantisation of the current levels must be performed foran accurate representation of

the current values that can be output by the processor. Thereare 236 current levels available

for the Nucleus CI, and these levels span the range of current values that the current source of

the implant can produce. This range is typically between 10µ A and 1.7 mA (Clark, 2003).

Using the formula given in equation3.23 below, 256 current levels,CL, are converted to

current values,Iquant, in µA, for each level.

Iquant= e(0.02025·CL+2.30259) CL = 1,2, ...,256 (3.23)

Since only 236 levels of current can be used in the Nucleus processor, the lower current

levels, corresponding toCL in the range of 1 to 20, may be excluded, withCL then ranging

from 21 to 256 and giving 236 current levels in the approximate range of 15µ A to 1.7 mA.

The assumption of excluding the first 20 current levels is substantiated by Shannon, Adams,

Ferrel, Palumbo and Grandgenett (1990), where for lower current values, errors resulted in
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transmitting data across the skin to the implanted electrodes. As a result, lower current levels

could be disallowed to ensure that only values high enough toprevent transmission errors are

utilised.

By quantising the mapped current magnitudes to the closest correspondingIquant value ob-

tained from equation3.23, the current values that will be used for stimulation are obtained.

An example of the current levels used to quantise the input current is given in figure3.25, to

illustrate the quantisation process.

Figure 3.25.
Illustration of the 236 levels for quantisation of the input current.

An example of the resulting quantised current levels for channel 3 of the piano sound is

shown in figure3.26, using the mapped current magnitudes as shown in figure3.24.
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Figure 3.26.
Quantised current values for channel 3.

3.5.3 Biophysical characteristics of the acoustic model

The previous paragraphs encompass the processing part of the acoustic model. To implement

a complete acoustic model, biophysical characteristics ofthe electrode-neural interface may

be included as part of the acoustic model, as illustrated in figure 3.9. Such biophysical

characteristics include the current spread along the cochlea and the shift in frequency that

occurs as a result of the insertion depth of the electrode array into the cochlea. However, it

was decided not to implement the biophysical characteristics of the electrode-neural interface

in the final version of the acoustic model to process the musical sounds, and instead to focus

solely on the effect of the processor on the sounds.

The biophysical characteristics of the electrode-neural interface provide a very generic rep-

resentation of what occurs in the cochlea and in reality thisdiffers drastically from one

individual to the next. Additionally, the inclusion of the biophysical characteristics of the

electrode-neural interface degraded the musical sounds tosuch an extent that psychoacous-

tic experiments would have been extremely difficult for participants, with chance responses

prevailing. These factors combined with the multidimensional nature of timbre led to the

decision to limit the number of parameters which could affect timbre perception through a

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

85



Chapter 3 METHODS

CI, with the aim of being able to quantitatively understand timbre in a CI processor to some

extent first. Thus, to prevent the biophysical characteristics of the electrode-neural inter-

face from obscuring effects that could be noted as a result ofthe processor, it was therefore

decided to only include the processing part of the acoustic model.

By excluding the biophysical characteristics of the electrode-neural interface, the current

spread and frequency shift are the only parts shown in figure3.9 that are omitted, with the

rest of the acoustic model remaining as is. With these sections omitted, it is implied that

the quantised current values, as shown in figure3.26, are mapped directly back to intensity

values via the inverse LGF, described in section3.5.3.1which follows. Finally, synthesis of

the acoustically modelled sound was implemented to enable aNH listener to perceive the

sound acoustically, as discussed in section3.5.3.2.

3.5.3.1 Inverse mapping to intensity values

The quantised current values must be translated back to intensity values for the purpose

of constructing the synthesis signals. This is implementedby means of an inverse of the

loudness growth function that was implemented in the processing step of section3.5.2.5, to

enable the current values to be mapped back to intensity values. The equation for the inverse

loudness growth function can be calculated from the original loudness growth function of

equation3.22, shown in equation3.24below as

intensity=
10Iquant·log(1+α)−1

α
, (3.24)

whereIquant is the calculated quantised current value for a specific electrode, andα is the

same steepness factor of the curve as explained previously in section3.5.2.5, resulting in

intensity values for a given current. The intensity values can then be used as the amplitude

values of the synthesis signals. Figure3.27illustrates the inverse loudness growth function

implemented to map the quantised current values back to intensity values to be used as the

amplitudes of the synthesis signals. The mapped intensity values are shown in figure3.28.

These intensity values are used as the amplitudes of the synthesis signals, as discussed in

section3.5.3.2.
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Figure 3.27.
Illustration of inverse loudness growth function to map current values to intensity
values for resynthesis of the sound signal acoustically.

Figure 3.28.
Mapped intensity values obtained for the piano sound withoutthe biophysical
characteristics of the electrode-neural interface included.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

87



Chapter 3 METHODS

3.5.3.2 Summation of channels to resynthesise sound

To reconstruct the instrument sound signal, sinusoids are used. Sinusoidal signals were

chosen as resynthesis signals, as this modelling parametercreates a simple foundation which

allows for modifications to be made, through which for example, the bandwidth of the resyn-

thesis signal could easily be extended and the effect thereof on the reconstructed signal in-

vestigated. Sine waves are constructed for each channel foreach time window, with the am-

plitude of the sinusoids set as the intensity values calculated as discussed in section3.5.3.1,

and the frequencies of the sinusoids corresponding to the centre frequencies of the analy-

sis filters of table3.1. For each time window, the sinusoids constructed for each individual

channel are added together to produce an instrument sound signal with a sampling rate of the

original sound signal, which can be perceived externally bya NH listener.

The resynthesised sound is normalised back to the original amplitude values between 1 and

-1. Figures3.29 and3.30 illustrate the processed piano sound in the time and frequency

domains, respectively, with the biophysical characteristics of the electrode-neural interface

omitted. Even without the biophysical characteristics of the electrode-neural interface, the

degradation of the signal is apparent, particularly in the frequency domain.

Examples of the acoustic modelled versions of each of the four primary musical instrument

sounds, as shown in figure3.1, are given in the time domain in figure3.31. Figure3.32

shows the partial representations of the four musical instrument sounds as processed through

the acoustic model, which can be compared to the original musical instrument sounds shown

in figure3.3. Additionally, frequency domain representations for eachof the four instrument

sounds are given in figures3.33, as processed through the acoustic model, with figure3.2

reproduced in figure3.34for ease of comparison of the frequency spectra for the processed

and unprocessed musical instrument sounds.

It should be noted that the resynthesised sounds as shown in figure 3.33 show the time-

averaged frequency representation of the sounds. Althoughthe selected frequency channels

differed for each time window, figure3.33shows an average frequency representation across

the duration of the resynthesised sound. The outputs from the acoustic model were scaled

in amplitude between 1 and -1 to comply with .wav file specifications to be used in the

experimental studies, as discussed in sections4.2.1and4.2.2that follow.
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Figure 3.29.
Resynthesised version of the piano sound in time, processedthrough the acoustic
model.

Figure 3.30.
Resynthesised version of the piano sound in the frequency domain, processed through
the acoustic model.
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Figure 3.31.
Time domain representations for the four primary musical instrument sounds
processed through the acoustic model for (a) the piano, (b) the trumpet, (c) the clarinet
and (d) the violin.
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Figure 3.32.
Additive parameters for the four primary musical instrumen t sounds processed
through the acoustic model for (a) the piano, (b) the trumpet, (c) the clarinet and (d)
the violin.
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Figure 3.33.
Frequency domain representations for the four primary musical instrument sounds
processed through the acoustic model for (a) the piano, (b) the trumpet, (c) the clarinet
and (d) the violin.
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Figure 3.34.
Frequency domain representations for the four primary musical instrument sounds as
given in figure 3.2for (a) the piano, (b) the trumpet, (c) the clarinet and (d) the violin.
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3.5.3.3 Discussion of acoustic model effects

By comparing figures3.33and3.34, it can be seen that the frequency domain representa-

tions of the musical instrument sounds differ substantially for the processed and unprocessed

sounds. The frequency domain representations of each of theunprocessed musical instru-

ment sounds in figure3.34are clearly distinct from one another, as can be seen by the shapes

of the frequency spectra. For example, the piano sound3.34(a) has peaks only in the lower

frequency ranges, while the trumpet sound3.34(b) has high frequency values across the spec-

trum into much higher frequency values. The frequency peaksof the clarinet sound3.34(c)

and violin sound3.34(d) take on a more irregular spectral shape. However, in the case of the

processed musical instrument sounds in figure3.33, the appearance of the frequency spectra

of the four sounds are very similar. This would be expected due to the processing step of

the acoustic model where energy calculations of the frequency bands over time windows are

performed. This processing step is indicated in the second step of the processor model in fig-

ure3.9, and is discussed in section3.5.2.2. As a result of this processing step, both the fine

temporal structure and fine time structure of the sounds are destroyed, leaving the processed

sounds with similar spectra.

Figure3.33 also shows that, for an average across the duration of each sound, the lowest

frequency components of the sound are selected as the stimulating channels, as can be seen

from the low pass appearance of each of the sounds, with distinct peaks clustered in the lower

frequency ranges. This is as a result of the peak-picking algorithm employed by the ACE

processing strategy, where the strongest frequency components are selected as the stimulat-

ing channels. In the case of this study, this is always synonymous with the components in the

lower frequency ranges being selected. It should be noted that this result could be different

if pre-emphasis of the sounds was performed prior to the processing steps implemented in

the acoustic model for this study. Pre-emphasis may cause stronger frequency components

in the higher frequency ranges to be selected as the stimulating channels.

The drastic effect of the implemented acoustic model on the musical instrument sounds is

evident, and this effect is only as a result of the CI processor. Even without the biophysical

characteristics of the electrode-neural interface, such as current spread, the acoustic model

implementation of the processor greatly affects the frequency spectra of the musical instru-

ment sounds. Illustrations of the other 6 instruments as processed through the acoustic model

are given in Appendix A.
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3.6 SUMMARY

This chapter provided detail regarding the approach followed to investigate timbre perception

in the electrically stimulated auditory system. The database of musical instrument sounds

used in this study was presented, as well as the extraction ofimportant timbre features from

these sounds. A full description of the acoustic model implementation was given, based on

knowledge of CI characteristics and existing acoustic models. Design considerations of the

acoustic model were also discussed. The methods presented in this chapter provide a foun-

dation on which to develop both experimental procedures anda model of timbre perception,

which will be discussed in detail in chapters4 and5, respectively.
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CHAPTER 4

MEASUREMENT OF TIMBRE

PERCEPTION

A large part of the work described in this chapter was presented at the CI 2010 conference

(Hanekom and Hugo, 2010) and has also been submitted to Ear and Hearing in the form of a

journal article.

4.1 CHAPTER OBJECTIVES

Using the methods presented in Chapter3 as a basis, the experimental component of this

study could be developed, consisting of two different experimental procedures. The first ex-

periment was developed to measure timbre perception in NH and CI listeners by means of

discrimination tasks, the results of which were used in the model of timbre perception. The

second experiment consisted of similarity ratings of musical instrument timbres and were

used to validate the outcomes predicted by the model of timbre perception. This chapter

presents the experimental procedures, which were developed in Matlab version 2007b, as

well as the results obtained from these experiments. For thefirst experiment, JNDs were

found for B, LRT and IRR and are presented in this chapter for NH and CI listeners. Fol-

lowing this, results of the second experimental study of thesimilarity ratings of musical

instrument timbres are presented. A discussion of the experimental results concludes the

chapter, with comparisons of the results with existing literature explored in detail.
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4.2 METHODS

4.2.1 Discriminations of timbre perception features

The first experimental study was performed to measure discrimination abilities of listeners

for each of the three important timbre features: B, LRT and IRR. Discrimination tasks were

carried out for pairs of synthesised sounds, where the only differences between the sounds

each time were variations in the value of the timbre feature being investigated. This ex-

perimental study was carried out for NH and CI listeners as thefirst step in quantitatively

understanding timbre perception differences for these twogroups. Additionally, the results

of this study were used in the implementation of the model of timbre perception (see section

5.2.1) to predict the outcomes of the experimental results documented in section4.2.2. De-

tails of the experimental procedure are discussed in the following paragraphs and the results

are presented in section4.3.1.

4.2.1.1 Listeners

Five NH and five CI listeners participated in the study. Participants were age-balanced across

the two groups. The five NH listeners (two females, three males), were aged between 24 and

66 years (average age = 39 years). Each listener was screenedto ensure that the criterion

for normal hearing was adhered to. Normal hearing was definedas achieving audiometric

thresholds of 30 dB HL or better over six octaves (250 to 8000 Hz), and all five listeners were

confirmed as NH participants. None of the NH participants hadany formal music training.

The five postlingually deafened adults (four females, one male), were aged between 21 and

66 years (average age = 42.4 years). CI listeners all used the Freedom processor, and had

three or more years’ experience with the implant system. Four CI participants used the ACE

processing strategy, and one (CI 2) used the SPEAK processingstrategy. Only one of the CI

listeners had been exposed to formal musical training (CI 5),but was not actively studying

music or playing an instrument at the time of the experiments. Three of the subjects had

previously participated in CI studies performed in our research group. Additional relevant

information regarding the CI listeners is given table4.1. For the type of strategy used, the

stimulation rate (SR) in Hz for each channel is indicated in brackets. Listeners with an

asterisk marked next to the implanted ear have bilateral implants.
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Table 4.1.
Details of CI subject demographics.

Subject Sex Age Processor Implant Strategy Years Test
(SR per implanted ear
channel)

CI1 F 59 Freedom 24R (CA) ACE 4 Right*
(500 Hz)

CI2 F 21 Freedom Nucleus 22 Series SPEAK >10 Left*
(250 Hz)

CI3 M 66 Freedom Freedom (CA) ACE 4 Right*
(1200 Hz)

CI4 F 44 Freedom Freedom (CA) ACE 3 Right
(900 Hz)

CI5 F 24 Freedom 24R (CA) ACE 5 Left
(900 Hz)

All 10 listeners gave written informed consent for their participation before commencing

with the study, based on guidelines presented by the appropriate ethics committee. The

listeners were compensated for their time upon completion of the experimental sessions.

4.2.1.2 Stimuli

A tone of two seconds, consisting of 30 harmonics, was created by additive synthesis in

Matlab version 2007b, with a sampling frequency of 16 kHz. The fundamental frequency

was chosen as 262 Hz (C4 or middle C), a common note used in Western music and therefore

in timbre studies such as those by Gfelleret al. (1998) and Nimmonset al. (2008). The

stimulus was varied along the three timbre features B, LRT andIRR, and the features never

co-varied. The synthesised sound was then adjusted by altering the value of one of the three

timbre features.

The tone always consisted of five linear segments: a start segment, followed by a rise time

segment, a plateau, a release and an end segment, to completethe 2 s length of the sound

(see section2.3.3for a full description of the amplitude envelope model). Thespectrum was

harmonic, where the amplitude spectrum,A, at each point in time was a function of B, and
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the rank of the harmonic,k, and is given by equation4.1as

A(k) =

(

B
B−1

)−k

. (4.1)

The length of the rise time segment of the synthesised tone was constructed using LRT each

time, as given by equation3.17 in section3.4. The starting point in time of the rise time

segment was fixed, indicating that a change in LRT would simply change the point in time

that the sound reached a maximum amplitude. To implement irregularity in the spectrum in

the synthesised tone by using a given IRR value, a deviation,d, from the original amplitude

values found from the required B value was calculated as in equation4.2by

d =
10IRR

N−2
, (4.2)

with N being the total number of harmonics (30 in this study). The deviation value,d, was

then added to the log of the amplitudes of all of the even harmonics and subtracted from the

log of the amplitudes of the odd harmonics of the synthesisedsound.

The reference tone had a start segment of 140 ms, a rise time ofapproximately 316.22 ms

(corresponding to the selected reference LRT of 2.5), a sustain or plateau of 600 ms, a release

time of 300 ms, and an end segment for the remainder of the total 2 seconds of 643.77 ms.

The B value of the reference synthesised tone was set at 4 and the IRR value was set at zero.

Figure4.1 illustrates the reference tone used in this study.

In the experiment, each of the three features (B, LRT and IRR) wastested. In each case,

a reference tone was presented in conjunction with a tone which had been altered from the

reference tone by adjusting the feature under investigation. The reference tone was slightly

different for each feature being investigated, so that the altered tone could be varied for

parameter values that were both lower and higher than the reference tone.

When B was varied, the reference tone was set to have a B value of4, an LRT of 2.5 and an

IRR of 0. The initial B values of the tones which were to be compared to the reference tones

were set at 6.2 and 1.8. Figure4.2 illustrates the variations in spectral components for these

extreme initial values of B.
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Figure 4.1.
Reference synthesised tone used for the first experimental study illustrated in (a) the
time domain and (b) in terms of additive parameters, with B = 4, LRT = 2.5 and IRR =
0.

Figure 4.2.
Illustration of variations in B for (a) a low B value of 1.8 and (b) a high B value of 6.2.
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When LRT was varied, the reference tone had a B value of 4 and an IRR value of 0, with the

default LRT set at 1.8. The initial LRT values of the tones which were to be compared with

the reference tones were 0.5 and 2.9. Figure4.3 illustrates the variations in the amplitude

envelope for these extreme initial values of LRT.

Figure 4.3.
Illustration of variations in LRT for (a) a low LRT value of 0.5 a nd (b) a high LRT
value of 2.9. The time values from which LRT is calculated (see equation 3.17) are
shown in (b).

When IRR was varied, the reference tone had a B value of 4, an LRT value of 2.5 and an IRR

value of 2. The initial IRR values of the tones which were to be compared with the reference

tones were 0.1 and 4. Figure4.4 illustrates the variations in the spectral components of the

sound for different IRR values.

The stimuli were presented in sound field and at the same perceived loudness level for all

subjects. A loudness estimation procedure was used, whereby 1 kHz tones ranging between

the lowest and highest comfortable loudness levels for eachsubject were scaled to find indi-

vidual sets of intensity levels. The tones were presented 20times each at 10 linearly spaced

intensity levels, to find an average estimated perception ofloudness at each level. These

sets were then interpolated to find the intensity level corresponding to 50 % of the subject’s

perceived loudness level, at which the stimuli in the experiment were presented (at 50 % of

the maximum comfort level).
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Figure 4.4.
Illustration of variations in IRR for (a) a low IRR value of 0. 1 and (b) a higher IRR
value of 2.

4.2.1.3 Procedure

Experimental sessions were conducted in a double-walled sound booth. The experimental

procedure was controlled using software, with programmingdone in Matlab version 2007b.

Sounds were presented from the computer via an external M-Audio Fasttrack Pro audio

interface (44.1 kHz, 16 bits), with a Yamaha MS101 II speakerpositioned approximately 1

m in front of the subject.
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Timbre feature JNDs were determined using an adaptive two-alternative forced choice (2AFC)

procedure. Each trial consisted of two synthesised tones, each two seconds long, separated

by an interstimulus gap of 200 ms, with one tone always corresponding to the reference

tone for the timbre feature under investigation, and the other tone the altered sound with

adjusted timbre feature. The subject was asked to decide whether the two tones sounded the

same or different, by choosing either of two buttons labelled “same” and “different” on the

screen. Subjects were only allowed to listen to the tone paironce and were not provided with

feedback. The next tone pair was only presented once the listener response had been made,

allowing the subject adequate time to make a decision. A screen shot of the experimental

graphical user interface (GUI) is shown in figure4.5.

Figure 4.5.
Illustration of the GUI used for the timbre feature discrimi nation experiments.
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Each experimental session consisted of four repeats of the experiment for each timbre feature

investigated. The subjects were unaware that the first experiment was considered a practice

session, to familiarise the listener with the task and sounds presented. A progress indicator

was included in the user interface to assist the listener in gauging their progress for the

experimental session.

An adaptive procedure based on the transformed up-down staircase technique (Levitt, 1971)

was implemented, using a 2-down, 1-up decision criteria. The starting values of the altered

tones, or probe tones, compared to the reference tone, were described in section4.2.1.2and

adjusted accordingly with the staircase method as a result of the listener’s response. Two

interleaved adaptive procedures were implemented for eachexperiment: one with the probe

tone starting at a higher parameter value than that of the reference, and one with the probe

tone starting at a lower parameter value than that of the reference (Jesteadt, 1980). These

sequences were presented in a random order, as were the reference and probe tones for each

trial. The technique employed allows the probe stimulus to alternate between values that

make the sound just distinguishable and just not distinguishable from the reference tone. If

the difference could not be detected, the difference between the feature value of the reference

and probe tone was increased until the listener could again detect the difference. One such

oscillation in the response is classified as a reversal. Two consecutive correct responses to the

stimulus pair resulted in the difference between the timbrefeature for the probe and reference

tones being reduced, while one incorrect response resultedin an increase in the difference.

The value to which this difference converged was accepted asthe JND in each case.

A total of 10 reversals were recorded for each of the two interleaved sequences. For the

first two reversals, an adaptive factor of 1.6 was used, whilethe remaining eight reversals

were subjected to an adaptive factor of 1.2. The JND was calculated from the average of

the midpoints of the last five reversals for each of the two interleaved sequences, to find an

average JND for the experimental session. A final JND value for each timbre feature was

then calculated from the average over three repeats of the experiment for each listener.

Although subjects were informed about the nature and aim of the study before commencing

with the experiments, they were not aware of the procedure used in presenting the stimuli.

Due to the varying availability of subjects, experimental sessions were completed over the

course of several weeks.
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4.2.2 Similarity ratings of timbre

The second experimental study consisted of similarity ratings of different musical timbres.

The results of this study, carried out for both NH and CI listeners, served as experimental

timbre perception data to which the predictions from the model of timbre perception, as

discussed in section5.2.1, could be compared. The similarity rating experiment is explained

in detail in sections4.2.2.1to 4.2.2.3. This study served as a basis for validation of the model

of timbre perception that was developed, as well as for the implementation of the acoustic

model, to which the NH participants were exposed.

A similarity rating experiment was set up to determine the confusions between pairs of mu-

sical instrument sounds. Similarity ratings were chosen because direct identification tasks

would be impractical for CI listeners, as many would not have the musical memory to accu-

rately identify a range of different instruments. Since thesame experiments were required to

be carried out on both NH and implant listeners, the similarity judgement was the most feasi-

ble approach and was based on the technique used by Getty, Swets, Swets and Green (1979).

This method, further explored in Getty, Swets and Swets (1980), makes use of similarity

judgement experiments, which are then used to perform MDS ofthe perceptual dimensions.

The distances obtained from the scaling are then related to confusions between stimuli by

means of an identification task. Using this approach as a basis, the steps followed in this

study are used to perform similarity judgement tasks directly. The similarities can then be

expressed directly as percentages of confusions between sounds, as in the case of a standard

confusion matrix constructed from identification tasks (section5.2.2provides more informa-

tion on confusion matrices). These results can then be directly compared to the predictions

made from the model of timbre perception.

4.2.2.1 Listeners

The participants for the similarity rating experiment werethe same listeners that participated

in the first experiment as in section4.2.1, and consisted of five NH and five post-lingually

deafened adults.
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4.2.2.2 Stimuli

The experimental session involved the comparison of the timbres of pairs of the 10 musical

instrument sounds as described in section3.2, by rating their similarity. The instrument

sounds were taken from the sound database of Fritts (No date), and each of the instrument

sounds was approximately 2 s long, ranging from a minimum of 1.98 seconds to a maximum

of 2.6 seconds. All of the samples were recorded in mono with asampling rate of 44.1

kHz (16 bit) and were saved in .aiff format. The only exception was the piano, which was

recorded in stereo. The University of Iowa Musical Instrument Samples website (Fritts, No

date) contains all the relevant information regarding the instrument sound recordings.

For this study, sounds with a fundamental frequency of 262 Hz(C4 or Middle C) were used,

as discussed in section3.2. The sounds were normalised in amplitude between 1 and -1 to

comply with .wav file specifications and to ensure that the sounds were presented at the same

amplitudes. The saved .wav files of the instrument sounds, while not explicitly controlled in

duration, were chosen to represent orchestral families of instruments (Galvin IIIet al., 2008),

and listeners were instructed to focus solely on timbre differences. For CI listeners, the

original recorded sounds were presented in pairs as the stimuli, while for NH listeners, the

stimuli were the instrument sounds processed through the acoustic model, as discussed in

section3.5. A pilot experimental study for the NH listeners subjected to the orignal recorded

musical instrument sounds was also carried out. The stimuliwere presented in sound field

and at a comfortable perceived loudness level for each of thesubjects, between 50 % and 70

% of the maximum comfortable loudness level in all cases.

4.2.2.3 Procedure

The routine for the experiment was programmed in Matlab (2007b), with experimental ses-

sions conducted in the same way as for the first experimental procedure described in section

4.2.1.3, in a sound proof booth with a Yamaha MS101 II speaker positioned approximately 1

m in front of the subject. Subjects received on-screen written and verbal instructions for the

experimental task and clarification was given if required. The 10 instrument sounds, unpro-

cessed for CI listeners and processed for NH listeners, were presented in a random order to

familiarise the listener with the range of variation amongst the timbres that were to be rated

on a 10 point scale. The subject could listen to all of the sounds a maximum of three times,
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or less if they were comfortable with the set of stimuli. For each experimental trial, a pair of

instrument sounds was presented, with a pause of 2.9 secondsbetween the start of the first

sound and the start of the second. The listener was asked to rate the degree of dissimilarity

between the sounds on a scale of 0 (exactly the same) to 9 (verydifferent). The sound pair

could be repeated up to four times before a rating had to be submitted via the user interface

by selecting one of the buttons labelled 0 to 9. Figure4.6illustrates the GUI for the similarity

rating experiment.

Figure 4.6.
Illustration of the GUI for the musical instrument timbre si milarity rating experiment.

Subjects were requested to use the entire scale when making their decisions. In total, 100

sound pairs (all the possible combinations of the 10 sounds)were presented in a random

order in one experimental run. A total of 10 experimental runs, each approximately 20-

30 minutes in length, was conducted for each listener, to obtain an average dissimilarity

rating for each listener for each sound pair. Learning effects were observed in the results

of the rating experiments for each subject. However, no noticeable trends were found and
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therefore an average of all 10 experimental runs for each subject was used in finding an

average confusion matrix. An additional similarity ratingexperiment was conducted for the

NH listeners in response to the original or unprocessed musical instrument sounds. However,

due to time constraints, only three experimental runs were conducted for each listener, to find

an average confusion matrix. These results were used to illustrate NH subject performance

in NH conditions.

The experiments were again completed over several weeks, according to the availability of

the subjects. The similarity judgements obtained from the experimental sessions for each

subject were converted to confusion matrices to be analysedand compared to the confusion

matrices as predicted by the model of timbre perception. Thedevelopment of the timbre

perception model to predict the outcomes of this experimental study is discussed in section

5.2.1.

4.3 RESULTS

4.3.1 Results of timbre feature discriminations

Figure4.7shows the results of the first experimental study, describedin section4.2.1. JNDs

obtained from the discrimination tasks for each of the timbre features B, LRT and IRR are

shown for individual subjects for both NH and CI listeners, with the mean and SD values

given in table4.2.
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Figure 4.7.
Results of the timbre feature discrimination tasks, with the mean and SDs of the JNDs
for each listener given for features B for (a) NH and (b) CI listeners, LRT for (c) NH
and (d) CI listeners, and IRR for (e) NH and (f) CI listeners. The mean values are
indicated by the unfilled circles, while the SD values are illustrated by the errorbars
for each subject, with the units for B, LRT and IRR given in table 4.2.

Table 4.2.
Mean and SD values for the JNDs obtained for the timbre feature

discrimination tasks, with the units for B, LRT and IRR given by partial
index, log(s) and log(dB), respectively.

NH listeners CI listeners
NH1 NH2 NH3 NH4 NH5 CI1 CI2 CI3 CI4 CI5

B Mean 0.177 0.393 0.213 0.602 0.9870.963 2.714 1.684 7.058 1.309
SD 0.047 0.085 0.227 0.098 0.1030.435 0.572 0.067 1.091 0.273

LRT Mean 0.194 0.226 0.353 0.609 0.7140.851 1.274 1.256 1.147 0.964
SD 0.077 0.037 0.070 0.154 0.0710.196 0.105 0.067 0.027 0.130

IRR Mean 0.163 0.190 0.247 0.223 1.0110.869 1.566 1.154 2.104 1.570
SD 0.070 0.044 0.069 0.028 0.0740.301 0.311 0.029 0.028 0.178
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Figure4.8shows the pooled JND values obtained for each of the featuresB, LRT and IRR.

The NH listener JNDs were averaged for each feature, as were those obtained by the CI

listeners, with the mean and SD values shown in table4.3.

Figure 4.8.
Average results for timbre feature perception for (a) B, (b) LRT and (c) IRR for NH
listeners (circles) and CI listeners (squares). The SD values of the group for each
feature are displayed by the errorbar, with the units for B, LRT and IRR as defined in
table 4.3.

Table 4.3.
Averaged mean and SD values for the JNDs obtained for the timbre feature

discrimination tasks, with the units for B, LRT and IRR given by partial
index, log(s) and log(dB), respectively.

NH listeners CI listeners
Mean SD Mean SD

B 0.4742 0.3325 2.7453 2.4985
LRT 0.4193 0.2319 1.0986 0.1853
IRR 0.3668 0.3613 1.4526 0.4690
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Figure4.8 shows that the mean B JNDs for all NH listeners was lower than that of the CI

listeners. Results of NH listeners (mean = 0.4742, SD = 0.3325) were also more consistent

than those of the CI listeners (mean = 2.7453, SD = 2.4985), with variations in mean and SD

values amongst listeners being substantial. The LRT JNDs for all NH listeners compared to

CI listeners were also lower (figure4.7(c) and (d)), but with less variation amongst listeners

than in the case of the B JNDs. Consequently, although the meanJND of the NH listeners

of 0.4193 was again lower than that of the CI listeners of 1.0986, the SDs (NH = 0.2319, CI

= 0.18525) were comparable, with the SD of all the CI listenerseven lower than that of all

NH subjects. For the IRR JND values, figure4.7(e) and (f) show that the mean JNDs for NH

listeners were again lower than for CI listeners, with the exception of one NH listener. The

mean of 0.3668 for all the NH listeners was again lower than the mean of 1.4526 for all the

CI listeners. The JND SDs of 0.469 and 0.3613 for NH and CI subjects, respectively, were

comparable for IRR.

The effect of the listener type (NH and CI) and the effect of thespecific timbre feature (B,

LRT and IRR) on the resulting JNDs were investigated by means ofa two-factor analysis

of variance (ANOVA). Levene’s test for equal variances showed a significant result (F(5,24)

= 4.16, p < 0.05), indicating that the assumption of non-equal variances should be used.

The analysis revealed that the JND values for B, LRT and IRR weresignificantly different

for NH and CI listeners (F(1,24) = 11.993,p < 0.05). This was expected due to the poor

timbre perception abilities of CI listeners, as reported in the literature. The JNDs were not

significantly affected by the timbre feature, with JNDs not significantly different for any

comparisons of the timbre features, B, LRT and IRR (in all casesp > 0.05). There was also

a non-significant interaction effect between the type of listener, NH or CI, and the timbre

feature on the JND (F(2,24) = 1.511,p > 0.05). This indicates that NH and CI listeners were

not affected differently by different timbre features. Thehighest mean JND values for both

NH and CI listeners were for B. The lowest mean JND value for NH listeners was for IRR,

while for CI listeners LRT was the feature with the lowest meanJND.
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4.3.2 Results of timbre similarity ratings

The timbre similarity rating experiments explained in section 4.2.2can be expressed directly

as percentages of confusions between sounds, as the more similar two sounds are, the higher

the probability of confusing the two will be. For example, iftwo sounds were rated as

0 (no difference) on the ten-point scale used in the similarity ratings, this would indicate

a similarity of 100 %, or 100 % confusion, whereas a rating of 9(very different), would

correspond to 0 % similarity and thus 0 % confusion between the two sounds. For a pair

of sounds rated at 7, this would correspond to a probability of confusion of 0.22 between

the sounds (a small chance of confusing two sounds that are perceptually quite different).

Each row of the matrix is normalised to the sum of that row. Theaverage confusion matrices

obtained for NH and CI listeners from the similarity ratings are shown in figures4.9 and

4.10, respectively.
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pno tpt hrn tbn cnt flt sax vln clo vla

pno 0.6407 0.0156 0.037 0.0248 0.0709 0.0269 0.0809 0.0193 0.0548 0.0292

tpt 0.0059 0.2085 0.1006 0.1476 0.0562 0.0692 0.0574 0.0729 0.1386 0.143

hrn 0.0112 0.0895 0.1919 0.1448 0.1053 0.0911 0.1119 0.0773 0.0865 0.0905

tbn 0.0063 0.123 0.1248 0.1765 0.0696 0.0838 0.0686 0.0911 0.1321 0.1241

cnt 0.0347 0.0597 0.1123 0.0978 0.2233 0.1127 0.1567 0.0753 0.0671 0.0605

flt 0.011 0.075 0.0919 0.1029 0.1099 0.2261 0.0848 0.1016 0.092 0.1048

sax 0.0452 0.0585 0.0987 0.079 0.1744 0.0958 0.2455 0.0662 0.0685 0.0681

vln 0.0074 0.0672 0.0947 0.1143 0.0714 0.1033 0.0785 0.2464 0.1245 0.0923

clo 0.0073 0.1243 0.0799 0.1392 0.0548 0.0741 0.0487 0.1121 0.2001 0.1595

vla 0.008 0.1393 0.0761 0.1309 0.0604 0.0929 0.0528 0.082 0.1612 0.1965

Figure 4.9.
Average measured confusion matrix for NH listeners as a result of timbre similarity
judgements.

pno tpt hrn tbn cnt flt sax vln clo vla

pno 0.515 0.0258 0.0616 0.0602 0.0884 0.0348 0.1351 0.017 0.028 0.034

tpt 0.0218 0.3181 0.1032 0.0874 0.0601 0.0572 0.0659 0.0641 0.1061 0.1161

hrn 0.0269 0.0636 0.2119 0.1488 0.1054 0.0643 0.1133 0.0765 0.081 0.1083

tbn 0.0172 0.0595 0.1584 0.2099 0.1192 0.057 0.081 0.0651 0.12 0.1126

cnt 0.0403 0.0481 0.127 0.1213 0.2426 0.0764 0.147 0.0584 0.067 0.0718

flt 0.016 0.0498 0.0868 0.1013 0.0944 0.2856 0.0928 0.0775 0.096 0.0999

sax 0.0683 0.0484 0.1351 0.095 0.1296 0.0876 0.2611 0.0513 0.0585 0.0652

vln 0.0159 0.0554 0.1009 0.1053 0.0777 0.076 0.0756 0.254 0.0972 0.1421

clo 0.0116 0.0639 0.0974 0.1402 0.0675 0.09 0.0565 0.0803 0.224 0.1687

vla 0.0125 0.0695 0.1231 0.1309 0.0752 0.0746 0.0507 0.1111 0.1424 0.2101

Figure 4.10.
Average measured confusion matrix for CI listeners as a result of timbre similarity
judgements.
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4.4 DISCUSSION

4.4.1 Measured timbre features

The results of the JND values found for the timbre perceptionfeatures B, LRT and IRR for

both NH and CI listeners in the first experimental study (section 4.3.1) generally agree with

those of the literature on timbre perception abilities of CI users, which were found to be poor

when compared to those of NH listeners (Gfelleret al., 2002c; McDermott and Looi, 2004).

This is illustrated by the substantially higher mean JND values found for CI listeners than

for NH listeners. However, large SDs, particularly for the BJND values for CI subjects, can

be noted.

Average JND values for CI listeners were more than four times those of NH listeners, which

suggests that CI listeners seemed to have only approximately25 % of the ability of NH lis-

teners to perceive the features underlying timbre perception. This shows even poorer results

than timbre identification studies, in which CI listeners were found to have approximately

50 % of the ability of NH listeners to correctly identify timbres (Gfelleret al., 2002c; Mc-

Dermott and Looi, 2004). The results of this study may be worse for CI listeners as a result

of two factors: 1) the stimuli were simplified sounds that were synthesised according to a

minimal number of parameters, thus restricting the number of cues that may otherwise be

transmitted through real-world sounds to facilitate musicperception, and 2) the definition

of timbre perception in this study is encompassed by three specific features only, where in

other studies, abilities of timbre perception as a whole have been reported. Additionally, it

can be argued that timbre identification is not a direct measure of the perception of timbre,

as music memory may affect the outcome of such studies. This introduces difficulties in

directly comparing the overall results of this study to existing timbre perception studies for

CI listeners.

4.4.1.1 Measured temporal timbre information

Rhythmic elements of music have been shown to be perceived better by CI listeners than

melodic or pitch cues (Gfeller and Lansing, 1991). This suggests that temporal information

is transmitted better than spectral information through a CI, which has also been shown in

speech perception studies (McKay, 2005). Timbre perception studies by Gfelleret al.(1998),
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Gfeller et al. (2002a) and Gfelleret al. (2002c) indicate that CIs are better at identifying

percussion instruments, for example, the piano, than woodwind or brass instruments. This

implies that the distinctive attack or rise time associatedwith percussion instruments serves

as a valuable temporal cue in CI-mediated perception of musicinstrument timbre. Thus, as

would be expected, the ability of CI listeners to discriminate the temporal feature of timbre,

LRT, yielded JNDs most comparable to those of NH listeners.

Additionally, the JND of the temporal feature, LRT, has the lowest SD out of the three JND

findings for both CI and NH subjects, indicating consistent results among CI listeners for

LRT JNDs. This illustrates that for CI listeners, LRT is the most readily perceived of the

three important timbre features, whereas B and IRR, which are based on spectral properties

of the sound, appear to be transmitted less effectively. This corresponds to the findings of

Konget al.(2004), which showed that CIs currently provide enough spectral cues for speech

perception in quiet, but are not adequate for music perception.

A more thorough interpretation of the comparable LRT findings for NH and CI listeners

can be assisted by studies of temporal resolution tasks, including gap detection (Shannon,

1989) and amplitude modulation detection (Busby, Tong and Clark, 1993). Detection of

gaps between sounds with JND values varying from 3 ms to 10 ms have been recorded in NH

listeners (Clark, 2003), with the discrimination of gap duration JNDs comparable at values

of 7 ms (Lister, Koehnke and Besing, 2000). Similar results were found for CI listeners,

with gap detection and discrimination JNDs of 2 to 17 ms beingrecorded (Clark, 2003). The

present study yielded a mean JND for the temporal feature LRTof 0.42 for NH listeners and

a mean JND of 1.1 for cochlear implantees, corresponding to JND detections in the rise time

of the sounds of approximately 2.63 ms for NH listeners and 12.55 ms for CI listeners, on

average. Individual results for LRT for NH listeners range from 0.19 (1.56 ms) to 0.71 (5.18

ms), whereas for the CI listener group the LRT values range from 0.85 (7.1 ms) to 1.27 (18.8

ms). These LRT JND values compare well to the gap detection and discrimination JNDs

reported by Clark (2003) and Listeret al. (2000).

4.4.1.2 Measured spectral timbre information

The spectrally associated timbre features (B and IRR) are conveyed substantially less effec-

tively to CI listeners than to NH listeners, and with lower efficiency than LRT. This agrees

with the measured results of Gfelleret al.(2002c) and McDermott and Looi (2004), in terms
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of CI performance compared to NH performance for rhythm and pitch perception, as well as

those of McKay (2005), in which the transmission of temporalinformation was found to be

better than that of spectral information in CI listeners.

In the experimental tasks, two different types of spectral information were available to lis-

teners: namely, B and IRR, relating to the global shape of the spectrum and the local shape

of the spectrum, respectively. The large variations in B JNDs for CI listeners compared to

NH subjects confirm that global spectral information is not generally transmitted as well to

CI listeners as to NH listeners, and that the spectral information perceived is highly subject

dependent. This may have been expected as a result of the individual differences in anatom-

ical structure of the cochlea for each subject, the placement of the electrode array, and nerve

survival in the cochlea.

Henry and Turner (2003) investigated the differences in spectral shape perception abilities

of NH and CI listeners when listening to the same number of channels. Their results can be

compared to the findings of this study for B, which is calculated from the general spectral

shape of the sound. Henry and Turner (2003) found spectral shape perception for CI listeners

to be poorer than for NH listeners, with average spectral component spacing JNDs for NH

and CI listeners being around 400 Hz and 3000 Hz respectively,with large variations in

JNDs for CI listeners, ranging from 800 Hz to 8000 Hz. This is comparable to the trend of

the results found for B, where the CI listener group had a substantially larger JND value than

the NH group (expressing B in Hz by multiplying by the fundamental frequency of 262 Hz

gives us 124.23 Hz and 719 Hz, respectively), with a large SD in the JND values of B in the

range of 64.66 Hz to 1373.88 Hz for CI listeners. The lower JND for NH listeners compared

to that of the study of Henry and Turner (2003) may be explained by the fact that in their

study, NH listeners listened to acoustic simulations of thesound, limited to 12 channels. The

subject-specific nature of CI listener results, apparent from the large SDs of the the results,

may explain the differences in JND values for B found in this study, compared to the results

of Henry and Turner.

There is less consensus regarding the importance of IRR than the other two predominent

features, B and LRT, for timbre perception. In the existing literature, the proposed third

timbre feature is usually classified by one of two categories: spectro-temporal features, as in

the case of spectral flux, or spectral features, as in the caseof spectral fine structure or spectral

spread, which is related to the shape of the spectrum (Caclinet al., 2005). Although the study

by Caclin et al. (2005) suggests that spectral irregularity is a more prominent dimension
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than spectral flux, the authors conclude that it is nonetheless a less apparent dimension of

timbre perception, possibly requiring further investigation. JNDs for IRR are not as severely

affected in CIs as those for B, which can be attributed to IRR being extracted from the fine

spectral structure of a sound, as opposed to the global spectrum of the sound in the case of

B, making it a less salient perceptual timbre feature.

The present results for IRR can be compared to the results of a study by Henry and Turner

(2003), in which the ability of implantees to resolve spectral ripples was also investigated

and found to be significantly correlated with their ability to identify vowels. The results of

Henry and Turner (2003) showed a spectral ripple resolutionof approximately 1000 Hz for

50 % correct vowel identification, and a JND of up to 10000 Hz asthe vowel identification

dropped to 25 %. This poor resolution was illustrated by the larger JND obtained for IRR

for CI listeners than for the NH group, where a resolution in the order of a few hundred Hz

(for a fundamental of 262 Hz) would be required for IRR perception to be comparable to that

of NH listeners. The main limiting factor preventing CI listeners from resolving frequencies

is thought to be the differing degrees of excitation spread resulting from subject-specific

neural survival patterns and pathological processes within the cochlea (McKay, 2005), which

result in a blurring of spectral peaks or perceptual smearing in acoustic signals (Henry and

Turner, 2003). Henry and Turner (2003) suggest that the ability to resolve spectral peaks may

also be influenced by the compression of the acoustic dynamicrange to the narrow electrical

dynamic range in CIs.

A recent study by Emiroglu and Kollmeier (2008) attempted toquantify differences in object

separation and timbre discrimination between NH and hearing-impaired listeners. The ex-

periments determined JNDs of timbre in NH and hearing-impaired subjects along continua

of “morphed” musical instruments with the attack times removed. JNDs of the morphing pa-

rameter which was investigated (also discussed in section2.4.6.2) between pairs of sounds

were found to be significantly lower for NH listeners than forseverely hearing-impaired lis-

teners. As discussed by Emiroglu and Kollmeier (2008), basilar membrane compression loss

in sensorineural hearing-impaired listeners may lead to a distortion of mapping between the

stimulus level that is presented and the stimulus level actually applied internally .This may

make subtle intensity differences more audible, which could explain why the IRR results ob-

tained for cochlear implantees are more comparable to thoseof NH listeners than in the case

of the results for B. Slight changes in amplitudes of spectralcomponents will not change

the overall spectral envelope or value of B, whereas the spectral irregularity, IRR, may be

substantially affected.
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A study by Turner and Holte (1987), in which discrimination of spectral shapes in speech-

like sounds was investigated for NH and CI listeners, may explain the necessary requirements

for successful transmission of features B and IRR . Under certain conditions, higher, more

prominent spectral peaks were required for CI listeners to perform equivalently to NH lis-

teners. For those that did not achieve normal discrimination results at any level of increased

spectral peak presentation, high frequency amplification of the stimuli (high-pass amplifica-

tion) returned the JNDs to the NH range. For IRR, alternating frequency bands may need

intensity amplification to make the spectral differences inadjacent harmonics more promi-

nent to CI listeners.

Hopkins and Moore (2007) and Moore, Glasberg and Hopkins (2006) performed frequency

discrimination studies and found that the ability of CIs to use temporal fine structure is poor.

It was found that harmonics above the 5th were not resolved (Mooreet al., 2006). This may

explain the poorer ability of CI listeners to perceive B and IRRthan NH listeners, as only

the first five spectral components would likely be used for perceptual judgements. Mooreet

al. (2006) also found a reduced ability of CI listeners to use temporal envelope cues, which

could also explain the poorer abilities of CI listeners to perceive LRT, when compared to NH

listeners.

The fundamental frequency, which relates to features B and IRR, is an important feature in

the perception of musical instruments sounds, with the central auditory processing thereof

facilitated by either spectral or temporal methods (McKay,2005). The difficulties that CI

listeners experience in perceiving timbre can primarily beexplained by the restrictions of

existing processing strategies (SPEAK, ACE or CIS), in which the fixed overlapping filter

bands that are used limit the number of harmonic components that can be resolved and the

identification of the harmonic components. Additionally, phase shifts between electrodes

positioned close together may lead to incorrect perceptionof the fundamental frequency.

Even with the provision of more perceptual channels in CIs, temporal information would

probably also have to be conveyed by the analysis channels atthe correct tonotopic place in

the cochlea, as discussed by McKay (2005). Additionally, factors such as the smoothing of

filter outputs and the uncontrolled phase differences that occur on electrodes placed nearby

(McKay and McDermott, 1996) need to be addressed to better convey the fundamental fre-

quency and harmonic components of a sound.
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4.4.2 Timbre similarity ratings

The results of the second experimental study, in which timbre similarity judgements for both

NH and CI listeners were investigated, are shown in section4.3.2. These results can be

compared to some studies reported in the literature: the confusion matrices of figures4.9

and4.10can be compared to previous timbre perception results for NHand CI listeners.

As discussed by Donnelly and Limb (2009), NH listeners regularly mistake musical instru-

ments from the same family, which can be seen from the higher confusions, found in this

study and shown in figure4.9, between the string instrument family consisting of the violin,

cello and viola and between instruments of the brass family,specifically between the French

horn and trombone. Higher confusions were also noted between instruments of the wood-

wind family, particularly between the clarinet and flute. Similar findings were reported by

Gfeller et al. (2002c), where the highest confusions in the identificationof instruments for

NH listeners were found between the woodwind instruments, the clarinet and saxophone,

and between the string instruments, the violin and cello. Even though the NH listeners were

exposed to processed instrument sounds, the listeners appear to employ the same timbre per-

ceptual cues that would be used in listening to unprocessed sounds to rate the similarity of

two sounds.

The experimental confusion matrix of the CI listeners as shown in figure4.10shows more

scattered error patterns not necessarily corresponding toinstrument family, as was also found

by Donnelly and Limb (2009). Although high probabilities ofconfusions occur between in-

struments of the brass family, such as the French horn and trombone, as well as between

string family instruments, high confusions are also found between instrument families, for

example, between the clarinet and trombone and the cello andtrombone. Instrument sound

confusion matrices obtained by Gfelleret al. (2002c) showed the largest confusions for

CI listeners between string instruments, corresponding well to the experimental confusions

found for CIs in this study. Additionally, Limb (2006) reported percussion instruments to be

the most readily identified by CI listeners, corresponding tothe generally low confusions of

the piano with other instruments found in this study, as illustrated in figure4.10. Hall and

Beauchamp (2009) discuss the role of the rise time of sounds, where instruments with very

abrupt rise times, such as the piano, may serve as a perceptual reference against which all

other stimuli are evaluated. This agrees with the results ofthis study, in which the piano was

always found to be the most distinct from the other instruments.
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In addition to the distinguishing temporal properties of the piano that produces less confu-

sion with other instruments, the normalisation of the peaksof the instrument sounds should

also be noted as potentially enhancing dissimilarities between the piano and other instrument

sounds, and indeed amongst many of the musical instrument timbres. Although peak nor-

malisation of the sounds assisted in balancing the perceived loudness of the different musical

instrument sounds, this does not completely balance the sounds in terms of loudness, as the

energies of the sounds differ. This indicates that perceptual differences in the loudness of

the sounds may still be present and that this could have affected the results of the similarity

ratings, as any difference in loudness would imply a difference between two sounds.

Although the methodology of the timbre perception experiments of this study differed from

the timbre recognition tasks reported in literature, the results showed similar trends to previ-

ous timbre perception findings, as discussed above. The experimental findings of this study

could thus be used as data with which to compare the predictions of the developed model of

timbre perception.

4.5 CHAPTER SUMMARY

The experimental component of this study was presented in this chapter, consisting of two

experiments performed with both NH and CI listeners. The discrimination task results where

the JNDs of timbre features B, LRT and IRR were found for each listener were presented.

These were used in obtaining predictions from the model of timbre perception, as discussed

in chapter5. The results of the similarity judgements of musical instrument sounds were also

provided. Chapter5 presents the analysis and comparison of these results to thepredictions

of the timbre perception model. This chapter discusses the outcomes of the experimental

components of this study, which provide an entry point into achieving a quantitative under-

standing of the timbre perception abilities of CI listeners,by providing measurable results in

terms of timbre perception features. These measurable results were then used in the devel-

opment of a model of timbre perception, as discussed in chapter5.
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CHAPTER 5

MODELLING OF TIMBRE

PERCEPTION

A large part of the work described in this chapter was presented at the CI 2010 conference

(Hanekom and Hugo, 2010). The work in this chapter will also be submitted to Ear and

Hearing in the form of a journal article as a continuation of the work discussed in chapter4.

5.1 CHAPTER OBJECTIVES

The experimental component of this study was presented in chapter4. The findings of the

first experiment (section4.3.1) were used in the development of the model of timbre per-

ception. The model predictions could then be compared to thethe findings of the second

experiment (section4.3.2). This chapter presents the implementation of the model of tim-

bre perception, which was performed in Matlab version 2007b, as well as the results of the

model predictions compared to the experimental results. Anexplanation of the analysis tech-

niques used to interpret the results and allow for comparisons to be made between predicted

and measured results for NH and CI listeners, to validate the measurements and models of

this study are also presented in this chapter. A detailed discussion is provided regarding the

outcomes of the model of timbre perception, along with considerations made in the devel-

opment of the model. Comparisons of the results of the study with existing literature will be

explored and implications of the timbre perception model outcomes will also be presented.
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5.2 METHODS

5.2.1 Timbre perception model

A model of timbre perception was developed in an attempt to adequately predict the results

of timbre perception experiments, and, in this study specifically, to predict the outcome of

timbre similarity rating experiments as described in section 4.2.2. The model was based on

the three important timbre features, B, LRT and IRR, and the definitions of both the original

and processed sounds by these three features. The model was structured on the premise that

the features B, LRT and IRR formed a three-dimensional orthogonal space, or timbre space1.

The first step in implementing the model was to extract the features from each of the original

and processed sounds, using the methods described in section 3.4. As musical instrument

timbres are generally recognised by the information that istransmitted by B, LRT and IRR, it

is implied that when different musical timbres have similarB, LRT or IRR values, that there

is a possibility that these timbres may become confused witheach other.

In the case of predicting confusions amongst vowels, three-dimensional Euclidean distances

may be used, as illustrated by Conning (2005). The Euclidean distances are measured be-

tween all the vowels in the vowel space to predict the amount of confusion between each pair.

However, for this study, a more detailed approach, based on the work of Svirsky (2000), is

used to predict confusions between instrument timbres, by expanding on the use of Euclidean

distances alone. For predictions of confusions between vowels, a normalisation of the vowel

space, generally defined by the duration of the vowel and the first two formant frequencies,

F1 andF2, is usually performed before the Euclidean distances are calculated (van Wieringen

and Wouters, 1999). Lobanov’s z-score transformation (Adank, Smits and Van Hout, 2004)

is a possible choice of normalisation that may be implemented, as it allows for the compari-

son of vowels across various conditions. The processing of sounds may cause an offset to be

added to a specific vowel space, which is removed by normalisation. However, Lobanov’s

z-score transformation is a vowel-extrinsic procedure, and so cannot be used to normalise

the timbre space. Additionally, no normalisation procedures specific to timbre spaces have

been developed. As a result, simply calculating the Euclidean distances between instrument

sounds in the timbre space would be questionable, as the dimensions are not normalised and

cannot necessarily be measured relative to one another.

1a timbre space is defined as a multidimensional space where a number of instrument sounds are plotted as
a function of their signal characteristics, defined by B, LRTand IRR.
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Therefore, using the model implemented by van Zyl (2008) andbased on the model by

Svirsky (2000), a volume surrounding each of the points thatrepresent a sound in the timbre

space can be applied to calculate the probabilities of confusing each sound with another.

The volume surrounding each sound in the timbre space is modelled by an ellipsoid, with

the dimensions of each of the three axes thereof corresponding to the JND values found for

each of the timbre space dimensions B, LRT and IRR, from the experimental study in section

4.2.1. A basic illustration of the structure of the model of timbreperception is given in figure

5.1, with an arbitrary musical instrument sound in the timbre space, in terms of B, LRT

and IRR, represented by the black circle. An ellipsoid is constructed around the position

of the instrument sound in the three-dimensional space, using the JND values obtained for

each of the timbre features as the dimensions of the ellipsoid in each corresponding timbre

dimension. Such ellipsoids are constructed around each musical instrument sound, with the

amount of overlap between two ellipsoids indicative of the amount of confusion that is likely

to occur between two specific musical instrument sounds.

Figure 5.1.
Illustration of the structure of the model of timbre percept ion. For each musical sound
represented in a three-dimensional timbre space, an ellipsoid is constructed, using the
JND values obtained for each of the timbre features as the dimensions. The units for
each of the axes for B, LRT and IRR are defined in sections3.4.1to 3.4.3
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As an existing model was used to predict the probabilities ofconfusions between the instru-

ment sounds, a gain factor of 1 for the JND values was the only model parameter that was set

in the development of the model of timbre perception. All other parameters were inherent in

the model by van Zyl (2008).

To calculate the probability of confusions from the overlapof the ellipsoids constructed

around each sound, signal detection theory (Gelfand, 1990;Green and Swets, 1966) was

utilised. This method is commonly applied to psychophysics, and was thus suitable for the

purposes of this study. The basic idea of the model was to assign a probability density

function (pdf) to each point or sound in the timbre space of figure 5.7, to create a volume

around each instrument sound that more accurately represents the space in which the sound

would be confused with any of the other sounds in the timbre space. A four-dimensional pdf

is thus necessary to represent each sound in the timbre space(to represent the three variables

of the timbre space) and all the pdfs were generated to have a Gaussian distribution. In

this study, the mean of the pdf was obtained from the three-dimensional coordinates of the

instrument sound in the timbre space, represented by B, LRT and IRR. The variances of the

pdfs were calculated from the JNDs obtained from the first experimental study in section

4.2.1, as opposed to using uncertainty factors calculated from a processing component in the

method of van Zyl (2008). Once the pdfs were constructed for each sound, the amount of

confusion between two sounds could be predicted.

The model applied in this study used three variables or dimensions (B, LRT and IRR),

thereby creating a four-dimensional pdf for each sound. However, for the purpose of il-

lustration, an explanation of the model implementation will be given for a one-dimensional

variable, resulting in a two-dimensional pdf. The Gaussiandistribution, given byf (x) in

equation5.1for one dimension is

f (x) =
1√
2πσ

exp

(

−1
2

(x−µ)2

σ2

)

, (5.1)
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whereµ is the mean of the distribution, andσ is the variance. A pdf was calculated for

each of the instrument sounds. The probability value for each element in a confusion matrix;

that is, the probability of the listener giving a specific response given all possible responses,

was calculated individually. This was achieved by integrating the pdf of the stimulus (or

particular instrument sound) from a certain decision point, as shown in figure5.2. The

decision point is chosen as the point of intersection between the stimulus pdf and the possible

response (a different instrument sound in the space that thestimulus may be confused with)

that is being calculated.

Figure 5.2.
Illustration of two-dimensional probability density func tions representing the stimulus
(the instrument sound investigated) and response (a different instrument sound with
which the one under investigation may be confused). The probability of confusing
these two sounds or giving the incorrect response (shaded area) is in this case
calculated from 0 to the end of the stimulus pdf.
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The more overlap there is between the pdfs of two sounds, the greater the probability that

the listener will confuse the two sounds. The distance between the centre points of the pdfs

is found from the Euclidean distance in terms of the timbre features B, LRT and IRR in

the timbre space. Figure5.2 only shows the case when one variable is used, as opposed

to the three used in this study. Thus, the listener must integrate these various components

into a single decision. To model this, trivariate random variables are used instead of the

univariate random variable as is the case in figure5.2, so that an observation is a point in

three-dimensional space as opposed to a point on a line. The Gaussian distributions can thus

be expanded to a matrix form for the trivariate random variable calculations. van Zyl (2008)

provides the detailed equations for these calculations, aswell as those for finding the single

decision point from the trivariate pdfs.

A visual representation of the trivariate random variable calculations and resulting pdfs

would require a four-dimensional illustration. Therefore, the ellipsoid representations are

used to visualise the distances between the instrument sounds and the possible confusions

between these instrument sounds. Figure5.3 illustrates the ellipsoid representation for three

arbitrary musical instrument sounds in the timbre space. Inthe proposed model, the closer

the ellipsoids are that surround each of the sounds, the larger the probability that the sounds

will be confused with each other. If two ellipsoids do not intersect, there is a smaller prob-

ability that the instrument sounds would be confused. Thus,from figure 5.3, instrument

sounds 2 and 3 will be more likely to be confused with each other than either of these two

sounds would be with instrument sound 1. The pdf calculations can then be applied to deter-

mine the probabilities of confusion predicted between eachinstrument sound pair.

In developing the model of timbre perception, a number of assumptions were made which

were likely to impact the model predictions. Firstly, the JND values were only calculated

for one synthesised reference tone, and therefore the same JND values were used to create

identical ellipsoids around each of the musical instrumenttimbres. In addition to this, the

ellipsoids were symmetrical, a feature that is also inherent in the model by van Zyl (2008),

and thus the assumption that the JNDs are the same on either side of a sound in a particular

dimension in the timbre space had to be made.
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Figure 5.3.
A three-dimensional timbre space generated by the model of timbre perception for
three arbitrary musical instrument sounds represented by ellipsoids, with units for the
axes B, LRT and IRR as defined in sections3.4.1to 3.4.3.

A full description of the method used to calculate the predicted confusion matrices is given

in van Zyl (2008), based on the model developed by Svirsky (2000). The results of the

predicted confusions obtained from the model of timbre perception, as well as the resulting

JNDs for B, LRT and IRR, are shown in section5.3.1.

5.2.2 Analysis techniques

The analyses of the predicted and experimental results werebased on methods applied to

speech perception research in CIs for vowels and consonents.Details of the analyses of the

results are given in section5.3.2, and a brief overview of the methods utilised are discussed

in the paragraphs that follow.

Relative information transmission scores are a common method of analysing stimulus-response

results of psychoacoustic experiments, and have been used extensively in research for speech

perception in CI listeners. The general procedure involves entering responses to stimuli into
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confusion matrices, which are stimulus-response matricesthat indicate which phonemes

have been confused with which. The confusion matrix contains information about which

cues have been transmitted to the auditory system and which have been masked. Confusion

matrices are analysed with feature information transmission analysis (FITA) techniques. It

is well known that for the identification of vowels, the first two formants and the duration

of the vowel are necessary cues (van Wieringen and Wouters, 1999). For the identification

of consonants, both acoustic and articulation properties are necessary cues. Acoustic prop-

erties include envelope variation of the consonant (van Tasell, Soli, Kirby and Widin, 1987),

the ratio of the minimum to peak energy of the consonant and the duration of the conso-

nant (van Wieringen and Wouters, 1999). Articulatory classification of consonants includes

the following categories: plosive or non-plosive, voiced or voiceless, place of articulation

(front, middle or back of the mouth), nasal or non-nasal, liquid or non-liquid, and fricative

or non-fricative (Miller and Nicely, 1955; Wang and Bilger, 1973).

For analysis purposes, each phoneme is first classified into one of several categories for each

cue. After classification, each cue is looked at separately.The confusion matrix is collapsed

into the number of categories available for that cue. For example, for place of articulation

there are three categories: 1 = front, 2 = middle and 3 = back. The relative information trans-

mitted through each cue can then be calculated by the ratio ofthe transmitted information

calculated from the confusion matrix to the maximal possible information transferred by the

stimuli and categories under test.

Using a similar approach, confusion matrices for timbre perception may be constructed and

analysed to indicate the amount of information transmittedthrough each cue important for

timbre perception. As there are no existing results for confusions between timbres for CI

listeners where important cues have been extracted, the important cues assumed will be

the same as those for NH listeners, namely B, LRT and IRR. FITA results obtained from

similarity judgements of musical timbres by CI listeners canthen show which timbre features

or cues convey the most information, and how well they conveyinformation about timbre to

CI listeners.
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5.3 RESULTS

5.3.1 Results of the timbre perception model

The timbre features B, LRT and IRR were extracted for both the original and processed

versions of the 10 musical instrument sounds as a basis on which to formulate the model of

timbre perception. Table5.1 shows the extracted timbre features B, LRT and IRR for the

sounds.

Table 5.1.
Values for B, LRT and IRR extracted for the original and processed musical
instrument sounds, with units for B, LRT and IRR defined as partial index,

log(s) and log(dB), respectively.

Original musical timbres Processed musical timbres

B LRT IRR B LRT IRR

Piano pno 2.6523 1.8027 1.5840 1.8097 1.2093 1.2878

Trumpet tpt 5.8998 2.8710 1.2270 2.2031 2.8470 1.5759

French horn hrn 4.3149 2.5357 1.7323 1.8638 2.8147 1.2155

Trombone tbn 3.4961 2.6073 1.0274 1.9855 2.6056 1.2535

Clarinet cnt 3.0455 2.9564 1.9858 1.7204 3.1122 1.2485

Flute flt 4.0928 2.9285 1.5072 1.9199 2.8027 1.2802

Saxophone sax 3.8301 1.7058 1.7850 1.6182 1.9788 1.4433

Violin vln 5.9806 3.0502 2.1186 1.8960 3.1625 1.1597

Cello clo 4.5775 2.8361 1.6376 2.1106 2.7855 1.3037

Viola vla 4.5712 3.0988 1.9179 2.1409 3.0883 1.4015

The original and processed sounds are illustrated graphically in two dimensions for combi-

nations of the three timbre features in figures5.4, 5.5and5.6. It can be noted that processed

sounds are grouped closer together than the original sounds, showing that the probability of

confusions between sounds is increased substantially withprocessing through a CI.
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Figure 5.4.
Representation of the original instrument sounds (bold) and processed instrument
sounds (italics) represented by timbre dimensions B and LRT,with units for the
timbre features as given in table5.1.
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Figure 5.5.
Representation of the original instrument sounds (bold) and processed instrument
sounds (italics) represented by timbre dimensions B and IRR, with units for the
timbre features as given in table5.1.
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Figure 5.6.
Representation of the original instrument sounds (bold) and processed instrument
sounds (italics) represented by timbre dimensions LRT and IRR, with units for the
timbre features as given in table5.1.

Figure5.7 graphically represents the values of table5.1 in three dimensions by displaying

the original and processed musical instrument sounds in terms of B, LRT and IRR.
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Figure 5.7.
Timbre space of the original (circle) and processed (square) instrument sounds
represented by timbre dimensions B, LRT and IRR, with units for the timbre features
as given in table5.1.

The visual representation of the original and processed sounds in figure5.7 provides an

indication of which instrument sounds would be more likely to be confused with one another.

Sounds that lie closer together would have a higher probability of being confused, while

those that lie further apart would be less likely to be confused with each other. Predictions

about which music timbres will be confused can be made visually by inspecting the timbre

space. From this, a physical measure can be used to quantify these predictions.

In all of the two-dimensional representations for the sounds processed by the acoustic model,

the piano is the most distinct sound, as it is most distant from the others. This can also be

seen from the experimental confusion matrices obtained forboth NH and CI listeners, with

low probabilities of confusion for the piano compared to theother sounds. In both the NH

and CI experimental results, the saxophone was found to be themost likely to be confused

with the piano. This can be explained by the two-dimensionaltimbre spaces of figures5.4
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and5.6, as the processed saxophone sound is also distinct from the other instruments, but

generally lies closer to the piano than to the other instrument sounds in the timbre space.

The experimental confusions for NH listeners (figure4.9) and CI listeners (figure4.10) show

large confusions between brass instruments, specifically between the trombone and French

horn, with slightly lower confusions for the trumpet. This would be expected, as shown in the

two-dimensional timbre space representations of the processed sounds, in which in figures

5.4 and5.6 in particular the processed brass instruments are grouped in the same vicinity,

but the trumpet is always situated slightly separately fromthe French horn and trombone.

For both NH and CI listeners, high confusions were found amongthe family of string in-

struments (figures4.9 and4.10), specifically between the viola and the cello and the violin

and the cello, with the confusion between the violin and viola being somewhat lower. The

two-dimensional representations on which the predictionsare based (figures5.4 to 5.6) il-

lustrate these experimental results by showing viola-cello and violin-cello combinations to

be located in close proximity, but with the viola and violin found to be further apart.

For NH listeners, dominant confusions are also present between woodwind instruments,

namely between the saxophone and clarinet and the flute and clarinet. CI listeners also found

the saxophone and clarinet very similar. These confusions are not illustrated as clearly by the

two-dimensional representations, especially for the saxophone. Substantial confusions were

also found between the French horn and clarinet for both NH and CI listeners, which is a

confusion between families of instruments, and this is explained and illustrated by the close

proximity of these processed instruments in the two-dimensional timbre spaces of figures

5.4to 5.6. High incidences of confusions between the clarinet and trombone were found for

CI listeners, and can only be explained by figure5.5. Additionally, the clarinet and French

horn were also found to be very similar for both NH and CI listeners, again due to the similar

location of these processed sounds in the timbre space in figures5.4to 5.6.

An additional factor that may have affected the grouping of the sounds in the timbre space

could have been the exclusion of signal pre-emphasis in the developed acoustic model. With-

out signal pre-emphasis, the lower frequency channels would have been more likely to be

selected and included in the stimulation pattern. This could explain the tight grouping of

the processed instrument sounds in the B and IRR dimensions infigures 5.4 to 5.6, as the

frequency channels selected by the peak-picking method of the ACE strategy for each sound

would have been in a similar lower range.
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The model for predicting timbre perception was not based solely on the distances between

the sounds in the timbre space, but this formed a basis for themodel structure. A brief

representation of the timbre space of the sounds compared tothe confusion matrices obtained

from both the NH and CI experimental data already shows clear similarities, substantiating

the choice of the timbre space as the model foundation.

Predictions of timbre perception were made using the JND results for the timbre features

as shown in figure4.7. The individual JND values of each subject are used as dimensions

of the ellipsoid centred around each point representing an instrument sound in the timbre

space. A predicted confusion matrix for each subject can thus be obtained by the method of

van Zyl (2008), as discussed in section5.2.1. Figure5.8 constitutes a visual representation

of the probability of confusions between each of the musicalinstrument timbres for both the

unprocessed and processed sounds. These ellipsoids are calculated using the average JND

values obtained for each timbre feature for NH and CI listeners, to illustrate the differences

between the processed and unprocessed sounds in the timbre space, as well as the differences

in JNDs for the NH and CI subjects. Ellipsoids calculated in this way were used to predict

the confusion matrices that are obtained from the similarity ratings data.
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Figure 5.8.
A three-dimensional timbre space generated by the prediction model for (a) NH and
(b) CI listeners. The predictions for NH listeners were modelled on the timbre
dimensions for the instrument sounds processed through theacoustic model and the
predictions for CI listeners were modelled on the timbre dimensions for the original
instrument sounds. Units for the axes of the timbre featuresB, LRT and IRR are as
given in table5.1.

Individual JND values for B, LRT and IRR for each listener were used to obtain subject-

specific predicted confusion matrices, in order to compare these with individual experimental

confusion matrices obtained for each subject from the similarity ratings. Each row of the

confusion matrix is normalised with respect to the sum of that row. Averages of both the

NH subjects’ and CI subjects’ predicted confusion matrices were used in the analysis of the

results. Figures5.9 and5.10show the average predicted confusion matrices obtained from

the model of timbre perception for NH and CI listeners respectively.
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pno tpt hrn tbn cnt flt sax vln clo vla

pno 0.6582 0.0229 0.0262 0.0285 0.0296 0.0224 0.1308 0.0246 0.0339 0.023

tpt 0.0109 0.2619 0.0841 0.0927 0.0658 0.106 0.0362 0.0626 0.1353 0.1445

hrn 0.0103 0.0619 0.1861 0.129 0.1119 0.1599 0.0362 0.1018 0.1204 0.0825

tbn 0.0115 0.0777 0.1426 0.2065 0.0517 0.1583 0.0497 0.0786 0.1453 0.078

cnt 0.0131 0.0588 0.1371 0.0573 0.2331 0.1277 0.0239 0.166 0.0859 0.0971

flt 0.0086 0.0722 0.1472 0.1335 0.0987 0.1715 0.0362 0.0919 0.1529 0.0874

sax 0.085 0.0508 0.0639 0.0874 0.038 0.0674 0.4888 0.0305 0.0618 0.0265

vln 0.0105 0.0556 0.12 0.0838 0.1619 0.1146 0.0191 0.2293 0.0971 0.1082

clo 0.0129 0.0964 0.1199 0.1292 0.0695 0.1622 0.0354 0.0796 0.1837 0.1111

vla 0.0104 0.1242 0.0948 0.0844 0.0949 0.1118 0.0201 0.1059 0.1301 0.2233

Figure 5.9.
Average predicted confusion matrix for NH listeners, calculated using the model of
timbre perception.

pno tpt hrn tbn cnt flt sax vln clo vla

pno 0.1872 0.0537 0.0989 0.113 0.1115 0.0941 0.1466 0.0462 0.0791 0.0697

tpt 0.0499 0.1825 0.1037 0.0734 0.0627 0.0995 0.0673 0.1295 0.1222 0.1093

hrn 0.0749 0.0795 0.1361 0.0964 0.0892 0.1151 0.1008 0.0759 0.1181 0.1141

tbn 0.0966 0.0674 0.1096 0.1559 0.1031 0.1177 0.0939 0.0587 0.1044 0.0925

cnt 0.0961 0.0568 0.1033 0.106 0.1605 0.1146 0.0909 0.0637 0.1 0.108

flt 0.0719 0.0782 0.116 0.104 0.0993 0.1372 0.0856 0.0717 0.1242 0.1118

sax 0.128 0.0635 0.1183 0.0967 0.0922 0.0996 0.1611 0.0573 0.1017 0.0816

vln 0.0446 0.1321 0.0991 0.0669 0.0707 0.0917 0.0629 0.1858 0.1147 0.1314

clo 0.0604 0.0946 0.1176 0.0919 0.087 0.1225 0.0862 0.0868 0.1353 0.1177

vla 0.0552 0.0871 0.1186 0.0831 0.0975 0.1149 0.0735 0.1053 0.1231 0.1416

Figure 5.10.
Average predicted confusion matrix for CI listeners, calculated using the model of
timbre perception.
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5.3.2 FITA results

FITA was performed on the confusion matrix results of the timbre similarity rating exper-

iments, as well as on the predicted confusion matrices obtained from the model of timbre

perception. A FITA approach allows the confusion matrices to be collapsed so that their

similarity in each timbre dimension may be compared individually. FITA also provides in-

formation on the cues that have and have not been received, information that formed an im-

portant part of this study, in which the transmission of timbre features to NH and CI listeners

for both predicted and measured data were investigated. TheFITA procedure for calculat-

ing the amount of information transmitted is explained next. Taken from Miller and Nicely

(1955), the mean logarithmic probability (MLP) equation, as shown in equation (5.2), is a

measure of covariance between input and output. If the inputvariable isx, with probability

pi andi = 1,2,...,k, then the input is defined as

MLP(x) = E(−logpi) = −∑
i

pi logpi. (5.2)

If the logarithm is taken to base 2, then the measure can be called the number of binary deci-

sions needed on average to specify the input, or number of bits of information per stimulus.

A similar expression is defined for the outputy, with valuesj = 1,2,...,m. The number of

decisions needed to specify the particular stimulus-response pair is MLP(xy), with pi j being

the probability of the joint occurrence of inputi and outputj.

A measure of covariance of input with output is given by equation 5.3 with T(x;y) referred

to as the transmission fromx to y in bits per stimulus.

T(x;y) = MLP(x)+MLP(y)−MLP(xy) = −∑
i j

pi j log
pi p j

pi j
(5.3)

In practice, the true probabilities are not known and are estimated from the relative frequen-

cies obtained experimentally, giving equation5.4from van Tasellet al. (1987) as

U = −∑
i j

ni j

n
log2

(ni/n)(n j/n)

ni j /n
, (5.4)
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with n being the total number of observations,ni the frequency of the stimulus,n j the fre-

quency of the response andni j the frequency of the joint occurrence of a particular stimulus-

response pair.

The maximum available information is given by equation (5.5) as

Umax= −∑
i

ni

n
log2

ni

n
, (5.5)

giving the relative transmitted information as

Urel = U/Umax. (5.6)

If the response is closely correlated with a specific stimulus, Urel will be close to unity

as the specific feature will be transmitted well. The relative information transmitted is the

ratio of the transmitted information calculated from the confusion matrix to the maximum

possible amount of information transferred by the stimuli (instrument timbres in this study)

and the features being tested (B, LRT and IRR) (van Wieringen andWouters, 1999). In

this study, the stimuli for the instrument sounds are classified as in tables5.3 and5.4 for

the original and processed instrument sounds, respectively, and the response is a confusion

matrix, either from the experimental study or predicted from the model. In this way,T(x,y)

can be calculated for each of the features given in tables5.3 and5.4. The classifications of

the timbre features are determined using the ranges given intable5.2. The assignment of the

sounds to the different timbre feature ranges was made to encompass the range of features

for both the unprocessed (table5.3) and processed (table5.4) sounds. The categories were

selected to optimise the grouping of sounds from the same instrument families as far as

possible for the unprocessed instrument sounds, in terms ofB, LRT and IRR. The categories

were chosen so that each of the original instrument sounds ineach family of instruments fell

within the same category for at least two of the three timbre features when compared to any

other instrument sound in that same family. For example, forthe original string instruments

consisting of the violin, cello and viola, the B and IRR valuesof all three instrument sounds

fell within the same category.
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Table 5.2.
Ranges of B, LRT and IRR used for the classification of importanttimbre

features into categories for FITA results to be obtained.

B LRT IRR
1 < 1.9 < 1.9 < 1.25
2 1.9 - 3 1.9 - 2.9 1.25 - 1.6
3 3 - 4.5 > 2.9 > 1.6
4 > 4.5 - -

Table 5.3.
Classification of important timbre features to be used in FITA for original

instrument sounds.

pno tpt hrn tbn cnt flt sax vln clo vla
B 2 4 3 3 3 3 3 4 4 4
LRT 1 2 2 2 3 3 1 3 2 3
IRR 2 1 3 1 3 2 3 3 3 3

Table 5.4.
Classification of important timbre features to be used in FITA for instrument

sounds processed through the acoustic model.

pno tpt hrn tbn cnt flt sax vln clo vla
B 1 2 1 2 1 2 1 1 2 2
LRT 1 2 2 2 3 2 2 3 2 3
IRR 2 2 1 2 1 2 2 1 2 2

The instrument sounds are grouped together according to their classifications, to determine

the percentage information transmitted through a specific timbre characteristic. The confu-

sion matrices can then be analysed using these classifications, to find how much information

is conveyed through each timbre feature. This will also serve as basis for comparison be-

tween the model predictions and the experimental results.
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5.3.2.1 FITA results of experimental data

FITA was performed on the measured results to determine how much information was trans-

mitted to the listener through each timbre feature. This also allowed for comparisons to be

made regarding which characteristics were transmitted most effectively to CI listeners and

to NH listeners through the acoustic simulations. The average FITA results obtained for NH

and CI listeners from the timbre similarity rating experiments are shown in figure5.11, with

means and SDs of the percentage information transmitted given in table5.5.

Figure 5.11.
Results obtained from FITA applied to similarity judgements of both NH (circle) and
CI (square) subjects for timbre features B, LRT and IRR. NH results are from an
average across subjects listening to the processed instrument sounds and CI results
are from an average across subjects listening to the unprocessed instrument sounds,
with SD values indicated by an errorbar in each case.
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Table 5.5.
Averaged FITA mean and SD values for the similarity judgements for both

NH and CI listeners.

NH listeners CI listeners
Mean SD Mean SD

B 6.3132 2.3471 16.6556 18.5775
LRT 16.5159 8.3973 9.3712 11.2350
IRR 1.8244 0.5575 9.5548 14.5965

To determine whether the performance of CI listeners and NH listeners (listening through the

acoustic model) differed, a two-factor ANOVA was performedon these experimental results,

with the listener type (NH or CI) and the specific timbre feature (B, LRT or IRR) making

up the two factors. The effect of the type of timbre feature onthe percentage information

transmitted by the instrument sounds was found to be non-significant (F(2,24) = 1.161,p

> 0.05), indicating that similar amounts of information were conveyed by each timbre fea-

ture. The effect of the type of listener (NH or CI) on the percentage information transmitted

was also found to be non-significant (F(1,24) = 0.785,p > 0.05), implying that NH and CI

groups performed similarly in the task. This indicates thatthe acoustic model was a satisfac-

tory representation of what CI listeners hear, although it was not an exact replica and only

included the effect of the CI processor on the sound. There wasalso a non-significant inter-

action effect between the listener type and the timbre feature on the percentage information

transmitted to the listener (F(2,24) = 1.755,p > 0.05). This would indicate that NH and CI

listeners were not affected differently by different timbre features. However, large SDs in the

data may have affected the statistical analysis, where results were found to be non-significant

even though there were clear differences in the mean values being compared. For example,

differences in the trends of the data points for NH and CI listeners can clearly be seen in

figure 5.11, where the three data points for CI listeners form a V-shape, with LRT being a

minimum data point, while for NH listeners an opposite trendcan be noted, with LRT being

a maximum data point.

The percentage information transmitted to NH (mean = 6.31, SD = 2.35) and CI (mean =

16.66, SD = 18.58) listeners for B were somewhat different, with CIs having a higher mean

and also a much larger SD. Generally, a much larger SD was observed in the amount of

information transmitted to CI listeners, pointing to more uncertainty amongst the CI listeners,

or less stable representations of these timbre features in the electrically evoked space-time
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action potential patterns. The information transmitted toNH (mean = 16.52, SD = 8.4) and

CI (mean = 9.37, SD = 11.24) listeners for LRT showed a different trend from B, with NH

listeners having a higher mean than CI listeners, and both groups having large SDs. The

information transmitted to NH (mean = 1.82, SD = 0.56) and CI (mean = 9.56, SD = 14.6)

listeners by IRR showed a similar trend to that of the information transmitted by B.

5.3.2.2 FITA results of predicted and experimental data

The FITA results as predicted from the timbre perception model, and those measured from

the similarity rating experiments, are shown for individual subjects in figure5.12. Figure

5.12(a) shows the predicted and measured FITA results for each ofthe NH listeners (NH1 -

NH5) in response to the original or unprocessed musical instrument sounds. These results

were compiled as a baseline to which the FITA results of the NHlisteners listening to the pro-

cessed sounds and the CI listeners listening to the original sounds could be compared. These

results also illustrate the timbre perception model predictions compared to the measured data

for NH conditions, the premise on which the model was based.

Figure5.12(b) shows the predicted and measured FITA results for each ofthe NH listeners

(NH1 - NH5) in response to the musical instrument sounds as processed through the acoustic

model. Figure5.12(c) shows the predicted and measured FITA results for each ofthe CI

listeners (CI1 - CI5) in response to the unprocessed musical instrument sounds.
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Figure 5.12.
Predicted (unfilled markers) and measured (filled markers) FITA results for (a) each
of the five NH subjects in response to the unprocessed instrument sounds, (b) each of
the five NH subjects in response to the processed instrument sounds, and (c) each of
the 5 CI subjects in response to the unprocessed instrument sounds.
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Figure5.12illustrates that the timbre perception model fares well in predicting the outcomes

of the similarity rating experiments for individual subjects. Although the percentage in-

formation transmitted found from the FITA calculations differs substantially across subjects,

the model follows the trends of the outcomes of timbre perception experiments for individual

subjects. Only in a few specific cases do the model predictions not fare well. For example,

in figure5.12(c), the amount of information transmitted through the timbre features from the

measured results for CI5 is very high compared to the other CI listeners, as well as compared

to the model predictions for CI5. With the exception of such cases, the model of timbre per-

ception can be seen to generally predict the outcomes of the timbre perception experiments

for individual subjects acceptably.

The pooled results of figure5.12are shown in figure5.13, where the averaged FITA results

of both the similarity rating experiments and the predictedresults obtained from the model

of timbre perception for both NH and CI listeners are displayed. Figure5.13 shows the

averaged FITA results for (a) all NH subjects listening to the unprocessed sounds, (b) all NH

subjects listening to the sounds processed through the acoustic model, and (c) all CI subjects

listening to the unprocessed sounds. Large SDs in the measured data in figure5.13can be

noted due to the large variations of the FITA results within the subject groups. The mean and

SD values are given in table5.6.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

145



Chapter 5 MODELLING OF TIMBRE PERCEPTION

Figure 5.13.
FITA results for both predicted (unfilled circles) and measured (filled circles) data for
timbre features B, LRT and IRR for (a) NH listeners subjected tothe unprocessed
sounds, (b) NH listeners subjected to the processed sounds,and (c) CI listeners
subjected to the unprocessed sounds.
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Table 5.6.
Averaged measured and predicted FITA mean and SD values for NH and CI

listeners.

Predicted Measured
B LRT IRR B LRT IRR

NH listeners Mean 41.962 37.859 40.85052.246 41.407 44.489
SD 27.243 27.482 29.34323.563 21.932 25.883

NH listeners Mean 8.4309 21.742 6.083 6.313 16.516 1.824
(processed sounds) SD 7.391 16.843 5.188 2.347 8.397 0.558
CI listeners Mean 2.914 1.518 0.481 16.656 9.371 9.555

SD 2.983 1.263 0.4197 18.578 11.235 14.597

Figure5.13(a) shows that for each of the timbre features B, LRT and IRR, the percentage

information transmitted to NH listeners through the unprocessed instrument sounds is higher

for the measured data (filled circles) than for the timbre perception model predictions (un-

filled circles). However, the predictions compare well to the measured data, with the largest

prediction errors occurring for feature B. As the results of figure5.13(a) were only calcu-

lated from a pilot study of three experimental runs per subject, these are only presented to

illustrate the sufficiency of the model predictions in NH conditions. Statistical comparisons

will thus only be performed for the results of figure5.13(b) and (c), as the focus of this study

is to investigate timbre perception in the electrically stimulated auditory system.

It can be noted that the predicted mean values (unfilled circles) for each of the timbre features

for NH listeners in response to the processed instrument sounds (figure5.13(b)) are all higher

than those predicted for CI listeners (figure5.13(c)). This would be expected due to the

higher JND values obtained by CI listeners than NH listeners,as shown in figures4.7 and

4.8 for timbre features B, LRT and IRR, on which the predictions are based. However,

the NH predictions have substantially larger SDs than the predicted values for CI listeners.

The effect of the comparable SD values for the JNDs obtained for NH and CI listeners was

more prominent in the predictions calculated for the NH listeners. This is due to the NH

predictions being based on the processed B, LRT and IRR values,which are situated in close

proximity in the timbre space, as opposed to the original sounds on which the predictions for

CI listeners were made. The SDs of the JND values thus produce large SDs in the predictions

for NH listeners.
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Predicted and experimental values for NH listeners listening to the sounds processed through

the acoustic model show that LRT is the feature that conveys the most information, which

was expected due to the adequate transmission of temporal information generally found in

CIs compared to the limited transmission of spectral information. However, LRT is also the

feature with the largest SD, indicating that the LRT featureplayed a less important role in

defining the timbre of a sound for some NH subjects than others.

For CI listeners, the mean predicted percentage transmittedinformation for each timbre fea-

ture is smaller than that found in the experiments. The predicted values also have small SDs,

which can again be explained by the SDs of the JND values obtained. These values, as used

in the model of timbre perception, have less effect than on the predictions of NH listeners,

due to the larger distances between the sounds in the timbre space. The experimental data for

each timbre feature exhibit large SDs in comparison, showing varying abilities to perceive

timbre amongst the CI subjects. In the case of CI listeners, both the model predictions and

experimental data indicated that B was the feature that conveyed the most information on

timbre. This contradicted expectations that temporal information, such as the feature LRT,

would be transmitted more effectively than spectral information, such as the feature B, as is

generally found in CIs. IRR was found to transmit slightly moreinformation than LRT for

CI listeners, contrary to the timbre model predictions, in which LRT was found to convey

more information than IRR, as would be expected.

A mixed ANOVA was performed on the results of figure5.13(b) and (c), with the listener

type (NH or CI) as the between-subject factor, and the specifictimbre feature (B, LRT,

IRR) and result type (predicted or real) as the within-subjectfactors, to analyse individual

effects of and interactions between these factors. The typeof timbre feature was found

to have a significant effect (F(2,16) = 24.336,p < 0.001) on the amount of information

transmitted to the listener. Statistical contrasts revealed that a significantly higher percentage

of information was conveyed through the timbre feature B than through IRR (p = 0.001), and

that a significantly higher percentage information was transmitted through LRT than through

IRR (p < 0.001), implying that IRR is not generally received by the listener.
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The predicted and measured results were not found to be significantly different (F(1,8) =

0.596,p > 0.05), indicating that the timbre perception model predicted the experimental re-

sults sufficiently. Tests of between-subject effects showed that the differences between the

results of NH and CI listeners were also not significant (F(1,8) = 0.75,p > 0.05), again sug-

gesting that the acoustic model was a sufficient representation of sound processing through

a CI.

The percentage information transmitted through the different timbre features differed sig-

nificantly for NH and CI listeners (F(2,8) = 31.864,p < 0.001), as can be noted from the

differences in the trends for NH and CI listeners in figure5.13(b) and (c). To break down

this interaction, within-subject contrasts were performed, comparing different timbre fea-

tures across NH and CI listeners. These revealed significant interactions when comparing

the percentage information transmitted to NH and CI listeners through LRT and IRR (F(1,8)

= 49.061,p < 0.001). The interactions when comparing the percentage information trans-

mitted to NH and CI listeners through B and IRR were not significant (F(1,8) = 0.647,p >

0.05). Figure5.13(b) and (c) show that the most information was conveyed by LRTin NH

listeners (for predicted and measured results), compared to a substantially lower amount of

information conveyed through LRT in CI listeners.

The amount of information transmitted in the different types of results (predicted or mea-

sured) did not differ significantly between NH and CI listeners (F(1,8) = 2.93,p > 0.05). In

the predicted results, NH listeners had a substantially higher mean than CI listeners. In the

measured results, NH listeners had a lower mean percentage information transmitted than CI

listeners, but the difference between NH and CI listeners formeasured results was smaller

than for predicted values. This suggests that in reality, more information is transmitted to CI

listeners than predicted by the timbre perception model. For features B, LRT and IRR for

CI listeners, the difference in the percentage information transmitted between predicted and

measured values was 13.743 %, 7.853 % and 9.073 %, respectively. For NH listeners, the

model predicted that a slightly greater percentage of information would be transmitted than

what was actually perceived by the listener. For features B, LRT and IRR for NH listeners,

the difference in the percentage information transmitted between predicted and measured

values was 2.117 %, 5.226 % and 4.258 % information transmitted, respectively. These

results could be due to simplifications made in the implementation of the model of timbre

perception as well as in the acoustic model, as will be discussed in section5.4.
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No significant interactions between the different timbre features B, LRT and IRR, and the

type of result, predicted or real, were found (F(1,8) = 0.954,p > 0.05). To break down this

interaction, within-subject contrasts were performed, comparing the two levels of result type,

predicted or real, across each of the timbre features, B, LRT and IRR. The first within-subject

contrast revealed a non-significant interaction (F(1,8) = 11.622,p > 0.05) when comparing

B to IRR when the listener’s results were predicted, comparedto measured results. This

indicates that when comparing B to IRR, there was no differencebetween the percentage

information transmitted between predicted and measured results. There is a decrease in the

transmission of information between B and IRR for measured results and a very slight in-

crease in the percentage of information transmitted between B and IRR for predicted results.

The means that the measured results for both B and IRR are always higher than the predicted

results.

The second within-subject contrast showed a non-significant interaction (F(1,8) = 0.064,p >

0.05) when comparing LRT to IRR when the results of the listener were predicted, compared

to measured results. This shows that there is a decrease in the percentage of information

transmitted between LRT and IRR when comparing predicted andmeasured results. The

mean of the predicted results is always lower than that of themeasured results for each of

the timbre features B, LRT and IRR.

Finally, the interaction effect between timbre features, result type and listener was not sig-

nificant (F(2,16) = 0.102,p > 0.05) for interactions between B and IRR and between LRT

and IRR. This indicates that the interaction between timbre feature and type of result was

not different for NH and CI listeners. This in turn suggests that, overall, for predictions and

measured results, the acoustic model performed well. Again, contrasts were used to break

down the interaction: these contrasts compared the information transmitted to NH and CI

listeners at both predicted and measured result levels across each of the timbre features. The

first contrast revealed a non-significant difference (F(1,8) = 1.602,p = 0.241) between NH

and CI listener values when comparing B to IRR for predicted compared to measured re-

sults, and tells us that for both NH and CI listeners, there is adecrease in the percentage of

information transmitted between B and IRR for both predictedand measured results. In the

case of NH listeners, the predicted mean results are always higher than the measured results,

whereas the opposite applies to CI listeners.
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The second contrast investigated differences between NH and CI listeners when comparing

LRT to IRR for predicted compared to measured results. This contrast was found to also have

a non-significant interaction effect (F(1,8) = 0.001,p = 0.977). This shows that there is a

decrease in the percentage information transmitted between LRT and IRR when comparing

predicted and measured results, for both NH and CI listeners.The mean of the predicted

results is substantially lower than that of the measured results for each of the timbre features

B, LRT and IRR for CI listeners, while there are smaller differences between predicted and

measured results for NH listeners for all of the timbre features, but with the predicted means

being slightly higher than the measured means in each case.

Although there are differences in the trends noted for NH andCI listeners, the predicted

and measured results follow the same trend for each listenergroup, as shown in the results

of figure5.13. This shows that the model of timbre perception provides an adequate repre-

sentation of timbre perception, defined by B, LRT and IRR, and shows that the amount of

information transmitted by these features through a CI is indeed low (see figures5.13(b) and

(c), compared to the NH conditions of (a)). This suggests that improvements in conveying B,

LRT and IRR to the listener may be the key to improving timbre perception in the electrically

stimulated auditory system.

5.4 DISCUSSION

5.4.1 FITA analysis of similarity ratings

The FITA results of figure5.11 illustrate the differences in the similarity rating results for

NH listeners (listening to the acoustic model) and CI listeners. Although the trends for the

timbre features differ for the two listener groups, the amount of information transmitted by

the timbre features is in a comparable low-end range for bothNH and CI listeners. This

suggests that the implemented acoustic model fares sufficiently in comparison to the results

obtained from CI listeners, but that the acoustic model is notan exact replica of what CI

listeners hear. This was expected, as the ability of CI listeners to perceive sounds varies,

and therefore a good general acoustic model should be able topredict the average outcome

across a large group of listeners, as opposed to providing accurate predictions for individual

listeners. The outcome of the acoustic model as implementedfor the purpose of this study is
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therefore sufficient, as the primary concern was not with designing a good acoustic model,

but rather predicting the timbre data found in NH and CI listeners sufficiently, in order to

determine whether timbre perception could be modelled using the three important timbre

features as a foundation.

The ranking of features through which the highest percentage information was transmitted

differs for the NH and CI groups. For the NH group, the most information was transmitted

through the feature LRT, followed by B, and then IRR. This is whatwe would expect from

NH listeners exposed to acoustically modelled sounds, as the temporal information is least

affected by processing of the sound, as discussed in section4.4.1.1. However, for the CI

group, the least information was transmitted through LRT, with B transmitting the greatest

amount of information, followed by the IRR feature. This would indicate that on average, the

CI listeners have a better perception of the spectral features of timbre than is assumed by the

acoustic model, and a worse perception of the temporal features of timbre than is assumed

by the acoustic model. This finding can in part be substantiated by a study conducted by

Stainsbyet al. (2002), in which steady-state envelopes of musical instrument sounds were

investigated. The study showed that some CI users may have frequency selectivity that

is comparable to that of NH listeners, and also concluded that a large amount of spectral

information seems to be available to some CI listeners. This finding could explain why the

feature B is transmitted most effectively to CI listeners in the similarity rating experiments of

this study. However, due to the large SDs in the CI group of thisstudy, as well as those found

by Stainsbyet al.(2002), it is difficult to make general conclusions, becausesubject-specific

factors affect individual results differently.

NH listeners generally received the most information through the LRT feature, due to the

structure of the acoustic model, but it is also the feature inthe NH group with the largest SD,

indicating substantial variations in the results of the NH subjects for the perception of this

feature.

The similar trends between features B and IRR for the information transmitted to NH and

CI listeners can be explained by both of these features involving the spectral composition of

the instrument sounds. The subject-specific spectral resolution of CI listeners is illustrated

by the large SDs in the amount of information transmitted to CIlisteners for features B

and IRR. The mean values for CI listeners for features B and IRR arehigher than for NH

listeners, but the NH group has small SDs for both features. This is indicative of the strict

limitations imposed on the spectral components of the soundthrough the acoustic model,
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which cause the percentage information transmitted to be less than in the CI listeners. These

limitations also cause smaller SDs in the NH group for B and IRR,as the spectral limitations

substantially affect the timbres of the sounds, which are clearly conveyed to the listener and

therefore perceived similarly in all listeners.

5.4.2 Model of timbre perception

To assess the success of the developed model of timbre perception, a comparison of the

predicted and measured confusion matrices obtained for both NH and CI listeners will first

be discussed. The predicted NH and CI confusion matrices of section 5.3.2.2, as shown in

figures5.9 and5.10, show similarities in the instrument confusions. Specifically, the piano

sound is least confused with any of the other sounds for both NH and CI listeners subjected

to the processed and unprocessed sounds, respectively. In both predicted confusion matri-

ces, the saxophone is most likely to be confused with the piano. Higher confusions can be

noted for both NH and CI listeners between instruments in the family of string instruments.

These trends also correspond to the confusion matrices obtained from the similarity rating

experiments.

Similarities between the predicted confusion matrices also include a high probability of con-

fusing the flute and cello, amongst other higher confusions between sound pairs. Overall,

the predictions for NH and CI listeners appear to have higher confusions that are more scat-

tered throughout instrument pairs than in the case of the experimental results of figures4.9

and4.10. This is possibly due to the fact that the JND values used in creating the ellipsoids

around each instrument sound in the timbre space were found from the averaged discrimi-

nation of synthesised tones. This could have contributed tomaking the predicted confusions

higher and more scattered than was found for the measured abilities of the listener.

Comparisons between the predicted and measured FITA resultsfor both NH and CI listeners,

as given in figures5.12and5.13, illustrate the outcomes of the developed model of timbre

perception. The individual listener results of figure5.12show that although the percentage

of information transmitted to each listener varies substantially across subjects, the trends of

the percentage of information transmitted through each timbre feature are similar for the pre-

dicted and the measured data for each listener, with only a few exceptions. For example, in

figure5.12(c), subject CI5 is seen to perform comparably to NH listeners(figure5.12(a)) in

the similarity ratings, but the predicted results underestimate the performance of this subject
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substantially. However, in addition to the fact that CI5 had been exposed to musical training,

this subject also enjoyed listening to music and showed exceptional speech perception abil-

ities upon receiving her implant, suggesting extraordinary overall music perception abilities

which could not be accurately predicted by the model.

However, the similarities generally found in the predictedand measured percentage of infor-

mation transmitted for each subject suggest that the model of timbre perception sufficiently

predicts the measured data for each listener, illustratingthe subject-specific nature of the

model. This outcome also suggests that the method of modelling ellipsoids around each of

the instrument sounds in the three-dimensional space to obtain the predicted data was ap-

propriate, as individual listener JNDs were used to predictconfusions between instrument

sounds. If Euclidean distances alone had been used for predicting the confusions between

instrument sounds, the predictions within each listener group would have been identical and

the model would not have predicted the outcomes of the similarity ratings for each subject

sufficiently.

The FITA analysis of figure5.13revealed close predicted values compared to those measured

experimentally for NH listeners (figure5.13 (a) and (b)) for each of the timbre features.

However, fairly large differences in predicted and measured results for each of the timbre

features were found for CI listeners. Large SDs in the FITA results are apparent from the

individual subject results in figure5.12, where the variability in the results among subjects

was large.

From the results of figure5.13 (b), the NH listener predictions, it can be seen that the

predicted percentage of information transmitted by each ofthe timbre features was always

slightly higher than the percentage of information transmitted as calculated from the mea-

sured results. This could be due to simplifications made in the implementation of the model

of timbre perception, as the JND values used in the model wereobtained from simplified in-

strument sounds, constructed only from the timbre featuresB, LRT and IRR. The omission

of factors such as noise in the synthesised sounds from whichthe JNDs were calculated may

have caused the model to overestimate the percentage of information transmitted through

each of the timbre features, as real instruments sounds wereused in the similarity ratings.

As a result of not using real sounds for the discrimination tasks, differences in JND values

for timbre features and the percentage of information transmitted through these features for

some of the listeners can be noted. For example, subjects CI2 and CI3 have fairly low B
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JNDs (figure4.7), but a poor percentage of information transmitted for B (figure5.12). Sim-

ilarly, subject CI5 had an average LRT JND, but a high percentage of information transmitted

through LRT. These discrepancies indicate that using real sounds for the discrimination tasks

could change the outcomes of the discrimination tasks substantially, and provide better sim-

ilarities between the predicted and actual outcomes for themodel of timbre perception.

The processing of the real instrument sounds through the acoustic model possibly further

increased the complexity of the sounds, and thus the timbre similarity rating tasks, in com-

parison to the discrimination tasks, for the listener. In the model of timbre perception, the

gain factor, as discussed in section5.2.1for B, LRT and IRR, could perhaps be adjusted to

below unity to compensate for the difficulties introduced inperceiving the sounds as a result

of processing through the acoustic model and thereby make the timbre perception model

predictions more accurate.

For CI listeners (figure5.13(c)), the timbre perception model predictions over-estimate the

difficulty of the similarity rating task. A possible explanation for this finding may be that CI

listeners make use of other information in addition to the NHtimbre cues B, LRT and IRR to

perceive the timbre of a sound. This could be due to CI listeners having grown accustomed

to sounds heard every day through a CI, along with which additional available information

may be utilised to perceive auditory stimuli. By using synthesised sounds as opposed to real

instrument sounds in the similarity ratings, the possible additional cues would be absent, and

this would perhaps result in a better correlation between the measured and predicted results.

In addition, not having included signal pre-emphasis in theacoustic model may explain the

resulting low predictions of the model for CI performance. Although the model predicted

NH performance fairly well, the model under-estimated the abilities of CI users quite sub-

stantially. As a result of excluding signal pre-emphasis inthe acoustic model, the stimuli

used as a basis for the model as well as in the CI simulation, would have been quite low-pass

in nature. However, in the case of real CI listeners, where signal pre-emphasis is included,

more higher frequency channels may have been stimulated, perhaps heightening the percep-

tual capabilities of CI listeners in comparison to the predictions of the model. By including

signal pre-emphasis, the percentage information transmitted to NH listeners listening to the

processed sounds could increase for both the predicted and measured data. For the results of

the CI listeners, including signal pre-emphasis would potentially result in higher predicted

percentages of information being transmitted to the listener, thus potentially moving the pre-

dicted and measured data closer in proximity, thereby improving the accuracy of the model.
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Differences in the predicted and measured results obtainedfor CI listeners may also have

been strongly dependent on the acoustic model implementation being different to the pro-

cessing as performed through a real CI. The biophysical characteristics of the electrode-

neural interface were not included in the developed acoustic model, but in the case of CI

listeners, the biophysical aspects were present. The omission of the biophysical characteris-

tics from the acoustic model may also explain why there were differences between the NH

and CI results - for predicted and measured FITA results. Thisis as a result of the different

processed sounds that the NH and CI listeners would be exposedto, with NH listeners having

no biophysical effects or signal pre-emphasis, while in thecase of CI listeners, these factors

are utilised in the processing of the musical instrument sounds.

However, the omission of the biophysical characteristics of the electrode-neural interface

allowed the effect of only the processor on timbre perception to be investigated. If the pro-

cessor had not had an influence on timbre perception, this would not have been apparent by

implementing both the processing and biophysical aspects of the acoustic model as a first

acoustic model implementation for this study. As can be seenfrom the differences in the

frequency domain representations of figures3.33and3.34, the effect of the processor as im-

plemented in the acoustic model had a drastic effect on the frequency spectra of the sounds.

By comparing these figures, the frequency peaks of the processed sounds in figure3.33are

all low pass in nature. This is due to the implementation of the ACE algorithm; because

the energy is concentrated in the lower frequency components for the musical instrument

sounds, the lower frequencies are selected.

By including the biophysical characteristics in the acoustic model implementation in future

revisions of this work, differences between the NH and CI FITAresults of figure5.13may

be decreased. Differences between the predicted and measured results of the CI FITA results

could be decreased by including the biophysical characteristics in the acoustic model imple-

mentation, but the exact effect can not be known without conducting further experiments to

establish this.

Overall, it is difficult to make substantiated comparisons between the trends of NH and CIs,

probably due primarily to the limitations in the predictiveabilitiy of the acoustic model,

as seen from the measured data in figure5.11. From these results, it can be expected that

differences between NH and CI model predictions would occur.An acoustic model with the

biophysical characteristics of the electrode-neural interface included may yield comparable

trends in NH and CI data, implying that NH listeners could be used to predict the outcomes
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of timbre perception experiments for both NH and electrically stimulated hearing conditions.

However, this is not a primary concern, as the objective herewas not to develop an acoustic

model that could predict timbre perception. Rather, the NH data serves as a baseline for

comparison, while the main objective was to develop a model that would be able to predict

CI timbre perception data. The present work provides a foundation for this purpose, showing

that the modelling ideas are correct (as evidenced by figure5.13(a) and (b)), but still have

shortcomings (as evidenced by figure5.13(c)).

A likely explanation as to the sufficient predictive abilities of the model of timbre perception

for NH listeners compared to CI listeners can be provided by the choice of the important

timbre features; namely, B, LRT and IRR. These features have been reported in literature as

important features for NH listeners, but no features have been explicitly defined for CI listen-

ers. Since we do not explicitly know what the dimensions of timbre are that facilitate timbre

perception in CI listeners, we based the model on NH features,and could expect that this

model would not represent timbre perception in CI listeners as well as in NH listeners. As

suggested previously, CI listeners may use other auditory cues to perceive timbre in addition

to the three important NH cues. The hypothesis that CI listeners make use of other auditory

cues to perceive timbre would need to be tested to draw further conclusions regarding the

differences in the performance of the model of timbre perception for NH and CI listeners.

Additionally, a factor that may have contributed to the poorer predictive abilities of the model

of timbre perception for CI listeners was the large variations in the abilities of the CI listen-

ers to perceive timbre, specifically for CI5, as discussed previously (figure5.12(c)). Only

a small subject group was used in this study, whereas averagemodel predictions and mea-

surements of perception calculated over a larger subject group may yield more consistent

results.

From figure5.13, it appears that the model of timbre perception is sensitiveto the position

of the sounds in the three-dimensional timbre space. This can be illustrated by comparing

the NH predicted results of figure5.13 (a) and (b), for unprocessed and processed instru-

ment sounds, respectively. Processing of the sounds through the acoustic model causes the

sounds to be shifted substantially in the timbre space, while the JNDs used in obtaining the

predictions remain the same for NH listeners in both figure5.13(a) and (b). However, the

predictions for these two cases differ substantially, alsoshowing the sensitivity of the model

of timbre perception to the choice of the acoustic model implemented, as this will affect the

positioning of the sounds in the timbre space.
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The model sensitivity may thus also be affected by factors such as the exclusion of signal

pre-emphasis from the developed acoustic model, which could have affected the grouping

of sounds in the timbre space and thus could have had a substantial effect on the predictions

of the model of timbre perception, due to the model sensitivity to the position of the sounds

in the timbre space. Additionally, the exclusion of the biophysical characteristics from the

acoustic model could also have greatly affected the sensitivity of the model of timbre per-

ception, as this would have affected the positions of the sounds in the timbre space.

The SDs indicated for the predicted results of figure5.13are due to the differences in the

JNDs obtained for each subject. This illustrates the sensitivity of the model of timbre per-

ception to the discrimination task results and therefore toindividual subjects, suggesting that

the model is sensitive to subject-specificity.

A general trend that can be observed from the average resultsof figure 5.13 is a relative

increase in the SD as the percentage of information transmitted increases. This is indicative

of the sensitivity of the model of timbre perception to both the position of the instrument

sounds in the three-dimensional timbre space and to subject-specificity, and also suggests

that the JND values and the position of the sounds have a relative impact on the model

predictions.

A summary of the differences in the results of figure5.13 (b) and (c) for predicted and

measured results for NH and CI follows. For NH listeners, LRT was predicted to be the

feature that would be conveyed most readily to the listener,followed by a prediction of a

much lower amount of information transmitted by B, and then byIRR. The experimental

results showed the same trend. In addition to the predicted outcomes following the same

pattern as the measured results, the predicted and measuredresults showed on average less

than a 3 % difference in percentage information transmitted.

However, for CI listeners, predictions and experimental results both indicated that B would

be the feature conveyed most readily to the listener. In the predicted results, B was followed

by LRT, and then by IRR being conveyed least effectively, while in experimental results IRR

conveyed slightly more information than LRT. In addition tothese differences in trends, the

differences in predicted and measured results were greaterthan for NH listeners, with an

average of over 10 % difference in percentage information transmitted.
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Overall, the FITA results of figures5.12 and5.13 illustrate the general sufficiency of the

timbre perception model. The model appears to predict the outcomes of the timbre similarity

rating experiments for NH and CI listeners acceptably, giventhat the trends of the predicted

results follow those of the measured results. In addition, the trends of figure5.13(a) and (c),

for NH and CI listeners respectively listening to unprocessed sounds, are similar, but the NH

listeners clearly have a higher percentage of information available to them through the three

timbre features. These similarities in the trends appear toconfirm the validity of the choice

of B, LRT and IRR as the primary contributing features to timbreperception.

The results suggest that, if CI processors could be optimisedfor the transmission of these

three important timbre perception features, timbre perception through a CI should improve.

Alternatively, these three features could be used as a relative measure when comparing new

speech processors that may be designed to improve timbre perception. This approach could

provide a favourable alternative to memory-based tasks, such as instrument identification,

which are commonly used in timbre perception research.

5.5 CHAPTER SUMMARY

This chapter described the modelling component of this study in detail. The timbre fea-

tures B, LRT and IRR, extracted for both the unprocessed instrument sounds and those pro-

cessed through the acoustic model, as well as the JNDs for these values obtained from the

discrimination task results (section4.3.2), were provided and formed a foundation for the

development of the model of timbre perception. The predicted results of the model of timbre

perception were reported in the form of confusion matrices.FITA analyses were performed

on these results as well as the confusion matrix results of the similarity rating experiment

(section4.3.2). This analysis indicated the percentage information transmitted through each

of the important timbre features for predicted and measuredresults for both NH and CI listen-

ers. Statistical analyses of the results were also provided. A detailed discussion of the results

of the model of timbre perception were presented with comparisons made to literature where

possible. This chapter discusses the overall outcomes and implications of this study, which

provides an entry point into achieving a quantitative understanding of the timbre perception

abilities of CI listeners.
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The model of timbre perception developed based on the timbrefeatures B, LRT and IRR has

been shown to adequately predict the outcomes of timbre perception experiments for both

NH and CI listeners. This provides a valuable tool in developing CI processors to facilitate

timbre perception, and thus in furthering timbre perception research, with the ultimate aim of

improving timbre and music perception for CI listeners. A general discussion and conclusion

is provided in chapter6, to summarise the accomplishments of the study and to provide a

critical analysis with directives for future work, using this study as a foundation.
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CHAPTER 6

GENERAL DISCUSSION AND

CONCLUSION

A brief general discussion of the measurement and modellingcomponents of this study,

presented in chapters 4 and 5, is given below. Detailed discussions of the work presented in

these chapters are given in sections4.4 and5.4. A brief summary is given here to illustrate

that the research questions posed in chapter 1 have been addressed.

• The important timbre perception features were defined as B, LRT and IRR (section

3.4), and were successfully extracted from both the original sounds and sounds pro-

cessed through the acoustic model (section5.3.1).

• Although the acoustic model did not predict the outcome of CItimbre perception ex-

periments accurately, as shown in section5.3.2.1, the model was acceptable for the

purpose of this study, in which the primary focus was not on the acoustic model.

• Quantitative results were obtained regarding timbre perception in NH and CI listeners,

presenting the abilities of the perception of the importanttimbre features B, LRT and

IRR in measurable terms for both listener groups (section4.3.1).

• The model of timbre perception developed sufficiently predicts the results of NH and

CI listener timbre perception experiments, with the trends of the predictions following

those of the experimental results in both groups, as can be seen from figures5.13 in

section5.3.2.2.
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The main findings of this study are listed below.

• Measurable results for three important timbre features, namely B, LRT and IRR, were

found for NH and CI listeners (section4.3.1), and compared well to NH and CI liter-

ature regarding overall timbre perception abilities. NH listeners showed substantially

better discrimination abilities than CI listeners for each of the timbre features, as can

be seen from figure4.7 in section4.3.1.

• From figure4.8, the CI listeners were seen to be most sensitive to the temporal feature

LRT. Discrimination of the spectral centroid showed large variations among subjects of

this group, and a poor discrimination ability in general wasobserved when compared

to NH listeners.

• The developed acoustic model did not provide an accurate representation of timbre

through the electrically stimulated auditory system. The results of figure5.11in sec-

tion 5.3.2.1show that the suppression of the spectral features was far greater through

the acoustic model than what was actually perceived by the CI subjects, while the tem-

poral feature limitations imposed were not great enough. The large SDs in the amount

of information transmitted through each timbre feature to CIlisteners illustrates the

subject-specific nature of CI processors, as substantial differences were found from

subject to subject (see figure5.12).

• The timbre perception model predicts the transmission of timbre features to NH and CI

listeners satisfactorily, as can be seen from the results offigure5.13. For NH listeners,

the model of timbre perception provides accurate predictions, with an approximate av-

erage difference of less than 4 % of the information transmitted between predicted and

measured results across all of the timbre features. The predicted amount of information

transmitted through each timbre feature was always slightly higher than the measured

amount transmitted to the listener as found by the similarity judgements of timbres.

This indicated that the model predictions overestimated the abilities of NH listeners to

perceive each of the timbre features through the acoustic model. In CI listeners, the

model of timbre perception performs less accurately, with adifference of greater than

10 % between the percentage information transmitted between predicted and measured

results incurred over all the timbre features. The model predictions underestimated the

abilities of CI listeners to perceive each of the timbre features.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

162



Chapter 6 GENERAL DISCUSSION AND CONCLUSION

• The predictions of the model of timbre perception indicatethat the transmission of the

important timbre features B, LRT and IRR through the electrically stimulated auditory

system is poor, as can be seen from figure5.13when comparing (a) the NH listener

results to (c) the CI listener results for unprocessed sounds. This implies that timbre

perception abilities of CI listeners will be improved by the development of processing

strategies to facilitate the transmission of these features.

The first step of this study was to perform a general literature study on CIs, existing acoustic

models and timbre perception for both NH and CI listeners. Theliterature study was then

focussed to investigate timbre features deemed important for timbre perception that could

be used as a basis on which to develop a model of timbre perception. The timbre features

B, LRT and IRR were established as important timbre features through existing literature to

complete the first two objectives of the study, as described in section1.2. Although these

three features were prominently found to be linked to timbreperception in literature (e.g.

Krimphoff et al.(1994), Caclinet al.(2005) and McAdamset al.(1995)), other features were

however also found to be important. A shortcoming of this study is that not all the features

important for timbre perception were included in the study.For example, a recent study by

Hall and Beauchamp (2009) found that both spectral incoherence and spectral irregularity

were relevant features for the perception of musical instrument tones in NH listeners. This

would suggest that including additional timbre features inthe model of timbre perception,

especially where there are some discrepancies in the literature as to which features are most

important, could improve the accuracy of the model predictions.

In addition, this study assumed that the features deemed as important for timbre perception

in CI listeners were the same as those for NH listeners, as a result of a lack of literature to

suggest otherwise. As could be expected, the predictions ofthe model showed larger errors

for CI listeners than for NH listeners. This suggests that other timbre features important for

timbre perception in CI listeners may exist which need to be included in the model of timbre

perception for CI listeners. Although the approach of assuming the same features applied to

CI listeners as to NH listeners was fair given that studies such as this had not been formulated

before, other timbre features could have been considered with the potential of improving the

model of timbre perception for CI listeners. An investigation into the acoustic cues used by

CI listeners to perceive timbre could be conducted to gain insight into the important timbre

features in the electrically stimulated auditory system, acomponent that was lacking in this

study.
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Extraction of the important timbre cues for CI listeners through extensive psychoacoustic

experiments may be possible by using a similar approach to timbre perception studies for

NH listeners as in previous literature, where MDS techniques were commonly utilised (see

section2.3.1). However, investigating timbre features for the electrically stimulated auditory

system would present difficulties in that simple instrumentrecognition tasks could not be

applied reliably, with many CI users not having the musical memory required to complete

such tasks. Similarity ratings, such as those performed in this study, but with more exten-

sive and complete sets of instruments, could be a possible entry point into the extraction

of important timbre features for CI listeners. By attempting to extract the acoustic cues for

CI listeners from MDS results extracted from such similarityratings, it may be possible to

develop a model of timbre perception unique to CI listeners using specific CI timbre features

as opposed to the NH features B, LRT and IRR implemented in this model.

The literature study allowed for the development of an acoustic model based on the ACE

strategy to complete the third objective given in section1.2. Only the processing side of the

acoustic model was implemented, without taking into account the effects of the biophysi-

cal characteristics of the electrode-neural interface, toisolate the effects of a CI processor on

musical instrument sounds. In addition, signal pre-emphasis was not included in the process-

ing steps of the acoustic model as this study focussed on music, and pre-emphasis is usually

included for speech intelligibility. This basic implementation of the acoustic model served as

an entry-point into understanding how timbre perception isaffected by processing through

a CI, and as a basis on which to perform timbre perception experiments with NH listeners.

However, experiments involving similarity ratings of timbres, with NH listeners listening

to acoustic simulations and CI listeners listening to unprocessed musical timbres, revealed

fairly different results for the different listener groups. This indicates that the acoustic model

was not an accurate representation of timbre as presented tothe electrically stimulated audi-

tory system, but was sufficient for the purposes of this study, as the acoustic model was not

the primary focus.
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Improvements to the accuracy of the implementation of the acoustic model should be inves-

tigated for future revisions of this study. Including signal pre-emphasis could be considered

to create a new set of stimuli from which the effects of the CI processor on timbres could

be more accurately assessed. In addition, the effect of biophysical characteristics of the

electrode-neural interface should be included in the acoustic model to provide a more real-

istic representation of timbres as processed through a CI, aswell as providing an improved

foundation on which to model timbre perception. Improvements to acoustic models apply

not only to this study, but to all CI research. Acoustic modelsprovide generic representations

of sound through a CI but fail to accurately represent what is heard by a variety of implantees.

This in turn results in acoustic models not always being ableto predict the outcomes of CI

experiments, a shortcoming which needs to be addressed before acoustic models can be used

to their full potential in CI research. With a more accurate representation of sound as it is

processed through the electrically stimulated auditory system, more accurate predictions of

the performance of CI listeners could be made and a closer correspondence to the predicted

and measured results for NH and CI listeners for the timbre perception model implemented

in this study would be possible.

The experimental component of this study consisted of timbre discrimination tasks as well

as similarity ratings, using synthesised and real musical instrument sounds, respectively. Al-

though peak normalisation of the sounds used in the experiments was performed and assisted

in balancing the perceived loudness levels of the sounds, a subjective loudness balancing

procedure was not implemented, as this would require new complex procedures to be de-

veloped for such a task. However, the peak normalisation of the sounds used in this study

was adequate, as there were no large perceptual loudness differences in the sounds. In future

revisions of this work, an option could be to normalise the RMSof the sounds while ensur-

ing that no peak clipping occurs. This would ensure that eachof the sounds would have the

same total energy, and should eliminate any effect that perceptual loudness difference might

have on the similarity ratings. By balancing the energies of the sounds, improved stimuli for

both experiments and modelling could result, possibly providing more accurate results for

the similarity rating experiments, as well as improving theaccuracy of the timbre perception

model predictions.

Timbre feature discrimination abilities for both NH and CI listeners were measured by means

of psychoacoustic experiments with synthesised sounds. This provided quantitative results

of the perceptual abilities of both NH and CI listeners, and differences therein, for the three

important timbre features. Synthesised sounds were used for ease of generating and altering
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sounds, as used in previous studies regarding timbre perception (e.g. Caclinet al. (2005)).

Discriminations of the synthesised tones were used to find JND values (as in section4.2.1) to

be used as inputs to the model of timbre perception (based on the method of van Zyl (2008))

that would be common to all sounds for each listener. Although this served as a satisfac-

tory entry-point to gain such experimental data, alternative methods could be investigated to

provide more accurate JND values. Instead of using a generalised synthesised tone in the

discrimination tasks in which JND values were recorded, a possibility is to use real musi-

cal instrument sounds that are varied by adjusting one of thetimbre features each time. A

study by Horner, Beauchamp and So (2009) followed such an approach for timbre perception

studies in NH listeners and found that timbre discrimination abilities differed for changes in

different musical instruments. However, a shortcoming of this study was to assume the same

JNDs for all instrument sounds for each listener.

A more accurate representation of the JNDs for B, LRT and IRR around individual musical

instrument sounds would be possible if real instrument sounds were used, but this would

require a computationally intensive and accurate timbre resynthesis technique such as that

developed by Jensen (1999b) to be implemented for a variety of musical instrument sounds.

The sounds would have to be resynthesised for each incremental change in timbre features,

which calls for a complex process requiring highly accuratetimbre resynthesis techniques.

The number of experimental sessions would also increase substantially, as individual exper-

iments for discrimination abilities of each timbre featurefor each musical instrument sound

would have to be investigated. However, a database of such measurable results may provide

invaluable insight into timbre perception abilities of NH listeners compared to CI listeners.

Shortcomings in this work as a result of not using real soundsfor the discrimination tasks can

be noted from differences in JND values for timbre features and the percentage of informa-

tion transmitted through these features for some of the listeners, as discussed in section5.4.2.

Using real sounds for the discrimination tasks in future revisions of the work performed in

this study could change the outcomes of the discrimination tasks substantially, and provide

better similarities between the predicted and measured outcomes for the model of timbre

perception. If the same sounds are used for both the discrimination tasks and similarity rat-

ings, a correlation between timbre feature JNDs and the percentage information transmitted

through these features could prove to be useful in further understanding timbre perception,

and thus in validating the developed model of timbre perception.
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The development of a model of timbre perception was carried out using the timbre feature

JND results obtained from the discrimination tasks as a basis to complete the main objective

of the study. An approach similar to a model of speech perception previously implemented

(van Zyl, 2008), and based on signal detection theory, was followed to provide predictions for

timbre perceptual studies which were compared to measured results in the form of similarity

ratings. The dimensions of the ellipsoids used in the model of timbre perception were imple-

mented to be symmetrically positioned around the sounds in the three-dimensional space, as

described in section5.2.1. This modelling assumption is one that may not be well substan-

tiated, although it was used in the model by Svirsky (2000) previously. Non-symmetrical

ellipsoids could be an option for exploration to obtain moreaccurate predictions.

The timbre perception model predictions were compared to measured results obtained through

similarity ratings of ten musical instrument sounds. The similarity ratings were used as

a measure of confusions between musical instrument sounds.Although direct instrument

identification tasks would have produced confusion matrices directly, it was decided to use

similarity ratings instead, primarily due to the difficulties associated with an identification

task for CI listeners. Most of the CI listeners were limited in musical memory, and would

not have been able to identify instruments by name. Even the similarity rating tasks were

extremely challenging to most of the CI listeners. However, in future work an attempt should

be made to make comparisons between confusion matrices obtained from similarity ratings

and identification tasks, as the relative weights for timbreperception might assume different

proportions in an instrument identification task than in similarity ratings.

A possibility for future revisions of this work could also beto perform similarity ratings

without including like pairs of sounds, for example the piano-piano sound pair. This would

potentially give rise to different similarity rating results, with the listener making use of a

different perceptual weighting scale. In addition, the effect of similarity ratings between

mismatched sound pairs could also be more prominent by excluding like pairs of sounds in

the similarity rating tasks, possibly resulting in different confusion matrices and thus FITA

results.

The instrument sounds used in this study were selected as an adequate sample group contain-

ing instruments from the four primary musical instrument families, as discussed in section

3.2. To expand on this study and possibly improve the model of timbre perception, an option

would be to encompass a wide range of musical instrument timbres, as found in everyday

music listening conditions. This will involve investigation of larger sound databases in addi-
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tion to the 10 instrument sounds investigated in this study,as well as variation of the notes

of the musical instrument timbres presented. As discussed by Hall and Beauchamp (2009),

the identification of some timbres can change depending on pitch, with the possibility of

characteristic pitches emerging for instruments. A shortcoming of the research in this disser-

tation was that only C4 (262 Hz) notes were used, but other common notes used in western

music and timbre perception studies include F#3 (185 Hz), E4(330 Hz) and G4 (391 Hz)

(Nimmonset al., 2008), and these may provide insight into attributes of timbre perception

that are not visible when using only a single pitch.

Additionally, potential training effects may have influenced the results of both the discrim-

ination and the similarity rating tasks, as a small closed set of stimuli were used. Training

effects could thus also have affected the differences between the predicted and measured CI

performance. In future revisions of this work, a more complete set of stimuli could be de-

veloped, encompassing different pitches and timbres, withthe aim of presenting stimuli in a

complex environment more true to real listening conditions.

Through analysis of the confusion matrices obtained from both the model predictions and

similarity rating experiments conducted, it was possible to establish which perceptual timbre

features are available and to what extent they are conveyed through the processor of a CI.

The results of the timbre perception model showed that the model sufficiently predicted the

results of the timbre similarity rating experiments for NH and CI listeners, with the trends

of the predicted values following those of the measured results. For NH listeners, the model

predictions were fairly accurate, with only small discrepancies between the predicted and

measured results obtained. However, for CI listeners, the differences between predicted and

measured values showed larger discrepancies, and this was probably due to the timbre fea-

tures on which the model was based being NH timbre features. In general, the model of

timbre perception was found to predict the outcomes of timbre perception experiments satis-

factorily for both NH and CI listeners, thereby providing a tool to assist in the development

of CI processors to facilitate timbre perception, and thus accelerate CI research.

Because the research addressed in this study is a recent topic, measurable results regarding

timbre perception, particularly in CI listeners, are not readily available. More extensive

investigation into both discrimination abilities of timbre features and similarity judgements

of musical instrument timbres is a suggestion for future work necessary to gain a better

understanding of timbre perception abilities in both NH andCI listeners in general.
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The next research step will be to improve CI processors to assist with the transmission of

important timbre features to the listener. Improving the transmission of the important timbre

features B, LRT and IRR by means such as those suggested in section 4.4.1could enhance

timbre perception in CIs. Investigation into additional cues used by CI listeners, and the

effective incorporation of these to be optimally transmitted through a CI, could also be ben-

eficial to advancing timbre perception in the electrically stimulated auditory system, and

indicates the vast research opportunities that can stem from this study.

The initial model of timbre perception presented in this study provides a tool to assist in

CI research regarding timbre perception by providing a quantitative understanding of timbre

perception in the electrically stimulated auditory system. In turn, this provides a platform

on which to develop CI processors to facilitate timbre perception, with the ultimate goal of

improving music perception through a CI processor.
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APPENDIX A

ADDITIONAL MUSICAL

INSTRUMENT SOUNDS

Illustrations of the 6 musical instrument sounds that were used in this study in addition to

the four sounds used as examples throughout the dissertation are presented in this Appendix.

The four primary sounds presented in the body of this dissertation are the piano, trumpet,

clarinet and violin. The additional 6 sounds illustrated here are the French horn, trombone,

flute saxophone, cello and viola. For each sound, the time domain, frequency domain and

additive parameter representations are given for both the original sounds and the sounds

processed through the acoustic model.
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Appendix A Additional musical instrument sounds

Figure A.1.
Illustrations of the French horn sound, showing the time domain representation of (a)
the original sound and (b) the processed sound, the frequency domain representation
of (c) the original sound and (d) the processed sound, and theadditive parameter
representations of (e) the original sound and (f) the processed sound.
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Appendix A Additional musical instrument sounds

Figure A.2.
Illustrations of the trombone sound, showing the time domain representation of (a) the
original sound and (b) the processed sound, the frequency domain representation of
(c) the original sound and (d) the processed sound, and the additive parameter
representations of (e) the original sound and (f) the processed sound.
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Appendix A Additional musical instrument sounds

Figure A.3.
Illustrations of the flute sound, showing the time domain representation of (a) the
original sound and (b) the processed sound, the frequency domain representation of
(c) the original sound and (d) the processed sound, and the additive parameter
representations of (e) the original sound and (f) the processed sound.
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Appendix A Additional musical instrument sounds

Figure A.4.
Illustrations of the saxophone sound, showing the time domain representation of (a)
the original sound and (b) the processed sound, the frequency domain representation
of (c) the original sound and (d) the processed sound, and theadditive parameter
representations of (e) the original sound and (f) the processed sound.
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Appendix A Additional musical instrument sounds

Figure A.5.
Illustrations of the cello sound, showing the time domain representation of (a) the
original sound and (b) the processed sound, the frequency domain representation of
(c) the original sound and (d) the processed sound, and the additive parameter
representations of (e) the original sound and (f) the processed sound.
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Appendix A Additional musical instrument sounds

Figure A.6.
Illustrations of the viola sound, showing the time domain representation of (a) the
original sound and (b) the processed sound, the frequency domain representation of
(c) the original sound and (d) the processed sound, and the additive parameter
representations of (e) the original sound and (f) the processed sound.
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