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SUMMARY

Music perception in cochlear implant (Cl) listeners has eand to be generally unsatisfac-
tory. An improved understanding of music perception in Clbiss required, where research
into the perception of timbre, an important aspect of musieild assist in improving this

knowledge base. The aim of this study was to determine whagnias measured timbre
perception in cochlear implantees. This was investigayeti&ans of an experimental com-
ponent and the development of a model of timbre perceptigharelectrically stimulated

auditory system. Timbre perception was first measured imirenal-hearing (NH) and five

Cl listeners by means of three important timbre features,etyathe spectral centroid, the
logarithm of the rise time and the spectral irregularitys@iminations of synthesised tones
where these features were independently varied revead¢dCiHisteners had substantially
larger threshold values than NH listeners for each of théranieatures investigated. Con-
fusions of musical instrument timbres were also determindnye Cl and five NH listeners

by similarity ratings of original and acoustic simulatiasfsmusical instrument timbres, re-
spectively. An acoustic model based on a six-channel aégdboembination encoder (ACE)
processor was developed in order to process 10 musicalimetrt timbres. The results of
the similarity ratings revealed differences in the infotima conveyed through the timbre
features for NH and CI listeners, and indicated that the amouosodel did not accurately



represent timbre in the electrically stimulated auditgrstem, but provided reasonable mea-
surable results which could be compared to timbre perceptiodel predictions. A model of
timbre perception was developed by combining the resultBetiscrimination tasks with
signal detection theory, in an attempt to predict the amotimformation conveyed through
each of the timbre features to both NH and CI listeners. Theeainads found to predict
the experimental results obtained from the similarityrmgsi for both NH and CI listeners
acceptably for each of the three timbre features. This onécalso confirmed the validity of
the choice of the three timbre features as the primary featcwntributing to timbre percep-
tion, implying that timbre perception through a Cl would benaoved if Cl processors could
be optimised for the transmission of these three imporientire perception features. The
model of timbre perception therefore has application inaading Cl research to facilitate
music perception in the electrically stimulated auditorgtem.

KEY WORDS

timbre perception, cochlear implants, acoustic modetrargnation tasks, similarity
ratings, model of timbre perception
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OPSOMMING

Kogleére implanting (KI)-luisteraars ervaar oor die algemonbevredigende musiekpersep-
sie. Beter begrip aangaande Kl-luisteraars se musiekmeesegrmoé, met spesifieke ver-
wysing na timbrépersepsie, kan bydra tot die ontwikkeliag beter musiek prosessering
stratgeieé. Hierdie studie het ten doel gehad om die onderide eienskappe van tim-
brépersepsie in Kl-luisteraars te ondersoek. Ingesluidarstudie is 'n eksperimentele kom-
ponent, sowel as 'n modellerings-komponent om timbrépsisein die elektries gestim-
uleerde gehoorstelsel te simuleer. Drie belangrike esgusk wat timbrépersepsie onderlé,
naamlik spektrale swaartepunt, logaritme van die piektyégmektrale onreélmatigheid, is
gebruik om die timbré van gesintetiseerde klanke te maegullydens onderskeidingstake
waaraan vyf normaalhorende (NH) en vyf Kl-luisteraars geeéem het, het Kl-luisteraars
aansienlik hoér onderskeidingsdrempels as NH-luisteraiarelk van die gemanipuleerde
eienskappe getoon. Voorts is luisteraars se ondersksikngoé ten opsigte van musiekin-
strument timbrés ondersoek deur KlI- en NH-luisteraars rmderskeidelik ware en ges-
imuleerde instrument timbrés te laat luister. Tien gesaarde musiekinstrument timbrés is
geskep met behulp van 'n akoestiese model wat op 'n seskA@&abrosesseerder gebaseer
is. Eendersheidskattings het getoon dat die aard van digimg wat Kl-luisteraars ontvang
het, nie soortgelyk was aan dié wat deur die gesimuleerdek&laan die NH-luisteraars
oorgedra is nie. Ten spyte daarvan dat die akoestiese madelid die omskakeling van



timbré-inligting soos deur 'n Ki-prosesseerder bewerksssvol benader het nie, het dit wel
meetbare uitkomste daar gestel waarteen die uitsette gdimbirépersepsie-model vergelyk
kon word. 'n Model van timbrépersepsie is geskep deur rataitan die onderskeidingstake
met beginsels uit seindeteksie teorie te kombineer en saldagie hoeveelheid inligting aan-
gaande elk van die drie timbré eienskappe wat na die geletsrkborgedra word, te voor-
spel. Die model kon eendersheidskattings ten opsigte v@xdrik timbré eienskappe soos
bepaal vir NH- en Kl-luisteraars tot 'n aanvaarbare matersppel. Die bevinding bevestig
dus dat die gekose eienskappe primére bydraende eienskiapipgbrépersepsie is. Indien
Kl prosesseerders dus beter oordrag van dié eienskapp&ataatel, kan dit die weg baan
vir verbeterde timbrépersepsievermoé van Kl-luisteradisrdie model van timbrépersep-
sie kan dus bydra tot navorsingspogings wat ten doel het entndsiekpersepsie vemoé van
Kl-luisteraars te bevorder.

SLEUTELWOORDE
timbrépersepsie, kogleére implantings, akoestiese modderskeidingstake,
eendersheidskattings, model van timbrépersepsie
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

The sensation of hearing is experienced when sound is pgegsém the auditory system,
which consists of the outer ear, middle ear and inner ear. pFimeary mechanism in the
process of hearing is the variation of air pressure, and tbehamical effect thereof on the
tympanic membrane or ear drum (Fletcher and Rossing, 199@)vibration of the tympanic
membrane as a result of sound waves that pass along the @hicaases the movement of
a triplet of small, linked bones, which is then communicdtethe fluid inside the spiralled
cochlea. The pressure variations in the fluid of the cochésalt in the movement of the
sensory hair cells that are in contact with the basilar mamérinducing nerve impulses that
are deciphered by the brain as the sense of sound (Clark, E@8her and Rossing, 1998).

Sound has many forms and is an important part of life, whedbean essential part of com-
munication, or for enjoyment purposes, such as listeningusic. Most cultures across the
world include music as a form of entertainment and art, whllalstrates both its diversity
and importance in life. Sound is a sensory experience thatexis people in various facets
of life, creating enriching experiences which would not lesgible without the instrument
of hearing.

Department of Electrical, Electronic and Computer Enginggerin 1
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Chapter 1 INTRODUCTION

Hearing loss may occur as a result of the functionality ofleenents involved in the process
of hearing being detrimentally affected. Examples of festbat may cause this include age,
loud noise and certain drug treatments (Wilson and Dorm@@82 Additionally, hearing
loss can be caused by medical conditions, including enmental factors such as infections
or head traumas, as well as genetic factors such as dis&#ilesns, 2000; Loizou, 1999a).
Conductive hearing losses refer to problems encounterddtiagtouter ear and middle ear.
Either a hearing aid or surgery can often assist with this tyfthearing impairment (Fearn,
2001). Sensorineural hearing losses are primarily assocwsith a diminished number of
hair cells in the inner ear (Clark, 2003), but can also refdatdts that hamper the neural
communication of sound to the auditory temporal lobe (Fe2®®1). A cochlear implant
(CI) assists in restoring hearing by bypassing the hair tedisperform mechanical to neural
translations, and instead stimulating the auditory neduestly.

Generally, a CI consists of a microphone, a speech process@msmitter, a receiver and
an electrode array. An ear level microphone transformsdahedinto a waveform that can

be interpreted by a speech processor worn on the body (LoiZA89a; Clark, 1996). The

processor then encodes the sound into appropriate stipatameters which are transmitted
inductively to the receiver (Clark, 2003). The receiver sgald under the skin and allows for
communication with the external equipment (Wilson and Damp2008). The receiver then
directs the stimuli to the appropriate electrodes on thaygpoositioned inside the cochlea,
thus exciting nerve fibre populations and simulating thatawgnerve activity in response

to sound in normal hearing, as discussed by Clark (1996).

Cls have developed rapidly over the past few decades, prayiffective improvements in
restored hearing to profoundly deaf people and enablingn@wachievement of language
perception in many candidates (Wilson and Dorman, 2008zdwgi 1999b). Due to the
success of Cl development, research focus has recentlggkofivards achieving perception
in more difficult listening conditions, such as music (Prézer, Bestel and Fraysse, 2005),
in an attempt to provide CI users with advanced listeningtadsiland enjoyment (Lassaletta,
Castro, Bastarrica, Pérez-Mora, Madero, de Sarria and Ga2Cd7).

Music and speech are both composed of complex structuremuofis and have many sim-
ilarities (Limb, 2006). However, music is abstract and hygsubjective in comparison to

a spoken language, and this poses difficulties in definingaamsessing the perception of
music. Additionally, limitations imposed by Cls, such as goeor transmission of spectral
information (McDermott, 2004; Kong, Cruz, Jones and Zen@42®@ressnitzeet al., 2005),

Department of Electrical, Electronic and Computer Enginggerin 2
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Chapter 1 INTRODUCTION

imply that musical characteristics may not be conveyed weht all to the listener. The
combination of the above factors illustrates the diffi@dtiassociated with understanding
music perception in Cls.

Recently, research regarding music perception abilitie€limecipients has been carried
out. Examples include work by McDermott (2004), Gfellersgdwski, Rychener, Sena,
Knutson, Witt and Macpherson (2005), Leal, Shin, Laborddm@ks, Verges, Lugardon,
Andrieu, Deguine and Fraysse (2003), Kagtgal. (2004), Fearn (2001) and Limb (2006).
Such studies may serve as an entry-point into the undeistaadd development of Cls that
are suited for musical perception and enjoyment.

1.1.2 Research gap

Simple perceptual inadequacies of the music perceptiditi@biof Cl listeners have been
highlighted by music perception studies such as thosallabeve, in which perceptual abil-
ities and differences in rhythm, pitch and timbre have begiagned well for CI listeners.
However, the results of such studies are often not quarétagiven the multidimensionality
and subjectivity of music and, as a result, methods to oveecthese perceptual inadequa-
cies and improve the perception of musical sounds have rest efficiently explored. To
develop this area of research, quantitative results andwusime methods to compensate for
perceptual inadequacies in music perception for Cl liskeasz required.

Timbre has been highlighted as an important aspect of masit,encompasses the charac-
teristic quality of a sound (Risset and Wessel, 1982; ClarkStifion and Perris, 1988) and
includes the perceptual effects of a wide range of progedieacoustic signals. Therefore,
research into timbre perception has the potential to fatdian improved understanding of
overall music perception in Cls. The existing knowledge oftire and timbre perception
in normal-hearing (NH) listeners may be applied to the cdsbeelectrically stimulated
auditory system as a basis for understanding timbre peocejot Cls.

Department of Electrical, Electronic and Computer Enginggerin 3
University of Pretoria



Chapter 1 INTRODUCTION

Characteristics of Cls can be investigated using methodsasipkychoacoustic and speech
recognition experiments with Cl recipients. In terms of geperception research, these
methods can be effective and provide quantitative restltsvever, music is complex and
difficult to define and this makes it very difficult for listerse and in particular Cl listeners,
to explain what is heard from a piece of music. This highkgtite need for a quantitative
definition of music perception, especially in Cl recipieratsd a modelling approach could
be the solution.

Models have been applied successfully in Cl research togeavguantitative understanding
of speech perception in implant recipients. Examples oielacoustic modelling, a method
of representing acoustically what a ClI recipient may hearrasualt of electrical stimulation
(Blamey, Dowell, Tong and Clark, 1984; Clark, 2003), allowindividual factors that affect
auditory performance to be investigated without the cooapions of aspects such as subject
variability and period of deafness. As a result, improvedarstandings of implant charac-
teristics, leading to improvements in speech processittgniques for speech perception in
Cls, have been achieved through acoustic modelling (Clat®3R20Acoustic models have
been applied effectively in speech perception improvemeiiCls, but have yet to be applied
for the purpose of advancing music perception in Cls. An atoasodel applied in this way
would potentially achieve the same insight and advancessrs@ited to music perception
as acoustic modelling has already achieved for speechiee The implementation of
an acoustic model in this study may provide a tool with whichedst how changes in the
processing may influence timbre perception, before thisstetd directly on implantees.

Additionally, models of speech perception in Cl listenergehlacen developed (e.g. Svirsky,
2000) and can be of great value in the stages of speech pooasgelopment preceding
testing with cochlear implantees. Such a modelling appgr@gplied to music perception in
Cls may be the key to gaining a quantitative understandingusicras perceived through an
implant. The development of a timbre perception model toigwa quantitative description
of how listeners perceive timbre would provide insight itow a listener makes use of
timbre information to perceive the timbre of the sound thasweard, allowing specific
hypotheses regarding timbre perception to be tested inomatug manner. Specifically, a
model that predicts the outcomes of timbre perception éxpents correctly from features
deemed important for timbre perception would allow coniclas to be drawn as to whether
or not such features are in fact the primary features fronciimbre is perceived, and
whether or not ClI listeners use these same features (to teetekat they are available) to
perceive timbre.

Department of Electrical, Electronic and Computer Enginggerin 4
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Chapter 1 INTRODUCTION

1.2 RESEARCH OBJECTIVE AND QUESTIONS

Based on the discussion in the previous section, the primggctive of this study was to
gain quantitative insight into the abilities of Cl users taqe#ve timbre by developing a
model of timbre perception to predict such abilities. Toealep this idea, it is essential to
understand the important characteristics of timbre. Thdeustanding can be facilitated by
studies that define timbre by a number of dimensions or feattirat are important for the
correct perception of a musical sound (Grey, 1977; KrimphdicAdams and Winsberg,
1994; McAdams, Winsberg, Donnadieu, De Soete and Krimpl@&®5). Important timbre
features are also explained in studies pertaining to moafetanbre, such as the model
developed by Jensen (1999b).

To utilise existing timbre research to better understantbte perception in Cl users, an
acoustic model approach is the most intuitive and would ideinsight into the effects of
the processing of a sound through a CI on the timbre of the soumgortant timbre per-
ception features can be extracted from both the originahdswand the sounds processed
through the acoustic model, with the aim of providing a gilative representation of how
Cl listeners perceive timbre. Obtaining quantitative resof timbre perception using an
acoustic model as a foundation, and in conjunction with pegcoustic experiments, would
then be possible. This could further be expanded on by dpwea model of timbre per-
ception, which could predict timbre perception abilitiédoth NH and ClI listeners.

To facilitate the achievement of this main objective, thikofeing tasks were set up to be
accomplished.

» The decomposition of the timbre of a musical sound into tjtetive features must
be implemented, based on an existing model of timbre and leume of important
timbre attributes.

* Measurements of timbre perception features in both NH andt@hers must be per-
formed to gain insight into the perceptual abilities ofdisers and to provide a platform
on which to develop a model of timbre perception.

* An acoustic model must be developed, based on existingsdicamodels, through
which musical instrument sounds can be processed to suafficiepresent timbre as
conveyed to Cl listeners.

Department of Electrical, Electronic and Computer Enginggerin 5
University of Pretoria



Chapter 1 INTRODUCTION

* The timbre perception features extracted from both urgseed musical instrument
sounds and instrument sounds processed through the acmgtel, in conjunction
with specifically formulated psychoacoustic experimesitguld be used in the devel-
opment of a model of timbre perception, to adequately pteékdéoutcomes of timbre
perception experiments for both NH and ClI listeners.

* The model predictions should be compared to experimeasailts obtained from tim-
bre perception studies performed with both NH and ClI listenerorder to draw con-
clusions regarding the validity of the acoustic model aredtitmbre perception model
predictions.

The following main research question could be formulated addressed to achieve the
objectives of this study.

* Is it possible to develop a model of timbre perception thardgitatively represents
timbre perception in both NH and ClI listeners, that adequateddicts how a listener
perceives musical instrument timbres?

To achieve the main objective of the study, several smabiggatives needed to be accom-
plished, as listed in the following points.

* Is it possible to correctly define and extract the most irtgadrtimbre features from
original and processed musical instrument sounds, to litasa basis for predicting
timbre perception?

» Can the acoustic model adequately predict which featurgsitant for timbre per-
ception are transmitted to the auditory system of a coclimeplantee?

« Can quantitative conclusions be drawn as to how well importianbre features are
conveyed to Cl listeners?

« Can quantitative conclusions be drawn as to the differemcémbre perception for
NH and ClI listeners?

» Can these quantitative findings be adequately implememtélei development of a
model of timbre perception that sufficiently predicts thécomes of timbre perception
experiments for both NH and Cl listeners?

Department of Electrical, Electronic and Computer Enginggerin 6
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Chapter 1 INTRODUCTION

From the objectives and research questions posed it waslgdehat a quantitative descrip-
tion of timbre perception, forming a foundation for musiegeption, in Cl recipients could
be determined.

1.3 HYPOTHESIS AND APPROACH

To address the research questions that were posed in theygeection, it is important to
have a model that defines the core characteristics of tindm@ding to measurable features.
The effect of electrical stimulation on these features d@dbén provide insight into timbre
perception abilities of Cl listeners.

Extensive research studies regarding timbre have beepdaut over the past few decades,
for example, those by Grey (1977) and McAdaetsal. (1995), which have facilitated the
development of a model of timbre by Jensen (2001). This #mbodel encompasses what
was found from the psychoacoustic experimental resultdégrature to be the most impor-
tant characteristics of timbre. Using this model as a basisnvestigation into the timbre
characteristics conveyed to the electrically stimulataditary system was a possibility, with
the ultimate aim of developing a model to quantitativelydicetimbre perception abilities.
Figure 1.1 illustrates the approach that was followed in this studydbieve this, with a
description provided in the paragraphs that follow.

The important timbre features were extracted from the pabinstrument sound by using
the methods of the existing timbre model by Jensen (199ath)Jansen (2001), and timbre
perception research by Krimphat al. (1994) and McAdamest al.(1995). Important timbre
features that could be extracted are the spectral envdiope which the perceptual feature
of brightness can be extracted, the frequency envelope, Which the perceptual attribute
of inharmonicity can be found, and the amplitude envelogackvis a substantial factor in
discriminating between different musical instrumentseSéfeatures can be used directly as
inputs to the existing timbre model to resynthesise the @dddensen, 2001). This sound will
be very similar to the original sound, thus representingithbre features that are conveyed
to a NH listener.

Department of Electrical, Electronic and Computer Enginggerin 7
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Block diagram of the basic approach that was followed in this tdy for the
representation of timbre in the electrically stimulated auditory system.

An acoustic model was developed, through which musicafunstnt sounds can be pro-
cessed according to the effect of electrical stimulatiohe Model was based on existing
acoustic models, some of which were presented by Clark (2@0®) incorporated effects
such as the limitations imposed by the number of electrodegedl as the speed at which a
Cl samples sound. These aspects are discussed in detaitionszd.3 The output of the
acoustic model provided an estimation of what a cochleatantpe hears when listening to
an instrument sound.

The use of an acoustic model is beneficial in that it allowsaftarge number of variations
to be made in the model parameters, assisting in estaldighan different effects on the
recognition of a sound. Parameters can also be adjustedduodily, which allows the effect
of each parameter to be investigated independently.
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The repeatability of acoustic models is an appealing featecause factors such as the sub-
jectivity of different Cl listeners is ruled out. The variétyi of parameters is easier to control
in NH listeners, without the complication of factors sucletectrode placement in cochlear
implantees. Additionally, there are more NH listeners ladé than Cl listeners, indicating
that experiments carried out with acoustic models can bdward in larger quantities and
in a much shorter time than experiments with implantees.

Using the output of the acoustic model, modified timbre petioa feature values were ex-
tracted from the processed sound, by using the same existiiige models and timbre
feature calculations as those applied to the original nalisistrument sound. This approach
facilitated a quantitative comparison of the timbre feasufor Cls with the timbre model
developed for NH conditions, to assess how well importanbte features are conveyed to
cochlear implantees.

The extraction of timbre features from a sound allowed fortlsgsised sounds to be con-
structed from these basic features. Discrimination taskwdriations in important timbre

features of synthesised sounds for both NH and ClI listenersged measurable timbre per-
ception results in the form of discrimination threshold astjnoticeable difference (JND)
measurements, and comparisons between the abilities disteeer groups could then be
made. Additionally, the JIND measurements could also be asg@drameters for the timbre
perception model, assisting in defining the range in whislriiment sounds were likely to
be confused.

The timbre perception model was based on signal detectemryimethods as presented by
Svirsky (2000), and on the model by van Zyl (2008). The timteeception model utilises
the JND results of the discrimination tasks for each of thedrtant timbre features, as well
as the values of the timbre features extracted from theraigind processed sounds, to make
predictions as to the level of confusion between each plesstmbination of sound pairs.

The formulated predictions of timbre perception resulfiogn the model were compared to
psychoacoustic experiments in the form of similarity rgsiof musical instrument timbres,
to validate the model. With NH subjects listening to acaugly modelled sounds and Cl
subjects listening to unprocessed instrument sounds, pamason of these results to the
predictions made by the timbre perception model could beemakhe development of a
model of timbre perception is a promising approach to qtetntely understanding timbre
perception, and music perception in general, in Cl listeners
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1.4 RESEARCH CONTRIBUTION

The limited understanding of music perception in Cl listsnamovides an unexplored field
of research. Both a simple understanding of the perceptilélesbof Cl users and quanti-
tative models of musical sounds that already exist inditetemuch of the knowledge basis
required to better understand music perception in cochieplantees already exists. By
combining these aspects, the development of methods t@wapnusic perception in Cls
is feasible. This study is an entry-point to achieving theva by making the following
contributions.

* The extraction of important timbre perception featuresfiboth original sounds and
those processed through the acoustic model, in conjunattbnrmeasurements of im-
portant timbre perception features obtained from discration tasks, could provide
guantitative descriptions of timbre perception in both Nidl &1 listeners.

» These quantitative results could be implemented in theldpment of a model of tim-
bre perception that could adequately predict the outcorh@sbre perception exper-
iments and reveal, in measurable terms, how well timbreaissimitted to Cl listeners.
As a result, this model would present the possibility of ém@ing Cl research, with
factors such as model repeatability making it a favourapteoa.

» The quantitative findings extracted from this study coufieroinsight into how the
timbre features should be compensated for so that they maam&mitted effectively
through a CI. This could assist in future endeavours for dg@meg Cl processing
strategies suited to music perception, in the hope of adwgri€ls and providing suc-
cessful communication of music to cochlear implantees.
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The content of each chapter is described briefly in the papdugrthat follow.

Chapter 2 presents the background necessary for understandingdearod problem. As
an introduction, definitions of music and some of its compd®i@re presented, with
the focus on timbre. Following this, an overview of percgptumbre research is
given, a large part of which is based on MDS techniques. Asislyf musical sounds,
with emphasis on the modelling of timbres of musical souads,discussed next. A
background on Cls makes up the remaining sections of thisehawoviding a gen-
eral literature study on the processing strategies emgloy€ls, as well as acoustic
model implementations, taking into account various CI ctiaréstics. Music process-
ing techniques employed in Cls are discussed briefly, withareh regarding music
perception in cochlear implantees concluding the liteeatiudy. Focus is placed on
timbre perception research in Cl listeners.

Chapter 3 discusses the methods employed in this study. This chapbeoken down into
a number of main sections, each providing a description efmtiethod followed to
implement the particular aspect of the study. The first paroduces the musical in-
strument sounds that are used in the study. The relevanttaspfetimbre modelling
employed are described next, followed by a description efithportant timbre fea-
tures that form the basis of this study. The CI aspects of thidysdre discussed next,
with the development of the acoustic model implementedampt in detail. This
chapter presents the methods that form a basis for this,stadyhich the experimen-
tal and modelling components can be formulated.

Chapter 4 describes the experimental component of this study in Idefaiarge part of
the content of this chapter has been submitted to Ear andrideiar the form of a
journal article for review and possible publication. Thisapter thus includes spe-
cific methods, results and discussion sections for the @rpatal component of this
study. Quantitative measurements of timbre perceptiomdtin NH and CI listeners
are presented, obtained from psychoacoustic experim&hesexperimental compo-
nent consisted of two experiments, in the form of discrirtiores of timbre perception
features and similarity ratings of musical instrument tie the results of which are
discussed fully in chaptet. Comparisons between these experimental results and the

predictions of the timbre perception model can then be madd,are presented in
chapterb.
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Chapter 5 describes the modelling component of this study in detaile Tontent of this
chapter forms part of an article which will be submitted to Bad Hearing as a con-
tinuation of the experimental findings of the article reigtio the work of chaptet.
Chapter5 thus also includes specific methods, results and discussictions relat-
ing to the modelling work performed in this study. The depeh@nt of the model of
timbre perception, along with the analysis techniques tis@dsist in interpreting the
model results are presented in this chapter. A full discusef the developed timbre
perception model is given, by comparing the predictionfiéoexperimental results as
well as to existing literature.

Chapter 6 presents a general discussion and conclusion of the studymBin discussion
points from chapterd and5 are summarised to provide a general discussion of the
outcomes of the study with respect to the research quegtiosed in sectiod.2 of
this chapter. Following this, the main findings of the stuglgrall are summarised. A
critical analysis of the study is also presented, enconipggke implications of the
study and directives for future research which may expantthemvork in this study.

In summary, this chapter has provided an introduction toatbik that will be addressed in
this dissertation. A contextual background on hearing arsch@k been provided to present
a framework for the study and to highlight the research ghps will be addressed. In
addition, a more focussed description of the research tngsand questions tackled in this
study have been presented, as well as the basic approamhddito achieve these objectives.
A contribution of the research to the field of Cl technology aBs® be discussed, providing
an indication of what this study aims to accomplish.
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CHAPTER 2

LITERATURE STUDY

2.1 CHAPTER OBJECTIVES

To address the problem of quantitatively assessing timéregption in the electrically stim-
ulated auditory system as described in the previous chagtesverview of existing related
literature is required. This chapter presents and dissubserelevant literature required as a
basis for this study and consists of a number of sectionstlysia brief introduction to music
and music perception is given in secti@rg, followed by a more thorough background on
timbre in sectior2.3. This information serves as an entry-point to understapdiasic and
timbre, as well as the perception thereof. Analysis of malssounds as well as models of
timbre are also be discussed, to gain insight into the physitaracteristics and features
of timbre. Sectior2.4 provides an overview of CIs, describing the processing esjias
that are relevant to this study, as well as a background oausicanodelling to enable an
understanding of sounds as processed through the eldgtstanulated auditory system.
Lastly, a background on music and timbre perception in Getists is presented, to provide
an overview of the research findings on which this study igtas
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Chapter 2 LITERATURE STUDY

2.2 MUSIC

To gain a better understanding of timbre, a brief backgrawgérding music is required.
Definitions of music and each of its components are necesmaaywill be discussed briefly
in section2.2.1, followed by factors that may affect music perception angical enjoyment
in listeners, emphasising the subjectivity of music, inieec2.2.2

2.2.1 Elements of music

Music is made up of complex structures of sound that can bduysexd by either instru-
ments, or voice, or combinations thereof (Bregman, 2001;kC2003). Music has many
similarities with spoken language (Patel, 2003). Simplgadbed, both speech and music
employ sounds of varying frequencies presented over peobtime to convey a message
(Limb, 2006; Bregman, 2001; Jensen and Marentakis, 2001, ttve goal of communica-
tion and expression. The message conveyed can be eitheetaras in the case of speech,
or abstract, as in the case of music (Donnelly and Limb, 2008)sic consists of several
elements, regardless of genre or type (Limb, 2006), and edoakically categorised into
pitch, rhythm and timbre (Clark, 2003), as discussed brieflye following paragraphs.

Rhythm describes the temporal patterns in musical soundstiht time scale perception
thereof usually in the order of seconds to minutes (Limb,&2@bnnelly and Limb, 2009).

As described by Ross (2008), rhythm is the grouping of a nurabbeats or steady sound
pulses to create any series of durations of sound which mapebpeople to clap their
hands or tap their toes in time. Temporal patterns that geeeto a distinctive rhythm occur
in the approximate frequency range of 0.2 - 20 Hz (McDern04). Higher frequency
components of acoustic signals convey pitch information.

Pitch describes the frequency of a musical sound, perceigea note in a musical scale
(Limb, 2006). A series of pitches that are structured inféedent musical contours and in-
tervals form a melody (Clark, 2003; Donnelly and Limb, 2009sR®008). The perception
of melody is very subjective, as any series of pitches thedtess a sense of organisation or
unity may be described as a melody (Ross, 2008).
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Timbre is formally defined by the American Standards Asgamia(1960) as “that attribute
of auditory sensation in terms of which a listener can judge two sounds similarly pre-
sented and having the same loudness and pitch are dissimdanply put, timbre is the
quality that allows the distinction between two sounds thil same pitch, loudness and du-
ration (Jensen and Marentakis, 2001), making the idertidicaf several different musical
instruments played simultaneously possible (Clark, 2008D&trmott, 2004). As discussed
by Limb (2006), timbre results from spectral and temporakérpes of a sound that interact
in a complicated manner, allowing music to be defined as soahdarying timbres that are
organised in terms of rhythm, pitch and harmony (Limb, 2006jnbre is involved in both
the recognition of a familiar voice and the identificationeofmusical instrument (Donnelly
and Limb, 2009) and is a complex and important element of enasd sound in general
(Krumhansl, 1989).

Harmony and counterpoint are additional important musimponents, as they consist of
the basic elements of music. Harmony occurs when more thampioch is played simulta-
neously and allows for the differentiation of the qualittdsuperimposed sound. This gives
rise to other musical features such as counterpoint, wisieghdombination of multiple un-
folding melodies in a musical piece (Limb, 2006; Clark, 2008@pst musical traditions have
rules for the combination of notes that sound pleasant, kresvconsonance, or unpleasant,
known as dissonance (Clark, 2003).

2.2.2 Factors that influence music perception

Although music can be structured into basic elements, msigierceived as a whole, which
suggests that all aspects of music are equally importaopssed to speech, in which there
is a great deal of redundancy (Clark, 2003). The aim of rekearmusic perception is to
explain how a listener responds subjectively to musicahdagignals, as stated by Rasch
and Plomp (1982). Musical psychoacoustics are concerngdtie relationship between
the objective, physical properties of auditory stimuli ir @nvironment, and the subjective,
psychological responses evoked by them. In addition to ldments of music discussed in
section2.2.1, a number of subjective factors that influence music peioemian be identi-
fied, and are discussed briefly in the following paragraphs.

Music is ultimately abstract and its interpretation is sahive, depending on a variety of
factors. These factors include dynamics such as musigalrtgaand musical background,
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which may heighten sensitivity towards a musical piece. idlstening habits and musi-
cal tastes, where the appraisal of musical genres may vaoygsh different listeners, also
reflect the diversity of musical listening experiences fadsttaet al,, 2007). This indicates
that even cultural backgrounds may even affect the reguttarception of music.

The perception of music involves complex brain functions,deéscussed by Koelsch and
Siebel (2005), potentially affecting emotion and influergcthe nervous, hormonal and im-
mune systems. This suggests that personal emotional lmackdg and experiences are also
likely to affect the resulting perception of music (Dongedhd Limb, 2009).

2.3 TIMBRE

The important timbre attributes extracted from percepfindings as well as from physical
models of musical instruments have led to the developmetiteofimbre model by Jensen
(2001). To model musical instrument sounds appropriagelgufficient understanding of
timbre perception is necessary (Jensen, 2002b). Thisoseglaces the timbre model that
will be used as a basis for this study into context, by praxgdan overview of the literature
regarding timbre perception in secti@dr8.1 The analysis of musical sounds is also reviewed
in section2.3.2 as the derivation of the timbre model results from an amalyg synthesis
approach. From the literature on perceptual timbre rebeamd the method of analysis of
timbre by synthesis, important features of timbre have l@@macted in order to implement
the timbre model by Jensen (2001), which is highlighted ttiea 2.3.3

2.3.1 Perceptual timbre research

Timbre is an auditory attribute that has been inadequatedgrstood from a psychophysical
perspective in the past, having been considered vaguelgasmplex and multidimensional
perceptual parameter of sound (McAdaetsal, 1995). Definitions of timbre, such as the
standard given in sectio®.2.], tend to define timbre by what it is not rather than what it
is (Risset and Wessel, 1982; McAdamisal., 1995) in comparison to other well defined
perceptual attributes of music. The multidimensionalitytimbre makes it impossible to
measure timbre on a single scale, such as soft to loud asdnéss perception, or low to high
as in pitch perception (Rasch and Plomp, 1982), and intrachineedifficulty of establishing,
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through experiments, the number of dimensions and featemsred to represent timbre
(McAdamset al, 1995). Only in the past few decades has an improved undeiataof
timbre begun to emerge, with a number of different techrsquéised to facilitate this.

In the past, many studies regarding timbre and timbre p&arepave utilised forms of mul-
tidimentional scaling (MDS) techniques. These methodsiaedul for the study of complex
stimuli, of which the perceptual or psychophysical chaastics are inadequately under-
stood (Lakatos, 2000; Grey, 1977), thus finding effectiveliaption in understanding tim-
bre perception. The MDS approach involves musical sountteastarting point from which
perceptual distances are measured, in an attempt to faeraut@presentation or coordinate
system that explains the MDS axes (Terasawa, Slaney and3209®). This is achieved by
applying MDS to data obtained from listeners rating differes between pairs of sounds for
a number of musical timbres (Jensen and Marentakis, 200Esdresults are then used with
the aim of creating a map between the physical aspects of @ahursstrument sound and the
perceptual representation of each timbre attribute totanles (Lakatos, 2000). Generally,
MDS techniques generate two or three perceptual dimen#iamsan be interpreted.

Early examples of timbre research using the dimensionahres approach are presented by
Plomp (1969), where it was found for steady state musicaddhat the three-dimensional
map of musical tone similarities that was obtained couldnberpreted entirely in terms of
the amplitude pattern of the harmonics. Reports in otheralitee have shown consistent
findings regarding the primary factors, namely spectrabnmiation, that facilitate timbre
perception. Wedin and Goude (1972) performed analyses aicalilsounds with attack
and decay portions included and found their structure ofgqeual dimensions of musical
instrument tones to have a clear correspondence to therapenvelope properties of the
sounds. Miller and Carterette (1975) used a set of defined¢iratiributes to create syn-
thetic sounds and varied temporal and spectral properta@sgely the amplitude envelope
and number of harmonics, respectively, as well as the ordtdrps of the harmonics. They
found that important factors for the perception of timbraifarities were the number of har-
monics as well as the amplitude envelopes and onset ratee brmonics, which suggests
that spectral characteristics were dominant in the peiaepf timbre.

Grey (1977) developed a three-dimensional perceptual haddenbre, in which the first
dimension related to the spectral energy distribution, thiedother two dimensions related
to a number of temporal patterns of the tones. These inclagedhronicity in the higher
harmonic rise and decays and thus levels of spectral fluohgtas well as the presence
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of low-amplitude, high-frequency energy in the initialestk segments. Grey and Gordon
(1978) experimented with the effect of spectral modifiaagion musical timbres and com-
pared the MDS analysis of the modified sounds to the MDS aisady$he original sounds in
Grey (1977). They found that the sounds that exchangedrgpeaiergy shapes exchanged
orders along the spatial axes acquired in Grey (1977), attig the interpretation of the
perceptual space using MDS analyses.

Krimphoff et al.(1994) analysed three-dimensional spaces and found the adrthe sound
spectrum, the logarithm of the rise time, and the spectraltfiuoe the important acoustic
correlates. McAdamst al.(1995) illustrated a new MDS technique to assign a large reumb
of listeners with varying musical experience into a smathiver of underlying classes. Five
class structures were found for a three dimensional spatiael, where musical training
showed an ambiguous relation to this classification. Thensomdimensions of their model
were quantified psychophysically in terms of the logaritHrthe rise time, spectral centroid
and degree of spectral variation or spectral flux. Lakat09@2 attempted to better isolate
the dimensions of timbre, generalised over a wide rangentfries and psychophysical tech-
niques including MDS analyses. It was found that the spkecgnatroid and rise time alone
adequately represented the most important perceptuahgiores of timbre, independent of
musical training.

Studies by Samson, Zattore and Ramsay (1997) and Caclin, Maegdamith and Wins-
berg (2005) involved MDS analyses from the perception otlsysised tones by means of
dissimilarity ratings of sound pairs. Samseinal. (1997) varied the spectral and temporal
properties of their synthesised sounds and from MDS fouatl ¢hectral information and
rise time were the two independent perceptual dimensiaietherged, in accordance with
studies mentioned previously. The study by Sanetaad. (1997) included experiments with
both single tones and melodies, and no distinct differemegs noted between the two cases
in defining the perceptual space. This indicates that enmighmation may be transmitted
in single tones alone, and that the intricacies of a melodyatgrovide additional informa-
tion in such a task.

Caclin et al. (2005) used synthesised sounds to vary the spectral cgntrseé time and
other spectral properties deemed important featuresrfdorgé perception in past literature.
Their findings indicate that the spectral centre of gravig logarithm of the rise time and
the spectral fine structure or irregularity in the spectrunthe sound are the three most
important dimensions in timbre perception.
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Loureiro, de Paula and Yehia (2004) branched away from relseavolving comparisons
of isolated notes of different musical instruments and ésea on the mapping of spectral
characteristics of musical timbres produced by one instntmA large variety of sounds
produced by the clarinet were investigated by means of pahcomponent analysis (PCA)
techniques, to obtain a set of spectral bases or dimensionswhich the different tim-
bres could be categorised. It was shown that timbre classes dependent on the spectral
brightness of each sound.

Although MDS and related analyses have been the primaryridotming an understanding
of timbre perception, other methods have been implemewntedhieve this. Examples in-
clude work by Terasawet al. (2005) and Terasawa, Slaney and Berger (2006), in which, as
opposed to MDS, a defined coordinate system is used as a tmsig/hich different sounds
are created according to this representation. Each sopnesentation is then measured to
determine a fit to the defined perceptual space (Terastala2005). This method is known
as the Mel-frequency cepstral coefficients (MFCC) model arsthasvn to be a good model
of timbre perceptual space (Terasastal., 2005; Terasawat al, 2006). These studies ad-
dress the representation of timbre, but only in a static fdflowever, sound is not static and
factors such as rise and decay times have been shown to beamipio timbre percpetion,
thus these works only form a basis on which to build a compteidel of timbre (Terasawa
et al, 2006).

De Poli and Prandoni (1997) conducted a series of expersnenthich they attempted to
algorithmically develop timbre spaces from a defined expental framework. The results
exhibited similarities to past literature making use of M&r&lysis, and showed potential in
exploring timbre qualities through an analytical approatiich would not require subjective
ratings of listeners. Other methods to gain insight intabtienperception include spectral
simplifications to establish the discrimination threslsadd JNDs of acoustic signal changes
(e.g. Jensen and Marentakis, 2001).

Other focussed research regarding timbre perception bk€tiaet al. (1988) studied timbre
perception in infants. This enabled an identification ofgpectral cues that infants make use
of, by presenting complex tones with spectral and tempaoifakiation selectively added.
The results indicated that infants can analyse the spettanaplex tones and discriminate
differences in the spectral envelopes, one of the most itapbcues in timbre perception.
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The studies discussed in the above paragraphs each empjpg aft perceptual test that
may be used to evaluate timbre perception. These tests catdgorised into a few groups,
including verbal attributes, where the listener has to diesca musical sound by means
of words such as sharp or dull, full or empty and colourful oloarless (Jensen, 2002b).
Additional test categories are dissimilarity and discriation tests, as discussed by Jensen
(2001) and Jensen (2002b), where judgements in differeoegeen musical sounds are
made. Dissimilarity tests involve analysing judgementslen@garding differences between
the timbres of two different musical instruments and disanation tests analyse judgements
in differentiating between original and modified musicailtres of the same instrument.

Bregman (2001) discusses auditory stream segregation #seameethod of examining the
qualities of timbre in relation to the perception thereofséquence of sounds may be heard
as either originating from a single source, such that it reg@eed as one integrated stream,
known as fusion, or as originating from distinct sourceghsthat it is perceived as two
segregated audio streams, known as fission (Cooper and Radt@d®. Auditory stream
segregation or auditory streaming is an occurrence in waighick sequence of high and
low tones separates into two distinct perceptual streames,with the high tones and the
other with the low tones (Dannenbring and Bregman, 1976; €hed, Sarampalis and Oba,
2006).

In experiments by Singh and Bregman (1997), a distinct lavgeeiffect on both the fission
and fusion boundary fundamental frequency value could bednehen adjusting the timbre
properties of the middle tone in a repeating three-toneesgzpi It was shown that spectral
differences in timbre were significant for stream segregativhereas there was some debate
as to whether or not temporal differences, for example,erattack and decay of the timbres,
were important in stream segregation. These results prdviEhds to important features of
timbre that could be used as a basis on which to develop a btsibre.

2.3.2 Analysis of musical sounds

In addition to the perceptually important timbre featutest thave been investigated in sec-
tion 2.3.1, other physical aspects of timbre should also be considaretiform part of the
timbre model implemented by Jensen (1999b) and Jensen )(2@ie of the most well
known methods of analysing the physically important fesgwof sounds is by means of ad-
ditive parameters which constitute a good analysis anchegig model of voiced sounds
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(Jensen, 2002b). In the paragraphs that follow, some phiyaiributes of timbre are noted,
and a description of the analysis by synthesis approacthvesiigating the physical proper-
ties of musical instrument sounds is provided.

As described by Hartmann (2005), tone colour refers to thbrie of the steady state segment
of a sound, that is, the part of the sound without onset argebffansients. This entails
the part of the sound that is not related to sensations ofnkessl or pitch (Zwicker and
Fastl, 1999). By this definition, it is necessary to extrastrfrthe mixture of sensations the
features that may be relevant in recognising timbre. Adogrtb Zwicker and Fastl (1999)
these may be qualities such as sharpness, or inverselyapteass, which in turn depend
on sensations such as tonalness and roughness. In the aagei@ tone, the tone colour
depends only on frequency, i.e. a low frequency (below 20PwAlt sound dull, while a
high frequency (above 2000 Hz) will sound sharp or piercimgis indicates that it is the
frequency content and not the shape of the waveform thatrdetes tone colour. Risset and
Wessel (1982) and Zwicker and Fastl (1999) confirm this byirgjahat sharpness relates
to the spectral content, specifically the position of thectéenvelope along the frequency
axis.

Most musical instrument sounds are composed of a fundaitent&and a number of har-
monics. String, woodwind and brass musical instrumentsigdiy act as lowpass filters that
attenuate harmonics with frequencies greater than 100MHider6ann, 2005). The differ-
ence in timbre produced by different musical instrumergslescribed by Zwicker and Fastl
(1999), is a result of the frequency spectra or relative @&oges of their harmonics. For
example, the flute produces mainly one frequency compotieafiindamental frequency),
while the trumpet produces a number of harmonic componeamsaabroader frequency
spectrum.

Rasch and Plomp (1982) discuss temporal characteristich,asionset effects, as well as
steady state effects, being important in the recognitiaimafre. These may include factors
such as the rise time and shape of the rise curve and the peesEnoise during the onset
times, as well as factors such as pitch instability over tidemsen (1996) also discusses how
the amplitude envelopes over time are affected by the cootnmusical instruments. For
example, the envelope of a piano tone depends on the spedicattive note is played, and
factors such as the decay depend on how long the note is heldffiecting the important
temporal timbre features.
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An additional relevant point is that acoustical instrunsecdin be divided into two classes,
envelope-based instruments, and continuous-contrauiments (Jensen, 1996). Some in-
struments, such as bowed string instruments like the vialia capable of both techniques,
where plucking the string forms part of the envelope-bassss@nd stroking the bow on the
strings constitutes continuous-control.

Due to the complex physical behaviour of musical instrumeihtis difficult to isolate spe-
cific fixed characteristics of musical instrument sounds dissussed by Risset and Wessel
(1982), this highlights the need to extract important fesgidrom a complex physical struc-
ture, which may be achieved by exploring timbre by means afyais and synthesis. The
analysis and synthesis of musical instruments are gepaaliieved by using a model of
a sum of sinusoidals (Jensen, 1999b), known as an additigelmdhis method has also
been implemented in speech analysis (McAulay and Qualigé6), and is a practised and
effective method of analysing sounds. Jensen (1999b) suisesahe early techniques for
analysing the additive parameters of musical sounds,glbtick to more than a century ago,
that provided insight into musical instrument tones.

More recent research regarding the study of musical ingnisnby analysis of additive pa-
rameters includes work by Ando and Yamaguchi (1993), in Wiaistatistical study of the
spectral parameters in musical instrument tones was peeftr Here an initial decomposi-
tion of musical sounds into additive parameters was caaigdrom which it was concluded
that by incorporating the statistical properties of musicaes into the synthesis of sounds,
a high sound quality would potentially be achieved.

The additive model approach is implemented in the timbre ehfdensen, 2001) used in
this study. The additive model was chosen due to the exigtiogvledge regarding analy-
sis/synthesis properties, with well understood pararaetech as time, frequency and am-
plitude, as well as the perceptually expressive parametehss model (Jensen, 2002b). As
discussed by Jensen (2002b) and Jensen (2001), the addahtilyssis consists of associating
a number of sinusoids with a sound, and estimating the tiamgivg amplitudes and fre-
guencies of these sinusoids. The sound can then be resigeithéy summing the sinusoids
to produce a highly realistic sound.

Jensen (1999b) explains that the sinusoids corresponek thaimonic overtones when the
sound is harmonic, in which case the frequencies of the sidssre multiples of the fun-
damental frequency and are equally spaced in distance iftdaency domain. The first
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number of extracted frequencies correspond closely to dbesnn the 12 tones per octave
scale and therefore the relationship between the fregegmticompound musical sounds
determines the consonance of the musical interval (KamaokaKuriyagawa, 1969). The
additive parameters can best be visualised in the form afeettiimensional plot, as shown
in figure 2.1, with axes corresponding to time, frequency, and amplitublee lines in the
plot, known as partials, indicate the time evolution of tingpéitude and frequency of each
sinusoid. As an example, a harmonic test signal with a fureshah frequency of 100 Hz is
shown.

0.5

0.4

Amplitude

(AU) 0.3

0.2

0.1

0.
1000

0.8

500 0.6

0.4

Frequency (Hz) 0o Time (s)

Figure 2.1.
Example of the additive parameters of a harmonic sound with adindamental
frequency of 100 Hz.

The closest line on the frequency axis in fig@réis the fundamental frequency. The ampli-
tude of the fundamental component is first zero for 100 mg) thllows a linear rise for
200 ms, a plateau for 300 ms, then a linear decay for anottenm®0and returns to zero for
the remainder of the one second length of the sound. A totdDgfartials are shown, with
each component having an amplitude that is half the amgiaidhe preceding partial.
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2.3.3 Models of timbre

Most of the parameters of the timbre model (Jensen, 200¥) &aintuitive perceptual qual-

ity due to their relation to timbre perception, and many @inthcan be related to the physics
of musical instruments (Fletcher and Rossing, 1998). Thbregmmodel by Jensen (1999b)
and Jensen (2001) was inspired by perceptual research bretims described in section
2.3.], but was derived from the analysis of musical sounds usiagrtbthod of analysis by
synthesis, as described in secth8.2 Based on these research findings and methods, gen-
eral conclusions can be made regarding the most importabtéifeatures that are included

in the timbre model. These conclusions are described indbhenwing paragraphs, along
with other timbre models that have been developed basedrolasconcepts.

Jensen (2002a) states that, in general, the most impomtainitet features can be extracted
from the amplitudes and frequencies of a sound. These &=atwe loudness, defined as the
maximum of the amplitude in a log scale, and brightness, aa@®d from the amplitudes,
and the fundamental frequency and inharmonicity as exdafiom the frequencies. In
summary, the spectral envelope, temporal envelope arglilegties of a sound can be high-
lighted as the most important timbre features (Jensen andriikis, 2001; Jensen, 2001).
The timbre model (Jensen, 1999b; Jensen, 2001) incorgottaemost significant timbre
attributes, as listed below, which will be elaborated onhie paragraphs that follow. The
timbre attributes as given by Jensen (2001) that are incatgd into the timbre model are:

the spectral envelope, associated with the brightnessemmhances of the sound,

the frequency envelope, associated with the pitch andmbiicity of a sound,

the amplitude envelope, consisting of five segments:, sitietck, sustain, release and
end, each segment with an individual start and end relatiy@itude and time, and

irregularities, separated into amplitude irregulasitienown as shimmer, and frequency
irregularities, known as jitter.

The spectral envelope has been found to be one of the mosttanpdimbre features
(Grey, 1977; McAdamst al, 1995). The shape of the frequency spectrum is the key to this
attribute, as it shows the amount of energy present at eeaghéncy across the audible range
(Clark, 2003). The perceptual feature of brightness is aatmtwith the centre of gravity
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of the spectral envelope (Jensen and Marentakis, 2001;neis and Jensen, 2001). Res-
onances occur as a result of the shape or structure of a rinstament (Clark, 2003) and
give rise to formants, the composition of which is importamthe timbre of an instrument.
It is noted by Clark (2003) that there is no significant chamgiiaé formant structure as the
notes of an instrument change, indicating that all pitcHagqu on a particular instrument
have similar timbres.

The frequency envelope encompasses the simplicity of thavieur of the harmonics over

the course of the note (Bregman, 2001). Clark (2003) stateththateady-state frequency is
an important component in an instrument’s timbre as, forrgda, the frequency spectrum
of a clarinet contains almost only odd-numbered harmodihs.frequency envelope models
the deviation of each partial from the harmonic case (Malaatand Jensen, 2001), which
relates to the perceptual attribute of inharmonicity. la tase of a piano, for example, the
stiffness of the strings causes the higher partial compsrierave much higher frequencies
than in the harmonic case, and produces a degree of inhasityoim the sound (Jensen,

1999b).

The amplitude envelope is important as there is a strongragtyt of the frequency spectra
over time for musical instruments (Clark, 2003). Fig@r2illustrates the different segments
in a typical amplitude envelope model, using the fundanigrddial of the test signal of
figure2.1
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Figure 2.2.

Example of the five amplitude envelope segments for a musicaistrument, as
implemented in the timbre model by Jensen (1999b).

Bregman (2001) and McAdanet al. (1995) state that the attack or rise time is possibly
the most important amplitude envelope parameter, withithe bof this segment resulting
in a specific slope, as well as the irregularities presenh@dttack segment playing an
important role in the recognition of timbres. According taMntakis and Jensen (2001),
the slope of the sustain segment can be used to distinguigtede instrument sounds that
are played continuously, for example, that of the flute, femands that decay automatically,
for example, that of the piano. In addition, the duration lté telease segment allows a
distinction to be made between damped and non-damped sounds

The timbre model finds the start and end points of each of tleesiggments and then fits a
curve between each of these points to represent an appriomed the amplitude envelope
for each partial. Irregularities can then be added to theotimapproximated envelopes to
represent the sound more accurately.

Irregularities in the sound (both shimmer and jitter) pdevior slow random variations of
the frequencies and amplitudes and also for additive ndlisgsnay occur in the instrument
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sound (Jensen and Marentakis, 2001), which give a realtgtalihe sounds (Jensen, 2001).
The timbre model by Jensen (1999b) includes a model for skimand jitter in the form
of low pass filtered Gaussian noise with a given standardatieni (SD) and bandwidth.
Marentakis and Jensen (2001) observe that the percepfeat ef altering the SD of the
noise can be likened to altering the signal to noise ratiockvieventually results in the
sound becoming unvoiced. The bandwidth of the noise is a Wagjoisting the speed of
the noise signal fluctuations. This can range from slow remdariations to uncorrelated
noise, depending on the filter bandwidth. Finally, theretlaeeshimmer and jitter correlation
groups, the purpose of which is to control how much the shimongitter noise signal of
each partial is correlated to the noise of the fundamentaighaThe modelling of the noise
parameters adds liveliness and a real quality to the sound.

The timbre model consists of a number of partials, of whiak éimplitudes are the sum
of a clean envelope made up of an attack, sustain and relegseent, with irregularity
(shimmer) added. This amplitude is then multiplied with sipectral envelope value, where
the frequency is the sum of a static value and irregularite€). The timbre features used to
model timbre can then be described as:

the maximum amplitudes of each partial,

envelope model times, amplitudes and curve form coeffisitar each partial for the
attack, sustain and release segments,

the mean frequencies, and

irregularity SD, bandwidth and correlation.

Timbre models find application in the automatic classifmatf musical instruments. This is
a difficult procedure to carry out, but has become the focues#arch pertaining to computer
music and grouping of music into genres. Attempts in thisifeflresearch have been made
by Herrera-Boyer, Peeters and Dubnov (2003), using the ppiot¢@ model of timbre, such
as the model by Jensen (2001), to achieve automatic musmapipg. Other models such
as that of Bensa, Jensen and Kronland-Martinet (2004), heawelaped a detailed but very
specific model of a realistic piano sound, which provides@dgepresentation of the timbre
of the piano, but lacks a generalised description enconmEasgny timbres. As asserted by
Jensen and Marentakis (2001), the timbre model by Jens@d ) &fodels all voiced isolated
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musical instruments and has an intuitive parameter set oked 8ize, which separates the
sound into dimensions that relate to the timbre dimensioopgsed in research, providing
a promising, well established representation of timbre.

2.4 COCHLEAR IMPLANTS

With an understanding of timbre and the timbre model of Jer{2801) in place, a back-
ground on Cls is required on which to base an adequate repatisarof timbre perception

in cochlear implantees. A background on CI processing sfiegevill be presented in sec-
tion 2.4.1, focussing on strategies used in the implementation of teestic model in this

work. The factors that may influence the performance of Clgpaesented next, followed
by an overview of acoustic modelling, which will be used toypde a Cl-mediated repre-
sentation of timbre. Following this general background,@erspecific overview of music
processing in Cls will be given, as well as factors that mayuarice music perception in
implant recipients.

2.4.1 Processing strategies

The speech processor plays an important role in the suct€ds because it is responsible
for deriving the most appropriate stimuli to be presentetht electrodes. Many signal
processing strategies have been developed over the yesatscassed in detail by Loizou
(1999b) and Clark (2003). In general, speech processinggtea involve dividing the input
signal into a number of different channels in an attempt ésent stimuli to the electrodes to
effectively imitate the natural firing patterns inside tleelglea, thus optimising the speech
intelligibility of the listener.

The frequency of a sound is encoded through both rate codihglace coding, as described
by Clark (1996). Rate coding refers to the encoding of the #eqy of sound by varying

the rate of electrical stimulation on the cochlea. Placargpdefers to the encoding of the
frequency of sound using multiple electrodes placed a@egri the tonotopic organisation
of frequencies in the cochlea. Initially, Cls were implensghtising single-channel implants
(House and Berliner, 1982), whereby electrical stimulati@s provided at a single site in
the cochlea using one electrode (Loizou, 1999b). With tveld@ment of Cls, multichannel
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implants became the norm, to allow spectral informationgdrnsmitted more readily by
making use of the place mechanism for coding frequenciezdup 1999a).

In multichannel Cls, different electrodes are stimulatedesheling on the frequency of the
signal. High frequency signals cause stimulation of etetgs situated close to the base of
the cochlea, while low frequency signals stimulate thetedeles situated close to the apex.
The main function of a CI signal processor is to filter the inputlio signal into different
frequency bands or channels, which can then be applied tootinesponding electrodes, in
an attempt to mimic the function of a healthy cochlea (LojzZt208). Many design consid-
erations in the development of Cls arise as a result of maltinkl implants. These include
the number of channels that are sufficient for adequate bpgeterstanding (Friesen, Shan-
non, Baskent and Wang, 2001; Dorman, Loizou and Rainey, 19%8hb)vell as the type
of information that should be transmitted to each electrlitford, Seligman, Blamey,
McDermott and Patrick, 1993). To address these designaderations, different signal pro-
cessing devices with varying numbers of spectral chanreels heen developed. Generally,
a ClI consists of a fixed number of implanted electrodes witHecgen of these electrodes
activated depending on the number of spectral channel®oifrthlemented processor.

The many different types of signal processing strategie€fe can be classified into three
main groups, namely: waveform strategies, feature extractrategies and hybrid strate-
gies, as discussed by Loizou (1999b). In waveform strasegiech as the continuous in-
terleaved sampling (CIS) approach, a waveform is derivenh ffittering the speech sig-

nal and presented as the stimuli. In feature extractiortegfies, such as the FO/F1/F2
and multipeak (MPEAK) strategies, spectral features sicfoanants are derived using
algorithms and presented as the stimuli. In hybrid stragegsuch as “n-of-m” strategies,
both waveform and feature extraction aspects are includeldpaesented as the stimuli
(Loizou, 1999b; Clark, 2003).

In “n-of-m” strategies in ClIs, the speech signal is separatéml m frequency bands and
envelope information is derived from each band (NogueirghB@r, Lenarz and Edler, 2005;
Loizou, 1999b). In traditional “n-of-m” strategies suchs®ectral peak (SPEAK) and the
advanced combination encoder (ACE) strategies,ntlemvelope outputs with the largest
energy out of then bands are selected for stimulation (Loizou, 1999b). Théstegies
aim to neglect the less important features of speech anceotratce only on the significant
spectral components to increase temporal resolution (Bioget al., 2005).
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The spectral maxima sound processor (SMSP) was the firstitpehto branch away from
formant extraction techniques (Fearn, 2001) and form aof“m” or peak picking strategy.
It consists of 16 band pass filters analysed at a rate of 250rhHe.commercial implemen-
tation of SMSP was expanded to form the SPEAK strategy, whicludes 20 bandpass
filters, as discussed by Whitford, Seligman, Everinghampgnelli, Skok, Hollow, Plant,
Gerin, Staller, McDermott, Gibson and Clark (1995). Oncentla&tima are selected, the cor-
responding electrodes are stimulated at an average rat&0dfl2, but this may vary in the
range of 100 Hz. The ACE processing strategy is an extensitreddPEAK strategy, with
the stimuli either presented at higher rates or with moreohks (Clark, 2003; Fearn, 2001).

As outlined by Wilson (2006), the ACE strategy generally nsakee of a linear distribu-
tion of frequencies up to approximately 1300 Hz, after whaclogarithmic distribution of
frequencies is used, ranging up to the maximum frequenctyplical fittings of ACE pro-
cessors, the number of electrodesranges from 20 to 22 and the number of activated chan-
nels,n, ranges from six to 16, depending on the implementatiom{&ki Holden, Whitford,
Plant, Psarros and Holden, 2002). The maximum rate of sditiom with an ACE processor

is 14400 Hz (Clark, 2003). In general, speech perceptioresduave indicated better results
with the ACE processing strategy than with the CIS strateglydlslinot show significantly
different results from the SPEAK processing strategy (8éiet al., 2002; Clark, 2003).

2.4.2 Factors influencing the performance of cochlear implants

Given the many different processing strategies impleniemeCls, as well as subject vari-
ability, there is a great deal of inconsistency in the penfance of CI recipients. Loizou
(1999a) discusses some of the factors responsible for tiebitdy of auditory performance,
which are briefly outlined in the following paragraph.

Factors such as the duration of deafness of a subject priecé&wving a Cl, relating to the age
at which the onset of deafness occurred, generally affetitay performance. For example,
prelingual deafness will affect the learning of speech andliage, as opposed to postlingual
deafness, with detrimental effects on auditory perforreafi®ie duration of Cl use may also
affect auditory performance. Additional factors that effauditory performance include the
electrode placement and insertion depth of the electrodg arside the cochlea and the type
of signal processing strategy employed (Loizou, 1998).
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2.4.3 Acoustic modelling

The inconsistency of auditory performance among Cl rectpierakes it difficult to assess
the various factors that affect speech perception. Theserfamay also not be independent
of one another, heightening the difficulty of assessingtangiperformance factors individ-
ually (Loizou, 1999a). To address this problem, acoustiwations are of great assistance
as they represent acoustically what a CI recipient may hearrasult of electrical stimu-
lation (Clark, 2003). This allows individual factors thafeadt auditory performance to be
investigated without the complications of aspects suchubagest variability and period of
deafness.

An acoustic model may include different parts to emulatedfiect of a Cl on a sound,
which can be separated into the processing part of the Cl @&nuktt of the CI that simulates
the biophysical characteristics of the electrode-neurtdriace. To gain insight into the
factors that influence the performance of Cls, acoustic nsosleth as the model developed
by Blameyet al. (1984), may be implemented. Generally, acoustic simuiatiavolve the
processing of speech in a similar fashion to a Cl processaretdy the speech signal is first
filtered into different frequency bands or channels, whighwsed to stimulate the different
electrodes spaced along the array inside the cochlea. Howievthe case of an acoustic
model, the output is presented acoustically as a sum of taisds or a sum of sinusoids
to NH listeners. Acoustic models have provided quantigainsight into speech perception,
and even music perception in more recent research, suctaasftRubinstein and Turner
(2003), in which the interaction between the number of gpéblands and the amount of
temporal fine structure conveyed within each band was asse$se results suggested that
Cl processing strategies that improved the coding of tenhpioi@ structure were likely to
improve both speech perception, especially in noise, araiamerception in Cl listeners.

The development of an acoustic model requires that bothigimalsprocessing factors and
biophysical characteristics of the electrode-neurakfate of Cls be considered. The latter
encompasses effects regarding the physical location @l#otrode array inside the cochlea,
and includes factors such as current spread and insertpth.d& discussion of some spe-
cific acoustic modelling aspects that are addressed in thdy 3s given in the following
paragraphs, along with the effect of each of these modedletbifs on the auditory perfor-
mance of Cl recipients.
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2.4.3.1 Number of channels

An important factor that can be included in an acoustic maegl#he number of channels.
The number of channels refers to the number of areas thatiarelated in the cochlea,
and affects the level of speech perception. An optimum nurobédependent channels
required for high levels of speech understanding must bedpand may be facilitated by
means of acoustic simulations. Studies such as those bydyaial. (1997b) and Frieseet
al. (2001) have investigated the effect of the number of chamekpeech recognition in ClI
recipients. Nie, Barco and Zeng (2006) found that increasisghumber of electrodes from
four to 12 generally improved speech recognition, spedificagarding closed-set vowel
recognition and sentence recognition in quiet. Additignagight to 10 electrodes were
found to be optimal for speech intelligibility in noise (Riman, Shannon and Slattery, 1997).
However, as the channels increased between seven, 10 and 8@ference was found in
speech performance.

General conclusions from studies such as those mentioreea atdicate that between five
and eight independent channels are needed for good speeminiton (Loizou, 1998;
Fearn, 2001), and so should be the number of channels tiypicgdlemented in an acoustic
model.

2.4.3.2 Insertion depth

The insertion depth of the electrode array substantiafiycés speech performance in Cls.
As explained by Loizou (1999a), electrode arrays are tyjyioaly partially inserted into the
cochlea, usually 22 - 30 mm deep. This creates a frequenceyach between the analysis
frequency and the stimulating frequency. For example, asrideed by Dorman, Loizou
and Rainey (1997a), if an electrode array is only inserted @Rimto the cochlea, the most
apical electrode will lie close to the 800 Hz frequency arfdh® cochlea. However, a typical
centre frequency of 250 Hz of the first filter in the CI procesgitithen be used to stimulate
the 800 Hz area, indicating that an upwards shift in frequemiti take place, affecting the
perception of speech.

Acoustic simulation studies that have been carried oumMestigate the effect of the insertion
depth of the electrode array on the performance of Cl redpigclude those by Dorman
et al. (1997a), Faulkner, Rosen and Stanton (2003) and Baskent amh&f (2005). As
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discussed by Dormaet al. (1997a) and Loizou (1999a), it was concluded that the inser-
tion depth significantly affects speech perception, asrilssedepths of 23 mm and lower
generally result in very poor speech recognition. Studie8&skent and Shannon (2005)
and Faulkneet al. (2003) showed that better speech recognition results deenelol when
acoustic frequency information is mapped onto the cornediog cochlea place, using the
frequency-to-place equations found in Greenwood (1990).

2.4.3.3 Channel interactions

As explained by Vanpoucke, Zarowski and Peeters (2004)eatrede on an electrode array
inside the cochlea should ideally only excite neural fiboeated in the immediate area of the
electrode. However, the current that is injected spreadsitin the cochlea, exciting fibres
that may be situated at a distance from the stimulating reléet This occurrence results
in channel interactions, a limitation which causes the nemd$ perceptually independent
frequency channels to be lower than the number of availdbttredes (Frieseet al, 2001).

Many factors can influence channel interactions in Cls, ulicg the electrode configura-
tion, e.g. bipolar or monopolar, as well as the placementdesign of the electrode ar-
ray, e.g. the distance between the electrode and the nellsgBmgabr, Espinoza-Varas
and Loizou, 2008; White, Merzenich and Gardi, 1984). Vangewt al. (2004) developed

a model for an approximation of the current spread as a fomaif distance through the
cochlea for each electrode stimulated separately. Thaydftioe current spread to be very
wide and not strongly dependent on the place of stimulatibhrockmorton and Collins

(2002) conducted an extensive study on the effect of chanterlactions on speech recog-
nition. It was found that various channel interactions,gated by means of pitch reversals,
forward masking and electrode discrimination, affect sheecognition to different degrees.
In general, spectral interactions degraded speech raamgmnore than temporal interac-
tions. The spectral interactions affecting lower-freqryemformation also caused a more
detrimental effect on speech recognition than those afigttigher-frequency information.

Channel interactions may occur where neural populationscaged with different elec-
trodes overlap, with the degree of overlapping varying feuject to subject (Throckmorton
and Collins, 2002). Research by Whéeal. (1984) presents a number of possible methods
for reducing channel interactions, including the use ohablyonous stimulation as well as
bipolar electrodes instead of monopolar electrodes. Theotibiphasic pulses also stimu-
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lates a smaller group of nerve cells, reducing channelantems. Fu and Galvin 11l (2001)
developed a model to desynchronise channels by introduliifeyent delays for each chan-
nel. The study indicated that in the case of CI recipients wlfi@e spectral structures are
not available, cross-channel asynchrony in speech sigaalb¥e overcome by an increased
spectral resolution. A recent study by Bingadtral. (2008) showed the development of a
new simulation for the effect of spread of excitation in Clsodls such as these find strong
applications in acoustic modelling, where the effect ofsheead of excitation is included.

2.4.3.4 Rate of stimulation

There has been much debate regarding the optimal rate at tidelectrodes of a Cl should
be stimulated. Vandali, Whitford, Plant and Clark (2000) stddhe effect of different stim-
ulation rates on speech recognition. The study found tlgdidnistimulation rates sometimes
showed improvements in speech performance, but could edslnipe undesirable effects, in-
dicating the subject-specificity of this factor. The stutsodound no differences in speech
perception when the pulse rate varied between 250 and 18%Bspper second (pps) per
channel (Fearn, 2001). However, as discussed by Fearn)2tfitradictory findings were
recorded by Loizou, Poroy and Dorman (2000b), who foundahagher pulse rate always
resulted in a positive effect. Stimulation rates of 2100/gmannel resulted in improved
speech scores when compared with rates of 800 pps/chanr@tlery Skinner, Holden
and Demorest (2002) also studied the effect of stimulates and found that group mean
speech perception scores for sentences and phonemesénacoiss periods of time were
significantly higher for a higher stimulation rate of 180Gfghannel, compared to a stimu-
lation rate of 720 pps/channel. N&¢ al. (2006) found that increasing the rate from 1000 Hz
to 4000 Hz for each electrode improved sentence recognitiguiet, but that this increase
could degrade sentence recognition in the presence of domgpmice. It was found that
high-rate stimulation up to 2000 Hz is beneficial to speechguion, but an increase up to
4000 Hz may affect performance detrimentally due to thetedde interactions at this high
rate.
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2.4.3.5 Other factors

Cl listeners (as opposed to NH listeners) have a limited dynaamge and spectral resolu-
tion. The large acoustic dynamic range of approximately dBGor NH listeners (Fu and
Shannon, 1999) is compressed by a logarithmic function tnzall an electrical dynamic
range as 5 - 15 dB in CI processors (Loizou and Poroy, 2001xodwiDorman and Fitzke
(2000a) found that speech understanding in ClI listenersidoeilseverely impaired as a re-
sult of a reduced dynamic range, especially for vowel rettmgn A study by Zeng, Grant,
Niparko, Galvin, Shannon, Opie and Segel (2002) revealaidftin optimal speech recogni-
tion in Cls, an input dynamic range of 50 - 60 dB is required. doacanmodate this finding,
a new amplitude mapping technique was presented by 2ealj(2002) to assist Cl users
with speech performance, where a logarithmic map is uselbfofrequency channels and
a more compressed map is used for the higher frequency dsafiueand Shannon (1998)
investigated the effects of non-linear amplitude mappmpbath Cl users and NH listeners,
concluding that inadequate amplitude mapping functiongccoause the loudness growth to
be unnatural, resulting in poor speech recognition. Howéueand Shannon (1998) suggest
that the application of simple logarithmic mapping funosccould be sufficient to provide
Cl listeners with adequate speech recognition.

For high auditory performance, specifically for vowel id&oation, the spectral contrast,
which is the difference between the spectral peak and tharsp&alley, must be preserved
to a certain degree (Loizou and Poroy, 2001). The spectrdtast is reduced in Cl listeners
mainly due to the reduced dynamic range, as well as due toitasiglcompression. As dis-
cussed by Loizou and Poroy (2001), the steepness of the essipn function used to map
the amplitudes of the acoustic signal to the electric amgdis presented to the electrodes is
a contributing factor to reduced spectral contrast. Loiand Poroy (2001) found that for
high vowel recognition, ClI listeners needed about 4 - 6 dB éigipectral contrast than NH
listeners.

The factors discussed above that may affect the performainCés have also been jointly
investigated. Loizowet al. (2000b) studied the effect of different CI processors on cipee
understanding by varying the parameters of the procesiosss found that the pulse rate
and the pulse width had the most positive effect on speedgrgiion, where joint variations
of these two parameters yielded higher speech performanCési Other signal processing
factors such as filter overlap and the shape of the amplituglgping function were also
investigated, but did not generate significant results.
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Nie et al. (2006) investigated the contribution of spectral and terapoues to Cl speech
perception. The effect of the number of electrodes, stitrafiaate and temporal envelope
extraction on speech perception in quiet and noise wereiaed. They found that a linear
trade-off exists between the number of electrodes and itimellsition rate for consonant and
sentence recognition in quiet, but not for vowel and sergeacognition in the presence of
competing voice.

Acoustic models of Cls provide insight into the various pagtars of Cls. The above-
mentioned studies indicate that the limitations of Cls carbéter located with acoustic
simulations, allowing improvements in Cls to be more readihieved. Acoustic models
may also be used to test new CI design aspects (Rubinstein andr,TR003) to accelerate
the development of Cl technology.

2.4.4 Music processing in cochlear implants

Although speech and music differ, as described in se@i@ri, they have structural simi-
larities (Limb, 2006), introducing consequent difficutiem understanding speech and mu-
sic processing independently. Recent studies by Peretz altide@a (2003) have shown
that music processing in the central auditory system canefi@eti by a modular struc-
ture, by means of which differences and similarities betw#ée modules used for speech
and music processing are formulated. Essentially, the whifferences appear to be in the
different spectral and temporal requirements for musicspekch (Zattore, Belin and Pen-
hune, 2002; Zattore, 2001), indicating that the procestatures required for music differ
from those for speech. As discussed by Zattore (2001), Fustand Hanekom (2005) and
Zattoreet al. (2002), speech requires fine temporal information pronggsi which the left
auditory cortex regions are better suited, and music reguine spectral or tonal informa-
tion processing, for which the right auditory cortex regi@are specialised. This indicates
that a processing system that can manage both temporal aaulapnformation with equal
accuracy is required for correct speech and music pereefRietorius and Hanekom, 2005).
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Due to the inadequate spectral resolution of Cls, pitch msing capabilities appear to be the
major downfall regarding music processing in Cls, becausg#nception of pitch changes,
which essentially make up a melody, is drastically affettgthe pitch processing resolution
(Pretorius and Hanekom, 2005). The tonotopic organisatidhe electrode array also con-
tributes to poor pitch perception (Korgg al, 2004), adding to the challenge of improving
pitch resolution in cochlear implantees.

2.4.5 Music perception in cochlear implant recipients

Music perception abilities of cochlear implantees aré ktilited (McDermott, 2004), de-
spite numerous research efforts in this field (Lehl., 2003; Gfelleret al., 2005). In both
speech and music perception tasks for cochlear implarfeegieneral approach is to per-
form psychoacoustic experiments, in which physical, medsda acoustic parameters are
provided as inputs to the experiment and a subjectivelydaséput is obtained from the
listener’s response to the task. This approach has beeassfatin measuring speech intel-
ligibility in Cl users, as the limited phonetic alphabetsttbzist in most languages provide
listeners with a frame of reference through which soundsbeaimentified (van Wieringen
and Wouters, 1999). This enables postlingually deafeséshers to distinguish between dif-
ferent speech sounds that are perceived, for exampleratiffeonsonant sounds, providing
distinct, conclusive information regarding the percepid specific speech components.

However, psychoacoustic experiments have revealed fauctasclusive evidence regarding
music perception abilities in cochlear implantees. Thisi&nly due to the fact that music
perception cannot be measured in the same way that speedtooapsychoacoustic ex-

periments. Language perception is acquired from an eady iagplying that the auditory

system is trained to perceive speech (Shannon, 2005). éJiailguage, music is not a ne-
cessity for communication and survival and is thus not dgyetl as early or to the same
degree as speech, as discussed by Limb (2006) and Shan).(Z0is creates difficulties

in music perception tasks as listeners generally have aainatl musical ear. Furthermore,
the fact that music is unrestricted in style and sound matkesficult to measure exactly

what is perceived by listeners.
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In addition to these challenges in understanding musicepdian in cochlear implantees,
music perception is also far more subjective than speeatll@gét al, 2005; Limb, 2006),
based on individual preferences and factors such as tleailigt habits of the ClI user be-
fore and after receiving the implant (Gfeller, Woodworth biRg Witt and Knutson, 1997).
Aspects such as memory of music would therefore play an itapbrole in Cl-mediated
music perception. Lassalettd al. (2007) and Gfeller, Christ, Knutson, Witt, Murray and
Tyler (2000) discuss the fact that listening habits, insigdthe number of hours spent lis-
tening to music and music enjoyment, decreased substgrdafaéér implantation. It was
found, however, that more than half of the CI subjects stijbyed listening to music fol-
lowing implantation. Additionally, numerous studies hal®wn that musical training for
implantees can improve perception and enjoyment of musgtehing, as noted by Don-
nelly and Limb (2009) and McDermott (2004). The above-nwdd subject-specific fac-
tors make it difficult to pinpoint the reason for the diffetr@erceptual capabilities regarding
music in cochlear implantees.

Existing music perception studies, such as that of Gfeteal. (2005), utilised real-world
pieces of music, combining various elements of music suchytbm, pitch and timbre, to
measure perception of music in cochlear implantees, whileronethods have focussed on
separate elements of musical pieces (Galvin Ill, Fu and kipg@07; Gfeller, Witt, Wood-
worth, Mehr and Knutson, 2002c). Even though numerous @xgeaits have been carried
out, research has generally not provided measurable ohusive results, but rather a gener-
alisation of the abilities of cochlear implantees regagditusic perception. For example, the
addition of lyrics to a melody usually improves the perfonoa of implantees in perception
tasks (Gfelleret al., 2005). However, it is still unclear which aspect of musicge@tion
enables this: the memory of the lyrics or of the speech pensgsapabilites of the implant
(Pretorius and Hanekom, 2005).

However, according to Martin, Scheirer and Vercoe (1998ychoacoustic studies provide
great potential for better understanding musical contnthe limitations of music percep-
tion are highlighted as a result. Such studies provide lisesources from which important
features that can be used in systems to understand musicereracted.
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General findings have concluded that rhythm is the attribfiteusic most readily perceived
by CI listeners (Gfelleet al,, 1997; Lealet al, 2003; McDermott, 2004). Studies such as
those by Konget al. (2004) and Leaekt al. (2003) show that there is a correlation between
performance scores in rhythmic tasks and speech perceptiks. The fine temporal resolu-
tion that is necessary for accurate speech perception indcepsors allows rhythm, which
is made up of temporal components, to be perceived with higiagormance levels.

Pitch and melody perception, however, are more challengspgcts for ClI listeners (Limb,
2006), and without rhythmic cues, recognition of melodies/rhe severely impaired (Kong
et al, 2004; McDermott, 2004). Common methods of evaluating piterception consist
of testing the recognition of familiar tunes or obtainingfpemance measures using simple
pitch discrimination tasks (Pressnitzetrr al, 2005). Other studies, such as those carried
out by Pijl and Schwarz (1995), used a single electrode $ited by varying pulse rates
and showed that temporal cues are capable of providing pifdhmation similar to NH
subjects up to approximately 300 Hz (McKay, 2005). Howetles, approach uses a different
technique from the normal process of sound transmissiohencbchlea during acoustic
sound perception (Limb, 2006). Pitch perception resear€ listeners has been performed
by McDermott and McKay (1997), while melody perception s¢gdave been carried out by
Gfeller, Turner, Mehr, Woodworth, Fearn, Knutson, Witt &tdrdahl (2002a) and Galvin Il
etal.(2007). Gfeller, Turner, Oleson, Zhang, Gantz, Froman asdeéWwski (2007) provide a
study that summarises how well Cl recipients perform in mpsiception tests with different
processing strategies, as well as with combined acoulgtitreal hearing compared to only
electrically stimulated hearing.

Studies that have been carried out by Koelsch, Wittfoth,f\/liller and Hahne (2004) in-
dicate that similar potential brain response patternsraoeddH and Cl listeners in detecting
irregular-sounding musical sequences. These resultestgtat the neural mechanisms to
detect pitch and timbre relationships are active in implas#rs, implying that the pursuit
of the improvement of music perception in Cls would be feasills the mechanisms to
interpret music are present.
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2.4.6 Timbre perception in cochlear implant listeners

In general, timbre perception is found to be unsatisfadto@l users (Limb, 2006; McDer-
mott, 2004), implying that in addition to pitch, timbre reim&one of the more challenging
aspects of music perception in cochlear implantees (Donaeld Limb, 2009). Research
on timbre perception in CI listeners can be separated intontam paths: timbre recogni-
tion and discrimination, and timbre appraisal, the subjectiting of the pleasantness of the
timbre, as discussed in the following paragraphs.

2.4.6.1 Timbre recognition and discrimination

In general, studies on the perception of timbre in Cl listerigve focused on the ability of
listeners to either identify or discriminate different nuad instrument sounds (McDermott,
2004). Examples of such studies include work by Lefadl. (2003) and reviews by McDer-
mott (2004), resulting in findings that NH listeners reglylanistake musical instruments
from the same family, such as different brass instruments(2lly and Limb, 2009). How-
ever, Cl users show error patterns in identifying timbres dlaenot correspond to the type of
instrument family (Donnelly and Limb, 2009), indicatinggrdimbre perception in cochlear
implantees in general.

Gfeller, Knutson, Woodworth, Witt and DeBus (1998) studiedbtre recognition and ap-

praisal. Simple melodic patterns were played as solos dm @aour musical instruments,

namely the clarinet, the piano, the trumpet, and the vidhor. timbre recognition, subjects
were asked to identify the type of instrument producing tiedoaty. The results showed that
NH listeners recognised all of the instruments with a sigaiiily higher accuracy than CI
listeners. Errors in the recognition tasks of the NH listsrveere most often within the same
instrument family, while for Cl listeners, the errors in rgodion were more scattered.
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A study by Gfelleret al. (2002c) showed that cochlear implantees found it more diffio
identify timbres when musical instruments were played atifgher frequency ranges than
when those instruments were played in the lower frequentyes Cochlear implantees also
found it more challenging to identify timbres from the fayndlf string instruments (Gfeller
et al, 2002c), with percussion instruments the most readilytiied (Limb, 2006). This
again indicates that temporal cues are important in cochigalantees for improved timbre
perception (Donnelly and Limb, 2009).

General findings from the study by Gfelletral. (2002c) revealed that under 50 % correct re-
sponses in identifying musical instruments were obtaine@Idisteners, while NH listeners
obtained more than 90 % correct responses. In support dirtkdisg, a study by McDermott
and Looi (2004), where subjects were asked to identify lf@idiht musical instruments, re-
vealed similar findings. The results varied greatly acraggests as well as instrument types,
with an approximate average of 44 % correct identificatioalbhe musical instruments by
the Cl users and a significantly higher average of 97 % cordesitification by the NH
listeners (McDermott, 2004).

As discussed by Pressnitzet al. (2005), the familiarity of the listener with the stimulus
Is essential for recognition tasks, implying that musicanmory may have been measured
unintentionally in the studies mentioned in the previousageaphs. This again illustrates
the inconclusive nature of the outcomes of timbre percemigeriments for Cl listeners.

In addition to timbre identification tasks, timbre perceptin Cls has also been investigated
by methods of forward masking (Stainsby, McDermott, McKay &lark, 2002), where the
perception of the steady-state envelopes of differentcalisistruments was examined. The
shape of the internal spectrum was measured using forwas#tingg and in addition the
ability of listeners to identify and discriminate betwe&e same stimuli was also measured.
Results showed that the strengths of the correlations of ¢ttertperforming ClI listeners
compared well to NH listeners. This indicated that some Cisusgay have frequency se-
lectivity that is comparable to that of NH listeners. Stayet al. (2002) also concluded
that a large amount of spectral information seems to beabaito CI listeners, which can
be noted from their discrimination abilities. However, fierformance in the identification
experiments was poor, illustrating that steady-statetsglecues alone are not necessarily
adequate to identify a musical instrument sound.
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A recent study by Emiroglu and Kollmeier (2008) attempteduantify differences in object

separation and timbre discrimination between NH and hgampaired listeners. The ex-
periments determined JNDs of timbre in NH and hearing-imgehsubjects along continua
of “morphed” musical instruments and investigated thearaze of JND in silence and dif-

ferent background noise conditions and on different soewmel$. Emiroglu and Kollmeier

(2008) used the same database of sound recordings as theokm wisis study (described in
section3.2), but cut out the attack time for their stimuli. They investied pairs of sounds
that differed along three dimensions: spectral centr@ohporal flux, and a pair of sounds
that varied in both temporal and spectral aspects. Morpbfnifpe sounds was then car-
ried out between these pairs, and JND values of the morplaranpeter were investigated
each time. A similar approach will be used in this study teestigate individual JNDs of

perceptual features important for timbre perception.

2.4.6.2 Timbre appraisal

Timbre appraisal evaluations require that the listenecriles the quality of musical instru-
ment sounds to assess the pleasantness of a sound (McDet@tetf Gfelleret al., 1998).
This can be achieved by requesting the listener to assigarettings, in terms of numbers,
or adjectives, such as “clear” or “beautiful” to the sounalify. Gfeller and Lansing (1991)
asked subijects to rate nine musical instruments to obtaicrigiors of the perceived quality
of musical instruments. The study took everyday life ligtgnconditions into account in
obtaining the quality ratings.

The timbre appraisal component of the study conducted bylegfet al. (1998) involved
subjects rating different timbre samples on a sliding soalehe basis of how much they
liked the sound. The resulting differences in appraisavben NH and CI listeners were
substantial for two of the four instruments played, nameé&/ttumpet and the violin, which
were found to be far more pleasant to NH listeners.

Gfelleret al. (2002c) obtained measures of timbre appraisal when congp@ii listeners to
NH listeners by means of numerical scales for overall pleiagss as well as for perceptual
dimensions of dull-sharp, compact-scattered and fulltgmfsverage findings showed that
the ratings of Cl listeners were substantially lower thantii@r NH listeners, particularly in
the ratings of string instruments.
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Musical pieces from three genres of music, namely classiocahtry-western and pop, were
presented to both Cl and NH listeners in a study by Gfeller,sEHKinutson, Witt and Mehr
(2003), to rate the complexity and pleasantness of musioares. It was found that the ClI
users rated the musical excerpts to be more complex thahelidH listeners, with the least
appraisal found for classical music.

In an attempt to improve the music perception abilities of iSiehers, researchers have
explored the effects of training implant users. McDerm@@@4) provides a summary of
the training effects of CI recipients on music perception é@megral, while Gfeller, Witt,
Adamek, Mehr, Rogers, Stordahl and Ringgenberg (2002b) fepesifically on the effects
of training on timbre perception in CI recipients. The musairting program used in the
study by Gfelleret al. (2002b) was developed and described in detail by Gfellett, Wim,
Adamek and Coffman (1999). In summary, the training programsists of 48 lessons
(approximately 10 minutes of listening and responses @sole) for a period of 12 weeks,
and information regarding the families of musical instrumsas incorporated. The results of
the study by Gfelleet al. (2002b) showed that listeners that completed the trainingram
showed significant improvements in their average timbregeition and timbre appraisal
scores when compared to the control group in which no imprards were recorded.

2.5 SUMMARY

Chapter 2 presented the literature on which this study wasdhddsing the existing timbre
perception findings for both NH and Cl listeners as discusséus chapter as a foundation,
experiments and models to assist with timbre perceptiorsoreanents were developed. A
foundation for the definition and extraction of importamlire perception features was pro-
vided, as well as methods of implementing acoustic modelspgresent sounds through the
electrically stimulated auditory system. A summary of timlperception literature as pro-
vided in this chapter enables the structured developmesm afpproach to follow to achieve
the objectives of this study. The methods followed to impeaitrexperimental procedures to
measure timbre perception, as well as to develop a modehbfé perception, are discussed
in detail in chapter 3.
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METHODS

3.1 CHAPTER OBJECTIVES

Using the background given in chapter 2 as a basis, the agipfolowed to quantitatively
understand timbre perception in cochlear implantees amitthbe able to develop the model
of timbre perception for electrically stimulated hearisggiven in this chapter. The objec-
tive was to firstimplement fundamental parts of the existinpre model of Jensen (1999b).
This was done to enable the definition and extraction of itgmditimbre features from orig-
inal musical instrument sounds, as well as from acousyicalbdelled sounds, to investi-
gate the effect of the electrically stimulated auditorytegson the parameters of the timbre
model. An acoustic model implemented to alter sounds acogptd the effect of electrical
stimulation was developed in Matldlversion 2007b. The effect of electrical stimulation on
the timbre features deemed important for timbre perceptiosiH conditions could then be
used to predict the outcomes of timbre perception expetisrfen both NH and Cl listeners
by developing a model of timbre perception. This chaptesgmés the methods used to form
a foundation on which to be able to address the researchigpegiosed in chapter 1, lead-
ing up to the experimental and modelling components deeelapthis study, which will be
discussed in detail in chaptetand5.

IMatlab is a product of the MathWorks company (www.mathwarisn)
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3.2 DATABASE OF MUSICAL INSTRUMENT SOUNDS

Ten different instrument sounds were used in the study todoce a variety of musical
timbres. These were obtained from the sound database ofrtiversity of lowa (Fritts, No
date) and were used throughout the study. The perceiveddésgdvas very different across
the stimuli presented in this database. Such vast diffeeimcloudness would possibly have
had a drastic effect on the similarity rating experimenutssobtained. Thus, peak normali-
sation of the sounds was performed in an attempt to providera balanced perceptual level
of loudness across the musical instrument sounds. Extedsiails of the instrument sounds
are given in sectiod.2.2 as implemented in one of the experimental studies. Thes&aiu
instruments included four main instruments, namely the@igrumpet, clarinet and violin,
as these can be played in a similar frequency range and eaatoimmonly recognised ex-
ample of an instrument family (Gfelleat al, 1998; Nimmons, Kang, Drennan, Longnion,
Ruffin, Worman, Yueh and Rubinstein, 2008). These four musitdtuments are used
throughout sections 3.2 to 3.5 to illustrate the timbre peai@rs extracted and calculations
performed on the musical instrument sounds. The note of@atlese sounds was C4 (FO =
262 Hz), and in each case the peak amplitudes of the soundweaTalised. The sounds are
illustrated in figure 3.1. In addition to these four primarysital instruments, six other mu-
sical instruments were included to encompass a range otalusnbres. The instruments
were selected to include a variety of spectral and tempooglgties, as well as representing
more familiar musical instruments and their families (Gal, Fu and Oba, 2008).

The piano makes up the first family of instruments, namelghgitl percussion or percussive
string instruments (Gfellegt al, 1998). The piano is the only sound of this family included
in this study, as others (e.g. the harpsichord) are uncomnmairuments and samples of
the sounds are not readily available. Pitched percussgiruiments are defined as having a
string fixed at both ends as the primary source of vibratiath most of the energy radiated
by the body of the instrument. Usually, all the frequency ponents (both even and odd)
are present with inharmonic components prominently fo8tbfg and Plitnik, 1992). The
attack or rise of the piano sound is very short, with a promikey “thump” noise generated
by string vibrations. The sustain part of the sound is briehan-existent, and the funda-
mental component usually dominates the sound spectrurtcfléleand Rossing, 1998).
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The trumpet represents the brass family of instrumentseiGistruments of the brass family
included in this study were the French horn and the trombbmiiese instruments, sound is
produced by the vibration of the lips against a mouthpieckaong sections of cylindrical
tubes (Gfellert al,, 1998). The frequency components are again usually aleptes brass
instruments. For the trumpet specifically, a clearer andéosound may be produced than
in other brass instruments, changing the number of resanftéquencies in the tone (Strong
and Plitnik, 1992).

The clarinet represents the woodwind family of instrumeniish the flute and saxophone
constituting the other two members of this group for thiglgturhese instruments produce
sound from oscillations in the air column as a result of aatibg reed. In general, the
odd frequency components of a clarinet are predominant apotand 2000 Hz, after which
even and odd components are both present (Gfelleal, 1998). The violin represents
the last family of instruments, the string family, with thello and viola included as other
examples of this group. The violin is the highest pitchedriumaent of the string family.
Similarly to the pitched percussion instrument family, ffrénary vibrations in the string
instrument family originate from a string fixed at both enslh most of the energy produced
by the body of the instrument, and to a smaller degree, byttivegs All of the frequency
components are usually present for string instrumentg ity those that contain a node at
the point of excitation (Strong and Plitnik, 1992).

As discussed by Houtsma (1997), pitch is often confused tintbre and therefore, for
the purposes of this study, all musical instrument sound® \payed at the same pitch,
chosen as Middle C or C4 (262 Hz). The octave surrounding asidding C4 is the most
common octave among the frequency ranges for western nhusstaments, as discussed
by Nimmonset al. (2008). F#3 (185 Hz) is the lower limit of the octave surrowmgdniddle

C (Nimmonset al,, 2008), with E4 (330 Hz) and G4 (391 Hz) being the other mostroon
notes in familiar melodies such as nursery rhymes.

Examples of the original musical instrument sounds arestilaied for both the time and
frequency domains in figureés1 and 3.2, respectively, for the four main families of instru-
ments. These are represented by the piano, trumpet, ¢lamadeviolin. The sounds are
approximately two seconds in length, where in each caseghest¥ note of the specific
musical instrument is played. lllustrations of the othen&tiuments are given in Appendix
A.
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Figure 3.1.

Time domain representations of a selection of musical instrment sounds from each
family of instruments with (a) the piano representing pitched percussion, (b) the
trumpet representing brass, (c) the clarinet representingvoodwinds, and (d) the violin
representing the strings.
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Frequency domain representation of a selection of musicahstrument sounds of (a)

piano, (b) trumpet, (c) clarinet and (d) violin.

3.3 MODELLING TIMBRE

The implementation of the timbre model by Jensen (1999b)wsasl as a basis to extract
various features of timbre to be used in the model of timbregy@ion developed in this

study. The important steps in decomposing and analysing @ccalunstrument sound to

extract the features that define the timbre are discussegttions3.3.1t0 3.3.5
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3.3.1 Fundamental frequency and frequency component estimation

The first step in analysing the timbre of a musical instrungmind is to decompose the
sound into its frequency components. The original sound ded read from .wav files. The
frequency analysis is performed over the strong segmenadi sound (the entire sound
after transient effects have been neglected). The fundafeequency is generally defined
as the first strong frequency component of a sound, or as¢ledncy difference between
consecutive frequency components or overtones. In theréimimdel by Jensen (1999b),
these frequency differences are used to estimate the fuerdahfrequency. An additional

improved method that fits the estimated frequencies to & iguasi-harmonic frequencies
is also presented by Jensen to refine this procedure.

From the fast Fourier transform (FFT), the important fregpyecandidates of the sound
are isolated by detecting the maximum points of the FFT. ¢ ivese candidates, the first
estimation of the fundamental frequency can be made froratemB.1, by calculating the
mean of the differences between consecutive frequencydzted as

N
f1+ 22 fn—fno1

n=

N Y

ffundl = (3-1)

where f1 is the first frequency candidate ahdis the total number of selected frequency
candidates from which the first fundamental frequency eston, f;ynq1, IS calculated.

To refine this estimation, frequency difference anomaliesramoved by comparing fre-
guency differences to the calculated fundamental frequéhthe differences between these
frequency values exceed a certain threshold, the corrdgmpifrequency difference value
Is discarded. This process is repeated, making the thisimadhller each time, until a de-
sired small numbem, of frequency difference points are obtained. This givegefeand
more accurate frequency candidates which define the souresdcond refined fundamen-
tal frequency estimation can then be made by calculatingen of the reduced frequency
differences, again by using equatidri.
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For some musical instrument sounds, for example the pidmfrequency difference of
higher overtones can vary greatly from the fundamental.s Thiaracteristic is known as
inharmonicity, and has been incorporated into the modelnatbrie by Jensen (1999b) to
improve fundamental frequency estimation. To estimatduhdamental frequency, the fre-
guency differences as described above, and here denotéd, @ase used. First, the dif-
ferences between consecutif/g@ values are calculated and denoteddds Next, the local
average of the differences betwekell values over a few overtones is removed, shown in
equation3.2as

L
5 fddh |

fd, = fdn—'zlf, (3.2)
whereL is the number of overtones over which the local mean is cafedland removed, set
as 3, giving the new frequency difference vectdr, taking into account inharmonicity. The
improved fundamental frequency estimate can then be madalbylating the mean offd.

With this fundamental frequency estimation, it is posstbleecognise the frequency compo-
nents, as found by the maximum peaks of the FFT, that are dnig@nonic components, as
indicated byfd/. Peak frequency values found to be harmonic values or ctokarmonic
values are retained. Frequency peaks that are not closglemowalue to the harmonic
components are eliminated.

It is also necessary to add harmonic components, as caduliadm the fundamental fre-
guency, that may be missing from the FFT analysis. To do sodiffierence between the
two overtone frequency values that precede the missingdraois calculated and added
to the previous frequency component value to indicate thguiency at which the missing
frequency component or overtone should be positioned.

Once all the overtone values have been included, the findbimental frequency estimation
can be made by fitting a stretched harmonic curve to the haoriceguency points. The
frequencies that are not exactly harmonic are said to be-aasionic and can be expressed
by the formula for a stiff piano string given by equati®i3 as

fx = kfor/ 1+ BK2, (3.3)
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where f is the frequency for a specific overtone indk&xfg is the fundamental frequency
andp is the inharmonicity value. By performing a non-linear lesgtiares curve fit to the
harmonic frequency data, the values fpandf can be found. The curve fitting is performed
by the Isqcurvefit function in the Matlab Optimization Took To minimise errors in the im-
portant low partial components, the curve fitting is perfechon the frequency components
divided by the overtone index. Please refer to Jensen (398BHetailed documentation on
the frequency estimation procedure.

3.3.2 Analysis of musical sounds by additive parameters

Once the fundamental frequency and frequency componeveddegen obtained, the musical
sounds can be analysed by means of an additive model. Theahgsunds can then be
modelled as a sum of sinusoidals constructed from the padimponents of the sound, with
time-varying amplitude and frequency, which when summeeétioer resynthesise the sound
with minimal loss of quality.

In this work, an FFT-based sliding time-domain window asalys employed, whereby the
FFT peaks are found by analysing the FFT of a windowed timeasigThe peaks for a

specific time segment are then attached to the partial traicitse previous time segment.
An optimum window length of four times the period of the fundantal is chosen (Jensen,
1999b), over which the FFT analysis for one time period i¢ggared. The FFT is performed

using a hamming window of the chosen length to avoid disooittes.

Thus, the FFT of the sound signal multiplied by the hammingdeiv is obtained for each
time window. The window is shifted by 1/3 of the window lendtr each time interval
and the FFT is calculated for each of these intervals. Fdn eacdowed FFT calculation,
the maximum peaks that fall within a range of frequencies ¢barespond to the harmonic
frequency components are calculated, as described ioBe®8.1 For each FFT peak
located in this way, the respective frequency and amplivadiees of these peaks are recorded
for each time segment or window. This procedure gives rishg¢dime-varying amplitudes
and frequencies for each frequency component, and allosvsi¢imal to be represented as a
number of partials in time, frequency and amplitude.

The analysis described above results in the following igrtation in the form of additive
parameters for each of the four instruments of figide as shown in figur&.3.

Department of Electrical, Electronic and Computer Enginggerin 51
University of Pretoria



Chapter 3 METHODS

0.3 0.12
0.25 i 01
02 ‘ ' 0.08
Amplitude Amr;\lbtude
AV 0.5 A 506

0.1 0.04

0.05 0.02

8000 -
- 6000
— 2000
1500 4000

0=
8000 z
6000

4000
1000 2000 4
Frequency (Hz) 0 0 Time (ms) Frequency (Hz) 0 o Time (ms)

2000

(@ (b)
0.25 0.25
0.2 e 0.2
Amplitude ) ' cha e, Amplitude
(AU) 0.15 ) - (AU) 0.15

0.1 nad 0.1

0.05 0.05

[
8000 8000
o 4000 o 4000 — 720007 2500

: 1500
1000
500 Time (ms)

2000 2000

500 Time (ms) Frequency (Hz)

Frequency (Hz)

() (d)

Figure 3.3.
Additive parameters for (a) the piano, (b) the trumpet, (c) the clarinet and (d) the
violin.

3.3.3 Spectral envelope parameters

As discussed in sectioR.3.1in chapter2, the spectral envelope is considered one of the
most important features in defining the timbre of a musicatriiment sound. Using the
additive parameters as extracted in sec8dh2 the spectral envelopes for each sound can
be calculated by finding the maximum amplitudg, of each partialk. This results in the
following spectral envelopes for each of the four musicatmmment sounds as a function of
partial index, as illustrated in figu@4.
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Spectral envelopes represented as a function of the partiahdex for (a) the piano, (b)
the trumpet, (c) the clarinet and (d) the violin, extracted from the additive parameters
of figure 3.3

Noticeable features from figuR4include the slope of the envelope in each case, as well as
the amplitude variations or irregularities of the spectrdrhese and other important timbre
features can be extracted from the spectral envelopes] basthe work of Jensen (1999a),
and are discussed in sectidn8.3.1t0 3.3.3.4
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3.3.3.1 Brightness

The brightness or spectral centroid is calculated and nextiely Jensen (1999a) from the
spectral envelope from equati@m as

N
> Kag
brightness= k=1

: (3.4)

k=1

whereN is the total number of partial components of the sound thataed to model the
timbre. This brightness value is closely related to thelatte of sharpness, and is correlated
with the subjective quality of brightness (McAdaras al, 1995), which can be used to
describe a sound as being “sharp” or “bright”, compared tdl*dTypical brightness values,
as extracted for the four musical instrument sounds of fi§ukeare around 2.3 for the piano,
6.6 for the trumpet, 3.7 for the clarinet, and 6.5 for the wmiolin the event that the partial
index,k, in equatiorB8.4is replaced with the frequency of the particular partiad, nightness
would be expressed in Hz.

3.3.3.2 Irregularity

The irregularity of the spectrum of a musical sound has beend to be an important timbre
feature (Krimphoffet al, 1994; Caclinet al., 2005). In the log domain, irregularity can
be calculated as in equatiéh5, as the sum of the partial amplitude less the mean of the
preceding, same and next partial amplitude.

N—-1

irregularity = ; _ Bt At A
k=

3

a (3.5)

Alternatively, irregularity can be calculated as the surthefsquared difference in amplitude
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between adjacent partials, as shown in equeiéry

k 2
S (a—aki1)
irregularity= = N : (3.6)
> &
k=1

where the N+1 partial is set to zero. In general, the irragylaalue calculated by equation
3.6is below 1, and it is always below 2.

3.3.3.3 Tristimulus

The tristimulus values can be viewed as the equivalent ofctleur attributes of vision
(Jensen, 1999a) and can be used to investigate the trabgileaviour of musical sounds.
The values for tristimulus 1, 2 and 3 can be calculated as uatns3.7, 3.8 and 3.9,
respectively. The sum of the three tristimulus values exjiial

ap

tristimulus 1= N

(3.7)

a+az+as

tristimulus 2= (3.8)

tristimulus 3=

(3.9)

=z

> &
KE1

For the purpose of illustration, a tristimulus diagram witistimulus 2 as a function of
tristimulus 3 is usually constructed. In such a diagram,tkinee corners are indicative of
the partial strength distribution, as shown in fig®& for a tristimulus diagram of the 10
musical instruments used in this study.
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Figure 3.5.

Tristimulus values shown for 10 musical instrument soundsThe three corners denote
strong fundamental partials, strong mid-range partials ard strong high-frequency
partials. The abbreviations for the 10 instruments are define as piano (pno), trumpet
(tpt), French horn (hrn), trombone (tbn), clarinet (cnt), saxophone (sax), flute (flt),
violin (vIn), cello (clo) and viola (vla).

3.3.3.4 0Odd and even relationships

The odd and even relationship has been used to investigatanments such as the clarinet,
where the energy of the even partials is less than that of ddepartials (Jensen, 1999a;
Gfelleret al, 1998). The calculation of the odd parameter does not irclbid fundamental
partial, so as to avoid too high a correlation between thepadldmeter and the tristimulus 1
parameter. Equatior&10and3.11show the calculations for the odd and even relationships
respectively.

N/2
2 Aok-1
odd="*=2—— (3.10)
> A
k=1
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N/2
> ax
even= =1 (3.11)

N
2 &
k=1

The sum of tristimulus 1, odd and even, equals 1; thus, omyotld parameter needs to be
calculated and saved when modelling timbre with as few patara as possible.

3.3.4 Amplitude envelope times: attack, sustain and release

The amplitude envelope is another important attributenobbte, as discussed in sectid3. 1,
and defines the evolution of the amplitude of a sound over.tiffieemodel the amplitude
envelope of a musical sound, a number of steps need to bermapted, as discussed in
detail by Jensen (1999a). The procedure is briefly describ# following paragraphs.

As a first step, a Gaussian window is convolved with each adaofithe instrument sound
to be modelled to obtain a smoothed version of each partidmRhe smoothed patrtial,
start of attack (soa), end of attack (eoa), start of relesmg &nd end of release (eor) points
of the partial envelope can be estimated. This is achievefinoyng the maximum and
minimum points of the first derivative version of the smoatipartial. The maximum value
corresponds to the middle of the attack segment, while tmenmaim value corresponds to
the middle of the release segment. From these middle pthetsplit points of the smoothed
partial, soa, eoa, sor and eor, can be calculated as a pageesitthe middle point on either
side (usually set at 10 % above or below the middle point).

The zero-crossings of the third derivative of the smoothatigl correspond to the start and
end points of the segments (Lindeberg, 1996). The zeraitrgppoints closest to the attack
and release values found from the first derivative valuethereused as the initial smoothed
soa, eoa, sor and eor values. However, the split point timesdf from the smoothed version
of the partial obviously do not correspond to the originaps times, so these must be
traced back to correspond to the original, unsmoothedgbariihis is done by following
the split points from the smoothed version to the unsmootieesion of the partial in steps
of different degrees of smoothing of the partial. Steps obatiing are implemented by
Gaussian windows with changirmgvalues, where a smadl value corresponds to a smooth
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signal and a higlrr value corresponds to an unsmoothed signal. Thus, for eachtlimg
step, the zero-crossing values closest to the previouse(smooth) zero-crossing values are
followed through to the unsmoothed case, giving the coslegte times.

The process described above was implemented as a prelynaipproach to this study. How-
ever, although the calculation of these split times is ingdrin modelling the timbre of
musical instrument sounds, these were not included in tbdysRather, a logarithm of the
rise time of the sound envelope was found to be an importattife for timbre perception
and was used instead. This will be discussed in detail inse8t4.2

In the modelling of timbre, noise components or irreguiesitare often added to the en-
velopes, in terms of shimmer (irregularities of the amplés of the partials) and jitter (ir-
regularities on the frequencies of the partials), as dssti$n sectior2.3.3 Again, in this
study this approach was not followed, as only three primanpite features were focussed
on, with noise components not playing as important a role.

3.3.5 Resynthesis: summation of the sinusoids

The additive analysis, as explained in secod. 1in chapter?, involves the association of a
number of sinusoids with a sound. The time varying amplisydgt) and frequencie$(t)

of theN partials of the sound are estimated, from which the origsoaind can be resynthe-
sised with a high degree of realism in terms of sinusoidss Thachieved by implementing
equation3.12(Jensen, 2002b; Jensen, 2001; Andersen and Jensen, 2001) as

) = 3 a(t) sin(@(1)) (3.12)

where a summation of the sinusoids is performed over all timg to produce the resynthe-
sised sounds(t), in time. The integral of the frequency in equati®ri2is the phaseg(t)
of the particular sinusoid, defined by equatt3as

o(t) = 2n/ fe(T)dT. (3.13)
=0
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For the correct implementation of the resynthesis, theynaleof equatior8.13was approx-
imated using a summation of the frequencies up untirhe midpoint rule was used as the
summation method to approximate the integral, due to thesloars incurred by this method
(Stewart, 1999).

3.4 IMPORTANT TIMBRE FEATURES

Many studies on timbre perception features for acousticihgdave been performed, as
discussed ir2.3.1 A number of possible acoustic correlates of timbre-spagensions
have been presented in the psychoacoustic literatureidimg) the spectral centre of gravity
or spectral centroid, various forms of the attack time, fpectral flux, and the spectral fine
structure of the sound (Cacliet al., 2005). An important conclusion that can be drawn
from literature is that three main important features fa plerception of timbre in acoustic
hearing can be assumed . For the purpose of this study, thededor acoustic hearing will
be assumed to be the important features for hearing in Chisse The three most important
features, as investigated and summarised by Krimp#taif. (1994), McAdamet al. (1995)
and Cacliret al. (2005) that were thus extracted from the acoustically mededounds are:

« the spectral centroid or brightness (B)
* the logarithm of the rise time (LRT)

* the spectral irregularity (IRR)

The calculations implemented to extract each of these fiesitare discussed in sections
3.4.1to 3.4.3that follow. Although the units of the three important tiredeatures will be
defined in the calculations that follow, it should be noteat tihroughout the remainder of
the dissertation these features will be referred to withuitis for the ease of illustration, as
well as for the sake of consistency with existing literatimalving these parameters.
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3.4.1 Brightness or spectral centroid

The spectral centroid calculations are implemented aowgrd the methods described by
Krimphoff et al. (1994), McAdamset al. (1995), Lakatos (2000), Iverson and Krumhansl|
(1993) and Beauchamp and Lakatos (2002). These calculdtimhshe average spectral
centroid over the duration of the tone, using instantanspastral centroid values calculated
over individual time windows. This gives the spectral cemtras a function of timeB,
from which a time-average can be found as B. Beauchamp (19%8¢ments an algorithm
to calculate this feature. The spectral centroid vaBieend B can be expressed by equations
3.14and3.15as

N
> kag(t)
Bi="1— (3.14)
> a(t)
k=1
and
T
> Bt
B:ti 7 (3.15)

wherek is the partial index anéy(t) is the amplitude of each partial for each time windaw,
with T being the total number of time windows. The time windows am@esented by each
element of the matrix that holds the partial amplitude valuihe above equations show that
the units of B can be defined as the partial number or index. gl¢iteal spectrum with the
B values indicated for each of the four instruments of figBukis illustrated in figure3.6.
Only the first 15 partial components are shown, for the puemdsliustration.
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Figure 3.6.

B values indicated for each of the four musical instrument sands: (a) piano, (b)
trumpet, (c) clarinet and (d) violin. The arrows indicate the position of the spectral
centroid in relation to the global spectrum of each instrument, with the units of B as
defined in section3.4.1
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3.4.2 Logarithm of rise time

As discussed in sectioh.3.], the rise time of an instrument sound is an important feature
for timbre perception, as it distinguishes impulsive tofresn sustained tones (Caclet

al., 2005). Krimphoffet al. (1994) and McAdamst al.(1995) conclude that the LRT value,
the logarithm of the time taken for the sound to reach a mamirfrom the time it reaches
10 % of the maximum, correctly defines this timbre dimensibhne envelope of the sound
signal from which LRT can be calculated is obtained by findinguadratic sum of all the
partial amplitudes over the duration of the sound and findiegsquare root of this sum.
Alternatively, as discussed by Krimphddt al. (1994), a linear sum of the partials can be
used.

The calculation for the temporal enveloet), of the sound is found by equati@il6as

(3.16)

LRT can be found from the sound signal enveldpayt) and can be calculated from equa-
tion3.17as

wherety 1maxandtmaxare the times (in seconds) at which the temporal envelogeesdfdund,

Enut), reaches 10 % of its maximum value and its maximum value patisely. The units

of LRT are thus given as the logarithm of time in seconds, g(dp Figure3.7 shows the

LRT values calculated for each of the four instruments ofrig®l, as indicated on the
sound envelopes.
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LRT values indicated for each of the four musical instrument ®unds: (a) piano, (b)
trumpet, (c) clarinet and (d) violin. The amplitude envelopes of each of the sounds are
shown. The two filled circles indicate the start of the rise tine@ and end of the rise time
in each case, with the units of LRT as defined in sectioB.4.2
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3.4.3 Spectral irregularity

The third most important feature in timbre perception isithegularity in the spectrum of
the sound, as discussed by Krimpheffal. (1994), Caclinet al. (2005) and Beauchamp
and Lakatos (2002). Caclet al. (2005) discuss how this feature involves the attenuation of
even harmonics relative to odd harmonics. MathematiclliR can be defined as the SD
of a running mean of three adjacent partial amplitudes fragiobal spectral envelope; that
is, the spectral envelope over the entire duration of thedgMcAdamset al., 1995). The
logarithm of this value then gives the IRR value, as exprebgdttimphoff et al. (1994) and
shown by equatio.18as

RR = log (Nf 20l0g(a) 20log(ay+1) +20|O??(ak) + 20log(ak-_1) ) ’ (3.18)
k=2

wherea is the sum of the amplitudes for partialover all time. This equation indicates
that the units of IRR are defined as the logarithm of decibelsog(dB).The IRR values

calculated for each of the four musical instrument soundggafe 3.1 are shown in figure

3.8, with the corresponding logarithm of the global spectruméach sound, from which

IRR is calculated. The first 20 partial components are showreéeh spectrum for the
purpose of illustration.

It can be noted that the spectrum of the trumpet is very smeath little to no irregularity
in adjacent harmonics, as the components follow similaiepas. This indicates a low IRR
value in contrast with the clarinet, for example, where thectrum is jagged and the odd
and even harmonics differ substantially, thus giving a &rgRR value.
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IRR values indicated for each of the four musical instrumentsounds: (a) piano, (b)
trumpet, (c) clarinet and (d) violin. The relative logarithm amplitudes of the sound
spectra are shown, from which the IRR values are calculatedrad given with units as
defined in section3.4.3
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3.5 DEVELOPMENT OF THE ACOUSTIC MODEL

The approach followed in developing the acoustic model wasparate the model into the
signal processing aspects and the biophysical charaateis the electrode-neural interface.
The biophysical characteristics of the electrode-neurtdriace are more complicated to
implement generically, and many assumptions must be madedar to model this part of
the acoustic simulation. For the acoustic model implentemethis study, emphasis was
placed on the processing part of the model, as the corredemgmtation of the processor
functioning is a necessity in understanding how the sougudasiis affected. To obtain an
accurate simulation of the Cl speech processor, the NuclataMToolbox (NMT) from
Cochlear Pty Ltd was used.

The Matlab toolbox developed by Cochlear Pty Ltd was desigoetnulate the processing
of speech by a CI. The toolbox allows for the generation ofenirsignals that can be applied
directly as the stimulus to a ClI electrode array, facilitgtexperiments performed with ClI

users. By examining the processing steps of the NMT, the itapbsteps to be implemented
for the acoustic simulation could be extracted.

In the sections that follow, the development of the acoumstidel is described in detail, based
on the processing steps presented in the NMT as well as oiopsty developed models.

2www.cochlear.com
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3.5.1 Processing steps of the Nucleus speech processor

The Nucleus ClI processor incorporates different types ad@pprocessing strategies, which
are implemented by the NMT. The CIS strategy focusses on thedsl information of the
sound signal, while the SPEAK and ACE strategies focus onghketsal information. The
ACE strategy was selected as the approach to follow in theeimehtation of the acoustic
model. In this strategy, the incoming sound is usually dididnto 22 frequency bands or
channels, and the six channels with the highest energy mbittea given time window are
used for stimulation during that time.

In the ACE processing strategy, the sound signal is dividiexfiked 8 ms time windows with
a 75 % overlap. These time windows are weighted by a Hannimglaw to avoid abrupt
transitions in the time domain of the sound signal, and tlegsice the resulting spectral
spread of the sound spectrum. Following this, the signalvsled into frequency bands
using a FFT, whereby the frequency bins for each of the gfiegere predetermined using
a filter analysis table (FAT). Alternatively, a number of bpass filters may be used instead
of frequency bins to filter the sound into channels. This meéthas been used in existing
acoustic models, as discussed by Loizou (1998), and is tiw@agh followed in this model.

Once the sound has been filtered into channels for each timdowi the energy content of
each band for a specific time window is determined. The lenfjtime time window is 128
samples, corresponding to 8 ms for a sampling rate of 16 kHis i$ the standard sampling
rate of the analogue-to-digital converter (ADC) of the pssw# that digitises the analogue
input sound. As a result of the 75 % overlap of the time windomesv samples will be
available every 2 ms. For each of these time windows, thelepes of the filtered signals
are determined, representing an estimate of the instasuangower in the corresponding
channel (Cochlear Pty Ltd, 2002).

In the ACE strategy, only the subset of channels with the Etéeergy content for a specific
time window are selected, and the corresponding channelstanulated sequentially for
that time. The maximum overall stimulation rate of the Nuslepeech processor is 14400
pps. The stimulation rate of an individual electrode is delgmt on the number of channels
in use. For example, if six channels are selected for eantukdtion cycle, the resulting
maximum stimulation rate of a single electrode would be 2406 (14400 pps divided by
six channels). A typical setting for the ACE strategy is tesekight maxima out of the 22
channels and stimulate at a rate of 1200 Hz (Cochlear Pty DERR
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Once the subset of channel maxima has been selected, tidatadcenergy levels for these
channels are mapped to current levels which will be usednuudte the nerve cells in the
cochlea through an electrode array. These current leved$ adlnere to a range between a
minimum current level, known as the threshold level, T, antbaimum current level, known
as the comfort level, C. The threshold level is the minimunrenir value that produces
a stimulus that is only just audible. The comfort level is thaximum current value that
can be used just before the stimulus becomes uncomfortabty; ICurrent levels that fall
outside of the range are clipped in the NMT to ensure thathaliMalues fall within the C
and T levels. The C and T levels are user dependent for eactragle pair in a Cl and
can be changed in the NMT according to individual requireimeiihe NMT implements a
logarithmic function, which is referred to as a loudnessaghofunction (LGF), that maps
the energy levels to current values between the C and T levels

Once the current levels have been obtained, the selectedelsare stimulated, with default
activation in the NMT starting from the most basal positior anoving to the most apical
position. This approach is also followed for the developeauatic model, by ordering the
channels according to their centre frequencies. Findilg,durrent values are mapped to
electrodes along the array that will stimulate specific @saglong the cochlea.

3.5.2 Processing steps implemented in the acoustic model

The processing steps in the acoustic model must be as triue éotual processing performed
in a Cl as possible. All the processing steps were implementddatlab, following the
processing methods of the NMT as described in the previati®se The instrument sound
signals used for this study were processed by Matlab codb,tixe output saved as a .wav
file for each sound.

The block diagram in figur8.9 illustrates the steps of the acoustic model, clearly shgwin
the processing aspects (labelled as Processor model) arduogphysical characteristics of
the electrode-neural interface (labelled as Biophysicadet)oof the acoustic model. A de-
scription of each functional block is given in the sectiohattfollow, with the processing
aspects continuing in sectidb.2and a discussion of the biophysical characteristics of the
electrode-neural interface following in secti®b.3 The shaded blocks in figuB9indicate

the biophysical characteristics of the electrode-neutaliace that were not included in the
final implementation of the acoustic model in this study, igsuksed in sectiod.5.3
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Figure 3.9.

Block diagram illustrating the implementation of the acousic model. The biophysical
model characteristics of the electrode-neural interfacendicated by the shaded blocks
were not included in the final implementation.

lllustrations of each processing step are given where ples®r a single 2 s long C4 note
of a piano sound. The original instrument sound signal isvshio the time and frequency
domain in figures3.1(a) and3.2(a), respectively, which are reproduced here in fig®.é9
and3.11for the purpose of comparison with the processing stepstifited in this section.
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Figure 3.10.
Time domain representation of the unprocessed piano soundsashown in figure3.1(a)
previously.
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Figure 3.11.
Frequency domain representation of the unprocessed pian@and as shown in figure
3.2(a) previously, displayed up to 12 kHz.
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Signal pre-emphasis generally forms part of Cl processimgGnsimulations as the first
processing step. This process de-emphasises the lowefiegicontent of the sound, so
that peak-picking strategies such as ACE are less low-pasatiume. This promotes higher
frequency channels to be selected and included in the sttranlpattern. It was decided not
to include signal pre-emphasis in the implementation ofat@ustic model in this study, as
this is usually implemented with speech signals in mind.e8pecontains important higher
frequency cues and for these not to be lost, pre-emphasmptoged. However, as this
study involved musical instrument sounds, with the lowegtrency elements being the most
prominent, pre-emphasis of the sound signals was omittettliti@nally, the focus of this
study was not on the acoustic model implementation, as williscussed in a later stage,
and thus processing phases such as signal pre-emphasisoghgidical characteristics of
the electrode-neural interface were omitted from the agousodel.

3.5.2.1 Bank of bandpass filters

The first step of the processing side of the acoustic moda fdtér the original musical
instrument sounds, which are read from a .wav file, into 2guescy bands. The filter
configurations that will be used in this study are the stashd@ndpass filters used by the
ACE strategy. Laneau and Wouters (2004) investigate diftefiker bank configurations
employed in Cls, including the configuration usually impleneel for the ACE strategy, and
show how they affect fundamental frequency discrimination

The filter allocation tables for the ACE strategy, also cqroegling to to the ACE imple-
mentation example given by the NMT, were implemented. Tableshows the values for
the lower and upper cut-off frequencies as well as the cdrgrpiencies of the bandpass
filters, as calculated for the ACE strategy for 22 frequencydsa

The 22 bandpass filters were chosen to be sixth-order Buttdnitters, as a result of the
flat bandpass response obtained by this type of filter. Thebeumwf filters corresponds to
the number of possible places in the cochlea that may be IstietLwith the electrode array,
with a 22 electrode array commonly being found in Nucleus Cls.
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Table 3.1.
-3 dB cut-off and centre frequencies for the bandpass filters

Lower cut-off | Upper cut-off| Centre
Channel| frequency frequency | frequency
(Hz) (Hz) (Hz)
1 188 313 250
2 313 438 375
3 438 563 500
4 563 688 625
5 688 813 750
6 813 938 875
7 938 1063 1000
8 1063 1188 1125
9 1188 1313 1250
10 1313 1563 1437.5
11 1563 1813 1687.5
12 1813 2063 1937.5
13 2063 2313 2187.5
14 2313 2688 2500
15 2688 3063 2875
16 3063 3563 33125
17 3563 4063 3812.5
18 4063 4688 4375
19 4688 5313 5000
20 5313 6063 5687.5
21 6063 6938 6500
22 6938 7938 7437.5

An illustration of the frequency response of the filter baokfiguration is shown in figure
3.12 The filters were implemented as infinite impulse responi$® filters. Figure3.13
gives an example of the transfer function of the bandpa®s fitiplemented for channel
3, with the resulting instrument sound signal as filteredhdy thannel shown in the time
domain (figure3.14) and the frequency domain (figudel5).
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Figure 3.12.

Frequency response of the filter bank configuration that willbe implemented in the

acoustic model.
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Figure 3.13.

Transfer function of the bandpass filter for channel 3.
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Figure 3.14.
Time domain representation of the bandpass filtered piano amd through channel 3.
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Figure 3.15.
Frequency domain representation of the bandpass filtered pino sound through
channel 3.
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3.5.2.2 Energy calculations in each channel

Once the musical instrument sound has been filtered into 2@nes, a representation of
the energy in each channel is calculated. This is achievexktogicting the envelope of each
channel by means of full wave rectification and lowpass fiitgrfollowed by root-mean-
square (RMS) calculations. The envelopes of each of the 2@sbeam be obtained by first
implementing full wave rectification of the signals of eadtaonel, calculated by equation
3.19as

Achannel FWR= |Achanne| s (3- 19)

whereAchannelis the signal amplitude of a specific channel or band Agdnnel FwrIS the
resulting full wave rectified signal amplitude for the chahms illustrated in figur8.16

0.2 -

Amplitude
(AU)  0.15 }

0.1 F

0.05 H

Figure 3.16.
Example of time domain representation of the full wave rectifed piano sound for
channel 3.
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Full wave rectification causes additional frequency conembs of the signal to appear at
0 Hz and at double frequencies of the signal. By lowpass filigtine rectified signal data,

only the lower frequency components will remain. This resul an envelope of the rectified

signal, from which a representation of the energy contettt@tignal can be determined by
RMS calculations.

A second order Butterworth lowpass filter with a -3 dB cut-offiduency of 125 Hz was
used to filter the rectified signal of each channel. This esssthat the double frequency
components generated as a result of signal rectificationeaneved. An illustration of the
transfer function of the lowpass filter that was implemerasdan IIR filter in Matlab is
shown in figure3.17, followed by an illustration of the resulting envelope oé tlowpass
filtered signal through channel 3 in figuBel8

Magnitude -1
(dB)

0 200 400 600 800 1000 1200
Frequency (Hz)

Figure 3.17.
Transfer function of 125 Hz lowpass filter used to filter the ful wave rectified signal of
each channel.
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Figure 3.18.
Example of time domain representation of full wave rectified ad lowpass filtered
sound for channel 3.

3.5.2.3 Root mean square calculations

The energy content of the signal can be represented by tbelatdd RMS of the rectified
and lowpass filtered data in each channel. Each channeligediinto a number of time
windows with an overlap of 75 %, and the RMS is calculated fehex these time windows.

To compensate for the spectral spread that is introducedvimirdy the signal into windows

of time, a Hanning window is used to smooth each time windowhefsignal before the
RMS calculations are performed. This is to ensure that nopalsignal transitions occur,
and that the high frequency components are removed. Thexinumws are fixed to be 8 ms
long, regardless of the number of channels being used oata®f stimulation. The number
of samples in an 8 ms time window depends on the samplingérexyuof the original signal,

and can be calculated as shown in equaB@0by

N = 8(ms)x fg(samples/ms) (3.20)
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where N is the number of samples in the Hanning window &g the sampling frequency
in kHz. The instrument sounds used in this study all have goagfrequency of 44.1
kHz, resulting in 353 samples for each time window. The Hagnvindow weights for the
calculated sample length are illustrated in figBr&9

1

0.9 +
0.8 +
0.7 +

0.6

Hanning window
weight

0.4 -
0.3
0.2 -

0.1 |

0 50 100 150 200 250 300 350 400

Sample number

Figure 3.19.
Hanning window values for a window length of 353 samples (8 mer a sampling
frequency of 44.1 kHz).

The signal envelopes of each channel are divided into queirtg time windows of 353
samples and are multiplied by the Hanning window values @iré@.19for each window.
The weighted time window signal envelopes can then be useditalate the RMS values
for each time window. The RMS is an indication of the energytenhin a specific frequency
channel for a given window of time, and can be calculated feguation3.21as

/1
Arms = NZA% n=1..N, (3.21)

whereN is the number of samples in the time window aldis the amplitude of theth
sample of the signal in the time window for a specific channel.
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To illustrate the above-mentioned procedure, figdig®shows the signal envelope of chan-
nel 3, with the resulting RMS values extracted from the sigmdicated in red. Figure3.21
and3.22display the calculated RMS values over 2 ms time windows.

Amplitude
wy O

0.08 -
0.06
0.04 -

0.02

1 1 1
0 0.5 1 1.5 2
Time (s)

Figure 3.20.
Example of time domain representation of full wave rectified ad lowpass filtered
sound for channel 3, with calculated RMS values in a 2 ms windowndicated in red.

3.5.2.4 Maximum energy calculations

Once the RMS values for each 2 ms time window have been cadduiat each channel, the
6 channels with the highest RMS values are found for each timdow. For each channel,
the RMS value for a specific time window represents the enesgieat of that channel for
that specific time window. Thus the 6 channels with the higR&8S values for a specific
time window are chosen to be the stimulating channels fdrgheticular time window. In
this way, 6 channels and their corresponding RMS values &retsd for each time window
across the duration of the sound. The 6 maximum RMS valueglftarreach time window
can then be mapped to current amplitudes that will be usetihaslisfor each time window.
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Figure 3.21.
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Calculated RMS values for sound signal of channel 3, as shown figure 3.18
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Figure 3.22.
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Close-up of RMS values from figure3.21, illustrating that the RMS values remain
constant for 2 ms, which is the effective window length due tthe overlap of the time

windows.
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3.5.2.5 Current to loudness mapping

The calculated RMS values that represent the energy comieaich channel for each win-
dow of time must be translated into current magnitudes todael @s stimuli. The current
values are used in the remaining steps of the model, inajutimreconstruction of the sound
signal using sinusoidal signals.

The RMS values obtained must first be scaled to the input dymeange (IDR). The input
dynamic range for CI listeners is approximately 30 dB or lessah optimal microphone
input (Van Hoesel and Tyler, 2003; Zeerg al, 2002; Shannon, 1983). Assuming a gener-
alised dynamic range of 30 dB as set for the ClI listener, thisheainterpreted as base and
saturation input levels of 4 and 150, respectively. The maxn RMS value obtained over
all channels is set to the maximum input magnitude of 150. réh@ining RMS values are
scaled accordingly. In this way, no values will exceed thersgion level, and clipping of
input values to the comfort current level, C, will be prevehte

The input values ranging between the base and saturatiels lake mapped to current levels
by means of a logarithmic function shown in equatB&a2by

log (1+a <Z1T_tl)))) 022)

log(1+a) ’

|mag:

wherelmagis the mapped current magnitude, calculated using the RM&sacaled to the
IDR magnitudesi, the base and saturation levddgnds, and thea parameter that controls
the steepness of the curve. The parameterrelated taQ, which is known as the steepness
factor and is defined as the percentage decrease in the dotputlO dB decrease in the
input. For this studyQ) was set to a typical value of 20, implying a 20 % decrease ipudut
level for a 10 dB decrease in the input. This results in a vafuEl6.2063 fora.

The minimum and maximum current levels, T and C, are assumeovir a current range
of 12 dB, falling within the typical dynamic range of 5 - 30 dBufad for CI listeners by
Shannon (1983). Thus, the maximum comfort level, C, is set s\ la typical comfort

level value (Clark, 2003; Bruce, White, Irlicht, O’Leary, Dyg)davel and Clark, 1999).
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The minimum or threshold current value would then fall 12 dBolv this maximum, to
give a corresponding range of current values from 0.215 mA oA. If the RMS input

magnitude is less than the minimum input base level of 4, thppead current value will be
clipped to the T value to ensure that all current levels fathim a 12 dB range.

Anillustration of the loudness growth function implemeshig given in figure3.23 followed

by an example of the resulting mapped current values for @bed signal of channel 3 in
figure3.24

0.8 -

0.6
Compressed

current magnitudes

0.4 |

0.2 - 4

O ] 1 1
0 50 100 150 200

RMS input magnitudes

Figure 3.23.
Loudness growth function applied to the scaled RMS values tortiearise the
relationship between stimulus current and perceived loudess for Cl listeners.
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Figure 3.24.
RMS magnitudes mapped to current levels for the piano sound prycessed through
channel 3, as in figure3.14

3.5.2.6 Quantisation of current levels

The quantisation of the current levels must be performeaifoaccurate representation of
the current values that can be output by the processor. Hner236 current levels available
for the Nucleus ClI, and these levels span the range of curadu s/ that the current source of
the implant can produce. This range is typically betweem ¥and 1.7 mA (Clark, 2003).
Using the formula given in equatioB.23 below, 256 current level$L, are converted to
current valueslguans in HA, for each level.

|quant= a(0.02025CL+2.30259 CL=12..256 (3.23)

Since only 236 levels of current can be used in the Nucleusgssor, the lower current
levels, corresponding tGL in the range of 1 to 20, may be excluded, w&h then ranging
from 21 to 256 and giving 236 current levels in the approxemange of 15u A to 1.7 mA.
The assumption of excluding the first 20 current levels istartiated by Shannon, Adams,
Ferrel, Palumbo and Grandgenett (1990), where for loweaeativalues, errors resulted in
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transmitting data across the skin to the implanted eleesoAs a result, lower current levels
could be disallowed to ensure that only values high enougheeent transmission errors are
utilised.

By quantising the mapped current magnitudes to the closestspponding quant value ob-
tained from equatio.23 the current values that will be used for stimulation areaoisd.
An example of the current levels used to quantise the inpuentis given in figure3.25 to
illustrate the quantisation process.

1

0.9
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02 1 1 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input current (mA)

Figure 3.25.
lllustration of the 236 levels for quantisation of the input current.

An example of the resulting quantised current levels fomcleh 3 of the piano sound is
shown in figure3.26 using the mapped current magnitudes as shown in fig2é
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Figure 3.26.
Quantised current values for channel 3.

3.5.3 Biophysical characteristics of the acoustic model

The previous paragraphs encompass the processing pagtaxdalistic model. To implement
a complete acoustic model, biophysical characteristithe€lectrode-neural interface may
be included as part of the acoustic model, as illustratedgardi3.9. Such biophysical
characteristics include the current spread along the eaclhd the shift in frequency that
occurs as a result of the insertion depth of the electrodey anto the cochlea. However, it
was decided not to implement the biophysical charactesistithe electrode-neural interface
in the final version of the acoustic model to process the mlismunds, and instead to focus
solely on the effect of the processor on the sounds.

The biophysical characteristics of the electrode-neutakface provide a very generic rep-
resentation of what occurs in the cochlea and in reality difiers drastically from one
individual to the next. Additionally, the inclusion of thedphysical characteristics of the
electrode-neural interface degraded the musical sounslscto an extent that psychoacous-
tic experiments would have been extremely difficult for gpants, with chance responses
prevailing. These factors combined with the multidimenaionature of timbre led to the
decision to limit the number of parameters which could dffenbre perception through a
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Cl, with the aim of being able to quantitatively understamaltie in a Cl processor to some
extent first. Thus, to prevent the biophysical characiessif the electrode-neural inter-
face from obscuring effects that could be noted as a restitteoprocessor, it was therefore
decided to only include the processing part of the acousbideh

By excluding the biophysical characteristics of the elatgroeural interface, the current
spread and frequency shift are the only parts shown in fi§l@¢hat are omitted, with the
rest of the acoustic model remaining as is. With these sestionitted, it is implied that
the quantised current values, as shown in figu&6 are mapped directly back to intensity
values via the inverse LGF, described in secBdn 3.1which follows. Finally, synthesis of
the acoustically modelled sound was implemented to enablel éistener to perceive the
sound acoustically, as discussed in sec8dn3.2

3.5.3.1 Inverse mapping to intensity values

The quantised current values must be translated back tosityevalues for the purpose
of constructing the synthesis signals. This is implemetgdneans of an inverse of the
loudness growth function that was implemented in the pisingsstep of sectio.5.2.5to
enable the current values to be mapped back to intensitgsalthe equation for the inverse
loudness growth function can be calculated from the origmadness growth function of
equation3.22 shown in equatio.24below as

. . 10|quant|09(1+a) -1
intensity= P , (3.24)

wherelquant is the calculated quantised current value for a specifidrelde, anda is the
same steepness factor of the curve as explained previauslgction3.5.2.5 resulting in
intensity values for a given current. The intensity valuas then be used as the amplitude
values of the synthesis signals. Fig@.@7illustrates the inverse loudness growth function
implemented to map the quantised current values back tosityevalues to be used as the
amplitudes of the synthesis signals. The mapped intenalties are shown in figui®28

These intensity values are used as the amplitudes of thbesiatsignals, as discussed in
section3.5.3.2

Department of Electrical, Electronic and Computer Enginggerin 86
University of Pretoria



Chapter 3

METHODS

1

0.9 +

0.8 +

0.7

0.6 +

Intensity magnitudes
y mag 0.5

0.4 +

0.3

0.2

0.1

Figure 3.27.
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lllustration of inverse loudness growth function to map curent values to intensity
values for resynthesis of the sound signal acoustically.
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Mapped intensity values obtained for the piano sound withouthe biophysical

characteristics of the electrode-neural interface inclued.
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3.5.3.2 Summation of channels to resynthesise sound

To reconstruct the instrument sound signal, sinusoids seel.u Sinusoidal signals were
chosen as resynthesis signals, as this modelling paraoretdes a simple foundation which
allows for modifications to be made, through which for exaempgie bandwidth of the resyn-
thesis signal could easily be extended and the effect therethe reconstructed signal in-
vestigated. Sine waves are constructed for each channehébrtime window, with the am-
plitude of the sinusoids set as the intensity values caledlas discussed in secti8rb.3.1
and the frequencies of the sinusoids corresponding to thizec&equencies of the analy-
sis filters of table3.1 For each time window, the sinusoids constructed for eadiviofual
channel are added together to produce an instrument soymal giith a sampling rate of the
original sound signal, which can be perceived externally bH listener.

The resynthesised sound is normalised back to the origmplitude values between 1 and
-1. Figures3.29and 3.30illustrate the processed piano sound in the time and frexyuen
domains, respectively, with the biophysical charactiessdf the electrode-neural interface
omitted. Even without the biophysical characteristicshaf electrode-neural interface, the
degradation of the signal is apparent, particularly in tegd@ency domain.

Examples of the acoustic modelled versions of each of thegomary musical instrument
sounds, as shown in figu&1, are given in the time domain in figu&31 Figure3.32
shows the partial representations of the four musicalunsént sounds as processed through
the acoustic model, which can be compared to the originalcalisstrument sounds shown
in figure3.3. Additionally, frequency domain representations for eaictine four instrument
sounds are given in figurés33 as processed through the acoustic model, with fi@u2e
reproduced in figur8.34for ease of comparison of the frequency spectra for the geack
and unprocessed musical instrument sounds.

It should be noted that the resynthesised sounds as showguie 8.33 show the time-
averaged frequency representation of the sounds. Alththegkelected frequency channels
differed for each time window, figur@33shows an average frequency representation across
the duration of the resynthesised sound. The outputs frenatloustic model were scaled

in amplitude between 1 and -1 to comply with .wav file speciftoes to be used in the
experimental studies, as discussed in secébd and4.2.2that follow.
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Figure 3.29.
Resynthesised version of the piano sound in time, processt#aough the acoustic
model.
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Figure 3.30.
Resynthesised version of the piano sound in the frequency dwin, processed through
the acoustic model.
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Figure 3.31.

Time domain representations for the four primary musical instrument sounds
processed through the acoustic model for (a) the piano, (bhe trumpet, (c) the clarinet
and (d) the violin.
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Figure 3.32.

Additive parameters for the four primary musical instrumen t sounds processed
through the acoustic model for (a) the piano, (b) the trumpet (c) the clarinet and (d)

the violin.
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Figure 3.33.

Frequency domain representations for the four primary muscal instrument sounds
processed through the acoustic model for (a) the piano, (bhe trumpet, (c) the clarinet
and (d) the violin.
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Figure 3.34.

Frequency domain representations for the four primary muscal instrument sounds as
given in figure 3.2for (a) the piano, (b) the trumpet, (c) the clarinet and (d) the violin.
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3.5.3.3 Discussion of acoustic model effects

By comparing figure8.33and3.34 it can be seen that the frequency domain representa-
tions of the musical instrument sounds differ substantialt the processed and unprocessed
sounds. The frequency domain representations of each afmpecessed musical instru-
ment sounds in figurg.34are clearly distinct from one another, as can be seen by #pesh

of the frequency spectra. For example, the piano s@84a) has peaks only in the lower
frequency ranges, while the trumpet so@n84(b) has high frequency values across the spec-
trum into much higher frequency values. The frequency peékise clarinet soun@.34(c)

and violin souncB.34(d) take on a more irregular spectral shape. However, indke of the
processed musical instrument sounds in figiB8 the appearance of the frequency spectra
of the four sounds are very similar. This would be expectesl Wuthe processing step of
the acoustic model where energy calculations of the frecubands over time windows are
performed. This processing step is indicated in the sectapda the processor model in fig-
ure 3.9 and is discussed in secti@b.2.2 As a result of this processing step, both the fine
temporal structure and fine time structure of the soundsestaled, leaving the processed
sounds with similar spectra.

Figure 3.33 also shows that, for an average across the duration of eacidsthe lowest
frequency components of the sound are selected as the atinguthannels, as can be seen
from the low pass appearance of each of the sounds, withncligteaks clustered in the lower
frequency ranges. This is as a result of the peak-pickingréhgn employed by the ACE
processing strategy, where the strongest frequency coemp@are selected as the stimulat-
ing channels. In the case of this study, this is always symmus with the components in the
lower frequency ranges being selected. It should be notgdhis result could be different
if pre-emphasis of the sounds was performed prior to thegasing steps implemented in
the acoustic model for this study. Pre-emphasis may causegetr frequency components
in the higher frequency ranges to be selected as the stimylattannels.

The drastic effect of the implemented acoustic model on theical instrument sounds is
evident, and this effect is only as a result of the Cl procedseen without the biophysical
characteristics of the electrode-neural interface, ssctuarent spread, the acoustic model
implementation of the processor greatly affects the fraquepectra of the musical instru-
ment sounds. Illustrations of the other 6 instruments asgqa®ed through the acoustic model
are given in Appendix A.
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3.6 SUMMARY

This chapter provided detail regarding the approach falbto investigate timbre perception
in the electrically stimulated auditory system. The dasagbaf musical instrument sounds
used in this study was presented, as well as the extractionpafrtant timbre features from

these sounds. A full description of the acoustic model imm@ietation was given, based on
knowledge of CI characteristics and existing acoustic nedeesign considerations of the
acoustic model were also discussed. The methods presented chapter provide a foun-

dation on which to develop both experimental proceduressamddel of timbre perception,

which will be discussed in detail in chaptefand5, respectively.
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CHAPTER 4

MEASUREMENT OF TIMBRE
PERCEPTION

A large part of the work described in this chapter was preskat the Cl 2010 conference
(Hanekom and Hugo, 2010) and has also been submitted to B&tearing in the form of a
journal article.

4.1 CHAPTER OBJECTIVES

Using the methods presented in Cha@eas a basis, the experimental component of this
study could be developed, consisting of two different expental procedures. The first ex-
periment was developed to measure timbre perception in NHCGArdisteners by means of
discrimination tasks, the results of which were used in tloel@hof timbre perception. The
second experiment consisted of similarity ratings of malsicstrument timbres and were
used to validate the outcomes predicted by the model of @nperception. This chapter
presents the experimental procedures, which were dewtliop®latlab version 2007b, as
well as the results obtained from these experiments. Fofisteexperiment, JNDs were
found for B, LRT and IRR and are presented in this chapter for K&l @l listeners. Fol-
lowing this, results of the second experimental study ofdimailarity ratings of musical
instrument timbres are presented. A discussion of the erpetal results concludes the
chapter, with comparisons of the results with existingétere explored in detail.
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4.2 METHODS

4.2.1 Discriminations of timbre perception features

The first experimental study was performed to measure digaaition abilities of listeners
for each of the three important timbre features: B, LRT and IRRciimination tasks were
carried out for pairs of synthesised sounds, where the dffgreinces between the sounds
each time were variations in the value of the timbre featwiad investigated. This ex-
perimental study was carried out for NH and CI listeners aditeestep in quantitatively
understanding timbre perception differences for thesedgwaops. Additionally, the results
of this study were used in the implementation of the modeihalbte perception (see section
5.2.]) to predict the outcomes of the experimental results doctedein sectiord.2.2 De-
tails of the experimental procedure are discussed in theswlg paragraphs and the results
are presented in secti@gn3.1

4.2.1.1 Listeners

Five NH and five Cl listeners participated in the study. Pgréints were age-balanced across
the two groups. The five NH listeners (two females, three s)aleere aged between 24 and
66 years (average age = 39 years). Each listener was screepadure that the criterion
for normal hearing was adhered to. Normal hearing was defseathieving audiometric
thresholds of 30 dB HL or better over six octaves (250 to 808)) &hd all five listeners were
confirmed as NH participants. None of the NH participants dadformal music training.

The five postlingually deafened adults (four females, oneejmwere aged between 21 and
66 years (average age = 42.4 years). Cl listeners all usedréeelém processor, and had
three or more years’ experience with the implant systemr Ebparticipants used the ACE

processing strategy, and one (CI 2) used the SPEAK processatggy. Only one of the CI

listeners had been exposed to formal musical training (Cb&)was not actively studying

music or playing an instrument at the time of the experimeiiisree of the subjects had
previously participated in Cl studies performed in our reslegroup. Additional relevant

information regarding the CI listeners is given taBlé. For the type of strategy used, the
stimulation rate (SR) in Hz for each channel is indicated iackets. Listeners with an

asterisk marked next to the implanted ear have bilaterdiintg.
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Table 4.1.
Details of Cl subject demographics.

Subject| Sex | Age | Processot Implant Strategy Years Test
(SR per | implanted| ear
channel)

Cl1 F 59 | Freedom 24R (CA) ACE 4 Right*
(500 Hz)

ClI2 F | 21 | Freedom| Nucleus 22 Series SPEAK >10 Left*
(250 Hz)

Ci3 M | 66 | Freedom| Freedom (CA) ACE 4 Right*
(1200 Hz)

Cl4 F | 44 | Freedom| Freedom (CA) ACE 3 Right
(900 Hz)

CI5 F | 24 | Freedom 24R (CA) ACE 5 Left
(900 Hz)

All 10 listeners gave written informed consent for their tmapation before commencing
with the study, based on guidelines presented by the apptepethics committee. The
listeners were compensated for their time upon completidgheoexperimental sessions.

4.2.1.2 Stimuli

A tone of two seconds, consisting of 30 harmonics, was cdelayeadditive synthesis in
Matlab version 2007b, with a sampling frequency of 16 kHze Timdamental frequency
was chosen as 262 Hz (C4 or middle C), a common note used in Westisic and therefore
in timbre studies such as those by Gfeliral. (1998) and Nimmongt al. (2008). The
stimulus was varied along the three timbre features B, LRTIRR] and the features never
co-varied. The synthesised sound was then adjusted bingltée value of one of the three
timbre features.

The tone always consisted of five linear segments: a stamesaty followed by a rise time
segment, a plateau, a release and an end segment, to cothpl@e length of the sound
(see sectiorz.3.3for a full description of the amplitude envelope model). Bpectrum was
harmonic, where the amplitude spectrulat each point in time was a function of B, and
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the rank of the harmonid, and is given by equatiof.1as

A(K) = (Bi_l) _k. (4.1)

The length of the rise time segment of the synthesised tosecasstructed using LRT each
time, as given by equatioB.17in section3.4. The starting point in time of the rise time
segment was fixed, indicating that a change in LRT would simoplange the point in time

that the sound reached a maximum amplitude. To implemesgutarity in the spectrum in

the synthesised tone by using a given IRR value, a deviadidinom the original amplitude

values found from the required B value was calculated asuaton4.2 by

10IRR

d= "
N—-2’

4.2)

with N being the total number of harmonics (30 in this study). Thaat®n value,d, was
then added to the log of the amplitudes of all of the even haresand subtracted from the
log of the amplitudes of the odd harmonics of the synthesssehd.

The reference tone had a start segment of 140 ms, a rise tigpodbximately 316.22 ms
(corresponding to the selected reference LRT of 2.5), asust plateau of 600 ms, a release
time of 300 ms, and an end segment for the remainder of the2ataconds of 643.77 ms.
The B value of the reference synthesised tone was set at AanBR value was set at zero.
Figure4.lillustrates the reference tone used in this study.

In the experiment, each of the three features (B, LRT and IRR)tested. In each case,
a reference tone was presented in conjunction with a tonehalad been altered from the
reference tone by adjusting the feature under investigafitie reference tone was slightly
different for each feature being investigated, so that tteread tone could be varied for
parameter values that were both lower and higher than tkearste tone.

When B was varied, the reference tone was set to have a B valyaofLRT of 2.5 and an
IRR of 0. The initial B values of the tones which were to be coraddo the reference tones
were set at 6.2 and 1.8. Figu4e illustrates the variations in spectral components forghes
extreme initial values of B.
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Figure 4.1.

Reference synthesised tone used for the first experimentaisly illustrated in (a) the
time domain and (b) in terms of additive parameters, with B=4 LRT =2.5 and IRR =
0.
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Figure 4.2.

lllustration of variations in B for (a) a low B value of 1.8 and (b) a high B value of 6.2.
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When LRT was varied, the reference tone had a B value of 4 an@Rvalue of O, with the
default LRT set at 1.8. The initial LRT values of the tonesathivere to be compared with
the reference tones were 0.5 and 2.9. Figu@eillustrates the variations in the amplitude
envelope for these extreme initial values of LRT.
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Figure 4.3.

lllustration of variations in LRT for (a) a low LRT value of 0.5 a nd (b) a high LRT
value of 2.9. The time values from which LRT is calculated (seeggiation 3.17) are
shown in (b).

When IRR was varied, the reference tone had a B value of 4, an BRiE vf 2.5 and an IRR
value of 2. The initial IRR values of the tones which were to bepared with the reference
tones were 0.1 and 4. Figuded illustrates the variations in the spectral components ef th
sound for different IRR values.

The stimuli were presented in sound field and at the same ipedcikoudness level for all
subjects. A loudness estimation procedure was used, whérkHz tones ranging between
the lowest and highest comfortable loudness levels for sabject were scaled to find indi-
vidual sets of intensity levels. The tones were presenteth®&s each at 10 linearly spaced
intensity levels, to find an average estimated perceptiolowiness at each level. These
sets were then interpolated to find the intensity level apoading to 50 % of the subject’s
perceived loudness level, at which the stimuli in the expent were presented (at 50 % of
the maximum comfort level).
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lllustration of variations in IRR for (a) a low IRR value of 0. 1 and (b) a higher IRR
value of 2.

4.2.1.3 Procedure

Experimental sessions were conducted in a double-walleddsbooth. The experimental
procedure was controlled using software, with programndioige in Matlab version 2007b.
Sounds were presented from the computer via an external MeAkasttrack Pro audio
interface (44.1 kHz, 16 bits), with a Yamaha MS101 |l spegdasitioned approximately 1
m in front of the subject.
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Timbre feature JNDs were determined using an adaptive tigorative forced choice (2AFC)
procedure. Each trial consisted of two synthesised toraey #vo seconds long, separated
by an interstimulus gap of 200 ms, with one tone always cpmeding to the reference
tone for the timbre feature under investigation, and thesiotbne the altered sound with
adjusted timbre feature. The subject was asked to decidthesthe two tones sounded the
same or different, by choosing either of two buttons lalgetkame” and “different” on the
screen. Subjects were only allowed to listen to the toneqraie and were not provided with
feedback. The next tone pair was only presented once tleadistesponse had been made,
allowing the subject adequate time to make a decision. Aescshot of the experimental
graphical user interface (GUI) is shown in figu¥®.

. gui_test E] \

When the "start” button is pressed, two sounds will be played
in succession. Please decide whether the two sounds are the
SAME or DIFFEREMT.

Once ywou have selected your choice,
the next pair of sounds will be played.

SAME DIFFERENT

Progress for expariment 1 of 4:

25% donel

Figure 4.5.
lllustration of the GUI used for the timbre feature discrimi nation experiments.
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Each experimental session consisted of four repeats okfiexienent for each timbre feature
investigated. The subjects were unaware that the first erpat was considered a practice
session, to familiarise the listener with the task and seymdsented. A progress indicator
was included in the user interface to assist the listeneraingmng their progress for the
experimental session.

An adaptive procedure based on the transformed up-doweasai technique (Levitt, 1971)
was implemented, using a 2-down, 1-up decision criteria Jtarting values of the altered
tones, or probe tones, compared to the reference tone, weceilted in sectiod.2.1.2and
adjusted accordingly with the staircase method as a reétitedistener’'s response. Two
interleaved adaptive procedures were implemented for egoériment: one with the probe
tone starting at a higher parameter value than that of tlezewete, and one with the probe
tone starting at a lower parameter value than that of theeete (Jesteadt, 1980). These
sequences were presented in a random order, as were thenefemnd probe tones for each
trial. The technique employed allows the probe stimuluslter@ate between values that
make the sound just distinguishable and just not distitgidke from the reference tone. If
the difference could not be detected, the difference betweefeature value of the reference
and probe tone was increased until the listener could agaactthe difference. One such
oscillation in the response is classified as a reversal. Dus@cutive correct responses to the
stimulus pair resulted in the difference between the tinfdaéure for the probe and reference
tones being reduced, while one incorrect response resultaa increase in the difference.
The value to which this difference converged was acceptélaeadND in each case.

A total of 10 reversals were recorded for each of the two leéeed sequences. For the
first two reversals, an adaptive factor of 1.6 was used, whieremaining eight reversals

were subjected to an adaptive factor of 1.2. The JND was leatmlifrom the average of

the midpoints of the last five reversals for each of the twerietived sequences, to find an
average JND for the experimental session. A final JND valueedah timbre feature was

then calculated from the average over three repeats of {ieriexent for each listener.

Although subjects were informed about the nature and airhe§tudy before commencing
with the experiments, they were not aware of the procedugd uspresenting the stimuli.
Due to the varying availability of subjects, experimentdsions were completed over the
course of several weeks.
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4.2.2 Similarity ratings of timbre

The second experimental study consisted of similarityngatiof different musical timbres.
The results of this study, carried out for both NH and CI listen served as experimental
timbre perception data to which the predictions from the ehaaf timbre perception, as
discussed in sectiof2.1 could be compared. The similarity rating experiment is&xed

in detail in sectiong.2.2.1t0 4.2.2.3 This study served as a basis for validation of the model
of timbre perception that was developed, as well as for tt@ementation of the acoustic
model, to which the NH participants were exposed.

A similarity rating experiment was set up to determine thefasions between pairs of mu-
sical instrument sounds. Similarity ratings were choserabse direct identification tasks
would be impractical for CI listeners, as many would not hdaeerhusical memory to accu-
rately identify a range of different instruments. Sinceshene experiments were required to
be carried out on both NH and implant listeners, the sintifagndgement was the most feasi-
ble approach and was based on the technique used by Gettyg, Smets and Green (1979).
This method, further explored in Getty, Swets and Swets @9 akes use of similarity
judgement experiments, which are then used to perform MOBeoperceptual dimensions.
The distances obtained from the scaling are then relatedrttusions between stimuli by
means of an identification task. Using this approach as &bt steps followed in this
study are used to perform similarity judgement tasks diyedthe similarities can then be
expressed directly as percentages of confusions betweedsoas in the case of a standard
confusion matrix constructed from identification task{ga 5.2.2provides more informa-
tion on confusion matrices). These results can then betljireempared to the predictions
made from the model of timbre perception.

4.2.2.1 Listeners

The participants for the similarity rating experiment wtre same listeners that participated
in the first experiment as in secti@n2.1, and consisted of five NH and five post-lingually
deafened adults.
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4.2.2.2 Stimuli

The experimental session involved the comparison of thbresof pairs of the 10 musical
instrument sounds as described in seco? by rating their similarity. The instrument
sounds were taken from the sound database of Fritts (No,gatd)each of the instrument
sounds was approximately 2 s long, ranging from a minimum®@8 $econds to a maximum
of 2.6 seconds. All of the samples were recorded in mono wislarapling rate of 44.1

kHz (16 bit) and were saved in .aiff format. The only exceptieas the piano, which was
recorded in stereo. The University of lowa Musical Instrmin®amples website (Fritts, No
date) contains all the relevant information regarding ttsgrument sound recordings.

For this study, sounds with a fundamental frequency of 262C¢4zor Middle C) were used,
as discussed in sectidh2 The sounds were normalised in amplitude between 1 and -1 to
comply with .wav file specifications and to ensure that thendswvere presented at the same
amplitudes. The saved .wav files of the instrument soundse wht explicitly controlled in
duration, were chosen to represent orchestral familiesstfuments (Galvin llet al,, 2008),
and listeners were instructed to focus solely on timbreediifices. For ClI listeners, the
original recorded sounds were presented in pairs as thalgtiwvhile for NH listeners, the
stimuli were the instrument sounds processed through tbestic model, as discussed in
section3.5. A pilot experimental study for the NH listeners subjeciethie orignal recorded
musical instrument sounds was also carried out. The stivwerde presented in sound field
and at a comfortable perceived loudness level for each dubgects, between 50 % and 70
% of the maximum comfortable loudness level in all cases.

4.2.2.3 Procedure

The routine for the experiment was programmed in Matlab 7TBQ0with experimental ses-

sions conducted in the same way as for the first experimerdaédure described in section
4.2.1.3 in a sound proof booth with a Yamaha MS101 Il speaker posticapproximately 1

m in front of the subject. Subjects received on-screenevrittnd verbal instructions for the
experimental task and clarification was given if requirede T.O instrument sounds, unpro-
cessed for Cl listeners and processed for NH listeners, wesepted in a random order to
familiarise the listener with the range of variation amdrtge timbres that were to be rated
on a 10 point scale. The subject could listen to all of the dsummaximum of three times,
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or less if they were comfortable with the set of stimuli. Fack experimental trial, a pair of
instrument sounds was presented, with a pause of 2.9 sebetwlsen the start of the first
sound and the start of the second. The listener was asketettheadegree of dissimilarity
between the sounds on a scale of 0 (exactly the same) to 9difeagent). The sound pair
could be repeated up to four times before a rating had to baistgll via the user interface
by selecting one of the buttons labelled 0 to 9. Figullustrates the GUI for the similarity
rating experiment.

gui_rﬂling I;‘ (m}

Prezs tha START button to start the experiment. You will hear two successive sounds played.
Once the sounds hawve bean played, please choose a number from Oto 9

an the scale below to rate how the sounds compare, with O indicating that the sounds were
axactly the SAME and 9 indicating that the sounds were WERY DIFFEREMT.

When listening to the sounds please try to focus only on the quality or texture
of the sound, as opposed to differences in the duration of the overall sound.

You may repeat the sound pair up to 4 times by pressing the EEPEAT button.
Once wou are satisfied with your choice, make sure your chosen rating number 15 selectad
and press the SUBMIT button. REPEAT

‘ SUBMIT ‘
SOMEWHAT YERY
SAME DIFFERENT DIFFERENT
@ =3 @ @) @ 0 (@] (O] @ @
0 1 2 3 4 5 & 7 8 9

Progress for axperiment 7 of 10

25% donel

4 3

Figure 4.6.
lllustration of the GUI for the musical instrument timbre si milarity rating experiment.

Subjects were requested to use the entire scale when mdiaingdecisions. In total, 100
sound pairs (all the possible combinations of the 10 soundsg presented in a random
order in one experimental run. A total of 10 experimentalstugach approximately 20-
30 minutes in length, was conducted for each listener, taiokdan average dissimilarity
rating for each listener for each sound pair. Learning éffeeere observed in the results
of the rating experiments for each subject. However, noceable trends were found and
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therefore an average of all 10 experimental runs for eaciesutwvas used in finding an

average confusion matrix. An additional similarity ratieperiment was conducted for the
NH listeners in response to the original or unprocessedaalisistrument sounds. However,
due to time constraints, only three experimental runs wenelgcted for each listener, to find
an average confusion matrix. These results were used strdbe NH subject performance
in NH conditions.

The experiments were again completed over several weekstdicg to the availability of
the subjects. The similarity judgements obtained from tkigeemental sessions for each
subject were converted to confusion matrices to be analgsdadompared to the confusion
matrices as predicted by the model of timbre perception. déwelopment of the timbre
perception model to predict the outcomes of this experialestudy is discussed in section
5.2.1

4.3 RESULTS

4.3.1 Results of timbre feature discriminations

Figure4.7 shows the results of the first experimental study, desciibsdctior4.2.1 JNDs
obtained from the discrimination tasks for each of the tienteatures B, LRT and IRR are
shown for individual subjects for both NH and CI listenersthathe mean and SD values
given in table4.2
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Figure 4.7.

Results of the timbre feature discrimination tasks, with the mean and SDs of the JNDs
for each listener given for features B for (a) NH and (b) CI ligeners, LRT for (c) NH
and (d) Cl listeners, and IRR for (e) NH and (f) CI listeners. The mean values are

indicated by the unfilled circles, while the SD values are ilistrated by the errorbars

for each subject, with the units for B, LRT and IRR given in table 4.2

Table 4.2.
Mean and SD values for the JNDs obtained for the timbre feature

discrimination tasks, with the units for B, LRT and IRR given by partial

index, log(s) and log(dB), respectively.

NH listeners Cl listeners
NH1 NH2 NH3 NH4 NH5| Cil1 Cl2 CI3 Cl4 CI5
B Mean| 0.177 0.393 0.213 0.602 0.9§0.963 2.714 1.684 7.058 1.309
SD 0.047 0.085 0.227 0.098 0.103.435 0.572 0.067 1.091 0.273
LRT | Mean| 0.194 0.226 0.353 0.609 0.714€.851 1.274 1.256 1.147 0.964
SD 0.077 0.037 0.070 0.154 0.0710.196 0.105 0.067 0.027 0.130
IRR | Mean| 0.163 0.190 0.247 0.223 1.0110.869 1.566 1.154 2.104 1.570
SD 0.070 0.044 0.069 0.028 0.074€.301 0.311 0.029 0.028 0.1/8
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Figure4.8 shows the pooled JND values obtained for each of the feaByreRT and IRR.
The NH listener JNDs were averaged for each feature, as \weee tobtained by the CI
listeners, with the mean and SD values shown in tdt8e
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Figure 4.8.

Average results for timbre feature perception for (a) B, (b) LRT and (c) IRR for NH
listeners (circles) and Cl listeners (squares). The SD valgeof the group for each
feature are displayed by the errorbar, with the units for B, LRT and IRR as defined in
table 4.3

Table 4.3.
Averaged mean and SD values for the JNDs obtained for the timie feature
discrimination tasks, with the units for B, LRT and IRR given by partial
index, log(s) and log(dB), respectively.

Cl listeners
Mean SD

NH listeners
Mean SD

LRT
IRR

0.4742 0.3325
0.4193 0.2319
0.3668 0.3613

2.7453 2.4985
1.0986 0.1853
1.4526 0.4690
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Figure4.8 shows that the mean B JNDs for all NH listeners was lower thah af the CI
listeners. Results of NH listeners (mean = 0.4742, SD = 0.382%e also more consistent
than those of the Cl listeners (mean = 2.7453, SD = 2.4989),waitiations in mean and SD
values amongst listeners being substantial. The LRT JNBDaliftNH listeners compared to
Cl listeners were also lower (figue7(c) and (d)), but with less variation amongst listeners
than in the case of the B JNDs. Consequently, although the gi¢Brof the NH listeners
of 0.4193 was again lower than that of the Cl listeners of 16088 SDs (NH = 0.2319, CI
= 0.18525) were comparable, with the SD of all the ClI listereen lower than that of all
NH subjects. For the IRR JND values, figurg(e) and (f) show that the mean JNDs for NH
listeners were again lower than for ClI listeners, with theegtion of one NH listener. The
mean of 0.3668 for all the NH listeners was again lower thamtiean of 1.4526 for all the
Cl listeners. The JND SDs of 0.469 and 0.3613 for NH and CI sthjeespectively, were
comparable for IRR.

The effect of the listener type (NH and CI) and the effect ofgpecific timbre feature (B,
LRT and IRR) on the resulting JNDs were investigated by mearsstafo-factor analysis
of variance (ANOVA). Levene'’s test for equal variances sedw significant resul(5,24)

= 4.16, p < 0.05), indicating that the assumption of non-equal vaganshould be used.
The analysis revealed that the JND values for B, LRT and IRR wigmraficantly different
for NH and CI listenersK(1,24) = 11.993p < 0.05). This was expected due to the poor
timbre perception abilities of Cl listeners, as reportechia literature. The JNDs were not
significantly affected by the timbre feature, with JNDs nigindficantly different for any
comparisons of the timbre features, B, LRT and IRR (in all capse®.05). There was also
a non-significant interaction effect between the type déhsr, NH or CI, and the timbre
feature on the JINDF(2,24) = 1.511p > 0.05). This indicates that NH and Cl listeners were
not affected differently by different timbre features. Thighest mean JND values for both
NH and CI listeners were for B. The lowest mean JND value for Nkehers was for IRR,
while for ClI listeners LRT was the feature with the lowest mahi.
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4.3.2 Results of timbre similarity ratings

The timbre similarity rating experiments explained in gat#.2.2can be expressed directly
as percentages of confusions between sounds, as the mdes 8ivo sounds are, the higher
the probability of confusing the two will be. For example,twio sounds were rated as
0 (no difference) on the ten-point scale used in the sintylaatings, this would indicate
a similarity of 100 %, or 100 % confusion, whereas a rating ¢¥&y different), would
correspond to 0 % similarity and thus 0 % confusion betweentwo sounds. For a pair
of sounds rated at 7, this would correspond to a probabifityomfusion of 0.22 between
the sounds (a small chance of confusing two sounds that acegiaally quite different).
Each row of the matrix is normalised to the sum of that row. al'erage confusion matrices
obtained for NH and CI listeners from the similarity ratinge ahown in figuregt.9 and
4.10 respectively.
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pno tpt hrn tbn cnt flt sax vin clo vla
pno | 0.6407 00156 Q037 00248 00709 00269 00809 00193 00548 00292
tpt | 0.005€ 0.2085 01006 01476 00562 00692 Q0574 Q0729 01386 0143
hrn | 0.0112 0089t 0.1919 01448 01053 00911 01119 00773 00865 00905
tbn | 0.0063 0123 Q124€ 0.1765 00696 00838 00686 00911 01321 01241
cnt | 0.0347 00597 01123 0097€ 0.2233 01127 01567 00753 00671 00605
flt | 0.011 Q075 Q0919 01029 0109¢ 0.2261 00848 01016 0092 01048
sax | 0.0452 00585 00987 0079 Q1744 Q095& 0.2455 00662 00685 00681
vin | 0.0074 00672 00947 01143 00714 01033 0078t 0.2464 01245 00923
clo | 0.0073 01243 00799 01392 Q0548 Q0741 Q0487 01121 0.2001 01595
vla | 0.008 Q1393 00761 01309 00604 00929 00528 0082 0161z 0.1965

Figure 4.9.
Average measured confusion matrix for NH listeners as a redtiof timbre similarity
judgements.

pno tpt hrn tbn cnt flt sax vin clo vla
pno | 0.515 (00258 00616 00602 00884 00348 01351 0017 Q028 Q034
tpt | 0.021€ 0.3181 01032 00874 00601 Q0572 00659 00641 01061 01161
hrn | 0.0269 0063€ 0.2119 01488 01054 Q0643 01133 00765 0081 (01083
tbn | 0.0172 00595 01584 0.2099 01192 0057 Q081 Q0651 012 01126
cnt | 0.0403 00481 0127 01212 0.2426 00764 Q147 Q0584 0067 Q0718
flt 0.016 00498 00868 01013 00944 0.2856 00928 00775 0096 Q0999
sax | 0.0683 00484 01351 0095 01296 0087€ 0.2611 00513 00585 Q0652
vin | 0.0159 00554 01009 Q01053 Q0777 0076 QO75€ 0.254 Q0972 01421
clo | 0.0116 00639 00974 01402 00675 009 00565 008032 0.224 (01687
vla | 0.0125 00695 01231 01309 00752 00746 Q0507 01111 01424 0.2101

Figure 4.10.
Average measured confusion matrix for Cl listeners as a reduof timbre similarity
judgements.
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4.4 DISCUSSION

4.4.1 Measured timbre features

The results of the JND values found for the timbre percepatures B, LRT and IRR for
both NH and Cl listeners in the first experimental study (secti3.1) generally agree with
those of the literature on timbre perception abilities of €¢rs, which were found to be poor
when compared to those of NH listeners (Gfe#érl.,, 2002c; McDermott and Looi, 2004).
This is illustrated by the substantially higher mean JNDugalfound for ClI listeners than
for NH listeners. However, large SDs, particularly for thdBD values for Cl subjects, can
be noted.

Average JND values for Cl listeners were more than four tirhesd of NH listeners, which
suggests that ClI listeners seemed to have only approxim2iedy of the ability of NH lis-
teners to perceive the features underlying timbre peraepiihis shows even poorer results
than timbre identification studies, in which CI listeners &vésund to have approximately
50 % of the ability of NH listeners to correctly identify timds (Gfelleret al., 2002c; Mc-
Dermott and Looi, 2004). The results of this study may be wdos Cl listeners as a result
of two factors: 1) the stimuli were simplified sounds that &eynthesised according to a
minimal number of parameters, thus restricting the numbeues that may otherwise be
transmitted through real-world sounds to facilitate mysecception, and 2) the definition
of timbre perception in this study is encompassed by threeip features only, where in
other studies, abilities of timbre perception as a wholesHa®en reported. Additionally, it
can be argued that timbre identification is not a direct memsfithe perception of timbre,
as music memory may affect the outcome of such studies. nhigduces difficulties in
directly comparing the overall results of this study to 8rig timbre perception studies for
Cl listeners.

4.4.1.1 Measured temporal timbre information

Rhythmic elements of music have been shown to be perceiveer it Cl listeners than

melodic or pitch cues (Gfeller and Lansing, 1991). This ssgg that temporal information
Is transmitted better than spectral information through as®ich has also been shown in
speech perception studies (McKay, 2005). Timbre percegtiadies by Gfelleet al.(1998),
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Gfeller et al. (2002a) and Gfelleet al. (2002c) indicate that Cls are better at identifying
percussion instruments, for example, the piano, than wowtlar brass instruments. This
implies that the distinctive attack or rise time associat@t percussion instruments serves
as a valuable temporal cue in Cl-mediated perception of musicument timbre. Thus, as
would be expected, the ability of CI listeners to discriméntite temporal feature of timbre,
LRT, yielded JNDs most comparable to those of NH listeners.

Additionally, the JND of the temporal feature, LRT, has tbeést SD out of the three JND
findings for both CI and NH subjects, indicating consistesuhls among CI listeners for

LRT JNDs. This illustrates that for CI listeners, LRT is the sheeadily perceived of the

three important timbre features, whereas B and IRR, which asedon spectral properties
of the sound, appear to be transmitted less effectivelys Tarresponds to the findings of
Konget al.(2004), which showed that Cls currently provide enough specties for speech

perception in quiet, but are not adequate for music peraepti

A more thorough interpretation of the comparable LRT findifigr NH and CI listeners
can be assisted by studies of temporal resolution taskisidimgy gap detection (Shannon,
1989) and amplitude modulation detection (Busby, Tong andkClE093). Detection of
gaps between sounds with JND values varying from 3 ms to 10aveslieen recorded in NH
listeners (Clark, 2003), with the discrimination of gap dima JNDs comparable at values
of 7 ms (Lister, Koehnke and Besing, 2000). Similar resultsewfeund for CI listeners,
with gap detection and discrimination JNDs of 2 to 17 ms begwogrded (Clark, 2003). The
present study yielded a mean JND for the temporal featuredff®T42 for NH listeners and
a mean JND of 1.1 for cochlear implantees, correspondinilBbdetections in the rise time
of the sounds of approximately 2.63 ms for NH listeners an83.mns for ClI listeners, on
average. Individual results for LRT for NH listeners rangani 0.19 (1.56 ms) to 0.71 (5.18
ms), whereas for the Cl listener group the LRT values range 6@5 (7.1 ms) to 1.27 (18.8
ms). These LRT JND values compare well to the gap detectidndéstrimination JNDs
reported by Clark (2003) and Listet al. (2000).

4.4.1.2 Measured spectral timbre information

The spectrally associated timbre features (B and IRR) aresyaavsubstantially less effec-
tively to ClI listeners than to NH listeners, and with lower @éncy than LRT. This agrees
with the measured results of Gfelletal. (2002¢) and McDermott and Looi (2004), in terms
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of Cl performance compared to NH performance for rhythm atachgerception, as well as
those of McKay (2005), in which the transmission of tempardrmation was found to be
better than that of spectral information in CI listeners.

In the experimental tasks, two different types of spectridrimation were available to lis-

teners: namely, B and IRR, relating to the global shape of teetagm and the local shape
of the spectrum, respectively. The large variations in B SN ClI listeners compared to

NH subjects confirm that global spectral information is nengrally transmitted as well to

Cl listeners as to NH listeners, and that the spectral inftiomaerceived is highly subject

dependent. This may have been expected as a result of theumlidifferences in anatom-

ical structure of the cochlea for each subject, the placéwfahe electrode array, and nerve
survival in the cochlea.

Henry and Turner (2003) investigated the differences ircspkeshape perception abilities
of NH and Cl listeners when listening to the same number of oliksn Their results can be
compared to the findings of this study for B, which is calcudat®m the general spectral
shape of the sound. Henry and Turner (2003) found spectapksperception for Cl listeners
to be poorer than for NH listeners, with average spectralpmmnt spacing JNDs for NH
and CI listeners being around 400 Hz and 3000 Hz respectivelly, large variations in
JNDs for ClI listeners, ranging from 800 Hz to 8000 Hz. This imparable to the trend of
the results found for B, where the ClI listener group had a sobatly larger JND value than
the NH group (expressing B in Hz by multiplying by the fundantae frequency of 262 Hz
gives us 124.23 Hz and 719 Hz, respectively), with a largersibe JND values of B in the
range of 64.66 Hz to 1373.88 Hz for Cl listeners. The lower JNDNH listeners compared
to that of the study of Henry and Turner (2003) may be expthing the fact that in their
study, NH listeners listened to acoustic simulations ofsthkend, limited to 12 channels. The
subject-specific nature of ClI listener results, apparemhfilee large SDs of the the results,
may explain the differences in JND values for B found in thigly, compared to the results
of Henry and Turner.

There is less consensus regarding the importance of IRR hHeanther two predominent

features, B and LRT, for timbre perception. In the existitgrature, the proposed third

timbre feature is usually classified by one of two categosegctro-temporal features, as in
the case of spectral flux, or spectral features, as in theofapectral fine structure or spectral
spread, which is related to the shape of the spectrum (GCetchly 2005). Although the study

by Caclinet al. (2005) suggests that spectral irregularity is a more prentimimension
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than spectral flux, the authors conclude that it is nonetisedeless apparent dimension of
timbre perception, possibly requiring further investigat JNDs for IRR are not as severely
affected in Cls as those for B, which can be attributed to IRRdektiracted from the fine
spectral structure of a sound, as opposed to the globalrapectf the sound in the case of
B, making it a less salient perceptual timbre feature.

The present results for IRR can be compared to the resultstafig by Henry and Turner
(2003), in which the ability of implantees to resolve spaktipples was also investigated
and found to be significantly correlated with their abilityitlentify vowels. The results of
Henry and Turner (2003) showed a spectral ripple resolufapproximately 1000 Hz for
50 % correct vowel identification, and a JND of up to 10000 Hihasvowel identification
dropped to 25 %. This poor resolution was illustrated by #rgdr JND obtained for IRR
for Cl listeners than for the NH group, where a resolution @ dnder of a few hundred Hz
(for a fundamental of 262 Hz) would be required for IRR peruepto be comparable to that
of NH listeners. The main limiting factor preventing Cl lisrs from resolving frequencies
is thought to be the differing degrees of excitation spresglilting from subject-specific
neural survival patterns and pathological processesmili@ cochlea (McKay, 2005), which
result in a blurring of spectral peaks or perceptual smgdnracoustic signals (Henry and
Turner, 2003). Henry and Turner (2003) suggest that théatnlresolve spectral peaks may
also be influenced by the compression of the acoustic dynamnge to the narrow electrical
dynamic range in Cls.

A recent study by Emiroglu and Kollmeier (2008) attempteduantify differences in object
separation and timbre discrimination between NH and hganpaired listeners. The ex-
periments determined JNDs of timbre in NH and hearing-imgaasubjects along continua
of “morphed” musical instruments with the attack times regath JNDs of the morphing pa-
rameter which was investigated (also discussed in setibi6.9 between pairs of sounds
were found to be significantly lower for NH listeners than $ewerely hearing-impaired lis-
teners. As discussed by Emiroglu and Kollmeier (2008),laasiembrane compression loss
in sensorineural hearing-impaired listeners may lead tstartion of mapping between the
stimulus level that is presented and the stimulus leveladgtapplied internally .This may
make subtle intensity differences more audible, which@exblain why the IRR results ob-
tained for cochlear implantees are more comparable to thfds&l listeners than in the case
of the results for B. Slight changes in amplitudes of specoahponents will not change
the overall spectral envelope or value of B, whereas the sgenegularity, IRR, may be
substantially affected.
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A study by Turner and Holte (1987), in which discriminatioinspectral shapes in speech-
like sounds was investigated for NH and Cl listeners, mayarphe necessary requirements
for successful transmission of features B and IRR . Undeairedonditions, higher, more
prominent spectral peaks were required for CI listeners téopa equivalently to NH lis-
teners. For those that did not achieve normal discriminagsults at any level of increased
spectral peak presentation, high frequency amplificatfaheostimuli (high-pass amplifica-
tion) returned the JNDs to the NH range. For IRR, alternatiegdency bands may need
intensity amplification to make the spectral differenceadijacent harmonics more promi-
nent to Cl listeners.

Hopkins and Moore (2007) and Moore, Glasberg and Hopkine@pperformed frequency
discrimination studies and found that the ability of Cls te tsmporal fine structure is poor.
It was found that harmonics above the 5th were not resolvexb(®kt al, 2006). This may
explain the poorer ability of CI listeners to perceive B and IRBn NH listeners, as only
the first five spectral components would likely be used foceptual judgements. Mooed
al. (2006) also found a reduced ability of Cl listeners to use tapenvelope cues, which
could also explain the poorer abilities of Cl listeners taceare LRT, when compared to NH
listeners.

The fundamental frequency, which relates to features B B Is an important feature in
the perception of musical instruments sounds, with therakatiditory processing thereof
facilitated by either spectral or temporal methods (McK2305). The difficulties that Cl
listeners experience in perceiving timbre can primarilyelplained by the restrictions of
existing processing strategies (SPEAK, ACE or CIS), in whia fixed overlapping filter
bands that are used limit the number of harmonic componkatscan be resolved and the
identification of the harmonic components. Additionalljzage shifts between electrodes
positioned close together may lead to incorrect percepiiothe fundamental frequency.
Even with the provision of more perceptual channels in Clsypral information would
probably also have to be conveyed by the analysis channtle abrrect tonotopic place in
the cochlea, as discussed by McKay (2005). Additionallgtdes such as the smoothing of
filter outputs and the uncontrolled phase differences tbatioon electrodes placed nearby
(McKay and McDermott, 1996) need to be addressed to betteregahe fundamental fre-
quency and harmonic components of a sound.
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4.4.2 Timbre similarity ratings

The results of the second experimental study, in which tengiimilarity judgements for both
NH and CI listeners were investigated, are shown in secti@®2 These results can be
compared to some studies reported in the literature: thé&usmm matrices of figured.9
and4.10can be compared to previous timbre perception results foaNGHCI listeners.

As discussed by Donnelly and Limb (2009), NH listeners ragulmistake musical instru-
ments from the same family, which can be seen from the highefusions, found in this
study and shown in figuré.9, between the string instrument family consisting of thdimio
cello and viola and between instruments of the brass fasplgcifically between the French
horn and trombone. Higher confusions were also noted betiwetruments of the wood-
wind family, particularly between the clarinet and flutem8ar findings were reported by
Gfeller et al. (2002c), where the highest confusions in the identificatibmstruments for
NH listeners were found between the woodwind instrumeties,ctarinet and saxophone,
and between the string instruments, the violin and cell@rBhough the NH listeners were
exposed to processed instrument sounds, the listenerarappEmploy the same timbre per-
ceptual cues that would be used in listening to unprocessauds to rate the similarity of
two sounds.

The experimental confusion matrix of the ClI listeners as shiowfigure4.10shows more
scattered error patterns not necessarily correspondingttoment family, as was also found
by Donnelly and Limb (2009). Although high probabilitiesadnfusions occur between in-
struments of the brass family, such as the French horn antbtroe, as well as between
string family instruments, high confusions are also foustiheen instrument families, for
example, between the clarinet and trombone and the celléramdbone. Instrument sound
confusion matrices obtained by Gfellet al. (2002c) showed the largest confusions for
Cl listeners between string instruments, correspondind twehe experimental confusions
found for Cls in this study. Additionally, Limb (2006) reped percussion instruments to be
the most readily identified by CI listeners, correspondintheogenerally low confusions of
the piano with other instruments found in this study, asstiated in figure.10 Hall and
Beauchamp (2009) discuss the role of the rise time of soungsrennstruments with very
abrupt rise times, such as the piano, may serve as a percegfer@nce against which all
other stimuli are evaluated. This agrees with the resultsisfstudy, in which the piano was
always found to be the most distinct from the other instruisien
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In addition to the distinguishing temporal properties af fhiano that produces less confu-
sion with other instruments, the normalisation of the pezkbe instrument sounds should
also be noted as potentially enhancing dissimilarities/beh the piano and other instrument
sounds, and indeed amongst many of the musical instrummehbtds. Although peak nor-
malisation of the sounds assisted in balancing the perdéweiness of the different musical
instrument sounds, this does not completely balance thedsan terms of loudness, as the
energies of the sounds differ. This indicates that pereputifferences in the loudness of
the sounds may still be present and that this could havetaffebe results of the similarity
ratings, as any difference in loudness would imply a diffieesbetween two sounds.

Although the methodology of the timbre perception expenta®f this study differed from
the timbre recognition tasks reported in literature, tieaits showed similar trends to previ-
ous timbre perception findings, as discussed above. Theimgugal findings of this study
could thus be used as data with which to compare the predsctbthe developed model of
timbre perception.

45 CHAPTER SUMMARY

The experimental component of this study was presentedsrcttapter, consisting of two
experiments performed with both NH and Cl listeners. Therdigoation task results where
the JNDs of timbre features B, LRT and IRR were found for eadbnisr were presented.
These were used in obtaining predictions from the modehabte perception, as discussed
in chapteb. The results of the similarity judgements of musical insteint sounds were also
provided. Chapteb presents the analysis and comparison of these results pyeédections
of the timbre perception model. This chapter discusses tiheomes of the experimental
components of this study, which provide an entry point irdbi@ving a quantitative under-
standing of the timbre perception abilities of Cl listenéngproviding measurable results in
terms of timbre perception features. These measurablégegere then used in the devel-
opment of a model of timbre perception, as discussed in eh&pt
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CHAPTER 5

MODELLING OF TIMBRE
PERCEPTION

A large part of the work described in this chapter was preskat the Cl 2010 conference
(Hanekom and Hugo, 2010). The work in this chapter will alsosbbmitted to Ear and
Hearing in the form of a journal article as a continuationtaf tork discussed in chaptér

5.1 CHAPTER OBJECTIVES

The experimental component of this study was presenteddaptehd. The findings of the
first experiment (sectiod.3.1) were used in the development of the model of timbre per-
ception. The model predictions could then be compared tdhthdindings of the second
experiment (sectiod.3.2. This chapter presents the implementation of the modahof t
bre perception, which was performed in Matlab version 20@sbwell as the results of the
model predictions compared to the experimental resultsexfatanation of the analysis tech-
niques used to interpret the results and allow for compasi$o be made between predicted
and measured results for NH and ClI listeners, to validate ts@sorements and models of
this study are also presented in this chapter. A detailezidgon is provided regarding the
outcomes of the model of timbre perception, along with adasitions made in the devel-
opment of the model. Comparisons of the results of the stutly existing literature will be
explored and implications of the timbre perception modétomes will also be presented.
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5.2 METHODS

5.2.1 Timbre perception model

A model of timbre perception was developed in an attempt emadtely predict the results
of timbre perception experiments, and, in this study sp=adlfj, to predict the outcome of
timbre similarity rating experiments as described in s#04i.2.2 The model was based on
the three important timbre features, B, LRT and IRR, and the idiefis of both the original
and processed sounds by these three features. The modelwasred on the premise that
the features B, LRT and IRR formed a three-dimensional orthabgpace, or timbre space
The first step in implementing the model was to extract thaufea from each of the original
and processed sounds, using the methods described inrs8atioAs musical instrument
timbres are generally recognised by the information thetaissmitted by B, LRT and IRR, it
Is implied that when different musical timbres have simBaLRT or IRR values, that there
is a possibility that these timbres may become confusedeeitih other.

In the case of predicting confusions amongst vowels, thieensional Euclidean distances
may be used, as illustrated by Conning (2005). The Euclidéstartes are measured be-
tween all the vowels in the vowel space to predict the amolrdmfusion between each pair.
However, for this study, a more detailed approach, baseti@mwork of Svirsky (2000), is
used to predict confusions between instrument timbresxpgraling on the use of Euclidean
distances alone. For predictions of confusions betweerlw normalisation of the vowel
space, generally defined by the duration of the vowel and tsietfvo formant frequencies,
F1 andF,, is usually performed before the Euclidean distances dcelesed (van Wieringen
and Wouters, 1999). Lobanov’s z-score transformation (kd&mits and Van Hout, 2004)
Is a possible choice of normalisation that may be implentras it allows for the compari-
son of vowels across various conditions. The processingwids may cause an offset to be
added to a specific vowel space, which is removed by nornti@ilsaHowever, Lobanov’s
z-score transformation is a vowel-extrinsic procedurel sm cannot be used to normalise
the timbre space. Additionally, no normalisation proceduspecific to timbre spaces have
been developed. As a result, simply calculating the Euahd#istances between instrument
sounds in the timbre space would be questionable, as thendiares are not normalised and
cannot necessarily be measured relative to one another.

La timbre space is defined as a multidimensional space whemmber of instrument sounds are plotted as
a function of their signal characteristics, defined by B, L& IRR.
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Therefore, using the model implemented by van Zyl (2008) based on the model by
Svirsky (2000), a volume surrounding each of the pointsitiatesent a sound in the timbre
space can be applied to calculate the probabilities of @mfueach sound with another.
The volume surrounding each sound in the timbre space is lledday an ellipsoid, with
the dimensions of each of the three axes thereof correspgmalithe JND values found for
each of the timbre space dimensions B, LRT and IRR, from the arpatal study in section
4.2.1 Abasic illustration of the structure of the model of timiperception is given in figure
5.1, with an arbitrary musical instrument sound in the timbracsp in terms of B, LRT
and IRR, represented by the black circle. An ellipsoid is aos¢d around the position
of the instrument sound in the three-dimensional spacaegusie JND values obtained for
each of the timbre features as the dimensions of the ellipsogach corresponding timbre
dimension. Such ellipsoids are constructed around eackcatirsstrument sound, with the
amount of overlap between two ellipsoids indicative of theoant of confusion that is likely
to occur between two specific musical instrument sounds.

IRR

7 LRT

Figure 5.1.

lllustration of the structure of the model of timbre perception. For each musical sound
represented in a three-dimensional timbre space, an ellipsd is constructed, using the
JND values obtained for each of the timbre features as the diensions. The units for
each of the axes for B, LRT and IRR are defined in section8.4.1to 3.4.3
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As an existing model was used to predict the probabilitiesooffusions between the instru-
ment sounds, a gain factor of 1 for the JND values was the onljefrparameter that was set
in the development of the model of timbre perception. Allestharameters were inherent in
the model by van Zyl (2008).

To calculate the probability of confusions from the overta#pthe ellipsoids constructed
around each sound, signal detection theory (Gelfand, 189€en and Swets, 1966) was
utilised. This method is commonly applied to psychophysicsl was thus suitable for the
purposes of this study. The basic idea of the model was tgrassiprobability density
function (pdf) to each point or sound in the timbre space air®.7, to create a volume
around each instrument sound that more accurately repsetbenspace in which the sound
would be confused with any of the other sounds in the timbaespA four-dimensional pdf
is thus necessary to represent each sound in the timbre @paepresent the three variables
of the timbre space) and all the pdfs were generated to havaugdian distribution. In
this study, the mean of the pdf was obtained from the threeedsional coordinates of the
instrument sound in the timbre space, represented by B, LATRIR. The variances of the
pdfs were calculated from the JNDs obtained from the firsearpental study in section
4.2.1, as opposed to using uncertainty factors calculated from@gsing component in the
method of van Zyl (2008). Once the pdfs were constructed dohesound, the amount of
confusion between two sounds could be predicted.

The model applied in this study used three variables or dsmes (B, LRT and IRR),
thereby creating a four-dimensional pdf for each sound. é&l@w for the purpose of il-
lustration, an explanation of the model implementation k&l given for a one-dimensional
variable, resulting in a two-dimensional pdf. The Gausslatribution, given byf (x) in
equations.1for one dimension is

2
f(x) = %exp(—%%) , (5.1)
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where u is the mean of the distribution, ara is the variance. A pdf was calculated for
each of the instrument sounds. The probability value fohedement in a confusion matrix;
that is, the probability of the listener giving a specificpesse given all possible responses,
was calculated individually. This was achieved by integgathe pdf of the stimulus (or
particular instrument sound) from a certain decision poa® shown in figuré&.2 The
decision point is chosen as the point of intersection bettee stimulus pdf and the possible
response (a different instrument sound in the space thatithelus may be confused with)
that is being calculated.

Stimulus Response

(instrument sound 1) (instrument sound 2)

0.2
Probability
0.15

0.1 -

0.05 r

Perceptual distance

Figure 5.2.

lllustration of two-dimensional probability density func tions representing the stimulus
(the instrument sound investigated) and response (a diffent instrument sound with
which the one under investigation may be confused). The prolimlity of confusing
these two sounds or giving the incorrect response (shadedea) is in this case
calculated from O to the end of the stimulus pdf.
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The more overlap there is between the pdfs of two sounds, réeey the probability that
the listener will confuse the two sounds. The distance betvtee centre points of the pdfs
is found from the Euclidean distance in terms of the timbmuees B, LRT and IRR in
the timbre space. Figurg.2 only shows the case when one variable is used, as opposed
to the three used in this study. Thus, the listener must iateghese various components
into a single decision. To model this, trivariate randomialales are used instead of the
univariate random variable as is the case in fighee so that an observation is a point in
three-dimensional space as opposed to a point on a line. &bhsdi&an distributions can thus
be expanded to a matrix form for the trivariate random vaeighlculations. van Zyl (2008)
provides the detailed equations for these calculationgiedisas those for finding the single
decision point from the trivariate pdfs.

A visual representation of the trivariate random variatdécalations and resulting pdfs
would require a four-dimensional illustration. Therefotiee ellipsoid representations are
used to visualise the distances between the instrumentisamd the possible confusions
between these instrument sounds. Figu@llustrates the ellipsoid representation for three
arbitrary musical instrument sounds in the timbre spacehérproposed model, the closer
the ellipsoids are that surround each of the sounds, therl#ing probability that the sounds
will be confused with each other. If two ellipsoids do notirsect, there is a smaller prob-
ability that the instrument sounds would be confused. Tinasn figure 5.3, instrument
sounds 2 and 3 will be more likely to be confused with eachrdtien either of these two
sounds would be with instrument sound 1. The pdf calculate@an then be applied to deter-
mine the probabilities of confusion predicted between eastnument sound pair.

In developing the model of timbre perception, a number ofiaggions were made which
were likely to impact the model predictions. Firstly, thelDMalues were only calculated
for one synthesised reference tone, and therefore the ddMe&alues were used to create
identical ellipsoids around each of the musical instrunignbres. In addition to this, the
ellipsoids were symmetrical, a feature that is also inheirethe model by van Zyl (2008),
and thus the assumption that the JNDs are the same on eitleesfsa sound in a particular
dimension in the timbre space had to be made.
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IRR

[ instrument sound 1
[ Jinstrument sound 2
I instrument sound 3

LRT 2 T~ 2 B

Figure 5.3.

A three-dimensional timbre space generated by the model ofrhbre perception for
three arbitrary musical instrument sounds represented by #ipsoids, with units for the
axes B, LRT and IRR as defined in section8.4.1to 3.4.3

A full description of the method used to calculate the presgiconfusion matrices is given
in van Zyl (2008), based on the model developed by Svirskp@20 The results of the
predicted confusions obtained from the model of timbre @gtion, as well as the resulting
JNDs for B, LRT and IRR, are shown in sectibr8.1

5.2.2 Analysis techniques

The analyses of the predicted and experimental results based on methods applied to
speech perception research in Cls for vowels and consorigetsils of the analyses of the
results are given in sectidn3.2 and a brief overview of the methods utilised are discussed
in the paragraphs that follow.

Relative information transmission scores are a common rdeth@nalysing stimulus-response
results of psychoacoustic experiments, and have been ysat&ely in research for speech
perception in Cl listeners. The general procedure involwsrang responses to stimuli into
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confusion matrices, which are stimulus-response matticasindicate which phonemes
have been confused with which. The confusion matrix costaformation about which
cues have been transmitted to the auditory system and whighlieen masked. Confusion
matrices are analysed with feature information transmisanalysis (FITA) techniques. It
is well known that for the identification of vowels, the firstd formants and the duration
of the vowel are necessary cues (van Wieringen and Wout@®8)1 For the identification
of consonants, both acoustic and articulation propertiesxacessary cues. Acoustic prop-
erties include envelope variation of the consonant (vaelTe&oli, Kirby and Widin, 1987),
the ratio of the minimum to peak energy of the consonant aadltiration of the conso-
nant (van Wieringen and Wouters, 1999). Articulatory dfasstion of consonants includes
the following categories: plosive or non-plosive, voicedvoiceless, place of articulation
(front, middle or back of the mouth), nasal or non-nasaljiticpr non-liquid, and fricative
or non-fricative (Miller and Nicely, 1955; Wang and Bilge§73).

For analysis purposes, each phoneme is first classified me@@bseveral categories for each
cue. After classification, each cue is looked at separafélg.confusion matrix is collapsed
into the number of categories available for that cue. Formgte, for place of articulation
there are three categories: 1 = front, 2 = middle and 3 = bal&.ré&lative information trans-
mitted through each cue can then be calculated by the ratiloeofransmitted information
calculated from the confusion matrix to the maximal pogsibformation transferred by the
stimuli and categories under test.

Using a similar approach, confusion matrices for timbreepption may be constructed and
analysed to indicate the amount of information transmittedugh each cue important for
timbre perception. As there are no existing results for gsiohs between timbres for ClI
listeners where important cues have been extracted, theriamt cues assumed will be
the same as those for NH listeners, namely B, LRT and IRR. FITAltesbtained from
similarity judgements of musical timbres by Cl listeners ttean show which timbre features
or cues convey the most information, and how well they cormfyrmation about timbre to
Cl listeners.

Department of Electrical, Electronic and Computer Enginggerin 128
University of Pretoria



Chapter 5 MODELLING OF TIMBRE PERCEPTION

5.3 RESULTS

5.3.1 Results of the timbre perception model

The timbre features B, LRT and IRR were extracted for both thegiral and processed
versions of the 10 musical instrument sounds as a basis arthwtiformulate the model of
timbre perception. Tabl&.1 shows the extracted timbre features B, LRT and IRR for the
sounds.

Table 5.1.
Values for B, LRT and IRR extracted for the original and processd musical
instrument sounds, with units for B, LRT and IRR defined as partial index,
log(s) and log(dB), respectively.

Original musical timbres | Processed musical timbres
B LRT IRR B LRT IRR
Piano pno | 2.6523 1.8027 1.5840 1.8097 1.2093 1.2878
Trumpet tpt | 5.8998 2.8710 1.2270 2.2031 2.8470 1.5759
French horn hrn | 4.3149 2.5357 1.7323 1.8638 2.8147 1.2155
Trombone | tbn | 3.4961 2.6073 1.0274 1.9855 2.6056 1.2535
Clarinet cnt | 3.0455 2.9564 1.9858 1.7204 3.1122 1.2485

Flute flt | 4.0928 2.9285 1.5072 1.9199 2.8027 1.2802
Saxophone | sax | 3.8301 1.7058 1.7850 1.6182 1.9788 1.4433
Violin vin | 5.9806 3.0502 2.1186 1.8960 3.1625 1.1597
Cello clo | 45775 2.8361 1.63762.1106 2.7855 1.3037
Viola vla | 45712 3.0988 1.9179 2.1409 3.0883 1.4015

The original and processed sounds are illustrated graphinawo dimensions for combi-
nations of the three timbre features in figube4 5.5and5.6. It can be noted that processed
sounds are grouped closer together than the original spahdwing that the probability of
confusions between sounds is increased substantiallypnattessing through a Cl.
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Figure 5.4.

Representation of the original instrument sounds (bold) ad processed instrument
sounds (italics) represented by timbre dimensions B and LRTwith units for the
timbre features as given in table5.1
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Figure 5.5.

Representation of the original instrument sounds (bold) ad processed instrument
sounds (italics) represented by timbre dimensions B and IRRwith units for the
timbre features as given in table5.1
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Figure 5.6.

Representation of the original instrument sounds (bold) ad processed instrument
sounds (italics) represented by timbre dimensions LRT and IR, with units for the
timbre features as given in table5.1

Figure5.7 graphically represents the values of tablé in three dimensions by displaying
the original and processed musical instrument soundsnmstef B, LRT and IRR.
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Figure 5.7.

Timbre space of the original (circle) and processed (squajanstrument sounds
represented by timbre dimensions B, LRT and IRR, with units for the timbre features
as given in table5.1

The visual representation of the original and processeddsoin figure5.7 provides an
indication of which instrument sounds would be more likelype confused with one another.
Sounds that lie closer together would have a higher probalot being confused, while
those that lie further apart would be less likely to be coafuwith each other. Predictions
about which music timbres will be confused can be made Vigbglinspecting the timbre
space. From this, a physical measure can be used to qudrE#yg predictions.

In all of the two-dimensional representations for the saymcessed by the acoustic model,
the piano is the most distinct sound, as it is most distamhftioe others. This can also be
seen from the experimental confusion matrices obtainetddtr NH and CI listeners, with
low probabilities of confusion for the piano compared to tileer sounds. In both the NH
and CI experimental results, the saxophone was found to bedise likely to be confused
with the piano. This can be explained by the two-dimensitinabre spaces of figures.4
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and5.6, as the processed saxophone sound is also distinct fronthiee iostruments, but
generally lies closer to the piano than to the other instntraeunds in the timbre space.

The experimental confusions for NH listeners (figdr® and ClI listeners (figuré.10 show
large confusions between brass instruments, specificatlyden the trombone and French
horn, with slightly lower confusions for the trumpet. Thiswd be expected, as shown in the
two-dimensional timbre space representations of the gsazksounds, in which in figures
5.4and5.6in particular the processed brass instruments are groupgteisame vicinity,
but the trumpet is always situated slightly separately ftbenFrench horn and trombone.

For both NH and ClI listeners, high confusions were found antbegamily of string in-
struments (figure4.9 and4.10), specifically between the viola and the cello and the violin
and the cello, with the confusion between the violin andavieéing somewhat lower. The
two-dimensional representations on which the predictemesbased (figures.4to 5.6) il-
lustrate these experimental results by showing violaecatid violin-cello combinations to
be located in close proximity, but with the viola and violouhd to be further apart.

For NH listeners, dominant confusions are also presentdsrtwvoodwind instruments,
namely between the saxophone and clarinet and the flute anidetl Cl listeners also found
the saxophone and clarinet very similar. These confusiansat illustrated as clearly by the
two-dimensional representations, especially for the ghgoe. Substantial confusions were
also found between the French horn and clarinet for both NeHGinlisteners, which is a
confusion between families of instruments, and this is&xld and illustrated by the close
proximity of these processed instruments in the two-dinwerad timbre spaces of figures
5.410 5.6. High incidences of confusions between the clarinet andidane were found for
Cl listeners, and can only be explained by figbrg Additionally, the clarinet and French
horn were also found to be very similar for both NH and ClI listesp again due to the similar
location of these processed sounds in the timbre space mre§futto 5.6.

An additional factor that may have affected the groupinghef$ounds in the timbre space
could have been the exclusion of signal pre-emphasis indieloped acoustic model. With-
out signal pre-emphasis, the lower frequency channelsdvoave been more likely to be
selected and included in the stimulation pattern. Thisd@&xplain the tight grouping of

the processed instrument sounds in the B and IRR dimensidinguires 5.4 to 5.6, as the
frequency channels selected by the peak-picking methdieoACE strategy for each sound
would have been in a similar lower range.
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The model for predicting timbre perception was not basedlgan the distances between
the sounds in the timbre space, but this formed a basis fomibael structure. A brief
representation of the timbre space of the sounds compatkd tmnfusion matrices obtained
from both the NH and CI experimental data already shows ciedlasities, substantiating
the choice of the timbre space as the model foundation.

Predictions of timbre perception were made using the JNDIte$or the timbre features
as shown in figurel.7. The individual JND values of each subject are used as dimens
of the ellipsoid centred around each point representinghatiiment sound in the timbre
space. A predicted confusion matrix for each subject cas bleuobtained by the method of
van Zyl (2008), as discussed in sectio2.1 Figure5.8 constitutes a visual representation
of the probability of confusions between each of the musitglument timbres for both the
unprocessed and processed sounds. These ellipsoids eutatal using the average JND
values obtained for each timbre feature for NH and Cl listenter illustrate the differences
between the processed and unprocessed sounds in the tpalbes as well as the differences
in JNDs for the NH and CI subjects. Ellipsoids calculated is thay were used to predict
the confusion matrices that are obtained from the simylaatings data.
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Figure 5.8.
A three-dimensional timbre space generated by the prediatn model for (a) NH and

(b) Cl listeners. The predictions for NH listeners were moddkd on the timbre
dimensions for the instrument sounds processed through thacoustic model and the
predictions for ClI listeners were modelled on the timbre dinensions for the original
instrument sounds. Units for the axes of the timbre feature®, LRT and IRR are as

given in table 5.1

Individual JND values for B, LRT and IRR for each listener wesed to obtain subject-
specific predicted confusion matrices, in order to comgasd with individual experimental
confusion matrices obtained for each subject from the anityl ratings. Each row of the
confusion matrix is normalised with respect to the sum of tbav. Averages of both the
NH subjects’ and CI subjects’ predicted confusion matricesamsed in the analysis of the
results. Figure$.9 and5.10show the average predicted confusion matrices obtaineadl fro
the model of timbre perception for NH and CI listeners respelst

Department of Electrical, Electronic and Computer Enginggrin 136
University of Pretoria



Chapter 5 MODELLING OF TIMBRE PERCEPTION

pno tpt hrn tbn cnt flt sax vin clo vla
pno | 0.6582 00229 00262 00285 00296 00224 01308 00246 00339 0023
tpt | 0.010€ 0.2619 00841 00927 Q0658 0106 Q0362 00626 01353 01445
hrn | 0.0103 0061¢€ 0.1861 0129 Q1119 01599 00362 01018 01204 00825
tbn | 0.0115 00777 0142€ 0.2065 00517 01583 00497 Q0786 Q1453 0078
cnt | 0.0131 00588 01371 0057% 0.2331 01277 00239 0166 Q0859 00971
flt | 0.0086 00722 01472 01335 00987 0.1715 00362 00919 01529 00874
sax | 0.085 Q0508 00639 00874 Q038 Q0674 0.4888 00305 00618 00265
vin | 0.0105 00556 Q012 00838 01619 01146 00191 0.2293 00971 01082
clo | 0.0129 00964 01199 01292 Q0695 01622 00354 0079€ 0.1837 01111
vla | 0.0104 01242 00948 00844 00949 01118 00201 01059 01301 0.2233

Figure 5.9.
Average predicted confusion matrix for NH listeners, calcuated using the model of
timbre perception.

pno tpt hrn tbn cnt flt sax vin clo vla
pno | 0.1872 00537 00989 0113 01115 00941 01466 00462 00791 Q0697
tpt | 0.049¢€ 0.1825 01037 00734 00627 Q0995 00673 01295 01222 01093
hrn | 0.0749 0079t 0.1361 00964 00892 Q1151 01008 00759 01181 01141
tbn | 0.0966 00674 0109€ 0.1559 01031 Q1177 Q00939 00587 01044 00925
cnt | 0.0961 00568 01033 0106 0.1605 01146 00909 00637 01 0.108
flt | 0.0719 00782 0116 Q104 Q099Z 0.1372 00856 00717 01242 01118
sax | 0.128 Q0635 01183 00967 00922 0099¢ 0.1611 00573 01017 Q0814
vin | 0.0446 01321 00991 Q0669 Q0707 00917 0062¢< 0.1858 01147 01314
clo | 0.0604 00946 01176 00919 0087 Q1225 Q0862 0086€ 0.1353 01177
vla | 0.0552 00871 01186 00831 00975 01149 Q0735 01053 01231 0.1416

Figure 5.10.
Average predicted confusion matrix for Cl listeners, calcdated using the model of
timbre perception.
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5.3.2 FITA results

FITA was performed on the confusion matrix results of thebtiensimilarity rating exper-
iments, as well as on the predicted confusion matrices mddairom the model of timbre
perception. A FITA approach allows the confusion matrice®e collapsed so that their
similarity in each timbre dimension may be compared indigidy. FITA also provides in-
formation on the cues that have and have not been receiedniation that formed an im-
portant part of this study, in which the transmission of timmfeatures to NH and ClI listeners
for both predicted and measured data were investigated.FT#e procedure for calculat-
ing the amount of information transmitted is explained n&aken from Miller and Nicely
(1955), the mean logarithmic probability (MLP) equatios,shhown in equations(2), is a
measure of covariance between input and output. If the imgudble isx, with probability
pi andi = 1,2,...,k, then the input is defined as

MLP(x) = E(—logp;) = z pilogp;. (5.2)

If the logarithm is taken to base 2, then the measure can lemidhe number of binary deci-
sions needed on average to specify the input, or numbersbbihformation per stimulus.
A similar expression is defined for the outpytwith valuesj = 1,2,...,m. The number of
decisions needed to specify the particular stimulus-nespair is MLPXy), with p;; being
the probability of the joint occurrence of inpuand outpusg.

A measure of covariance of input with output is given by etuneb.3 with T(X;y) referred
to as the transmission frorto y in bits per stimulus.

T(xy) = MLP(X) + MLP(y) — MLP(xy) = Z pilog' b p‘ (5.3)

In practice, the true probabilities are not known and areneged from the relative frequen-
cies obtained experimentally, giving equatted from van Taselkt al. (1987) as

nij,  (ni/n(n;/n)
U=- 2 —log,—————~= 54
|J n 92 nij/n ’ ( )
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with n being the total number of observatiomgthe frequency of the stimulus, the fre-
quency of the response angl the frequency of the joint occurrence of a particular stunsull
response pair.

The maximum available information is given by equatibrbf as

N N
Umax= — IZ #|092#7 (5.5)

giving the relative transmitted information as
Urel = U /Umax (5.6)

If the response is closely correlated with a specific stirmullie; will be close to unity
as the specific feature will be transmitted well. The re&ainformation transmitted is the
ratio of the transmitted information calculated from theftsion matrix to the maximum
possible amount of information transferred by the stimmtfument timbres in this study)
and the features being tested (B, LRT and IRR) (van WieringenVdodters, 1999). In
this study, the stimuli for the instrument sounds are cleskias in table$.3 and 5.4 for
the original and processed instrument sounds, respegtaedl the response is a confusion
matrix, either from the experimental study or predictedrfrine model. In this wayT (x,y)
can be calculated for each of the features given in tahl@and5.4. The classifications of
the timbre features are determined using the ranges givable5.2 The assignment of the
sounds to the different timbre feature ranges was made tongpess the range of features
for both the unprocessed (talBe3) and processed (tabt4) sounds. The categories were
selected to optimise the grouping of sounds from the santeument families as far as
possible for the unprocessed instrument sounds, in terBslART and IRR. The categories
were chosen so that each of the original instrument sounesah family of instruments fell
within the same category for at least two of the three timbegures when compared to any
other instrument sound in that same family. For exampletHeroriginal string instruments
consisting of the violin, cello and viola, the B and IRR valeésll three instrument sounds
fell within the same category.
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Table 5.2.
Ranges of B, LRT and IRR used for the classification of importantimbre
features into categories for FITA results to be obtained.

B LRT IRR
1/ <19 | <19 <1.25
2119-3/19-29|125-1.6
313-45>29 >1.6
4| >45 |- -
Table 5.3.

Classification of important timbre features to be used in FITA for original

instrument sounds.

pno tpt hrn tbn cnt flt sax vin clo vla
B 2 4 3 3 3 3 3 4 4 4
LRT | 1 2 2 2 3 3 1 3 2 3
IRR 2 1 3 1 3 2 3 3 3 3
Table 5.4.

Classification of important timbre features to be used in FITA for instrument
sounds processed through the acoustic model.

pno tpt hrn tbn cnt flt sax vin clo vla
B 1 2 1 2 1 2 1 1 2 2
LRT | 1 2 2 2 3 2 2 3 2 3
IRR 2 2 1 2 1 2 2 1 2 2

The instrument sounds are grouped together according itoclassifications, to determine
the percentage information transmitted through a speanfibre characteristic. The confu-
sion matrices can then be analysed using these classifisatfind how much information

is conveyed through each timbre feature. This will also se& basis for comparison be-
tween the model predictions and the experimental results.
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5.3.2.1 FITA results of experimental data

FITA was performed on the measured results to determine haghnmformation was trans-
mitted to the listener through each timbre feature. Thie allbowed for comparisons to be
made regarding which characteristics were transmitted eféectively to Cl listeners and
to NH listeners through the acoustic simulations. The ayefTA results obtained for NH
and Cl listeners from the timbre similarity rating experirteeare shown in figuré.11, with
means and SDs of the percentage information transmittesh givtables.5.

40

35t O NH listeners
|:| Cl listeners

30

251
Percentage
information 20
transmitted I::l

L L L
B LRT IRR

Timbre parameters

Figure 5.11.

Results obtained from FITA applied to similarity judgements of both NH (circle) and
Cl (square) subjects for timbre features B, LRT and IRR. NH results are from an
average across subjects listening to the processed instremt sounds and CI results
are from an average across subjects listening to the unprossed instrument sounds,
with SD values indicated by an errorbar in each case.
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Table 5.5.
Averaged FITA mean and SD values for the similarity judgemers for both
NH and Cl listeners.

NH listeners Cl listeners
Mean SD Mean SD
B 6.3132 2.3471 16.6556 18.5775
LRT | 16.5159 8.3973 9.3712 11.2350
IRR | 1.8244 0.5575 9.5548 14.5965

To determine whether the performance of Cl listeners and Blirers (listening through the
acoustic model) differed, a two-factor ANOVA was perfornmtthese experimental results,
with the listener type (NH or Cl) and the specific timbre feat(i8, LRT or IRR) making
up the two factors. The effect of the type of timbre featuretlmn percentage information
transmitted by the instrument sounds was found to be namfsignt (2,24) = 1.161p

> 0.05), indicating that similar amounts of information wewonveyed by each timbre fea-
ture. The effect of the type of listener (NH or CI) on the petaege information transmitted
was also found to be non-significafi(,24) = 0.785p > 0.05), implying that NH and ClI
groups performed similarly in the task. This indicates thatacoustic model was a satisfac-
tory representation of what ClI listeners hear, although & wat an exact replica and only
included the effect of the CI processor on the sound. Therealgasa non-significant inter-
action effect between the listener type and the timbre feain the percentage information
transmitted to the listeneF(2,24) = 1.755p > 0.05). This would indicate that NH and CI
listeners were not affected differently by different tiralfeatures. However, large SDs in the
data may have affected the statistical analysis, wherdtsagare found to be non-significant
even though there were clear differences in the mean vakieg sompared. For example,
differences in the trends of the data points for NH and Cl tists can clearly be seen in
figure 5.11, where the three data points for Cl listeners form a V-shajih, WRT being a
minimum data point, while for NH listeners an opposite tread be noted, with LRT being
a maximum data point.

The percentage information transmitted to NH (mean = 6.81=2.35) and CI (mean =
16.66, SD = 18.58) listeners for B were somewhat differeitt) @Is having a higher mean
and also a much larger SD. Generally, a much larger SD wasw@asén the amount of
information transmitted to Cl listeners, pointing to moreerainty amongst the Cl listeners,
or less stable representations of these timbre featurdgielectrically evoked space-time
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action potential patterns. The information transmittedltd (mean = 16.52, SD = 8.4) and
Cl (mean = 9.37, SD = 11.24) listeners for LRT showed a diffetesnd from B, with NH
listeners having a higher mean than CI listeners, and bothpgrbaving large SDs. The
information transmitted to NH (mean = 1.82, SD = 0.56) and Gé¢dm= 9.56, SD = 14.6)
listeners by IRR showed a similar trend to that of the infororatransmitted by B.

5.3.2.2 FITA results of predicted and experimental data

The FITA results as predicted from the timbre perception ehoahd those measured from
the similarity rating experiments, are shown for indivitleabjects in figures.12 Figure
5.12a) shows the predicted and measured FITA results for eatttedfiH listeners (NH1 -
NH5) in response to the original or unprocessed musicalunstnt sounds. These results
were compiled as a baseline to which the FITA results of thdibtieners listening to the pro-
cessed sounds and the Cl listeners listening to the origialds could be compared. These
results also illustrate the timbre perception model pteshe compared to the measured data
for NH conditions, the premise on which the model was based.

Figure5.12b) shows the predicted and measured FITA results for eattedlH listeners
(NH1 - NH5) in response to the musical instrument sounds@sgssed through the acoustic
model. Figure5.12c) shows the predicted and measured FITA results for eatheoCl
listeners (CI1 - CI5) in response to the unprocessed musis@biment sounds.
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Figure 5.12.

Predicted (unfilled markers) and measured (filled markers) HTA results for (a) each
of the five NH subjects in response to the unprocessed instruent sounds, (b) each of
the five NH subjects in response to the processed instrumenbsgnds, and (c) each of
the 5 ClI subjects in response to the unprocessed instrumentsnds.
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Figure5.12illustrates that the timbre perception model fares wellrgdicting the outcomes
of the similarity rating experiments for individual subjec Although the percentage in-
formation transmitted found from the FITA calculationsfelit substantially across subjects,
the model follows the trends of the outcomes of timbre perorgxperiments for individual
subjects. Only in a few specific cases do the model predgtin fare well. For example,
in figure5.12c), the amount of information transmitted through the tienteatures from the
measured results for CI5 is very high compared to the othest@rers, as well as compared
to the model predictions for CI5. With the exception of suckesa the model of timbre per-
ception can be seen to generally predict the outcomes oirtiee perception experiments
for individual subjects acceptably.

The pooled results of figurg.12are shown in figur®.13 where the averaged FITA results
of both the similarity rating experiments and the prediatesllts obtained from the model
of timbre perception for both NH and CI listeners are dispthy&igure5.13 shows the
averaged FITA results for (a) all NH subjects listening te timprocessed sounds, (b) all NH
subjects listening to the sounds processed through thestacowdel, and (c) all Cl subjects
listening to the unprocessed sounds. Large SDs in the mezhdata in figuré.13can be
noted due to the large variations of the FITA results withia $ubject groups. The mean and
SD values are given in tab6.
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Figure 5.13.

FITA results for both predicted (unfilled circles) and measued (filled circles) data for
timbre features B, LRT and IRR for (a) NH listeners subjected tothe unprocessed
sounds, (b) NH listeners subjected to the processed soundsyd (c) Cl listeners
subjected to the unprocessed sounds.
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Table 5.6.
Averaged measured and predicted FITA mean and SD values for N and CI
listeners.
Predicted Measured
B LRT IRR B LRT IRR
NH listeners Mean| 41.962 37.859 40.85052.246 41.407 44.489
SD 27.243 27.482 29.34323.563 21.932 25.883
NH listeners Mean| 8.4309 21.742 6.083 6.313 16.516 1.824
(processed sounds) SD 7.391 16.843 5.188 2.347 8.397 0.558
Cl listeners Mean| 2.914 1518 0.481] 16.656 9.371 9.555
SD 2.983 1.263 0.419718.578 11.235 14.597

Figure5.13a) shows that for each of the timbre features B, LRT and IRR, dregmtage
information transmitted to NH listeners through the unpssed instrument sounds is higher
for the measured data (filled circles) than for the timbrecgption model predictions (un-
filled circles). However, the predictions compare well te theasured data, with the largest
prediction errors occurring for feature B. As the results glife 5.13a) were only calcu-
lated from a pilot study of three experimental runs per sttbghese are only presented to
illustrate the sufficiency of the model predictions in NH ddions. Statistical comparisons
will thus only be performed for the results of figusel3b) and (c), as the focus of this study
IS to investigate timbre perception in the electricallyratlated auditory system.

It can be noted that the predicted mean values (unfilledesjdbr each of the timbre features
for NH listeners in response to the processed instrumemidsoffigures.13b)) are all higher
than those predicted for ClI listeners (figusel3c)). This would be expected due to the
higher JND values obtained by CI listeners than NH lister&ssshown in figured.7 and
4.8 for timbre features B, LRT and IRR, on which the predictions amseld. However,
the NH predictions have substantially larger SDs than tleeipted values for ClI listeners.
The effect of the comparable SD values for the JNDs obtaioe®lH and CI listeners was
more prominent in the predictions calculated for the NHeligrs. This is due to the NH
predictions being based on the processed B, LRT and IRR vailsh are situated in close
proximity in the timbre space, as opposed to the originahdswn which the predictions for
Cl listeners were made. The SDs of the JND values thus produge EDs in the predictions
for NH listeners.
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Predicted and experimental values for NH listeners lisigihd the sounds processed through
the acoustic model show that LRT is the feature that convegsrtost information, which
was expected due to the adequate transmission of tempé&oahiation generally found in
Cls compared to the limited transmission of spectral infaroma However, LRT is also the
feature with the largest SD, indicating that the LRT feafpiggyed a less important role in
defining the timbre of a sound for some NH subjects than others

For Cl listeners, the mean predicted percentage transnnitfienation for each timbre fea-
ture is smaller than that found in the experiments. The ptedivalues also have small SDs,
which can again be explained by the SDs of the JND valuesreddaiThese values, as used
in the model of timbre perception, have less effect than erptiedictions of NH listeners,
due to the larger distances between the sounds in the tiphoesThe experimental data for
each timbre feature exhibit large SDs in comparison, shgwarying abilities to perceive
timbre amongst the CI subjects. In the case of Cl listeners, th& model predictions and
experimental data indicated that B was the feature thateg@d/the most information on
timbre. This contradicted expectations that temporalrmfxtion, such as the feature LRT,
would be transmitted more effectively than spectral infation, such as the feature B, as is
generally found in Cls. IRR was found to transmit slightly morrmation than LRT for
Cl listeners, contrary to the timbre model predictions, inckhLRT was found to convey
more information than IRR, as would be expected.

A mixed ANOVA was performed on the results of figusel3b) and (c), with the listener
type (NH or Cl) as the between-subject factor, and the spemifibre feature (B, LRT,
IRR) and result type (predicted or real) as the within-subfactors, to analyse individual
effects of and interactions between these factors. The ¢ydgenbre feature was found
to have a significant effect(2,16) = 24.336,p < 0.001) on the amount of information
transmitted to the listener. Statistical contrasts reae#iat a significantly higher percentage
of information was conveyed through the timbre feature Bitfmough IRR p=0.001), and
that a significantly higher percentage information wasdnaitted through LRT than through
IRR (p < 0.001), implying that IRR is not generally received by tlstdner.
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The predicted and measured results were not found to befisartly different £(1,8) =
0.596,p > 0.05), indicating that the timbre perception model prestiche experimental re-
sults sufficiently. Tests of between-subject effects slibthat the differences between the
results of NH and ClI listeners were also not significa{tLl(8) = 0.75,p > 0.05), again sug-
gesting that the acoustic model was a sufficient representat sound processing through
a Cl.

The percentage information transmitted through the diffetimbre features differed sig-
nificantly for NH and CI listenersK(2,8) = 31.864p < 0.001), as can be noted from the
differences in the trends for NH and CI listeners in figgr&3b) and (c). To break down
this interaction, within-subject contrasts were perfodmeomparing different timbre fea-
tures across NH and ClI listeners. These revealed signifingaraictions when comparing
the percentage information transmitted to NH and Cl listetierough LRT and IRRK(1,8)

= 49.061,p < 0.001). The interactions when comparing the percentafgentation trans-
mitted to NH and ClI listeners through B and IRR were not sigmfi¢g(1,8) = 0.647p >
0.05). Figures.13b) and (c) show that the most information was conveyed by rfRYH
listeners (for predicted and measured results), comparadstbstantially lower amount of
information conveyed through LRT in Cl listeners.

The amount of information transmitted in the different typd results (predicted or mea-
sured) did not differ significantly between NH and ClI listen@t(1,8) = 2.93,p > 0.05). In
the predicted results, NH listeners had a substantialligdrignean than CI listeners. In the
measured results, NH listeners had a lower mean percemtagmation transmitted than ClI
listeners, but the difference between NH and CI listenersrieasured results was smaller
than for predicted values. This suggests that in realityemm@ormation is transmitted to Cl
listeners than predicted by the timbre perception modet. f&atures B, LRT and IRR for
Cl listeners, the difference in the percentage informatiangmitted between predicted and
measured values was 13.743 %, 7.853 % and 9.073 %, respeciee NH listeners, the
model predicted that a slightly greater percentage of médion would be transmitted than
what was actually perceived by the listener. For featuresHs, &nd IRR for NH listeners,
the difference in the percentage information transmittetiveen predicted and measured
values was 2.117 %, 5.226 % and 4.258 % information transdyittespectively. These
results could be due to simplifications made in the implert@n of the model of timbre
perception as well as in the acoustic model, as will be dssdisn sectiorb.4.
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No significant interactions between the different timbratfiees B, LRT and IRR, and the
type of result, predicted or real, were fourle{1,8) = 0.954p > 0.05). To break down this
interaction, within-subject contrasts were performeanparing the two levels of result type,
predicted or real, across each of the timbre features, B, IddTRR. The first within-subject
contrast revealed a non-significant interactib1(8) = 11.622p > 0.05) when comparing
B to IRR when the listener’s results were predicted, compévesieasured results. This
indicates that when comparing B to IRR, there was no differdrateveen the percentage
information transmitted between predicted and measurdtse There is a decrease in the
transmission of information between B and IRR for measursdlte and a very slight in-
crease in the percentage of information transmitted bet#eend IRR for predicted results.
The means that the measured results for both B and IRR areshigtyer than the predicted
results.

The second within-subject contrast showed a non-significégraction £(1,8) = 0.064p >
0.05) when comparing LRT to IRR when the results of the listerexe predicted, compared
to measured results. This shows that there is a decrease petibentage of information
transmitted between LRT and IRR when comparing predictednagasured results. The
mean of the predicted results is always lower than that ofrieasured results for each of
the timbre features B, LRT and IRR.

Finally, the interaction effect between timbre featuresuit type and listener was not sig-
nificant (F(2,16) = 0.102p > 0.05) for interactions between B and IRR and between LRT
and IRR. This indicates that the interaction between timbatufe and type of result was
not different for NH and ClI listeners. This in turn suggestt tloverall, for predictions and
measured results, the acoustic model performed well. Agantrasts were used to break
down the interaction: these contrasts compared the infitmm#&ansmitted to NH and Cl
listeners at both predicted and measured result levelsseaxh of the timbre features. The
first contrast revealed a non-significant differen€€l(8) = 1.602p = 0.241) between NH
and ClI listener values when comparing B to IRR for predicted gam@d to measured re-
sults, and tells us that for both NH and Cl listeners, therede@ease in the percentage of
information transmitted between B and IRR for both predi@ed measured results. In the
case of NH listeners, the predicted mean results are alwggeitthan the measured results,
whereas the opposite applies to Cl listeners.
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The second contrast investigated differences between NMIHCalisteners when comparing

LRT to IRR for predicted compared to measured results. Tm&ast was found to also have
a non-significant interaction effede(1,8) = 0.001,p = 0.977). This shows that there is a
decrease in the percentage information transmitted betB& and IRR when comparing

predicted and measured results, for both NH and CI listenEng mean of the predicted

results is substantially lower than that of the measuredtsefor each of the timbre features
B, LRT and IRR for Cl listeners, while there are smaller differes between predicted and
measured results for NH listeners for all of the timbre feagubut with the predicted means
being slightly higher than the measured means in each case.

Although there are differences in the trends noted for NH @hdisteners, the predicted
and measured results follow the same trend for each listgoeip, as shown in the results
of figure5.13 This shows that the model of timbre perception providesdagaate repre-
sentation of timbre perception, defined by B, LRT and IRR, andvshbat the amount of
information transmitted by these features through a Cl iséadow (see figures.13b) and
(c), compared to the NH conditions of (a)). This suggestsitharovements in conveying B,
LRT and IRR to the listener may be the key to improving timbrepption in the electrically
stimulated auditory system.

5.4 DISCUSSION

5.4.1 FITA analysis of similarity ratings

The FITA results of figuré.11illustrate the differences in the similarity rating resulbr
NH listeners (listening to the acoustic model) and CI listen@lthough the trends for the
timbre features differ for the two listener groups, the antaf information transmitted by
the timbre features is in a comparable low-end range for bdthand CI listeners. This
suggests that the implemented acoustic model fares safficia comparison to the results
obtained from CI listeners, but that the acoustic model isamoexact replica of what Cl
listeners hear. This was expected, as the ability of Cl leteno perceive sounds varies,
and therefore a good general acoustic model should be apledict the average outcome
across a large group of listeners, as opposed to providiograte predictions for individual
listeners. The outcome of the acoustic model as implemdateatle purpose of this study is
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therefore sufficient, as the primary concern was not withgiésg a good acoustic model,
but rather predicting the timbre data found in NH and CI listsnsufficiently, in order to
determine whether timbre perception could be modelledgusie three important timbre
features as a foundation.

The ranking of features through which the highest percentafprmation was transmitted
differs for the NH and CI groups. For the NH group, the mostiinfation was transmitted
through the feature LRT, followed by B, and then IRR. This is whatwould expect from
NH listeners exposed to acoustically modelled sounds,asetinporal information is least
affected by processing of the sound, as discussed in setdioh.1 However, for the CI
group, the least information was transmitted through LRith\B transmitting the greatest
amount of information, followed by the IRR feature. This wabiridicate that on average, the
Cl listeners have a better perception of the spectral featfrembre than is assumed by the
acoustic model, and a worse perception of the temporalfestf timbre than is assumed
by the acoustic model. This finding can in part be substatialy a study conducted by
Stainsbyet al. (2002), in which steady-state envelopes of musical insténinsounds were
investigated. The study showed that some CI users may hagaeiney selectivity that
Is comparable to that of NH listeners, and also concludetidHarge amount of spectral
information seems to be available to some CI listeners. Thdrfg could explain why the
feature B is transmitted most effectively to ClI listenerdhia similarity rating experiments of
this study. However, due to the large SDs in the CI group ofgtudy, as well as those found
by Stainsbyet al. (2002), it is difficult to make general conclusions, becaiggect-specific
factors affect individual results differently.

NH listeners generally received the most information tiglothe LRT feature, due to the
structure of the acoustic model, but it is also the featutbéNH group with the largest SD,
indicating substantial variations in the results of the Nijscts for the perception of this
feature.

The similar trends between features B and IRR for the infolonatransmitted to NH and
Cl listeners can be explained by both of these features imghhe spectral composition of
the instrument sounds. The subject-specific spectralutgnlof CI listeners is illustrated
by the large SDs in the amount of information transmitted tdi§€teners for features B
and IRR. The mean values for ClI listeners for features B and IRRigtesr than for NH

listeners, but the NH group has small SDs for both featuréss iE indicative of the strict
limitations imposed on the spectral components of the sdhraligh the acoustic model,
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which cause the percentage information transmitted tossetlen in the Cl listeners. These
limitations also cause smaller SDs in the NH group for B and I&Rhe spectral limitations
substantially affect the timbres of the sounds, which asarty conveyed to the listener and
therefore perceived similarly in all listeners.

5.4.2 Model of timbre perception

To assess the success of the developed model of timbre giercep comparison of the
predicted and measured confusion matrices obtained forNbtand ClI listeners will first
be discussed. The predicted NH and CI confusion matricesatibees.3.2.2 as shown in
figures5.9and5.10 show similarities in the instrument confusions. Spedifycéhe piano
sound is least confused with any of the other sounds for bétlahd ClI listeners subjected
to the processed and unprocessed sounds, respectivelgthpikedicted confusion matri-
ces, the saxophone is most likely to be confused with theopi&higher confusions can be
noted for both NH and CI listeners between instruments indhaly of string instruments.
These trends also correspond to the confusion matricegedtfrom the similarity rating
experiments.

Similarities between the predicted confusion matrices @islude a high probability of con-
fusing the flute and cello, amongst other higher confusiata/éen sound pairs. Overall,
the predictions for NH and ClI listeners appear to have higbefusions that are more scat-
tered throughout instrument pairs than in the case of therarental results of figure$.9
and4.1Q This is possibly due to the fact that the JND values useddatorg the ellipsoids
around each instrument sound in the timbre space were foondthe averaged discrimi-
nation of synthesised tones. This could have contributedaking the predicted confusions
higher and more scattered than was found for the measurktikslof the listener.

Comparisons between the predicted and measured FITA résuttsth NH and Cl listeners,
as given in figure$.12and5.13 illustrate the outcomes of the developed model of timbre
perception. The individual listener results of fig&:d 2 show that although the percentage
of information transmitted to each listener varies sulistfiy across subjects, the trends of
the percentage of information transmitted through eachrénfeature are similar for the pre-
dicted and the measured data for each listener, with onlywakeeptions. For example, in
figure5.12(c), subject CI5 is seen to perform comparably to NH listeffegsre5.12(a)) in

the similarity ratings, but the predicted results undémeste the performance of this subject
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substantially. However, in addition to the fact that CI5 hadexposed to musical training,
this subject also enjoyed listening to music and showed@iareal speech perception abil-
ities upon receiving her implant, suggesting extraordiremerall music perception abilities
which could not be accurately predicted by the model.

However, the similarities generally found in the predicéed measured percentage of infor-
mation transmitted for each subject suggest that the mddehbre perception sufficiently
predicts the measured data for each listener, illustratiegsubject-specific nature of the
model. This outcome also suggests that the method of modedllipsoids around each of
the instrument sounds in the three-dimensional space trotite predicted data was ap-
propriate, as individual listener JNDs were used to precheifusions between instrument
sounds. If Euclidean distances alone had been used forciregdthe confusions between
instrument sounds, the predictions within each listeneugmwould have been identical and
the model would not have predicted the outcomes of the gittyileatings for each subject
sufficiently.

The FITA analysis of figur®&.13revealed close predicted values compared to those measured
experimentally for NH listeners (figurg.13 (a) and (b)) for each of the timbre features.
However, fairly large differences in predicted and measuesults for each of the timbre
features were found for CI listeners. Large SDs in the FITAItessare apparent from the
individual subject results in figurg.12, where the variability in the results among subjects
was large.

From the results of figur®.13 (b), the NH listener predictions, it can be seen that the
predicted percentage of information transmitted by eadh@timbre features was always
slightly higher than the percentage of information tranttedi as calculated from the mea-
sured results. This could be due to simplifications madeenrtiplementation of the model
of timbre perception, as the JND values used in the model algigned from simplified in-
strument sounds, constructed only from the timbre featBreasRT and IRR. The omission
of factors such as noise in the synthesised sounds from wiecBNDs were calculated may
have caused the model to overestimate the percentage ofmiaion transmitted through
each of the timbre features, as real instruments soundsuserkin the similarity ratings.

As a result of not using real sounds for the discriminatiaksa differences in JND values
for timbre features and the percentage of information tratted through these features for
some of the listeners can be noted. For example, subjectsr@IZE have fairly low B
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JNDs (figured.7), but a poor percentage of information transmitted for Buffiegh.12). Sim-
ilarly, subject CI5 had an average LRT JND, but a high per@gntd information transmitted
through LRT. These discrepancies indicate that using cealds for the discrimination tasks
could change the outcomes of the discrimination tasks aobatly, and provide better sim-
ilarities between the predicted and actual outcomes fonmbéel of timbre perception.

The processing of the real instrument sounds through thesticanodel possibly further
increased the complexity of the sounds, and thus the timbriéasity rating tasks, in com-
parison to the discrimination tasks, for the listener. la thodel of timbre perception, the
gain factor, as discussed in secti®2.1for B, LRT and IRR, could perhaps be adjusted to
below unity to compensate for the difficulties introduceg@rceiving the sounds as a result
of processing through the acoustic model and thereby makeirtibre perception model
predictions more accurate.

For ClI listeners (figur®.13(c)), the timbre perception model predictions over-estaihe
difficulty of the similarity rating task. A possible explaran for this finding may be that ClI
listeners make use of other information in addition to theththbre cues B, LRT and IRR to
perceive the timbre of a sound. This could be due to CI liseehaving grown accustomed
to sounds heard every day through a Cl, along with which autditiavailable information
may be utilised to perceive auditory stimuli. By using sysibeed sounds as opposed to real
instrument sounds in the similarity ratings, the possilidittonal cues would be absent, and
this would perhaps result in a better correlation betweemtkasured and predicted results.

In addition, not having included signal pre-emphasis ingbeustic model may explain the
resulting low predictions of the model for Cl performancethélugh the model predicted
NH performance fairly well, the model under-estimated th#itees of Cl users quite sub-
stantially. As a result of excluding signal pre-emphasithim acoustic model, the stimuli
used as a basis for the model as well as in the CI simulationldd@ye been quite low-pass
in nature. However, in the case of real Cl listeners, wheneagigre-emphasis is included,
more higher frequency channels may have been stimulatduqape heightening the percep-
tual capabilities of Cl listeners in comparison to the predits of the model. By including
signal pre-emphasis, the percentage information tratestnio NH listeners listening to the
processed sounds could increase for both the predicted easured data. For the results of
the ClI listeners, including signal pre-emphasis would pidéiy result in higher predicted
percentages of information being transmitted to the listethus potentially moving the pre-
dicted and measured data closer in proximity, thereby impgpthe accuracy of the model.
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Differences in the predicted and measured results obtdore@l listeners may also have
been strongly dependent on the acoustic model implementaging different to the pro-
cessing as performed through a real Cl. The biophysical cteistics of the electrode-
neural interface were not included in the developed acowstidel, but in the case of ClI
listeners, the biophysical aspects were present. The mmissthe biophysical characteris-
tics from the acoustic model may also explain why there wéferdnces between the NH
and Cl results - for predicted and measured FITA results. iBhas a result of the different
processed sounds that the NH and Cl listeners would be expmseih NH listeners having
no biophysical effects or signal pre-emphasis, while indage of Cl listeners, these factors
are utilised in the processing of the musical instrumenhdsu

However, the omission of the biophysical characteristicthe electrode-neural interface
allowed the effect of only the processor on timbre perceptiobe investigated. If the pro-
cessor had not had an influence on timbre perception, thisdwami have been apparent by
implementing both the processing and biophysical aspddfsecacoustic model as a first
acoustic model implementation for this study. As can be $e@n the differences in the
frequency domain representations of figuse®33and3.34 the effect of the processor as im-
plemented in the acoustic model had a drastic effect on dggiéncy spectra of the sounds.
By comparing these figures, the frequency peaks of the predesssinds in figur8.33are
all low pass in nature. This is due to the implementation ef ACE algorithm; because
the energy is concentrated in the lower frequency compsrfentthe musical instrument
sounds, the lower frequencies are selected.

By including the biophysical characteristics in the acaustodel implementation in future
revisions of this work, differences between the NH and CI Fi€Aults of figures.13may
be decreased. Differences between the predicted and redassults of the Cl FITA results
could be decreased by including the biophysical charatiesiin the acoustic model imple-
mentation, but the exact effect can not be known without aotidg further experiments to
establish this.

Overall, it is difficult to make substantiated comparisoasieen the trends of NH and Cls,
probably due primarily to the limitations in the predictiabilitiy of the acoustic model,
as seen from the measured data in figbtEL From these results, it can be expected that
differences between NH and Cl model predictions would ocgaoracoustic model with the
biophysical characteristics of the electrode-neuralkfate included may yield comparable
trends in NH and CI data, implying that NH listeners could bedu® predict the outcomes
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of timbre perception experiments for both NH and electlycstimulated hearing conditions.
However, this is not a primary concern, as the objective h@®not to develop an acoustic
model that could predict timbre perception. Rather, the Nk d&rves as a baseline for
comparison, while the main objective was to develop a mduslwould be able to predict
Cl timbre perception data. The present work provides a fotiméor this purpose, showing
that the modelling ideas are correct (as evidenced by figur@(a) and (b)), but still have
shortcomings (as evidenced by fig&d.3(c)).

A likely explanation as to the sufficient predictive abésiof the model of timbre perception
for NH listeners compared to ClI listeners can be provided leyctioice of the important
timbre features; namely, B, LRT and IRR. These features have feperted in literature as
important features for NH listeners, but no features haeaxplicitly defined for Cl listen-
ers. Since we do not explicitly know what the dimensionsrmbitie are that facilitate timbre
perception in ClI listeners, we based the model on NH featames,could expect that this
model would not represent timbre perception in ClI listensravall as in NH listeners. As
suggested previously, Cl listeners may use other auditay tauperceive timbre in addition
to the three important NH cues. The hypothesis that CI listemake use of other auditory
cues to perceive timbre would need to be tested to draw fudieclusions regarding the
differences in the performance of the model of timbre petioagor NH and Cl listeners.

Additionally, a factor that may have contributed to the mwqredictive abilities of the model
of timbre perception for CI listeners was the large variaionthe abilities of the ClI listen-
ers to perceive timbre, specifically for CI5, as discusse#ipusly (figure5.12(c)). Only
a small subject group was used in this study, whereas avenadel predictions and mea-
surements of perception calculated over a larger subjettpgmay yield more consistent
results.

From figure5.13 it appears that the model of timbre perception is sensitiibe position

of the sounds in the three-dimensional timbre space. Thiseaillustrated by comparing
the NH predicted results of figuf 13 (a) and (b), for unprocessed and processed instru-
ment sounds, respectively. Processing of the sounds thriggacoustic model causes the
sounds to be shifted substantially in the timbre space,exhi2 JNDs used in obtaining the
predictions remain the same for NH listeners in both figud8 (a) and (b). However, the
predictions for these two cases differ substantially, alsmwing the sensitivity of the model

of timbre perception to the choice of the acoustic model em@nted, as this will affect the
positioning of the sounds in the timbre space.
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The model sensitivity may thus also be affected by factoch s the exclusion of signal
pre-emphasis from the developed acoustic model, whichddoave affected the grouping
of sounds in the timbre space and thus could have had a stibs&dfect on the predictions
of the model of timbre perception, due to the model sengjtia the position of the sounds
in the timbre space. Additionally, the exclusion of the thggical characteristics from the
acoustic model could also have greatly affected the seitgiof the model of timbre per-

ception, as this would have affected the positions of th@dsin the timbre space.

The SDs indicated for the predicted results of fighré3 are due to the differences in the
JNDs obtained for each subject. This illustrates the seitgibf the model of timbre per-
ception to the discrimination task results and therefoiedidual subjects, suggesting that
the model is sensitive to subject-specificity.

A general trend that can be observed from the average rasfuliigure 5.13is a relative
increase in the SD as the percentage of information trateitcreases. This is indicative
of the sensitivity of the model of timbre perception to batle position of the instrument
sounds in the three-dimensional timbre space and to supecificity, and also suggests
that the JND values and the position of the sounds have avesliatpact on the model
predictions.

A summary of the differences in the results of figlrd3 (b) and (c) for predicted and
measured results for NH and ClI follows. For NH listeners, LRaswpredicted to be the
feature that would be conveyed most readily to the listefodiowed by a prediction of a
much lower amount of information transmitted by B, and thenRR. The experimental
results showed the same trend. In addition to the prediatécbmes following the same
pattern as the measured results, the predicted and measstdts showed on average less
than a 3 % difference in percentage information transmitted

However, for Cl listeners, predictions and experimentaliitssoth indicated that B would
be the feature conveyed most readily to the listener. In tadipted results, B was followed
by LRT, and then by IRR being conveyed least effectively, emlexperimental results IRR
conveyed slightly more information than LRT. In additiorthese differences in trends, the
differences in predicted and measured results were gré=arfor NH listeners, with an
average of over 10 % difference in percentage informatiansmitted.
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Overall, the FITA results of figureS.12 and5.13illustrate the general sufficiency of the
timbre perception model. The model appears to predict theomes of the timbre similarity
rating experiments for NH and CI listeners acceptably, giten the trends of the predicted
results follow those of the measured results. In additioa ttends of figur&.13(a) and (c),
for NH and Cl listeners respectively listening to unprocdssaunds, are similar, but the NH
listeners clearly have a higher percentage of informati@ilable to them through the three
timbre features. These similarities in the trends appeaoitdirm the validity of the choice
of B, LRT and IRR as the primary contributing features to timpeeception.

The results suggest that, if Cl processors could be optinfsethe transmission of these
three important timbre perception features, timbre paroeghrough a Cl should improve.

Alternatively, these three features could be used as avelaeasure when comparing new
speech processors that may be designed to improve timkecepiem. This approach could

provide a favourable alternative to memory-based taskd) as instrument identification,

which are commonly used in timbre perception research.

5.5 CHAPTER SUMMARY

This chapter described the modelling component of thisystnddetail. The timbre fea-
tures B, LRT and IRR, extracted for both the unprocessed instntisounds and those pro-
cessed through the acoustic model, as well as the JNDs fee tredues obtained from the
discrimination task results (secti@gh3.2, were provided and formed a foundation for the
development of the model of timbre perception. The prediotsults of the model of timbre
perception were reported in the form of confusion matri¢d3A analyses were performed
on these results as well as the confusion matrix resultseokimilarity rating experiment
(sectiond.3.2. This analysis indicated the percentage informationsimatied through each
of the important timbre features for predicted and meastggadlts for both NH and Cl listen-
ers. Statistical analyses of the results were also providletbtailed discussion of the results
of the model of timbre perception were presented with compas made to literature where
possible. This chapter discusses the overall outcomesnapictations of this study, which
provides an entry point into achieving a quantitative ustierding of the timbre perception
abilities of Cl listeners.
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The model of timbre perception developed based on the tifelatares B, LRT and IRR has
been shown to adequately predict the outcomes of timbreepgon experiments for both
NH and Cl listeners. This provides a valuable tool in develgll processors to facilitate
timbre perception, and thus in furthering timbre perceptesearch, with the ultimate aim of
improving timbre and music perception for Cl listeners. Agehdiscussion and conclusion
Is provided in chapte6, to summarise the accomplishments of the study and to peavid
critical analysis with directives for future work, usinggistudy as a foundation.
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CHAPTER 6

GENERAL DISCUSSION AND
CONCLUSION

A brief general discussion of the measurement and modetloxgponents of this study,
presented in chapters 4 and 5, is given below. Detailed sisons of the work presented in
these chapters are given in sectidnéand5.4. A brief summary is given here to illustrate
that the research questions posed in chapter 1 have beersaedr

* The important timbre perception features were defined asRg, and IRR (section
3.4), and were successfully extracted from both the originahsis and sounds pro-
cessed through the acoustic model (sechidhl).

 Although the acoustic model did not predict the outcome ofiGbre perception ex-
periments accurately, as shown in sectto8.2.] the model was acceptable for the
purpose of this study, in which the primary focus was not @naboustic model.

» Quantitative results were obtained regarding timbregyation in NH and ClI listeners,
presenting the abilities of the perception of the importanbre features B, LRT and
IRR in measurable terms for both listener groups (sectiGri).

» The model of timbre perception developed sufficiently presdthe results of NH and
Cl listener timbre perception experiments, with the trerfde® predictions following
those of the experimental results in both groups, as candrefsem figuress.13in
section5.3.2.2
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The main findings of this study are listed below.

» Measurable results for three important timbre featuremely B, LRT and IRR, were
found for NH and CI listeners (sectigh3.1), and compared well to NH and Cl liter-
ature regarding overall timbre perception abilities. Nétdners showed substantially
better discrimination abilities than CI listeners for eaéhhe timbre features, as can
be seen from figuréd.7in section4.3.1

» From figure4.8, the Cl listeners were seen to be most sensitive to the terrpatare
LRT. Discrimination of the spectral centroid showed largaations among subjects of
this group, and a poor discrimination ability in general waserved when compared
to NH listeners.

* The developed acoustic model did not provide an accurgeesentation of timbre
through the electrically stimulated auditory system. Tésuits of figures.11in sec-
tion 5.3.2.1show that the suppression of the spectral features wasdategrthrough
the acoustic model than what was actually perceived by thelgésts, while the tem-
poral feature limitations imposed were not great enougle. lalge SDs in the amount
of information transmitted through each timbre feature tdigéners illustrates the
subject-specific nature of Cl processors, as substantiareiifces were found from
subject to subject (see figubel?).

» The timbre perception model predicts the transmissiomdjrte features to NH and Cl
listeners satisfactorily, as can be seen from the resufigue5.13 For NH listeners,
the model of timbre perception provides accurate predistiovith an approximate av-
erage difference of less than 4 % of the information transaibetween predicted and
measured results across all of the timbre features. Thégpeddamount of information
transmitted through each timbre feature was always sligh¢g/her than the measured
amount transmitted to the listener as found by the simylgutigements of timbres.
This indicated that the model predictions overestimatedattilities of NH listeners to
perceive each of the timbre features through the acoustaeman CI listeners, the
model of timbre perception performs less accurately, witliffarence of greater than
10 % between the percentage information transmitted betyweszlicted and measured
results incurred over all the timbre features. The modeliptins underestimated the
abilities of Cl listeners to perceive each of the timbre feadu
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* The predictions of the model of timbre perception indidhgd the transmission of the
important timbre features B, LRT and IRR through the elediigictimulated auditory
system is poor, as can be seen from figbrE3when comparing (a) the NH listener
results to (c) the ClI listener results for unprocessed souhbs implies that timbre
perception abilities of Cl listeners will be improved by thevdlopment of processing
strategies to facilitate the transmission of these feature

The first step of this study was to perform a general litemstudy on Cls, existing acoustic
models and timbre perception for both NH and CI listeners. [itheture study was then
focussed to investigate timbre features deemed importartimbre perception that could
be used as a basis on which to develop a model of timbre pé&nepihe timbre features
B, LRT and IRR were established as important timbre featuregithh existing literature to
complete the first two objectives of the study, as describeskctionl.2 Although these
three features were prominently found to be linked to timieeeception in literature (e.g.
Krimphoff et al.(1994), Cacliret al. (2005) and McAdamet al.(1995)), other features were
however also found to be important. A shortcoming of thiglgtis that not all the features
important for timbre perception were included in the studgr example, a recent study by
Hall and Beauchamp (2009) found that both spectral incolcerand spectral irregularity
were relevant features for the perception of musical imsént tones in NH listeners. This
would suggest that including additional timbre featurethim model of timbre perception,
especially where there are some discrepancies in thetliteras to which features are most
important, could improve the accuracy of the model preditsi

In addition, this study assumed that the features deemedastiant for timbre perception
in Cl listeners were the same as those for NH listeners, asu#t tésa lack of literature to
suggest otherwise. As could be expected, the predictiotieeahodel showed larger errors
for Cl listeners than for NH listeners. This suggests thagotimbre features important for
timbre perception in Cl listeners may exist which need to lotushed in the model of timbre
perception for Cl listeners. Although the approach of asagrttie same features applied to
Cl listeners as to NH listeners was fair given that studiel sisahis had not been formulated
before, other timbre features could have been considertdie potential of improving the
model of timbre perception for Cl listeners. An investigatioto the acoustic cues used by
Cl listeners to perceive timbre could be conducted to gailgltisnto the important timbre
features in the electrically stimulated auditory systerog@ponent that was lacking in this
study.
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Extraction of the important timbre cues for CI listeners tighb extensive psychoacoustic
experiments may be possible by using a similar approachoré perception studies for
NH listeners as in previous literature, where MDS techrsquere commonly utilised (see
section2.3.1). However, investigating timbre features for the eleeiicstimulated auditory
system would present difficulties in that simple instrumesdognition tasks could not be
applied reliably, with many CI users not having the musicaimoey required to complete
such tasks. Similarity ratings, such as those performetisstudy, but with more exten-
sive and complete sets of instruments, could be a possilitg paint into the extraction
of important timbre features for ClI listeners. By attemptiagektract the acoustic cues for
Cl listeners from MDS results extracted from such similarégings, it may be possible to
develop a model of timbre perception unique to Cl listenensguspecific Cl timbre features
as opposed to the NH features B, LRT and IRR implemented in thdem

The literature study allowed for the development of an atousodel based on the ACE
strategy to complete the third objective given in sectidh Only the processing side of the
acoustic model was implemented, without taking into actdhe effects of the biophysi-
cal characteristics of the electrode-neural interfacesdiate the effects of a Cl processor on
musical instrument sounds. In addition, signal pre-emighvaas not included in the process-
ing steps of the acoustic model as this study focussed orcprarsi pre-emphasis is usually
included for speech intelligibility. This basic implemation of the acoustic model served as
an entry-point into understanding how timbre perceptioafiected by processing through
a CI, and as a basis on which to perform timbre perception erpets with NH listeners.
However, experiments involving similarity ratings of tinals, with NH listeners listening
to acoustic simulations and CI listeners listening to unpssed musical timbres, revealed
fairly different results for the different listener group&his indicates that the acoustic model
was not an accurate representation of timbre as presentied &bectrically stimulated audi-
tory system, but was sufficient for the purposes of this stadyhe acoustic model was not
the primary focus.
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Improvements to the accuracy of the implementation of tleeisiic model should be inves-
tigated for future revisions of this study. Including sigpee-emphasis could be considered
to create a new set of stimuli from which the effects of the Qicpssor on timbres could
be more accurately assessed. In addition, the effect ohpgpal characteristics of the
electrode-neural interface should be included in the @eoosdel to provide a more real-
istic representation of timbres as processed through a @lgliss providing an improved
foundation on which to model timbre perception. Improvetadn acoustic models apply
not only to this study, but to all Cl research. Acoustic mogets/ide generic representations
of sound through a ClI but fail to accurately represent what#s thby a variety of implantees.
This in turn results in acoustic models not always being &bleredict the outcomes of Cl
experiments, a shortcoming which needs to be addressecklzafoustic models can be used
to their full potential in CI research. With a more accurateresentation of sound as it is
processed through the electrically stimulated auditostesy, more accurate predictions of
the performance of Cl listeners could be made and a closezsmmndence to the predicted
and measured results for NH and ClI listeners for the timbregmion model implemented
in this study would be possible.

The experimental component of this study consisted of tntiscrimination tasks as well
as similarity ratings, using synthesised and real musitsttiiment sounds, respectively. Al-
though peak normalisation of the sounds used in the expetgmeas performed and assisted
in balancing the perceived loudness levels of the soundabgdive loudness balancing
procedure was not implemented, as this would require newpt®aprocedures to be de-
veloped for such a task. However, the peak normalisatioh@tbunds used in this study
was adequate, as there were no large perceptual loudnkssiifes in the sounds. In future
revisions of this work, an option could be to normalise the Rdfithe sounds while ensur-
ing that no peak clipping occurs. This would ensure that ed¢he sounds would have the
same total energy, and should eliminate any effect thagptual loudness difference might
have on the similarity ratings. By balancing the energiesiefdfounds, improved stimuli for
both experiments and modelling could result, possibly jgliog more accurate results for
the similarity rating experiments, as well as improving élceuracy of the timbre perception
model predictions.

Timbre feature discrimination abilities for both NH and Giténers were measured by means
of psychoacoustic experiments with synthesised sounds. pFavided quantitative results
of the perceptual abilities of both NH and ClI listeners, arftedences therein, for the three
important timbre features. Synthesised sounds were used$e of generating and altering
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sounds, as used in previous studies regarding timbre perongp.g. Cacliret al. (2005)).
Discriminations of the synthesised tones were used to firizlvilues (as in sectiof.2.]) to

be used as inputs to the model of timbre perception (basdueométhod of van Zyl (2008))
that would be common to all sounds for each listener. Altlotigs served as a satisfac-
tory entry-point to gain such experimental data, alteueatnethods could be investigated to
provide more accurate JND values. Instead of using a gesedasynthesised tone in the
discrimination tasks in which JND values were recorded, ssiility is to use real musi-
cal instrument sounds that are varied by adjusting one ofithiere features each time. A
study by Horner, Beauchamp and So (2009) followed such amappifor timbre perception
studies in NH listeners and found that timbre discriminatbilities differed for changes in
different musical instruments. However, a shortcomindhef study was to assume the same
JNDs for all instrument sounds for each listener.

A more accurate representation of the JNDs for B, LRT and IRRratondividual musical
instrument sounds would be possible if real instrument dewere used, but this would
require a computationally intensive and accurate timbsgnthesis technique such as that
developed by Jensen (1999b) to be implemented for a varietwsical instrument sounds.
The sounds would have to be resynthesised for each incrahwdange in timbre features,
which calls for a complex process requiring highly accutatdre resynthesis techniques.
The number of experimental sessions would also increas#asuially, as individual exper-
iments for discrimination abilities of each timbre featéwe each musical instrument sound
would have to be investigated. However, a database of suaBurable results may provide
invaluable insight into timbre perception abilities of Nisténers compared to Cl listeners.

Shortcomings in this work as a result of not using real sotimidhie discrimination tasks can
be noted from differences in JND values for timbre featurastae percentage of informa-
tion transmitted through these features for some of therlests, as discussed in sectod.2
Using real sounds for the discrimination tasks in futurasiewns of the work performed in
this study could change the outcomes of the discriminatskd substantially, and provide
better similarities between the predicted and measurecbmes for the model of timbre
perception. If the same sounds are used for both the diswiroh tasks and similarity rat-
ings, a correlation between timbre feature JNDs and theep&aige information transmitted
through these features could prove to be useful in furthdetrstanding timbre perception,
and thus in validating the developed model of timbre pefoapt
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The development of a model of timbre perception was carrigdising the timbre feature
JND results obtained from the discrimination tasks as ssliastomplete the main objective
of the study. An approach similar to a model of speech pei@epireviously implemented
(van Zyl, 2008), and based on signal detection theory, wisied to provide predictions for
timbre perceptual studies which were compared to measaseiis in the form of similarity
ratings. The dimensions of the ellipsoids used in the motkandre perception were imple-
mented to be symmetrically positioned around the soundseithree-dimensional space, as
described in sectioB.2.1 This modelling assumption is one that may not be well substa
tiated, although it was used in the model by Svirsky (200@vimusly. Non-symmetrical
ellipsoids could be an option for exploration to obtain maceurate predictions.

The timbre perception model predictions were compared tsored results obtained through
similarity ratings of ten musical instrument sounds. Thailsirity ratings were used as
a measure of confusions between musical instrument soulitisough direct instrument
identification tasks would have produced confusion madrabeectly, it was decided to use
similarity ratings instead, primarily due to the difficels associated with an identification
task for CI listeners. Most of the ClI listeners were limited insital memory, and would
not have been able to identify instruments by name. Evenithigasity rating tasks were
extremely challenging to most of the Cl listeners. Howevefuture work an attempt should
be made to make comparisons between confusion matriceim@tt@om similarity ratings
and identification tasks, as the relative weights for tingeeception might assume different
proportions in an instrument identification task than iniknity ratings.

A possibility for future revisions of this work could also e perform similarity ratings
without including like pairs of sounds, for example the gignano sound pair. This would
potentially give rise to different similarity rating ressy with the listener making use of a
different perceptual weighting scale. In addition, theseffof similarity ratings between
mismatched sound pairs could also be more prominent by @xgjuike pairs of sounds in
the similarity rating tasks, possibly resulting in diffateconfusion matrices and thus FITA
results.

The instrument sounds used in this study were selected ategnate sample group contain-
ing instruments from the four primary musical instrumemhiiges, as discussed in section
3.2 To expand on this study and possibly improve the model ditéperception, an option
would be to encompass a wide range of musical instrumentésas found in everyday
music listening conditions. This will involve investigati of larger sound databases in addi-
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tion to the 10 instrument sounds investigated in this stadyvell as variation of the notes
of the musical instrument timbres presented. As discusgédali and Beauchamp (2009),
the identification of some timbres can change depending th,pivith the possibility of
characteristic pitches emerging for instruments. A stwniag of the research in this disser-
tation was that only C4 (262 Hz) notes were used, but other commotes used in western
music and timbre perception studies include F#3 (185 Hz)(30 Hz) and G4 (391 Hz)
(Nimmonset al., 2008), and these may provide insight into attributes obtenperception
that are not visible when using only a single pitch.

Additionally, potential training effects may have influedcthe results of both the discrim-
ination and the similarity rating tasks, as a small closedgstimuli were used. Training
effects could thus also have affected the differences hetvlee predicted and measured Cl
performance. In future revisions of this work, a more cortgket of stimuli could be de-
veloped, encompassing different pitches and timbres, tvéltaim of presenting stimuli in a
complex environment more true to real listening conditions

Through analysis of the confusion matrices obtained fromh bee model predictions and
similarity rating experiments conducted, it was possibledtablish which perceptual timbre
features are available and to what extent they are convéyedgh the processor of a ClI.
The results of the timbre perception model showed that théetrsufficiently predicted the
results of the timbre similarity rating experiments for NRidaCl listeners, with the trends
of the predicted values following those of the measureditestor NH listeners, the model
predictions were fairly accurate, with only small discnepias between the predicted and
measured results obtained. However, for Cl listeners, tifiereinces between predicted and
measured values showed larger discrepancies, and thisralaahby due to the timbre fea-
tures on which the model was based being NH timbre featuregeheral, the model of
timbre perception was found to predict the outcomes of texgdarception experiments satis-
factorily for both NH and ClI listeners, thereby providing altto assist in the development
of Cl processors to facilitate timbre perception, and thuebkcate Cl research.

Because the research addressed in this study is a recentrtegasurable results regarding
timbre perception, particularly in ClI listeners, are notdiBaavailable. More extensive
investigation into both discrimination abilities of timébfeatures and similarity judgements
of musical instrument timbres is a suggestion for future kmoecessary to gain a better
understanding of timbre perception abilities in both NH &idisteners in general.
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The next research step will be to improve Cl processors tetasgth the transmission of
important timbre features to the listener. Improving tlesmission of the important timbre
features B, LRT and IRR by means such as those suggested ionséetilcould enhance
timbre perception in Cls. Investigation into additional suesed by CI listeners, and the
effective incorporation of these to be optimally transedtthrough a CI, could also be ben-
eficial to advancing timbre perception in the electricaliynsilated auditory system, and
indicates the vast research opportunities that can stemtfis study.

The initial model of timbre perception presented in thisdgtprovides a tool to assist in
Cl research regarding timbre perception by providing a dt&ive understanding of timbre
perception in the electrically stimulated auditory systdmturn, this provides a platform
on which to develop CI processors to facilitate timbre petioap with the ultimate goal of
improving music perception through a Cl processor.
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APPENDIX A

ADDITIONAL MUSICAL
INSTRUMENT SOUNDS

lllustrations of the 6 musical instrument sounds that wesedun this study in addition to

the four sounds used as examples throughout the dissartaggresented in this Appendix.
The four primary sounds presented in the body of this diggert are the piano, trumpet,
clarinet and violin. The additional 6 sounds illustratedehare the French horn, trombone,
flute saxophone, cello and viola. For each sound, the timeadgrfrequency domain and

additive parameter representations are given for both tiggnal sounds and the sounds
processed through the acoustic model.
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Appendix A

Additional musical instrument sounds
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Figure A.1.
lllustrations of the French horn sound, showing the time donain representation of (a)
the original sound and (b) the processed sound, the frequepcdomain representation
of (c) the original sound and (d) the processed sound, and thedditive parameter
representations of (e) the original sound and (f) the procesed sound.
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Appendix A Additional musical instrument sounds

lllustration of trombone sound signal in time lllustration of trombone sound signal in time
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Figure A.2.

lllustrations of the trombone sound, showing the time doman representation of (a) the
original sound and (b) the processed sound, the frequency dwain representation of
(c) the original sound and (d) the processed sound, and the didive parameter
representations of (e) the original sound and (f) the procesed sound.
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Appendix A Additional musical instrument sounds

Illustration of flute sound signal in time Illustration of flute sound signal in time
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Figure A.3.

lllustrations of the flute sound, showing the time domain repesentation of (a) the
original sound and (b) the processed sound, the frequency dmin representation of
(c) the original sound and (d) the processed sound, and the ddive parameter
representations of (e) the original sound and (f) the procesed sound.
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Appendix A

Additional musical instrument sounds

Illustration of saxophone sound signal in time
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lllustrations of the saxophone sound, showing the time doma representation of (a)
the original sound and (b) the processed sound, the frequep@domain representation
of (c) the original sound and (d) the processed sound, and thedditive parameter
representations of (e) the original sound and (f) the procesed sound.
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Appendix A Additional musical instrument sounds

lllustration of cello sound signal in time Illustration of cello sound signal in time
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Figure A.5.

lllustrations of the cello sound, showing the time domain reresentation of (a) the
original sound and (b) the processed sound, the frequency dwain representation of
(c) the original sound and (d) the processed sound, and the ddive parameter
representations of (e) the original sound and (f) the procesed sound.
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Appendix A Additional musical instrument sounds

lllustration of viola sound signal in time lllustration of viola sound signal in time
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Figure A.6.

lllustrations of the viola sound, showing the time domain rgresentation of (a) the
original sound and (b) the processed sound, the frequency dmin representation of
(c) the original sound and (d) the processed sound, and the didive parameter
representations of (e) the original sound and (f) the procesed sound.
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