
A MULTIOBJECTIVE OPTIMIZATION MODEL FOR OPTIMAL PLACEMENT OF

SOLAR COLLECTORS

by

Mmekutmfon Sunday Essien

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Electrical Engineering)

in the

Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

August 2012

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



SUMMARY

A MULTIOBJECTIVE OPTIMIZATION MODEL FOR OPTIMAL PLACEMENT OF

SOLAR COLLECTORS

by

Mmekutmfon Sunday Essien

Promoters: Prof. J. Zhang and Prof. X. Xia

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Electrical Engineering)

Keywords: fixed solar collectors, multi-objective optimization, weighted sum ap-

proach, Pareto front, genetic algorithm

The aim and objective of this research is to formulate and solve a multi-objective optimization pro-

blem for the optimal placement of multiple rows and multiple columns of fixed flat-plate solar col-

lectors in a field. This is to maximize energy collected from the solar collectors and minimize the

investment in terms of the field and collector cost. The resulting multi-objective optimization pro-

blem will be solved using genetic algorithm techniques.

It is necessary to consider multiple columns of collectors as this can result in obtaining higher amounts

of energy from these collectors when costs and maintenance or replacement of damaged parts are

concerned. The formulation of such a problem is dependent on several factors, which include shading

of collectors, inclination of collectors, distance between the collectors, latitude of location and the

global solar radiation (direct beam and diffuse components). This leads to a multi-objective optimi-

zation problem. These kind of problems arise often in nature and can be difficult to solve. However

the use of evolutionary algorithm techniques has proven effective in solving these kind of problems.

Optimizing the distance between the collector rows, the distance between the collector columns and

the collector inclination angle, can increase the amount of energy collected from a field of solar col-

lectors thereby maximizing profit and improving return on investment.

In this research, the multi-objective optimization problem is solved using two optimization ap-
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proaches based on genetic algorithms. The first approach is the weighted sum approach where the

multi-objective problem is simplified into a single objective optimization problem while the second

approach is finding the Pareto front.
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OPSOMMING

N MULTIOBJECTIVE OPTIMALISERING MODEL VIR OPTIMALE PLASING VAN

SONKRAG VERSAMELAARS

deur

Mmekutmfon Sunday Essien

Promotors: Prof. J. Zhang and Prof. X. Xia

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Universiteit: Universiteit van Pretoria

Graad: Magister in Ingenieurswese (Elektriese Ingenieurswese)

Sleutelwoorde: vaste sonkollektors, multi-objektiewe optimalisering, geweegde som be-

nadering, Die Pareto voor, genetiese algoritme

Die doel van hierdie navorsing is om ’n multi-objektiewe optimalisering probleem vir die optimale

plasing van verskeie rye en verskeie kolomme van vaste plat plaat sonkollektors in ’n veld te formuleer

en op te los. Dit is die energie versamel uit die sonkollektors te maksimeer en die belegging in

terme van die veld en versamelaar koste te verminder. Die gevolglike multi-objektiewe optimalisering

probleem opgelos sal word met behulp van genetiese algoritme.

Dit is wat nodig is om verskeie kolomme van versamelaars te oorweeg as dit kan lei tot die verkry-

ging van hoÃńr hoeveelhede energie van hierdie versamelaars koste en onderhoud of vervanging van

beskadigde dele. Die formulering van so ’n probleem is afhanklik van verskeie faktore, wat insluit die

skadu van die versamelaars, die neiging van versamelaars, afstand tussen die versamelaars, breedte

van die plek en die globale sonstraling (direkte balk en diffuse komponente). Dit lei tot ’n multi-

objektiewe optimalisering probleem. Hierdie soort van probleme ontstaan âĂŃâĂŃdikwels in die

natuur en kan dit moeilik wees om op te los. Maar die gebruik van evolusionÃłre algoritme tegnieke

effektief in die oplossing van hierdie soort probleme het bewys. Die optimalisering van die afstand

tussen die versamelaar rye, die afstand tussen die kollektor kolomme en die versamelaar inklinasie-

hoek, kan verhoog die hoeveelheid energie wat versamel is van ’n gebied van sonkollektors sodoende

die maksimum wins en die verbetering van die opbrengs op belegging.
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In hierdie navorsing word die multi-objektiewe optimalisering probleem opgelos deur gebruik te maak

van twee optimalisering benaderings op grond van genetiese algoritmes. Die eerste benadering is

die geweegde som benadering waar die multi-objektiewe probleem in ’n enkele doel optimalisering

probleem vereenvoudig word, terwyl die tweede benadering is om die Pareto-front.
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CHAPTER 1 INTRODUCTION

This aim of this chapter is to introduce the research topic and proffer reasons for carrying out this

research. Here, the research gap and certain questions to be answered during this study are identified.

The research approach, goals and contribution are also stated.

This dissertation formulates a new multi-objective optimization (MOO) model to solve for the optimal

placement of fixed solar collectors in a field in order to maximize the energy collected and minimize

the field and collector cost which is also the investment cost. This formulation results in a constrained

multi-objective optimization problem (MOOP). This problem is solved using two methods: The first

method is the weighted sum approach which transforms the MOOP into a single objective optimi-

zation problem (SOOP) and the other method is finding the Pareto front made up of Pareto optimal

solutions. Both methods will be solved by genetic algorithm (GA), which is a branch of evolutio-

nary algorithm (EA) techniques. The final decision on which of the solutions is to be chosen will be

dependent on the interpretation of their relative importance by the decision maker.

1.1 PROBLEM STATEMENT

Presently, the demand for energy in various sectors is growing at a rate that energy supply cannot

meet. Also the demand for land is on the increase which limits its availability for construction of

power plants. Owing to the increase in the unit cost of available land coupled with the inability to

meet the growing energy demand, there is the need to optimally place multiple rows and multiple

columns of solar collectors in a solar field that will maximize the energy collected from the field and

minimize the investment (field and collector cost).

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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1.1.1 Context of the problem

Typical collector sizes range between 1.5 to 4 m2, each costing between £3000 and £5000 [1] or $

200 per m2 [2]. These individual collectors are combined to form an array where the length of an

array is proportional to the cost. Logically, shorter array length collectors will be preferable as they

are cost effective and require less maintenance. The choice of smaller array length collectors is also

enhanced if the energy obtained is large enough and sufficient. This research will provide a technical

perspective and aid better solar collector and field design.

1.1.2 Research gap

The research gap is that the optimal placement of multiple rows and multiple columns of solar collec-

tors to maximize energy collected and minimize investment cost in a field has not yet been considered

together in literature using a Pareto-based multi-objective approach. Bridging this gap can go a long

way in helping to improve solar field and fixed collector design.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The objective of this research is to formulate a multi-objective optimal control model for the optimal

placement of fixed solar collectors in a multi-row, multi-column field array. This model is to optimally

place the solar collectors thereby maximizing the energy collected from such a field and reducing the

investment cost of purchasing the field and collectors while it satisfies all the necessary constraints

involved.

The problem lies in finding an optimal inclination angle for the fixed collectors, an optimal distance

between the collector rows as well as an optimal distance between the collector columns. Optimi-

zing these variables will ensure the objectives of maximizing energy collected and minimizing the

investment (field and collector) cost are achieved.

The following research questions will be answered in this work:

• Can more energy be obtained from this model compared to previous models by optimizing the

chosen variables?

• Can the investment cost of this model be reduced compared to previous models?

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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• Are the optimization methods prescribed in this research able to obtain acceptable solutions?

1.3 HYPOTHESIS AND APPROACH

The hypothesis is that the solar collector model formulated in this research which contains all the

necessary parameters will maximize energy collected and minimize investment cost in a field of

multiple rows and multiple columns of solar collectors.

The approach of the study is as follows.

1. A brief background study on solar energy and multi-objective optimization is done.

2. A study of existing solar collector models will be done. Their drawbacks will also be conside-

red.

3. A MOOP will be defined for the solar collector placement problem with all the necessary

constraints such as field and economic constraints and a variable not previously considered is

added to the newly formulated solar collector model. This MOOP is solved using two methods

namely: weighted sum approach and the Pareto front.

4. A comparison between the results obtained from this model and that of a previous model will

be done using the same parameters. This comparison is to highlight the effectiveness of the

new model when compared to other models.

1.3.1 Motivation for the use of multi-objective optimization in solar collector placement pro-

blem

Most real-world problems involve simultaneous optimization of several objective functions. Gene-

rally, these functions are often competing and conflicting objectives. MOO having such conflicting

objective functions gives rise to a set of candidate optimal solutions, instead of one optimal solution.

Here no solution can be considered to be better than any other with respect to all objectives. These

candidate optimal solutions are known as Pareto-optimal solutions. Classical optimization methods

can at the best find one solution in one simulation run. Therefore these methods are inconvenient

to solve multi-objective optimization problems. EAs, on the other hand, can find multiple candidate

optimal solutions in one single simulation run due to their population based approach [3].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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In MOO, the decision maker seeks to simultaneously optimize several objectives for his problem. An

improvement in one objective often results in the deterioration of other objectives and trade-offs are

necessary. A diagram for MOO is shown in Figure 1.1.

 Multi-objective Optimization 
Problem. 

Maximize f1 

Minimize f2 

with repsect to constraints 

Higher Level Information 

Estimate weights (w1,w2) for 
objective functions based on 

i t  

Single Objective Optimization 
Problem. 

F = w1f1 + w2f2 

Single Objective Optimzer 

One Optimum Solution 

Figure 1.1: Schematic for multi-objective optimization via weighted sum approach

MOO has useful characteristics for obtaining optimal solutions for solar collector optimization pro-

blems. The most important characteristic in this research is that it gives the decision maker multiple

optimal solutions to choose from depending on the objectives.

Therefore using MOO in solving a solar collector placement problem will introduce a new approach

in solar collector design and field array optimization.

1.3.2 Research process and modeling

The following sequential steps are to be followed in this research:

1. The existing models are studied to identify the various methods that have been used to optimize

the solar collector field design, their advantages and disadvantages.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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2. A study of multi-objective optimization is done.

3. A multi-objective model using energy and cost objective functions is formulated. The model

has three variables: distance between collector rows, distance between collector columns and

inclination angle of collector. The bounds are then added to the model.

4. The two methods for solving MOOP using GA are then used to solve the problem.

5. A comparison is done between both methods and also with previous models.

1.3.3 How this approach addresses current issues

The current issues that are addressed by this research approach include:

1. Available land area: This constrains the problem when land available is limited. Hence by

taking this into consideration, the model can be applied in such instances.

2. Available budget: This is customer dependent and must also be added as a constraint to the

problem.

3. Based on the above items, a number of candidate optimal solutions will be obtained from which

a choice can be made. This choice is dependent on the relative importance of each solution with

respect to the decision maker’s preference.

4. Time period for optimization: This varies depending on the problem and the intended output.

The selected approach optimizes for the time period of a whole year.

1.3.4 Limitations and challenges of selected approach

The limitations and challenges of this approach are:

1. The GA uses a random initial population, therefore the result is different for each run. This

limitation is resolved by utilizing the best solutions from each run in obtaining the optimal

solutions.

2. Constraining the problem makes the modeling and optimization very complex but realistic.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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3. The results are limited by the solar radiation data used.

The aim however is to add to the existing body of knowledge.

1.4 RESEARCH GOALS

The research goals are:

1. To formulate a multi-objective optimal control model for the optimal placement of fixed solar

collectors in a multiple row and multiple column field array and to solve this model using MOO

and GA techniques.

2. To maximize the energy collected from such a field.

3. To reduce the investment cost of purchasing the field and collectors whilst satisfying all the

necessary constraints involved.

1.5 RESEARCH CONTRIBUTION

The major contributions of this research are:

1. A multi-objective optimization model has been developed for optimizing collector placement

in a solar field design. A highlight of this model is the addition of multiple columns of solar

collectors to existing models.

2. Some insights and deep understanding have been obtained for multi-objective problems and

GA through the use of the optimization framework in solar field design.

1.6 OVERVIEW OF STUDY

This research is to formulate a collector row and column placement problem with economic conside-

ration and derive optimal solutions using evolutionary algorithm techniques. This research presents a

multi-objective optimization model that maximizes solar energy collected from a field array of solar

collectors using measured solar radiation data while minimizing the investment (field and collector

cost). Nature abounds with a vast number of these kind of multi-objective problems. Solving these

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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problems are an on-going concern. Evolutionary algorithms have proven effective in solving these

kind of problems. A MOOP can be solved in two ways; the first one is to solve it by transforming

the MOOP into SOOP using positive weights (for objectives) and penalties (for constraints), and the

other one is to obtain Pareto optimal solutions which gives the decision maker a suitable range of

choices to adjust trade off between different objectives [4].

This chapter introduces the background to the research problem and briefly describes the research

approach. Chapter 2 is a literature review which includes, the description of the research problem,

studies of different solution techniques that have been applied to solve this kind of problem, the

research approach and the contributions of this research are covered. In Chapter 3, a multi-objective

optimization model for optimal placement of the solar collectors in a field array is formulated. This

MOO model is then evaluated using both methods of weighted sum approach and obtaining the Pareto

front. Chapter 4 gives the results obtained from the application of this model. Data from previous

models is applied to the current model and the solutions are compared. Chapter 5 is a discussion of

the results then Chapter 6 concludes and makes recommendations for further research.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

The literature survey is covered in this chapter. It gives a background on solar energy and reviews the

related existing work. A literature study is also done for the proposed research approach.

2.1 CHAPTER OBJECTIVES

The objective of this chapter is to provide a review of previous and related works on the aspect of

solar collector field design. A brief analysis of each work and the major contributions as well as the

drawbacks will also be discussed along with the motivation for research.

2.2 AN INTRODUCTION TO SOLAR ENERGY

The world’s marketed energy consumption is projected to grow by 53 % from 2008 to 2035. Forecast

also suggest that total world energy use will rise from 505 quadrillion British thermal units (Btu) in

2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 2.1). Much of this growth

in energy consumption occurs in countries outside the Organization for Economic Cooperation and

Development (non-OECD nations), where demand is driven by strong long-term economic growth.

Energy use in non-OECD nations increases by 85 % in the reference case, as compared with an

increase of 18 % for the OECD economies [5]. The world energy data consumption is shown in

Figure 2.1.

Solar energy is the radiant energy that is produced by the sun. The sun emits more energy per second

than the world has used since time began. It takes the sun’s energy about eight minutes to travel the

93 million miles to Earth at the speed of light. Only a small part of the radiant energy that the sun

emits into space reaches the Earth, but it is more than enough to supply all our energy needs. The

amount of solar energy that reaches the Earth daily is enough to supply a nation’s energy needs for a

year [6].
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Figure 2.1: World Energy Consumption from 1930 - 2035 [5]

2.2.1 Solar collectors

Solar energy is a potential source of renewable energy for most countries especially those located in

the solar belt north and south of the equator [7]. Capturing solar energy for useful work is difficult

because the solar energy reaching the Earth is radiated over a large area since the sun does not deliver

much energy to any one place at any given time. The amount of solar energy an area receives depends

on the time of day, the season of the year, the cloudiness of the sky, and how close the area is to the

Earth’s equator. The use of a solar collector is one way to capture sunlight and convert it into usable

heat energy. A simple example of a solar collector is a closed car on a sunny day. As sunlight passes

through the car’s windows, it is absorbed by the seat covers, walls, and floor of the car. The absorbed

light changes into heat. The car’s windows let light in, but does not allow all the heat out [6]. Figure

2.2 shows a field of solar collectors. Optimum inclination of flat-plate solar collectors will assure

maximum collection of this natural solar energy [7].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

9

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 2 Literature study

 

Figure 2.2: Field of Solar Collectors [8]

2.2.2 Solar radiation

Solar systems, like any other system, need to be operated with the maximum possible performance.

This can be achieved by proper design, construction, installation, and orientation [9]. The solar

radiation plays an important role in any solar system performance. Solar radiation data is usually

measured in the form of global and diffuse radiation on a horizontal surface at the latitude of interest.

Flat-plate solar collectors are tilted so that they capture the maximum radiation and the problem of

calculating solar radiation on a tilted surface is in determining the relative amount of beam and diffuse

radiation contained in the measured horizontal global radiation [10]. The incident solar radiation

reaches the earth’s surface without being significantly scattered and coming from the direction of the

sun, is called direct normal irradiance (or beam irradiance). Some of the scattered sunlight is scattered

back into space and some of it also reaches the surface of the earth. The scattered radiation reaching

the earth’s surface is called diffuse radiation. Some radiation is also scattered off the earth’s surface

and then re-scattered by the atmosphere to the observer. This is also part of the diffuse radiation the

observer sees. This amount can be significant in areas in which the ground is covered with snow.

The total solar radiation on a horizontal surface is called global irradiance and is the sum of incident

diffuse radiation plus the direct normal irradiance projected onto the horizontal surface. If the surface

under study is tilted with respect to the horizontal, the total irradiance is the incident diffuse radiation

plus the direct normal irradiance projected onto the tilted surface plus ground reflected irradiance that

is incident on the tilted surface [11].

2.2.2.1 Components of solar radiation

1. Direct beam solar radiation: Beam radiation is the solar radiation propagating along the line
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joining the receiving surface and the sun. It is also referred to as direct radiation. Therefore,

direct beam radiation comes in a direct line from the sun. For sunny days with clear skies, most

of the solar radiation is direct beam radiation. On overcast days, the sun is obscured by the

clouds and the direct beam radiation is zero [12], [13], [14].

2. Diffuse solar radiation: Diffuse solar radiation is that portion of solar radiation that is scattered

downwards by the molecules in the atmosphere. This radiation is scattered out of the direct

beam by molecules, aerosols, dust and clouds; it does not have a unique direction [14]. Because

it comes from all regions of the sky, it is also referred to as sky radiation. During days with

clear skies, the magnitude of diffuse radiation is about 10 to 14% of the total solar radiation

received at the earth’s surface and up to 100% for cloudy skies. This means that only diffuse

radiation may reach the earth’s surface during extremely cloudy days [12], [13], [15].

3. Reflected solar radiation: When the solar radiation irradiates upon a surface which is opaque,

a portion of radiation is absorbed and the remaining portion is reflected in diffuse or specular

nature depending on the roughness of the surface [13], [15].

4. Global solar radiation: The sum of the direct beam, diffuse, and ground-reflected radiation

arriving at the surface is called total or global solar radiation. Although the radiation reflected

by the surface in front of a collector contributes to the solar radiation received, it must be noted

that unless the collector is tilted at a steep angle from the horizontal and the ground is highly

reflective (e.g., snow), this contribution is small. Therefore, the total or global solar radiation

striking a collector has two components, direct beam radiation and diffuse radiation [12], [13],

[14], [16], [17].

Most of the published meteorological data give the total radiation on horizontal surfaces. There-

fore correlation procedures are required to obtain insolation values on tilted surfaces from horizontal

radiation. Monthly average daily total radiation on a tilted surface (HT ) is normally estimated by

individually considering the direct beam (HB), diffuse (HD) and reflected components (HR) of the

radiation on a tilted surface. Thus for a surface tilted at a slope angle from the horizontal, the incident

total radiation is given by the relation in equation (2.1) [11, 18, 19]:

HT = HB +HD +HR (2.1)

Several models are proposed by various investigators [20, 21, 22, 23, 24, 25, 26, 27] to calculate

global radiation on tilted surfaces from the available data on a horizontal surface. Based on the
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assumptions made, the estimation models can be classified into isotropic [28] and anisotropic [20]

ones. The daily beam radiation received on an inclined surface can be expressed as in equation (2.2)

[11, 18, 19]:

HB = (Hg−Hd)Rb (2.2)

where Hg and Hd are the monthly mean daily global and diffuse radiation on a horizontal surface, and

Rb is the ratio of the average daily beam radiation on a tilted surface to that on a horizontal surface.

The daily ground reflected radiation can be written as equation (2.3) [11, 18, 19]:

HR = Hgρ
1− cosβ

2
(2.3)

where β is the tilt angle of the solar panel and ρ is the ground albedo.

In the absence of any solar radiation measurements, we employ models using meteorological data

such as cloudiness and minutes of sunshine to estimate solar radiation. Although much less accurate,

this is often the only option that exists for locations where solar radiation is not measured.

2.2.3 Applications of solar energy

1. Solar Space Heating: Solar energy can be used to heat the space inside a building. Today,

many homes use solar energy for space heating. A passive solar home is designed to let in

as much sunlight as possible. It acts like a big solar collector. Sunlight passes through the

windows and heats the walls and floors inside the house. The light can get in, but the heat is

trapped inside. A passive solar home does not depend on mechanical equipment, such as pumps

and blowers, to heat the house [29].

2. Solar Water Heating: Solar energy is commonly used to heat water. Heating water for ba-

thing, dishwashing, and washing clothes is the third largest home energy cost. A solar water

heater works a lot like solar space heating. A solar collector is mounted on the roof where

it can capture sunlight. The sunlight heats water in a tank. The hot water is piped to faucets

throughout a house, just as it would be with an ordinary water heater. Today, more than 1.5

million homes and businesses use solar water heaters [29].

3. Solar Electricity: Solar energy can also be used to produce electricity. Two ways to make

electricity from solar energy are photovoltaic and solar thermal systems [29].

(a) Photovoltaic Electricity: In simple terms, this means converting light to electricity. Solar-
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powered toys, calculators, and roadside telephone call boxes all use solar cells to convert

sunlight into electricity. Solar cells can supply energy to anything that is powered by

batteries or electrical power. Electricity is produced when sunlight strikes the solar cell,

causing the electrons to become mobile. The action of the electrons starts an electric cur-

rent. The conversion of sunlight into electricity takes place silently and instantly and has

the advantage of not having mechanical parts to wear out. Compared to other ways of ma-

king electricity, photovoltaic systems are expensive hence there are not many photovoltaic

power plants today. In 2009, the DeSoto Next Generation Solar Energy Center in Florida

opened. It is the largest photovoltaic plant in the US, generating 25 megawatts of electri-

city - enough to power 3,000 homes. In US, it costs between 10 to 20 cents a kilowatt-hour

to produce electricity from solar cells. Most people pay their electric companies about 12

cents a kilowatt-hour for the electricity they use, and large industrial consumers pay less.

Today, solar systems are mainly used to generate electricity in remote areas that are far

from electric power lines [29].

(b) Solar Thermal Electricity: Like solar cells, solar thermal systems, also called concentrated

solar power (CSP), use solar energy to produce electricity, but in a different way. Most

solar thermal systems use a solar collector with a mirrored surface to focus sunlight onto

a receiver that heats a liquid. The super-heated liquid is used to make steam to produce

electricity in the same way that coal plants do. There are nine solar thermal power plants

in the Mojave Desert that together produce 360 MW of electricity [29].

Solar energy has enormous potential for the future applications. Desirable characteristics of solar

energy include: it is a non-pollutant, it is free, and its supplies are unlimited. The nature of its

technology is such that it cannot be controlled by any one nation or industry. If this technology

of harnessing solar energy can be improved, energy shortages will be a thing of the past and long

forgotten.

2.3 REVIEW OF RELATED LITERATURE

As the world’s supply of fossil fuel shrinks, there is a great need for clean and affordable renewable

energy sources in order to meet the growing energy demands. Achieving sufficient supplies of clean

energy for the future is a great societal challenge [30]. There is a large effort in raising their efficiency

and in developing novel solutions to decrease the cost per watt of produced power [31].
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The optimization of an energy system design consists of modifying the system structure and com-

ponent design parameters according to one or more specified design objectives [32]. Solar energy

can be obtained from solar fields using an array of flat-plate solar collectors. Solar collectors are

usually deployed in a number of rows having a North-South orientation on a horizontal plane. Eco-

nomic considerations, such as the cost of land and limited available area, demand that the field design

be compact, which leaves limited spacing between the collectors for maintenance purposes. Conse-

quently, a collector in one row may be obscured from the sun’s rays at some time during the day,

thus decreasing the quantity of energy collected [33]. Optimizing the distances between the rows and

columns of collectors in the field is important because it reduces shading and maximizes the energy

obtained from these collectors. The shading of collectors is affected by the spacing between the col-

lector rows and columns, the collector height, and the inclination angle. An optimal placement of

collectors will reduce the project cost and ensure effective utilization of the solar collector field. The-

refore, this research aims to optimally place multiple rows and multiple columns of solar collectors in

a fixed field area so as to maximize the energy collected from the field and minimize the investment

(field and collector) costs. Currently, multiple row optimization of solar collectors has been conside-

red in some literature [4], [34], [35], [36] but there has been no study in literature on multiple row and

multiple column optimization of a fixed solar field to maximize energy and simultaneously minimize

the field and collector investment cost.

The shading effect depends on the spacing between the collector rows, the collector height, and the

inclination angle, to some extent on the row length and on the latitude of the solar field. Therefore,

there is an optimal deployment of collectors in a field yielding different objectives which may be

based on energy or economic criteria [34].

Optimal design of the solar energy collector plays a critical role in the efficient collection of solar

energy. Flat-plate collectors can be designed in applications that require energy delivery at moderate

temperatures (up to 100oC above ambient temperature). These collectors use both beam and diffuse

solar radiation, and do not need to track the sun. They are simple to manufacture and install, with

relatively low maintenance costs, which makes this kind of solar collector popular [35].

Figure 2.3 shows a multi-row, multi-column array of flat-plate solar collectors in a given area. Increa-

sing the number of solar-collector rows and columns will definitely increase the total collector area

thereby increasing the amount of radiation energy received from the sun; however, it also increases

the shading area (darker area shown in Figure 2.3), which will reduce the amount of radiation energy
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Figure 2.3: Solar collectors in a field

received from the sun.

The design of stationary solar collectors in a field involves relationships between the field and collec-

tor parameters and solar radiation data. Field and collector parameters contain field length L, which is

also called the collector length, field width W, distance between collector rows D, collector height H,

inclination angle β , and geometric limitations of these parameters. At a given time, the shaded height

Hs and length Ls on the collector, is shown in figure 2.3. The rest of the collector area is un-shaded

[4].

The optimization of solar systems has been solved using meta-heuristic methods such as artificial

neural networks [37], particle swarm optimization [38], [39] and genetic algorithms [37], [40], [41]

and [42]. For a theoretical background on types of solar collectors and applications, the reader is

referred to the likes of [30], [43].

2.4 MAJOR CONTRIBUTIONS OF THE REVIEWED LITERATURE

The optimal placement of collectors in a solar field may be formulated mathematically as a constrai-

ned optimization problem and solved by applying available optimization algorithms for a single co-
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lumn of solar collectors as in [4] and [44]. For example, generic methods are formulated to analyze

the effect of shading in [33], [45]. In [33], general expressions for shading and insolation are derived

for different scenarios including shading caused by collectors, stepped collectors and a fence, as well

as direct, diffuse and global insolation. A new measure, the shadow efficiency, is introduced in [45] to

determine the acceptable distance between collectors as a function of parameters that effect shading

in fixed tilt, half-tracking and full-tracking collectors.

The economic analysis of the optimization carried out in [4] is done in [36] for minimum plant cost

and minimum cost of unit energy. The influence of parameter variation is also investigated. To obtain

the highest incident energy from the field, the optimization tries to minimize the shading between the

collector rows. This is obtained by increasing the row length and the distance between rows. Such

a field produces 4.18% more energy, the periodic plant cost is less by 0.939% and the energy cost is

less by 1.92% relative to a field with land constraints.

A MOO using game-theory approach and probabilistic uncertainty is done for one column of col-

lectors in [35], [46] for three objectives, maximization of the annual average incident solar energy,

maximization of the lowest month incident solar energy and minimization of costs. Also a thermoe-

conomic analysis, by applying a multi-objective approach to determine the complete spectrum of

solutions that satisfies the economic objective as well as the energetic one is done [32].

The amount of solar energy incident on a solar collector in various time scales is a complex function of

many factors including the local radiation climatology, the orientation and tilt of the exposed collector

surface [11]. The performance of a solar collector is highly influenced by its orientation and its angle

of tilt with the horizontal. This is due to the fact that both the orientation and tilt angle change the

solar radiation reaching the surface of the collector [47]. Over the last few years, many authors have

presented models to predict solar radiation on inclined surfaces [20] - [27]. Some of these models

apply to specific cases; some require special measurements and some are limited in their scope. These

models use the same method of calculating beam and ground reflected radiation on a tilted surface.

The only difference exists in the treatment of the diffuse radiation [11].

The optimization of photovoltaic (PV) fields was done in [34]. Shadow variation on PV collectors

was investigated in [48]. The results indicate the favourable interconnection between modules with

similar incident levels of energy and illuminated at similar periods of time.

The spacing analysis of an inclined solar collector field was carried out in [49]. A computer code
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is developed to predict the change in incident energy on the collectors for various spacing distances

between them. The code couples general shading models with the local weather data. The results

show the variation of shadow area of the collectors for various spacing distance and presented for

various time periods. The results are given for three US locations and economic implications are

discussed.

The performance evaluation of solar thermal electric generation systems is carried out in [50] where

a unified model is developed using a thermo-hydrodynamic model of a steam generator combined

with traditional steam power house. The model is used to study the performance of different collector

field and power house arrangements under Australian conditions. As spacing between the collectors

affects the piping network and the pressure drop in the collector field, the spacing must be reduced

as much as possible. The appropriate spacing of collector arrays in the field is calculated considering

the shading between collectors.

The concept of multi-tower solar array is put forth in [51]. This involves alternately arranging solar

collectors to point to different receivers thereby reducing shading. A layout optimization is done for a

heliostat field in a solar thermochemical processing application using GA and Nelder-Mead algorithm

[52].

2.5 DRAWBACKS OF THE REVIEWED LITERATURE AND MOTIVATION FOR

RESEARCH

In the reviewed literature, single column multi-row flat-plate solar collectors are considered. As

earlier mentioned, typical collector sizes range between 1.5 to 4 m2, each costing between £3000

and £5000 [1] or $ 200 per m2 [2]. These individual collectors are combined to form larger length

collectors where the length of such a collector is proportional to the cost. To utilize collectors with

smaller dimensions in a field design of similar area, then multiple columns have to be considered.

This has not yet been done in literature. A model that can work with multiple columns of smaller

array length collectors may prove advantageous to solar field design for the following reasons:

1. These array collectors with smaller lengths are potentially cheaper than collectors with bigger

dimensions.

2. They are easier to maintain when operational so obtainable energy levels can be maintained.
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3. The cost of replacing damaged parts is less and this will also reduce the amount of energy that

can be lost.

4. The potential exists for a reduced investment cost with the use of collectors with smaller di-

mensions to produce either the same quantity of energy or more energy in a given area than

collectors with larger dimensions.

These reasons resonate with the objective in this research which is to maximize energy and minimize

the investment cost.

This work presents an optimization model that maximizes solar energy collected while minimizing

the investment cost in a multi-row, multi-column field of solar collectors. This model results in a

MOOP which will be solved in two ways as earlier stated: the first one is to transform the MOOP

into a SOOP using positive weights for objectives and penalties for constraints, and the other one is to

obtain the Pareto optimal solutions which give the decision maker a range of choices to adjust trade-

offs between different objectives [4]. The benefit of solving this problem will be the introduction of

multiple columns of solar collectors to an existing single column field thereby increasing the amount

of energy collected.

2.6 TERMINOLOGIES OF OPTIMAL SOLAR COLLECTOR PLACEMENT

Optimal placement of fixed solar collectors in a field array involves arranging solar collectors with an

optimal distance between the rows and columns of the collectors to prevent shading thereby maximi-

zing the solar energy collected, minimizing the cost and fulfilling all the necessary constraints.

2.6.1 Objective functions

Objective functions are equations describing the problem to be solved. In optimization, these ob-

jective functions are either of the minimization type, maximization type or a combination of both.

Previously, the objective functions considered are shown in the following subsections.

2.6.1.1 Energy objective function

The energy objective function is given in equation (2.4) [4]. This objective function focuses on

maximizing the energy collected from the solar collectors in the field array while still optimizing the

variables and satisfying the bounds [4], [33], [35] and [36].
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Q = H×L× [qb +qd +(K−1)(qsh
b +qsh

b )] (2.4)

where

Q is the yearly incident solar energy, H and L are the height and length of each solar collector res-

pectively, qb is the yearly beam irradiation per unit area of an unshaded collector (first row), qd is the

yearly diffuse irradiation per unit area of an unshaded collector (first row), qsh
b is the average yearly

beam irradiation per unit area of shaded collectors ((K-1) rows), and qsh
d is the average yearly diffuse

irradiation per unit area of shaded collectors ((K-1) rows).

2.6.1.2 Economic objective function

The economic objective function can be divided as given in equations (2.5) [4] and (2.6) [35]. This

objective function aims to minimize the cost of the field array set up while optimizing the distance

between the collectors to achieve efficient use of the field area [36].

Cp = [Cland +Ccollectors +Celectricbackup +Cheatexchanger +Cstands

+ LpiCpipe +LtCtank +LpuCpump]λp +Cbackupenergy +Cmaintenance (2.5)

where

Cp is the cost of the plant, Cland is the cost of land, Ccollectors is the cost of collectors, Celectricbackup

is the cost of the electrical installation of the backup system, Cstands is the cost of the structure of

the stands for the collectors, Cheatexchanger is the cost of heat exchanger, Cpipe is the cost of the water

piping, Ctank is the cost of the water tank, Cpump is the cost of the water pump, Cbackupenergy is the cost

of the energy from the grid for backup, and Cmaintenance is the maintenance cost of the plant.

Cost = c1LW + c2LHK (2.6)

where

c1 is the unit cost of the land, c2 is the unit cost of the collector, H is the height of each solar collector,

L is the length of each solar collector and also the length of the field, W is the width of the field and

K is the number of collector rows.

In this dissertation, two objectives are considered. The energy objective which focuses on maximizing

the energy collected from the solar collectors in the field array while still optimizing the variables wi-
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thin the set bounds and the economic objective which aims to minimize the cost of the field array set

up while optimizing the distance between the collectors to achieve efficient use of the field area. Be-

fore now, these objectives are evaluated independently. There are bounds that the objective functions

are subjected to, for the problem to reach its optimal solutions.

2.6.2 Variables

Following from the above section, the variables previously considered are the number of collector

rows K, the collector inclination angle β , the distance between the collector rows D and collector

height H [4], [35]. In this dissertation however, the variables considered are only the collector inclina-

tion angle β and the distance between the collector rows K. The number of collector rows K is related

to the distance between the collector rows so it is excluded as a variable. Also a new variable, the

distance between the collector columns U , is added to the problem to determine the optimal number

of columns.

2.6.3 Bounds

The bounds are conditions imposed on the variables that must be satisfied for an optimal solution to be

obtained. In optimization, these bounds can be formulated as equality or inequality constraints.

2.6.4 Optimal solar collector placement modeling

The design of stationary photovoltaic and thermal solar collectors in a field involves relationships

between the field and collector parameters and solar radiation data. In addition, shading and mas-

king affect the collector deployment by decreasing the incident energy on collector plane of the field.

The use of many rows of collectors densely deployed, in a limited field, increases the field incident

energy but also increases the shading. The optimal design of a solar field may be formulated mathe-

matically as a constrained optimization problem and the solution may be based on applying available

optimization algorithms like those described in literature [4].
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2.7 TECHNIQUES USED TO EVALUATE SOLAR COLLECTOR PLACEMENT

PROBLEMS

There are two major techniques that have been used to solve this type of optimization problem. One

technique is based on branch and bound programming and the other is the game-theory approach.

The main problem with these techniques is that they produce a singular optimal solution that re-

quires extensive computational efforts which increases with the complexity of the problem. In this

research, multi-objective optimization based on genetic algorithm will be used to solve this kind of

problem.

2.7.1 Branch and bound optimization

This method was first proposed by A. H. Land and A. G. Doig in 1960 for discrete programming [53].

The branch and bound method does a systematic search in the space of all feasible solutions to find the

maximum (negative of minimum). It achieves this by partitioning into smaller subsets, the space of

all feasible solutions and calculates an upper bound on the value of the objective function associated

with the solutions that lie within a given subset. After each partitioning, those subsets whose upper

bound are less than the best known feasible solution are excluded from further partitioning and are

discarded. The partitioning continues until the value of the objective function for the best feasible

solution is not less than the upper bound of any subset. The optimal solution is the best feasible

solution. This is the technique applied in [4] and [36] to obtain maximum energy for a given field

area. The results are obtained for different field sizes and are summarized in Table 2.1.

Table 2.1: Design results from [4]

Field (m) K β (deg) D (m) H (m)

L = 7.5, W = 12 6 48.19 0.8 2

L = 100, W = 200 80 31.24 0.8 2

The usefulness of this technique is that it excludes infeasible and non-optimal subsets from further

search without them being fully expanded. Figure 2.4 shows important steps in a typical branch and

bound technique.
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 Initialize starting point and 
other parameters 

Compute a search direction 

Compute a step length 

Update parameters 

Check for convergence 

Figure 2.4: Typical branch and bound technique

2.7.2 Game-theory approach

Game theory did not really exist as a unique field until John von Neumann published a paper in 1928.

His paper was followed by his 1944 book Theory of Games and Economic Behavior, with Oskar

Morgenstern, which considered cooperative games of several players [54].

Game theory is mainly used in economics, political science, and psychology, and other, more pres-

cribed sciences, like logic or biology. Today, however, game theory applies to a wide range of class

relations, and has developed into an umbrella term for the logical side of science, to include both

human and non-humans, like computers. Classic uses include a sense of balance in numerous games,

where each person has found or developed a tactic that cannot successfully better his results, given

the other approach.

Game theory is the formal study of decision-making where several players must make choices that

potentially affect the interests of the other players. Game theory is also the formal study of conflict

and cooperation. Game theoretic concepts apply whenever the actions of several agents are interde-

pendent. These agents may be individuals, groups, firms, or any combination of these. The concepts

of game theory provide a language to formulate, structure, analyze, and understand strategic scena-

rios.

A game is a formal description of a strategic situation while a player is an agent who makes decisions

in a game. A game in strategic form, also called normal form, is a compact representation of a game
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in which players simultaneously choose their strategies. The resulting payoffs are presented in a table

with a cell for each strategy combination.

In a game in strategic form, a strategy is one of the given possible actions of a player. In an extensive

game, a strategy is a complete plan of choices, one for each decision point of the player.

A mixed strategy is an active randomization, with given probabilities, that determines the player’s

decision. As a special case, a mixed strategy can be the deterministic choice of one of the given pure

strategies.

A Nash equilibrium, also called strategic equilibrium, is a list of strategies, one for each player, which

has the property that no player can unilaterally change his strategy and get a better payoff.

A payoff is a number, also called utility, that reflects the desirability of an outcome to a player, for

whatever reason. When the outcome is random, payoffs are usually weighted with their probabilities.

The expected payoff incorporates the player’s attitude towards risk.

This approach is used in [35] for multi-objective optimal design of stationary flat-plate solar collectors

and the results in Table2.2 are obtained when Fl = 30m, W = 200m, CUC = $100/m2,CUF = $100/m2.

Table 2.2: Design results for individual objective functions from [35]

Average Lowest

incident solar month incident

Objective H(m) L(m) D (m) β (o) K solar energy (W/h) solar energy (W/h) Cost (106$)

1 2 30 2.51 35.1915 82.4823 1.3689 1.1003 1.0949

2 2 30 2.51 53.4313 100.8248 1.3407 1.1135 1.2049

3 1.6453 25.1457 1.0859 50.8246 79.2061 0.8213 0.6496 0.7322

To obtain an optimal solution using this approach, only one of the multiple objectives is considered at

a time similar to the previous technique. Hence the need for a more Pareto-based approach in solving

this kind of problem.

2.8 MULTI-OBJECTIVE OPTIMIZATION

The general multi-objective optimization problem is posed as in equations (2.7) and (2.8) [55]:

Minimizex F(x) = [F1(x),F2(x), ⋅ ⋅ ⋅ ,Fk(x)]T (2.7)
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subject to

g j(x)≤ 0, j = 1,2, ⋅ ⋅ ⋅ ,m, hl(x) = 0, l = 1,2, ⋅ ⋅ ⋅ ,e, (2.8)

where

k is the number of objective functions, m is the number of inequality constraints, and e is the number

of equality constraints. x ∈ En is a vector of design variables (also called decision variables), and n is

the number of independent variables xi. F(x) ∈ Ek is a vector of objective functions Fi(x) : En→ E1.

Fi(x) are also called objectives, criteria, payoff functions, cost functions, or value functions and g j(x)

and hl(x) are constraints [55].

For multiple-objective problems, the objectives are generally conflicting, preventing simultaneous

optimization of each objective. Many, or even most, real engineering problems actually do have

multiple objectives, i.e., minimize cost, maximize performance, maximize reliability, etc. These are

difficult but realistic problems. There are two general approaches to MOO. One is to combine the

individual objective functions into a single composite function or move all but one objective to the

constraint set. In the former case, determination of a single objective is possible with methods such as

utility theory, weighted sum method, etc., but the problem lies in the proper selection of the weights

or utility functions to characterize the decision makers preferences. In practice, it can be very difficult

to precisely and accurately select these weights, even for someone familiar with the problem domain.

Compounding this drawback is that scaling amongst objectives is needed and small perturbations in

the weights can sometimes lead to quite different solutions. In the latter case, the problem is that

to move objectives to the constraint set, a constraining value must be established for each of these

former objectives. This can be rather arbitrary. In both cases, an optimization method would return

a single solution rather than a set of solutions that can be examined for trade-offs. For this reason,

decision makers often prefer a set of good solutions considering the multiple objectives [56].

The second general approach is to determine an entire Pareto optimal solution set or a representative

subset. A Pareto optimal set is a set of solutions that are non-dominated with respect to each other.

While moving from one Pareto solution to another, there is always a certain amount of sacrifice in one

objective(s) to achieve a certain amount of gain in the other(s). Pareto optimal solution sets are often

preferred to single solutions because they can be practical when considering real-life problems since

the final solution of the decision maker is always a trade-off. Pareto optimal sets can be of varied

sizes, but the size of the Pareto set usually increases with the increase in the number of objectives

[56].
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In many real life applications the objective function has multiple, often times conflicting, goals. The

set of points that bounds the bottom of the feasible region is known as the Pareto front. The two

approaches to multi-objective optimization considered in this research are: weighted sum method

and finding the Pareto front.

2.8.1 Constrained multi-objective optimization

A constraint is a logical relation among several variables, each taking a value in a given domain. A

constraint thus restricts the possible values that variables can take, it represents some partial informa-

tion about the variables of interest [57].

Several methods have been proposed for handling constraints by GA’s for optimization problems.

[58], [59] grouped these methods into four categories:

1. Methods based on preserving the feasibility of solutions. The idea behind the method is based

on specialized operators which transform feasible parents into feasible offspring.

2. Methods based on penalty functions. Many evolutionary algorithms incorporate a constraint-

handling method based on the concept of exterior penalty functions which penalize infeasible

solutions.

3. Methods which make a clear distinction between feasible and infeasible solutions. There are a

few methods which emphasize the distinction between feasible and infeasible solutions in the

search space.

4. Other hybrid methods. These methods combine evolutionary computation techniques with de-

terministic procedures for numerical optimization problems.

Most constrained problems can be handled by the penalty function method. A measure of the

constraint violation is often useful when handling constraints.

2.8.2 Evolutionary algorithms

Evolutionary algorithm (EA) represents a group of stochastic optimization methods that simulate the

process of natural evolution whose origins can be traced back to the late 1950s. The 1970s saw an
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emergence of several evolutionary methodologies, mainly genetic algorithms, evolutionary program-

ming, and evolution strategies [60]. All of these approaches operate on a set of candidate solutions

and using strong simplifications, this set is subsequently modified by selection and variation. Selec-

tion mimics the competition for reproduction and resources among parents, while variation imitates

the natural capability of creating new offsprings by means of recombination and mutation. Although

these algorithms seem basic, they have proven themselves as a general, robust and powerful search

mechanism. In particular, they possess several characteristics that are desirable for problems invol-

ving multiple conflicting objectives and intractably large and highly complex search spaces. This is a

rapidly growing area of interest [61].

Evolutionary algorithms (EA’s) such as evolution strategies and genetic algorithms have become the

method of choice for optimization problems that are too complex to be solved using deterministic

techniques such as linear programming or gradient (Jacobian) methods. The large number of ap-

plications and the continuously growing interest in this field are due to several advantages of EA’s

compared to gradient based methods for complex problems. EA’s require little knowledge about the

problem being solved, and they are easy to implement, robust, and inherently parallel. To solve a

certain optimization problem, it is enough to require that one is able to evaluate the objective func-

tion for a given set of input parameters. Because of their universality, ease of implementation, and

fitness for parallel computing, EA’s often take less time to find the optimal solution than gradient

methods. However, most real-world problems involve simultaneous optimization of several often

mutually concurrent objectives. Multi-objective EA’s are able to find optimal trade-offs in order to

get a set of solutions that are optimal in an overall sense. In multi-objective optimization, gradient

based methods are often impossible to apply. Multi-objective EA’s, however, can always be applied,

and they inherit all of the favorable properties from their single objective relatives [62].

2.8.3 Genetic algorithm

The concept of GA was developed by Holland and his colleagues in the 1960s and 1970s [63]. GA are

inspired by the evolutionist theory explaining the origin of species. In nature, weak and unfit species

within their environment are faced with extinction by natural selection. The strong ones have greater

opportunity to pass their genes to future generations via reproduction. In the long run, species carrying

the correct combination in their genes become dominant in their population. Sometimes, during the

slow process of evolution, random changes may occur in genes. If these changes provide additional
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advantages in the challenge for survival, new species evolve from the old ones. Unsuccessful changes

are eliminated by natural selection [56].

The GA is an optimization and search technique based on the principles of genetics and natural se-

lection. A GA allows a population composed of many individuals to evolve under specified selection

rules to a state that maximizes the “fitness" (i.e., minimizes the cost function) [64]. As a heuristic

optimization approach, it initially discretizes the allowed parameter space and creates a number of

parameter vectors (called population) distributed randomly over the parameter space. Afterwards,

the value of the objective function (called fitness) for each individual parameter vector is calculated.

From this population, a certain number of individuals with the best fitness are selected, recombined,

and subject to random mutation to form the subsequent generation. The random number generator

is based on an initial arbitrary seed value and therefore allows creating different optimization runs

within the same parameter space. The termination criterion is a given population size and number of

generations [52].

In GA terminology, a solution vector x ∈ X is called an individual or a chromosome. Chromosomes

are made of discrete units called genes. Each gene controls one or more features of the chromosome.

GA operates with a collection of chromosomes, called a population. The population is normally ran-

domly initialized and as the search evolves, the population includes fitter and fitter solutions until it is

dominated by a single solution. GA use two operators to generate new solutions from existing ones:

crossover and mutation. The crossover operator is the most important operator of GA. In crossover,

generally two chromosomes, called parents, are combined together to form new chromosomes, called

offspring. The parents are selected among existing chromosomes in the population with preference

towards fitness so that offspring is expected to inherit good genes which make the parents fitter. By

iteratively applying the crossover operator, genes of good chromosomes are expected to appear more

frequently in the population, eventually leading to convergence to an overall good solution. The muta-

tion operator introduces random changes into characteristics of chromosomes. Mutation is generally

applied at the gene level. In typical GA implementations, the mutation rate (probability of changing

the properties of a gene) is very small and depends on the length of the chromosome. Therefore,

the new chromosome produced by mutation will not be very different from the original one. Muta-

tion plays a critical role in GA. As discussed earlier, crossover leads the population to converge by

making the chromosomes in the population alike. Mutation reintroduces genetic diversity back into

the population and assists the search escape from local optima. Reproduction involves selection of

chromosomes for the next generation. In the most general case, the fitness of an individual deter-
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mines the probability of its survival for the next generation. There are different selection procedures

in GA depending on how the fitness values are used. Proportional selection, ranking, and tournament

selection are the most popular selection procedures [56].

The working principle of a basic GA is as shown in the flowchart of figure 2.5. The objective

functions first have to be defined along with the variables and the GA parameters. The next step for

the GA is to randomly generate the initial population.

 

Define cost function, cost, variables, 
select GA parameters 

 Generate initial population 

Find cost for each chromosome 

Select mates 

Mating 

Mutation 

Convergence check 

done 

Figure 2.5: Flowchart for Pareto optimization using GA

Some of the advantages of a GA include that it:

1. Optimizes with continuous or discrete variables,

2. Does not require derivative information,

3. Simultaneously searches from a wide sampling of the cost surface,

4. Deals with a large number of variables,
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5. Is well suited for parallel computers,

6. Optimizes variables with extremely complex cost surfaces (they can jump out of a local mini-

mum),

7. Provides a list of candidate optimal solutions and not just a single solution,

8. May encode the variables so that the optimization is done with the encoded variables, and

9. Works with numerically generated data, experimental data, or analytical functions.

These advantages are intriguing and produce stunning results when traditional optimization ap-

proaches fail miserably [64].

2.8.3.1 Weighted sum method

The classical approach to solve a multi-objective optimization problem is to assign a weight wn to

each normalized objective function fn so that the problem is converted to a single objective problem

with a scalar objective function as follows:

ob jective =
N

∑
n=1

wn fn, (2.9)

where

fn is objective function n and 0≤ fn ≤ 1,

wn is weighting factor and ∑
N
n=1 wn = 1.

This is called the priori approach since the user is expected to provide the weights. Solving a problem

with the objective function (2.9) for a given weight vector w = (w1,w2, . . . ,wk) yields a single solu-

tion, and if multiple solutions are desired, the problem must be solved multiple times with different

weight combinations. The main difficulty with this approach is selecting a weight vector for each

run.

2.8.3.2 Finding the Pareto front

Pareto-ranking approaches explicitly utilize the concept of Pareto dominance in evaluating fitness or

assigning selection probability to solutions. The population is ranked according to a dominance rule,

and then each solution is assigned a fitness value based on its rank in the population, not its actual
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objective function value. Note that herein all objectives are assumed to be minimized. Therefore,

a lower rank corresponds to a better solution in the following discussions. The first Pareto ranking

technique was proposed by Goldberg [65] as follows:

Step 1: Set i = 1 and T P = P.

Step 2: Identify non-dominated solutions in TP and assig or set them to Fi.

Step 3: Set T P = T PFi. If T P =⊘ go to Step 4, else set i = i+1 and go to Step 2.

Step 4: For every solution x ∈ P at generation t, assign rank r1(x, t) = i if x ∈ Fi.

In the procedure above, F1,F2, . . . are called non-dominated fronts, and F1 is the Pareto front of popu-

lation P.

2.9 CHAPTER SUMMARY

In previously enumerated techniques, the emphasis has been placed on single objective optimization

of a single column of solar collectors in a field array. The single objective optimization has been done

for either maximizing the energy or minimizing cost. In the instant where multi-objective optimiza-

tion was attempted, different choices of weights were not considered and there was no Pareto front

obtained. However this was still based on a single column of solar collectors in a field array. These

gap in solar collector field design brought about the need to formulate a new multi-objective model

that considers multiple columns of solar collectors in a field array and optimizes for two objectives:

maximum energy and minimum cost of investment, using both approaches of different weights for

objective functions and finding a Pareto front.

There is no literature on solar collector problems with multiple columns in a field array and optimizing

for two objectives: maximum energy and minimum cost, using both approaches of different weights

and a Pareto front. This model resembles a real world situation and the solutions obtained from this

model has the potential to be more robust.
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CHAPTER 3 SOLUTION METHODOLOGY

3.1 CHAPTER OVERVIEW

This chapter formulates the multi-objective solar collector placement problem with the necessary

bounds. It also elaborates on the optimization techniques; weighted sum approach and Pareto front;

used to obtain the results.

3.2 MODELING THE PROBLEM

Figure 3.1 shows a multi-row-multi-column of flat-plate solar collectors in a given area. In theory, any

increase in the number of rows and columns will increase the total collector area thereby increasing

the amount of radiation energy that can be received from the sun. Consequently, this increases the

shaded area on the collector surfaces which reduces the amount of radiation energy that can be recei-

ved from the sun. The design of solar collectors in a fixed field involves relationships between the

field and collector parameters and solar radiation data. Field and collector parameters contain field

length Fl , collector length L, field width W , horizontal distance D between collector rows, vertical

distance U between collector columns, collector height H, inclination angle β , solar elevation angle

α , solar azimuth angle γ , number of rows K, number of columns M, and geometric limitations of

these parameters. At a given time, the shaded height Hs(t) and length Ls(t) on the collector are shown

in Figure 3.1. The rest of the collector area is unshaded.

3.2.1 Multi-objective problem formulation

The objective is to formulate a collector row placement problem with economic consideration and

derive an optimal solution using GA. This research presents an multi-objective optimization model

that maximizes solar energy collected from a field array of solar collectors using measured data while
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Figure 3.1: Model of solar collectors in a field

minimizing the associated cost of investment for producing such energy. In this research, the MOOP

is solved firstly by transforming the MOOP into a SOOP using weights (for objectives) and penalties

(for constraints), and also by obtaining the Pareto-optimal solutions that presents the decision maker

with a suitable range of choices to adjust trade off between different objectives [4].

The multi-objective problem is formulated as shown below.

3.2.2 Variables

Determination of the optimum inclination angle is a prerequisite for proper installation of any solar

system [7]. Also reduction of shading by proper spacing of collector rows is important. The variables

to be optimized are the distance (D) between rows of the collectors, the distance (U) between columns

of the collectors and the collector inclination angle (β ) as shown in Figure 3.1. Optimizing these

variables can ensure that maximum amount of energy is collected. The distances between the rows

and columns of the collectors affect the investment.
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3.2.3 Objective functions

1. Energy Objective: This objective is to maximize the total energy collected from the field. From

Figure 3.1, more energy may be obtained from the first row than the other rows because of the

absence of shading. The energy input to the whole field is given by equation (3.1).

max Etotal =
M

∑
i=1

Ei. (3.1)

This energy Etotal is dependent on the solar radiation and the unshaded area of the collectors

which vary with the time of the day. Ei in equation (3.2) is given by [33, 4].

Ei =
T

∑
t=1

G(t)ATi(t), (3.2)

G(t) = G(t) = Gb(t)Rb +Gd(t)Rd , (3.3)

Equation (3.3) represents the global solar radiation taking into account the direct beam and the

diffusion components on a horizontal surface [33, 4, 12].

ATi(t) = HL+(K−1)Si(t), (3.4)

Si(t) =

⎧⎨⎩
HL−Hs(t)Ls(t), i = 1,

HL−Hs(t)Ls(t)−Hs(t)(L−U−Ls(t)), i≥ 2,
(3.5)

where

Etotal is total energy obtained from field in Watt hour (Wh),

Ei is the total energy obtained from column i,

G(t) is hourly global solar radiation in W/m2,

AT (t) is total unshaded collector area in m2 at time t,

Gb(t) is the direct beam hourly solar radiation in W/m2 on a horizontal surface,

Gd(t) is the diffuse solar radiation in W/m2 on a horizontal surface,

Rb is the configuration factor that transforms the direct beam component of the solar radiation

from the horizontal surface to an inclined plane,

Rd is the configuration factor that transforms the diffusion component of the solar radiation

from the horizontal surface to an inclined plane,

H,L are the height and length of each collector in m at time t,

Hs(t),Ls(t) are the shaded height and shaded length of each collector in m at time t,

Si(t) is the unshaded area of each collector in m2 at time t,
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K is an integer and it represents the number of collector rows,

M is total number of collector columns,

Fl is the field length,

α(t) is solar elevation angle in degrees at time t,

γ(t) is solar azimuth angle in degrees at time t,

T is the total number of hours with sunshine in a year, and

t is the current time in hours.

The total energy that can be obtained from the first column E1, can be obtained from equation

(3.2) by substituting equations (3.3) and (3.4).

E1 =
T

∑
t=1

G(t){HL+(K−1)(HL−Hs(t)Ls(t))}

=
T

∑
t=1

G(t){KHL− (K−1)Hs(t)Ls(t)}. (3.6)

Also the total energy from the second to the M-th column is given in equation (3.7).

M

∑
i=2

Ei =
T

∑
t=1

G(t)(M−1){KHL− (K−1)Hs(t)(L−U)}. (3.7)

Substituting equations (3.6) and (3.7) in equation in (3.1) gives the total energy in (3.8).

Etotal =
T

∑
t=1

G(t){KHL− (K−1)Hs(t)Ls(t)}

+ G(t)(M−1){HL+(K−1)(HL−Hs(t)(L−U)}

=
T

∑
t=1

G(t){KHL− (K−1)Hs(t)Ls(t)

+ (M−1)KHL− (M−1)(K−1)Hs(t)(L−U)}

=
T

∑
t=1

G(t){MKHL− (K−1)Hs(t)(Ls(t)+(M−1)(L−U))}, (3.8)

where Hs(t) and Ls(t) are calculated from [33, 4] as

Hs(t) = H

(
sinβ cosγ(t)− (D

H − cosβ ) tanα(t)
cosβ tanα(t)+ sinβ cosγ(t)

)
, (3.9)

Ls(t) = L− Dsinβ sinγ(t)
cosβ tanα(t)+ sinβcosγ(t)

, (3.10)

K = ⌊W/D⌋, 1 M = ⌊Fl/(L+U)⌋ and Fl is the field length. Equation (3.1) is therefore trans-

1The main idea where ⌊ ⌋ appears is to take the lower integer value only at the final solution after the computation has

been carried out with the actual values.
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formed to (3.11).

Etotal = ∑
T
t=1 {Gb(t)Rb +Gd(t)Rd}×{

⌊W
D ⌋HL(⌊ Fl

L+U ⌋)− (⌊W
D ⌋−1)H

(
sinβ cosγ(t)−( D

H−cosβ ) tanα(t)
cosβ tanα(t)+sinβ cosγ(t)

)
×(

L−
(

Dsinβ sinγ(t)
cosβ tanα(t)+sinβ cosγ(t) +

(
⌊ Fl

L+U ⌋−1
)
(L−U)

))}
. (3.11)

The objective function of equation (3.11) represents the maximum energy Etotal that can be

collected from the field. It is the hourly sum of the product of the global solar radiation Gb(t)

in watt per m2 and the total unshaded collector area ATi(t) in m2 in the field in a year.

2. Investment Objective: This objective minimizes the investment which is the cost of the total

collector area and the field area with respect to the variables. This investment is represented by:

C = HLKMCUC +WFlCU f .

The objective to be minimized can be written as in (3.12).

min C = HL⌊W
D
⌋⌊ Fl

L+U
⌋CUC +WFlCUF (3.12)

where

C is the total investment,

CUC and CUF are collector and land costs in unit square meter respectively,

W and Fl are the width and length of the field respectively.

The objective function C in equation (3.12) is the investment which is the sum of the cost of

the total collector area and the cost of the total field area. This objective has to be minimized.

3.2.4 Constraints

The following constraints described in equations (3.13) to (3.17) is added to the problem.

1. The constraint on the inclination angle in equation (3.13) implies that the collectors are neither

parallel nor perpendicular to the ground.

0 < β (t)< 90o. (3.13)
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2. Equations (3.14) and (3.15) ensure that there is always enough distance between the rows and

columns of the collectors for maintenance and cleaning purposes.

Dmin ≤ D, (3.14)

Umin ≤U. (3.15)

3. Equation (3.16) constrains the total energy Etotal obtained from the field to be greater than or

equal to a certain minimum value Emin.

Etotal ≥ Emin, (3.16)

where Etotal and Emin are the total energy and minimum energy to be obtained from the field

respectively.

4. Equation (3.17) keeps the total cost for the setup to be within the available budget.

C ≤Cbudget , (3.17)

where C and Cbudget are the investment for the solar setup and the available budget respectively.

3.2.5 Penalty function

The idea for penalty functions was introduced in [66]. It is the earliest and most commonly used

approach in the EA community to handle constraints. In this method a constrained optimization

problem is transformed into an unconstrained problem by adding a penalty factor to the objective

function value of each infeasible individual so that such individual is penalized for violating one or

more of the constraints. Static penalty and dynamic penalty are types of penalty functions. The

former depends only on the degree of violation, while the later depends also on the current generation

count. In adaptive penalty, information gathered from the search process will be used to control

the amount of penalty added to infeasible individuals. Penalty-based constraint handling techniques

for multi-objective is similar to single objective except that the penalty factor is added to all the

objectives instead of only one objective. A self adaptive penalty function is proposed by [67] to

solve constrained multi-objective optimization problems using evolutionary algorithms. The method

keeps track of the number of feasible individuals in the population to determine the amount of penalty

added to infeasible individuals. If there are a few feasible individuals in the whole population, a larger

penalty factor is added to infeasible solutions. Otherwise, a small penalty factor is used. Self adaptive
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penalty function uses modified objective function values instead of using the original objective values.

The modified objective value has two components: distance measure and adaptive penalty [68, 69,

70].

In this research, a static penalty function is used. The penalty function penalizes the total energy Etotal

obtained from the field when it goes below a certain minimum value Emin as shown in the constraint

equation (3.16). It also penalizes the total cost for the setup when it exceeds the available budget as

given in constraint equation (3.17).

3.3 METHODS OF SOLVING MULTI-OBJECTIVE PROBLEMS

In multi-objective optimization (MOO), there is no single best solution to the conflicting objectives.

Two approaches are used to solve the multi-objective optimization problem (MOOP).

3.3.1 Weighted sum approach

The easier of the two approaches to multi-objective optimization (MOO) is to assign a weight to

each function and sum them as given in equation (2.9). The problem with this method is how to

determine the appropriate values of wn. Different weights produce different results for the same fn.

This approach requires assumptions on the relative worth of the objective functions prior to running

the GA. This approach is not computationally intensive and results in a single best solution based on

the assigned weights.

To solve the above multi-objective problem, weights are assigned to the two objectives as in equation

(3.18) below. Suitable values are then chosen for the weights and the resulting function is then

maximized.

In this work, three different set of weights are chosen where each set add up to unity and their results

compared.

max P = λ1Etotal−λ2C, (3.18)

where P is the resulting fitness value, Etotal is the energy obtained, and C is cost in Rands (R) of

collector and field.

The solar optimization problem is of the form:

min
x

f(x). (3.19)
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subject to inequality constraints in the form

A x≤ b (3.20)

and equality constraints in the form

Aeq x = beq (3.21)

and boundary constraints of the form

lb≤ x≤ ub (3.22)

x = (D,u,β )T [71].

The objective function f is defined as in equation (3.17).

In order to maximize f(x), minimize f (x), because the point at which the minimum of f (x) occurs

is the same as the point at which the maximum of f(x) occurs. In this paper, the objective to be

maximized is assigned a negative value. The objective functions are weighted and the constrained

optimization problem is converted to an unconstrained problem through the use of a penalty function.

The constraints are included in the penalty function and penalize the objectives when they violate the

constraints.

3.3.2 Pareto optimization using GA

In multi-objective optimization (MOO), there is usually no single solution that is optimum with res-

pect to all objectives. Consequently in this research, there are a set of optimal solutions, known as

Pareto optimal solutions, non-inferior solutions, or effective solutions. Without additional informa-

tion, all these solutions are equally satisfactory. The goal here is to find as many of these solutions

as possible. If reallocation of resources cannot improve one objective or cost without deteriorating

another objective (cost), then the solution is Pareto optimal.

The GA used in this research is a method for solving both constrained and unconstrained optimization

problems that is based on natural selection, the process that drives biological evolution. The GA

repeatedly modifies a population of individual solutions. At each step, the GA selects individuals at

random from the current population to be parents and uses them to produce the children for the next

generation. Over successive generations, the population “evolves" toward an optimal solution. The

GA can also be applied to solve a variety of optimization problems that are not well suited for standard

optimization algorithms, including problems in which the objective function is discontinuous, non-

differentiable, stochastic, or highly nonlinear.
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Chapter 3 Solution methodology

The GA uses three main types of rules at each step to create the next generation from the current

population:

1. Selection rules select the individuals, called parents, that contribute to the population at the next

generation.

2. Crossover rules combine two parents to form children for the next generation.

3. Mutation rules apply random changes to individual parents to form children.

To solve the problem in this paper using Pareto-based GA optimization, the following flowchart in

Figure 3.2 is followed.

 

   objective1 = Etotal (population)  objective2 = C (population) 

 [cost, index] = sort{cost} 

reorder based on sorting 
objective2 = objective2 (index)   population = (population) 

 rank = 1 

assign chromosomes on Pareto front 
    objective = rank 

remove all chromosomes assigned the 
value of rank from the population 

  rank = rank + 1 

                           for chromosome n 

objective (n) = objective (n) + 1 - ∑
=

var

1
var/)(2

N

m
NnmP  

tournament selection 

mutation 

  converged 
no 

  Yes 

Figure 3.2: Flowchart for Pareto optimization using GA

The objective functions are as defined in equations (3.11) and (3.12). The initial population is defined

as a Npop by Nvar matrix, where Npop is the population size and Nvar is the number of variables.
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Chapter 3 Solution methodology

The objective functions are then evaluated using the initial population and sorted in order of non-

dominance. The dominated solutions are discarded and the non-dominated solutions are kept and

used to select mates to produce offspring for the next generation. Crossover and mutation are also

carried out on the resulting population to maintain diversity. These procedure is continued for a

specified number of generation until convergence occurs or the stopping criteria is reached.

3.4 DATA FOR SIMULATION

The following data gives variations of the solar radiation for the year 2011 as supplied in the Agrome-

teorology Hourly Data Reports by the Agricultural Research Council-Institute for Soil, Climate and

Water (ARC-ISCW) Pretoria in South Africa. The necessary angles used in the simulation are also

given.

1. Average daily solar radiation data: This is the average solar radiation per day from January to

December 2011. The average daily values in watts are as shown in tables 3.1 and 3.2. The

actual hourly values from January to December 2011 are available in the Appendix tables A.1

to A.4.

2. Solar radiation data (Gb): This is the direct beam component data as reported in the Agrometeo-

rology Hourly Data Reports by the Agricultural Research Council-Institute for Soil, Climate

and Water (ARC-ISCW) Pretoria in South Africa with latitude 25.45o S. The data used are

hourly solar radiation data from January 1 to December 31, 2011. The average of these hourly

values are calculated monthly resulting in 12 typical days representing the whole year as shown

in Table 3.3. These average values are used in this simulation.

3. Solar radiation data (Gd): This is the diffusion component data sourced from Solar Radiation

Research Laboratory (SRRL) Baseline Measurement System (BMS) with latitude 39.74o N

[72]. The data are from January 1 to December 31, 2011 and are used in a similar way to Gb.

Table 3.4 shows the values used in this simulation.
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Table 3.1: The average daily solar radiation (Watts) from January to June 2011

Day Jan Feb Mar Apr May Jun

1 341.79 265.77 329.48 104.5 152.14 357.02

2 287.49 299.89 280.8 29.2 376.88 297.36

3 162.42 230.86 238.51 228.84 79.45 358.91

4 214.74 239.63 195.89 118.47 301.23 343.74

5 75.35 307.94 157.49 72.02 233.05 362.35

6 248.69 286.14 265.37 133.64 234.39 358.75

7 310 265.33 323.14 166.11 333.07 358.02

8 230.51 296.17 319.04 162.18 341.25 272.03

9 180.21 321.36 300.92 142.24 247.37 173.34

10 311.42 345.58 261.69 245.18 294.42 121

11 307.16 305.04 244.23 130.55 305.89 119.59

12 257.67 321.48 292.49 210.22 305.58 167.52

13 238.57 327.51 290.26 300.95 260.52 167.03

14 255.07 108.08 241.78 239.71 279.53 173.55

15 280.11 249.01 231.39 230.15 354.09 175.21

16 249.09 225.82 203.51 206.68 373.16 178.05

17 206.28 254.42 234.77 203.84 279.63 174.47

18 151.44 267.94 288.11 261.19 269.73 176.77

19 262.95 327.16 166.8 290.06 266.95 175.24

20 168.33 278.33 201.76 191.07 273.18 170.15

21 111.5 332.82 239.59 294.91 321.2 170.43

22 226.9 275.97 163.3 271 332.99 168.85

23 269.39 236.54 255.28 194.96 331.57 162.26

24 204.82 295.5 89.75 96.23 306.67 159.6

25 206.68 68.87 236.78 151.62 362.72 163.02

26 159.03 217.89 221.44 98.77 309.66 156.79

27 151.03 190.35 152.47 104.49 302.61 156.98

28 287.77 305.53 170.75 343.03 346.27 84.26

29 216.56 0 86.61 248.77 301.23 83.04

30 169.87 0 227.24 321.45 187.37 135.94

31 228.47 0 163.42 0 218.25 0
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Table 3.2: The average daily solar radiation (Watts) from July to December 2011

Day Jul Aug Sep Oct Nov Dec

1 136.4 175.85 215.07 197.13 225.93 222.5

2 95.56 186.32 216.78 199.43 242.96 171.42

3 160.34 181.51 208.39 195.51 246.2 149.75

4 101.85 185.13 220.36 196.89 196.27 260.46

5 94.71 183.28 226.19 192.5 205.76 225.39

6 154.08 173.9 216.54 199.37 182 216.8

7 152.72 173.72 204.6 203.74 176.16 140.46

8 140.29 179.65 209.11 216.41 208.44 218.28

9 157.47 188.51 208.58 211.84 78.96 248.92

10 170.36 198.43 193.15 204.38 256.21 252.36

11 170.61 198.91 138.81 217.34 223.65 249.35

12 172.65 194.2 227.69 190.51 240.86 75.38

13 151.47 190.22 231.81 154.87 242.64 89.02

14 171.66 194.24 185.76 108.17 189.73 101.57

15 155.8 207.01 195.84 242.24 102.05 41.03

16 176.17 200.56 177.53 233.9 168.07 146.75

17 179.68 196.74 167.5 170.14 155.68 278.92

18 176.48 191.45 194.4 233.56 32.82 205.18

19 174.77 186.26 199.2 169.63 131.83 242.32

20 175.08 167.13 190.69 242.88 237.81 229.61

21 173.68 205.63 146.49 233.45 242.46 204.88

22 139.29 188.63 210.7 194.12 111.47 243.03

23 158.66 188.69 190.65 170.82 229.96 238.41

24 173.76 188.55 183.19 143.99 151.97 230.4

25 138.22 187.52 195.05 254.29 189.61 278.99

26 140.91 182.24 196.21 260.33 161.78 185.74

27 168.58 199.65 149.24 236.66 235.37 176.11

28 173.55 196.58 95.52 130.35 199.97 268.18

29 169 189.84 193.89 194.92 246.12 191.49

30 150.27 207.19 198.88 240.71 108.73 129.66

31 150.52 220.96 0 192.4 0 219.03
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Table 3.3: Average direct beam solar radiation in different months (Watts/m2)

Month 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12

1 0.026 0.025 0.024 0.032 0.037 4.819 56.177 220.212 346.680 459.825 652.087 640.704

2 0.028 0.028 0.023 0.034 0.037 0.708 35.816 237.351 435.576 666.396 768.580 817.756

3 0.031 0.027 0.027 0.037 0.041 0.050 22.825 172.382 368.343 509.525 664.086 714.984

4 0.037 0.033 0.033 0.045 0.047 0.050 11.161 148.756 427.636 678.904 497.049 317.110

5 0.035 0.031 0.035 0.041 0.048 0.049 5.260 118.909 451.317 911.986 1,185.356 218.526

6 0.027 0.024 0.030 0.030 0.034 0.037 1.265 76.084 281.779 522.299 726.386 802.124

7 0.025 0.021 0.025 0.027 0.029 0.030 0.898 65.002 221.111 389.756 513.780 579.958

8 0.017 0.020 0.020 0.022 0.027 0.029 5.362 93.371 279.480 454.127 593.070 675.818

9 0.015 0.018 0.015 0.020 0.023 0.169 27.554 155.564 316.948 471.351 591.833 659.065

10 0.016 0.016 0.017 0.018 0.022 3.766 66.582 206.795 347.046 500.564 577.531 654.830

11 0.020 0.020 0.017 0.022 0.028 10.056 75.010 207.739 345.641 469.269 565.292 619.686

12 0.019 0.017 0.016 0.024 0.026 9.727 69.869 213.668 333.985 441.889 518.421 584.957

Month 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 - 23 23 - 24

1 758.550 689.758 650.459 461.896 298.895 131.823 24.618 0.36 0.027 0.027 0.028 0.03

2 875.604 807.096 637.835 507.627 385.673 181.824 24.923 0.065 0.029 0.031 0.033 0.031

3 757.077 699.667 621.719 494.597 305.015 138.842 7.240 0.022 0.027 0.035 0.034 0.032

4 384.751 329.425 481.906 608.980 283.715 53.342 0.270 0.026 0.033 0.035 0.034 0.039

5 312.987 829.751 1,183.700 808.054 287.060 22.538 0.023 0.032 0.038 0.036 0.037 0.035

6 453.913 771.199 617.710 401.718 137.022 8.430 0.022 0.030 0.031 0.028 0.029 0.026

7 573.567 534.193 422.238 290.559 119.483 8.833 0.016 0.026 0.026 0.026 0.026 0.025

8 694.567 647.374 539.926 376.228 188.338 26.394 0.034 0.019 0.022 0.021 0.020 0.019

9 673.716 622.888 508.619 364.246 193.094 44.758 0.246 0.018 0.022 0.020 0.018 0.019

10 664.194 637.250 511.813 379.629 211.591 61.664 1.700 0.013 0.019 0.020 0.019 0.016

11 619.152 539.271 428.625 325.925 201.641 81.637 8.027 0.016 0.019 0.019 0.022 0.020

12 607.978 613.373 557.526 399.691 260.829 119.084 15.600 0.112 0.018 0.021 0.021 0.021
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Table 3.4: Average diffuse solar radiation in different months (Watts/m2)

Month 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12

1 0 0 0 0 0 0 0 21 53 92 121 135

2 0 0 0 0 0 0 6 31 70 134 161 158

3 0 0 0 0 0 2 31 74 113 154 200 232

4 0 0 0 0 0 21 57 104 146 201 239 256

5 0 0 0 0 8 32 91 139 186 219 236 240

6 0 0 0 0 13 41 82 118 140 149 180 209

7 0 0 0 0 10 32 67 83 120 125 165 209

8 0 0 0 0 0 19 44 71 99 120 170 185

9 0 0 0 0 0 12 35 73 120 153 156 157

10 0 0 0 0 0 0 20 48 83 106 102 115

11 0 0 0 0 0 0 8 32 76 108 120 121

12 0 0 0 0 0 0 0 22 54 95 118 120

Month 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 - 23 23 - 24

1 136 128 101 65 32 4 0 0 0 0 0 0

2 184 167 131 96 61 27 0 0 0 0 0 0

3 242 227 177 144 93 41 9 0 0 0 0 0

4 248 228 196 148 103 60 24 0 0 0 0 0

5 249 265 208 174 126 80 29 5 0 0 0 0

6 228 259 221 198 150 90 48 18 0 0 0 0

7 219 200 178 155 120 81 38 14 0 0 0 0

8 196 216 191 156 118 74 29 2 0 0 0 0

9 167 165 154 119 83 41 8 0 0 0 0 0

10 122 130 112 71 43 14 0 0 0 0 0 0

11 136 113 87 59 29 0 0 0 0 0 0 0

12 115 108 84 52 22 0 0 0 0 0 0 0
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4. Solar elevation angle: is the angle between the direction of the geometric center of the suns

apparent disk and the (idealized) horizon [2, 33]. It can be calculated using the following

formula in equation (3.23).

sinα = sinφ sind + cosφ cosd cosω (3.23)

where φ is latitude of location, d is declination angle and ω is the azimuth angle.

5. Declination angle: is the angular distance at solar noon between the sun and the equator, north

positive. It depends on the day of the year [73], and is calculated from equation (3.24) below

[74, 75]:

d = 23.45sin(360
284+N

365
) (3.24)

where N is the number of days from January 1 (the Julian day).

6. Rb: This factor transforms the direct beam component of the solar radiation from the horizontal

surface to an inclined plane. It is represented mathematically as shown in equation (3.25)

[10, 18, 19, 47, 76, 77]:

Rb =
cosθ

cosθz
, (3.25)

where θ and θz are the incident angles for beam radiation on tilted and horizontal surfaces,

respectively and cosθz is given by equation (3.26) [4, 33]:

cosθ = cosβ sinα + sinβ cosα cosω. (3.26)

7. Rd : This factor transforms the diffusion component of the solar radiation from the horizontal

surface to an inclined plane. It is represented mathematically as shown in equation (3.27)

[10, 11, 18, 77].

Rd =
1+ cosβ

2
(3.27)

3.5 CHOICE OF OPTIMIZATION TIME PERIOD

The time period is 1 year which is 12 months. However this time is averaged into 12 typical days

where each day represent 1 month. This is done to reduce computational time and effort. This

approximation is good because a day is not chosen at random in a month but the each day in the

month contributes to this approximation. Hence the error in the results are insignificant.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

45

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 3 Solution methodology

3.6 SOLVING THE PROBLEM WITH MATLAB

The MOOP is solved with the Matlab environment. Matlab has a GA programming function which

makes it easier to use. GA works with random population guesses and so does not give the same

results each time but each result is a very good approximation of the true optimal solution. The

algorithm can be summarized from Figure 3.2.

The Matlab environment is summarized in Table 3.5.

Table 3.5: The Matlab simulation environment

Component Description

Computer Intel C2Q Top End System

Processor Intel Core2, Quad CPU Q8200, 2.33GHz

Random access memory 2GB

Operating system Windows XP

Matlab Version Version R2008a
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CHAPTER 4 RESULTS

4.1 CHAPTER OVERVIEW

The optimal design results obtained using both weighted sum approach and Pareto optimization are

presented in this chapter. The results are obtained over a time period of 1 year and the solar radiation

data is the monthly hourly average for 2011. Figure 4.1 shows the hourly solar radiation average

throughout 2011 while Figure 4.2 shows the solar elevation angle and the monthly hourly average

solar radiation indicated by 12 typical lines representing 24 hours for each month.

For summer months (represented by the bold colored lines) there is high solar radiation and for winter

months (represented by the thinner colored lines), the solar radiation fluctuates drastically between

high and low values. In Pretoria, South Africa, the ambient temperature is affected during winter but

the solar radiation remains fairly constant.

4.1.1 Results from the weighted sum approach

The optimization results using the weighted sum approach are summarized in Table 4.1. The follo-

wing general parameters which are typical of a real world scenario are used:

L = 30m,Fl = 100,W = 200m,H = 2m,CUC = $200/m2,CUF = $150/m2 and the time frame for

optimization is 1 year.

The constraints for the variables and the objective functions in this optimization are defined as fol-

lows:

1. The distance between the rows and the columns of the solar collectors are constrained to equa-
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Figure 4.1: Variation of average hourly solar radiation for 2011

tions (4.1) and (4.2),

0.8m≤ D≤ 2.5m, (4.1)

0.8m≤U ≤ 2.5m. (4.2)

As indicated earlier, the lower bound is to ensure that there is always enough distance between

the rows and columns of the collectors for maintenance and cleaning purposes while the upper

bound a land constraint to ensure effective utilization of the land area.

2. The energy objective is constrained to equation (4.3),

Etotal ≥ 1MWh. (4.3)

1MWh is the minimum amount of energy that can be produced during periods of non-zero solar

radiation. If this constraint is violated the objective function is penalized.
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 Figure 4.2: Average hourly solar radiation per month for 2011

3. The cost objective must never exceed the value as specified by equation (4.4),

C ≤ $6.5×106. (4.4)

If the objective function exceeds this maximum cost value during runtime, it is penalized.

Table 4.1: Numerical results for the weighted sum approach

Energy Investment

λ1 λ2 D (m) U (m) β (o) K M (GWh) (106)$

0 1 2.4158 2.0621 22.315 82 3 0.8862 3.5772

0.1 0.9 2.2101 1.4942 20.463 90 3 1.0392 3.7621

0.3 0.7 2.1414 1.8844 29.776 93 3 0.93548 3.7576

0.5 0.5 2.1342 1.495 25.022 93 3 0.91633 3.7536

0.7 0.3 2.0652 1.2466 27.739 96 3 1.07894 3.8596

0.9 0.1 2.0098 1.1926 21.357 99 3 1.1138 3.9141

1 0 1.9888 1.1828 23.765 100 3 1.1147 4.0609

The hourly results for the energy objective function with each set of weights are presented in Tables

4.2 to 4.8 while the cost or investment objective is as given in the last column of Table 4.1.
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Table 4.2: Average energy per hour for the whole year (MW)using weights [0 1] for objectives

Month 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12

1 0 0 0 0 0 0 0.43055 2.5431 5.1518 8.0005 12.388 12.525

2 0 0 0 0 0 0 0.17306 2.1317 5.4629 10.179 13.062 14.379

3 0 0 0 0 0 0 0.026113 0.86392 3.0791 5.5704 8.3346 9.3667

4 0 0 0 0 0 0 0.011059 0.71928 3.4914 7.2802 6.1299 4.0842

5 0 0 0 0 0 0 0.025600 1.072 5.6758 13.961 20.184 3.8498

6 0 0 0 0 0 0 0.0097074 0.87911 4.1886 9.0893 13.801 15.683

7 0 0 0 0 0 0 0.0060807 0.70238 3.1511 6.5844 9.5342 11.094

8 0 0 0 0 0 0 0.014628 0.6334 2.8732 5.8885 8.692 10.294

9 0 0 0 0 0 0 0.010209 0.63982 2.3325 4.6454 6.7616 7.8807

10 0 0 0 0 0 0 0.19533 1.449 3.6499 6.614 8.6103 10.142

11 0 0 0 0 0 0 0.51772 2.268 4.9591 7.9673 10.534 11.9

12 0 0 0 0 0 0 0.53261 2.4606 4.9548 7.68 9.8407 11.427

Etotal 0 0 0 0 0 0 1.9527 16.362 48.97 93.46 127.87 122.63

Month 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 - 23 23 - 24

1 14.41 12.001 9.6660 5.3342 2.2908 0.21656 0 0 0 0 0 0

2 14.88 12.328 7.9996 4.5590 1.8635 0 0 0 0 0 0 0

3 9.5017 7.6491 5.1971 2.4787 0.34895 0 0 0 0 0 0 0

4 4.7449 3.5326 3.9344 2.9446 0.28111 0 0 0 0 0 0 0

5 5.3296 12.702 14.886 7.2851 1.397 0 0 0 0 0 0 0

6 8.6244 13.421 9.1822 4.6417 1.0512 0.013939 0 0 0 0 0 0

7 10.644 9.0245 6.0174 3.1397 0.80929 0.004102 0 0 0 0 0 0

8 10.18 8.3942 5.5507 2.5522 0.51379 0 0 0 0 0 0 0

9 7.6971 6.1389 3.743 1.4981 0.071543 0 0 0 0 0 0 0

10 9.9024 8.42 5.3827 2.66 0.62075 0 0 0 0 0 0 0

11 11.537 9.1557 6.1497 3.5583 1.3917 0.051216 0 0 0 0 0 0

12 11.541 10.66 8.2711 4.6028 1.9883 0.1888 0 0 0 0 0 0

Etotal 118.99 113.43 85.98 45.254 12.628 0.474617 0 0 0 0 0 0
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Table 4.3: Average energy per hour for the whole year (MW)using weights [0.1 0.9] for objectives

Month 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12

1 0 0 0 0 0 0 0.43006 2.5439 5.1552 8.0073 12.4 12.539

2 0 0 0 0 0 0 0.17304 2.1329 5.4672 10.188 13.074 14.394

3 0 0 0 0 0 0 0.026209 0.86482 3.082 5.5757 8.3429 9.3763

4 0 0 0 0 0 0 0.011106 0.72005 3.4947 7.2872 6.1359 4.0884

5 0 0 0 0 0 0 0.025598 1.0726 5.6802 13.974 20.204 3.8539

6 0 0 0 0 0 0 0.0096963 0.87936 4.1914 9.097 13.815 15.699

7 0 0 0 0 0 0 0.0060757 0.70265 3.1533 6.5901 9.5435 11.106

8 0 0 0 0 0 0 0.014644 0.63391 2.8757 5.8939 8.7006 10.305

9 0 0 0 0 0 0 0.010329 0.6406 2.3348 4.6499 6.7683 7.8887

10 0 0 0 0 0 0 0.19552 1.4501 3.653 6.6201 8.6188 10.152

11 0 0 0 0 0 0 0.51727 2.2688 4.9626 7.9741 10.544 11.913

12 0 0 0 0 0 0 0.53201 2.4613 4.9581 7.6866 9.8503 11.439

Etotal 0 0 0 0 0 0 1.9516 16.371 49.008 93.544 128 122.76

Month 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 - 23 23 - 24

1 14.424 12.011 9.6725 5.3358 2.2882 0 0 0 0 0 0 0

2 14.895 12.339 8.0059 4.5616 1.8634 0 0 0 0 0 0 0

3 9.5111 7.6565 5.202 2.4813 0.35023 0 0 0 0 0 0 0

4 4.7496 3.536 3.9382 2.9478 0.28232 0 0 0 0 0 0 0

5 5.3348 12.714 14.898 7.2892 1.3969 0 0 0 0 0 0 0

6 8.6327 13.432 9.1883 4.643 1.05 0 0 0 0 0 0 0

7 10.654 9.0323 6.0217 3.1409 0.80864 0 0 0 0 0 0 0

8 10.19 8.402 5.5555 2.5543 0.51436 0 0 0 0 0 0 0

9 7.7047 6.1448 3.7467 1.4999 0.072382 0 0 0 0 0 0 0

10 9.9121 8.4278 5.3873 2.662 0.62133 0 0 0 0 0 0 0

11 11.548 9.1636 6.154 3.5596 1.3905 0 0 0 0 0 0 0

12 11.552 10.669 8.2766 4.6042 1.9861 0 0 0 0 0 0 0

Etotal 119.11 113.53 86.046 45.279 12.624 0 0 0 0 0 0 0
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Table 4.4: Average energy per hour for the whole year (MW)using weights [0.3 0.7] for objectives

Month 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12

1 0 0 0 0 0 0 0.42736 2.5276 5.1219 7.955 12.319 12.456

2 0 0 0 0 0 0 0.17194 2.1188 5.4307 10.12 12.986 14.297

3 0 0 0 0 0 0 0.025997 0.85863 3.0602 5.5365 8.2841 9.31

4 0 0 0 0 0 0 0.011013 0.71487 3.4699 7.2358 6.0926 4.0594

5 0 0 0 0 0 0 0.025434 1.0656 5.6423 13.88 20.068 3.8278

6 0 0 0 0 0 0 0.0096355 0.87376 4.1643 9.0376 13.724 15.596

7 0 0 0 0 0 0 0.0060375 0.69813 3.1328 6.5467 9.4803 11.032

8 0 0 0 0 0 0 0.014545 0.62957 2.856 5.8534 8.6406 10.234

9 0 0 0 0 0 0 0.010196 0.63584 2.318 4.6167 6.72 7.8323

10 0 0 0 0 0 0 0.19421 1.4402 3.628 6.5747 8.5595 10.082

11 0 0 0 0 0 0 0.51402 2.2542 4.9302 7.9217 10.474 11.834

12 0 0 0 0 0 0 0.52867 2.4456 4.926 7.6364 9.7856 11.364

Etotal 0 0 0 0 0 0 1.9391 16.263 48.68 92.914 127.13 121.92

Month 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 - 23 23 - 24

1 14.33 11.933 9.6099 5.3017 2.2738 0 0 0 0 0 0 0

2 14.794 12.256 7.9525 4.5315 1.8515 0 0 0 0 0 0 0

3 9.4441 7.6026 5.1653 2.4636 0.34741 0 0 0 0 0 0 0

4 4.7161 3.511 3.9103 2.9265 0.27994 0 0 0 0 0 0 0

5 5.2988 12.628 14.799 7.2412 1.388 0 0 0 0 0 0 0

6 8.5761 13.344 9.1289 4.6134 1.0434 0 0 0 0 0 0 0

7 10.584 8.9729 5.9824 3.1206 0.80355 0 0 0 0 0 0 0

8 10.119 8.3443 5.5174 2.5368 0.51088 0 0 0 0 0 0 0

9 7.6498 6.101 3.7197 1.4888 0.071451 0 0 0 0 0 0 0

10 9.8439 8.37 5.3505 2.6439 0.61717 0 0 0 0 0 0 0

11 11.472 9.1034 6.1139 3.5367 1.3818 0 0 0 0 0 0 0

12 11.476 10.6 8.2231 4.5748 1.9736 0 0 0 0 0 0 0

Etotal 118.3 112.77 85.472 44.98 12.543 0 0 0 0 0 0 0
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Table 4.5: Average energy per hour for the whole year (MW)using weights [0.5 0.5] for objectives

Month 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12

1 0 0 0 0 0 0 0.43298 2.5617 5.1953 8.0733 12.505 12.645

2 0 0 0 0 0 0 0.17495 2.1572 5.5305 10.307 13.228 14.563

3 0 0 0 0 0 0 0.027572 0.88454 3.1405 5.674 8.4852 9.5356

4 0 0 0 0 0 0 0.011778 0.73711 3.5627 7.4181 6.2425 4.159

5 0 0 0 0 0 0 0.025878 1.0848 5.7457 14.136 20.44 3.899

6 0 0 0 0 0 0 0.0097621 0.88553 4.224 9.1719 13.932 15.832

7 0 0 0 0 0 0 0.0061225 0.70847 3.1816 6.6517 9.6343 11.212

8 0 0 0 0 0 0 0.014944 0.64426 2.9192 5.9803 8.8262 10.454

9 0 0 0 0 0 0 0.012045 0.65855 2.3852 4.7406 6.8948 8.0352

10 0 0 0 0 0 0 0.19922 1.4729 3.7068 6.7149 8.7407 10.296

11 0 0 0 0 0 0 0.52118 2.2872 5.0062 8.0474 10.643 12.025

12 0 0 0 0 0 0 0.53564 2.4787 4.997 7.7504 9.9342 11.537

Etotal 0 0 0 0 0 0 1.9527 16.362 48.97 93.46 127.87 122.63

Month 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 - 23 23 - 24

1 14.547 12.11 9.7478 5.3733 2.3037 0.36823 0 0 0 0 0 0

2 15.07 12.483 8.0986 4.6136 1.8839 0 0 0 0 0 0 0

3 9.6734 7.7913 5.3008 2.5379 0.36845 0 0 0 0 0 0 0

4 4.8321 3.5995 4.0148 3.0176 0.2994 0 0 0 0 0 0 0

5 5.3971 12.862 15.07 7.3718 1.4122 0 0 0 0 0 0 0

6 8.7058 13.543 9.2597 4.6756 1.0571 0.023634 0 0 0 0 0 0

7 10.755 9.1167 6.0756 3.1669 0.81486 0.014768 0 0 0 0 0 0

8 10.337 8.5251 5.6396 2.596 0.52491 0 0 0 0 0 0 0

9 7.8487 6.2647 3.8277 1.542 0.084412 0 0 0 0 0 0 0

10 10.052 8.5485 5.4667 2.7039 0.63311 0 0 0 0 0 0 0

11 11.657 9.2478 6.2081 3.5884 1.401 0.14924 0 0 0 0 0 0

12 11.65 10.758 8.3415 4.6368 1.9996 0.3262 0 0 0 0 0 0

Etotal 118.99 113.43 85.98 45.254 12.628 0.474617 0 0 0 0 0 0
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Table 4.6: Average energy per hour for the whole year (MW)using weights [0.7 0.3] for objectives

Month 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12

1 0 0 0 0 0 0 0.33479 3.565 5.1687 8.0795 11.506 13.646

2 0 0 0 0 0 0 0.17465 2.1529 5.5187 10.284 13.198 14.531

3 0 0 0 0 0 0 0.026699 0.87544 3.1171 5.6374 8.434 9.4788

4 0 0 0 0 0 0 0.011336 0.72906 3.5349 7.3684 6.2035 4.1334

5 0 0 0 0 0 0 0.025835 1.0827 5.7336 14.106 20.395 3.8903

6 0 0 0 0 0 0 0.0097803 0.88666 4.2267 9.1745 13.933 15.834

7 0 0 0 0 0 0 0.0061289 0.70869 3.1809 6.6482 9.628 11.205

8 0 0 0 0 0 0 0.014810 0.64064 2.9055 5.9544 8.7894 10.41

9 0 0 0 0 0 0 0.010802 0.64933 2.363 4.7037 6.8453 7.9784

10 0 0 0 0 0 0 0.19767 1.4653 3.6904 6.6874 8.7061 10.255

11 0 0 0 0 0 0 0.52179 2.2882 5.0057 8.0441 10.637 12.018

12 0 0 0 0 0 0 0.53662 2.4818 5 7.7522 9.9348 11.537

Etotal 0 0 0 0 0 0 1.9699 16.526 49.475 94.436 129.21 123.92

Month 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 - 23 23 - 24

1 14.548 12.114 9.754 5.3801 2.308 0.23875 0 0 0 0 0 0

2 15.036 12.456 8.0813 4.6043 1.8807 0 0 0 0 0 0 0

3 9.6151 7.7411 5.2612 2.5118 0.35678 0 0 0 0 0 0 0

4 4.8019 3.5754 3.9835 2.9846 0.28816 0 0 0 0 0 0 0

5 5.3852 12.834 15.038 7.3574 1.4099 0 0 0 0 0 0 0

6 8.7067 13.547 9.2657 4.6815 1.0591 0.015358 0 0 0 0 0 0

7 10.748 9.112 6.0743 3.1679 0.81571 0.0055948 0 0 0 0 0 0

8 10.294 8.4881 5.6131 2.5814 0.52019 0 0 0 0 0 0 0

9 7.7924 6.2159 3.792 1.5204 0.075703 0 0 0 0 0 0 0

10 10.012 8.5135 5.4426 2.6899 0.62816 0 0 0 0 0 0 0

11 11.65 9.2441 6.2075 3.59 1.4027 0.065017 0 0 0 0 0 0

12 11.651 10.761 8.3465 4.6425 2.0033 0.20886 0 0 0 0 0 0

Etotal 120.24 114.6 86.86 45.712 12.748 0.5335798 0 0 0 0 0 0
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Table 4.7: Average energy per hour for the whole year (MW)using weights [0.9 0.1] for objectives

Month 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12

1 0 0 0 0 0 0 0.45013 2.6594 5.3824 8.3542 12.933 13.078

2 0 0 0 0 0 0 0.17965 2.2139 5.6744 10.574 13.57 14.941

3 0 0 0 0 0 0 0.025183 0.881 3.1617 5.7344 8.5895 9.6565

4 0 0 0 0 0 0 0.010498 0.73246 3.5824 7.4905 6.3144 4.2087

5 0 0 0 0 0 0 0.026580 1.1135 5.8959 14.504 20.971 4.0004

6 0 0 0 0 0 0 0.010149 0.91931 4.3762 9.4913 14.409 16.375

7 0 0 0 0 0 0 0.0063483 0.73306 3.2863 6.8643 9.9382 11.566

8 0 0 0 0 0 0 0.014933 0.65269 2.968 6.0894 8.9935 10.654

9 0 0 0 0 0 0 0.0077512 0.64697 2.3853 4.7682 6.9511 8.1052

10 0 0 0 0 0 0 0.19997 1.4946 3.7727 6.8431 8.9129 10.5

11 0 0 0 0 0 0 0.54063 2.3677 5.1732 8.3078 10.982 12.409

12 0 0 0 0 0 0 0.5568 2.5728 5.1762 8.019 10.273 11.93

Etotal 0 0 0 0 0 0 2.0286 16.987 50.835 97.04 132.84 127.42

Month 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 - 23 23 - 24

1 15.045 12.532 10.099 5.5781 2.3949 0.88598 0 0 0 0 0 0

2 15.459 12.807 8.3092 4.7349 1.9346 0.63136 0 0 0 0 0 0

3 9.7922 7.8743 5.3365 2.5278 0.33653 0 0 0 0 0 0 0

4 4.8878 3.6346 4.037 2.9986 0.26685 0 0 0 0 0 0 0

5 5.5373 13.196 15.464 7.5669 1.4505 0.079130 0 0 0 0 0 0

6 9.0041 14.014 9.5934 4.8539 1.099 0.056737 0 0 0 0 0 0

7 11.095 9.408 6.2756 3.2768 0.84491 0.050097 0 0 0 0 0 0

8 10.533 8.6807 5.7339 2.6299 0.52453 0.031235 0 0 0 0 0 0

9 7.9128 6.3012 3.8277 1.5149 0.054320 0 0 0 0 0 0 0

10 10.25 8.7117 5.5639 2.7437 0.63547 0.086556 0 0 0 0 0 0

11 12.029 9.5471 6.4153 3.7148 1.4533 0.47522 0 0 0 0 0 0

12 12.048 11.131 8.6407 4.8128 2.0786 0.79449 0 0 0 0 0 0

Etotal 123.59 117.84 89.296 46.953 13.073 2.9303 0 0 0 0 0 0

D
epartm

entofE
lectrical,E

lectronic
and

C
om

puterE
ngineering

U
niversity

ofPretoria
55

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



C
hapter4

R
esults

Table 4.8: Average energy per hour for the whole year (MW)using weights [1 0] for objectives

Month 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12

1 0 0 0 0 0 0 0.45739 2.6963 5.4502 8.4534 13.082 13.227

2 0 0 0 0 0 0 0.18144 2.2335 5.7224 10.661 13.68 15.061

3 0 0 0 0 0 0 0.024003 0.87716 3.1627 5.7455 8.6116 9.6825

4 0 0 0 0 0 0 0.009874 0.72852 3.5817 7.5024 6.3288 4.2188

5 0 0 0 0 0 0 0.026847 1.1234 5.9461 14.624 21.143 4.0329

6 0 0 0 0 0 0 0.010313 0.93209 4.4313 9.6041 14.575 16.561

7 0 0 0 0 0 0 0.006442 0.74219 3.3235 6.9379 10.042 11.685

8 0 0 0 0 0 0 0.014888 0.65475 2.9816 6.1206 9.0415 10.711

9 0 0 0 0 0 0 0.0057504 0.64018 2.3792 4.7678 6.9572 8.1138

10 0 0 0 0 0 0 0.19977 1.5003 3.7916 6.8806 8.9632 10.56

11 0 0 0 0 0 0 0.54873 2.3977 5.2327 8.3983 11.099 12.539

12 0 0 0 0 0 0 0.56575 2.6084 5.241 8.1138 10.391 12.066

Etotal 0 0 0 0 0 0 2.0512 17.135 51.244 97.81 133.91 128.46

Month 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 - 23 23 - 24

1 15.218 12.681 10.226 5.6555 2.4336 0.77613 0 0 0 0 0 0

2 15.585 12.912 8.3796 4.7768 1.9538 0.44876 0 0 0 0 0 0

3 9.8175 7.8896 5.3383 2.5167 0.32075 0 0 0 0 0 0 0

4 4.8989 3.6404 4.0363 2.9824 0.25099 0 0 0 0 0 0 0

5 5.5826 13.306 15.595 7.6345 1.465 0.056523 0 0 0 0 0 0

6 9.1078 14.181 9.7143 4.9214 1.1168 0.049718 0 0 0 0 0 0

7 11.21 9.509 6.3467 3.3176 0.85738 0.042102 0 0 0 0 0 0

8 10.589 8.7252 5.7601 2.6383 0.52293 0.0035045 0 0 0 0 0 0

9 7.9197 6.3007 3.8179 1.499 0.040298 0 0 0 0 0 0 0

10 10.308 8.7594 5.5918 2.7543 0.63486 0.021907 0 0 0 0 0 0

11 12.156 9.6511 6.4891 3.7618 1.4751 0.040208 0 0 0 0 0 0

12 12.186 11.263 8.749 4.8793 2.112 0.69481 0 0 0 0 0 0

Etotal 124.58 118.82 90.044 47.338 13.183 2.0859 0 0 0 0 0 0
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Chapter 4 Results

4.1.2 Results from comparisons

The results from [4], [34], [35], [36] are based on a single column of solar collectors. The model

presented in this paper is based on multi-row-multi-column solar collectors. Thus for comparison to

be made, solar radiation data, field and collector parameters from the previous models will be used

with the proposed model.

A multi-objective optimization problem is solved using game theory in [35]. The number of rows K

of the solar collectors is varied and the following results in Table 4.9 are obtained with Fl = 30m, W

= 200m, CUC = $100/m2,CUF = $100/m2.

Table 4.9: Optimization results from [35]

D (m) β (o) K Energy (GWh) Cost (106$)

2.51 31.2403 80 0.19692 1.08

2.4790 32.9120 81 0.19703 1.086

2.4488 34.4733 82 0.19711 1.092

2.4193 35.9394 83 0.19711 1.098

2.3905 37.3222 84 0.19702 1.104

Using solar radiation data from [35] and applying it to the model presented in this paper for a single

column of collectors, the result in Table 4.10 is obtained.

Table 4.10: Results from applying data from [35] to current model

λ1 λ2 D (m) β (o) K Energy (GWh) Investment (106$)

0 1 2.4926 23.4858 90 0.21733 1.0667

0.1 0.9 2.4256 28.0694 85 0.22055 1.0795

0.3 0.7 2.3756 22.3138 86 0.23447 1.0887

0.5 0.5 2.3385 21.3426 84 0.23807 1.097

0.7 0.3 2.3043 23.7500 82 0.24317 1.1039

0.9 0.1 2.2045 28.3652 80 0.25320 1.1281

1 0 2.2880 25.6418 87 0.25341 1.107
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Chapter 4 Results

4.2 RESULTS FROM PARETO OPTIMIZATION USING GA

In the Pareto optimization carried out for this research, a group of solutions is obtained whose charac-

teristic is such that a solution is better in one objective but worse in the other objective when compared

to the other solutions and as such there is no better solution amongst this group of solutions. These

solutions are known as Pareto optimal solutions and a line that connects this point form the Pareto

front.

Some parameters used in this simulation are: the number of generations to iterate through is 100 and

the population size is 100. Half of the population is discarded and replaced by new offsprings. The

parents are chosen for mating through random tournament selection. The mutation rate is 10% of the

population.

The Pareto optimal solutions for the three variables along with the objective functions values for

energy and cost is shown in Table 4.11 and the Pareto front is plotted in Figure 4.3.

Table 4.11: Pareto-optimal solutions for the whole year

D (m) U (m) β o K M Energy (MWh) Investment (106$)

2.44994 2.33805 27.4783 81 3 733.05 0.286

2.48716 2.25205 26.4182 80 3 746.57 0.2875

2.46198 2.46807 25.4242 81 3 748.31 0.2891

2.36738 2.47280 24.4250 84 3 750.70 0.2917

2.44631 2.41481 24.4258 81 3 756.96 0.292

2.46317 2.45476 24.4037 81 3 757.05 0.2927

2.48911 2.18575 24.4086 80 3 765.39 0.2942

2.48764 2.05546 24.4005 80 3 768.70 0.2959

2.44463 1.99736 22.4056 81 3 783.52 0.3078

2.47258 1.99782 22.4389 80 3 785.12 0.3101

The data in Table 4.12 gives the average hourly energy values obtained per month for the whole year

using the first vector of solutions from Table 4.11. The final choice of which vector of solutions to

be implemented depends on which objective is given the higher priority after more information is
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Chapter 4 Results

Pareto Optimal Solutions
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Figure 4.3: Pareto Front

provided by the decision maker.
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Table 4.12: Table showing the average energy per hour for the whole year (MW)

Month 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12

1 0 0 0 0 0 0 0.071691 1.1287 2.8003 5.0818 8.099 8.2684

2 0 0 0 0 0 0 0.0697 1.5071 4.3193 8.435 11.054 12.242

3 0 0 0 0 0 0 0.0932 1.4412 4.4321 7.5677 11.042 12.323

4 0 0 0 0 0 0 0.0480 1.5402 5.9841 11.396 9.2176 6.0727

5 0 0 0 0 0 0 0.039240 1.3754 6.8014 16.193 23.052 4.3776

6 0 0 0 0 0 0 0.010181 0.91633 4.3525 9.43 14.418 16.257

7 0 0 0 0 0 0 0.007091 0.77113 3.3848 6.9959 10.077 11.709

8 0 0 0 0 0 0 0.03629 1.0229 4.0646 7.8544 11.285 13.264

9 0 0 0 0 0 0 0.13629 1.4363 4.09232 7.4171 10.365 11.945

10 0 0 0 0 0 0 0.1921 1.4654 3.7147 6.7492 8.7971 10.366

11 0 0 0 0 0 0 0.08539 1.0652 2.9667 5.2747 7.2988 8.337

12 0 0 0 0 0 0 0.2487 0.90183 2.5298 4.4871 6.1053 7.114

Etotal 0 0 0 0 0 0 0.81439 14.472 49.443 96.719 130.65 122.39

Month 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 - 23 23 - 24

1 9.3641 7.3785 5.2541 2.1576 0.22182 0.14666 0 0 0 0 0 0

2 12.593 10.216 6.325 3.2233 0.85637 0.18412 0 0 0 0 0 0

3 12.588 10.392 7.4809 4.1352 1.2479 0.11831 0 0 0 0 0 0

4 8.1351 5.5298 6.7436 6.3052 1.731 0.03351 0 0 0 0 0 0

5 6.0868 14.733 17.838 9.3469 2.114 0.0098734 0 0 0 0 0 0

6 8.9412 13.924 9.541 4.8382 1.1024 0.0028787 0 0 0 0 0 0

7 11.249 9.5884 6.4638 3.447 0.93419 0.003579 0 0 0 0 0 0

8 13.217 11.197 7.8524 4.1218 1.272 0.014301 0 0 0 0 0 0

9 11.799 9.8017 6.5671 3.363 0.95512 0.034213 0 0 0 0 0 0

10 10.117 8.5922 5.473 2.6901 0.61178 0.059175 0 0 0 0 0 0

11 7.942 6.0615 3.679 1.6712 0.22941 0.08825 0 0 0 0 0 0

12 7.16 6.2284 4.223 1.687 0.092873 0.13516 0 0 0 0 0 0

Etotal 118.25 113.64 87.447 46.986 11.397 0.830425 0 0 0 0 0 0
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CHAPTER 5 DISCUSSION

5.1 CHAPTER OVERVIEW

This chapter discusses the results obtained in the previous chapter. It also analyzes the effects of the

constraints on the results.

5.1.1 Weighted sum approach analysis

Generally, a large amount of energy results in large amounts of investment as observed from the

results in Table 4.1. From the results in Table 4.1, the weights have a profound effect on the optimal

values of the variables. These variable values are introduced into equations (3.11) and (3.12) to

obtain values for both objective functions. For example if the energy objective is given less priority

than the investment objective and the weights are chosen as 0.1 and 0.9 respectively, the solution for

the variables D, U and β are obtained as 2.2101m, 1.4942m and 20.463o respectively which result in

objective function values of 1.0392 GWh for the energy and $ 3.7621 million for the investment. Also

if the energy objective is given more priority than the investment objective and the weights are chosen

as 0.9 and 0.1 respectively, the solution for the variables D, U and β become 2.0098m, 1.1926m

and 26.8865o respectively which result in fitness values of 1.1138 GWh for the energy and $ 3.9141

million for the investment. Therefore, the objective functions are greatly affected by the variables and

it is observed that the higher the maximum energy obtained, the greater the investment.

Secondly, the complex relationship between the variables and the randomness of the GA make the

results for the variables unpredictable. However the algorithm converges to an almost unique solution

for the objective functions with each weight chosen. All results indicate that if the energy objective

is given a higher priority than the investment or cost objective, the optimal spacing U between the

columns of the collectors is reduced. This reduction allows for the addition of more columns to the
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field thereby increasing the amount of energy that can be produced. Conversely, when the priority is

given to the cost or investment objective, the optimal spacing U between the columns of the collectors

is increased. This prevents the addition of extra columns of collectors to the field thereby reducing

the investment costs and the energy that can be obtained. To avoid the undesirable effects of shading,

the optimal spacing U between the columns of the collectors is constrained to 1m. It is also worthy

of noting that the optimal spacing D between the rows of the collectors is within the range of 1.99m

≤ D ≤ 2.41m. This ensures that the objectives of maximizing energy and minimizing the investment

or cost are both attained simultaneously without violating the constraints.

Thirdly, the component parts of the solar radiation (direct beam and diffuse) also play an important

role in determining the maximum energy that can be obtained. Areas with an increased value of

such radiation may see more maximum energy obtained. In addition, by varying the location of the

collectors with respect to the latitude, this impacts the inclination angle β of the collectors. This is

because the latitude affects the amount of solar radiation that the location receives. The closer the

inclination angle is to the angle of latitude, the higher the solar radiation intensity and the greater the

energy that can be obtained. This is consistent with previous findings in literature [9], [78], [79], [68].

Importantly also, by varying the weights for the objectives, this variable is affected and consequently

impacts on the value of the objectives.

Fourthly, in Table 4.1, the optimization returns the number of collector rows in the field as 100 for

an objective weight vector of 1 and 0, 93 for an objective weight vector of 0.5 and 0.5 and 82 for the

objective weight vector of 0 and 1 respectively. This means that when more priority is placed on the

energy objective, the algorithm tries to increase the number of rows in order to maximize the energy

obtained and vice-versa. Also the optimization places the number of collector columns in the field

at 3 for each choice of weights. These two parameters (number of collector rows and columns) are

also constrained by the limitation of the field area in addition to the choice of weights. An increase

or decrease in the field area will lead to a corresponding increase or decrease in the number of rows

and columns.

In addition, the weights affect the results of both the energy and the investment/cost objectives. This

effect can be seen from Tables 4.2 to 4.8 for the energy objective. Generally, a positive increase in

the weights from 0 to 1 for the energy objective results in an increase in the energy collected hourly

per month and this consequently increases the overall energy collected hourly for the whole year.

Furthermore, comparing the actual energy collected hourly per month in Tables 4.2 to 4.8, it can be
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seen that for winter months 6 to 9 (which represent June to early September) there is a reduction in

the amount of energy that is collected per hour especially in the early hours of the morning and in

the late hours of the evening. This is because of the shorter days and longer nights during winter.

However around noon, considerably large amounts of energy are still collected even for the winter

months. This is because South Africa generally has high solar radiation even in winter months.

Summarily, a large amount of energy can be obtained from using this model even though the invest-

ment is initially high. This investment can be recovered once the project is operational. The results are

obtained for different combinations of the weights depending on the assumed relative importance of

each objective function on the expected outcome. Even though the energy and costs are comparable,

the results show that irrespective of the weights assigned to the objective functions, more energy is

always obtained. This shows that the model is robust. The variables are properly constrained to their

bounds which take into consideration the criteria for maintenance purposes. The hourly results for

the energy objective function with each set of weights are presented in Table 4.2 to Table 4.8. It is

important to note that the cost/investment objective is only dependent on the final optimized value of

the variables and hence does not vary hourly as is the case with the energy objective, hence the result

for the investment or cost objective is as given in the last column of Table 4.1. The reason for this

is because the energy objective is largely dependent on the average values for the solar radiation in

W/m2 which varies depending on the time of the day and the period of the year while the investment

objective is not dependent on this parameter.

5.1.2 Comparisons to previous models

The result from a previous model [35] is presented in Table 4.9. The result is based on a single column

of collectors and the following parameters Fl = 30m, W = 200m, CUC = $100/m2,CUF = $100/m2

. These parameters are inserted in the formulated model and the optimization is carried out. The

results are presented in Table 4.10. The variable U is 1 since its only a single column of collectors

and is excluded from the table. As an example if the energy objective is given less priority than

the investment objective and the weights are chosen as 0.1 and 0.9 respectively, the solution for the

variables D and β are obtained as 2.4256 m and 28.0694o respectively which results in 85 collector

rows and objective function values of 0.22055 GWh for the energy and $ 1.0795 million for the

investment. Also if the energy objective is given more priority than the investment objective and the

weights are chosen as 0.9 and 0.1 respectively, the solution for the variables D and β become 2.2045
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m and 28.3652o respectively which results in 80 collector rows and fitness values of 0.25320 GWh

for the energy and $ 1.1281 million for the investment. Similarly, the objective functions as well as

the number of collector rows are affected by the variables, and the higher the energy obtained, the

greater the investment required.

Analyzing the results from Table 4.10, it can also be seen that the weights affect the variables and

this has an effect on the value of the objectives with respect to the assigned priority. If the distance D

between the rows of solar collectors is increased, there is an undesirable reduction in the amount of

energy that may be produced as less rows may be installed in the field but this effect sees a reduction

on the investment which is desirable. Also the latitude of the location which is 25.4o affects the

inclination angle of the collectors.

Comparing the results derived from this model in Table 4.10 to that from [35] in Table 4.9 using

equal priority weights 0.5 and 0.5 for both objectives and an equal number of collector rows (84) , the

formulated model produces 20.83% more energy than that from [35] with an almost equal spacing

between the rows of the collectors. The investment is also 0.7% less than that from [35]. This means

that for an equal amount of investment, more energy can be obtained using the model proposed in

this work. Conversely, for an equal amount of energy collected, the investment is reduced by using

the model presented in this work. These results prove that the model presented in this work can be

applied practically to produce more energy at less costs than previous models.

5.1.3 Pareto optimization analysis

From the results in Table 4.11 and Figure 4.3, a reduction in the distance between collector rows can

lead to an increase in energy obtained. This is because more collector rows can be added to the field

which also increases the investment. A decrease also in the distance between the collector columns

results in an increase in the energy obtained. This is due to the fact that the total collector area can

be increased by adding more columns to the field at an increased investment. Furthermore, a change

in the collector inclination angle has minimal effect on the investment compared to the energy that

can be obtained. For example, the solution with D = 2.47258, U = 1.99782 and β = 22.4389 has 80

collector rows and 3 collector columns. It also yields 0.78512 GWh of energy and $ 0.3101 million

investment. The solution with D = 2.44631, U = 2.41481 and β = 24.4258 has 81 collector rows

and 3 collector columns. It also yields 0.75696 GWh of energy and $ 0.292 million investment. The

solution with D = 2.36738, U = 2.47280 and β = 24.4250 has 84 collector rows and 3 collector
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columns. It also yields 0.75070 GWh of energy and $ 0.2917 million investment. The first solution

is better on the energy objective but worst on the investment objective than the other two solutions.

The second solution is worse than the first solution and better than the third solution on the energy

objective but is better than the first solution and worse than the third solution on the investment

objective. The third solution is worst on the energy objective than the previous two solutions but is

best on the investment objective than the previous two solutions. Thus the choice of which solution

is implemented is dependent on further information available to the decision maker.

Here also, the number of collector rows and the number of collector columns are affected by the

limitation of the field area and an increase or decrease in the field area will lead to a corresponding

increase or decrease in the number of rows and columns.

The hourly results for the energy objective function is presented in Table 4.12. The cost or investment

objective does not vary hourly as is the case with the energy objective. This is because the investment

objective is not dependent on the average solar radiation which varies depending on the time of the

day and the period of the year. Also from Table 4.12 a deduction similar to the weighted sum approach

can be made for the winter months.

For the Pareto optimization, the results are consistent with existing knowledge. Only a few solu-

tions however form the Pareto front. This is due to the fact that the variables are constrained rather

tightly.

5.1.4 Comparison between the weighted sum approach and Pareto optimization

Reviewing the results obtained from the weighted sum approach and that from the Pareto optimi-

zation, the energy objective function converges to about 0.7 GWh using the Pareto approach while

higher values are recorded for the weighted sum approach. This means that the weighted sum ap-

proach is better suited to find the global maximum for the energy objective than the Pareto approach

which is able to find a local maximum. However on the investment objective, the weighted sum

approach was in excess of $ 3.5 million while the Pareto optimization yielded under $ 0.3 million.

This means that the weighted sum approach converged to a local minimum whereas the Pareto opti-

mization was able to find the global minimum and thus is better suited than the previous approach in

finding a global minimum. Another reason for this may be that the GA is better suited to MOOP than

SOOP. Albeit, the Pareto optimization is better suited to find a global minimum more readily than the
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weighted sum approach.

5.2 INTERPRETATION OF RESULTS AND DECISION MAKER CHOICES

With these results, the choice of the final solution is dependent on the decision maker’s interpretation

of which objective is of more importance whether it is to obtain the maximum energy or to minimize

the cost of investment.
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CHAPTER 6 CONCLUSION AND RECOMMENDA-

TIONS

6.1 CONCLUSION

This research sought to investigate the potential for increasing the energy obtained from a field of solar

collectors at a reduced investment with the addition of columns of collectors with smaller dimensions

compared to a single row of collectors with larger dimensions. Previous models were based on op-

timizing a single energy objective. An attempt at multi-objective optimization using game-theory is

done in literature but a field area smaller than that applied in this research was considered.

In this research, a multi-objective optimization model is formulated for the optimal placement of

rows and columns of solar collectors in a large field area. Two objectives are considered, namely,

maximizing the energy collected and minimizing the investment/cost. Two approaches are used in

this optimization: the weighted sum approach and finding the Pareto front.

The results from the weighted sum approach show that this multiple row, multiple column model

produces 20.83% more energy when compared to previous models and using similar parameters. The

formulated model also returns a fairly large value for the investment. However this investment is a

small price to pay and can be recovered within a short time after the project is operational. Also when

the investment is compared to previous models, the formulated model results in 0.7% less investment.

This means that for an equal amount of investment, more energy can be obtained using the model

proposed in this research. Conversely, for an equal amount of energy collected, the investment is

reduced by using the model presented in this research. These results prove that the model presented

in this research can be applied practically to produce more energy at less costs than previous models.

The resulting number of rows and columns are acceptable along with the total energy and investment

cost compared to previous models.
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Pareto-optimal solutions are obtained from the Pareto optimization and make up the Pareto front. The

results obtained from the Pareto optimization show that each solution that forms the Pareto front is

better than the other solutions on the Pareto front in one objective but worse than the other solutions

in the other objective. This means that no one solution dominates over the other solutions. A choice

of which solution is to be implemented can only be made when more information is available.

Reviewing the results obtained from the weighted sum approach and that from the Pareto optimi-

zation, although the energy objective function converges to a better value using the weighted sum

approach than the Pareto approach, but the costs obtained from the investment objectives is much less

with the Pareto optimization than with the weighted sum approach. Thus it can be deduced that the

Pareto optimization is better suited to find a global minimum more readily than the weighted sum

approach.

The shortcomings of this model are:

1. In reality, the investment objective may involve some other costs not considered in this model.

This however is not a major limitation of the model as the field and collector cost make up a

huge part of the investment. Therefore the investment objective can be approximated as done

in this formulated model.

2. The solar radiation data reported in this model is limited to the accuracy of the measuring

instruments used.

3. The results are purely numerical and no experimental validation is reported as yet.

6.2 RECOMMENDATIONS

This work is an initial inquiry into multi-objective optimization and so has been limited to certain

areas. It is necessary that future work on this topic should be extended to include the following

areas.

1. The use of non-static or tracking solar collectors instead of fixed collectors.

2. Extra economic consideration like calculation of actual payback period.

3. Additional constraints especially the cost of other parameters not included here.
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4. Increased number of objective functions such as optimizing for winter months could be added

to the problem.
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APPENDIX A ADDITIONAL DATA

A.1 HOURLY SOLAR RADIATION VALUES FROM JANUARY TO DECEMBER

2011

The actual hourly solar radiation data for January and February 2011 is presented here. The data for

March to December 2011 can be made available on request.

The hourly values are given in watts/m2 for each month are as shown from tables A.1 to A.4. The

average of these hourly values were calculated monthly, resulting in 12 typical days representing the

whole year as shown in table 3.3. These average values were used in the simulation.
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Table A.1: Table showing measured solar radiation for January (Watts/m2)

Day 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12

1 0.02 0.02 0.01 0.03 0.04 15.33 110.58 208.76 673.89 859.06 1,007.18 1,087.18

2 0.02 0.03 0.02 0.03 0.04 6.63 55.35 402.43 539.69 810.9 930.67 829.18

3 0.03 0.02 0.03 0.05 0.03 5.36 36.96 100.25 246.59 285.6 335.52 483.34

4 0.02 0.03 0.02 0.04 0.04 12.3 69 110.1 283.97 539.29 1,102.50 1,036.16

5 0.04 0.02 0.02 0.06 0.03 1.11 49.05 154.95 201.55 148.58 234.91 137.41

6 0.05 0.02 0.04 0.05 0.04 8.15 62.79 192.89 347.95 385.73 878.2 721.34

7 0.03 0.02 0.02 0.05 0.03 9.74 85.04 391.58 637.69 860.91 974.23 676.62

8 0.04 0.02 0.02 0.03 0.04 2.88 59.03 180.58 161.55 193.46 528.51 731.57

9 0.03 0.02 0.01 0.02 0.03 5.64 123.99 467.04 307.01 519.55 658.79 406.84

10 0.02 0.01 0.01 0.01 0.06 6.72 57.09 410.75 562.33 518.51 854.63 1,109.81

11 0.02 0.03 0.01 0.04 0.04 9.39 86.42 266.5 603.51 767.32 957.98 1,086.78

12 0.02 0.03 0.01 0.02 0.02 6.35 63.42 367.69 568.58 664.09 993.87 783.38

13 0.02 0.02 0.03 0.01 0.04 7.02 76.56 324.55 454.19 457.7 809.66 572.98

14 0.02 0.02 0.02 0.01 0.03 2.03 36.97 215.35 487.19 492.39 739.76 863.1

15 0.03 0.03 0.02 0.05 0.06 2.46 49.68 353.45 589.15 816.4 898.89 975.18

16 0.02 0.02 0.03 0.02 0.04 7.61 52.98 400.59 390.01 600.82 1,013.35 1,000.59

17 0.02 0.03 0.04 0.03 0.02 3.01 47.15 169.49 199.32 311.1 850.93 566.42

18 0.03 0.03 0.02 0.03 0.02 8.96 83.41 82.92 98.75 107.59 250.23 130.1

19 0.02 0.02 0.02 0.04 0.04 9.21 71.4 299.09 519.28 648.76 652.44 588.89

20 0.02 0.02 0.02 0.03 0.06 1.02 9.6 58.19 227.48 352.24 569.33 460.74

21 0.04 0.02 0.02 0.03 0.03 6.51 43.76 76.16 90.55 104.54 155.46 252.23

22 0.03 0.02 0.03 0.04 0.05 0.75 73.5 177.95 337.82 525.04 679.79 508.43

23 0.03 0.02 0.03 0.04 0.04 3.58 64.07 303.01 578.52 649.17 907.29 475.28

24 0.01 0.02 0.03 0.03 0.03 0.57 53.4 295.1 341.4 326.12 286.17 424.1

25 0.02 0.03 0.04 0.02 0.02 0.12 20.27 45.12 43.55 176.25 405.8 592.43

26 0.03 0.03 0.05 0.02 0.03 3.11 47.96 204.78 186.2 348.37 396.16 437.86

27 0.03 0.04 0.02 0.03 0.04 0.14 15.48 23.2 84.1 211.39 185.45 472.77

28 0.04 0.03 0.02 0.03 0.04 2.03 45.75 296.77 443.82 660.34 938.41 815.55

29 0.02 0.03 0.02 0.04 0.05 0.46 42.77 70.03 154.94 304.84 429.01 557.13

30 0.03 0.03 0.04 0.02 0.03 1 30.76 98.25 252.67 314.49 250.39 629.83

31 0.02 0.03 0.03 0.03 0.04 0.21 17.3 79.06 133.84 294.03 339.21 448.6
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Table A.2: Table showing measured solar radiation for January (Watts/m2)

Day 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 - 23 23 - 24

1 1,067.81 806.39 772.18 801.8 614.04 150.41 28.07 0.1 0.05 0.02 0.03 0.04

2 953.3 803.59 789.09 437.82 214.12 107.89 18.71 0.05 0.03 0.02 0.03 0.03

3 491.39 643.05 382.95 358.83 354 130.83 42.68 0.37 0.03 0.03 0.03 0.03

4 634.07 651.14 467.23 162.05 24.46 51.32 9.82 0.08 0.03 0.03 0.02 0.03

5 224.35 178.89 153.86 169.6 90.17 46.9 16.73 0.13 0.04 0.02 0.04 0.04

6 632.81 671.37 857.55 627.94 429.18 141.89 10.23 0.16 0.02 0.03 0.03 0.04

7 936.9 835.07 867.97 517.35 459.73 171.66 14.97 0.16 0.02 0.04 0.03 0.04

8 848 665.74 721.41 677.71 544.2 180.61 36.34 0.31 0.01 0.03 0.02 0.03

9 634.87 474.23 462.17 73.44 87.06 88.74 15.34 0.06 0.03 0.03 0.03 0.04

10 897.2 780.28 1,015.84 617 455.71 156.34 31.43 0.28 0.03 0.02 0.03 0.02

11 1,132.73 857.84 886.81 296.94 337.48 58.11 23.41 0.29 0.03 0.04 0.03 0.02

12 1,059.76 604.16 570.75 164.45 198.55 117.36 21.32 0.19 0.02 0.03 0.02 0.02

13 320.75 749.38 869.46 741.14 260.79 30.99 50.11 0.18 0.02 0.03 0.03 0.02

14 824.29 895.61 812.23 468.52 130.5 124.34 29.16 0.12 0.02 0.02 0.03 0.02

15 758.03 855.38 643.37 379.2 235.92 120.36 44.74 0.14 0.04 0.02 0.03 0.02

16 1,022.00 770.21 437.51 67.23 55.54 132.13 25.97 1.37 0.03 0.02 0.02 0.02

17 647.59 610.93 657.77 631.5 209.67 38.66 6.82 0.04 0.03 0.02 0.03 0.03

18 707.7 610.93 690.38 186.14 102.82 186.93 40.18 0.13 0.04 0.04 0.03 0.04

19 773.24 1,008.68 730.35 689.78 225.54 84.77 9.12 0.04 0.02 0.04 0.04 0.02

20 919.08 634.53 369.63 275.64 106.08 43.15 12.22 0.63 0.03 0.03 0.03 0.02

21 446.63 477.76 168.01 378.64 276.22 172.33 26.88 0.06 0.03 0.04 0.03 0.04

22 884.12 487.3 633.44 282.67 601.6 237.4 15.3 0.1 0.02 0.02 0.03 0.05

23 1,004.53 617.61 573.58 755.29 347.06 148.75 37.37 0.04 0.03 0.03 0.03 0.03

24 539.31 590.19 635.58 761.24 534.14 104.5 23.65 0.07 0.02 0.02 0.03 0.04

25 847.05 797.53 804.69 619.2 345.89 227.69 34.35 0.06 0.02 0.03 0.01 0.02

26 804.41 680.44 557.68 120.88 11.35 11.54 3.46 2.18 0.03 0.03 0.04 0.03

27 383.19 448.86 592.15 513.92 408.96 246.29 38.36 0.28 0.01 0.02 0.03 0.03

28 763.57 772.71 891.23 733.79 444.73 82.42 12.06 2.92 0.04 0.02 0.03 0.02

29 841.3 742.62 826.57 641.88 308.2 256.71 20.5 0.21 0.03 0.03 0.03 0.02

30 733.22 393.74 373.39 438.71 348.19 175.19 36.42 0.32 0.02 0.03 0.01 0.04

31 781.86 919.28 949.41 728.49 503.85 260.3 27.45 0.09 0.03 0.02 0.02 0.03
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Table A.3: Table showing measured solar radiation for February (Watts/m2)

Day 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12

1 0.03 0.02 0.04 0.03 0.04 2.13 32.67 319.99 581.25 793.93 963.05 1,020.99

2 0.02 0.02 0.01 0.02 0.03 1.84 42.72 321.38 586.98 787.16 877.17 918.62

3 0.03 0.03 0.03 0.05 0.04 0.34 21.76 69.47 134.16 293.7 510.33 579.7

4 0.03 0.02 0.03 0.04 0.04 1.47 24.74 316.56 574.39 795.04 842.16 953.08

5 0.02 0.04 0.03 0.03 0.06 1.12 45.81 151.75 297.21 792.14 912.7 1,012.71

6 0.03 0.02 0.02 0.05 0.04 1.7 38.26 320.35 575.46 789.98 911.48 1,017.66

7 0.02 0.03 0.03 0.04 0.03 1.12 30.87 306.23 554.24 771.31 925.84 1,028.43

8 0.04 0.02 0.02 0.03 0.04 2.88 59.03 180.58 161.55 193.46 528.51 731.57

9 0.03 0.02 0.01 0.02 0.03 5.64 123.99 467.04 307.01 519.55 658.79 406.84

10 0.02 0.01 0.01 0.01 0.06 6.72 57.09 410.75 562.33 518.51 854.63 1,109.81

11 0.02 0.03 0.01 0.04 0.04 9.39 86.42 266.5 603.51 767.32 957.98 1,086.78

12 0.02 0.03 0.01 0.02 0.02 6.35 63.42 367.69 568.58 664.09 993.87 783.38

13 0.02 0.02 0.03 0.01 0.04 7.02 76.56 324.55 454.19 457.7 809.66 572.98

14 0.02 0.02 0.02 0.01 0.03 2.03 36.97 215.35 487.19 492.39 739.76 863.1

15 0.03 0.03 0.02 0.05 0.06 2.46 49.68 353.45 589.15 816.4 898.89 975.18

16 0.02 0.02 0.03 0.02 0.04 7.61 52.98 400.59 390.01 600.82 1,013.35 1,000.59

17 0.02 0.03 0.04 0.03 0.02 3.01 47.15 169.49 199.32 311.1 850.93 566.42

18 0.03 0.03 0.02 0.03 0.02 8.96 83.41 82.92 98.75 107.59 250.23 130.1

19 0.02 0.02 0.02 0.04 0.04 9.21 71.4 299.09 519.28 648.76 652.44 588.89

20 0.02 0.02 0.02 0.03 0.06 1.02 9.6 58.19 227.48 352.24 569.33 460.74

21 0.04 0.02 0.02 0.03 0.03 6.51 43.76 76.16 90.55 104.54 155.46 252.23

22 0.03 0.02 0.03 0.04 0.05 0.75 73.5 177.95 337.82 525.04 679.79 508.43

23 0.03 0.02 0.03 0.04 0.04 3.58 64.07 303.01 578.52 649.17 907.29 475.28

24 0.01 0.02 0.03 0.03 0.03 0.57 53.4 295.1 341.4 326.12 286.17 424.1

25 0.02 0.03 0.04 0.02 0.02 0.12 20.27 45.12 43.55 176.25 405.8 592.43

26 0.03 0.03 0.05 0.02 0.03 3.11 47.96 204.78 186.2 348.37 396.16 437.86

27 0.03 0.04 0.02 0.03 0.04 0.14 15.48 23.2 84.1 211.39 185.45 472.77

28 0.04 0.03 0.02 0.03 0.04 2.03 45.75 296.77 443.82 660.34 938.41 815.55

29 0.02 0.03 0.02 0.04 0.05 0.46 42.77 70.03 154.94 304.84 429.01 557.13

30 0.03 0.03 0.04 0.02 0.03 1 30.76 98.25 252.67 314.49 250.39 629.83

31 0.02 0.03 0.03 0.03 0.04 0.21 17.3 79.06 133.84 294.03 339.21 448.6
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Table A.4: Table showing measured solar radiation for February (Watts/m2)

Day 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 - 23 23 - 24

1 986.93 737.34 186.53 227.13 382.01 130.06 13.97 0.25 0.03 0.01 0.03 0.03

2 830.62 829.95 850.16 463.46 456.47 210.46 19.98 0.16 0.03 0.03 0.05 0.03

3 854.08 811.8 942.87 708.7 436.46 154.69 22.2 0.08 0.03 0.03 0.03 0.04

4 793.63 181.94 60.52 565.94 522.35 95.85 23.09 0.14 0.03 0.05 0.03 0.03

5 1,098.28 842.67 772.53 721.95 496.32 230.41 14.62 0.08 0.04 0.02 0.03 0.03

6 1,144.34 767.64 713.58 334.09 184.81 38.6 29 0.15 0.04 0.05 0.03 0.03

7 880.21 854.8 673.97 67.52 92.4 154.64 26.08 0.07 0.02 0.03 0.03 0.03

8 848 665.74 721.41 677.71 544.2 180.61 36.34 0.31 0.01 0.03 0.02 0.03

9 634.87 474.23 462.17 73.44 87.06 88.74 15.34 0.06 0.03 0.03 0.03 0.04

10 897.2 780.28 1,015.84 617 455.71 156.34 31.43 0.28 0.03 0.02 0.03 0.02

11 1,132.73 857.84 886.81 296.94 337.48 58.11 23.41 0.29 0.03 0.04 0.03 0.02

12 1,059.76 604.16 570.75 164.45 198.55 117.36 21.32 0.19 0.02 0.03 0.02 0.02

13 320.75 749.38 869.46 741.14 260.79 30.99 50.11 0.18 0.02 0.03 0.03 0.02

14 824.29 895.61 812.23 468.52 130.5 124.34 29.16 0.12 0.02 0.02 0.03 0.02

15 758.03 855.38 643.37 379.2 235.92 120.36 44.74 0.14 0.04 0.02 0.03 0.02

16 1,022.00 770.21 437.51 67.23 55.54 132.13 25.97 1.37 0.03 0.02 0.02 0.02

17 647.59 610.93 657.77 631.5 209.67 38.66 6.82 0.04 0.03 0.02 0.03 0.03

18 707.7 610.93 690.38 186.14 102.82 186.93 40.18 0.13 0.04 0.04 0.03 0.04

19 773.24 1,008.68 730.35 689.78 225.54 84.77 9.12 0.04 0.02 0.04 0.04 0.02

20 919.08 634.53 369.63 275.64 106.08 43.15 12.22 0.63 0.03 0.03 0.03 0.02

21 446.63 477.76 168.01 378.64 276.22 172.33 26.88 0.06 0.03 0.04 0.03 0.04

22 884.12 487.3 633.44 282.67 601.6 237.4 15.3 0.1 0.02 0.02 0.03 0.05

23 1,004.53 617.61 573.58 755.29 347.06 148.75 37.37 0.04 0.03 0.03 0.03 0.03

24 539.31 590.19 635.58 761.24 534.14 104.5 23.65 0.07 0.02 0.02 0.03 0.04

25 847.05 797.53 804.69 619.2 345.89 227.69 34.35 0.06 0.02 0.03 0.01 0.02

26 804.41 680.44 557.68 120.88 11.35 11.54 3.46 2.18 0.03 0.03 0.04 0.03

27 383.19 448.86 592.15 513.92 408.96 246.29 38.36 0.28 0.01 0.02 0.03 0.03

28 763.57 772.71 891.23 733.79 444.73 82.42 12.06 2.92 0.04 0.02 0.03 0.02

29 841.3 742.62 826.57 641.88 308.2 256.71 20.5 0.21 0.03 0.03 0.03 0.02

30 733.22 393.74 373.39 438.71 348.19 175.19 36.42 0.32 0.02 0.03 0.01 0.04

31 781.86 919.28 949.41 728.49 503.85 260.3 27.45 0.09 0.03 0.02 0.02 0.03
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