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Abstract

A sequence of polynomials {Pn}Nn=0, N ∈ N∪ {∞}, where Pn is of exact degree n, is orthogonal on

the (finite or infinite) interval [a, b] with respect to the weight function ρ(x) if
∫ b
a x

kPn(x)ρ(x)dx = 0

for k = 0, 1, . . . , n − 1 and it is discrete orthogonal if
∑M

i=0(xi)
kPn(xi)ρi = 0, k = 0, 1, . . . , n − 1,

where ρi are the values of the weight at the distinct points xi, i = 0, 1, 2, . . . ,M , M ∈ N∪{∞}. We

study the zeros of 2F1 hypergeometric polynomials, in particular the continuous orthogonal Jacobi

polynomials and the discrete orthogonal Meixner and Krawtchouk polynomials. Knowledge of the

location and behaviour of the zeros of these polynomials is relevant in various fields. Amongst

many other applications, Jacobi polynomials are useful in the medical field where they are used in

ECG data compression, Meixner polynomials are used for analysing discrete stochastic processes

and Krawtchouk polynomials play a role in coding theory.

In the first place we investigate the interlacing of zeros of different sequences of each of these

systems of polynomials, applying the results to obtain new bounds for the extreme zeros of the

polynomials concerned. Interlacing of zeros of polynomials that belong to different sequences within

the same family of orthogonal polynomials, was first studied in 1967 by Levit [48], who proved

several separation results for the zeros of Hahn polynomials from different sequences. In 1989,

Askey [8] proved that the zeros of Jacobi polynomials Pα,βn and Pα+1,β
n interlace and he conjectured

that the zeros of Pα,βn and Pα+2,β
n interlace. The proof of Askey’s conjecture is contained in a more

general result, proved in [29], and the result we obtain in the Jacobi case can be considered as

a further extension of this. Secondly, we study the zero location of Meixner and Krawtchouk

polynomials for non-classical parameter values.

A result by Stieltjes [68, p. 46] proves that, within any orthogonal sequence {Pn}Nn=0, the zeros of

Pn and Pm, n > m, interlace in a well-defined way, a property called Stieltjes interlacing. Beardon

[12] generalises the result by Stieltjes, showing that, if m < n−1 and Pm and Pn are co-prime, there

exists a real polynomial Sn−m−1 of degree n−m− 1 whose real simple zeros provide a set of points

that completes the interlacing picture. An important feature of the polynomials Sn−m−1 is that

they are completely determined by the coefficients in the three term recurrence relation satisfied

by the orthogonal sequence {Pn}Nn=0. We extend this result of Beardon to polynomials that belong

to different orthogonal sequences, obtained by integer shifts of the appropriate parameters, as

was done in [25] and [27] for the Gegenbauer and Laguerre polynomials. We consider different
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sequences of Jacobi, Meixner and Krawtchouk polynomials, and specifically polynomials of the

form Pn+1(v1, v2;x) and Pn−1(v1 + s, v2 + t;x), for different integer values of s and t, as well as

Pn+1(v1, v2;x) and Pn−k(v1+k, v2+k;x), k = 1, 2, . . . , n−1. In the Meixner and Krawtchouk cases,

we only consider integer shifts of one of their parameters. In each case, we identify the polynomial

whose zeros complete the interlacing. Furthermore, we apply an immediate consequence due to

Driver and Jordaan [28], on using the extra interlacing points as ”inner” bounds for the extreme

zeros of orthogonal polynomials, to obtain sharp lower (upper) bounds for the largest (smallest)

zeros of each of the Jacobi, Meixner and Krawtchouk polynomials.

We make a comprehensive study of the zeros of Meixner and Krawtchouk polynomials for parameter

values where (some of) the zeros are real. From the orthogonality relation satisfied by the Meixner

polynomials Mn(x;β, c), 0 < c < 1, β > 0, we know that they have n real zeros on (0,∞.) We use a

Sturmian sequence argument to prove that, for n < 1−β, the polynomials Mn(x;β, c), β < 0, c < 0,

have n real zeros on (0,−β). Furthermore, we prove results for the zero location of the quasi-

orthogonal polynomials Mn(x;β, c), −k < β < −k + 1, k = 1, . . . , n − 1 and 0 < c < 1 or c > 1,

as well as the (non-orthogonal) polynomials Kn(x; p,N) for 0 < p < 1 and n > N . Finally, we

show that the polynomials Mn(x;β, c), β ∈ R, are real-rooted when c → 0 and the zeros of the

Krawtchouk polynomials Kn(x; p,N), n = 1, 2, . . . , N, 0 < p < 1, tend to x = 0, 1, . . . , n− 1 when

p→ 0.
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Chapter 1

Introduction

1.1 Orthogonal polynomials

To define families of orthogonal polynomials, we use the scalar product

〈f, g〉 :=

∫ b

a
f(x)g(x) dφ(x)

with positive measure φ supported on the real interval [a, b], where a and/or b can be infinite.

A sequence of real polynomials {Pn(x)}Nn=0, N ∈ N ∪ {∞}, where Pn(x) is of exact degree n, is

orthogonal with respect to the measure φ if

〈Pn, Pm〉 = d2n δmn, dn 6= 0, m, n = 0, 1, . . . N, (1.1)

d2n =
∫ b
a P

2
n(x) dφ(x) and δmn is Kronecker’s symbol,

δmn =

0 if m 6= n,

1 if m = n.

If the measure is absolutely continuous and the distribution dφ(x) = ρ(x)dx, then (1.1) becomes∫ b

a
Pn(x)Pm(x) ρ(x)dx = d2n δmn, m, n = 0, 1, . . . N,

or, equivalently (cf. [57, p. 148, Theorem 54] and [68, p. 28]),∫ b

a
xkPn(x)ρ(x)dx = 0, for k = 0, 1, . . . , n− 1,
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and the sequence {Pn(x)}Nn=0 is said to be orthogonal on the interval (a, b) with respect to the

weight or density function ρ(x).

If the weight function ρ(x) is discrete and ρi > 0 are the values of the weight at the distinct points

xi, i = 0, 1, 2, . . . ,M , M ∈ N ∪ {∞}, then (1.1) takes the form of a sum [11, p. 182, eqn. 1.4]

M∑
i=0

Pn(xi)Pm(xi) ρi = d2n δmn, m, n = 0, 1, . . . N,

or, equivalently,
M∑
i=0

(xi)
kPn(xi)ρi = 0, for k = 0, 1, . . . , n− 1,

and the sequence {Pn(x)}Nn=0 is discrete orthogonal.

Throughout our discussion we will assume that the term orthogonality refers to orthogonality with

respect to a measure that is supported on the real line, which implies that the polynomials are real

polynomials, i.e., all coefficients are real.

1.2 Properties of orthogonal polynomials

Assume that {Pn(x)}Nn=0, N ∈ N∪{∞}, where Pn(x) is of exact degree n, is a sequence of orthogonal

polynomials. We list the properties of these polynomials that play an important role in this thesis.

(i) Zeros of orthogonal polynomials

The zeros of the orthogonal polynomials Pn(x), associated with the positive measure φ on the

interval [a, b], are real and distinct and are located in (a, b) (cf. [68, p. 44, Theorem 3.3.1]).

The zeros of the polynomial Pn will be denoted by xn,1 < xn,2 < · · · < xn,n.

(ii) Three term recurrence relation.

Every sequence of real orthogonal polynomials satisfies a three term recurrence relation

xPn(x) = AnPn+1(x) +BnPn(x) + CnPn−1(x)

for n ≥ 0, the numbers An, Bn and Cn are real constants for n = 0, 1, 2 . . . , such that

An−1Cn > 0, n = 1, 2, . . . and P−1(x) = 0 (cf. [6, p. 244-245, Theorem 5.2.2 and Remark

5.2.1]).
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The converse is also true and is known as Favard’s theorem ([16, p. 21, Theorem 4.4] and

[57, p. 153]). If a sequence of polynomials satisfies a three term recurrence relation, the

polynomials in that sequence are orthogonal with respect to a certain weight function, on the

real line. The proof of this theorem is about existence of orthogonality and information about

the weight function and interval of orthogonality is not explicitly given.

(iii) Classic interlacing of zeros.

A direct consequence of the three term recurrence relation is the Christoffel-Darboux formula

[6, p. 246, Theorem 5.2.4], from which we obtain the inequality ([6, p. 247, Corollary 5.2.6]

and [68, p. 45, eqn. 3.3.6])

P ′n+1(x)Pn(x)− P ′n(x)Pn+1(x) > 0, x ∈ R.

As a first consequence of this inequality, the polynomials Pn and Pn+1 cannot have common

zeros. Furthermore, we have the following separation theorem.

Theorem 1.2.1 (cf. [68, p. 46, Theorem 3.3.2]) Let xn,1 < xn,2 < · · · < xn,n denote the

zeros of Pn. The zeros of Pn and Pn+1 separate each other in the following way:

xn+1,1 < xn,1 < xn+1,2 < · · · < xn,n < xn+1,n+1.

This separation of zeros will be called classic interlacing of zeros.

(iv) Stieltjes interlacing of zeros.

Another well-known result on interlacing of zeros of orthogonal polynomials is due to Stieltjes.

Theorem 1.2.2 (cf. [68, p. 46, Theorem 3.3.3]) Between two zeros of Pm(x) there is at

least one zero of Pn(x),m < n.

We will call this property Stieltjes interlacing of zeros.

Clearly, if m < n− 1, there are not enough zeros of Pm to interlace fully with the n zeros of

Pn. In a recent publication, Beardon [12] extends the result of Stieltjes on the interlacing of

zeros of polynomials Pm and Pn, m < n − 1 in an orthogonal sequence, by showing that, if

Pm and Pn are co-prime, i.e., they do not have common zeros, there exists a real polynomial

13
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Sn−m−1 of degree n −m − 1 whose real simple zeros provide a set of points that completes

the interlacing picture. An important feature of the polynomials Sn−m−1 is that they are

completely determined by the coefficients in the three term recurrence relation satisfied by the

orthogonal sequence {Pn}∞n=0. The polynomials Sn−m−1 are the dual polynomials introduced

by de Boor and Saff in [19] or, equivalently, the associated polynomials analysed by Vinet

and Zhedanov in [72].

We will refer to the zeros of the polynomial Sn−m−1 as extra interlacing points.

The interlacing property of zeros of polynomials is important in, e.g., numerical quadrature appli-

cations, where the existence of positive interpolatory quadrature formulae, using zeros as nodes, is

guaranteed by interlacing (cf. [54]). We now shift our focus to orthogonal polynomials that can be

expressed as hypergeometric functions.

1.3 The hypergeometric function

The generalised hypergeometric series pFq with p numerator and q denominator parameters, is

defined by

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) = 1 +

∞∑
k=1

(a1)k(a2)k . . . (ap)kz
k

(b1)k(b2)k . . . (bq)kk!
,

where a1, . . . , ap and b1, . . . , bq are real or complex numbers, b1, . . . , bq 6= 0,−1,−2, . . . .

The symbol ( )k is the shifted factorial, or Pochhammer symbol [36, p. 8, eqn. 1.3.6], defined by

(α)k = α(α+ 1) . . . (α+ k − 1), k ≥ 1, k ∈ N (1.2)

(α)0 = 1, α 6= 0.

If p ≤ q, the series pFq converges for all finite z and if p = q + 1, it converges if |z| < 1. In case

aj = 0,−1,−2 . . . , the series terminates and we have a polynomial of degree n in x.

The Gauss, or 2F1, hypergeometric function was introduced by Gauss [32] in 1812 and is defined

by

2F1(a, b; c; z) = 1 +
∞∑
k=1

(a)k(b)k
(c)k

zk

k!
,

14
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a, b and c are complex parameters, c 6= 0,−1,−2, . . . .

The Gauss hypergeometric series converges if |z| < 1, since

lim
n→∞

∣∣∣∣ tn+1

tn

∣∣∣∣ = |z|,

where tn is the nth term of the hypergeometric series. By analytic continuation, convergence for

|z| > 1 can be obtained (cf. [73, p. 288]).

1.4 Classical orthogonal polynomials

Orthogonal polynomials that have hypergeometric representations will be referred to as classical

orthogonal polynomials. These polynomials, together with some limit relations between them,

form the Askey scheme of hypergeometric orthogonal polynomials, proposed by Richard Askey and

compiled by Koekoek and Swarttouw in 1998; see Fig 1.1 for the most recent version.

1.4.1 Very classical orthogonal polynomials

The very classical orthogonal polynomials are named after Hermite, Laguerre and Jacobi and can

be defined as the polynomial solutions of a second order differential equation of the type

σ(x)P ′′n (x) + τ(x)P ′n (x) + λnPn(x) = 0, (1.3)

where σ(x) is a polynomial of degree at most two, τ(x) is a polynomial of degree at most one and

λn depends only on n. The three infinite systems of Hermite, Laguerre and Jacobi polynomials,

as well as the three finite systems of Jacobi, Bessel and Pseudo-Jacobi polynomials are the only

polynomial solutions of (1.3) (cf. [44, p. xii]), that are orthogonal with respect to a measure that

is supported on the real line (or part of the real line). We call these finite systems, because only a

finite number of these polynomials are orthogonal (cf. [44, p. 93]).

1.4.2 Discrete classical orthogonal polynomials

The discrete classical orthogonal polynomials can be defined as the polynomial solutions of a second

order difference equation with polynomial coefficients

σ(x)45 Pn(x) + τ(x)4Pn(x) + λnPn(x) = 0

15
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Figure 1.1: Askey Scheme of Hypergeometric Orthogonal Polynomials [44, p. 183]
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where 4f(x) = f(x + 1) − f(x) and 5f(x) = f(x) − f(x − 1) denote the forward and backward

difference operators respectively, σ(x) is a polynomial of degree at most two, τ(x) is a polynomial

of degree at most one and λn is a constant.

The polynomial solutions of this difference equation lead to the two infinite systems of Charlier and

Meixner polynomials, and the two finite systems of Krawtchouk and Hahn polynomials (cf. [44, p.

xii]).

1.5 The 2F1 hypergeometric orthogonal polynomials

The 2F1 hypergeometric orthogonal polynomials are the polynomials on the 2F1 plane of the Askey

scheme. We discuss the most important properties of the 2F1 class of orthogonal polynomials

and refer the reader to [44, Chapter 9], that deals with all families of hypergeometric orthogonal

polynomials in the Askey Scheme.

1.5.1 Jacobi polynomials

Jacobi polynomials are named after the German mathematician Carl Jacobi (1804-1851). Jacobi is

considered as one of the greatest mathematicians of all times, who made fundamental contributions

in various fields, but specifically in number theory. He was the first to apply elliptic functions to

number theory.

Jacobi polynomials can be used to approximate functions for which the Laplace transform is known

[2]. They also play a role in the medical field, where they are used in ECG data compression [69],

as well as in quantum physics, where they are applied in solving the Schrödinger equation (cf. [13]).

The Jacobi polynomial of degree n may be defined by [44, p. 216, eqn. 9.8.1]

Pα,βn (x) =
(α+ 1)n

n!
2F1

(
−n, n+ α+ β + 1;α+ 1;

1− x
2

)
. (1.4)

The differential equation satisfied by Jacobi polynomials
(
f = Pα,βn

)
is

(1− x2)f ′′(x) +
(
β − α− (α+ β + 2)x

)
f ′(x) + n(n+ α+ β + 1)f(x) = 0. (1.5)
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The Jacobi polynomials
{
Pα,βn

}∞
n=0

satisfy the three term recurrence relation [44, p. 217, eqn.

9.8.4](
x− β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)

)
Pα,βn (x) (1.6)

=
2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
Pα,βn+1(x) +

2(n+ α)(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)
Pα,βn−1(x)

and, for α, β > −1, they are orthogonal with respect to the weight function w(x) = (1−x)α(1+x)β

on the interval [−1, 1].

Symmetry

When polynomials pn(x) are orthonormal on [a, b], an interval symmetric with respect to the origin,

and the distribution w(x)dx has an even weight function, i.e., w(−x) = w(x), then the polynomial

pn(x) is even or odd, as n is even or odd and thus pn(−x) = (−1)npn(x) [68, p. 29, eqn. 2.3.3].

The weight function of the Jacobi polynomials satisfies the equation

w(x, α, β) = w(−x, β, α)

and therefore Jacobi polynomials with the standard normalisation satisfy the symmetry property

[68, p. 59, eqn. 4.1.3]

Pα,βn (x) = (−1)nP β,αn (−x). (1.7)

The derivative of Pα,βn (x)

The very classical orthogonal polynomials have derivatives which again form orthogonal sequences

(cf. [68, p. 63, eqn. 4.21.7] and [70, p. 81]) and

d

dx
Pα,βn (x) =

1

2
(n+ α+ β + 1)Pα+1,β+1

n−1 (x).

By induction it follows that

DkPα,βn (x) =
1

2k
(n+ α+ β + 1)kP

α+k,β+k
n−k (x), (1.8)

where Dk denotes the k-th derivative.
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1.5.2 Meixner polynomials

Meixner polynomials are named after the German theoretical physicist, Josef Meixner (1908-1994),

who taught at the Institute of Theoretical Physics in Aachen, Germany, from the 1950’s until

his death. These polynomials are associated with, e.g., stochastic processes [61] and in [34] they

are used to analyse discrete stochastic processes in the context of spectral analysis in the Laplace

domain.

Meixner polynomials may be defined in terms of the 2F1 hypergeometric function (cf. [36, p. 174,

175] and [44, p. 234, eqn. 9.10.1])

Mn(x;β, c) = (β)n 2F1

(
−n,−x;β; 1− 1

c

)
(1.9)

= (β)n

n∑
k=0

(−n)k(−x)k(1− 1
c )
k

(β)kk!
,

for β, c ∈ R, β 6= −1,−2, . . . ,−n + 1, c 6= 0. We note that the position of the variable x differs

from the position of x in the hypergeometric representation of the Jacobi polynomials.

Since (β + k)n−k =
(β)n
(β)k

, (1.9) can be rewritten as

Mn(x;β, c) =

n∑
k=0

(−n)k(−x)k(β + k)n−k(1− 1
c )
k

k!
, (1.10)

a polynomial of degree n in x. In this way, we can define the Meixner polynomials for any n ∈ N,
β ∈ R and c ∈ R \ {0}.

The sequence {Mn(x;β, c)}∞n=0 satisfies the difference equation (cf. [44, p. 234, eqn. 9.10.5])(
n(c− 1) + x+ (x+ β)c

)
Mn(x;β, c) = c(x+ β)Mn(x+ 1;β, c) + xMn(x− 1;β, c), (1.11)

and, for 0 < c < 1 and β > 0, these polynomials satisfy the discrete orthogonality relation (cf. [44,

p. 234, eqn. 9.10.2])

∞∑
x=0

cx(β)x
x!

Mm(x;β, c)Mn(x;β, c) =
(β)nn!

cn(1− c)β
δmn, (1.12)

hence the zeros are real, distinct and in (0,∞) for these values of the parameters β and c. We

note that the weight function ρ(x) = cx(β)x
x! is a step function that is constant on the open intervals
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(x, x + 1), x = 0, 1, 2, . . . and therefore the zeros of Mn(x;β, c) are separated by the numbers

0, 1, 2, . . . (cf. [64, p. 1539] and [68, p. 50, Theorem 3.41.2]).

When we apply the Pfaff-Kummer transformation (7.1) to (1.9), we obtain the identity (cf. [16, p.

177, eqn. 3.6])

Mn(x;β, c) = (β)n

(
1

c

)n
2F1 (−n, x+ β;β; 1− c) (1.13)

=

(
1

c

)n
Mn

(
−x− β;β,

1

c

)
(1.14)

for β 6= −1,−2, . . . ,−n+ 1, c 6= 0, a general symmetry property of the Meixner polynomials, since

by continuity it holds for β ∈ R.

The orthogonality relation when c > 1 and β > 0 [16, p. 177, eqn. 3.7],

∞∑
x=0

(β)x
cxx!

Mm(−x− β;β, c)Mn(−x− β;β, c) =

(
c

c− 1

)β
c−n(β)nn! δmn,

can be derived from (1.12) and (1.14) and we conclude that, for β > 0 and c > 1, the zeros of

{Mn(x;β, c)}∞n=1 are real and distinct and in (−∞,−β).

For n ≥ 0, Meixner polynomials satisfy the three term recurrence relation [44, p. 234, eqn. 9.10.3](
x− n+ (β + n)c

1− c

)
Mn(x;β, c) =

c

c− 1
Mn+1(x;β, c) +

n(β + n− 1)

c− 1
Mn−1(x;β, c), (1.15)

where M0(x;β, c) = 1 and M−1(x;β, c) = 0.

The generating functions for the Meixner polynomials can be found in [44, p. 235].

The derivative of Mn(x;β, c)

The derivative of the polynomial Mn(x;β, c) is defined in terms of the forward shift operator ∆,

where ∆f(x) = f(x+ 1)− f(x). A direct calculation yields (cf. [44, p. 235, eqn. 9.10.7])

∆Mn(x;β, c) = n

(
1− 1

c

)
Mn−1(x;β + 1, c)

and it follows by induction that

∆kMn(x;β, c) =
n!(1− 1

c )
k

(n− k)!
Mn−k(x;β + k, c), k = 0, 1, . . . , n,
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where ∆kMn(x;β, c) = ∆(∆k−1Mn(x;β, c)).

The standard orthogonality of a finite number of Meixner polynomials Mn(x;β, c) when c < 0 and

β is equal to a negative integer, say β = −N , N ∈ N, is that of the Krawtchouk polynomials.

1.5.3 Krawtchouk polynomials

Mikhail Krawtchouk (1892-1942) was a Ukrainian mathematician and the author of around 180

articles. He introduced the Krawtchouk polynomials in 1929. Krawtchouk polynomials are a special

case of Meixner polynomials and are applied in many areas of mathematics. The role they play in

coding theory is briefly discussed in [36, p. 184]. They are also useful in graph theory [20, Chapter

11].

Krawtchouk polynomials are defined by ([36, p. 182] and [44, p. 237, eqn. 9.11.1])

Kn(x; p,N) = (−N)n 2F1

(
−n,−x;−N ;

1

p

)
, n = 0, 1, . . . , N,N ∈ N, (1.16)

that can be rewritten as

Kn(x; p,N) =

n∑
k=0

(−n)k(−x)k(−N + k)n−k
k!pk

, (1.17)

which can be used to define Krawtchouk polynomials for any n ∈ N.

The finite system of Krawtchouk polynomials satisfies the difference equation (cf. [44, p. 238, eqn.

9.11.5])(
p(N − x) + x(1− p)− n

)
Kn(x; p,N) = p(N − x)Kn(x+ 1; p,N) + x(1− p)Kn(x− 1; p,N)

and, for m < n ≤ N ; m,n,N ∈ N and 0 < p < 1, they satisfy the orthogonality relation

N∑
x=0

w(x; p,N)Km(x; p,N)Kn(x; p,N) = 0

on [0, N ], with respect to the finite binomial distribution w(x; p,N) =
(
N
x

)
(p)x (1− p)N−x, that is

positive at the mass points x = 0, 1, . . . , N of the discrete measure for 0 < p < 1. This implies that,

for 0 < p < 1 and n ≤ N , n,N ∈ N, the zeros of Kn(x; p,N) are real, distinct and in the interval
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(0, N). They are also separated by the mass points of the measure of orthogonality (cf. [24, p. 121]

and [68, p. 50, Theorem 3.41.2]) and in the particular case where n = N , the zeros of KN (x; p,N),

denoted by xN,i, i = 1, 2, . . . , N, interlace with the mass points as follows

0 < xN,1 < 1 < xN,2 < 2 < · · · < xN,N < N. (1.18)

Furthermore, if n > N , the points x = 0, 1, 2, . . . , N are zeros of the (non-orthogonal) polynomials

Kn(x; p,N) [68, p. 36].

The three term recurrence relation for Krawtchouk polynomials is (cf. [44, p. 237, eqn. 9.11.3])

xKn(x; p,N) = AnKn+1(x; p,N) +BnKn(x; p,N) + CnKn−1(x; p,N) (1.19)

K0 = 1, K−1 = 0 and

An = p, Bn = p(N − n) + n(1− p) and Cn = n(1− p)(N − n+ 1).

We refer the reader to [44, p. 239], where the generating functions for the Krawtchouk polynomials

are given.

From the forward shift operator (cf. [44, p. 238, eqn. 9.11.6])

∆Kn(x; p,N) =
n

p
Kn−1(x; p,N − 1),

it follows by induction that, for each n = 1, 2, . . . , N,

∆kKn(x; p,N) =
n!

(n− k)!pk
Kn−k(x; p,N − k), k = 1, 2, . . . , n.

Meixner polynomials are related to Krawtchouk polynomials in the following way:

Mn

(
x;−N, p

p− 1

)
= Kn(x; p,N). (1.20)

1.5.4 Meixner-Pollaczek polynomials

Meixner-Pollaczek polynomials [44, p. 213] were discovered by Josef Meixner [51] in 1934 and

rediscovered by Pollaczek [55] in 1949. The hypergeometric representation of these polynomials is

p(λ)n (x;φ) =
(2λ)n
n!

2F1(−n, λ+ ix; 2λ; 1− e−2iφ)
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and, for λ > 0, 0 < φ < π, they are orthogonal on the real line with respect to the weight function

w(x, φ) =| Γ(λ− ix) |2 e2φ−πx.

The Meixner-Pollaczek polynomials satisfy a second order difference equation with complex coeffi-

cients [44, p. 132] and are connected to Lévy processes [62] in stochastics.

1.5.5 Pseudo Jacobi polynomials

Pseudo Jacobi polynomials [44, p. 231] refer to a finite system of continuous classical orthogonal

polynomials and they were studied by Sir Edward John Routh [60] in 1884 and later rediscovered

by Romanovski [59] in 1929. These polynomials satisfy the second order differential equation (1.3)

and the polynomial σ(x) = 1 + x2 has two complex roots. The hypergeometric representation of

the Pseudo Jacobi polynomials is (cf. [44, p. 231, eqn. 9.9.1]).

pn(x; v,N) = (x+ i)n 2F1

(
−n,N + 1− n− iv; 2N + 2− 2n;

2

1− ix

)
, n = 0, 1, 2 . . . , N

and they are orthogonal on the real line with respect to the weight function (1+x2)−N−1e2v arctanx.

Romanovski polynomials, as discussed in [3, p. 148], are closely related to Pseudo-Jacobi polynomi-

als and are applied to random matrix theory [58], as well as solutions of the Schrödinger equation,

and we refer the reader to [3] where these applications are discussed in detail.

1.6 Brief overview

In this thesis we focus on zeros of Jacobi, Meixner and Krawtchouk polynomials.

We start by reviewing some recently published results on interlacing of zeros of different sequences

of orthogonal polynomials of the same or adjacent degree. We show how Beardon’s result on

Stieltjes interlacing of zeros of polynomials pm and pn in an orthogonal sequence, for m < n − 1,

was recently extended to zeros of different sequences of Laguerre and Gegenbauer polynomials and

discuss results on upper and lower bounds for extreme zeros of a polynomial in an orthogonal

sequence. The original contribution of this thesis is presented in chapters 3, 4 and 5.

The overarching theme of Chapters 3 and 4 is the investigation of Stieltjes interlacing between

the zeros of polynomials of non-consecutive degree of different orthogonal sequences. We choose
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the different orthogonal sequences for which Stieltjes interlacing may hold, to lie within the same

family of orthogonal polynomials, by considering different values of the appropriate parameter(s).

The degrees of the polynomials we consider, say pn+1 and gn−1, differ by two units and we make

use of mixed three term recurrence relations of the form

(x− bn)pn(x) = anpn+1(x) + cngn−1(x), (1.21)

satisfied by the polynomials under consideration, to prove these results. In each case we identify

an extra interlacing point, bn, uniquely determined by the coefficient of pn(x) in the appropriate

mixed three term recurrence relation. We also consider the possibility that the polynomials under

consideration can have common zeros. The extra interlacing points obtained, form upper (lower)

bounds for the smallest (largest) zero of the polynomial pn+1. We compare the different extra

interlacing points, in order to determine the best inner bounds for the extreme zeros of each of the

Jacobi, Meixner and Krawtchouk polynomials.

In Chapter 3 we consider zeros of different sequences of Jacobi polynomials, obtained by either

shifting one parameter at a time or both simultaneously. The more general case of Stieltjes inter-

lacing of zeros of Pα,βn+1 and Pα+k,β+kn−k , k = 1, 2, . . . , n − 1 is also discussed. We explain how some

of these Stieltjes interlacing results can be interpreted electrostatically. The results in this chapter

were published in 2011 [26].

In Chapter 4 we shift our attention to the discrete orthogonal infinite system of Meixner poly-

nomials and the finite system of Krawtchouk polynomials. In the Meixner case, the different

sequences of polynomials that we consider, are obtained by shifting the parameter β of the polyno-

mial Mn(x, β, c). The parameter c is restricted to the interval (0, 1) and integer shifts of c will make

no sense. We also consider the more general Stieltjes interlacing between zeros of Mn+1(x, β, c) and

Mn−k(x, β + k, c), k = 1, 2, . . . , n − 1. In the Krawtchouk case, we obtain the different sequences

by shifting the parameter N of the polynomial Kn(x; p,N), n = 0, 1, . . . , N. Shifting N implies a

change in the interval of orthogonality and restrictions on the parameter p are necessary in some

cases, to obtain interlacing. A paper on the results in this chapter is in preparation.

In Chapter 5 we make a comprehensive study of the zero location of Meixner and Krawtchouk

polynomials, in particular for parameter values where (some of) the zeros are real. We use the

three term recurrence relation satisfied by Meixner polynomials, as well as a Sturmian sequence
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argument, to prove that, for n < 1 − β, the Meixner polynomials Mn(x;β, c), c < 0, have n

real zeros on the interval (0,−β). We prove results for the zero location of the quasi-orthogonal

polynomials Mn(x;β, c), −k < β < −k + 1, k = 1, . . . , n− 1 and 0 < c < 1 or c > 1, as well as the

(non-orthogonal) polynomials Kn(x; p,N), for 0 < p < 1 and n = N + 1, N + 2, . . . . We also show

that the polynomials Mn(x;β, c), β ∈ R, are real-rooted when c→ 0. A paper on these results has

been accepted for publication [41].
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Chapter 2

Background

2.1 Introduction

In this chapter we provide an overview of some recently published results on interlacing, as well as

Stieltjes interlacing, of zeros of orthogonal polynomials from sequences corresponding to different

parameters, together with some background information necessary for our research.

2.2 Interlacing of zeros of orthogonal polynomials of the same or

adjacent degree

Results on the interlacing of zeros of different sequences of Hahn polynomials of the same and

adjacent degree, were published in 1967 by Levit [48, p. 199-202].

2.2.1 Jacobi polynomials

Various researchers, e.g., Askey, Driver, Jordaan and Mbuyi, studied zeros of Jacobi polynomials

of the same or adjacent degree.

(i) In 1989, Askey [8, p. 28, 29] proved that the zeros of Pα,βn (x) and Pα+1,β
n (x) interlace and he

conjectured that the zeros of Pα,βn (x) and Pα+2,β
n (x) interlace.

(ii) In 2008, Driver et al [29] proved that the zeros of Pα,βn interlace with the zeros of polynomials

from some different Jacobi sequences of the same and adjacent degree, namely
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Pα−t,βn , Pα,β+tn , Pα−t,β+kn , Pα+t,β−kn for 0 < t, k ≤ 2 and

Pα+t,β+kn−1 , Pα+t,βn−1 , Pα,β+kn−1 for 0 ≤ t, k ≤ 2,

that confirmed as well as extended Askey’s conjecture. Numerical examples were given to

illustrate that, in general, interlacing of zeros does not hold if t or k is greater then 2.

In the same year, Segura [63] proved that the zeros of the Jacobi functions Pα,βν interlace

with the zeros of the functions

– Pα,β±kν±ε ;

– Pα+1,β±k
ν±ε ;

– Pα+2,β±k
ν±ε ,

for 0 < ε < 1, 0 < k ≤ 2.

2.2.2 Meixner and Krawtchouk polynomials

In 1990, Chihara and Stanton [15] proved that, for 0 < p < 1, the zeros of the Krawtchouk

polynomials Kn(x; p,N) and Kn(x; p,N+1), as well as the zeros of Kn−1(x; p,N) and Kn(x; p,N+

1), separate each other. Some special attention was paid to the case p = 1
2 .

A few years later, in 2009, contiguous relations satisfied by hypergeometric polynomials, were used

in [42] to prove interlacing results between the zeros of different sequences of Meixner, Krawtchouk,

Meixner-Pollaczek and Hahn polynomials of the same or adjacent degree. In the Meixner case, it was

proved that, for β > 0 and 0 < c < 1, the zeros of the polynomials Mn(x;β, c), Mn(x;β + t, c) and

Mn−1(x;β + t, c) interlace when 0 < t ≤ 2. In the Krawtchouk case, interlacing properties between

the zeros of the Krawtchouk polynomials Kn(x; p,N), Kn(x; p,N + k) and Kn−1(x; p,N + k), k ∈
{−1, 1}, were examined.

2.3 Stieltjes interlacing of zeros of Laguerre and Gegenbauer poly-

nomials from different sequences

Stieltjes interlacing of zeros of different sequences of one-parameter orthogonal families, namely,

Gegenbauer polynomials Cλn and Laguerre polynomials Lαn, was recently studied.
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In 2012, Driver [25] showed that, for λ > −1
2 , the zeros Cλ+tn−1, 0 ≤ t ≤ 2, together with the point

x = 0, interlace in the Stieltjes sense with the zeros of Cλn+1 when n is odd. When n is even, these

polynomials have a common zero at x = 0 and the (n2 − 1) positive (respectively negative) zeros of

Cλ+tn−1 interlace with the (n2 ) positive (respectively negative) zeros of Cλn+1. Gegenbauer polynomials,

whose degrees differ by 3, namely Cλn+1 and Cλ+kn−2 , k ∈ {1, 2, 3}, were also considered. In this case,

the polynomials under consideration have either no common zeros, or two symmetric common

zeros. When these polynomials are co-prime, their zeros interlace in the Stieltjes sense and the two

symmetric extra interlacing points are identified. A more general result, that Stieltjes interlacing

holds between the zeros of the kth derivative of Cλn and the zeros of Cλn+1, k ∈ {1, 2, . . . , n−1}, was

also proved.

In [27], Driver and Jordaan showed that, for α > −1, Stieltjes interlacing holds between zeros of

Laguerre polynomials Lαn+1 and Lα+tn−1, when t ∈ {1, 2, 3, 4}, and, more generally, between the zeros

of Lαn+1 and Lα+k+tn−k , t ∈ {0, 1, 2}, k ∈ {1, 2, . . . , n − 1}. In each of these cases, a polynomial whose

zeros complete the interlacing process, was identified.

2.4 Bounds for extreme zeros of classical orthogonal polynomials

Bounds for the extreme zeros of the very classical polynomials can be obtained from the differential

equations they satisfy. The following result, due to Laguerre, plays an important role in this regard.

We show the proof for real polynomials.

Lemma 2.4.1 (cf. [68, p. 117]) Let f(x) be a polynomial of degree n, with zeros x1 < x2 · · · < xn

in the interval (a, b) and

Xi = xi − 2(n− 1)
f ′(xi)

f ′′(xi)
, i = 1, n. (2.1)

Then

(i) a < x1 < x2 < X1 < xn < b

(ii) a < x1 < Xn < xn−1 < xn < b.

Proof. We will prove (ii), the proof of (i) is similar. Let

f(x) = (x− xn)g(x)
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and

g(x) = (x− x1)(x− x2) . . . (x− xn−1),

then f ′(x) = g(x) + (x− xn)g′(x), f ′′(x) = 2g′(x) + (x− xn)g′′(x) and consequently

g(xn) = f ′(xn) and g′(xn) =
1

2
f ′′(xn).

It follows that
g′(xn)

g(xn)
=

f ′′(xn)

2f ′(xn)
=

1

xn − x1
+

1

xn − x2
+ · · ·+ 1

xn − xn−1
and (2.1) becomes

1

xn −Xn
=

1

n− 1

(
1

xn − x1
+

1

xn − x2
+ · · ·+ 1

xn − xn−1

)
.

We know that, for any a ∈ R, if a = 1
n(a1 +a2 + · · ·+an) and a1 < a2 < · · · < an, then a1 < a < an

and therefore
1

xn − x1
<

1

xn −Xn
<

1

xn − xn−1
;

since all these denominators are positive, we can deduce that x1 < Xn < xn−1. The stated result

follows.

We apply this result to Jacobi polynomials. Let xn,1 < xn,2 · · · < xn,n be the zeros of f(x) =

Pα,βn (x), α, β > −1. From the differential equation satisfied by the Jacobi polynomials (1.5), we

deduce that

(1− x2n,j)f ′′(xn,j) +
(
β − α− (α+ β + 2)xn,j

)
f ′(xn,j) = 0, j = 1, 2, . . . , n,

and from (2.1), we get the values

Xj = xn,j −
2(n− 1)(1− x2n,j)

α− β + (α+ β + 2)xn,j
, j = 1, n,

and consequently, from Lemma 2.4.1(i), we have

−1 < xn,1 < xn,2 < xn,1 −
2(n− 1)(1− x2n,1)

α− β + (α+ β + 2)xn,1
< xn,n < 1,

which leads to

−1 < xn,1 <
β − α− 2n+ 2

α+ β + 2n
= Bn,H(α, β). (2.2)
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Furthermore, should the lowest zero xn,1 be known, one obtains an upper bound for xn,2. In the

same way, Lemma 2.4.1(ii) leads to (cf. [68, p. 119, eqn. 6.2.11])

Bn,L(α, β) =
β − α+ 2n− 2

α+ β + 2n
< xn,n < 1. (2.3)

Laguerre’s theorem thus provides us with an upper bound for the smallest zero and a lower bound

for the largest zero of the Jacobi polynomial Pα,βn . For all α, β > −1 and n = 1, 2, . . . , we have

−1 < xn,1 <
β − α− 2(n− 1)

α+ β + 2n
<
β − α+ 2(n− 1)

α+ β + 2n
< xn,n < 1

and, should the extreme zero xn,1 (xn,n) be known, an upper (lower) bound for the zero xn,2 (xn,n−1)

can also be found.

We note the following:

(i) Bn,L(α, β) = −Bn,H(β, α).

(ii) Szegő provides an alternative formula for the lower bound for the largest zero when α ≤ β,

namely B∗n,L(α) =
n− 1

n+ α
(cf. [68, p. 119, eqn. 6.2.12]).

Laguerre’s theorem can only be applied to find inner bounds for zeros of polynomials that satisfy

a second order differential equation, i.e., the polynomials mentioned in Section 1.4.1. Every family

of orthogonal polynomials, however, satisfies a three term recurrence relation and in [38], the

recurrence coefficients are used to find upper bounds for the largest zero and lower bounds for the

smallest zero of inter alia Meixner and Jacobi polynomials.

More recently, sharp bounds for not only the extreme zeros, but all the zeros of the very classical

polynomials, were obtained in [21] by a technique based on inequalities for real-root polynomials.

These inequalities were proved by using the consecutive derivatives of the orthogonal polynomials

provided by the differential equations they satisfy. A result due to Obrechkoff [53] was recently

used in [7] to derive inequalities that determine the location of the zeros of Jacobi polynomials, and

explicit bounds were obtained for all the zeros of Jacobi polynomials in terms of the extreme zeros

of either Laguerre, or other families of Jacobi polynomials.

The results in Chapter 3 of this thesis, published in [26], together with the results in [25] and

[27], were applied in [28] to obtain inner bounds for the extreme zeros of Jacobi, Laguerre and
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Gegenbauer polynomials. The results in [28] in fact apply to any polynomial pn, that is part of an

orthogonal sequence satisfying a mixed three term recurrence relation of the form

f(x)gn−k(x) = Hk−1(x)pn+1(x)−Gk(x)pn(x)

on an interval (c, d), where f(x) 6= 0 on (c, d) and Hk and Gk are polynomials of degree k.

2.5 Monotonicity of zeros

Andrey Markov (1856-1922), a Russian mathematician, showed in 1886 [49] how the zeros of a poly-

nomial depend on the parameters of the weight function. A useful consequence of his monotonicity

theorem is proved by Ismail:

Theorem 2.5.1 [36, p. 205, Theorem 7.1.2] The zeros of a Jacobi polynomial Pα,βn (x) or a Hahn

polynomial Qn(x;α, β,N) increase with β and decrease with α. The zeros of a Meixner polynomial

Mn(x;β, c) increase with β while the zeros of a Laguerre polynomial Lαn(x) increase with α. In all

these cases, increasing (decreasing) means strictly increasing (decreasing) and the parameters are

such that the polynomials are orthogonal.

In [22], the speed at which the value of the function 1−xn,i, i = 1, 2, . . . , n, decreases as β increases,

where xn,i, i = 1, 2, . . . , n, are the zeros of Pα,βn (x), is investigated. The monotonicity of the extreme

zeros of the associated Jacobi polynomials was applied in [30], to prove interlacing of zeros of these

polynomials with shifted parameters.

2.6 An electrostatic interpretation of the zeros of Jacobi

polynomials

We discuss a one-dimensional energy model of Stieltjes (cf. [65], [66]) to show how the zeros of

Jacobi polynomials can be interpreted electrostatically. This model is described by Szegö [68, p.

140-142], who also provides similar interpretations for the zeros of Hermite and Laguerre poly-

nomials. We refer the reader to [37], where Ismail proved that the zeros of general orthogonal

polynomials determine the equilibrium positions of n movable charges in an external electrostatic

field determined by the weight function.
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Consider two positive line charges, q1 and q2, positioned along the real line, with a distance of

d units between them. If k1 and k2 are constants, the one-dimensional force between the two

line charges is F = k1
q1q2
d (cf. [31, p. 5-3, Unit 5-5]) and therefore each line charge generates a

logarithmic energy or potential field E = −k2q1q2 ln d. We will use this formula to determine the

energy in the following one-dimensional model.

Let n positive unit line charges, positioned at x1, x2, . . . , xn, be free to move between −1 and 1,

i.e.,

−1 < x1 < x2 < · · · < xn < 1.

At −1 and 1 we position positive line charges q and p respectively. For convenience, we let n = 3.

The energy of this system, which is the mutual energy of all these charges, is given by the expression

E(x) = E(x1, x2, x3) (2.4)

= −q
3∑
i=1

ln(1 + xi)− p
3∑
i=1

ln(1− xi)−
∑
i<j

ln(xj − xi)− pq ln 2.

The positions of the unit charges where the energy of the system will reach a minimum, are fixed

and given by
∂E

∂xi
= 0, i = 1, 2, 3.

Differentiating (2.4) with respect to x1, yields

∂E

∂x1
=

p

x1 − 1
+

q

x1 + 1
+

1

x1 − x2
+

1

x1 − x3
= 0. (2.5)

Let f(x) be a polynomial that vanishes at the points x1, x2 and x3:

f(x) = (x− x1)(x− x2)(x− x3);

now equation (2.5) can be written as

f ′′(x1)

2f ′(x1)
+

p

x1 − 1
+

q

x1 + 1
= 0

and

(1− x21)f ′′(x1) +
(

2q − 2p− (2p+ 2q)x1

)
f ′(x1) = 0.
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We thus have the differential equation

(1− x2)f ′′(x) +
(

2q − 2p− (2p+ 2q)x
)
f ′(x) = Kf(x)

which holds for all x and f(x) is in this case a n dimensional polynomial that vanishes at xi, i =

1, 2, . . . , n.

Let α = 2p−1 and β = 2q−1. By comparing coefficients of xn, we find that K = −n(n+α+β+1)

and obtain the differential equation satisfied by the Jacobi polynomials (1.5).

We conclude that the zeros of Jacobi polynomials Pα,βn have a simple electrostatic application;

they coincide with the equilibrium positions of n movable unit line charges, that are free to move

between two charges β+1
2 and α+1

2 , fixed at −1 and 1, respectively.

Furthermore, increasing the parameter α corresponds to increasing the positive line charge at 1 and

hence the electrostatic interpretation of the zeros beautifully illustrates the fact, due to Markov’s

monotonicity theorem, that the zeros of Jacobi polynomials are decreasing functions of α and

increasing functions of β (see Theorem 2.5.1).
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Chapter 3

Stieltjes interlacing of zeros of Jacobi

polynomials from different sequences

3.1 Introduction

In this chapter we investigate the extent to which Stieltjes interlacing holds between the zeros of

two Jacobi polynomials if each polynomial belongs to a sequence generated by a different value of

one/both of the parameters α and β. We also identify, in each case, a polynomial that plays the role

of the de Boor-Saff polynomial (cf. [12] and [19]) in the sense that its zeros provide a (non-unique)

set of points that complete the interlacing process. These polynomials are completely determined

by the coefficients in a mixed three term recurrence relation.

We know that within a sequence of orthogonal polynomials, two polynomials of adjacent degree

cannot have common zeros. This is not the case when the degrees differ by two or more units and

in our theorems we also consider the possibility that the polynomials under consideration can have

common zeros.

In Section 3.2 we investigate the zeros of Jacobi polynomials where the degrees of the polynomials

differ by two units. We consider the zeros of Pα,βn+1 and Pα+j,β+kn−1 for some integer values of j and k.

In each different case we determine a point that completes the interlacing process. For convenience

of the reader, we list our results in this section.

In Section 3.3 we prove the results of Section 3.2. We use mixed three term recurrence relations,
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obtained from a useful Maple computer package, (cf. [71]), as well as the computer program

Mathematica, to prove our results.

In Section 3.4 we prove the more general result that the zeros of Pα,βn+1 interlace with the zeros of

the kth derivative of Pα,βn , k = 1, 2, 3 . . . , n− 1.

The results of sections 3.2 and 3.4 were applied by Driver and Jordaan [28] to obtain inner bounds

for the extreme zeros of Jacobi polynomials. They showed that the extra interlacing points obtained

from the mixed three term recurrence relations, form these inner bounds. In Section 3.5 we discuss

these results and compare the different extra interlacing points with one another, as well as with

the bounds for extreme zeros of Jacobi polynomials obtained by Szegö, as shown in Section 2.4.

In Section 3.6 we interpret our interlacing results from a one-dimensional electrostatic perspective.

3.2 Stieltjes interlacing of zeros of Jacobi polynomials from dif-

ferent sequences, whose degrees differ by two.

We recall that Pα,βn , α, β > −1, is the Jacobi polynomial of degree n, orthogonal with respect to

the weight function w(x) = (1− x)α(1 + x)β on the interval [−1, 1].

Our first four results consider cases when Stieltjes interlacing occurs between the zeros of Jacobi

polynomials from different sequences, whose degrees differ by two. In each theorem we firstly

consider the case when the polynomials under consideration are co-prime, i.e., they do not have

common zeros and secondly, we consider the possibility that the polynomials do have common

zeros, in which case it directly follows from the mixed three term recurrence relation (1.21)

(x− bn)pn(x) = anpn+1(x) + cngn−1(x),

that there can be only one common zero that is equal to the point bn, since pn and pn+1 are

co-prime.

In our first two results we change only one of the parameters, keeping the other one fixed, and

consider the zeros of Pα+t,βn−1 (respectively Pα,β+tn−1 ) and Pα,βn+1 for t ∈ {0, 1, 2, 3, 4}.
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Theorem 3.2.1

(i) If Pα+t,βn−1 and Pα,βn+1 are co-prime, then

(a) the zeros of Pα+t,βn−1 , together with the point Bn(t, 0) = β2−α2+t(β−α+2n(n+β+1))
(2n+α+β+t)(2n+α+β+2) , interlace

with the zeros of Pα,βn+1 for fixed t ∈ {0, 1, 2};

(b) the zeros of Pα+3,β
n−1 , together with the point Bn(3, 0) = n(n+α+β+2)+(α+2)(n−α+β)

(n+α+2)(n+α+β+2) , inter-

lace with the zeros of Pα,βn+1;

(c) the zeros of Pα+4,β
n−1 , together with the point Bn(4, 0) = 2n(n+α+β+3)+(α+3)(β−α)

2n(n+α+β+3)+(α+3)(α+β+2) inter-

lace with the zeros of Pα,βn+1.

(ii) If Pα+t,βn−1 and Pα,βn+1 are not co-prime, they have one common zero located at the respective

points identified in (i) (a) to (c) and the n − 1 zeros of Pα+t,βn−1 interlace with the remaining

n (non-common) zeros of Pα,βn+1.

Since Jacobi polynomials satisfy the symmetry property (1.7), we immediately obtain the following

Corollary of Theorem 3.2.1.

Corollary 3.2.2

(i) If Pα,β+tn−1 and Pα,βn+1 are co-prime, then

(a) The zeros of Pα,β+tn−1 , together with the point Bn(0, t) = β2−α2−t(α−β+2n(n+α+1))
(2n+α+β+t)(2n+α+β+2) , interlace

with the zeros of Pα,βn+1 for fixed t ∈ {1, 2};

(b) The zeros of Pα,β+3
n−1 , together with the point Bn(0, 3) = −n(n+α+β+2)+(β+2)(n−β+α)

(n+β+2)(n+α+β+2) , in-

terlace with the zeros of Pα,βn+1;

(c) The zeros of Pα,β+4
n−1 , together with the point Bn(0, 4) = − 2n(n+α+β+3)+(β+3)(α−β)

2n(n+α+β+3)+(β+3)(α+β+2) ,

interlace with the zeros of Pα,βn+1.

(ii) If Pα,β+tn−1 and Pα,βn+1 are not co-prime, they have one common zero located at the respective

points identified in (i) (a) to (c) and the n − 1 zeros of Pα,β+tn−1 interlace with the remaining

n (non-common) zeros of Pα,βn+1.

Remarks.
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(1) The case t = 0 in Theorem 3.2.1(i) was proved by Segura in [63, p. 391, Theorem 1]. In his

theorem, Segura provides a general formula for the extra interlacing point:

An =

∫ b
a xp

2
n(x)w(x)dx∫ b

a p
2
n(x)w(x)dx

,

where pn(x) is either a Hermite, Laguerre or Jacobi polynomial, orthogonal on [a, b], with

respect to the weight function w(x). Segura also states that if pn+1 and pn−1 have a common

zero, this zero is located at the extra interlacing point An and in the Jacobi case,

An =
β2 − α2

(2n+ α+ β + 1)2 − 1
= Bn(0, 0).

For completeness and convenience of the reader, we included this result in Theorem 3.2.1

together with an alternative proof.

(2) Segura [63, p. 391] also proved that when t = 0, Theorem 3.2.1(i) does not only hold for the

classical parameter ranges, i.e., α, β > −1, but for any values of the parameters such that

Pα,βn+1 and Pα,βn−1 have zeros in the classical interval of orthogonality (−1, 1).

(3) The extra interlacing point Bn(2, 0) =
β − α+ 2n

2n+ α+ β + 2
is equal to Bn+1,L, the lower bound

for the largest zero of the polynomial Pα,βn+1(x), as given by Szegő (cf. (2.3)), and

Bn(0, 2) =
β − α− 2n

2n+ α+ β + 2
= Bn+1,H , the upper bound for the smallest zero of the polynomial

Pα,βn+1(x) as in (2.2).

Numerical experiments suggest that results analogous to those proved in Theorem 3.2.1 and its

Corollary also hold as t varies continuously between 0 and 4.

Conjecture

For t ∈ (0, 2), if Pα+t,βn−1 and Pα,βn+1 are co-prime, the zeros of Pα+t,βn−1 , together with the point

β2 − α2 + t (β − α+ 2n(n+ β + 1))

(2n+ α+ β + t)(2n+ α+ β + 2)
,

interlace with the zeros of Pα,βn+1.

Our next two results prove that Stieltjes interlacing of the zeros of Jacobi polynomials from different

sequences also holds when both the parameters α and β change within certain constraints.
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Theorem 3.2.3

(i) For each fixed j, k ∈ {1, 2}, if Pα+j,β+kn−1 and Pα,βn+1

(a) are co-prime, then the zeros of Pα+j,β+kn−1 , together with the point β−α−n(k−j)
α+β+2+n(4−j−k) , inter-

lace with the zeros of Pα,βn+1;

(b) are not co-prime, they have one common zero located at the point identified in (i) (a)

and the n− 1 zeros of Pα+j,β+kn−1 interlace with the n remaining (non-common) zeros of

Pα,βn+1.

(ii) If Pα+3,β+1
n−1 and Pα,βn+1

(a) are co-prime, then the zeros of Pα+3,β+1
n−1 , together with the point n2+n(α+β+3)−(α+2)(α−β)

n2+n(α+β+3)+(α+2)(α+β+2)
,

interlace with the zeros of Pα,βn+1;

(b) are not co-prime, then they have one common zero located at the point identified in

(ii)(a) and the n − 1 zeros of Pα+3,β+1
n−1 interlace with the n remaining (non-common)

zeros of Pα,βn+1.

(iii) If Pα+1,β+3
n−1 and Pα,βn+1

(a) are co-prime, then the zeros of Pα+1,β+3
n−1 , together with the point

−n2−n(α+β+3)−(β+2)(α−β)
n2+n(α+β+3)+(β+2)(α+β+2)

, interlace with the zeros of Pα,βn+1;

(b) are not co-prime, then they have one common zero located at the point identified in

(iii)(a) and the n − 1 zeros of Pα+1,β+3
n−1 interlace with the n remaining (non-common)

zeros of Pα,βn+1.

Theorem 3.2.4

(i) If the respective pairs of polynomials are co-prime, then

(a) the zeros of Pα−1,β+1
n−1 , together with the point α+β

2n+α+β ,

(b) the zeros of Pα−1,β+2
n−1 , together with the point −n+β+1

n+β+1 ,

(c) the zeros of Pα+1,β−1
n−1 , together with the point −α−β

2n+α+β ,

(d) the zeros of Pα+2,β−1
n−1 , together with the point n−α−1

n+α+1 ,
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interlace with the zeros of Pα,βn+1.

(ii) If the respective pairs of polynomials in (i) (a) to (d) are not co-prime, then they have one

common zero located at the points identified in (i) (a) to (d) and the n − 1 zeros of the

respective polynomial of degree n − 1 in each case, interlace with the n (non-common) zeros

of Pα,βn+1.

Remark. Restrictions on the ranges of t and k are required in our theorems since, in general,

Stieltjes interlacing is not retained between the zeros of Jacobi polynomials from different sequences,

whose degrees differ by two. Using Mathematica, we see that

• When n = 5, α = 0.1 and β = 0.1, the zeros of Pα,β6 and Pα+5,β
4 or Pα,β−14 do not interlace,

illustrating that Stieltjes interlacing does not hold in general for t > 4, k = 0 or t = 0, k < 0.

• When t = k = −1 and α, β and n are chosen as in the example above, the zeros of Pα−1,β−14

and Pα,β6 do not interlace.

• The zeros of Pα,β8 and those of Pα+4,β+1
6 or Pα+3,β+2

6 do not interlace when α = −0.9 and

β = 329.3.

3.3 Proofs of results given in Section 3.2

In our proofs we make use of the connection between Jacobi and 2F1 hypergeometric polynomials,

as well as contiguous function relations satisfied by 2F1 polynomials. These contiguous relations

are given in Appendix A.

The following Lemma simplifies the proofs of Theorem 3.2.1 and Theorem 3.2.3.

Lemma 3.3.1 Let {pn}∞n=0 be a sequence of polynomials orthogonal on the (finite or infinite)

interval (c, d). Let gn−1 be any polynomial of degree n− 1 that for each n ∈ N satisfies

gn−1(x) = an(x)pn+1(x)− (x−An)bn(x)pn(x) (3.1)

for some constant An and some functions an(x) and bn(x) defined on (c, d), such that bn(x) does

not change sign in (c, d). Then, for each n ∈ N, it follows that
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(i) if gn−1 and pn+1 are co-prime, the zeros of gn−1 are all real and simple and, together with the

point An, they interlace with the zeros of pn+1;

(ii) if gn−1 and pn+1 are not co-prime, they have one common zero located at x = An and the

n− 1 zeros of gn−1 interlace with the n (non-common) zeros of pn+1.

Proof. Let xn+1,1 < xn+1,2 < · · · < xn+1,n+1 denote the zeros of pn+1.

(i) Since pn and pn+1 are always co-prime while by assumption bn(x) 6= 0 for x ∈ (c, d) and pn+1

and gn−1 are co-prime, we deduce from (3.1) that An 6= xn+1,k for any k ∈ {1, 2, . . . , n+ 1}.

Evaluating (3.1) at xn+1,k and xn+1,k+1, we obtain

gn−1(xn+1,k) = −(xn+1,k −An)bn(xn+1,k)pn(xn+1,k)

and

gn−1(xn+1,k+1) = −(xn+1,k+1 −An)bn(xn+1,k+1)pn(xn+1,k+1).

We combine these two equations, to obtain

gn−1(xn+1,k)gn−1(xn+1,k+1)

pn(xn+1,k)pn(xn+1,k+1)
= (xn+1,k −An)(xn+1,k+1 −An)bn(xn+1,k)bn(xn+1,k+1), (3.2)

for each k ∈ {1, 2, . . . , n}. Since xn+1,k and xn+1,k+1 ∈ (c, d) while bn does not change sign

in (c, d), we know that bn(xn+1,k)bn(xn+1,k+1) > 0. Hence the right-hand side of (3.2) is

positive if and only if An /∈ (xn+1,k, xn+1,k+1). Since pn(xn+1,k)pn(xn+1,k+1) < 0 for each

k ∈ {1, 2, . . . , n} because the zeros of pn and pn+1 are interlacing, we deduce that, provided

An /∈ (xn+1,k, xn+1,k+1), gn−1 has a different sign at consecutive zeros of pn+1 and therefore

has an odd number of zeros (counting multiplicity) in each interval (xn+1,k, xn+1,k+1), k ∈
{1, 2, . . . , n}, apart from one interval that may contain the point An. Since there are exactly

n intervals (xn+1,k, xn+1,k+1), k ∈ {1, 2, ..., n}, it follows that the n− 1 zeros of gn−1 are real,

simple and, together with the point An, interlace with the n+ 1 zeros of pn+1.

(ii) If pn+1 and gn−1 have common zeros, (3.1) implies that there can only be one common zero

at x = An, since pn and pn+1 are co-prime. For x 6= An we can rewrite (3.1) as

gn−1(x)

x−An
=
an(x)pn+1(x)

x−An
− bn(x)pn(x),
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or

Gn−2(x) = an(x)Pn(x)− bn(x)pn(x), (3.3)

where (x − An)Gn−2(x) = gn−1(x) and (x − An)Pn(x) = pn+1(x). Note that the zeros of Pn

are exactly the n (non-common) zeros of pn+1, i.e., the zeros of pn+1 excluding the single

zero at An, that is also a zero of gn−1. At most one interval of the form (xn+1,k, xn+1,k+1),

k ∈ {1, . . . , n − 1}, can contain the point An. Evaluating (3.3) at xn+1,k and xn+1,k+1, for

each k ∈ {1, . . . , n− 1} such that An /∈ (xn+1,k, xn+1,k+1), we obtain

Gn−2(xn+1,k)Gn−2(xn+1,k+1) = bn(xn+1,k)bn(xn+1,k+1)pn(xn,k)pn(xn+1,k+1) < 0

and it follows that Gn−2 has an odd number of zeros in each interval (xn+1,k, xn+1,k+1),

k ∈ {1, 2, . . . , n − 1}, that does not contain An. Deg (Gn−2) = n − 2 and there are n − 2

of these intervals and therefore each interval (xn+1,k, xn+1,k+1), k ∈ {1, 2, . . . , n − 1}, that

does not contain An, has exactly one zero of Gn−2. We deduce that An = xn+1,j where

j ∈ {2, . . . , n} and the zeros of Gn−2, together with the point An, interlace with the n zeros

of Pn. The stated result is then an immediate consequence of the definitions of Gn−2 and Pn.

Remark 3.3.2 A theorem due to Gibson (cf. [33, p. 130]) proves that if {pn}∞n=0 is any orthogonal

sequence, the polynomials pn+1 and pm, m = 1, 2, . . . , n−1 can have at most min{m,n−m} common

zeros, consequently pn+1 and pn−1 can have at most min{n− 1, 1} = 1 common zero. Lemma 3.3.1

(ii) extends Gibson’s result to any polynomials of degree n− 1 and n+ 1 that satisfy a mixed three

term recurrence relation of the form (3.1).

Proof of Theorem 3.2.1.

(i) (a) If t = 0, the result follows from (1.6) and Lemma 3.3.1(i). For t = 1, we use (7.9) with

b = n+ α+ β + 1 and c = α+ 1, together with (1.4) to obtain(
x− β2 − α2 + β − α+ 2n(n+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)

)
Pα,βn (x)

=
2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
Pα,βn+1(x) +

(1− x)(n+ β)

2n+ α+ β + 1
Pα+1,β
n−1 (x)
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and the result follows from Lemma 3.3.1(i).

For t = 2, the stated result follows from(
x− 2n− α+ β

2n+ α+ β + 2

)
Pα,βn (x)

=
2(α+ 1)(n+ 1)

(n+ α+ 1)(2n+ α+ β + 2)
Pα,βn+1(x) +

(1− x)2(n+ β)

2(n+ α+ 1)
Pα+2,β
n−1 (x),

obtained from (7.10) and (1.4), together with Lemma 3.3.1(i).

(b) Replacing b by n + α + β + 1, c by α + 1 and z by 1−x
2 in (7.16) and using (1.4), we

obtain(
x− n2 + (2α+ β + 4)− (α+ 2)(α− β)

(n+ α+ 2)(n+ α+ β + 2)

)
Pα,βn (x)

=
(n+ 1)A(x)Pα,βn+1(x)

(n+ α+ 1)(n+ α+ 2)(n+ α+ β + 2)
+

(1− x)3(2n+ α+ β + 2)(n+ β)

4(n+ α+ 1)(n+ α+ 2)
Pα+3,β
n−1 (x),

where A(x) = n(n+ β)(x− 1) + 2(α+ 1)(α+ 2). Lemma 3.3.1(i) then yields the result.

(c) From (7.19) and (1.4) we have(
x− 2n2 − (α+ 3)(α− β) + 2n(α+ β + 3)

Cn

)
Pα,βn (x)

=
−(n+ 1)B(x)

2(n+ α+ 1)(α+ 2)Cn
Pα,βn+1(x) +

(1− x)4Dn

8(n+ α+ 1)(α+ 2)Cn
Pα+4,β
n−1 (x),

where

Cn = 2n(n+ α+ β + 3) + (α+ 3)(α+ β + 2) and

Dn = (2n+ α+ β + 2)(n+ β)(n+ α+ β + 2)(n+ α+ β + 3)

and B(x) is a polynomial of degree 2 in x which depends on n, α and β,

B(x) = 2n3(x− 1)2 − 4(6 + 11α+ 6α2 + α3)

−nβ(x− 1)(10 + 5α+ β − x(2 + α+ β))− n2(x− 1)(10 + 5α+ 3β − x(2 + α+ 3β)).

The result follows from Lemma 3.3.1(i).

(ii) This follows immediately from Lemma 3.3.1(ii) and the proofs of Theorem 3.2.1(i)(a) to (c).
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Proof of Theorem 3.2.3.

(i) (a) The case when j = k = 1 will be proved in Theorem 3.4.1. For j = k = 2, (7.17) and

(1.4) yield(
x− β − α

α+ β + 2

)
Pα,βn (x)

=
2(n+ 1)C(x)

(n+ α+ 1)(n+ β + 1)(α+ β + 2)
Pα,βn+1(x) + En(1− x2)2Pα+2,β+2

n−1 (x),

where

En =
(n+ α+ β + 2)(n+ α+ β + 3)(2n+ α+ β + 2)

8(n+ α+ 1)(n+ β + 1)(α+ β + 2)
and

C(x) = (1 + α)(1 + n+ β) + n(1− x)(1 + n+ β)− 1

4
n(1− x)2(2 + 2n+ α+ β).

The result follows from Lemma 3.3.1(i). For j = 1, k = 2, the mixed three term recur-

rence relation(
x+

n+ α− β
n+ α+ β + 2

)
Pα,βn (x)

=
(n(x+ 1) + 2β + 2)(n+ 1)

(n+ α+ β + 2)(n+ β + 1)
Pα,βn+1(x) +

(1 + x)2(1− x)(2n+ α+ β + 2)

4(n+ β + 1)
Pα+1,β+2
n−1 (x)

is obtained from (1.4) together with (7.11). Lemma 3.3.1(i) then yields the stated result.

For j = 2, k = 1, the result follows from the symmetry property (1.7).

(b) This follows immediately from Lemma 3.3.1(ii) and the proof of (a).

(ii) (a) From (1.4) and (7.18), we obtain the mixed three term recurrence relation(
x− n2 − (α+ 2)(α− β) + n(α+ β + 3)

n2 + n(α+ β + 3) + (α+ 2)(α+ β + 2)

)
Pα,βn (x)

=
D(x)(n+ 1)

2(n+ α+ 1)(n2 + (α+ 2)(α+ β + 2) + n(α+ β + 3))
Pα,βn+1(x)

+
(1− x)3(1 + x)(n+ α+ β + 2)(n+ α+ β + 3)(2n+ α+ β + 2)

8(n2 + (α+ 2)(α+ β + 2) + n(α+ β + 3))(n+ α+ 1)
Pα+3,β+1
n−1 (x),

where

D(x) = 4(α+ 1)(α+ 2) + (3α− β + 4)n− 2nx(n+ 2α+ 3) + nx2(2n+ α+ β + 2)

and Lemma 3.3.1(i) then yields the stated result.
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(b) This follows immediately from Lemma 3.3.1(ii) and the proof of (a).

(iii) Both results follow directly from the symmetry property (1.7).

We omit the proof of Theorem 3.2.4 which follows exactly the same reasoning as the proofs of

Theorems 3.2.1 and 3.2.3.

3.4 Stieltjes interlacing of zeros of P α,β
n+1 and P α+k,β+k

n−k where k =

1, 2, . . . , n− 1.

We now state a general result for Stieltjes interlacing between the zeros of Pα,βn+1 and the n−k zeros

of Pα+k,β+kn−k .

Theorem 3.4.1 Let Pα,βn , α, β > −1, n ∈ N, denote the Jacobi polynomial of degree n.

(i) For each k ∈ {1, 2, . . . , n− 1}, there exist polynomials Gk and Hk of degree k such that

(1− x2)kQn,kPα+k,β+kn−k (x) = (n+ 1)Hk−1(x)Pα,βn+1(x) +Gk(x)Pα,βn (x) (3.4)

where Qn,k =
(n+ α+ β + 2)k−1(2n+ α+ β + 2)

22k
and ( )k denotes the Pochhammer symbol

(1.2).

(ii) Let k ∈ {1, 2, . . . , n − 1} be fixed. If Pα,βn+1 and Pα+k,β+kn−k are co-prime, then the zeros of the

kth derivative of Pα,βn , together with the k real zeros of Gk, interlace with the zeros of Pα,βn+1.

(iii) Let k ∈ {1, 2, . . . , n − 1} be fixed. If Pα,βn+1 and Pα+k,β+kn−k have r common zeros, then the

(n− 2r) non-common zeros of the product GkP
α+k,β+k
n−k , together with the r common zeros of

Pα,βn+1 and Pα+k,β+kn−k , interlace with the (n+ 1− r) non-common zeros of Pα,βn+1.

Proof.

(i) We use the mixed three term recurrence relations

(
1− x2

)
Pα+1,β+1
n−1 (x) = 2

(
x+

α− β
2n+ α+ β + 2

)
Pα,βn (x)− 4(n+ 1)

2n+ α+ β + 2
Pα,βn+1(x) (3.5)
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and(
1− x2

)
Pα+1,β+1
n (x) (3.6)

=
2

n+ α+ β + 2

(
2(n+ β + 1)(n+ α+ 1)

2n+ α+ β + 2
Pα,βn (x)− (n+ 1)

(
x− α− β

2n+ α+ β + 2

)
Pα,βn+1(x)

)
which can be obtained from (1.4), (7.12) and (7.13). We prove our result by induction on k.

For k = 1, equation (3.4) is the same as (3.5) with H0(x) = −1,

G1(x) = 1
2 ((2n+ α+ β + 2)x+ α− β) and Qn,1 = 1

4(2n+ α+ β + 2). Therefore (3.4) holds

for k = 1.

Next, we assume that the result holds for m = 1, 2, . . . , k, i.e., we assume that

(1− x2)mQn,mPα+m,β+mn−m (x) = (n+ 1)Hm−1(x)Pα,βn+1(x) +Gm(x)Pα,βn (x) (3.7)

with Gm and Hm polynomials of degree m and

Qn,m =
(n+ α+ β + 2)m−1(2n+ α+ β + 2)

22m
for m = 1, 2, . . . , k.

For m = k + 1, the left-hand side of (3.4) is equal to

(1− x2)k+1Qn,k+1P
α+k+1,β+k+1
n−k−1 (x)

=
(1− x2)k+1

22(k+1)
(α+ β + n+ 2)k(α+ β + 2n+ 2)Pα+k+1,β+k+1

n−k−1 (x)

=
1− x2

4
(α1 + β1 + n1 + 1)

(1− x2)k

22k
(α1 + β1 + n1 + 2)k−1(α1 + β1 + 2n1 + 2)Pα1+k,β1+k

n1−k (x),

where α1 = α+ 1, β1 = β + 1, n1 = n− 1

=
1− x2

4
(α1 + β1 + n1 + 1)

(
(n1 + 1)Hk−1(x)Pα1,β1

n1+1 (x) +Gk(x)Pα1,β1
n1

(x)
)

=
1− x2

4
(α+ β + n+ 2)

(
nHk−1(x)Pα+1,β+1

n (x) +Gk(x)Pα+1,β+1
n−1 (x)

)
by using the induction hypothesis.

Applying (3.5) and (3.6), a straightforward calculation shows that this equals

Gk+1(x)Pα,βn (x) + (n+ 1)Hk(x)Pα,βn+1(x)
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with

Hk(x) =
−n
2

(
x− α− β

2n+ α+ β + 2

)
Hk−1(x)− n+ α+ β + 2

2n+ α+ β + 2
Gk(x)

and

Gk+1(x) =
n(n+ α+ 1)(n+ β + 1)

2n+ α+ β + 2
Hk−1(x) +

n+ α+ β + 2

2

(
x+

α− β
2n+ α+ β + 2

)
Gk(x),

which is the righthand-side of (3.4) for m = k + 1. It follows that (3.7) holds for m = k + 1

and the result follows by induction on k.

(ii) We recall (1.8) that

DkPα,βn (x) =
1

2k
(n+ α+ β + 1)kP

α+k,β+k
n−k (x).

From (3.4), provided Pα,βn+1(x) 6= 0, we have

(1− x2)kQn,kPα+k,β+kn−k (x)

Pα,βn+1(x)
= (n+ 1)Hk−1(x) +

Gk(x)Pα,βn (x)

Pα,βn+1(x)
. (3.8)

Now, if xn+1,1 < xn+1,2 < · · · < xn+1,n+1 are the zeros of Pα,βn+1, we have

Pα,βn (x)

Pα,βn+1(x)
=

n+1∑
j=1

Aj
x− xn+1,j

where Aj > 0 for each j ∈ {1, . . . , n+ 1} (cf. [68, p. 47, Theorem 3.3.5]). Therefore (3.8) can

be written as

(1− x2)kQn,kPα+k,β+kn−k (x)

Pα,βn+1(x)
= (n+ 1)Hk−1(x) +

n+1∑
j=1

Gk(x)Aj
x− xn+1,j

, x 6= xn+1,j . (3.9)

Since Pα,βn+1 and Pα,βn are always co-prime while Pα,βn+1 and Pα+k,β+kn−k are co-prime by assump-

tion, it follows from (3.4) that Gk(xn+1,j) 6= 0 for any j ∈ {1, 2, . . . , n + 1}. Suppose that

Gk does not change sign in the interval Ij = (xn+1,j , xn+1,j+1) where j ∈ {1, 2, . . . , n}. Since

Aj > 0 and the polynomial Hk−1 is bounded on Ij while the right hand side of (3.9) takes

arbitrarily large positive and negative values, it follows that Pα+k,β+kn−k must have an odd num-

ber of zeros in each interval in which Gk does not change sign. Gk is of degree k and there
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is a total amount of n intervals (xn+1,j , xn+1,j+1), j ∈ {1, . . . , n}, therefore there are at least

n−k intervals (xn+1,j , xn+1,j+1), j ∈ {1, . . . , n} in which Gk does not change sign and so each

of these intervals must contain exactly one of the n − k real, simple zeros of Pα+k,β+kn−k . We

deduce that the k zeros of Gk are real and simple and, together with the zeros of Pα+k,β+kn−k ,

interlace with the n+ 1 zeros of Pα,βn+1.

(iii) Assume that Pα,βn+1 and Pα+k,β+kn−k have r common zeros. From (3.4) it follows that if Pα+k,β+kn−k

and Pα,βn+1 have any common zeros, these must also be zeros of Gk since Pα,βn and Pα,βn+1 are

co-prime. It follows that r ≤ min{k, n − k} and there are at least (n − 2r) open intervals

Ij = (xn+1,j , xn+1,j+1) with endpoints at successive zeros xn+1,j and xn+1,j+1 of Pα,βn+1 where

neither xn+1,j or xn+1,j+1 is a zero of Pα+k,β+kn−k or Gk(x). If Gk does not change sign in an

interval Ij , it follows from (3.9), since Aj > 0 and Hk−1 is bounded while the right hand side

takes arbitrarily large positive and negative values for x ∈ Ij , that Pα+k,β+kn−k must have an

odd number of zeros in that interval, i.e., if Gk does not have a zero in Ij , then Pα+k,β+kn−k

must have an odd number of zeros in that interval. Since this applies to at least (n − 2r)

intervals Ij and Pα+k,β+kn−k has exactly (n − k − r) simple zeros that are not zeros of Pα,βn+1

while Gk has at most (k − r) zeros that are not zeros of Pα,βn+1, it follows that there must be

exactly (n−2r) intervals Ij = (xn+1,j , xn+1,j+1) with endpoints at successive zeros xn+1,j and

xn+1,j+1 of Pα,βn+1 where neither xn+1,j or xn+1,j+1 is a zero of Pα+k,β+kn−k . This implies that

the common zeros of Pα,βn+1 and Pα+k,β+kn−k cannot be two consecutive zeros of Pα,βn+1 and the

stated result now follows using the same argument as in (ii).

3.5 Some recent applications

In a recent paper by Driver and Jordaan [28], mixed three term recurrence relations, typically

satisfied by classical orthogonal polynomials from different sequences obtained from integer shifts

of the parameters, are used to derive strict upper (lower) bounds for the smallest (largest) zeros of

some classical orthogonal polynomials. Their results apply to any polynomial pn that is part of an

orthogonal sequence satisfying a mixed three term recurrence relation of the form (cf. [28, p. 1202,

Corollary 2.2])

f(x)gn−k(x) = Hk−1(x)pn+1(x)−Gk(x)pn(x)
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on an interval (c, d), where f(x) 6= 0 on (c, d) and Hk and Gk are polynomials of degree k. They

deduce that, since interlacing holds for such polynomials gn−k(x) and pn+1(x), irrespective of

whether the polynomials have common zeros or not, the extra interlacing point(s), which in this

case will be the zeros of Gk(x), will form bound(s) for the extreme zeros of the polynomial pn+1.

The authors apply their results to the Jacobi, Gegenbauer and Laguerre polynomials and compare

them with corresponding bounds obtained by other methods.

Applying their result to (1.6) and the mixed three term recurrence relations (7.9), (7.10), (7.16)

and (7.19), yields in each case a point Bn(k, 0), k = 0, 1, . . . , 4, that will be a strict lower bound

for the largest zero as well as a strict upper bound for the smallest zero of Pα,βn+1, i.e.,

xn+1,1 < Bn(k, 0) < xn+1,n+1, for each k = 0, 1, . . . , 4.

From the definitions of the points Bn(k, 0), k = 0, 1, . . . , 4, we can prove that

Bn < Bn(1, 0) < Bn(2, 0) < Bn(3, 0) < Bn(4, 0)

for all values of α, β > −1.

Considering also the extra interlacing points obtained in Corollary 3.2.2, denoted by

Bn(0, 4) < Bn(0, 3) < Bn(0, 2) < Bn(0, 1), we find the following bounds for the extreme zeros

xn+1,1 and xn+1,n+1 of the Jacobi polynomial Pα,βn+1

−1 < xn+1,1 < Bn(0, 4) < Bn(0, 3) < Bn(0, 2) = Bn+1,H(α, β) < Bn(0, 1) < Bn

< Bn(1, 0) < Bn(2, 0) = Bn+1,L(α, β) < Bn(3, 0) < Bn(4, 0) < xn+1,n+1 < 1,

where Bn is the value obtained from the three term recurrence relation (1.6), Bn+1,L(α, β) and

Bn+1,H(α, β) are the bounds obtained using classical methods as discussed in Section 2.4.

The formulas obtained in Theorem 3.2.1 and Corollary 3.2.2, provide us with bounds for the extreme

zeros of Pα,βn+1(x), polynomials of degree n+ 1. For simplification and the sake of future reference,

we shift the parameter n and show explicitly the best upper bound for the smallest zero of Pα,βn (x)

resulting from this method, i.e.,

Bn−1(0, 4) = − 2(n− 1)(n+ α+ β + 2) + (β + 3)(α− β)

2(n− 1)(n+ α+ β + 2) + (β + 3)(α+ β + 2)
,
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as well as the best lower bound for xn,n, i.e.,

Bn−1(4, 0) =
2(n− 1)(n+ α+ β + 2) + (α+ 3)(β − α)

2(n− 1)(n+ α+ β + 2) + (α+ 3)(α+ β + 2)
.

In Table 3.1 we provide numerical examples, in order to show that these new bounds (printed

in bold), are more precise bounds, than the bounds given by Szegő, denoted by Bn,L(α, β) and

Bn,H(α, β).

Table 3.1: Comparison of bounds for the extreme zeros of Pα,β6 (x) for different values of α and β.

α, β x6,1 B5(0, 4) B6,L(α, β) B6,H(α, β) B5(4, 0) x6,6

α = 0.3, β = 2.5 -0.744 -0.713 -0.527 0.825 0.931 0.934

α = 7.5, β = 6 -0.702 -0.645 -0.451 0.333 0.527 0.606

α = 7.5, β = −0.06 -0.971 -0.970 -0.903 0.126 0.296 0.392

3.6 Electrostatic interpretation

We refer to Section 2.6, where we discussed an electrostatic model to show how the zeros of Jacobi

polynomials can be interpreted electrostatically. In this section we will look at a similar, one-

dimensional electrostatic interpretation of the results in Section 3.2.

The result in Theorem 3.2.1(a) can be interpreted as follows. The zeros of Pα,βn+1 are in the interval

(−1, 1) and we will consider them to be the equilibrium positions of n + 1 positive unit charges,

denoted by q1, q1, . . . , qn+1, spaced between the points −1 and 1, where the positive charges β+1
2

and α+1
2 are positioned respectively. We consider these n+ 1 positions to be fixed.

We now replace the charge at 1 with a positive charge α+1
2 + t

2 , t ∈ {0, 1, 2, . . . }. When n − 1

positive charges are allowed to move freely between −1 and 1, the equilibrium positions of these

n − 1 charges, p1, p2, . . . , pn−1 (which we assume do not coincide with qj , j = 1, 2, . . . , n + 1), will

interlace with the fixed positions q1, q2, . . . , qn+1, as long as t ∈ {0, 1, 2, 3, 4}. For each of these

values of t, there will be one interval (qi, qi+1), i ∈ {1, 2, . . . , n} that does not contain one of the

positions pi, i = 1, 2, . . . , n − 1. We find that, as soon as the value of t becomes greater than 4,
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i.e., as soon as the charge at 1 is greater than α+1
2 + 2, the positions of the n − 1 charges do not

necessarily interlace with the fixed positions q1, q2, . . . , qn+1 any more. The interlacing property is

retained until the repelling force of the charge at 1, is large enough to repel position pi beyond the

fixed position qi for some i = 1, 2, . . . , n− 1.

From the results of Theorems 3.2.1, 3.2.3 and Corollary 3.2.2, we conjecture that the zeros of Pα,βn+1

and Pα+t,β+sn−1 , s, t ∈ {0, 1, 2, 3, 4} interlace, as long as the absolute value of the difference between

the sum of the parameters and the degree is less than or equal to 2. Let rk, k = 1, 2, . . . , n − 1

be the equilibrium positions of n − 1 unit charges, spaced between −1 and 1, where the charges
(β+s)+1

2 and (α+t)+1
2 are positioned. Electrostatically this conjecture would imply that there will be

at most one position rk, k = 1, 2, . . . , n− 1 between any two of the fixed positions q1, q2, . . . , qn+1,

for all values of s and t in {0, 1, 2, 3, 4}, such that

|α+ t+ β + s+ (n− 1)− α− β − (n+ 1)| ≤ 2, i.e., 0 ≤ s+ t ≤ 4.

3.7 Conclusion

Jacobi, Gegenbauer and Laguerre polynomials are infinite systems of continuous classical orthog-

onal polynomials. Unlike the Gegenbauer and Laguerre polynomials, Jacobi polynomials are two-

parameter polynomials and in this chapter we showed that Stieltjes interlacing extends to the zeros

of Jacobi polynomials from different sequences. We considered integer shifts of one of the param-

eters α or β at a time, as well as shifts of both parameters simultaneously and we identified the

values of j and k for which the zeros of Pα,βn+1 and Pα+j,β+kn−1 interlace in the Stieltjes sense. In fact,

Stieltjes interlacing is only retained for the specific values of j and k as mentioned in our theorems

and examples were given to show that, in general, interlacing breaks down when these values are

exceeded. We also proved that the zeros of Pα,βn+1 interlace with the zeros of the kth derivative of

Pα,βn , for k = 1, 2, . . . , n − 1. In each case, the extra interlacing point, and in the latter case, the

associated polynomial of degree k, whose zeros complete the interlacing process, was identified.

We showed how the extra interlacing points obtained from mixed three term recurrence relations,

especially in the case where we shift only one parameter at a time, relate to each other and yield

lower (upper) bounds for the largest (smallest) extreme zeros of the Jacobi polynomials and we

compared these bounds to the bounds obtained by Szegő [68], using classical methods.
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We identified the extra interlacing point

Bn−1(0, 4) = − 2(n− 1)(n+ α+ β + 2) + (β + 3)(α− β)

2(n− 1)(n+ α+ β + 2) + (β + 3)(α+ β + 2)

to be the most precise upper bound for the smallest zero and

Bn−1(4, 0) =
2(n− 1)(n+ α+ β + 2) + (α+ 3)(β − α)

2(n− 1)(n+ α+ β + 2) + (α+ 3)(α+ β + 2)

to be the best lower bound for the largest zero of the Jacobi polynomial Pα,βn that can be obtained

by using mixed three term recurrence relations to find inner bounds for the extreme zeros of Jacobi

polynomials.

In the next chapter we will consider Stieltjes interlacing between the zeros of different sequences of

discrete classical orthogonal polynomials.
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Chapter 4

Stieltjes interlacing of zeros of

Meixner and Krawtchouk polynomials

4.1 Introduction

In this chapter we discuss Stieltjes interlacing between zeros of different sequences of the infinite

system of Meixner polynomials as well as between zeros of different sequences of the finite system

of Krawtchouk polynomials.

As discussed in Section 1.5, Meixner polynomials Mn(x;β, c) are orthogonal on [0,∞) with respect

to a positive discrete measure for β > 0, 0 < c < 1 and n ∈ N, while Krawtchouk polynomials

Kn(x, p,N), n = 1, 2, . . . , N, N ∈ N are orthogonal with respect to a discrete measure on [0, N ]

when p ∈ (0, 1). These polynomials are two-parameter polynomials, similar to the Jacobi polynomi-

als, however, the parameters c and p of the Meixner and Krawtchouk polynomials respectively, are

both restricted to the interval (0, 1) and we therefore only consider integer shifts of the parameter

β in the Meixner case, and N in the Krawtchouk case.

In Section 4.2 we investigate the extent to which Stieltjes interlacing holds between the zeros of two

Meixner polynomials, if each polynomial belongs to a sequence generated by a different value of

the parameter β. We consider the zeros of Mn+1(x;β, c) and Mn−1(x;β + k, c) for different integer

values k, as well as the zeros of Mn+1(x;β, c) and Mn−k(x;β + k, c), for k = 1, 2, . . . , n − 1. In

our theorems we also consider the possibility that the polynomials under consideration can have
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common zeros. In each case, we use a mixed three term recurrence relation to identify a polynomial,

whose zeros complete the interlacing process. The proofs of our results are given in Section 4.3.

The extra interlacing points obtained in Sections 4.2, which provide inner bounds for the extreme

zeros of the Meixner polynomials, are discussed in Section 4.4. We compare these points with one

another, in order to identify the best upper (lower) bound for the smallest (largest) zero of each

of the polynomials Mn(x;β, c). Numerical examples are given in order to illustrate the accuracy of

these bounds.

In Section 4.5 we provide the reader with Stieltjes interlacing results between the zeros of two

Krawtchouk polynomials, where each polynomial is generated by a different value of the parameter

N. Shifting the parameter N of the Krawtchouk polynomial Kn(x; p,N), implies a change in the

interval of orthogonality and we find that Stieltjes interlacing does not follow naturally as in the

case of Jacobi and Meixner polynomials; additional restrictions on the parameter p are necessary

in some instances to ensure the required interlacing. We identify the extra interlacing points that

complete the interlacing process. The results of this section are proved in Section 4.6.

In Section 4.7 we compare the extra interlacing points obtained in Section 4.5 with one another,

in order to determine which points will yield the best inner bounds for the extreme zeros of the

polynomials Kn(x; p,N). The bounds obtained are very sharp and numerical examples are provided

to illustrate the quality of these bounds.

4.2 Stieltjes interlacing of zeros of Meixner polynomials from dif-

ferent sequences.

In our first theorem we examine Stieltjes interlacing between the zeros of Meixner polynomials

from different sequences, whose degrees differ by two, with due attention to the possibility that the

polynomials under consideration can have common zeros.

Theorem 4.2.1 Let Mn(x;β, c), β > 0, 0 < c < 1, n ∈ N denote a Meixner polynomial of degree

n.

(i) If Mn−1(x;β + k, c), k ∈ {0, 1, . . . , 4} and Mn+1(x;β, c) are co-prime, then
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(a) for fixed k ∈ {0, 1, 2, 3}, the zeros of Mn−1(x;β + k, c), together with the point

Bn(k) =
n+ βc+ (1− k)nc

1− c
+
k(1− k)(2− k)n(n+ 1)c2

6(1− c)(n+ β + 1)
, and

(b) the zeros of Mn−1(x;β + 4, c), together with the point

Bn(4) =
n3(c− 1)3 − (β)3c+ n2(c− 1)2(βc+ 3c− 2β − 3) + n(c− 1)((β + 2)(c2 + β + 1)− 3βc− 4c

(1− c)
(
n2(c2 − 1) + n(c2 − 2β − 3)− (β + 1)(β + 2)

) ,

interlace with the zeros of Mn+1(x;β, c);

(ii) If, for a fixed k ∈ {0, 1, . . . , 4}, Mn−1(x;β + k, c) and Mn+1(x;β, c) are not co-prime, then

(a) the two polynomials under consideration have one common zero located at the respective

points identified in (i) (a) and (b);

(b) the n− 1 zeros of Mn−1(x;β + k, c) interlace with the remaining n (non-common) zeros

of Mn+1(x;β, c).

Remarks.

1. The case k = 0 in Theorem 4.2.1(i)(a), extends the classic result of Stieltjes, as given in Section

1.2, that between any two zeros of Mn−1(x;β, c) there is at least one zero of Mn+1(x;β, c),

by providing a formula for an extra interlacing point.

2. The zeros of Meixner polynomials from different sequences, whose degrees differ by two,

no longer interlace when the values of k, as stated in Theorem 4.2.1, are exceeded. Using

Mathematica, we find that

– when β = 2, the zeros of M6(x;β, 0.9) and M4(x;β − 1, 0.9) do not interlace.

– the zeros of Mn+1(x;β, c) and Mn−1(x;β + 5, c) do not interlace when n = 5, c = 0.9

and β = 2 because the largest zero of M4(x;β + 5, 0.9) exceeds the largest zero of

M6(x;β, 0.9).

3. The interlacing results obtained in Theorem 4.2.1(i), are proved by using mixed three term

recurrence relations that hold true for all real values of β and c. Meixner polynomials are

orthogonal, and therefore real-rooted, on (−∞,−β) for parameter values β > 0 and c > 1
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and Stieltjes interlacing results, similar to those in Theorem 4.2.1(i), can be obtained in an

analogous way for these values of the parameters β and c. Numerical calculations indicate that

for β > 0 and c > 1, Stieltjes interlacing of the zeros of Mn+1(x;β, c) and Mn−1(x;β + k, c)

holds for k ∈ {1, 2}. For β = 4 and c = 3.7, the zeros of M5(x;β, c) and M3(x;β + 3, c) do

not interlace in the Stieltjes sense.

4. The result in Theorem 4.2.1(ii)(a) extends the result of Gibson [33] on the maximum number

of common zeros of two polynomials in an orthogonal sequence, to Meixner polynomials of

degree n − 1 and n + 1 from different orthogonal sequences. We refer the reader to Remark

3.3.2.

Theorem 4.2.1 provides the integer values of k for which the zeros of Mn−1(x;β + k, c) and

Mn+1(x;β, c) interlace in the Stieltjes sense, as well as a formula for an extra interlacing point.

Numerical experiments involving animations of the zeros, lead us to conjecture that for each

n ≥ 2, β > 0 and 0 < c < 1, there exists an a ∈ R, such that, as t varies continuously from

0 to a, the zeros of Mn−1(x;β + t, c) and Mn+1(x;β, c) interlace in the Stieltjes sense. Further-

more, for at least one of these (non-integer) values of t ∈ (0, a), the polynomials Mn−1(x;β + t, c)

and Mn+1(x;β, c) have a zero in common. In this case, the n remaining (non-common) zeros of

Mn+1(x;β, c) interlace with the n− 1 zeros of Mn−1(x;β + t, c).

We now state a more general result for Stieltjes interlacing between the zeros of Mn+1(x;β, c) and

the n− k zeros of ∆kMn(x;β, c) or, equivalently, Mn−k(x;β + k, c), k ∈ {1, 2, . . . , n− 1}.

Theorem 4.2.2 Let Mn(x;β, c), n ∈ N, denote the Meixner polynomial of degree n.

(i) For each k ∈ {1, 2, . . . , n− 1}, there exist polynomials Gk and Hk of degree k such that

gk(x)Mn−k(x;β + k, c) = Hk−1(x)Mn+1(x;β, c) +Gk(x)Mn(x;β, c), (4.1)

where gk(x) = (1− 1
c )
k(−n)k(x+ β)k.

(ii) Let k ∈ {1, 2, . . . , n− 1} be fixed, β > 0 and 0 < c < 1. If Mn+1(x;β, c) and Mn−k(x;β+k, c)

are co-prime, then the zeros of Mn−k(x;β+k, c), together with the k real zeros of Gk, interlace

with the zeros of Mn+1(x;β, c).
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(iii) Let k ∈ {1, 2, . . . , n− 1} be fixed, β > 0 and 0 < c < 1. If Mn+1(x;β, c) and Mn−k(x;β+k, c)

have r common zeros, then

(a) r ≤ min{n− k, k};

(b) the common zeros are the zeros of the polynomial Gk(x);

(c) the common zeros of Mn+1(x;β, c) and Mn−k(x;β + k, c) cannot be consecutive zeros of

Mn+1(x;β, c) and

(d) the (n − 2r) non-common zeros of the product Gk(x)Mn−k(x;β + k, c), together with

the r common zeros of Mn+1(x;β, c) and Mn−k(x;β, c), interlace with the (n + 1 − r)
non-common zeros of Mn+1(x;β, c).

We note that the mixed three term recurrence relation (4.1) holds true for all values of the pa-

rameters β and c and, by replacing β with −N and c with p
p−1 , we obtain a similar relation for

Krawtchouk polynomials, namely

(−n)k(−N + x)k
pk

Kn−k(x; p,N − k) = Hk−1(x)Kn+1(x; p,N) +Gk(x)Kn(x; p,N),

with H0(x) = −1, G1(x) = x− n+ np−Np and k ∈ {1, 2, . . . , n− 1}.

4.3 Proofs of results given in Section 4.2

In our proofs we make use of the connection between Meixner polynomials and the 2F1 hypergeo-

metric function, as well as contiguous function relations satisfied by 2F1 polynomials.

Using (1.9), the identities (7.2), (7.8), (7.15), (7.21) and (7.22) can be written as the following

mixed three term recurrence relations for Meixner polynomials, used in our proofs:

(
1− 1

c

)
(x+ β)Mn(x;β + 1, c) = Mn+1(x;β, c)− β + n

c
Mn(x;β, c) (4.2)

n

(
1− 1

c

)
(x+ β)Mn−1(x;β + 1, c) = Mn+1(x;β, c)−

(
β +

n

c
+

(
1− 1

c

)
x

)
Mn(x;β, c) (4.3)(

x− βc+ n− nc
1− c

)
Mn(x;β, c) =

c(n− nc+ β)

(c− 1)(β + n)
Mn+1(x;β, c) (4.4)

+
n(c− 1)(x+ β)2

β + n
Mn−1(x;β + 2, c)
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(
x− n2(c− 1)2 + n(c− 1)(c− β − 1) + (β)2c

(1− c)(β + n+ 1)

)
Mn(x;β, c) (4.5)

=
cD1(x)

(c− 1)(β + n)2
Mn+1(x;β, c)− n(c− 1)2(x+ β)3

(β + n)2
Mn−1(x;β + 3, c),

D1(x) = n2(c− 1)2 + (β)2 + n(c− 1)((x+ β + 1)c− 2β − 1)

(x−Bn(4))D3

(n+ β + 1)(n+ β + 2)
Mn(x;β, c) =

cD2(x)

(c− 1)(β + n)3
Mn+1(x;β, c) (4.6)

− n(c− 1)3(x+ β)4
(β + n)3

Mn−1(x;β + 4, c),

where

Bn(4) =
n3(c− 1)3 − (β)3c+ n2(c− 1)2(βc+ 3c− 2β − 3) + n(c− 1)((β + 2)(c2 + β + 1)− 3βc− 4c

(1− c)D3

D2(x) = n3(c− 1)3 − (β)3 + n2(c− 1)2((2x+ 2β + 3)c− 3(β + 1))

+ n(c− 1)(3β2 + 6β + 2 + ((β + 1)2 + x(x+ 2β + 3))c2 − (3β2 + 8β + 4 + x(x+ 4β + 5))c)

D3 = n2(c2 − 1) + n(c2 − 2β − 3)− (β + 1)(β + 2)

Proof of Theorem 4.2.1.

(i) (a) For t = 0, the result follows from the three term recurrence relation for Meixner poly-

nomials (1.15) and Lemma 3.3.1(i).

For t = 1, t = 2 and t = 3, the stated results follow from the mixed three term recurrence

relations (4.3), (4.4) and (4.5) respectively, as well as Lemma 3.3.1(i).

(b) We apply Lemma 3.3.1(i) to the mixed three term recurrence relation (4.6) to obtain

the stated result.

(ii) This follows immediately from Lemma 3.3.1(ii) and the proofs of Theorem 4.2.1(i)(a) to (c).
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Proof of Theorem 4.2.2.

(i) We use the mixed three term recurrence relations (4.2) and (4.3) and prove our result by

induction on k.

If k = 1, (4.1) is the same as (4.3) with H0(x) = −1 and G1(x) = β + n
c + (1 − 1

c )x and

therefore (4.1) holds for k = 1.

We assume that (4.1) holds for m = 1, 2, . . . , k, i.e., we assume that

gm(x)Mn−m(x;β +m, c) = Hm−1(x)Mn+1(x;β, c) +Gm(x)Mn(x;β, c) (4.7)

with Gm and Hm polynomials of degree m and gm(x) = (1 − 1
c )
m(−n)m(x + β)m for m =

1, 2, . . . , k.

For m = k + 1, the left hand-side of (4.1) is equal to

gk+1(x)Mn−k−1(x;β + k + 1, c)

=

(
1− 1

c

)k+1

(−n)k+1(x+ β)k+1Mn−k−1(x;β + k + 1, c)

=

(
1− 1

c

)k+1

(−n1 − 1)k+1(x+ β1 − 1)k+1Mn1−k(x;β1 + k, c) where β1 = β + 1, n1 = n− 1

=

(
1− 1

c

)k
(−n1)k(x+ β1)k

(
1− 1

c

)
(−n1 − 1)(x+ β1 − 1)Mn1−k(x;β1 + k, c)

=

(
1− 1

c

)
(−n1 − 1)(x+ β1 − 1)

(
Hk−1(x)Mn1+1(x;β1, c) +Gk(x)Mn1(x;β1, c)

)
=

(
1− 1

c

)
(−n)(x+ β)

(
Hk−1(x)Mn(x;β + 1, c) +Gk(x)Mn−1(x;β + 1, c)

)
,

by using the induction hypothesis.

A straightforward calculation using (4.2) and (4.3), shows that this equals

Hk(x)Mn+1(x;β, c) +Gk+1(x)Mn(x;β, c)

with

Hk(x) = −nHk−1(x)−Gk(x)
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and

Gk+1(x) = Gk(x)

(
β +

n

c
+

(
n− 1

c

)
x

)
−Hk−1(x)

(−n)(β + n)

c

which is the righthand-side of (4.1) for m = k + 1. It follows that (4.7) holds for m = k + 1

and the result follows by induction on k.

(ii) From (4.1), provided Mn+1(x;β, c) 6= 0, we have

gk(x)Mn−k(x;β + k, c)

Mn+1(x;β, c)
= Hk−1(x) +

Gk(x)Mn(x;β, c)

Mn+1(x;β, c)
.

The stated result follows by the same argument used in the proof of Theorem 3.4.1 (ii).

(iii) The stated result is proved by using the same argument as in the proof of Theorem 3.4.1 (iii).

4.4 New inner bounds for the extreme zeros of Meixner

polynomials

Let xn+1,1 < xn+1,2 < · · · < xn+1,n+1 be the zeros of Mn+1(x;β, c). It follows from [28, p. 1202,

Corollary 2.2] that each point Bn(k), k = 0, 1, . . . , 4, obtained in Theorem 4.2.1(i), will be a strict

lower bound for xn+1,n+1 and a strict upper bound for xn+1,1, i.e.,

0 < xn+1,1 < Bn(k) < xn+1,n+1, for each k = 0, 1, . . . , 4.

The definitions of the points Bn(k), k = 0, 1, . . . , 4, immediately imply that

0 < xn+1,1 < Bn(4) < Bn(3) < · · · < Bn(0) < xn+1,n+1,

for all values of β > 0 and 0 < c < 1, and consequently the point Bn(0), obtained from the three

term recurrence relation for Meixner polynomials (1.15), is a sharp lower bound for xn+1,n+1 and

Bn(4) is a good upper bound for xn+1,1.

The formulas obtained in Theorem 4.2.1 provide us with bounds for the extreme zeros ofMn+1(x;β, c),

polynomials of degree n + 1. For the sake of future reference, we shift the parameter n and show

the bounds for the extreme zeros of Mn(x;β, c).
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A good lower bound for the largest zero xn,n of Mn(x;β, c), is the point

Bn−1 =
(n− 1)(1 + c) + βc

1− c

and a precise upper bound for the smallest zero of Mn(x;β, c), is

Bn−1(4) =
(β)2

(
(β + 3)c− 1

)
+ n(c− 1)

(
(c− 1)2 − β2 + β(1 + c(c− 3))

)
− β(c− 2)(n(c− 1))2 − (n(c− 1))3

(1− c)
(
β(2n+ β + 1) + n(n+ 1− (n− 1)c2)

) ,

(4.8)

i.e.,

0 < xn,1 < Bn−1(4) < Bn−1(0) < xn,n,

for all values of β > 0 and 0 < c < 1. These bounds are the sharpest inner bounds that can be ob-

tained using our method involving mixed three term recurrence relations, since Stieltjes interlacing

is only retained for the integer values given in Theorem 4.2.1(i).

We provide numerical examples in Table 4.1, in order to indicate the sharpness of these bounds,

and note that the best lower bounds for xn,n are obtained when c→ 0. The best upper bounds for

xn,1 are found for c close to 1.

Table 4.1: Comparison of bounds for the extreme zeros of Mn(x;β, c), n = 8, for different values

of β and c.

Values of β and c x8,1 Upper bound for x8,1 Lower bound for x8,8 x8,8

β = 0.09, c = 0.02 2.9× 10−15 6.727 7.288 7.913

β=0.09, c=0.99 1.118 1.130 1401.91 2114.7

β=0.09, c=0.5 0.0004 2.195 21.09 31.082

β = 2.0, c = 0.99 39.741 43.894 1591 2445.289

β = 6.0, c = 0.01 9.6× 10−13 6.921 7.207 7.825

β = 20, c = 0.5 5.234 16.474 41.00 65.935

β = 20, c = 0.99 892.097 1212.12 3373.00 5141.82
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4.5 Stieltjes interlacing of zeros of Krawtchouk polynomials from

different sequences

Krawtchouk polynomials are orthogonal with respect to a positive discrete measure on the interval

[0, N ] and each polynomial Kn(x; p,N), n = 1, 2, . . . , N, 0 < p < 1, has n real zeros in (0, N).

Our first result follows directly from the three term recurrence relation (1.19) for Krawtchouk

polynomials.

Theorem 4.5.1 Let Kn(x; p,N), 0 < p < 1, n = 1, 2, 3, . . . , N−1, N ∈ N, denote the Krawtchouk

polynomial of degree n.

(i) If Kn−1(x; p,N) and Kn+1(x; p,N) are co-prime, then the zeros of Kn−1(x; p,N), together

with the point Cn = n+Np− 2np, interlace with the zeros of Kn+1(x; p,N);

(ii) If Kn−1(x; p,N) and Kn+1(x; p,N) are not co-prime, then

(a) they have one common zero at x = Cn;

(b) the n− 1 zeros of Kn−1(x; p,N) interlace with the n non-common zeros of

Kn+1(x; p,N).

Remark. Consider the case n = N.

(1) The results in Theorem 4.5.1 still hold because of the interlacing of the zeros ofKn(x; p,N), n =

1, 2, . . . , N, with the mass points of the discrete measure x = 0, 1, 2 . . . , N , that are equal to

the zeros of KN+1(x; p,N) [68, p. 36], as discussed in Section 1.5.3.

(2) If KN−1(x; p,N) and KN+1(x; p,N) have a zero in common, then this common zero is

CN =


1 if p = 1− 1

N ;

2 if p = 1− 2
N ;

...

N − 1 if p = 1
N .

For Krawtchouk polynomials Kn(x; p,N), 0 < p < 1, n = 1, 2, 3, . . . , N, shifting the parameter N

means that we in fact change the interval of orthogonality and hence the interval in which the zeros
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may lie. We consider Stieltjes interlacing between the zeros of Kn+1(x; p,N), 0 < p < 1, n =

1, 2, . . . , N −1, that lie in (0, N) and the n−1 zeros of Kn−1(x; p,N −k), k ∈ {−1, 1, 2}, that lie in

(0, N − k). We use mixed three term recurrence relations satisfied by the appropriate polynomials

and restrictions on p are necessary in some cases to satisfy the conditions of Lemma 3.3.1.

We will denote the zeros of the polynomial Kn(x; p,N) by xn,1 < xn,2 < · · · < xn,n and when the

parameter N shifts by k units, we will indicate the zeros of the resulting polynomial Kn(x; p,N+k)

by xN+k
n,1 , xN+k

n,2 , . . . .

In the next theorem we consider the zeros of Kn+1(x; p,N) and Kn−1(x; p,N − k), k ∈ {1, 2}, n =

1, 2, . . . , N − 1, and we obtain new bounds for the two largest zeros of Kn+1(x; p,N).

Theorem 4.5.2 Let Kn(x; p,N), 0 < p < 1, N ∈ N, denote the Krawtchouk polynomial of degree

n, Cn(k) = n+Np+ (k − 2)np and pn(k) =
N − n− k
N + (k − 2)n

, k ∈ {1, 2}.

(i) Let n = 1, 2, . . . , N − 1. If Kn−1(x; p,N − 1) and Kn+1(x; p,N) are co-prime, then the zeros

of Kn−1(x; p,N − 1), together with the point Cn(1) = n+Np−np, interlace with the zeros of

Kn+1(x; p,N).

Furthermore,

(a) if 0 < pn(1) < p < 1, then xN−1n−1,n−1 < xNn+1,n < N − 1 < Cn(1) < xNn+1,n+1 < N ;

(b) if p = pn(1) = 1− 1
N−n , then xN−1n−1,n−1 < xNn+1,n < Cn(1) = N − 1 < xNn+1,n+1 < N.

(ii) Let Kn−1(x; p,N − 2) and Kn+1(x; p,N) be co-prime, n = 1, 2, . . . , N − 2. The zeros of

Kn−1(x; p,N − 2), together with the point Cn(2) = n + Np, interlace with the zeros of

Kn+1(x; p,N) for p < 1− n+1
N , if and only if the zeros of Kn+1(x; p,N) lie in (0, N − 1).

Furthermore,

(a) if 0 < pn(2) < p < 1− n+1
N , then xN−2n−1,n−1 < xNn+1,n < N−2 < Cn(2) < xNn+1,n+1 < N−1;

(b) if p = pn(2) = 1− n+2
N , then xN−2n−1,n−1 < xNn+1,n < Cn(2) = N − 2 < xNn+1,n+1 < N − 1.

(iii) For k ∈ {1, 2}, if Kn+1(x; p,N) and Kn−1(x; p,N − k) have a zero in common, then

(a) 0 < p < pn(k) < 1;

(b) the point Cn(k) is the common zero of Kn−1(x; p,N − k) and Kn+1(x; p,N);
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(c) the n−1 zeros of Kn−1(x; p,N−k) interlace with the n (non-common) zeros of Kn+1(x; p,N).

Remarks.

(1) Numerical investigations indicate that the extra-interlacing point Cn(2) = n+Np lies between

xNn+1,n and xNn+1,n+1 for all n = 1, 2, . . . , N − 2 and p < 1− n+1
N , and not only for the values

of p as indicated in Theorem 4.5.2 (ii) (a) and (b).

(2) Consider the case where n = N .

(i) When n = N in the mixed three term recurrence relation (4.9), we have

(x−N)KN (x; p,N) = pKN+1(x; p,N) +N(N − x)KN−1(x; p,N − 1),

and applying the well-known result stated in Lemma 5.4.1, we find that

KN (x; p,N) +NKN−1(x; p,N − 1) =
1

pN
x(x− 1) . . . (x−N + 1).

Consequently the polynomials KN−1(x; p,N − 1) and KN+1(x; p,N), N ∈ N, are co-

prime for all p ∈ (0, 1), since the zeros of KN (x; p,N) interlace with the mass points

x = 0, 1, . . . , N.

(ii) It follows directly from Lemma 5.4.1 that KN+1(x; p,N) and KN−1(x; p,N − 2) have

N − 1 common zeros, x = 0, 1, . . . , N − 2, for all p ∈ (0, 1).

Theorem 4.5.3 Let Kn(x; p,N), 0 < p < 1, n = 1, 2, . . . , N − 1, N ∈ N, denote the Krawtchouk

polynomial of degree n and let

q =
3n−N +

√
5n2 − 4n3 − 2nN + 4n2N +N2

2n(n+ 1)
,

X1 =
1

2

(
Sn −

√
S2
n + 4((N + 1)(3np−Np− n)− np2(n+ 1)

)
and

X2 =
1

2

(
Sn +

√
S2
n + 4((N + 1)(3np−Np− n)− np2(n+ 1)

)
, where

Sn = 1 + n+N − 3np+Np.

(i) X2 ∈ [N,N + 1) if p ≤ q.
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(ii) Let Kn−1(x; p,N + 1) and Kn+1(x; p,N) be co-prime. For each fixed n = 1, 2, . . . , N − 1 and

p ≤ q, the zeros of Kn−1(x; p,N + 1) are in (0, N) and, together with the point X1, they interlace

with the zeros of Kn+1(x; p,N).

(iii) Let n = 1, 2, . . . , N and p be fixed, p ≤ q. If Kn−1(x; p,N + 1) and Kn+1(x; p,N) are not

co-prime,

(a) they have one common zero at x = X1;

(b) the n− 1 zeros of Kn−1(x; p,N + 1) interlace with the n non-common zeros of Kn+1(x; p,N).

Remark. For the sake of completeness, we mention that if n = N, then q = 2
N+1 and for the zeros

of KN−1(x; p,N+1) to be in (0, N), we need p ≤ q. For these values of p, the zeros of KN+1(x; p,N)

are x = 0, 1, . . . , N and they interlace with the zeros of KN−1(x; p,N + 1) in the Stieltjes sense. If

KN−1(x; p,N + 1) and KN+1(x; p,N) do have a zero in common, then this common zero can only

be one of the integers 0, 1, . . . , N . When p → 0, we will prove in Theorem 5.5.1 that the zeros of

KN−1(x; p,N + 1) tend to x = 0, 1, . . . , N − 2.

4.6 Proofs of results given in Section 4.5

Proof of Theorem 4.5.1.

(i) We assume that Kn−1(x; p,N) and Kn+1(x; p,N) do not have any zeros in common. The three

term recurrence relation satisfied by Krawtchouk polynomials (1.19), together with Lemma

3.3.1(i), yields the stated result.

(ii) If Kn−1(x; p,N) and Kn+1(x; p,N) are not co-prime, then both results (a) and (b) follow

from Lemma 3.3.1(ii).
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From (1.16) and the contiguous relations (7.14) and (7.15) we obtain the mixed recurrence relations

Kn−1(x; p,N − 1) =
p

n(x−N)
Kn+1(x; p,N)− x− (n+Np− np)

n(x−N)
Kn(x; p,N) and (4.9)

Kn−1(x; p,N − 2) =
p(n+Np−N)

n(x−N)2
Kn+1(x; p,N) + (x− (n+Np))bn(x)Kn(x; p,N), (4.10)

where bn(x) =
(N − n)(1− p)
n(x−N)2

.

Proof of Theorem 4.5.2.

(i) Let Kn−1(x; p,N − 1) and Kn+1(x; p,N) be co-prime. We consider the mixed three term

recurrence relation (4.9). The function 1
n(x−N) in this relation does not change sign on

(0, N) and consequently we can apply Lemma 3.3.1 (i) to (4.9), and deduce that the ze-

ros of Kn−1(x; p,N − 1), together with the point Cn(1) = n + Np − np, interlace with the

zeros of Kn+1(x; p,N) on (0, N).

Furthermore,

(a) if p > pn(1) = 1− 1
N−n , we have N−1 < Cn(1) < xNn+1,n+1 and since there is at most one

zero of Kn+1(x; p,N), n = 1, 2, . . . , N − 1 in between any two consecutive mass points

0, 1, 2 . . . , N, we have xNn+1,n < N − 1.

(b) if p = 1− 1
N−n , Cn(1) = N − 1 and hence xNn+1,n < N − 1 < xNn+1,n+1 < N.

(ii) Let Kn−1(x; p,N − 2) and Kn+1(x; p,N) be co-prime and consider the mixed three term

recurrence relation (4.10). Firstly, we assume that the zeros of Kn+1(x; p,N) lie in (0, N −1).

The function

bn(x) =
(N − n)(1− p)

n(x−N)(x−N + 1)

in (4.10) is defined and does not change sign on the interval (0, N − 1). The same proof as

that of Lemma 3.3.1(i) can be used for the interval (0, N − 1) and it follows that the zeros

of Kn−1(x; p,N − 2), together with the point Cn(2), interlace with the zeros of Kn+1(x; p,N)

on (0, N − 1). Furthermore, the point Cn(2) = n + Np must lie in (0, N − 1), which means

p < 1− n+1
N .

Next, assume that the zeros of Kn−1(x; p,N − 2), together with the point Cn(2), interlace

with the zeros of Kn+1(x; p,N) and p < 1− n+1
N , i.e., Cn(2) = n+Np < N − 1.

65

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Suppose xNn+1,n+1 > N − 1. Evaluating (4.10) at xNn+1,n and xNn+1,n+1, we obtain

Kn

(
xNn+1,n; p,N

)
Kn

(
xNn+1,n+1; p,N

)
d2(

xNn+1,n −N
)(
xNn+1,n+1 −N

)(
xNn+1,n −N + 1

)(
xNn+1,n+1 −N + 1

)
=

Kn−1
(
xNn+1,n; p,N − 2

)
Kn−1

(
xNn+1,n+1; p,N − 2

)(
xNn+1,n − Cn(2)

)(
xNn+1,n+1 − Cn(2)

) , (4.11)

where d = (N−n)(1−p)
n . The zeros of Kn+1(x; p,N) lie in (0, N) and there is only one zero of

Kn+1(x; p,N) between any two mass points, therefore xNn+1,n < N − 1 and consequently the

denominator on the left-hand side of (4.11) is negative. The numerator is also negative, since

the zeros of Kn+1(x; p,N) and Kn(x; p,N) interlace, which implies that the left-hand side of

(4.11) is positive.

By assumption, either a zero of Kn−1(x; p,N − 2) or the point Cn(2) lies in the interval(
xNn+1,n, x

N
n+1,n+1

)
. If Cn(2) ∈

(
xNn+1,n, x

N
n+1,n+1

)
, the denominator on the right-hand side is

negative. For the right-hand side of (4.11) to be positive, we need

Kn−1
(
xNn+1,n; p,N − 2

)
Kn−1

(
xNn+1,n+1; p,N − 2

)
< 0, which means there is also a zero of

Kn−1(x; p,N − 2) in
(
xNn+1,n, x

N
n+1,n+1

)
and we have a contradiction.

Alternatively, if Kn−1(x; p,N−2) has a zero in the interval
(
xNn+1,n, x

N
n+1,n+1

)
, the numerator

on the right-hand side is negative and for the right-hand side of (4.11) to be positive, we need

the denominator to be negative, i.e., Cn(2) ∈
(
xNn+1,n, x

N
n+1,n+1

)
and again, this contradicts

our assumption. We conclude that xNn+1,n+1 < N − 1.

Furthermore,

(a) if 0 < 1− n+2
N < p < 1− n+1

N , then N − 2 < Cn(2) < N − 1 and, because of the Stieltjes

interlacing, N − 2 < Cn(2) < xNn+1,n+1 < N − 1. Since there is at most one zero of

Kn+1(x; p,N) in between any two consecutive mass points, we have xNn+1,n < N − 2.

(b) if p = 1− n+2
N , then Cn(2) = N − 2 and xNn+1,n < N − 2 < xNn+1,n+1 < N − 1.

(iii) For each k ∈ {1, 2}, we have the following: If Kn−1(x; p,N − k) and Kn+1(x; p,N) have zeros

in common, it follows from the mixed three term recurrence relations (4.9) and (4.10) (for

k = 1 and k = 2 respectively), together with Lemma 3.3.1 (ii), that they can only have one
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common zero, that is equal the point Cn(k) and since this common zero must lie in (0, N−k),

we have Cn(k) < N − k and consequently p < pn(k).

Proof of Theorem 4.5.3. We use the contiguous relation (7.20) and the 2F1 representation of

the Krawtchouk polynomials (1.16) to obtain the mixed three term recurrence relation

n(N−n+1)2(1−p)2Kn−1(x; p,N+1) = p(x−N−1+np)Kn+1(x; p,N)−P2(x)Kn(x; p,N) (4.12)

where P2(x) = x2 − (1 + n+N − 3np+Np)x− (N + 1)(3np−Np− n) + np2(n+ 1)

= (x−X1)(x−X2).

It is easy to show that X1 ∈ (0, N) and X2 ∈ (0, N + 1) for 0 < p < 1. In order to apply Lemma

3.3.1 (i) to (4.12), we need to determine the parameter values for which (x−X2) does not change

sign on (0, N), i.e., we need to find the conditions on p so that N ≤ X2 < N + 1.

(i) A straight-forward calculation shows that X2 ≥ N is equivalent to

(n2 + n)p2 + (N − 3n)p+ n−N ≤ 0.

By solving this quadratic inequality and taking in consideration the assumption that p > 0,

we find

0 < p ≤ 3n−N +
√

5n2 − 4n3 − 2nN + 4n2N +N2

2n(n+ 1)
= q.

(ii) Let Kn−1(x; p,N + 1) and Kn+1(x; p,N) be co-prime, n and p fixed, and p ≤ q. We apply

Lemma 3.3.1 (i) to (4.12) and conclude that for p ≤ q the n − 1 zeros of Kn−1(x; p,N + 1),

together with the point X1, interlace with the zeros of Kn+1(x; p,N). A direct consequence

of this interlacing is that the zeros of Kn−1(x; p,N + 1) lie in (0, N) for the specified values

of p, since xN+1
n−1,n−1 < xNn+1,n+1 < N.

(iii) Let n and p ≤ q be fixed. When we assume that Kn−1(x; p,N + 1) and Kn+1(x; p,N) have

a common zero, this zero must lie in (0, N) and the stated results follows from Lemma 3.3.1

(ii).
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4.7 New bounds for the extreme zeros of Krawtchouk polynomials

From Theorems 4.5.1 and 4.5.2 (i) and (iii), we deduce that each one of the points

Cn(k) = n + Np + (k − 2)np, k = 0, 1, will be an upper (lower) bound for the smallest (largest)

zero of Kn+1(x; p,N). Since Cn < Cn(1) for all values of n = 1, 2, . . . , N − 1 and p ∈ (0, 1), we can

conclude that

0 < xn+1,1 < Cn < Cn(1) < xn+1,n+1 < N.

From Theorem 4.5.2 (ii) and (iii), as well as the definitions of Cn(k), k = 0, 1, 2, it follows that, for

p < 1− n+1
N ,

0 < xn+1,1 < Cn < Cn(1) < Cn(2) < xn+1,n+1 < N − 1.

The points Cn(k), k = 0, 1, 2, are bounds for the extreme zeros of Kn+1(x; p,N), polynomials of

degree n+ 1. For easier reference, we state the bounds for the extreme zeros of Kn(x; p,N):

Cn−1 = Np+ (n− 1)(1− 2p) (4.13)

Cn−1(1) = Np+ (n− 1)(1− p) (4.14)

Cn−1(2) = Np+ n− 1 (4.15)

and consequently, for 0 < p < 1,

0 < xn,1 < Cn−1 < Cn−1(1) < xn,n < N.

The upper bound N for xn,n, follows naturally from the orthogonality of the Krawtchouk polyno-

mials and we draw the attention of the reader to the fact that, for p < 1− n
N , we have obtained a

sharper upper bound, N − 1, for xn,n, since

0 < xn,1 < Cn−1 < Cn−1(1) < Cn−1(2) < xn,n < N − 1.

The lower bounds for the largest zeros are surprisingly good and we provide some numerical exam-

ples in Table 4.2 to illustrate this.
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Table 4.2: Comparison of bounds for x5,5, the largest zero of K5(x; p,N), for different values of p

and N .
Values of Lower bound Lower bound Value of Upper bound

p, N obtained from (4.14) obtained from (4.15) x5,5 for x5,5

p = 0.1, N = 10 4.6 5 5.78 9

p = 0.45, N = 10 6.7 8.5 8.738 9

p = 0.9, N = 10 9.4 - 9.994 10

p = 0.1, N = 7 4.3 4.7 4.991 6

p = 0.9, N = 7 6.7 - 6.999 7

We observe that, for the special case when p = 1, we have

Kn(x; 1, N) = (−N)n 2F1(−n,−x;−N ; 1)

= (x−N)(x−N + 1).....(x−N + n− 1),

which vanishes when x = N,N − 1, . . . , N −n+ 1, and this is consistent with the sharp bounds for

the extreme zeros we obtain when p→ 1, as illustrated in Table 4.3.

Table 4.3: Bounds for the zeros of Kn(x; 0.99, N) for different values of n and N .

Values of Value of Upper bound for xn,1 Lower bound for xn,n Value of

n, N xn,1 obtained from (4.13) obtained from (4.14) xn,n

n = 5, N = 8 3.816 4 7.96 7.99999997

n = 5, N = 14 9.573 9.94 13.9 13.9999991

n = 8, N = 12 4.659 5.02 11.95 11.9999999998
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4.8 Conclusion

In this chapter we proved Stieltjes interlacing between zeros of different sequences of discrete or-

thogonal polynomials and derived bounds for the extreme zeros of the Meixner and Krawtchouk

polynomials.

We proved that the zeros of the Meixner polynomials Mn+1(x;β, c), β > 0, 0 < c < 1, n ∈ N,
interlace in the Stieltjes sense with the zeros of the polynomials Mn−1(x;β + k, c), k = 0, 1, . . . , 4,

and Mn−k(x;β + k, c), k = 1, 2, . . . , n − 1, and the extra interlacing points we obtained, yield the

following sharp bounds for the extreme zeros of Mn(x;β, c):

0 < xn,1 < Bn−1(4) <
((2 + β − 2n)c+ n− 1)n(n− 1)c2

1− c
<

(n− 1)(1 + c) + βc

1− c
< xn,n,

where Bn−1(4) is given by (4.8).

In the Krawtchouk case we proved that the zeros of Kn+1(x; p,N), n = 0, 1, . . . , N − 1, interlace in

the Stieltjes sense with the zeros of Kn−1(x; p,N), as well as Kn−1(x; p,N − 1), and we provided

the conditions necessary for the zeros of the polynomials Kn+1(x; p,N), n = 0, 1, . . . , N − 1, to

interlace in the Stieltjes sense with the zeros of Kn−1(x; p,N − 2) and Kn−1(x; p,N + 1). In each

case, we identified the extra interlacing points that complete the interlacing and which yield new

inner bounds for the extreme zeros of the polynomial Kn+1(x; p,N).

For Kn(x; p,N), n = 1, 2, . . . , N and p ∈ (0, 1), we obtained the bounds

0 < xn,1 < Np+ (n− 1)(1− 2p) < Np+ (n− 1)(1− p) < xn,n < N.

Furthermore, when p < 1− n
N ,

0 < xn,1 < Np+ (n− 1)(1− 2p) < Np+ n− 1 < xn,n < N − 1.

In the next chapter we keep our focus on the zeros of Meixner and Krawtchouk polynomials and we

deviate from the interlacing theme, by studying the zero location of the zeros of these polynomials

for parameter values where the standard orthogonality does not hold.
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Chapter 5

On the zeros of Meixner and

Krawtchouk polynomials

5.1 Introduction

The standard orthogonality of Jacobi, Meixner and Krawtchouk polynomials was introduced in

Section 1.5. In this chapter, we investigate the zeros of Meixner and Krawtchouk polynomials for

non-classical parameters. Results on the orthogonality of Jacobi polynomials for parameter values

different from those for which the standard orthogonality holds, were discussed in e.g. [1] and [47].

Extensions of discrete orthogonal polynomials beyond the orthogonality are considered in [4] and

[17]. A non-standard (or ∆-Sobolev) orthogonality for Krawtchouk polynomials is obtained in

[4], where it is shown that these polynomials are orthogonal with respect to a discrete measure

involving difference operators. In [17], the authors use the three term recurrence relation satisfied

by the Hahn polynomials to prove that these polynomials can be characterized by a ∆-Sobolev

orthogonality, they also discuss the ∆-Sobolev orthogonality of the Krawtchouk polynomials, as

well as a non-Hermitian orthogonality with respect to a complex weight function for Meixner

polynomials Mn(x;β, c) when β, c ∈ C, c /∈ [0,∞) and β /∈ Z− [17, Proposition 9]. Furthermore, in

[52], a ∆-Sobolev inner product is used to obtain a generating function for the ∆-Sobolev orthogonal

Meixner polynomials.

The asymptotic zero distribution of Meixner polynomials has been studied by various authors (cf.
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[5], [40] and [45]). In [23] and [24], the limiting distribution of the zeros of Krawtchouk polynomials

Kn(x; p,N), for p = 1
2 and p 6= 1

2 , respectively, is derived from the strong asymptotics as n → ∞
and in [39], a saddle point method is applied to an integral representation of the Krawtchouk

polynomial Kn(x; p,N), p = 1
2 , to derive the strong asymptotics of these polynomials as N → ∞,

n→∞, N
n fixed and x > 0. The more general case, p 6= 1

2 , is also discussed.

As discussed in Section 1.5, the polynomials Mn(x;β, c) have the standard orthogonality of Meixner

and Krawtchouk polynomials for the parameter ranges

0 < c < 1, β > 0, n = 0, 1, 2, . . . ;

c > 1, β > 0, n = 0, 1, 2, . . . and

c < 0, β = −N , N ∈ N, n = 0, 1, 2 . . . N .

We examine the zeros of the polynomials Mn(x;β, c) for different parameter values, i.e., for the

values

(i) c < 0, β < 0, n < 1− β, n ∈ N;

(ii) 0 < c < 1, β < 0, n ∈ N;

(iii) c > 1, β < 0, n ∈ N;

(iv) c < 0, β < 0, n ∈ N;

(v) c < 0, β = −N , n = N + 1, N + 2, . . . ;

(vi) c < 0, β > 0, n ∈ N and

(vii) c→ 0, β ∈ R, n ∈ N,

and the results obtained have been accepted for publication in [41].

We begin with case (i) in Section 5.2, where we extend the conclusion following from the discrete

orthogonality of Krawtchouk polynomials Kn(x; p,N) for integer values of the parameter N , n <

N + 1, 0 < p < 1, to prove that, for c = p
p−1 , the zeros of the polynomials Mn(x;β, c) are real,

distinct and lie in the interval (0,−β) for all real values of the parameter β, n < 1− β and c < 0.

72

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



In Section 5.3 we consider cases (ii) and (iii), proving that the Meixner polynomials Mn(x;β, c) are

quasi-orthogonal of order k for −k < β < −k + 1, k = 1, . . . , n− 1 and 0 < c < 1 or c > 1, as well

as the related case (iv).

Cases (v) and (vi) are discussed in Section 5.4. Results obtained in [9], [10], [35] and [68] for the

zeros of Krawtchouk polynomials Kn(x; p,N), 0 < p < 1, of degree n = N + 1, are extended to

polynomials of degree n = N + 2 and n = N + 3. We make use of the product decomposition (cf.

[4, p. 17, Proposition 5.2] and [17, p. 448])

Kn(x; p,N) = KN+1(x; p,N)Kn−N−1(x−N − 1; p,−N − 2) (5.1)

= KN+1(x; p,N)Mn−N−1

(
x−N − 1;N + 2,

p

p− 1

)
(5.2)

for p 6= 0, 1, n > N ∈ N, which also shows that for case (iv) it suffices to study polynomials

Mn(x;N, c) for c < 0, N = 1, 2, . . . (case (vi) for integer values of β).

In the last section we prove that the polynomials {Mn(x;β, c)}∞n=0 are real-rooted for all β ∈ R
when c→ 0 (case (vii)).

We observe that for the special case when c→∞, the polynomials Mn(x;β, c) tend to

(β)n 2F1(−n,−x;β; 1) = (x+ β)(x+ β + 1).....(x+ β + n− 1)

which vanishes when x = −β,−β−1, . . . ,−β−n+1, whereas when c→ 1 the polynomial Mn(x;β, c)

tends to

(β)n 2F1(−n,−x;β; 0) = (β)n

and has n zeros at infinity if it is considered as a polynomial of degree n in x (cf. [68, p. 145, eqn.

6.72.3]).

5.2 The zeros of Mn(x; β, c), c < 0 and n < 1− β

The three term recurrence relation (1.15) for Meixner polynomials

xMn(x;β, c) = AnMn+1(x;β, c) +BnMn(x;β, c) + CnMn−1(x;β, c), (5.3)

where An = c
c−1 , Bn = n+(β+n)c

1−c and Cn = n(β+n−1)
c−1 , holds true for all β, c ∈ R, c 6= 0, 1 and

n ∈ N, because it follows from the contiguous relation for hypergeometric functions (7.6). For the

particular case when β, c < 0, we will have An−1Cn > 0 when n < 1− β.
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As discussed in Section 1.2 (ii), it follows from Favard’s theorem that there is at least one positive

measure α so that, for β, c < 0,∫ ∞
−∞

Mn(x;β, c)Mm(x;β, c)dα(x) = 0, m 6= n, m, n = 0, 1, . . . ,−bβc,

and hence {Mn(x;β, c)}−bβcn=0 has n real, distinct zeros when β, c < 0, where bac denotes the greatest

integer smaller than or equal to a. However, the set containing the real zeros does not follow

immediately.

We prove that the zeros of Mn(x;β, c) for n < 1−β, β, c < 0 are in (0,−β), by using a generalised

Sturmian sequence argument applied to solutions of difference equations (cf. [56]), as was done in

[48] for Hahn polynomials. We begin by proving that if r denotes a zero of Mn(x;β, c) in (0,−β),

then r − 1 and r + 1 cannot be zeros of Mn(x;β, c) and, in addition, there will be an odd number

of zeros of Mn(x;β, c) in the interval (r − 1, r + 1).

Lemma 5.2.1 Let β ∈ R, n ∈ N, n < 1−β and c < 0. If r is a zero of Mn(x;β, c) and r ∈ (0,−β),

then Mn(r − 1;β, c)Mn(r + 1;β, c) < 0.

Proof. Let β ∈ R, n < 1− β and c < 0. Consider the difference equation (1.11)

A(x)Mn(x+ 1;β, c) + C(x)Mn(x− 1;β, c) = B(x)Mn(x;β, c) (5.4)

where A(x) = c(x + β) and C(x) = x. Note that A(x) > 0 and C(x) > 0 when x ∈ (0,−β) and

c < 0.

Suppose r is a zero of Mn(x;β, c) in the interval (0,−β), then

A(r)Mn(r + 1;β, c) + C(r)Mn(r − 1;β, c) = 0. (5.5)

Assume that

Mn(r + 1;β, c) = 0. (5.6)

Letting x = r + 1 in (5.4) we obtain A(r + 1)Mn(r + 2;β, c) = 0 and if r + 1 ∈ (0,−β), it follows

that A(r + 1) > 0 and Mn(r + 2;β, c) = 0. By repeating this argument we can prove that

Mn(r + i;β, c) = 0 for all i such that 0 < r + i− 1 < −β. (5.7)
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Under our assumption (5.6), it also follows from equation (5.5) that

C(r)Mn(r − 1;β, c) = 0 if r ∈ (0,−β) and since C(r) > 0 for these values of r, we have that

Mn(r − 1;β, c) = 0. In the same way as before we can prove that

Mn(r − j;β, c) = 0 for all j such that 0 < r − j + 1 < −β. (5.8)

In short, it follows from results (5.7) and (5.8) that Mn(x;β, c) has as zeros all numbers r+ i, i ∈ Z
with −1 < r + i < 1 − β. This means that Mn(x;β, c) has a total of at most b1 − β − (−1)c =

1 + b1 − βc ≥ n + 1 > n zeros unless both β and r are integers. In this case Mn(x;β, c) has

1− β − (−1)− 1 = 1− β > n zeros. In both cases, the number of zeros is greater than the degree

of the polynomial and we have a contradiction. This means Mn(r + 1;β, c) 6= 0.

The proof that Mn(r − 1;β, c) 6= 0 is analogous. Now (5.5) implies that

Mn(r + 1;β, c) = −C(r)

A(r)
Mn(r − 1;β, c)

and clearly Mn(r + 1;β, c) and Mn(r − 1;β, c) differ in sign.

Theorem 5.2.2 Let β ∈ R, n ∈ N, n < 1 − β and c < 0, the zeros of Mn(x;β, c) lie in the open

interval (0,−β).

Proof. Let n < 1− β, c < 0 and let n and N be integers, such that N = d−βe where dae denotes

the least integer larger than or equal to a. In the sequence

Mn(0;β, c),Mn(1;β, c), ......,Mn(N ;β, c), (5.9)

each term can be considered as a polynomial function of the parameter β with c < 0 fixed. When

a numerical value is assigned to β, we denote the number of variations in sign in the resulting

sequence by V (β). We want to determine V (β) for N − 1 < −β ≤ N.

When −β = N , it follows from (1.18) and (1.20) that the sequence of polynomials in (5.9) will have

n sign changes since Kn(x; c
c−1 , N) is orthogonal for c < 0. This means that V (−N) = n.

If −β is assigned any value in the interval (N−1, N ], then Lemma 5.2.1 implies that in the resulting

sequence

Mn(0;β, c),Mn(1;β, c), ......,Mn(N ;β, c),
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no two consecutive terms are zero and also that if Mn(i;β, c) = 0 for i = 1, 2, . . . N − 1, then the

two adjacent terms: Mn(i− 1;β, c) and Mn(i+ 1;β, c) differ in sign. Moreover, it follows directly

from (1.9) that

Mn(0;β, c) = (β)n (5.10)

and the first term can never be zero for −β in the interval (N − 1, N ]. The last term does not

change sign on (N − 1, N ] since by (1.13),

Mn(N ;β, c) = (β)n

(
1

c

)n n∑
i=0

(−n)i(β +N)i(1− c)i

(β)ii!
> 0

for all −β ∈ (N − 1, N ].

These conditions are sufficient to ensure that the sequence (5.9) forms a generalised Sturmian

sequence and therefore V (β) remains constant as −β increases through the interval (N − 1, N ].

Hence V (β) = n for all −β ∈ (N − 1, N ].

Thus for n < 1− β, Mn(x;β, c) changes sign n times for x in (0, N) and, since the degree is n, we

conclude that Mn(x;β, c) has n distinct roots in (0, N).

If r is a root of Mn(x;β, c), then 0 < r < N and it follows from relation (1.14) that −β − r will be

a zero of Mn(x;β, 1c ) with 0 < −β− r < N , i.e., r < −β. We conclude that the zeros of Mn(x;β, c)

are in the open interval (0,−β).

5.3 Quasi-orthogonality of Mn(x; β, c)

A polynomial Pn of exact degree n ≥ r, is quasi-orthogonal of order r on [a, b] with respect to a

weight function w(x) > 0, if (cf. [14, p. 159, Definition 1])∫ b

a
xjPn(x)w(x)dx

= 0, for j = 0, 1, . . . , n− r − 1

6= 0, for j = n− r.

We say that a polynomial Pn of exact degree n ≥ r, n = 0, 1, . . . , N, where N may be infinite,

is discrete quasi-orthogonal of order r with ρi being the values of the weight at the points xi, i =

0, 1, . . . ,M, M ∈ N ∪ {∞}, if

M∑
i=0

(xi)
jPn(xi)ρi

= 0, for j = 0, 1, . . . , n− r − 1

6= 0, for j = n− r.
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The Meixner polynomials Mn(x;β, c) are orthogonal on (0,∞), for 0 < c < 1, β > 0, and as β

decreases below 0, the zeros of Mn(x;β, c) depart from the interval of orthogonality (0,∞). We

prove the quasi-orthogonality of these polynomials in the following theorem.

Theorem 5.3.1 The polynomials Mn(x;β−k, c) with 0 < c < 1, 0 < β < 1 and k = 1, 2, . . . , n−1,

are quasi-orthogonal of order k with respect to the weight function
cx(β)x
x!

on (0,∞).

Proof. The recurrence relation

Mn(x;β, c) = nMn−1(x;β, c) +Mn(x;β − 1, c), (5.11)

obtained from (7.2), shows that Mn(x;β − k, c) can be expressed as a linear combination of

Mn(x;β, c), Mn−1(x;β, c), . . . ,Mn−k(x;β, c) and since β > 0, it follows from (1.12) that

∞∑
x=0

xjMn(x;β − k, c)c
x(β)x
x!

= 0 for j = 0, 1, . . . , n− k − 1.

Remark. By a change of variable, the result in Theorem 5.3.1 can be written as that the polyno-

mials Mn(x;β, c) are quasi-orthogonal of order k on (0,∞), for 0 < c < 1 and −k < β < −k + 1,

k = 1, 2, . . . , n− 1, with respect to the weight function
cx(β + k)x

x!
.

The zeros of quasi-orthogonal polynomials are not necessarily all in the interval of orthogonality,

but we can say the following from [14, Theorem 2].

Corollary 5.3.2 The Meixner polynomials Mn(x;β, c), with 0 < c < 1,−k < β < −k + 1, have at

least n− k zeros in (0,∞) when k = 1, 2, . . . , n− 1.

The zeros of Mn(x;β, c) for c = 0.75, n = 10 and β = −4.8 and −5.8, when the polynomial is

quasi-orthogonal of order 5 and 6 respectively, are illustrated in Figure 5.1.

In order to specify the location of the remaining single zero of Mn(x;β−1, c), 0 < c < 1, 0 < β < 1,

where we have quasi-orthogonality of order 1, we consider the monic polynomials

M̃n(x;β, c) =
( c

c− 1

)n
Mn(x;β, c).

Theorem 5.3.3 If 0 < c < 1 and 0 < β < 1, then the smallest zero of Mn(x;β − 1, c) (or

equivalently M̃n(x;β − 1, c)) is negative.
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Figure 5.1: The zeros of M10(x;−4.8, 0.75) and M10(x;−5.8, 0.75).

Proof. The recurrence relation (5.11) can be written as

M̃n(x;β − 1, c) = M̃n(x;β, c)− n
( c

c− 1

)
M̃n−1(x;β, c) (5.12)

and according to [43, Theorem 4] we have to show that

n
( c

c− 1

)
<

M̃n(0;β, c)

M̃n−1(0;β, c)
< 0, which follows immediately from (5.10).

Joulak’s results (cf. [43, Theorems 8, 9]) also give some information about the location of the zeros

when we have quasi-orthogonality of order 2.

Theorem 5.3.4 If 0 < c < 1, 0 < β < 1 and n > β−2
c−1 , then all the zeros of Mn(x;β − 2, c) are

nonnegative and simple.

Proof. Iterating (5.12) we obtain

M̃n(x;β − 2, c) = M̃n(x;β, c)− 2n
( c

c− 1

)
M̃n−1(x;β, c) + bnM̃n−2(x;β, c)

where bn = n(n− 1)
( c

c− 1

)2
. Replacing n by n− 1 in (5.3) yields

M̃n(x;β, c) = (x−Bn−1)M̃n−1(x;β, c)−
( c

c− 1

)
Cn−1M̃n−2(x;β, c).

From [43, Theorem 8] all the zeros of M̃n(x;β − 2, c) are real and simple if bn <
( c

c− 1

)
Cn−1

which gives the condition n >
β − 2

c− 1
. Furthermore, the smallest zero (and hence all of the zeros)

of Mn(x;β − 2, c) is nonnegative if and only if (cf. [43, Theorem 9])

M̃n(0;β, c)

M̃n−2(0;β, c)
− 2n

( c

c− 1

)M̃n−1(0;β, c)

M̃n−2(0;β, c)
+ n(n− 1)

( c

c− 1

)2
≥ 0.
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It follows from (5.10) that the left-hand side simplifies to ( c
c−1)2(1−β)(2−β), which is positive by

the assumptions. This completes the proof.

Analogous results can be obtained for the polynomials Mn(x;β, c), β < 0 and c > 1.

For c < 0 and n < 1 − β, the polynomials Mn(x;β, c) are orthogonal with respect to a positive

weight function w(x) on the interval (0,−β) and∫ −β
0

Mn(x;β, c)Mm(x;β, c)w(x)dx = 0, β ∈ R, m 6= n, m, n = 1, 2, . . . ,−bβc.

Letting b = −x, c = β and z = 1− 1
c in the contiguous relation (7.3), we obtain

(x+ β)Mn(x;β + 1, c) =
n(n+ β − 1)

1− c
Mn−1(x;β, c) +

(
x+

β(1− c)− nc
1− c

)
Mn(x;β, c)

and consequently (cf. [14, p. 160, eqn. 5]) the polynomial (x+β)Mn(x;β+1, c) is quasi-orthogonal

of degree n+ 1 and order 2 on (0,−β) for −n+ 1 ≤ β < −n+ 2.

Equivalently, by shifting the parameter β, (x+ β − 1)Mn(x;β, c) is quasi-orthogonal of order 2 on

(0,−β + 1) for −n ≤ β − 1 < −n+ 1.

It is easy to show by induction that

(x+ β − 1)(x+ β − 2) . . . (x+ β − k)Mn(x;β, c) =

k∑
j=0

qk−j(x)Mn−j(x;β − k, c), (5.13)

where qk−j(x) are polynomials of degree k − j and by applying [14, p. 160, eqn. 5] again, the

polynomial (x+ β− 1)(x+ β− 2) . . . (x+ β− k)Mn(x;β, c) is quasi-orthogonal of degree n+ k and

order 2k on (0,−β + k) for −n ≤ β − k < −n+ 1, or alternatively, n+ β − 1 < k ≤ n+ β and we

conclude that the polynomial

(x+ β − 1)(x+ β − 2) . . . (x+ β − bn+ βc)Mn(x;β, c)

is quasi-orthogonal of degree n+ bn+ βc and order 2bn+ βc on (0,−β + bn+ βc).

In the next section, we turn our attention to the case −β = N, n = N + k, n, k,N ∈ N and c < 0.

79

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



5.4 The zeros of Kn(x; p,N), 0 < p < 1 and

n = N + 1, N + 2, . . .

In this section we examine the zeros of the polynomials Kn(x; p,N), 0 < p < 1, for n = N+k, k ∈ N.

Note that for these parameter values, the coefficient Cn in the three term recurrence relation (1.19)

becomes nonpositive, thus the polynomials are non-orthogonal on the real line. In the case n = N+1

we have Cn = 0 and a degenerate version of Favard’s theorem ensures a non-standard (∆-Sobolev)

orthogonality (cf. [18, p. 1250, Theorem 2.2]).

By substituting −β with N and n with N + k in (5.13), we find that the polynomial

(x−N−1)(x−N−2) . . . (x−N−k)KN+k(x; p,N) of degree N+2k is quasi-orthogonal of order 2k on

(0, N + k). However, this does not lead to new information about the zeros of KN+k(x; p,N), since

by (1.17), the three term recurrence relation (1.19) and the product formula (5.1), the following

results are guaranteed.

Lemma 5.4.1 (cf. [68, p. 36] and [4, p. 17, Proposition 5.1(v)]) For 0 < p < 1 and N a positive

integer, the polynomial KN+1(x; p,N) = (1p)N+1(x)(x − 1) . . . (x − N) and has N + 1 real zeros

x = 0, 1, . . . , N.

Remark. The result in Lemma 5.4.1 is related to Sylvester type determinants, as stated by JJ

Sylvester in 1854 (cf. [67, p. 305]). Both Askey [9] and Holtz [35] show different ways how to

evaluate these determinants and obtain this specific result in [9, eqn. 3.25] and [35, p. 4, eqn. 5],

where the connection of Krawtchouk polynomials with tridiagonal matrices, whose entries come

from the recurrence coefficients of these discrete orthogonal polynomials, is made explicit.

Corollary 5.4.2 For 0 < p < 1 and N a positive integer, the polynomial KN+2(x; p,N) has N + 2

real zeros x = 0, 1, . . . , N,N + 1− p(N + 2).

Proof. Letting n = N + 1 in (1.19), we obtain

pKN+2(x; p,N) =
(
x−N − 1 + p(N + 2)

)
KN+1(x; p,N),

which, together with Lemma 5.4.1, yields the stated result.
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Corollary 5.4.3 For 0 < p < 1 and N a positive integer, the polynomial KN+3(x; p,N) has at

least N+1 real zeros x = 0, 1, . . . , N . Furthermore, the remaining two zeros will be real and distinct

when

0 < p <
1

2

(
1−

√
N + 2

N + 3

)
or

1

2

(
1 +

√
N + 2

N + 3

)
< p < 1.

Proof. It follows from (5.2) that KN+3(x; p,N) = KN+1(x; p,N) p2(x), where

p2(x) = M2

(
x−N − 1;N + 2,

p

p− 1

)
=

x2 + (2Np+ 6p− 2N − 3)x+ (N + 2)(N + 3)p2 − 2p(N + 1)(N + 3) + (N + 1)(N + 2)

p2
.

The zeros of the quadratic p2(x) are real and distinct when the discriminant

∆ =
1

p4

(
1− 4p(N + 3) + 4p2(N + 3)

)
is positive and this yields the stated result.

We refer the reader to the remark in [4, p. 18], where it is stated that the polynomial KN+k(x; p,N),

k ∈ N, has N + 1 real zeros x = 0, 1, . . . , N, as well as k − 1 real zeros of odd multiplicity in the

interval [0,∞). This is indeed true for k = 1, 2, but from Corollary 5.4.3, we see that when k = 3,

the remaining k − 1 zeros can be non-real.

It is difficult to determine the exact location of the zeros in the general case Kn(x; p,N), n = N+k,

k ∈ N. There will always be the N + 1 real zeros 0, 1, . . . , N and for N odd, another real zero is

guaranteed, but from (5.1), we have

KN+k(x; p,N) = KN+1(x; p,N)Kk−1(x−N − 1; p,−N − 2)

and we can consider the polynomials Kn(x; p,−N), for 0 < p < 1 and N ∈ N, instead.

In general, it suffices to investigate the zeros of Mn(x;β, c) for β > 0 when −1 ≤ c < 0 (or c ≤ −1),

because it follows from the symmetry relation (1.14) that if x is a zero of Mn(x;β, c) then −β − x
is a zero of Mn(x;β, 1c ). Taking into consideration the complex conjugate pairs, geometrically it

means that the zeros of Mn(x;β, 1c ) are the mirror image of the zeros of Mn(x;β, c) with respect

to the axis Rex = −β/2 when β > 0 and c < 0.
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Figure 5.2: The zeros of M10(x; 8.2,−4), M10(x; 8.2,−0.25), M10(x; 8.2,−15.667)

and M10(x; 8.2,−0.064) clockwise.

Figure 5.2 shows the zeros of Mn(x;β, c) when n = 10, β = 8.2 for different values of c < 0, clearly

illustrating the symmetry with respect to Rex = −4.1.

The numerical examples show that the zeros of polynomials Mn(x;β, c), β > 0, c < 0, seem to lie

on rays starting from the x axis. For the special case c = −1 that corresponds to Meixner-Pollaczek

polynomials (cf. [24, (9.7.1)]) with λ = β
2 , φ = π

2 all the zeros of polynomials Mn(x;β, c), β > 0,

lie on the line Rex = −β/2. This special case, when c = −1, is illustrated in Figure 5.3.

Figure 5.3: The zeros of M10(x; 8.2,−1)

The asymptotic distribution of the zeros of Mn(x;β, c), β > 0, c < 0, as n → ∞, (after the
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necessary rescaling) could possibly be proved using a standard saddle point technique or the complex

orthogonality (cf. [17, p. 450, Proposition 9]) and potential theoretical methods or a Riemann-

Hilbert approach, as was done in the case of Jacobi polynomials for non-standard parameters (cf.

[46], [50]).

5.5 The zeros of Mn(x; β, c), c→ 0 and β ∈ R

Lastly, we consider Mn(x;β, c) when β ∈ R and prove that when c→ 0, all the zeros of Mn(x;β, c),

n = 1, 2, . . . , approach non-negative integer values. Note that this theorem holds for any β ∈ R,
which implies that when −β = N , N ∈ N and c < 0, the zeros of the Krawtchouk polynomials

Kn(x; c
c−1 , N) approach the mass points x = 0, 1, . . . , n− 1 of the discrete measure as c→ 0.

Theorem 5.5.1 For n ∈ N and β ∈ R, the n zeros of the polynomial Mn(x;β, c) approach the

points x = 0, 1, . . . , n− 1 when c→ 0.

Proof. From (1.10),

Mn(x;β, c)

= (β)n + (β + 1)n−1(−n)(−x)

(
1− 1

c

)
+ · · ·+

(β + n− 1)(−n)n−1(−x)n−1(1− 1
c )
n−1

(n− 1)!
+ (x)(x− 1) . . . (x− n+ 1)

(
1− 1

c

)n
.

For any n ∈ N, the function

cnMn(x;β, c) = cn(β)n + · · ·+ c(β + n− 1)(−n)n−1(−x)n−1(c− 1)n−1

(n− 1)!

+ (x)(x− 1) . . . (x− n+ 1)(c− 1)n,

regarded as an nth degree polynomial in x with real parameters β and c, has the same zeros as

Mn(x;β, c). Since

lim
c→0

cnMn(x;β, c) = (x)(x− 1) . . . (x− n+ 1)(−1)n,

the zeros of cnMn(x;β, c) and hence the zeros of Mn(x;β, c) tend to the zeros of

x(x− 1)(x− 2) . . . (x− n+ 1), which is to say x = 0, 1, 2, . . . , n− 1.

This theorem implies that for sufficiently small c, all the zeros of Mn(x;β, c) are real. An analogous

result can be proved for Charlier polynomials.
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5.6 Conclusion

The Meixner polynomials Mn(x;β, c), 0 < c < 1 and β > 0, are orthogonal with respect to the

discrete measure cx(β)x
x! on (0,∞) and by applying the Pfaff-Kummer transformation, an orthogo-

nality relation can be obtained for these polynomials for parameter values c > 1 and β > 0, with

respect to the measure (β)x
cxx! on (−∞,−β). In this chapter we proved that the Meixner polynomials

are quasi-orthogonal of order k for −k < β < −k + 1, k = 1, 2, . . . , n− 1 and 0 < c < 1, as well as

c > 1.

We used a Sturmian sequence argument to prove that, for n < 1−β, the polynomialsMn(x;β, c), c <

0, are orthogonal with respect to an (unknown) weight function on the interval (0,−β). Furthermore,

we proved that, for c < 0 and 1− β ≤ n < 0, the polynomial

(x+ β − 1)(x+ β − 2) . . . (x+ β − bn+ βc)Mn(x;β, c)

is quasi-orthogonal of degree n+ bn+ βc and order 2bn+ βc.

We determined the location of the zeros of the polynomial Kn(x; p,N), 0 < p < 1, for n = N+2 and

n = N+3 and finally, we showed that the zeros of the polynomials Mn(x;β, c) tend to 0, 1, . . . , n−1,

as c → 0 for all real values of β and this implies that the zeros of the Krawtchouk polynomials

Kn(x; p,N), 0 < p < 1, tend to 0, 1, . . . , n− 1 as p→ 0.
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Chapter 6

Conclusion, contribution to

knowledge and future research

6.1 Conclusion

In this work we investigated the extent to which Stieltjes interlacing holds between the zeros of two

Jacobi, Meixner and Krawtchouk polynomials if each polynomial belongs to a sequence generated

by a different value of the parameters α and/or β in the Jacobi case, β in the Meixner case and N in

the Krawtchouk case. These results differ from results obtained for Gegenbauer [25] and Laguerre

[27] polynomials, since

• these polynomials are two-parameter polynomials, although it only makes sense to shift one

parameter in the Meixner and Krawtchouk cases;

• Meixner and Krawtchouk polynomials are discrete orthogonal polynomials and

• the system of Krawtchouk polynomials is a finite system of orthogonal polynomials.

In each of the above cases, we identified a polynomial that plays the role of the de Boor-Saff

polynomial [12, 19], in the sense that its zeros provide a (non-unique) set of points, that complete

the interlacing process. The extra interlacing points obtained can be applied as inner bounds for

the extreme zeros of the appropriate polynomials and we identified the specific points that are the

best bounds for the extreme zeros of each of the Jacobi, Meixner and Krawtchouk polynomials.
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Furthermore, we made a compehensive study of the zero location of Meixner and Krawtchouk

polynomials, in particular for parameter values where (some of) the zeros are real.

6.2 Contribution to knowledge

Our contributions to knowledge are:

(1) We proved that Stieltjes interlacing holds between the zeros of the

(i) Jacobi polynomials Pα,βn+1, α, β > 0, and

• Pα+t,βn−1 , t ∈ {0, 1, 2, 3, 4} and Pα,β+kn−1 , k ∈ {0, 1, 2, 3, 4};

• Pα+t,β+kn−1 , t, k ∈ {1, 2}, Pα+1,β+3
n−1 and Pα+3,β+1

n−1 ;

• Pα−1,β+tn−1 and Pα+t,β−1n−1 , t ∈ {1, 2};

(ii) Meixner polynomials Mn+1(x;β, c), β > 0, 0 < c < 1, and

• Mn−1(x;β + t, c), t ∈ {0, 1, 2, 3, 4};

(iii) Krawtchouk polynomials Kn+1(x; p,N), 0 < p < 1, n = 1, 2, . . . , N − 1, N ∈ N, and

• Kn−1(x; p,N − k), k ∈ {0, 1};

• Kn−1(x; p,N − 2), for p < 1− n+1
N ;

• Kn−1(x; p,N + 1), for p < 3n−N+
√
5n2−4n3−2nN+4n2N+N2

2n(n+1) ;

when the polynomials under consideration are co-prime.

(2) In each of the above cases, we identified an extra interlacing point, that completes the inter-

lacing process.

(3) We identified the extra interlacing points that can be applied as sharp inner bounds for the

extreme zeros of each of the Meixner and Krawtchouk polynomials.

(i) For the extreme zeros of Meixner polynomials Mn(x;β, c), β > 0, 0 < c < 1, we have

0 < xn,1 < Bn−1(4) <
((2 + β − 2n)c+ n− 1)n(n− 1)c2

1− c
<

(n− 1)(1 + c) + βc

1− c
< xn,n,

where

Bn−1(4) =
(β)2

(
(β + 3)c− 1

)
+ n(c− 1)

(
(c− 1)2 − β2 + β(1 + c(c− 3))

)
− β(c− 2)(n(c− 1))2 − (n(c− 1))3

(1− c)
(
β(2n+ β + 1) + n(n+ 1− (n− 1)c2)

)
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(ii) For the extreme zeros of the Krawtchouk polynomials Kn(x; p,N), n = 1, 2, . . . , N and

p ∈ (0, 1), we obtained the bounds

0 < xn,1 < Np+ (n− 1)(1− 2p) < Np+ (n− 1)(1− p) < xn,n < N.

Furthermore, when p < 1− n
N ,

0 < xn,1 < Np+ (n− 1)(1− 2p) < Np+ n− 1 < xn,n < N − 1.

(4) We considered the possibility that the pairs of polynomials, mentioned in (1), can have a

common zero and we identified the common zero in each specific case.

(5) We extended Gibson’s result [33], that determines the maximum amount of common zeros

of two polynomials from the same orthogonal sequence, to the zeros of Jacobi, Meixner and

Krawtchouk polynomials of degree n− 1 and n+ 1 from different orthogonal sequences.

(6) We proved that Stieltjes interlacing holds between the zeros of the

• Jacobi polynomials Pα,βn+1 and Pα+k,β+kn−k , α, β > 0;

• Meixner polynomials Mn+1(x;β, c) and Mn−k(x;β + k, c), β > 0, 0 < c < 1,

for k ∈ {1, 2, . . . , n− 1} when

(i) the polynomials under consideration are co-prime, in which case there will be k extra

interlacing points;

(ii) the above-mentioned pairs of polynomials have common zero(s).

(7) We proved that Meixner polynomials Mn(x;β, c)

(i) are orthogonal for n < 1−β, β, c < 0, with respect to an (unknown) weight function on

the interval (0,−β);

(ii) are quasi-orthogonal of order k for −k < β < −k+ 1, k = 1, 2, . . . , n− 1 and 0 < c < 1,

as well as c > 1;

(iii) (x + β − 1)(x + β − 2) . . . (x + β − bn + βc)Mn(x;β, c) are quasi-orthogonal of degree

n+ bn+ βc and order 2bn+ βc for c < 0.
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(8) We proved that the zeros of Mn(x;β, c) tend to the first n mass points of the discrete measure
cx(β)x
x! , namely x = 0, 1, . . . , n− 1, for all β ∈ R, when c→ 0.

(9) For the Krawtchouk polynomials Kn(x; p,N), 0 < p < 1, we proved that

(i) when n = N + 2, the zeros are x = 0, 1, . . . , N,N + 1− p(N + 2);

(ii) when n = N + 3, the zeros are x = 0, 1, . . . , N , together with 2 more zeros and we

provided the conditions on p necessary for these 2 zeros to be real.

(iii) when p→ 0, the zeros tend to x = 0, 1, . . . , n− 1.

6.3 Open problems

The following open problems could be studied in future research:

• The asymptotic distribution of the zeros of Mn(x;β, c), β > 0, c < 0, as n → ∞, could

possibly be proved (after the necessary rescaling) using the complex orthogonality (cf. [17,

p. 450, Proposition 9]) and potential theoretical methods or a Riemann-Hilbert approach, as

was done in the case of Jacobi polynomials for non-standard parameters (cf. [46], [50]).

• Stieltjes interlacing between zeros of different sequences of the remaining classes of polyno-

mials on the 2F1 plane of the Askey scheme of hypergeometric orthogonal polynomials, i.e.,

Meixner-Pollaczek and Romanovski polynomials, can be investigated to obtain new bounds

for the extreme zeros of these polynomials.
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Chapter 7

Appendix

For the sake of convenience, we provide the reader with some equations that are frequently used in

this thesis.

7.1 The Pfaff-Kummer transformation formula

2F1(a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

z − 1

)
(7.1)

[44, p. 10, eqn. 1.7.2].

7.2 Contiguous relations for 2F1 hypergeometric polynomials

Gauss (cf. [57, p. 50]) defined as contiguous to 2F1(a, b; c; z) each of the six functions obtained

by shifting one of the parameters by one unit, e.g., 2F1(a+ 1, b; c; z) and 2F1(a, b; c− 1; z), and he

proved that there is a relation, mostly linear in x, between the function 2F1(a, b; c; z) and any two

of its contiguous functions. We list the contiguous function relations that are used in some of our

proofs:

(n+ c− 1) 2F1(−n, b; c; z) = n 2F1(−n+ 1, b; c; z) + (c− 1) 2F1(−n, b; c− 1; z) (7.2)

(n− (b− c)z) 2F1(−n, b; c; z) = n(1− z) 2F1(−n+ 1, b; c; z) (7.3)

+
(c+ n)(c− b)

c
z 2F1(−n, b; c+ 1; z)

(1− z) 2F1(−n, b; c; z) = 2F1(−n− 1, b; c; z)−
(
c− b
c

)
z 2F1(−n, b; c+ 1; z) (7.4)
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(1− z) 2F1(−n, b; c; z) = 2F1(−n, b− 1; c; z)−
(
c+ n

c

)
z 2F1(−n, b; c+ 1; z) (7.5)

(2n+ c− (n+ b)z) 2F1(−n, b; c; z) = n(1− z) 2F1(−n+ 1, b; c; z) + (n+ c) 2F1(−n− 1, b; c; z) (7.6)

(2b− c− (n+ b)z) 2F1(−n, b; c; z) = b(1− z) 2F1(−n, b+ 1; c; z)− (c− b) 2F1(−n, b− 1; c; z) (7.7)

follow from (2), (3), (4), (5), (6) and (11) in [57, p. 71] respectively and(
1− n+ b

n+ c
z

)
2F1(−n, b; c; z) = 2F1(−n− 1, b; c; z)− (c− b)n

(n+ c)c
z 2F1(−n+ 1, b; c+ 1; z), (7.8)

can be derived by combining (7.2) and (7.4).

7.2.1 More contiguous relations

A useful algorithm for computing contiguous relations for 2F1 Gauss hypergeometric series, written

by R. Vidunas in 2002, is available as a computer package (cf. [71]). In the following lemma, we

provide the identities that are used in the proofs of our theorems; they follow from the contiguous

relations for 2F1 hypergeometric polynomials and can be easily verified by comparing equal powers

of the corresponding coefficients.

Lemma 7.2.1 Let Fn = 2F1(−n, b; c; z) and denote 2F1(−n− 1, b+ 1; c; z) by Fn+1(b+ 1),

2F1(−n+ 1, b+ 1; c− 3; z) by Fn−1(b+ 1, c− 3) and so on. Then

(
b(c+ n)

(b+ n)(b+ n+ 1)
− z
)
Fn =

b(c+ n)

(b+ n)(b+ n+ 1)
Fn+1(b+ 1) +

n(b− c)z
c(b+ n)

Fn−1(c+ 1) (7.9)(
c

b+ n+ 1
− z
)
Fn =

c

(b+ n+ 1)
Fn+1(b+ 1) +

(b− c)nz2

c(c+ 1)
Fn−1(b+ 1, c+ 2) (7.10)(

c+ n

b+ 1
− z
)(

1 + b− c
b+ n− 1

)
Fn =

(1 + b− c− nz)(c+ n)

(b+ 1)(b+ n− 1)
Fn+1(b+ 1) (7.11)

+
nz(1− z)2

c
Fn−1(b+ 2, c+ 1)(

c+ n

b+ n+ 1
− z
)
Fn =

c+ n

b+ n+ 1
Fn+1(b+ 1)− z(z − 1)n

c
Fn−1(b+ 1, c+ 1) (7.12)

(b− c+ 1)

(b+ 1)(b+ n+ 1)
Fn =

b− c+ 1− z(b+ n+ 1)

(b+ 1)(b+ n+ 1)
Fn+1(b+ 1) (7.13)

−
(
z2 − z
c

)
Fn(b+ 2, c+ 1)
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(bz + nz − n− c)Fn(c+ 1) = −cFn+1 + n(z − 1)Fn−1(c+ 1) (7.14)

(z − 1)

(
z − c

b+ n

)
Fn =

c− z(c+ n)

b+ n
Fn+1 +

n(c− b)(c− b+ 1)

(b+ n)c(c+ 1)
z2Fn−1(c+ 2) (7.15)(

c(c+ 1)

(b+ 1)(c+ n+ 1)
− z
)
Fn =

c+ c2 − bnz + cnz

(b+ 1)(c+ n+ 1)
Fn+1(b+ 1) (7.16)

+
n(b− c)(b+ n+ 1)z3

c(c+ 1)(c+ 2)
Fn−1(b+ 2, c+ 3)

(c− z(b− n+ 1))Fn =

(
c+ 2nz − nz2

(
b+ n+ 1

b+ 1− c

))
Fn+1(b+ 1) (7.17)

+
n(b+ 1)(b+ 2)((z − 1)z)2(b+ n+ 1)

(b+ 1− c)c(c+ 1)
Fn−1(b+ 3, c+ 2)

(
z − c(c+ 1)

(1 + c+ n)(1 + b)− cn

)
Fn = −c+ c2 − bnz + 2cnz + nz2 + bnz2 + n2z2

1 + c− cn+ n+ b+ bc+ bn
Fn+1(b+ 1) (7.18)

+
(b+ 1)(b+ 2)(b+ n+ 1)(c+ n+ 1)n(z − 1)z3

c(c+ 1)(c+ 2)(1 + c− cn+ n+ b+ bc+ bn)
Fn−1(b+ 3, c+ 3)

(
1− (b+ 1)(c+ 2n+ 2)− cn)

c(c+ 2)
z

)
Fn =

(
1− 2(b− c)n

c(c+ 2)
z − n(b− c)(b+ n+ 1)

c(c+ 1)(c+ 2)
z2
)
Fn+1(b+ 1)

+
a

c2(c+ 1)2(c+ 2)2(c+ 3)
Fn−1(b+ 3, c+ 4) (7.19)

where a = (b+ 1)(b+ 2)(b− c)(c+ n+ 1)(c+ n+ 2)(b+ n+ 1)z4n

(
−n(n+ 1)

1 + b− c
+ (c+ 3n)z − (b+ n)z2

)
Fn = (c+ n)

(
z − n

1 + b− c

)
Fn+1 (7.20)

+
n(c− 1)

1 + b− c
(z − 1)2Fn−1(c− 1)

(z − 1) ((n+ 1)(b(z − 1) + nz)z + c(z − 1)(z(b+ n)− c− 1))Fn (7.21)

= −(c2(z − 1)2 + nz(z(n+ 1)− b) + c(1− (n+ 2)z + (2n+ 1)z2))Fn+1

+
n(c− b)3

(c)3
(c+ n+ 1)z3Fn−1(c+ 3)
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(1− z)D1 Fn = D2 Fn+1 +
n(c− b)4(n+ c+ 1)(n+ c+ 2)

(c)4
z4Fn−1(c+ 4), (7.22)

D1 = c3(z − 1)2 − c2(z − 1)2(bz + nz − 3)

− c((n+ 4 + (2n+ 3)b)z − (2 + 3n+ n2 + (4n+ 6)b)z2 + (b+ n)(2n+ 3)z3 − 2)

− (n+ 1)z(n(n+ 2)z2 + b(2− 2(n+ 2)z + (n+ 2)z2))

D2 = −c3(z − 1)3 − c2((n+ 9)z − 3(n+ 3)z2 + 3(n+ 1)z3 − 3)

+ c(2− (6 + n+ 2bn)z + (6 + 4(b+ 1)n+ n2)z2 − (2 + 6n+ 3n2)z3)

− nz(b2z + (2 + 3n+ n2)z2 + b(2− 5z − 2nz))

Proof. We will verify equations (7.9) and (7.15). The other identities can be verified in the same

way.

For each j = 1, 2, . . . , n, the coefficient of zj on the left-hand side of (7.9) is

b(c+ n)(−n)j(b)j
(b+ n)(b+ n+ 1)(c)j(j)!

− (−n)j−1(b)j−1

(c)j−1(j − 1)!

=
(−n)j−1(b)j−1

(b+ n)(b+ n+ 1)(c)jj!
(b(c+ n)(−n+ j − 1)(b+ j − 1)− j(c+ j − 1)(b+ n)(b+ n+ 1))

while the coefficient of zj on the right-hand side of (7.9) is given by

b(c+ n)(−n− 1)j(b+ 1)j
(b+ n)(b+ n+ 1)(c)jj!

+
n(b− c)
c(b+ n)

(−n+ 1)j−1(b)j−1

(c+ 1)j−1(j − 1)!

=
(−n)j−1(b)j−1

(b+ n)(b+ n+ 1)(c)jj!
((c+ n)(−n− 1)(b+ j − 1)(b+ j)− j(b− c)(−n+ j − 1)(b+ n+ 1)) .

A straightforward calculation shows that these coefficients are equal and the result follows.

For each j = 1, 2, . . . , n, the coefficient of zj on the left-hand side of (7.15) is

(−n)j−2(b)j−2

(c)j−2(j − 2)!
− (c+ b+ n)(−n)j−1(b)j−1

(b+ n)(c)j−1(j − 1)!
+

c(−n)j(b)j
(b+ n)(c)jj!

=
(−n)j−2(b)j−2

(c)j−2(j − 2)!

(
1− (−n+ j − 2)(b+ j − 2)

(b+ n)(c+ j − 2)(j − 1)

(
(c+ b+ n) +

c(−n+ j − 1)(b+ j − 1)

(c+ j − 1)j

))
.
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The coefficient of zj on the right-hand side of (7.15) is given by

c(−n− 1)j(b)j
(b+ n)(c)jj!

− (c+ n)(−n− 1)j−1(b)j−1

(b+ n)(c)j−1(j − 1)!
+

(c− b)(c− b+ 1)n(−n+ 1)j−2(b)j−2

c(c+ 1)(b+ n)(c+ 2)j−2(j − 2)!

=
(−n)j−2(b)j−2

(b+ n)(c)j−2(j − 2)!(c+ j − 2)
×(

c(n+ 1)(b+ j − 1)(b+ j − 2)(n− j + 2)

(c+ j − 1)j(j − 1)
+

(c+ n)(n+ 1)(b+ j − 2)

j − 1
+

(c− b)2(n− j + 2)

c+ j − 1

)
.

Again, a straightforward calculation shows that these coefficients are equal and (7.15) follows.
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[58] A.P. Raposo, H.J. Weber, D.E. Álvarez-Castillo and M. Kirchbach. Romanovski polynomials

in selected physics problems. Central European Journal of Physics 5(3) (2007), 273-284.

[59] V. Romanovski. Sur quelques classes nouvelles de poynomes orthogonaux. Comptes Rendus de

l’Académie des Sciences, Paris 188 (1929), 1023-1025.

[60] E.J. Routh. On some properties of certain solutions of a differential equation of second order.

Proceedings of the London Mathematical Society 16 (1884), 245-261.

[61] W. Schoutens. Stochastic processes and orthogonal polynomials. Lecture Notes in Statistics,

146. New York, Springer (2000).
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