

REFERENCES

ACOCKS J.P.H. (1975) Veld Types of South Africa. <u>Mem. Bot. Surv. South</u> <u>Africa</u> volume 40, 128pp.

ANONYMOUS (1983) Conservation of Agricultural Resources Act, 1983. <u>Government Gazette</u> vol. 214 No. 8673.

(1988) <u>INTORFMASH '88</u> - International exhibition "Machines and Equipment for the Peat Industry". Soviet Exhibits, Leningrad, USSR. 95 pp.

- BARNARD J.M. (1987) <u>Die verband tussen die petrografiese en chemiese</u>
 <u>eienskappe van Suid Afrikaanse steenkool</u>. Unpublished MSc thesis,
 University of Pretoria. 142 pp.
- BATES R.L. and JACKSON J.A. (Eds.) (1987) <u>Glossary of Geology</u>. 3rd edition. American Geological Institute.
- BEGG G and CARSER A. (1990) The location, status and function of the priority wetlands of Natal. The Wetlands of Natal III. <u>Natal Town and Regional</u> <u>Planning</u> Rep. 73. 256 pp.
- BéLANGER A., POTVIN D., CLOUTIER R., CARON M. AND THÉRIAULT G. (1988) <u>Peat - a Resource of the Future</u>. Translation by J.D. Dubois. Centre Québécois de Valorisation de la Biomasse. Rivière-du-Loup, Québec Canada. 115 pp.
- BELLAMY D.J. (1972) Templates of Peat Formation. <u>Proc. 4th Int. Peat</u> <u>Congress</u> 1: 7-18. Otaniemi, Finland.

BELOKPYTOV I.E. and BERESNEVICH V.V. (1955) Giktorf's peat borers. <u>Torf.</u> <u>Prom.</u> 8: 9-10.

BERJAK P., CAMPBELL G.K., HUCKETT B.I. and PAMMENTER N.W. (1977) In the Mangroves of Southern Africa. WSSA/Durban University. 72 pp.

BERNER R.A. (1970) Sedimentary Pyrite Formation. Am. J. Sci. 268: 1-23.

BERNER R.A. (1984) Sedimentary pyrite formation: an update. <u>Geochim. et</u> <u>Cosmochim. Act</u>. 48: 605-615.

_____ (1985) Sulphate reduction, organic matter decomposition and pyrite formation. <u>Phil. Trans. Royal Soc. London</u> A,315: 25-38.

BUIVID M.G.; WISE D.L.; RADER A.M.; McCARTHY P.C. and OWEN W.F. (1980) Feasibility of a peat biogasification process. <u>Resource Recovery and</u> <u>Conservation</u> 5: 117-138.

CAIRNCROSS B., STANISTREET I.G., McCARTHY T.S., ELLERY W.N., ELLERY K. & GROBICKI, T.S.A. (1988) Palaeochannels (stone-rolls) in coal seams: Modern analogues from fluvial deposits of the Okavango Delta, Botswana, southern Africa. <u>Sedimentary Geology</u> 57: 107-118.

CAMERON C.C., ESTERLE J.S. and PALMER C.A. (1989) The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes. <u>Int. J. Coal Geol</u>. 12:105-156.

CANTRELL R.L. (1993) Peat. 124-125. In: Anon. (Ed) <u>Mineral Commodities</u> <u>Summaries 1993</u>. US Bureau of Mines Publication. 201 pp.

CASAGRANDE D.J., SIEFERT K., BERSCHINSKY C. and SUTTON N. (1977) Sulphur in peat-forming systems of the Okefenokee Swamp and Florida Everglades: origins of sulphur in coals. <u>Geochim. et Cosmochim. Acta</u> 41: 161-167.

CASAGRANDE D.J. (1987) Sulphur in peat and coal. In: Scott, A.C. (Ed) <u>Coal and</u> <u>Coal-bearing Strata: Recent Advances</u>. Geol. Soc. Special Publication 32: 87-105.

CHATEAUNEUF J.J., FAURE H. & LéZINE A.M. (1986) Facteurs contrôlant la genèse et la destructions des tourbes tropicales du littoral ouest-africain. Doc. BRGM 110: 77-91.

_____, MARTEAU P., PéZERIL G., ROCHE E., BALIHE M.R., BIKWEMU G., DIOP C.E.M. KAREGA E. & TCHOTA K. (1988) Géologie et qualité des tourbes africaines. <u>Pangea</u> 12/13: 39-92

CHATEAUNEUF J.J., FARJANEL G., LAGGOUN-DEFARGE F., PéZERIL G. & BIKWEMU G. (1991) Petrological and physico-chemical properties of some African peats in relation to their suitability for carbonisation. <u>Bull.</u> <u>Soc. géol. France</u> 162(2): 423-435.

CLYMO R.S. (1965) Experiments on the breakdown of *Sphagnum* in two bogs. <u>J.</u> <u>Ecol</u>. 53: 747.

COHEN A.D. and SPACKMAN W. (1972) Methods in peat petrology and their applications to reconstruct paleoenvironments. <u>Geol. Soc. Am. Bulletin</u> 183: 129-142.

COHEN A.D. (1973) Petrology of some Holocene peat sediments from the Okefenokee swamp-marsh complex of southern Georgia. <u>Geol. Soc. Am. Bull</u>. 84: 3867-3878.

COHEN A.D (1974) Evidence of fires in the ancient Everglades and coastal swamps of southern Florida. Miami Geol. Soc. Mem. 2: 213-218.

COHEN A.D. and SPACKMAN W. (1977) Phytogenic Organic Sediments and Sedimentary Environments in the Everglades-Mangrove Complex of Florida. Part II. The origin, description and classification of the peats of southern Florida. <u>Palaeontographica</u> (B) 162: 71-114. Stuttgart.

and ______ (1980) Phytogenic Organic Sediments and Sedimentary Environments in the Everglades-Mangrove Complex of Florida. Part III. The alteration of plant material in peats and the origin of coal macerals. <u>Palaeontographica</u> (B) 172: 125-149. Stuttgart.

_____(1983) Obtaining more precise descriptions of peats by use of oriented microtome sections. In: Jarrett, P.M. (Ed) <u>ASTM Spec. Tech.</u> <u>Publ</u>. 820: 21-36.

_____, SPACKMAN W. and DOLSEN P. (1984) Occurrence and distribution of sulphur in peat-forming environments of southern Florida. <u>Int. J. Coal Geol</u>. 4: 73-96.

_____, RAYMOND R., MORA S., ALVERADO A., MALAVASSI L. (1985) Economic characterisation of the peat deposits of Costa Rica, preliminary study. p 246-169. In: Wade, B. (Ed) <u>Tropical Peat Resources:</u> <u>Prospects and Potential</u>. International Peat Society Helsinki.

______, SPACKMAN W. and RAYMOND R. (1987) Interpreting the characteristics of coal seams from chemical, physical and petrographic studies of peat deposits. In Scott A.C Ed.) <u>Coal and Coal-bearing Strata:</u> <u>Recent Advances</u>. Geol. Soc. Spec. Publ. No. 32: 107 - 125.

, RAMIREZ A., MORALES Z. and PONCE F.

(1990) Changuinola Peat Deposit of Northwest Panama. Volume II: Resource Assessment. 83 pp. Los Alamos National Laboratory Report LA-11211, Vol.II.

EDGERTON C.D. (1969) Peat Bog Investigations in North-eastern Pennsylvania. Bull. Penn. Geol. Surv. 1c 65, 53 pp.

- ESTERLE J.S., FERM J.C., YIU-LIONG T. (1989) A test for the analogy of tropical domed peat deposits to "dulling up" sequences in coal beds Preliminary Results. <u>Org. Geochem</u>. 14: 333-342.
- FAEGRI K. and IVERSON J. (1989) <u>Text book of Pollen Analysis</u>. 4th edition. 328pp.
- FEATHER C.E. and WILLIS J.P. (1976) A simple method for background and matrix correction of spectral peaks in trace element determination by XRF spectrometry. <u>X-ray Spectrom</u>. 5: 41-48.
- FUCHSMAN C.H. (1980) <u>Peat: industrial Chemistry and Technology</u>. Academic Press N.Y., 279 pp.
- GAUDET J.J. (1977) Uptake, accumulation and loss of nutrients by papyrus in tropical swamps. <u>Ecol</u>. 58: 413-422.

_____ (1979) Seasonal changes in nutrients in a tropical swamp: North Swamp, Lake Naivasha, Kenya. <u>J. Ecol</u>. 67: 953-981.

GIVEN P.H. and MILLER R.N. (1985) Distribution of forms of sulphur in peats from saline environments in the Florida Everglades. <u>Int. J. Coal. Geol</u>. 5: 397-409.

- GORE A.J.P. (Ed.) (1983) <u>Mires: Swamp, Bog, Fen and Moor: General Studies</u>. Elsevier, 440 pp.
- GROBLER M. and FERREIRA J. (1990) The dying of Lake Liambezi. <u>Custos</u> 19(6): 40-47.
- HARPER V. (1992) United States Peat Producers 1991. <u>US Bureau of Mines</u>, Washington DC.
- HEIKURAINEN L. (1985) Presidential address. In: <u>Tropical Peat Resources</u> -<u>Prospects and Potential</u>. Proc. IPS Symp. Kingston, Jamaica. 48pp.
- HESSE P.R. (1961) Some differences between the soils of *Rhizophora* and *Avicennia* mangrove swamps in Sierra Leone. <u>Plant and Soil</u> 14(4): 335-346.
- HOBDAY D.K. and ORME A.R. (1974) The Port Durnford Formation: A major Pleistocene barrier lagoon complex along the Zululand coast. <u>Trans.</u> <u>Geol. Soc. S. Afr.</u> 77, 141-149.
- HOWARD-WILLIAMS C., GAUDET J.J. (1985) The structure and functioning of African swamps. p154-175. In: Denny, P. (Ed) <u>The Ecology and</u> <u>Management of African Wetland Vegetation</u>. W. Junk, Dordrecht. 344 pp.
- HUTCHINS D.G., HUTTON S.M. and JONES C.R. (1976) The geology of the Okavango Delta. In <u>Proc. of Symp. on the Okavango Delta and its future</u> <u>utilisation</u>: 13-20. Gaborone: Botswana Society.
- INGRAM H.A.P. (1978) Soil layers in mires: function and terminology. J. Soil Sci. 29: 224-227.

- ICCP (1971) International Handbook of Coal Petrography. (2 nd edition). Centre National de la Recherche Scientifique. Paris.
- ICCP (1975) International Handbook of Coal Petrography. (2 supplement to the 2 nd edition). Centre National de la Recherche Scientifique. Paris.

JACOT-GUILLARMOD A. (1962) The bogs and sponges of Basutoland mountains. <u>SA J. Sci</u>. 58(6): 179-182.

JEFFERS T.H., FERGUSON C.R. and BENNETT P.G. (1991) Biosorption of metal contaminants using immobilized biomass - A laboratory study. Report 9340. US Dept. of the Interior, Bureau of Mines. 9pp.

JOWSEY P.C. (1966) An improved peat sampler. New Phytol. 65: 245-248.

- KAPLAN I.R., EMERY K.O. and RITTENBERG S.C. (1963) Redistribution and isotopic abundance of sulphur in recent marine waters off southern California. <u>Geochim. et Cosmocim. Acta</u> 27: 297-331.
- KENT L.E. and ROGERS A.W. (1947) <u>Diatomaceous deposits in the Union of</u> <u>South Africa</u>. Geol. Surv. Mem. 42. 260 pp.
- KORPIJAAKKO M. (1985) The peat deposits of the Niayes area of Senegal and their potential. p 136-145. In: Wade B. (Ed) <u>Tropical Peat Resources -</u> <u>Prospects and Potential</u>. Proc. Symp. IPS, Kingston, Jamaica. 480 pp.
- KOSTERS E.C., CHMURA G.C., BAILEY A. (1987) Sedimentary and botanical factors influencing peat accumulation in the Mississippi Delta. <u>J. Geol. Soc.</u> London 144: 423-434.
- KULCZYNSKI S. (1942) <u>Peat Bogs of Polesia</u>. Memoir 15. Polish Academy of Sciences. 356 pp. Translated by Paryski, W.H.

- LATTER P.M. and CRAGG J.B. (1967) The decomposition of *Juncus squarrosus* leaves and microbiological changes in the profile of a Juncus moor. J. Ecol. 55:465.
- LOVE L.J., COLEMAN M.L. and CURTIS C.D. (1983) Diagenetic pyrite formation and sulphur isotope fractionation associated with a Westphalian marine incursion, northern England. <u>Trans. Royal Soc. Edinburgh Earth</u>. <u>Sci</u>. 74: 165-182.
- LUCAS R.E., RIEKE P.E. and FARNHAM R.S. (1971) Peats for soil improvement and soil mixes. <u>US Dept. Agric. Ext. Bull</u>. E 516: 1-11.
- MALTBY E. and PROCTOR M.C.F. (1996) Peatlands: Their nature and role in the biosphere. In Lappalainen, E. (Ed.) <u>Global Peat Resources</u>. pp 11-20. International Peat Society, Jyska, Finland.
- MARTIN A.R.H. (1956) The ecology and history of Groenvlei. <u>SA J. Sci</u>. 52(8): 187-197.
- MARTIN A.R.H. (1959) The stratigraphy and history of Groenvlei, a South African coastal fen. <u>Austral. J. Bot</u>. 7(2): 142-167.
- MARTIN J. (1983) Production of biomass fuel briquettes in developing countries. pp. 69-91. Proc. 18th Biennial Conf. Inst. Briq. & Agglom. Colorado, USA.
- MASON C.F. and BRYANT R.J. (1975) Production, nutrient content and decomposition of *Phragmites communis* Trin. and *Typha angustifolia* L. <u>J. Ecol</u>. 63: 71-95.
- MAUD R.R. (1968) Quaternary geomorphology and soil formation in coastal Natal. Z. Geomorph. 7: 155-199.

- MAUD R.R. (1979) The climate and geology of Maputaland. In Bruton, M.N. and Cooper, K.H. (Eds.) <u>Studies on the Ecology of Maputaland</u>. Rhodes University, Grahamstown. pp. 1-7.
- MAZUS H. (1992) Preliminary Palynological Study of some Peatlands in Maputaland. (poster). PSSA Congress, September '92, Johannesburg.
- McCARTHY T.S., McIVER J.R., CAIRNCROSS B., ELLERY W.N. and ELLERY K. (1989a) The inorganic chemistry of peat from the Maunachira channelswamp system, Okavango Delta, Botswana. <u>Geochim. Cosmochim. Acta</u> 53: 1077-1089.
- McCARTHY T.S., ROGERS K.H., STANISTREET I.G., ELLERY W.N., CAIRNCROSS B., ELLERY K. and GROBICKI T.S.A. (1989b) Features of channel margins in the Okavango Delta. <u>Palaeoecology of Africa</u> 19: 3-14.
- McCARTHY T.S. and ELLERY W.N. (1993) The Okavango Delta. <u>Geobulletin</u> 36(2): 5-8.
- MEADOWS M.E. (1988) Late Quaternary peat accumulation in southern Africa. <u>CATENA</u> 15: 459-472.
- MOLL E.J. (1979) Terrestrial Plant Ecology. In: Bruton, M.N. and Cooper, K.H. (Eds.) <u>Studies on the Ecology of Maputaland</u>. pp. 52-68. Rhodes University, Grahamstown.
- MOORE P.D. and BELLAMY D.J. (1972) <u>Peatlands</u>. Elek Science, London, 221pp.

MOORE P.D. (1980) Exploiting papyrus. Nature 284: 510.

_____ (1987) Ecological and hydrological aspects of peat formation. In: Scott A.C. (Ed) <u>Coal and Coal-bearing Strata: Recent Advances</u>. Geol. Soc. Spec. Publ. 32: 7-15.

_____(1989) The ecology of peat forming processes: a review. <u>Int. J.</u> <u>Coal Geol</u>. 12: 89-103.

OWEN O.S. (1971) Natural Resource Conservation. Macmillan.

- PAJUNEN H. (1985) The mires in the Akanyaru valley in Burundi.
 In: <u>Tropical Peat Resources Prospects and Potential</u>. (p 186-197). Proc.
 Symp. IPS, Kingston Jamaica, 480pp.
- ROGGERI H. (1995) Tropical Freshwater Wetlands A Guide to Current Knowledge and Sustainable Management. Kluwer Academic Publishers, Dordrecht, 349 pp.
- RUTTER A.J. and FOURT D.F. (1965) Studies in the water relations of *Pinus* sylvestris in plantation conditions. A comparison of soil water changes and estimates of total evaporation on four afforested sites and one grass-covered site. <u>J. Appl. Ecol</u>. 2: 197.
- SCOTT L. and VOGEL J.C (1983) Late Quaternary pollen profile from the Transvaal Highveld, South Africa. <u>S.A. J. Sci</u>. 79: 266-272.
- and THACKERAY J.F. (1987) Multivariate analysis of late Pleistocene and Holocene pollen spectra from Wonderkrater, Transvaal, South Africa. <u>S.A. J. Sci</u>. 83: 93-98.
- SMITH P.A. (1976) An outline of the vegetation of the Okavango Drainage System. In Proc. of Symp. on the Okavango Delta and its future utilisation: Gaborone: Botswana Society. 93 - 112.

- SMUTS W.J. and RUST I.C. (1989) The significance of Soil Profiles and Bounding Surfaces in Woody Cape Aeolianite. Palaeoecology of Africa 19: 269-276.
- SMUTS W.J. (1989b) Peat as potential energy source in southern Africa. "Alternative energy supply options for developing southern Africa". DBSA and SESSA conference, Johannesburg. p 7.1-7.11.
- SMUTS W.J. (1990) Preliminary report on West Coast lignite deposits. SAGEO Rep. No. 1990-0017.
- SMUTS W.J.(1992) Peatlands of the Natal Mire Complex: geomorphology and characterisation. <u>S.A. J. Sci</u>. 88:474-483.
- SMUTS W.J. (1993) The southern and central peatlands of the Republic of the Congo: Resource evaluation and characterisation. <u>SAGEO Rep</u>. 1993-0153.
- SNYMAN C.P. (1961) <u>A comparison between the petrography of SA and some</u> <u>other Palaeozoic coals</u>. University of Pretoria Publ. 15. 59pp.

_____, VAN VUUREN M.C.J. and BARNARD J.M. (1983) <u>Chemical and</u> physical characteristics of South African coal and a suggested <u>classification system</u>. CSIR, NICR. 63 pp.

SPEDDING P.J. (1988) Peat. Fuel 67: 883-900.

STACH E., MACKOWSKY M-TH., TEICHMULLER M., TAYLOR G.H., CHANDRA D. and TEICHMULLER R. (1982) <u>Stach's Textbook of Coal</u> <u>Petrology</u> (3rd edition), 535 pp.

STAUB J.R. and COHEN A.D. (1978) Kaolinite enrichment beneath coals: a modern analog, Snuggedy Swamp, South Carolina. J. Sed. Petrol. 48: 203-210.

_____ and _____ (1979) The Snuggedy Swamp of South Carolina: a back-barrier estuarine coal forming environment. J. Sed. Petrol. 49: 149-153.

- STOUT S.A. and SPACKMAN W. (1989) Notes on the compaction of a Florida peat and the Brandon Lignite as deduced from the study of compressed wood. <u>Int. J. Coal Geol.</u> 11: 247-256.
- STYAN W.B. and BUSTIN R.M. (1983) Petrography of some Fraser River Delta peat deposits: coal maceral and microlithotype precursors in temperate climate peats. Int. J. Coal Geol. 2: 321-370.

TEICHMüLLER M. (1961) Beobachtungen bei einem Torfbrand. Geol. Jb. 78: 653-660.

_____ (1989) The genesis of coal from the viewpoint of coal petrology. <u>Int. J. Coal Geol</u>. 12: 1-87.

THOMPSON K. (1973) The ecology of peatlands in East and Central Africa and their classification for agriculture. In: Robertson R.A. (Ed.) <u>Classification of</u> <u>Peat and Peatlands</u>. Proc. Symp. Comm. 1 Int. Peat Soc. Glasgow, September 1973. Int. Peat Soc., Helsinki Pap. 8: 60-73.

THOMPSON K. (1976) The primary productivity of African wetlands, with particular reference to the Okavango Delta. In <u>Proc. of Symp. on the</u> <u>Okavango Delta and its future utilisation</u>: 67-79. Gaborone: Botswana Society.

THOMPSON K., SHEWRY P.K., WOOLHOUSE H.W. (1979) Papyrus swamp development in the Upemba basin, Zaïre: studies of population structure in *Cyperus papyrus* stands. <u>J. Linn. Soc. London</u>. Bot. 78: 299-316.

______ and HAMILTON A.C. (1983) Peatlands and swamps of the African Continent. (331-373) In: Gore A.J.P. (Ed.) <u>Mires: Swamp, Bog, Fen and</u> <u>Moor Regional Studies</u>. Ecosystems of the World 4B. Elsevier. 479pp.

- TOMCZUK R. (1988) Technology of the production of peat pots in Poland. <u>8th International Peat Congress</u>, Leningrad. Section 2:239-243.
- TING F.T.C. (1989) Facies in the Lower Kittanning Coal bed, Appalacian Basin (USA). Int. J. Coal Geol. 12: 425-442.
- VAN DER HEIJDEN E., BOUMAN F., BOON J.J. (1994) Anatomy of recent and peatified *Calluna vulgaris* stems: implications for coal maceral formation. Int. J. Coal Geol. 25: 1-25.
- VAN KREVELEN D.W. and SCHUYER J. (1957) <u>Coal Science</u>. Aspects of coal <u>constitution</u>. Elsevier. 352 pp.

VAN KREVELEN D.W. (1961) Coal. Elsevier, Amsterdam. 541 pp.

- VAN ZINDERIN BAKKER E.M., WERGER M.J.A. (1974) Environment, vegetation and phytogeography of the high-altitude bogs of Lesotho. <u>Vegetatio</u> 29: 37-49.
- VOGEL J.C. and KRONFELD J. (1980) A new method for dating peat. S. A. J. Sci. 76(12): 557-558.

WADE B. (1985) <u>Tropical Peat Resources - Prospects and Potential</u>. Proc.
 Symp. IPS, Kingston, Jamaica. 480 pp.

WALKER D. (1970) Direction and rate in some British post-glacial hydroseres. In
 Walker D. and West R.G. (Eds.) <u>Studies in the vegetational history of the</u>
 <u>British Isles</u>. Cambridge, 117pp.

WESSELS N. (1991) The swamp forests of Lake St Lucia. <u>Afr. Wildlife</u> 45(5): 256-263.

 WISE D.L. (1989) Development of a biochemical process for production of alcohol fuel from peat. (71-214). In: Trantolo D.J. and Wise D.L. (Eds) <u>Energy recovery from lignin, peat and lower rank coals</u>. Elsevier, Amsterdam.

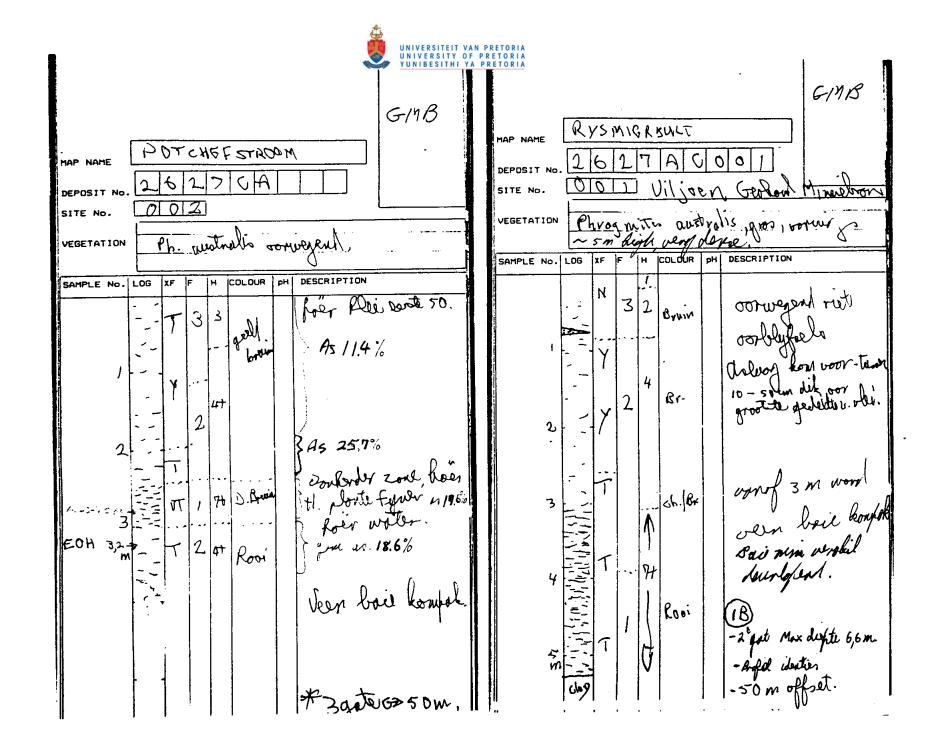
WORLD BANK/BORD NA MóNA (1984) Fuel peat in developing countries. 130 pp.

LIST OF APPENDICES

ТО

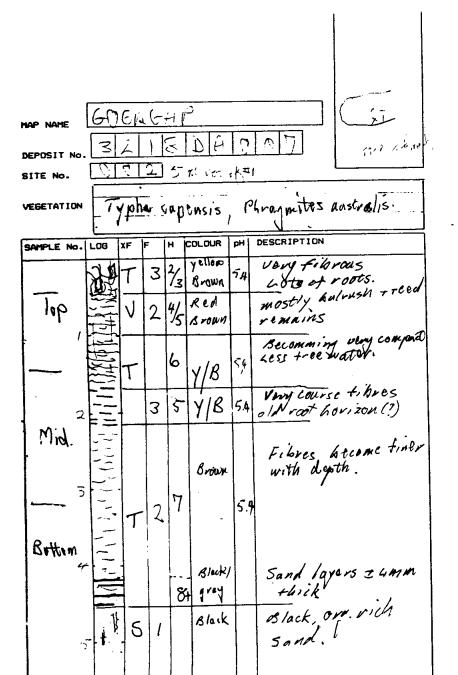
CHARACTERISTICS OF SOUTH AFRICAN PEATS AND THEIR POTENTIAL EXPLOITATION

SELECTED PEAT PROFILES

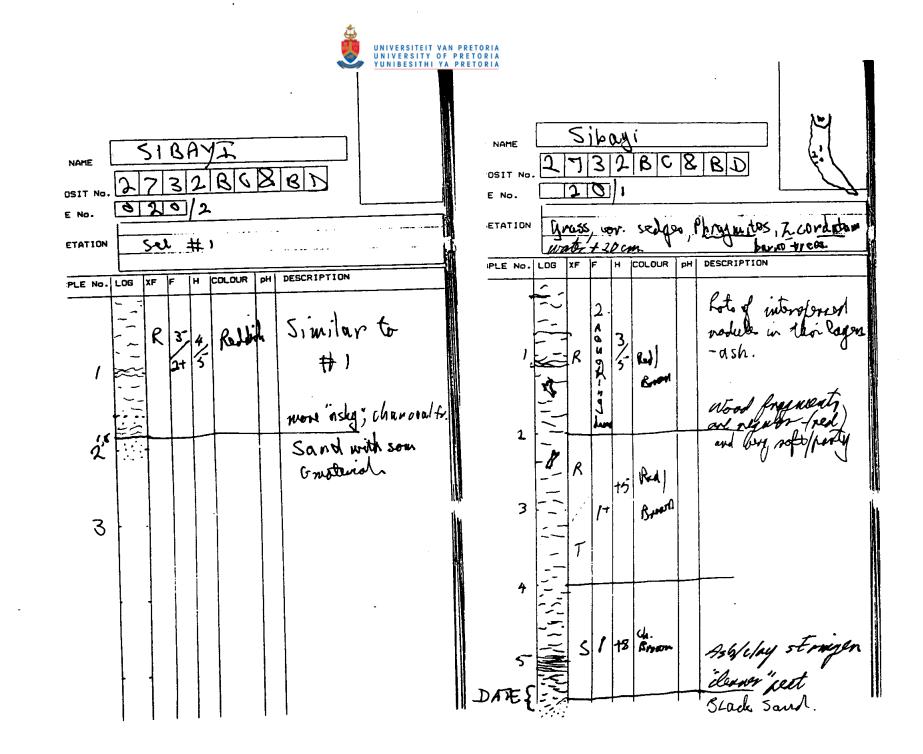

APPENDIX ONE

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

GERHARD MINNEBRON


.

GOERGAP



THZ Brand 2m 1004 Doort 1 apartie Bor-Risture M.L. SMUTS GOERGAP MAP NAME $\hat{}$ 17 1 3 DEPOSIT No SITE No. Charles S. VEGETATION Kellin Story DESCRIPTION COLOUR pH XF SAMPLE No. LOG IF. H Visit of worth is bounted Juster. 3 • 41-52 Kon with a worder in The Kong - Surfich / Plante 10 The Kong - Surfich / Plante 10 The 1 _ lν 1 ruin ~ o Burn . 1 ill in luci 3 ì yriska-AT AN E and a <u>9</u> ~ 13-5-1-5 frenel, Judice to / atte Kessila and grounder reachader Her./ 3+5 0 170 -150 J-T-LLi 6 120 -15* ىتە- يىلى ب Gusel and former. $\overline{\cdot}$ Ξ good / pord light 2 4 Million 230-250 T frau. 0.0.7 mainer rubi soughs My A < 1

SIBAYI

APPENDIX TWO

CALORIFIC VALUES and PROXIMATE ANALYSES (air dry basis) [Values in parenthesis calculated by means of the formula: CV = 0.34 (%FC) + 0.18 (%VM)]

Sample Description	depth cm	CV MJ/kg	H2O %	ash %	VM %	Sample Description	depth cm	CV MJ/kg	H2O %	ash %	VM %
TARLTON	60	13.5	13.9	24.2	34.8		50	6.0	7.0	59.4	29.4
TP1							100	14.2	9.8	28.6	42.9
	80	11.7	13.6	32.1	36.0		150	7.0	6.9	60.7	24.9
	90	15.0	12.3	19.3	45.4		200	12.9	8.9	36.4	36.4
	100	16.1	12.3	15.2	46.2		250	15.4	8.8	26.8	41.6
	110	14.6	12.4	18.8	44.8	GOERGAP	50	4.9	5.4	50.5	22.9
	120	14.5	14.3	22.5	39.1	3218 DA 7/1		(11.3)			
	130	16.3	14.1	15.5	43.5		100	14.7	9.6	27.6	41.2
	140	15.0	15.9	19.5	41.5		150	12.8	9.1	34.5	38.0
	150	17.8	10.6	16.1	47.6		180	13.1	18.6	13.0	48.3
	160	12.0	9.0	38.3	35.1		100	(15.5)	10.0	10.0	40.0
	170	15.9	12.2	20.9	43.8		190	19.0	11.8	11.0	49.4
	177	13.5	8.8	34.1	40.5		200	18.6	12.6	13.8	55.9
	190	5.0	10.0	61.7	20.7		250	14.9	11.8	27.9	36.4
	200	7.0	10.3	54.3	22.4	3218 DA 7/2	50	16.3	11.6	15.6	46.5
	210	9.2	11.3	46.1	27.2		150	16.8	10.2	13.2	51.4
	220	14.1	10.4	28.5	39.4		50	7.0	8.2	62.2	14.7
	230	7.0	9.4	53.9	29.8		200	16.4	10.5	18.4	45.5
	240	6.0	9.2	58.8	21.4		400	17.1	12.0	15.5	43.4
	250	9.7	8.8	48.1	27.2		500	3.0	1.9	84.8	9.6
TP 2	100	16.0	11.6	18.3	43.9	TOP VEEN	-	8.0	7.9	54.4	25.2
	110	11.0	10.8	36.3	34.0	RIKtv (a)					.
	120	12.5	11.9	30.3	36.3	(b)	-	8.0	7.7	53.6	25.3
	140	16.2	12.0	15.6	46.6	(c)	-	9.6	8.1	49.2	26.0
	150	16.8	12.2	18.8	42.7	(d)	-	15.3	9.2	26.6	42.0
	160	14.5	11.7	24.1	39.4	(e)	-	15.5	9.7	26.5	40.9
	170	17.3	12.1	15.6	46.4	(f)	-	7.0	7.3	55.8	25.6
	180	18.3	12.1	12.2	49.5	THE GEM GEM	50	6.0	5.2	63.9	23.6
	200	18.6	11.5	14.1	48.3		200	7.0	5.4	61.6	24.3
	210	14.6	11.9	25.9	41.3		300	6.0	5.4	65.6	24.3
	250	(3.2)	3.6	82.0	10.9		h				
Rikasrus RIK	50	11.5	9.3	38.2	35.8		375	5.0	4.8	67.0	21.0
26°12'30"S/27°33'30 "E						WONDERKRATER	25	11.1	10.6	39.0	33.7
•••	100	16.6	9.8	19.6	49.0		50	15.0	12.6	25.6	38.3
	150	17.1	10.5	18.3	45.0		75	10.1 (11.2)	8.8	46.4	25.1
	200	14.8	9.2	28.3	47.5		100	10.4 (11.7)	11.9	42.6	23.7
	250	13.5	9.4	31.4	40.2	·····	120	15.6	18.7	20.2	34.6
	300	3.0	4.2	76.5	14.7		150	13.8	17.8	28.7	28.3

Sample Description	depth cm	CV MJ/kg	H2O %	ash %	VM %	Sample Description	depth cm	CV MJ/kg	H2O %	ash %	VM %
	175	12.2	12.4	36.1	28.2		475	15.6	13.2	22.7	44.0
	200	10.0	9.3	47.8	21.5		500	(11.8)	11.9	34.5	40.4
Wonderkrater (continued)	225	7.0	6.5	63.2	15.9		525	12.5	9.0	41.8	33.0
<u> </u>	275	11.2	9.5	44.4	24.7		550	8.0	6.7	59.8	25.0
	250	9.0	8.2	57.5	18.2		575	7.0	6.5	62.7	23.2
	300	15.7	12.7	25.5	34.4		600	6.0	5.5	68.9	18.5
· · · · ·	325	13.7	12.7	25.5	34.4		615	8.0	6.5	61.7	22.8
	375	12.8	10.7	37.1	29.2		635	(1.8)	1.7	90.5	5.4
	400	4.0	4.9	78.1	9.9		675	5.0	6.3	70.8	17.2
	350	11.8	10.5	42.3	25.9	GMB x2	100	3.0 (8.2)	5.1	52.4	39.1
	390	18.0	12.1	20.8	34.3		200	14.7	14.3	21.5	57.0
· · · · · · · · · · · · · · · · · · ·	425	6.0	5.7	71.6	12.8		300	13.9	11.9	25.6	44.7
	475	11.8	9.8	42.9	27.7		400	15.8	11.8	25.1	40.1
	445	5.0	4.7	74.4	11.8		500	14.5	12.2	27.7	38.2
	500	10.9	10.7	46.4	23.0		600	12.3	13.8	30.7	38.1
	525	10.0	8.6	50.5	22.2		630	8.0	7.5	60.3	22.1
	545	(13.9)	10.6	26.5	47.0	GMB x3	100	10.6	12.4	41.5	44.0
GERHARD MINNEBRON GMB	25	6.0	5.7	68.2	14.5		200	9.8	11.3	46.0	26.7
x1 26°29'40''S/27°08'E							300	11.0	11.6	41.9	28.4
	50	12.3	10.7	34.4	36.1		400	16.8	11.9	20.9	49.1
	60		no c				500	(6.9)	10.5	59.3	21.2
	75	13.2	10.7	30.7	40.3		520	9.7	10.4	46.4	34.4
· · · · · · · · · · · · · · · · ·	100	(12.7)		33.0	38.7		540	9.0	7.3	57.8	24.7
	125	11.9	10.4	37.7	32.9		550	18.8	5.9	5.6	58.6
	150	10.8	9.6	43.8	28.8	2732 BB 1/2 RAPHIA FOREST	17	16.03	12.2	20.7	51.7
· · · · · · · · · · · · · · · · · · ·	175	11.9	9.5	42.3	36.2		34	15.3	12.8	17.5	51.6
	200	12.2	9.3	41.2	31.1		50	13.9	13.0	18.3	51.3
	225	12.4	9.5	40.3	34.9	<u> </u>	67	16.44	13.7	21.8	49.3
	250	13.0	10.2	37.1	34.6		83	16.86	13.3	20.1	55.8
	275	13.6	11.3	31.5	41.5		100	13.0	15.3	24.3	45.1
	300	(14.5)	11.8	26.3	40.9		110	4.0	4.4	69.1	20.7
	325	17.9	10.5	20.2	42.1	2722 PD 26/2	~	(5.7)	42.0	07 7	45 0
	350	10.7	9.4	46.6	30.1	2732 BB 26/3	25	12.5	12.2	27.7	45.0
	375	19.4	11.6	14.3	43.2		50	15.2	11.7	15.4	57.4
	400	11.8	11.8	38.3	31.8		80	4.0	4.7	75.0	16.7
	425	15.3	13.2	23.2	41.6	2732 BB 26/6	50	16.7	13.3	9.9	56.4
	450	15.5	13.2	22.3	44.8	I	100	16.2	12.2	18.8	46.9

Sample Description	depth cm	CV MJ/kg	H2O %	ash %	VM %	Sample Description	depth cm	CV MJ/kg	H2O %	ash %	VM %
	150	12.9	10.0	30.9	40.9	2732 AD 12/1	15	(3.8)	5.6	79.0	8. 9
2732 BB 20/2 BLACK ROCK	150	14.0	6.9	37.1	35.4	MAPELANE	20	(2.9)	6.1	77.7	16.1
	182	7.0	3.9	65.5	19.8		25	3.0	7.8	69.4	21.5
	240	6.0	4.3	68.4	18.2		30	8.6	7.1	49.7	35.7
2732 BB 20/3	50	22.4 (18.3)	9.3	10.5	55.8		50	9.9	10.9	39.1	35.5
	150	17.5	9.0	28.0	44.4		70	10.2	9.4	42.4	36.5
		(14.3)					75	3.0	7.1	70.9	18.0
	270	7.0	5.0	61.9	20.7		100	(2.5)	6.5	79.9	13.4
2732 DA 2/2 MGOBOZELENI	28	8.0	5.2	58.5	25.5		145	(6.7)	8.7	59.2	26.5
	30	3.0	2.6	81.7	10.5		150	2.0	6.1	77.5	14.9
	35	1.8	1.7	91.8	6.2		180	(2.1)	3.4	86.7	8.1
	40	4.1	3.4	72.0	16.7	2732 AD 12/2	15	(1.8)	4.5	87.3	6.4
	50	(0.9)	0.7	95.5	2.2		25	3.0 (4.9)	7.6	67.7	21.7
2732 DA 2/6	50	18.4	11.3	6.3	56.2		50	16.8	8.8	21.3	48.4
	70	17.8	18.5	8.2	44.8		100	(2.9)	6.8	77.8	14.4
	82	16.8	11.0	15.2	51.4		125	(3.1)	6.6	77.7	14.1
	90	6.0	4.8	69.3	18.2		150	(3.3)	7.3	78.0	10.6
	109	16.1	12.3	14.7	54.4		165	3.0 (5.3)	10.4	62.3	25.0
	115	8.0	6.8	57.9	26.9	2732 BC 13 peat	150	(0.0)		38.5	
	130	9.8	9.0	46.7	30.8	wood SIBAYI	1.50			30.5	
	145	7.5	5.5	59.5	26.1						
2732 DA 2/7 peat wood	50	17.9	13.1	7.0	56.7	2732 BC 20 SIBAYI	30	11.7	7.1	40.5	37.3
	65	16.9	13.5	9.6	59.7		50	9.5	6.7	49.7	31.0
	75	12.9	10.1	31.6	41.5		100	9.0	6.8	50.9	29.1
	85	16.4	13.1	13.7	53.4		150	18.1	13.5	10.0	46.7
	90	20.7	10.4	11.8	67.8	·····	200	9.0	6.4	55.2	25.5
	ļ	(15.6)					250	9.9	7.5	49.4	27.8
	100	3.0	2.6	81.9	12.5		300	16.8	13.7	13.5	45.4
	120	11.8	8.5	39.1	36.2		350	17.9	13.6	11.3	46.9
	150	3.0	2.9	81.3	11.6		400	18.5	13.5	8.4	48.0
2732 DA 2/8 peat wood	50	17.9	13.2	6.9	53.6		450	9.0 (12.6)	6.4	54.1	26.2
peat wood	65	18.2	13.4	7.4	55.7		500	18.8	13.3	7.3	49.0
	80	12.6	10.0	34.0	37.7		515	15.9	11.5	21.2	41.9
	100	12.0	10.0	34.0	38.9		550	4.0	3.1	78.4	12.0
	100	12.9	10.2	18.1	38.9 46.8	2732 BA 58/1/1 MVELABUSHA	50	15.6 (17.5)	13.4	10.1	53.5
· · ·	150	12.9	10.4	32.9	36.8		80	16.2	11.2	22.2	44.3

Sample Description	depth cm	CV MJ/kg	H2O %	ash %	VM %	Sample Description	depth cm	CV MJ/kg	H2O %	ash %	VM %
	155	15.7	13.2	15.0	49.1		270	16.3	15.7	12.8	43.7
	250	18.1	14.8	5.9	46.2		280	17.8	13.8	9.3	46.7
2732 BA 58/1/3	110	16.2	14.0	15.9	44.3		290	17.6	12.5	11.7	46.1
	120	16.8	12.7	16.5	44.3	2732 BA 58/2/1	70	15.9	10.3	21.2	45.5
	140	17.4	12.0	13.8	47.6		100	18.9	9.8	15.4	47.6
	150	18.3	12.4	10.7	49.3		130	(18.3)	12.3	6.4	58.2
	180	13.8	13.9	23.3	41.1		140	18.3	9.9	20.5	42.5
	210	14.4	14.2	19.3	42.3		100	(16.9)			
	220	11.4	10.3	40.6	32.0		160	10.1	7.5	45.2	35.9
	230	17.6 (18.9)	16.7	5.7	46.8		180 190	(17.5) 12.4	11.7 8.3	15.4 36.9	45.7 37.4
	260	17.6 (19.3)	15.0	6.3	46.5		220	18.7	12.0	7.1	48.9
	300	(3.7)	3.6	80.2	11.5		250	6.0	4.5	67.5	20.1
2732 BA 58/1/2	60	16.9	11.7	16.5	49.00	2732 BA 58/2/2	10	18.7	12.0	7.1	48.9
	70	17.3	13.0	14.0	49.7		80	14.5	9.1	32.4	41.0
	80	18.1	11.4	11.8	50.8		110	18.6	9.3	17.7	46.6
	90	17.6	11.0	15.8	48.4		140	17.8	10.9	13.5	47.9
	100	17.7	11.5	14.5	47.6		170	16.1	9.2	24.0	44.2
	125	14.4	14.0	24.0	39.3		200	17.3	11.6	15.3	47.8
	160	15.1	11.1	27.5	39.9		230	16.7	11.6	14.7	44.2
	170	14.2	12.3	26.3	41.1		260	16.9	12.5	13.7	44.1
	180	16.1	11.6	19.4	46.3	· · · · · · · · · · · · · · · · · · ·	275	16.9	10.9	18.0	43.3
	205	13.9	12.9	19.2	48.0	07200 4 58/0/2	340	7.0	4.8	66.0	20.9
	235	2.0 (6.2)	7.1	65.5	19.5	2732BA 58/2/3	70 100	13.3 17.1	8.5 9.2	34.4 22.4	38.0 43.8
2732 BA 58/1/4	230	14.5	12.5	22.7	42.9		130	16.7	10.7	18.9	44.9
	240	16.4	13.7	14.7	45.8		230	14.7	10.8	23.4	41.5
	250	16.7	13.2	11.8	46.3		255	14.8	10.5	23.0	41.3
	260	17.2	12.7	10.9	46.4		340	(1.4)	1.2	92 .1	5.2
	270	18.0	14.3	7.4	47.6	2732 BA 58/3/1	70	19.0	10.1	15.5	47.5
	305	15.7	12.4	16.0	47.6		100	19.8	11.3	10.3	52.8
	350	7.0	6.8	59.9	24.6		130	19.4	11.2	11.6	51.6
2732 BA 58/1/5	70	17.7	11.5	11.6	52.4		160	15.4	10.1	23.6	41.3
·	100	18.8 (16.0)	9.2	18.5	53.6		190	5.0	3.3	74.9	14.8
	130	17.4	11.7	15.8	47.0	2732 BA 58/3/2	10	16.0	9.4	17.8	(54.7)
	140	18.7	12.8	9.2	50.0		40	18.5 (17.7)	10.6	9.3	59.6
······	150	17.9	12.7	10.4	48.3		70	18.6	9.8	11.4	59.3
	260	16.7	12.9	15.0	44.4	1	1	(17.3)	1		I

Sample Description	depth cm	CV MJ/kg	H2O %	ash %	VM %
	100	17.9 (15.9)	9.6	22.1	46.0
	130	19.7 (18.3)	11.2	10.2	52.5
	160	18.6	12.3	8.5	51.0
	190	21.1 (19.4)	12.4	6.2	51.9
	220	19.3 (18.7)	11.8	10.6	48.0
	225	19.9 (17.7)	11.3	12.7	50.9
	245	4.0	2.9	78.9	12.1
2732 BA 58/3/3	10	15.3 (17.7)	9.4	21.5	50.9
	40	18.3 (16.9)	10.8	10.4	61.6
	70	18.1 (16.8)	10.8	14.9	53.1
	100	(14.3)	9.5	26.7	46.3
	130	17.8 (15.6)	9.9	22.4	45.9
	160	15.3 (16.1)	11.1	21.4	42.7
	170	14.9 (15.2)	10.7	24.8	41.9
	175	8.0 (9.6)	8.5	50.8	26.4
	190	2.0 (3.2)	2.0	85.1	7.6
2732 BA 58/4/1	10	16.6	10.4	12.8	57.3
	70	18.7	9.6	16.3	50.3
	100	18.8	10.7	14.6	46.5
	130	17.0	9.6	20.9	45.2
	155	10.0	6.1	54.5	26.3
2732 BA 58/4/2	10	15.3 (17.3)	11.5	11.7	55.7
	70	19.4 (16.9)	9.7	17.9	48.0
	100	20.5 (18.9)	11.9	7.7	52.8
	130	19.9	12.1	9.0	49.2
	160	19.9	12.1	7.0	52.6
	190	9.0	5.7	57.8	29.0
	210	5.0	3.0	77.9	15,9
2732 BA 58/4/3	10	15.3	9.5	18.1	55.9
	40	15.3	8.9	25.6	34.0

Sample Description	depth cm	CV MJ/kg	H2O %	ash %	VM %
	70	18.1 (16.2)	9.8	19.8	48.5
	100	19.0	10.6	14.5	48.6
	130	15.9	11.4	25.2	41.2
	160	16.4	13.1	20.4	40.6
	190	10.7	9.7	45.6	32.7
2732 BA 58/4/S	10	13.9	9.0	26.7	49.6
	20	6.0	5.5	66.4	18.8

APPENDIX THREE

Dry ash-free proximate and ultimate analyses and Fischer assays of selected samples (values in parantesis are calculated)

APPENDIX 3							IN IBESITHI			Calca	T	100	0	I
Sample Description	Depth	CV	<u>VM</u>	FC	C N	<u>H</u>	0	<u> </u>	S %	Coke %	Tar %	H20 %	Gas %	REMARKS
Testes TO4	<u>cm</u>	MJ/KG	%	%	%	%	⁷⁰ 31.45	2.6	0.34	70	70	70	<i>7</i> 0	CV=22,8 (Boie)
Tariton TP1	130	23.2	61,8	38.2	61.05	4.56	31.45	2.0						
		(24.1)												
TP2	140	22.4	64.4	35.6	61.05	5.64	30.65	2.4	0.26	68.8	8.4	15.6	7.2	CV = 24.1 (Boie)
172	140	(23.7)	04.4	33.0	01.05	3.04	30.03	2.7	0.20		0.4	10.0	1.2	
· · · · · · · · ·		(23.7)									** ** * ******			
TP2	150	24.3	61.9	38.1	64.71	6.39	25.87	2.2	0.83					CV = 26.8 (Boie)
162	150	(24.1)	01.9	30.1	(59.22)	6.39	(31.36)	2.2	0.83		····		1	01 - 20.0 (20.0)
		(24.1)			64.71	(4.45)	(27.81)	2.2	0.83		• • • •			
					04.71		121.011	<u> </u>					<u> </u>	
Rikasrus RIK	150	24	66.7	33.3	58.15	5.51	33.14	2.5	0.7	73.4	4.6	14.6	7.4	CV = 22.7 (Boie)
	150		00.7			0.01	00.14	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>			14.0		
RIK	200	23.6	66.5	33.5	51	5.23	41.6	2.01	0.16					CV = 18.9 (Boie)
	200	(23.4)	00.5		(61.33)	5.23	(31.27)	2.01	0.16					
					51	(8.89)	(37.94)	2.01	0.16					······································
						(0.007	107.0 17						1	
RIK	100	23.5	69.4	30.6	66.36	6.71	24.3	2.55	0.08	62.8	8	19.6	9.6	CV = 27.8 (Boie)
TARX		(22.9)			(56.76)	6.71	(33.90)	2.55	0.08				1	
		(a.a				(3.31)	(27.70)	2.55	0.08			1	1	
· · · · · · · · · · · · · · · · · · ·														
RIK	250	23.9	64.6	35.4	45.65	4.63	47.78	1.88	0.06]	1	CV = 15.7 (Boie)
		(23.7)			(63.79)	4.63	(29.64)	1.88	0.06					
		<u>,/</u>										1	1	
erhard Minnebron												İ	 	
GMB X 1	60				60.26	5.86	29.84	3.22	0.82	65.2	4.8	20.8	9.2	CV = 24.3 (Boie)
GMB X 2	240				57.49	4.22	35.97	2.18	0.14					CV = 20.6 (Boie)
GMB X 2	280				51.84	4.11	41.42	2.48	0.15				1	CV = 18.0 (Boie)
GMB X 3	50				59.67	6.1	30.98	3,08	0.17	45.8	11.3	0.9	42	CV = 24.1 (Boie)
Black Rock				÷									·····	
2732 BB 20/3	50	27.9	69.6	30.4	53.64	5.8	37.48	2.98	0.1					CV = 21.0 (Boie)
		(22.9)											1	Determined CV too h
	220				62.34	5.43	30.72	1.47	0.04					CV = 24.2 (Boie)
													111	
	240				60.58	5.05	32.08	2.22	0.07					CV = 23.0 (Boie)
													1	
Mgobozeleni	4													
2732 DA 2/2	43				49.4	5.07	43.35	1.81	0.37				1	CV = 18.0 (Boie)
(Peat Wood)												ĺ		
2732 DA 2/7	0				48.76	5.67	44.26	0.69	0.62					CV = 18.4 (Boie)
2732 DA 2/7	94				53.88	5.83	37.95	2.06	0.28	43	6	29	22	CV = 21.0 (Boie)
(Peat Wood)														
2732 DA 2/7	120	22.5	69.1	30.9	87.56	7.71	0.78	3.8	0.15					CV = 38.9! (Boie) wrong!
														wrong
														$(1) = 49.4 / Ba^{2}$
2732 DA 2/8	22				50.24	5.15	42.86	1.68	0.07					CV = 18.4 (Boie)
(Peat Wood)														
														CV = 21.6 (Boie)
2732 DA 2/8	145				56.94	5.2	35.64	2.12	0.1				ļ	UV = 21.0 (DUHE)
													<u> </u>	
Sibayi		I											02.0	CV = 22/7 (Boie)
2732 BC 13	150				57.82	5.71	33.27	2.16	1.04	49.6	4	22.8	23.6	
(Peat Wood)						-						[
17 Cal 17000/													 	
Mvelabusha													47.0	Determined Older
2732 BA 58/3/2	100	26.2	67.3	32.7						54.4	4.8	23.6	17.2	Determined CV too h
LIJE UN JUIJIE		(23.2)											<u> </u>	
												L		l
					1						<u> </u>		_	e ultimate analysis (e.g. RIK :
													and the state of t	

APPENDIX FOUR MAJOR ELEMENT (weight %) and TRACE ELEMENT (ppm) ANALYSES of PEAT ASH

SAMPLE				GMB	GMB	GMB	Tate	Ermelo	Steen
	2732DA2/7	2732BC (13)	2732BC (20)	X 1	X2	x3	Vondo	pan	kool fontein
DEPTH	120cm	150cm	125cm	325cm	280cm	400cm			
SiO ₂	67.1	91.56	90.94	0.61	89.15	65.90	82.6	84.36	74.71
TiO₂	1.0	0.26	0.26	0.00	0.10	0.65	1.21	0.70	1.25
Al ₂ O ₃	16.8	4.00	4.00	1.52	3.90	7.67	10.48	10.31	16.87
Fe ₂ O ₃	7.2	1.53	1.58	0.51	3.40	4.41	3.18	1.79	5.26
MnO	0.5	0.05	0.05	0.10	0.02	0.32	0.03	0.01	0.01
MgO	1.2	0.75	0.75	2.54	0.35	2.67	0.59	0.05	0.24
CaO	2.8	1.46	1.46	58.52	2.14	17.63	1.28	0.43	0.37
Na ₂ O	2.5	0.60	0.62	1.62	0.10	0.15	0.1	0.16	0.1
K₂O	0.6	0.65	0.34	0.00	0.69	0.30	0.37	2.11	0.95
P ₂ O ₅	0.2	0.00	0.00	0.71	0.15	0.30	0.13	0.05	0.14
S		nd	nd	0.18	nd	nd	0.03	0.03	0.02
Total	99.9	99.9	100	66.31	100.0	100.00	100.00	100.00	99.92
Ва	669	108	109	395	139	156	195	605	616
Cr	293	49	48	<5	293	434	226	86	224
Cu	40	31	31	<5	60	49	49	18	48
Ga	13	5	6	5	13	11	20	17	26
Hſ	<5	6	5	10	6	5	nd	nd	4
Мо	6	<2	<2	<2	3	<2	6	7	nd
Nb	21	10	10	6	12	10	17	15	20
Ni	108	19	20	4	57	53	28	4	42
Pb	56	6	6	<2	13	14	20	28	32
Rb	72	28	27	4	51	48	29	95	109
Sc	18	15	<3	40	22	22	nd	nd	nđ
Sr	108	82	82	2304*	64	52	36	104	80
Та	<5	5	<5	7	<5	<5	nd	nd	nd
Th	11	5	<5	<5	8	7	14	14	19

υ	<2	<2	<2	5	35	15	15	16	16
v	127	61	59	13	167	87	210	123	223
w	247	5	<5	<5	<5	<5	nd	nd	nd
Y	31	11	11	5	22	19	- 44	38	47
Zn	46	11	11	9	64	35	36	46	49
Zr	263	88	96	39	223	183	338	441	316

	2732DA	2732AD	2732AD	2732BB	2732BB	273288	2730CB	2730AD	2630BC	2832AB
Sample	27	12/1	12/1	1/2	20/3	26/3	85 Utrecht	105 Vredehof	14 TheGem	
DEPTH	Ocm	50cm	70cm	100cm	150cm	25cm			200cm	
SiO ₂	94.56	62.41	73.19	89.10	93.63	89.97	57.65	82.18	70.06	69.17
TiO ₂	0.13	1.16	1.37	0.15	0.20	0.24	0.93	0.53	0.91	1.13
Al ₂ O ₃	2.37	20.15	13.83	3.64	2.87	4.19	22.11	9.90	21.48	16.49
Fe ₂ O ₃	1.18	10.98	8.27	3.46	2.27	3.50	16.63	5.75	3.63	9.35
MnO	0.01	0.05	0.07	0.01	0.01	0.02	0.02	0.03	0.02	0.05
MgO	0.49	1.47	1.09	0.37	0.31	0.34	0.25	0.23	0.27	1.26
CaO	1.43	1.63	1.23	2.59	0.62	1.73	0.26	0.33	0.61	0.62
Na ₂ O	0.10	0.36	0.35	0.10	0.10	0.10	0.10	0.10	0.10	0.99
K₂O	0.42	1.89	0.63	0.62	0.82	0.78	0.35	0.61	0.72	1.53
P ₂ O ₅	0.09	0.14	0.13	0.17	0.07	0.16	0.37	0.29	0.26	0.09
S	0.28	0.14	0.07	0.76	0.17	0.35	0.01	0.01	0.04	0.17
Total	101.06	100.38	100.23	100.97	101.07	101.38	98.68	99.96	98.1	100.85
Ba	168	494	453	247	258	311	357	546	516	400
Cr	30	382	267	57	54	68	245	116	221	493
Cu	13	75	52	16	16	21	110	22	54	83
Ga	8	29	20	8	8	9	29	16	30	25
Мо	4	5	5	10	6	8	3	6	5	10
Nb	<5	20	19	5	7	7	13	13	20	20
Ni	<1	126	78	<1	<1	<1	67	7	59	78

.

Pb	7	29	23	9	9	14	20	25	30	27
Rb	13	132	89	20	23	24	31	79	79	101
Sr	90	120	103	128	100	126	23	72	66	92
Th	<5	16	14	<5	<5	6	7	14	24	18
U	13	18	15	17	13	16	14	15	18	15
v	28	282	221	56	55	74	397	142	211	253
Y	17	56	47	30	26	42	57	36	61	59
Zn	14	105	74	19	21	26	70	54	57	75
Zr	107	186	609	128	139	124	164	354	186	370
					1		1	1	I	1

	3218DA	3318AD			TopVeen	Bank	Upper
SAMPLE	7/2	1	3418BD	3419AC	RIKtv	Plaats	Klip
DEPTH	400cm				150cm	100cm	200cm
SiO ₂	92.24	89.18	87.3	86.2	62.87	77.46	72.67
TiO₂	0.31	0.22	0.39	2.45	0.76	0.95	0.84
Al ₂ O ₃	3.09	5.65	1.98	6.04	16.60	14.65	17.62
Fe ₂ O ₃	0.89	0.63	0.97	3.87	3.21	3.68	3.03
MnO	0	0	0	0.07	0.04	0.02	0.04
MgO	1.17	0.59	0.25	0.75	0.45	0.19	0.31
CaO	1.23	0.67	7.90	1.34	0.79	0.96	0.89
Na ₂ O	0.57	0.1	0.1	0.1	0.1	0.1	0.1
K₂O	0.18	0.12	0.14	0.68	0.18	2.36	0.49
P ₂ O ₅	0.14	0.15	0.20	0.17	0.20	0.10	0.18
S	0.25	0.04	0.42	0.04	0.25	0.10	0.27
Total	100.07	97.34	99.65	101.71	85.45	100.57	96.44
Ba	162	197	31	244	355	749	446
Cr	35	32	36	310	429	119	543
Cu	25	7	16	26	88	26	127
Ga	8	9	8	12	24	24	25

Мо	4	4	3	8	6	6	4
Nb	8	8	10	25	16	19	17
Ni	24	<1	<1	90	144	14	643
Pb	12	10	9	15	23	35	32
Rb	12	20	8	33	71	127	54
Sr	131	80	442	67	49	152	35
Th	6	6	<5	12	13	14	12
U	17	13	15	20	16	17	54
v	52	57	33	262	238	155	215
Y	31	44	26	40	48	44	61
Zn	20	14	13	>400	58	66	>400
Zr	208	122	273	>1200	194	287	197

	RIK	RIK	RIK	Кіір	Klip R.	Klip R.	Klip R.
Element	100cm	250cm	150cm	Rivier 2V	ЗУТор	3VBot	Base clay
SiO₂	83.47	74.18	75.37	57.25			
TiO₂	0.60	0.69	0.78	1.01			
Al ₂ O ₃	12.74	14.33	15.81	18.54			
Fe ₂ O ₃	3.44	5.58	6.44	10.95			
MnO	0.04	0.04	0.07	0.58			
MgO	0.23	0.47	0.40	1.89	<u> </u>		
CaO	0.53	1.26	0.93	4.99			
Na ₂ O	0.1	0.1	0.1	0.44			
K₂O	0.12	0.40	0.61	0.57			
P ₂ O ₅	0.24	0.32	0.48	0.29			
S	0.04	0.12	0.09	nd			
Total	101.553	97.492	101.082	96.51			
Ba	240	430	369	481	681	266	440
Cr	430	510	466	436	461	312	370

Cu	65	91	78	171	219	127	89
Ga	19	20	21	30	20	29	23
Мо	8	13	9	6	5	<1	4
Nb	13	15	16	16	14	17	18
Ni	182	275	192	265	1606	231	105
Pb	20	20	25	24	63	15	24
Rb	34	47	55	86	87	89	91
Sr	29	67	52	75	109	64	52
Th	10	11	14	12	12	11	15
U	15	14	13	7	11	<6	5
v	196	212	277	269	205	295	176
Y	39	47	53	32	37	30	34
Zn	39	46	73	122	1784	134	67
Zr	164	185	182	241	210	238	277

APPENDIX FIVE PETROGRAPHIC ANALYSES

Sample	BB20	SIB	58	Raph	FS	GGP 175	GMB 525	GMB 60	GMB 250	ТР	RIK	WAK
Ú =	1400	1000	1000	500	500	800	500	500	1100	500	500	500
points counted												
Tellinite	20.2	18.5	32.8	15.5	53.2	12.8	1.0	44.0	17.5	0.8	9.4	1.0
Detrinite	16.5	7.3	37.0	19.0	17.5	14.2	1.4	7.0	19.0	14.6	18.0	2.4
Phlobaphinite	7.3	16.8	9.8	1.5	11.7	8.0	6.4	5.7	3.5	5.4	19.6	2.0
Pyrofusinite	0.7	0.7	4.8	4.0	p	10.0	4.0	4.0	24.5	2.2	6.8	8.6
Degradofus.	2.1	14.3	0.2	р	0.4	5.2	2.8	2.0	1.2	р	р	1.2
Inertodetrn.	11.2	37.0	6.2	41.0	6.4	25.4	17.6	30.7	26.5	7.2	10.6	32.6
Cutinite	0.6	1.3	0.4	4.5	р	р	2.6	3.7	2.1	0.4	1.6	р
Sporinite	0.3	0.5	1.2	1.5	1.8	p	р	р	0.3	-	р	-
Resinite	1.3	1.3	р	8.0	0.2	2.4	0.6	-	0.8	0.6	р	0.6
Matrix	39.3	2.0	6.4	3.5	6.7	20.8	62.8	2.2	6.5	68.2	33.8	51.0
Pyrite	0.2	-	-	1.5	1.7	1.2	0.8	0.5	0.1	0.6	0.2	0.6

p = present but not counted.

- = not observed.

BB 20 = Black Rock; **SIB** = Sibayi; **58** = 2732BA58; **Raph** = Raphia; **FS** = Forest swamp; **GGP** = Goergap; **GMB** = Gerhard Minnebron; **TP** = Tarlton peat; **RIK** = Rikasrus; **WAK** = Wakkerstroom

and a second sec

APPENDIX SIX MINERALOGY OF INORGANIC COMPONENT FROM SA PEATS

sample	Pyrite	Plagioclase	Microcline	Quartz	Kaolinite	III./Smec	Smectite	Hematite	Anhydrite	Gypsum	Calcite
Babsfontein				93						3	4
Bankplaats		6		35	6	53					
Riet Vlei 4				9 4	6						
Rikasrus											
RIK 150				87	13						
RIK 250	8			84	8						
RIK 200				85	15					· · · · · · · · · · · · · · · · · · ·	
RIK 100			<u>-</u>	87	13						
Goergap											
3218DA7/3/50				100							
Raphia forest											
2732BB1/1/17	21			37	16	26					
2732BB1/1/83	46			23	9	22					

sample	Pyrite	Plagioclase	Microcline	Quartz	Kaolinite	III./Smec	Smectite	Hematite	Anhydrite	Gypsum	Calcite
2732BB26/2/40	11		6	83							
2732BB26/2/50	33			67							
2732BB26/7/20			7	93							
2732BB26/7/35	20			80							
2732BB26/5/50	43			57							
2732BB26/6 100	67			34							
Sibayi											1
2732BC20		2	5	66				9	17		
Mgobozeleni											
2732DA2/1/15				100							
2732DA 2/2/28			4	98							
2732DA2/2/30				94		6					
2732DA2/2/35			5	95							
2732DA2/2/40			3	97							<u> </u>
2732DA2/2/50				100							
2732DA2/3/15				100							

- -----

sample	Pyrite	Plagioclase	Microcline	Quartz	Kaolinite	III./Smec	Smectite	Hematite	Anhydrite	Gypsum	Calcite
2732DA2/3/30				100							
2732DA2/4/25			·····	100							
2732DA2/4/45				100							
2732DA2/4/35				100		19 00 1 1/1					
2732DA2/4/60				100							
2732DA2/5/32				100							
2732DA2/5/46				100	· · · · · · · · · · · · · · · · · · ·						
2732DA2/5/ 68				100							
2732DA 2/6/50				100							
2732DA 2/6/70				86			14				
2732DA2/6/82				100							
2732DA2/6/90				100							
2732DA2/6/109				100							
2732DA2/6/115				100							
2732DA2/6/130			3	97							
2732DA2/6/137			4	92		4					

sample	Pyrite	Plagioclase	Microcline	Quartz	Kaolinite	III./Smec	Smectite	Hematite	Anhydrite	Gypsum	Calcite
2732DA2/6/145				92		8					
2732DA2/6/05				100							
2732DA 2/7/50				100							
2732DA2/7/65				38			62				
2732DA2/7 75				100							
2732DA2/7 120				100							
2732DA2/7 135				100							
2732DA2/7 150				100							
2732DA2/7 85				100							
2732DA 2/8/65			·	100							
2732DA2/8 80				100							
2732DA2/8 100			19	81							

sample	Pyrite	Plagioclase	Microcline	Quartz	Kaolinite	III./Smec	Smectite	Hematite	Anhydrite	Gypsum	Calcite
2732DA2/8 125				100							

2732DA2/9 100				100							
Mapelane											
2732AD12/1/15		9	3	60	5	24					
2732AD12/1/20		8		32	6	38	17				
2732AD12/1/35		*		48		52					
2732AD12/1/40		7		46		46				·	
2732AD12/1/50		9		64		27					
2732AD12/1/70		9		53		38				1	
2732AD12/1/75		11		42		46					
2732AD12/1 100		8		51		42					
2732AD12/1 150	13	12	5	41		29					
2732AD12/1 180	9	4		72		8					
2732AD12/2/15	29			71					1		
2732AD12/2/25				31	11	58			1		
2732AD12/2/37		7		42	7	44					

2732AD12/2/50				50	14	36				
2732AD12/2/65		5	8	39	6	42			-	
2732AD12/2/70				50		50				
2732AD12/2 100		11	4	40	6	39				
2732AD12/2 125		6	4	48	3	38				
2732AD12/2 145	23	8	2	40	3	23				
2732AD12/2 150	28	7	3	33	3	26				
2732AD12/2 165	23	8	4	36	3	26				
Black Rock										
2732BB20/1/20	11		11	78						
2732BB20/1/50		8		92						
2732BB20/1/65				100						
2732BB20/1/89			9	91						
2732BB20/1/ 115		2	18	80			<u></u>			
2732BB20/1/			3	97						

125				i i n <u>e</u> i			
2732BB20/1/ 132			100				
2732BB20/1/ 152		3	97				
2732BB20/2 150			100				
2732BB20/3/50	40		60	 			
2732BB20/3/ 150	7		93			1	
2732BB20/3/ 270	8		92				