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Summary 

 

Equations for determining the electromagnetic response for a dipole situated 

above a layered earth are derived from Maxwell's equations. The theory is 

then expanded to allow for a transmitter and receiver at any distance above 

the surface of the layered earth. Using the commercially available software 

"Mathcad" standard curves are calculated for two- and three layer models. 

 

Damped least squares inversion is advocated. The partial derivatives of the 

layered earth expression with respect to all model parameters are formulated 

and the Jacobian matrix is constructed. The inversion routine is tested on 

noise-free synthetic data and on synthetic data with noise. 

 

The study is concluded with a case history where the developed technology 

is applied to a DIGHEM V data set flown over the Nebo granites in the Ga-

Masemola area, Limpopo Province, South Africa. Results show that 

although the data consists of only three co-planar frequencies, parameters 

such as depth to bedrock, overburden conductivity and bedrock conductivity 

can be recovered.   
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SYMBOLS AND NOTATION 

 

E Electric field intensity (V/m) 

B Magnetic induction (T) 

H Magnetic field intensity (A/m) 

J Electric current density (A/m2) 

D Electric displacement (C/m2) 

M Magnetic dipole moment (A·m2) 

A, Π,  F vector potentials. 

σ  conductivity (S/m) 

ε dielectric constant (F/m) 

ε0   permittivity of free space 

µ   magnetic susceptibility (H/m) 

µ0  magnetic susceptibility of free space  

µn  magnetic susceptibility of the nth layer divided by µ0    

ω   angular frequency ( )fπ2  

f    frequency (Hz) 

ς   charge density (C/m3) 

k   wavenumber 

δ  skindepth (m) 

ρ  dipole separation (m) 

λ  integration variable 

1−=i  
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1. MOTIVATION 

 

Numerous imaging methods for airborne electromagnetic data exist. Due to 

the large amount of data acquired during a normal day's surveying (typically 

4 million soundings which are stacked and averaged to between 50 000 and 

100 000 individual soundings) any imaging algorithm has to be very fast and 

needs to recover as much as possible subsurface information present in the 

data.  

 

Fast approximate inversion of FDEM data was first proposed by Sengpiel 

(1988) and later refined by Huang and Fraser (1996) and Sengpiel and 

Siemon (2000). The method yields for every frequency an apparent depth or 

"centroid" depth and an apparent resistivity. If the data consists of many 

frequencies the method enables a fast approximation of the subsurface 

conductivity distribution. 

 

One of the most popular imaging algorithms called the Conductivity-Depth 

Transform (Macnae and Lamontagne, 1987; Macnae et al., 1991; Stolz and 

Macnae, 1998) is used by airborne contractors as part of a standard 

interpretation of time domain electromagnetic data (TDEM). The method 

finds the depth to an equivalent current filament as a function of time, from 

which the diffusion velocity and hence the conductivity can be determined. 

Due to heavy smoothing of data before processing, coupled data are not 

identified and lateral smoothing smears out the distortions of the coupled 

data to the uncoupled data sets (Christiansen and Christensen, 2003). An 

imaging method employed by the Russians called the Sτ version transforms 

TDEM data to apparent conductivity (Sidorov and Tikshaev, 1970). By 
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making use of profile plots these apparent conductivity curves provides a 

fast way of delineating good conductors. Other imaging methods have, 

amongst others, been proposed by Christensen (2002), Smith et al. (1994) 

and Polzer (1985). 

 

The subject of this thesis is the development of a theoretical base for the 

damped least squares inversion of airborne electromagnetic data to a one 

dimensional layered earth. This is done for a generic airborne platform 

typically used for time domain systems where the transmitter is fixed on the 

aircraft perimeter and the receiver is pulled behind and below the aircraft in 

a 'bird' (Figure 2.1). This geometry however can also be used for frequency 

domain systems as demonstrated by the Russian company Aerogeofisika 

based in Moscow. 

 

The methodology that is adopted is to apply the inversion routine in the 

frequency domain. The theory is therefore developed in the frequency 

domain. Normally, frequency domain inversion algorithms assume co-planar 

geometry since this approximation simplifies the mathematical description 

(Haung and Fraser, 2003). The approach followed here however implies that 

any transmitter / receiver geometry can be accommodated with no loss of 

generality. The advantage of this approach is that TDEM data converted to 

the frequency domain can also be processed with the developed algorithms. 

 

The electromagnetic equations for a vertical magnetic dipole situated above 

a horizontally layered earth are developed from Maxwell's equations 

following the classical approach of Keller and Frischknecht (1966) and 

Kaufman and Keller (1983). The aim of this thesis is the development of a 
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fast semi-automatic inversion routine for the interpretation of airborne 

electromagnetic data. The shortcomings of the derived expressions for 

implementation into a computer program are discussed. The electromagnetic 

equations for a vertical magnetic dipole situated above a horizontally layered 

earth published by Ward and Hohmann (1988) are subsequently 

incorporated in the inversion algorithm.  

 

Algorithms are then developed for the inversion of field data to either a 

halfspace, a two layered or a three layered conductive earth. The robustness 

of the technique is proven on synthetic and real data. Currently the quality 

and design parameters of frequency domain airborne data do not lend itself 

to obtaining layer parameters beyond three layers. 
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2.  BASIC PRINCIPLES 

 

2.1 MAXWELL’S EQUATIONS 

 

Maxwell’s equations, one of the corner stones of physics, describe the 

relationship between various electric fields, magnetic fields and medium 

parameters. In differential form they are as follows: 

t∂
∂−

=×∇
BE          (2.1) 

t∂
∂

+=×∇
DJH          (2.2)  

0ε
ς−

=⋅∇ E           (2.3)  

0=⋅∇ B           (2.4) 

with, 

E = electric field intensity in Volt/meter (V/m) 

B = magnetic induction in Tesla (T)  

D = dielectric displacement in Coulomb/m2 (C/m2) 

H = magnetic field intensity in Ampere-turn/m (A/m) 

ς  = charge density in Coulomb/ m3 (C/m3) 

ε0 = dielectric permittivity of free space 

 

To enable the analyses of electromagnetic induction, certain assumptions 

have to be made to simplify the study. In this discussion it is assumed that 

the subsurface is linear, isotropic and homogeneous. Those assumptions 

allow us to use the following constitutive equations: 

J = σE          (2.5) 
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D = εE                  (2.6) 

B = µH          (2.7) 

with, 

σ = conductivity in Siemens/m (S/m) 

ε = dielectric constant in Farad/m (F/m) 

µ = magnetic susceptibility in Henry/m (H/m) 

J = current density in Ampére/ m2 (A/m2) 
 

If we further assume that there is no free electric charge or current in the 

medium, Maxwell’s equations, for a periodic time dependence, becomes: 

HE ωµi=×∇          (2.8) 

EEH ωεσ i−=×∇         (2.9) 

0=⋅∇ E           (2.10) 

0=⋅∇ H                 (2.11) 

where, 

ω = 2π f (angular frequency) 

f = frequency in Hertz (Hz) 

1−=i  

 

The following assumptions have been made in reducing Maxwell’s 

equations: 

1. ς  = 0. Charge density inside a uniform halfspace is zero. 

2. σ ≠ 0. The resistivity inside a uniform halfspace is finite. 

3. 
t∂

∂D << J for a quasi-stationary field. 
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4. We assume a harmonic time varying field tie ω−∝⇒ HE, with 

tite ti ωωω sincos −=− . Therefore, tie ω−= 0EE and tie ω−= 0BB  

 

Following the quasi-static approximation equation (2.9) becomes: 

EH σ=×∇           (2.12) 

 

2.2. WAVENUMBER AND SKIN DEPTH 

 

From equations (2.8) and (2.9) we can write: 

)( HE ×∇=×∇×∇ µωi  

                )( EE εωσµω ii −=        (2.13) 

By making use of vector identities, equation (2.13) can be written as: 

)()( 2 EEEE εωσµω ii −=∇−⋅∇∇       (2.14)  

 

In the quasi-static approximation 0=⋅∇ E  and 0=⋅∇ H . From equation 

(2.14) we have: 

 )( 22 µεωµωσ +−=∇ iEE        (2.15) 

Therefore 

0)( 22 =+∇ Ek          (2.16)   

where k is called the wavenumber and is given by: 

)(2 εωσωµ += ik          (2.17)  

At low induction numbers the square of k is given by: 

ωµσik =2           (2.18) 

13 of 89

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd,,  SSmmiitt  JJ  PP  ((22000066)) 



Equation (2.16) contains all the information that can be determined from the 

subsurface. If one takes the complex root of equation (2.18) you have 

δδ
11 ik +=  

where 
ωµσ

δ 2
=  (Telford et al., 1990).     (2.19) 

δ is called the skin depth and provides the depth limit at which meaningful 

information can be obtained. It is also defined as the distance in the 

halfspace that a propagating plane wave has travelled when  its amplitude 

has been attenuated to 
e
1  of its value at surface (Kaufmann and Keller, 

1983). 

 

2.3. THE WAVE EQUATION  

 

According to Faraday: 

HE ωµi=×∇          (2.20) 

If  

AH ×∇=  

then 

)( AE ×∇=×∇ ωµi          (2.21) 

A  is a vector potential and is introduced to simplify the solution. It is based 

on the fact that 0=⋅∇ H  (Kaufmann and Keller (1983) p.217). 

0)( =−×∇ AE ωµi         (2.22) 

Therefore 

Ui ∇= -AE ωµ          (2.23) 
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where U is a scalar potential that has been defined arbitrarily. 

If we replace H and E now in equation (2.12) we have 

Ui ∇=×∇×∇ σωµσ -AA                 (2.24) 

Using the vector identity: 

( ) AAA 2∇−⋅∇∇=×∇×∇        (2.25) 

we can rewrite equation (2.24) 

( ) Ui ∇=∇−⋅∇∇ σωµσ -AAA 2       (2.26) 

 

By defining the gauge condition 

A⋅∇=− Uσ  (Kaufmann and Keller (1983) p. 218)                   (2.27) 

we can calibrate equation (2.26) to eliminate further consideration of the 

scalar potential U. We then have 

UkU ∇−=∇−∇− σσ AA 22         (2.28) 

and 

022 =+∇ AA k          (2.29) 

Equation (2.29) is known as the wave equation for the vector potential A .  

 

In the same way as in equation (2.21) we can define a vector potential Π  

based on the fact that 0=⋅∇ E  (Kaufmann and Keller (1983) p. 26) 

Π)E ×∇= (ωµi          (2.30) 

 

Once again, by substitution into equation (2.12) we get 

Π)H ×∇=×∇ (ωµσi  

0( =×∇ Π)-H ωµσi  

and 

15 of 89

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd,,  SSmmiitt  JJ  PP  ((22000066)) 



Ui ∇= -ΠH ωµσ  

where U is a scalar potential that has been defined arbitrarily. 

Substitution into equation (2.8) gives  

)(( Uiii ∇=×∇×∇ -ΠΠ) ωµσωµωµ  

and utilizing the vector identity (equation (2.25)) we obtain 

( ) Ui ∇=∇−⋅∇∇ -ΠΠΠ ωµσ2  

 

If we now define the gauge condition as:  

Π⋅−∇=U  

we can write the wave equation in terms of the vector potential Π  

022 =+∇ ΠΠ k          (2.31) 

 

and we can rewrite Maxwell’s electromagnetic field equations as: 

Π)E ×∇= (ωµi  

and 

( )ΠΠH ⋅∇∇+= 2k         (2.32) 

  

If we assume a vertical magnetic dipole then the symmetry of the 

electromagnetic field implies that E only has a tangential component, Π  

only has a z (vertical) component and H a z (vertical) and radial component. 

By using cylindrical vector derivatives we have: 

r
i z

∂
∂

−=
Π

E ωµφ          (2.33) 

2

2
2

z
k z

zz
∂

∂
+=

ΠΠH         (2.34) 

and 
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zr
z

r ∂∂
∂

=
ΠH

2
         (2.35) 

 

Using the boundary conditions from electromagnetic theory we know that 

the tangential components of the electric and magnetic fields have to be 

continuous across an interface (between medium 1 and medium 2 for 

example (Figure 2.1)), hence from equation (2.35): 

zrzr
zz

∂∂
∂

=
∂∂

∂ 2
2

1
2 ΠΠ

         (2.36) 

and from equation (2.33) 

rr
zz

∂
∂

=
∂

∂ 21 ΠΠ
         (2.37) 

The tangential components of the electromagnetic field are continuous 

across the interface if the vector potential zΠ and its vertical derivative are 

continuous. 

 

With reference to Figure 2.1 we consider the air, conducting halfspace 

interface. At the surface we have z = -H. The z axis points positive upwards 

with the origin at the transmitter. The solution for the vector potential in the 

upper halfspace, i.e. for the magnetic dipole situated above the surface, can 

be written as: 

zzz 201 ΠΠΠ +=          (2.38) 

where z0Π is the vector potential for a magnetic dipole in an empty full-

space and z2Π is the vector potential contributed from the conducting 

halfspace. 
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Figure 2.1. Airborne EM system configuration above a 3-layered conductive earth.
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The vector potential in full-space can be written as: 

Rz
1

40 π
MΠ =          (2.39) 

where ( )2
1

22 zrR +=  and M is the magnetic dipole moment with M = qIAâ  

where,   

q is the amount of turns in the loop  

I = I0 e-iωt and is the alternating current flowing in the loop 

A is the surface area of the loop in (m2) and 

â is a unit vector perpendicular to the surface area 

 

In order to apply the boundary conditions we must find a solution to the 

following equations. 

01
2 =∇ zΠ   if z > -H        (2.40) 

above the surface of the conducting halfspace ( 2k = 0 in the air)   

and 

02
2

2
2 =+∇ zz k ΠΠ  if z < -H                (2.41) 

below the surface of the conducting halfspace     

     

If we expand (2.41) in cylindrical coordinates and discard the term where 

differentiation with respect to φ  takes place (due to the cylindrical 

symmetry), differentiation in parts give, 

0),(),(1),( 2
2

2

2

2
=++⋅+ z

zzz k
z

zr
r

zr
rr

zr ΠΠΠΠ
∂

∂
∂

∂

∂

∂    (2.42) 

If we apply separation of variables we can write (2.42) as the product of two 

functions with each function only dependant on one variable. 
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)()( zVrUz =Π          (2.43) 

 

Equation (2.42) can now be written as 

0)()()()()(1)()()( 2
2

2

2

2
=+⋅+⋅⋅+⋅ zVrUk

dz

zVdrU
dr

rdU
r

zV
dr

rUdzV  (2.44) 

 

Dividing (2.44) with U(r)V(z) yields 

0111 2
2

2

2

2
=++⋅+⋅ k

dz

Vd
Vdr

dU
Urdr

Ud
U

     (2.45) 

 

Equation (2.45) can now be written as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=⋅+⋅ 2

2

2

2

2 111 k
dz

Vd
Vdr

dU
Urdr

Ud
U

     (2.46) 

  

Since U and V are independent, each side of equation (2.46) must be equal 

to a constant. Hence we can write two ordinary differential equations instead 

of the partial differential equation of (2.42) 

2
2

2 11 λ=⋅+⋅
dr
dU

Urdr
Ud

U
        (2.47) 

22
2

21 λ−=+⋅ k
dz

Vd
V

        (2.48) 

 

where λ is a separation constant. Equations (2.47) and (2.48) can now be 

written as 
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01 2
2

2
=−⋅+ U

dr
dU

rdr
Ud λ         (2.49) 

0)( 22
2

2
=−−− Vk

dz

Vd λ         (2.50) 

 

Solutions for equation (2.49) are Bessel functions of the first and second 

kind. The Bessel function of the second kind )(0 rY λ has the property of 

being infinite along the z axis when r = 0. This does not describe the field 

behaviour for a point source adaquately. We can however write a solution 

for equation (2.50) where 

( ) ( ) zkzk eDeCV
2

1222
122 +−+ += λ

λ
λ

λ        (2.51) 

 

A general solution for equation (2.42) can now be given for all possible 

values of λ in the form of a Hankel transform integral 

( ) λλ+
π

= ∫
∞

λ
λ

λ−
λ drJeCeDM zz

z
)(

4 0
0

11Π      (2.52) 

 

where λD  and λC  are unknown coefficients, 2
12

1
2

1 )( k+λ=λ and 

1
2
1 ωµσ= ik where 1σ is the conductivity of the conductive halfspace. 

 

Because the electromagnetic field decreases with distance from source we 

can omit the second term from equation (2.51) for the dipole in a conductive 

halfspace and write 
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∫
∞

λ
λ λλ

π
=

0
02 )(

4
1 drJeCM z

zΠ    for z < -H     (2.53) 

 

In free space on the other hand k = 0, therefore λ=λ1  and with z > 0  we 

have, from equations (2.38) and (2.39) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λλ+

π
= ∫

∞
λ−

λ drJeD
R

M z
z )(1

4 0
0

1Π  for z > 0    (2.54) 

 

2.4. THE FREQUENCY DOMAIN RESPONSE FOR A ONE, TWO 

AND THREE LAYERED EARTH MODEL 

 

For convenience lets define the vector potential for a magnetic dipole as  

ΠF µω= i .          (2.55) 

The primary vector potential F for a magnetic dipole is given by: 

 kRe
R

i −
π

ωµ
4

M=F  (Keller and Frischknecht (1966) p. 331)   (2.56) 

  

The potential functions for all five regions must be a solution to the wave 

equation 

022 =+∇ FF k          (2.57 

which implies we have to solve equation (2.42) for the magnetic vector 

potential functions in all the regions (i.e. above the transmitter, below the 

transmitter and in the first, second and third layer). Following Keller and 

Frischknecht (1966) we can write the vector potential functions in the five 

different regions by making use of equations (2.52 – 2.56). 
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( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λλλ+= ∫

∞
λ−

−

0
011 )()( 0

0
drJeψ

R
eC z

Rk
F  for z > 0   (2.58) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λλλ+= ∫

∞
λ−

−

0
022 )(])([ 0

0
drJeψ

R
eC z

Rk
F  for -H < z < 0  (2.59) 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λλλ+λ= ∫

∞
λ−λ

0
0433 )(])()([ 11 drJeψeψC zzF   

for -(H+h1) < z < -H        (2.60) 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λλλ+λ= ∫

∞
λ−λ

0
0654 )(])()([ 22 drJeψeψC zzF   

for -(H+ h1+h2) < z < -(H+h1)       (2.61) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λλλ= ∫

∞
λ

0
075 )(])([ 3 drJeψC zF  for z < -(H+ h1+h2)    (2.62) 

where 
π

µω
=

4
MiC and 1ψ to 7ψ are functions of λ. 

 

Making use of the Sommerfeld integral the exponential functions 

representing the primary vector potentials can be written as 

∫
∞

λ−
−

λλ
λ
λ

=
0

0
0

)(0
0

drJe
R

e z
Rk

 for 0≥z      (2.63) 

∫
∞

λ
−

λλ
λ
λ

=
0

0
0

)(0
0

drJe
R

e z
Rk

 for 0≤≤− zH     (2.64) 
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Equations (2.58) – (2.62) can now be written as 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λλλ+= ∫

∞
λ−λ−

0
011 )(])([ 00 drJeψeC zzF  for z > 0   (2.65) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λλλ+= ∫

∞
λ−λ

0
022 )(])([ 00 drJeψeC zzF  for –H < z < 0  (2.66) 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λλλ+λ= ∫

∞
λ−λ

0
0433 )(])()([ 11 drJeψeψC zzF   

for –(H+h1) < z < -H        (2.67) 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λλλ+λ= ∫

∞
λ−λ

0
0654 )(])()([ 22 drJeψeψC zzF   

for -(H+ h1+h2) < z < -(H+h1)       (2.68) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λλλ= ∫

∞
λ

0
075 )(])([ 3 drJeψC zF  for z < -(H+ h1+h2)   (2.69) 

    

For the special case where z = H = 0 equations (2.65) - (2.69) can be 

expanded analytically to obtain expressions for the magnetic field 

components in the different regions (Keller and Friscknecht, 1966). We are 

however interested in finding solutions for the magnetic vector potentials if 

the transmitter loop is situated a distance above the ground. This will enable 

us to do theoretical modeling of airborne electromagnetic data. The only 

way to accomplish this is through numerical analysis.  

 

From equations (2.36) and (2.37) we have the following boundary 

conditions 
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rr ∂
∂

=
∂

∂ 21 FF and 
zrzr ∂∂

∂
=

∂∂
∂ 2

2
1

2 FF
for z = 0 

rr ∂
∂

=
∂

∂ 32 FF
and 

zrzr ∂∂
∂

=
∂∂

∂ 3
2

2
2 FF

for z = -H 

rr ∂
∂

∂
∂ 43 FF

= and 
zrzr ∂∂

∂
=

∂∂
∂ 4

2
3

2 FF
for z = -(H+h1)   

rr ∂
∂

=
∂

∂ 5FF4 and 
zrzr ∂∂

∂
=

∂∂
∂ 5

2
4

2 FF
for z = -(H+h1 +h2)    (2.70) 

 

Integration with respect to r yields the following equations. The constants of 

integration are all zero since the expressions must have zero value when r 

goes to infinity.  

 

21 FF = and 
zz ∂

∂
=

∂
∂ 21 FF for z = 0 

32 FF = and 
zz ∂

∂
=

∂
∂ 43 FF

for z = -H 

43 FF = and 
zz ∂

∂
∂

∂ 43 FF
= for z = -(H+h1)       

54 FF = and 
zz ∂

∂
=

∂
∂ 54 FF

for z = -(h+h1 +h2)     (2.71) 

Hence we can solve the functionsψ 1 to ψ 7 through a set of linear equations 

( ) ( )zzzz e)(ee)(e 0000 21
λλλλ λψλψ −−− +=+   

for z = 0          (2.72) 
( ) ( ) ( )zzzz e)(e)(e)(e 1100 432

λλλλ λψλψλψ −− +=+  

 for z = -H          (2.73)  
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( ) ( ) ( )zzzz e)(e)(e)(e 1100 4131200
λλλλ λψλλψλλψλλ −− −=−  

 for z = -H          (2.74) 
( ) ( ) ( ) ( )zzzz e)(e)(e)(e)( 2211 6543

λλλλ λψλψλψλψ −− +=+  

for z = -(H+h1)         (2.75) 
( ) ( ) ( ) ( )zzzz e)(e)(e)(e)( 2211 62524131

λλλλ λψλλψλλψλλψλ −− −=−  

for z = -(H+h1)         (2.76) 

 ( ) ( ) ( )zzz e)(e)(e)( 322 765
λλλ λψλψλψ =+ −  

 for z = -(H+h1 +h2)        (2.77) 
( ) ( ) ( )zzz e)(e)(e)( 322 736252

λλλ λψλλψλλψλ =− −   

for z = -(H+h1 +h2)        (2.78) 

 

For the case of a homogeneous halfspace we are left with 3 equations and 3 

unknowns. 

)()( λψλψ 21 11 +=+           (2.79) 
( ) ( )100

32
λλλ λψλψ )()()( )()( HHH eee −− =+        (2.80) 

( ) ( )100
31200

λλλ λψλλψλλ )()()( )()( HHH eee −− =−        (2.81) 

 

For the case of a two layered earth we have 5 equations and 5 unknowns 

)()( λψλψ 21 11 +=+           (2.82)  
( ) ( ) ( )1100

432
λλλλ λψλψλψ )()()())(( )()()( HHHH eeee +=+ −−      (2.83)  

( ) ( ) ( )1100
4131200

λλλλ λψλλψλλψλλ )()()())(( )()()( HHHH eeee −=− −−    (2.84)  
( ) ( ) ( )211111

543
λλλ λψλψλψ )()()( )()()( hHhHhH eee +−++− =+       (2.85) 

 ( ) ( ) ( )211111
524131

λλλ λψλλψλλψλ )()()( )()()( hHhHhH eee +−++− =−       (2.86)  
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And finally, for a three layered earth model we have  7 equations with 7 

unknowns 

)()( λψλψ 21 11 +=+           (2.87) 
( ) ( ) ( )1100

432
λλλλ λψλψλψ )()()()( )()()( HHHH eeee +=+ −−      (2.88) 

( ) ( ) ( )1100
4131200

λλλλ λψλλψλλψλλ )()()()( )()()( HHHH eeee −=− −−    (2.89) 
( ) ( ) ( ) ( )21211111

6543
λλλλ λψλψλψλψ )()()()( )()()()( hHhHhHhH eeee ++−++− +=+   (2.90) 

( ) ( ) ( ) ( )21211111
62524131

λλλλ λψλλψλλψλλψλ )()()()( )()()()( hHhHhHhH eeee ++−++− −=−  (2.91) 

 ( ) ( ) ( )321221221
765

λλλ λψλψλψ )()()( )()()( hhHhhHhhH eee ++−++++− =+     (2.92) 
( ) ( ) ( )321221221

736252
λλλ λψλλψλλψλ )()()( )()()( hhHhhHhhH eee ++−++++− =−     (2.93) 

 

The following square matrixes therefore have to be solved for the 

coefficients  iψ to enable us to compute the magnetic field components. 

 

For a halfspace: 

( ) ( )

( ) ( ) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

−

−

−

−

−

))((

))((

)()(

)()(

)(
)(
)(

0

0

10

10

03

2

1

10

0

0
0

011

λ

λ

λλ

λλ

λλψ
λψ
λψ

λλ H

H

HH

HH

e
e

ee
ee     (2.94) 

 

For a two layered earth: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−
−−

−

−

−

+−++−

+−++−

−

−

0
0

0

00
00

00
00
00011

0

0

211111

211111

110

110

0

5

4

3

2

1

211

110
))((

))((

))(())(())((

))(())(())((

))(())(())((

))(())(())((

)(
)(
)(
)(
)(

λ

λ

λλλ

λλλ

λλλ

λλλ

λ

λψ
λψ
λψ
λψ
λψ

λλλ

λλλ H

H

hHhHhH

hHhHhH

HHH

HHH

e
e

eee
eee

eee
eee

 

         (2.95) 
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For a three layered earth: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−
−−

−−
−−

−

−

−

++−++++−

++−++++−

++−++−

++−++−

−

−

0
0
0
0

0

0000
0000

000
000
0000
0000
0000011

0

0

321221221

321221221

21211111

21211111

110

110

0

7

6

5

4

3

2

1

322

2211

110
λ

λ

λλλ

λλλ

λλλλ

λλλλ

λλλ

λλλ

λ

λψ
λψ
λψ
λψ
λψ
λψ
λψ

λλλ

λλλλ

λλλ )(

)(

)()()(

)()()(

)()()()(

)()()()(

)()()(

)()()(

)(
)(
)(
)(
)(
)(
)(

H

H

hhHhhHhhH

hhHhhHhhH

hHhHhHhH

hHhHhHhH

HHH

HHH

e
e

eee
eee

eeee
eeee

eee
eee

                  (2.96) 

 

 

From equations (2.34), (2.35) and (2.55) we can write expressions for the 

vertical and radial components of the magnetic field 

2

2
2

z
ki z

∂
∂µω F+FH =                  (2.97) 

and   

zr
i r ∂∂

∂µω FH
2

=                 (2.98) 

 

We then have 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= ∫

∞
− λλλψλλ

µω
λλ d)r(Je)(e

i
C zz

z 0
0

1
2

0
2

0 00H   

for  -H < z <0                (2.99) 
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with  

∫=
π

θθλ
π

λ
0

0
1 d)sinrcos()r(J  

∫ −=
π

θθλθλ
π∂

λ∂

0

0 1 d)sin)(sinrsin(
r

)r(J
 (Abramowitz and Stegun, 1964)  

 

therefore 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −⋅−= ∫ ∫

∞
− λθθλθλ

π
λψλλ

µω
πλλ dd))sin)(sinrsin((e)(e

i
C zz

r
0

0200
100H

 

for -H < z < 0                (2.100) 

 

Although the above expression describes the vertical and radial component 

of the electromagnetic field response for a layered earth perfectly, we still 

face a problem if we want to use these expressions in the formulation of an 

inversion routine. The construction of the Jacobian matrix (see Section 4) 

necessitates the calculation of the partial derivatives of equations (2.99) and 

(2.100) with respect to all the model parameters that needs to be resolved 

through the inversion process. Numerical calculation of the partial 

derivatives is not ideal since numerical inaccuracies in the determination of 

the derivatives will render the inversion process unstable (Huang and Fraser, 

2003). 

 

In Section 3 we will therefore adopt the approach by Ward and Hohmann 

(1988) who defines the electromagnetic field components in terms of a 
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recursive reflection coefficient rTE. This will enable us to determine the 

partial derivatives analytically. 

 

 
 

30 of 89

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd,,  SSmmiitt  JJ  PP  ((22000066)) 



3. FORWARD MATHEMATICAL DESCRIPTION FOR 

DETERMINING THE ELECTROMAGNETIC FIELD RESPONSE 

OF A CONDUCTIVE AND MAGNETICALLY SUSCEPTIBLE 

LAYERED EARTH. 

 

Ward and Hohmann (1988) defines the electromagnetic field components in 

terms of a recursive reflection coefficient rTE which enables one to compute 

the partial derivatives of the field response with respect to the different 

model parameters. Please note the slight change in the reference 

coordinate system from Section 2. The surface of the conductive halfspace 

is situated at z = 0 and the z axis point negative up with its origin at the 

surface. There is also a change in notation from r to ρ (Figure 3.1). This 

ρ must not be mistaken for resistivity since ρ is often used in literature 

for resistivity.  

 

 A general solution for the EM field components above a horizontally 

layered earth for a vertical magnetic dipole in cylindrical coordinates is now 

given by Ward and Hohmann (1988) p. 209: 

∫
∞

−+− −=
0

1
2)()( )()(

4
00 λλρλ

πρ dJereH LzY
TE

LzYM     (3.1) 

and 

∫
∞

−+− +=
0

0
0

3
)()( )()(

4
00 λλρλ

π
dJ

Y
ereH LzY

TE
LzY

z
M    (3.2) 

 

With, 
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Figure 3.1. Reference system for the airborne electromagnetic platform.
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Hρ the radial component of the magnetic field, Hz  the vertical component of 

the magnetic field, M the dipole moment of the transmitter loop with M = 

qIAâ, z the observation position (receiver position) with the origin of the 

coordinate system being on the surface indicating positive down, L the 

height of the source (transmitter), J1 the Bessel function of the first kind of 

order one, J0 the Bessel function of the first kind of order zero, λ the 

integration variable and ρ is the horizontal dipole separation. 

  

rTE  is the reflection coefficient and is given by Ward and Hohmann (1988) 

p. 205: 

'
10

'
10

YY
YYrTE

+

−
=             (3.3) 

)h)ktanh((YY

)h)ktanh((YY
YY

n
/

n
'
nn

n
/

nn
'
n

n
'
n 2122

1

2122
1

++

++
=

+

+

λ

λ
     (3.4) 

 with n =1,2,…..,N-1 for a N layered earth where, 
2122 /

nn )k(Y += λ   

and 

212
0

2
0

/)k(Y += λ         (3.5) 

 

and the wave number for the nth layer is given by 

)i(k nnnn 00
2

0
2 εµµωσµωµ −=       (3.6) 

where hn is the thickness, µn is the magnetic permeability of the nth layer 

divided by µ0 and σn is the conductivity of the nth layer. Furthermore, ω is 
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the angular frequency of the source current and ε0 is the dielectric 

permittivity of free space. 

 

For a quasi-static approximation the wave number becomes 

)i(k nnn σµωµ0
2 =         (3.7) 

At the bottom of the layered earth we have a half-space and hence we can 

write N
'
N YY =  

We can now generate an expression for '
1Y  by making use of the recursive 

relation in equation (3.4). 

   

As for the solution in Section 2, an analytic solution can be found for the 

special case where the transmitter and receiver are situated on the surface of 

the earth. Modern day computing power enables us however to solve the 

equations numerically for the transmitter and receiver in the air. Once the 

model parameters are specified the integral in equations (3.1) and (3.2) can 

be solved. If however the transmitter and receiver are situated on the ground 

equations (3.1) and (3.2) have a slowly divergent and oscillating nature with 

respect to the integration variable λ. A method proposed by Anderson 

(1979) is widely used for the integration of Hankel Transforms and yields a 

rapidly converging result if the function is oscillating and slowly convergent. 

The generality of these equations also implies that the proposed algorithm 

can be applied equally well to either an airborne or a ground based EM 

system. 

 

In order to gain more insight into relative changes that can be expected in 

the observed data for a change in the layered earth model a few standard 
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curves are drawn. It is very useful at this stage to define a model response 

parameter 2/1

01

2
W

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ωµσ

ρ  and a mutual coupling ratio 

( )
( )z

zz

p

ps

0 H

H

Z
Z +

= (Frischknecht, 1967). The dimensionless property of W 

enables us to compile a set of standard curves to use for our system under 

consideration.    

 

For the specific case of a co-planar system situated above a homogeneous 

earth the curves in Figure 3.2a can be generated if the magnetic 

susceptibility of the halfspace is equal to that of free-space. X is defined as 

2/1

01

2

z
X

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
=

ωµσ

L
 and hence 

ρ
L2

W
X

= for a co-planar system. For a fixed 

dipole separation the response is therefore effectively calculated for different 

heights of the co-planar dipole above the surface of a homogeneous 

halfspace. These curves are identical to those generated by Frischknecht 

(1967) (Figure 3.2b). Frischknecht however used slightly different symbols 

where X = A, W = B, x = k and D = D. 

 

Figure 3.3 depicts the FDEM response over a two-layered earth. 

21

01

1

2

2D /
h

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ωµσ

 with 1h the thickness of the first layer and 
ρ

12
W
D h

= . We 
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Figure 3.2a.FDEM response for a vertical magnetic dipole coplanar system above a homogeneous halfspace for different values of X/W.
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Figure 3.2b. Curves generated by Frischknecht (1967) shown to validate the curves in Figure 3.2a. Please note that A = X and B = W
(from Frischknecht 1967).
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also define x as the ratio 
1

2
σ
σ

. If X/W and D/W are kept constant we can 

change x and observe the change in the FDEM response at the receiver due 

to a change in subsurface conductivity distribution.   

 

Figure 3.4 and Figure 3.5 uses the system geometry as shown in Figure 3.1. 

The transmitter is at a fixed height of 100m. The receiver is towed in a bird 

30m behind and 50m below the aircraft. In Figure 3.4 X/W and x are kept 

constant. If ρ is also constant a change in D/W implies a change in the 

thickness of the first layer. Figure 3.4 then indicates the variation in the 

observed FDEM response for a given change in the thickness of the first 

layer of a two-layered model.    

  

In Figure 3.5 the thickness of the first layer is fixed at 20m and that of the 

second layer at 10m. Five models, each with a different conductivity 

distribution, are being considered. From the curves it is obvious that a 

conductive second layer situated within a resistive host rock can be much 

better resolved than a resistive second layer situated in a conductive host 

rock.    
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Figure 3.3. FDEM response for a vertical magnetic dipole coplanar system above a two-layer earth for different values of x. X/W =
0.5 and D/W = 0.75.

FDEM response for a  vertical magnetic dipole coplanar system above a two-layer 
earth for different values of x. X/W = 0.5 and D/W = 0.75.  
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Figure 3.4. Vertical component of the FDEM response for two-layer models with varying
first layer thickness.

Vertical component of the FDEM response for two - layer models with varying first layer 
thickness. The Tx is situated 100m above the ground and the receiver 50m with ρρρρ  = 30m. 
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4. INVERSION METHODOLOGY 
 
4.1. DAMPED LEAST SQUARES INVERSION  

 

A data vector d and a model parameter vector p can be defined where d = 

[d1,d2,…,dN]T for N observations and p = [p1,p2,….,pM]T for M model 

parameters. The measured data can now be related to the model parameters 

by: 

di = Fi(p), i = 1,2,…,N.         (4.1) 

 

Since Fi(p) is a highly non-linear function we expand Fi(p) in a Taylor series 

around an initial model parameter vector p0 for the first iteration and neglect 

higher order terms (Lines and Treitel, 1984). Equation (4.1) then becomes 

∑
=

−
∂

∂
=−

M

j
jj

j

i
ii )pp(

p
)(F)dd(

1

0
0

0 p       (4.2) 

where the vector d0 is the system response due to the initial model parameter 

vector p0. 

The error between the observed and calculated data is given as 

e = d – F(p)          (4.3) 

and 

pJd ∆∆ =           (4.4) 

J is an NxM matrix called the Jacobian partial derivative matrix and is given 

by 

k

i
ik p

F
j

∂
∂

= , i = 1,2,…N and k = 1,2,…,M.     (4.5) 

If we minimize the cumulative least square error relative to the parameter 

change vector we obtain   
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dJJ)Jp T1-T ∆∆ (=         (4.6)  

Next we apply singular value decomposition (SVD) to J, so we can write 
TVUJ Λ= where U is an NxM data eigenvector matrix, V is an MxM 

parameter eigenvector matrix, and Λ  is an MxM diagonal matrix with 

elements λk also known as singular values. A new expression for the 

parameter change vector can now be obtained   

dUVp T1- ∆Λ∆ =          (4.7) 

If 1/ λk becomes too large, numerical instability becomes a problem. 

Marquardt (1963) employed a damping factor β  to stabilize the inversion. 

With Marquardt’s damping factor equation (4.7) reduces to 

dUI)(Vp T1-2 ∆ΛΛ∆ β+=        (4.8)  

A large damping factor would apply more constraint to a solution and give 

poor resolution of the parameters. A small damping factor may create 

instability in the inversion. Another problem is that all the parameters are not 

equally resolvable hence the need arises for a spatially variable damping 

factor that assigns a damping factor to each parameter based on its 

resolvability and updates the factors after each iteration. A method that 

addresses this problem is called active constrained balancing (ACB) and is 

described by Yi et al. (2003). 

 

An updated model parameter vector after j iterations is now given by            

pj = pj-1+∆p. The error will be minimized in a least squares sense until an 

acceptable fit to the data vector is obtained.    
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All the parameters that we need to invert for are contained in the reflection 

coefficient. Determining the partial derivatives needed to construct the 

Jacobian matrix thus simply entail determining the partial derivatives of the 

reflection coefficient with respect to every model parameter. Following 

Huang and Fraser (2003) the partial derivatives are solved analytically using 

the chain rule.  
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 and for the specific case of a three layered earth we have 
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for parameters in the last, second and first layer respectively and from 

equation (3.4), 
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The partial derivatives of the AEM response with respect to model 

parameters can now be calculated but since AEM data and model parameters 

vary over several orders of magnitude, data and model parameters have to be 

re-scaled to loge di and loge pk (Jupp and Vozoff, 1975). By applying a 

logarithmic re-scaling of model parameters one also introduces a natural 

positivity constraint on the solution which then circumvents any meaningless 
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negative results in either layer thickness or layer conductivities. The new 

model parameter vector is defined as x = [ln(p1), ln(p2), …., ln(pM)]T and the 

Jacobian is given by: 

k

i
k

k

i

k

i
ki p

F
p

p
F

x
F

∂
∂

⋅=
∂

∂
=

∂
∂

=
ln,J  for i = 1,2,…N and k = 1,2,…,M. (4.12) 

 

Analysis of the partial derivatives can yield valuable information about the 

resolvability of parameters during inversion. Relative high amplitudes would 

indicate that a small change in the parameter would result in a large variation 

in measured data. Relative low amplitudes would indicate that the parameter 

is poorly resolved and an accurate parameter determination would become 

difficult. Analysis of partial derivatives is also of practical importance to the 

interpretation of airborne Time Domain EM data. TDEM data does not have 

the problem of an intrinsic lack of frequencies which is the case for a FDEM 

system where one is limited by the system design to a few frequencies. By 

analyzing the partial derivatives for the different parameters along the 

frequency spectrum one can get a good idea where variation in the observed 

data could be expected for a certain change in model parameters. 

Consequently, the algorithm can be fine tuned by selecting only those 

frequencies that will optimize the resolving power of the inversion process. 

An alternative to evaluating the partial derivatives would be to investigate 
TVUJ Λ=  further. Here, parameters associated with large singular values 

(λk) are best determined while parameters associated with small singular 

values are poorly resolved. 
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The starting model for an inversion can usually be generated with an 

imaging algorithm as described in Section 1. Using the initial parameters 

from the starting model the secondary frequency domain response associated 

with the initial model is calculated. After each inversion the misfit between 

the measured data and the model response is calculated. As soon as the 

misfit is acceptable the new physical model is used as starter model for the 

next sounding.  

 

4.2. INVERSION OF NOISE-FREE SYNTHETIC DATA. 

 

The synthetic model chosen for the implementation of the three-layer 

inversion algorithm is that of a typical palaeo-channel associated with 

alluvial diamond deposits (Figure 4.1). Using a three-layer forward 

algorithm based on equation (3.2) the electromagnetic response was 

determined for a coplanar system with a dipole separation of 10m and a 

ground clearance of 40m above the physical model.  

The misfit is defined as  
N

Fd
N

i
ii∑

=
−

1

2))(( p
. In this section the z component of 

the secondary induced magnetic field response plus the z component of the 

primary magnetic field is normalized with the z component of the primary 

magnetic field. The misfit is then given in (parts)2. 

 

The starting model for every station along the profile is kept the same in 

Figures 4.2b - 4.2f to showcase the robustness of the technique if no 

information is available on the subsurface geology. The process is stopped 
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after 5 iterations when the initial physical model is almost completely 

recovered.   

 

Figure 4.3 is produced by implementing a more practical approach. The 

starting model for the first station, which in practice can be obtained through 

borehole information or a conductivity depth transform of the field data, is: 

h1 = 4 m, σ1 = 0.004 S/m, h2 = 10 m, σ2 = 0.06 S/m and σ3 = 0.0025 S/m.  

 

The inversion process for all stations stop as soon as the misfit falls below 

1·10-14 (parts)2. When this criteria is met at the first station the model 

obtained is transferred to the next station. This model is then used as the new 

starting model for the second station. Initially, at the first few stations, the 

number of iterations required to obtain an acceptable misfit is quite high but 

the number of iterations soon decrease. The amount of iterations needed to 

successfully map the conductivity structure of the central part of the data 

segment therefore decreases from (5-6) to (2-3). The number of iterations 

again increase close to the edge of the data segment since the frequencies 

selected in generating the synthetic data was kept constant throughout the 

data segment. These frequencies however are not optimal in resolving the 

given model parameters close to the edge of the data segment and in practice 

these optimal frequencies can be selected from the raw field data for every 

station before an inversion is attempted, if this is practical.   

 

4.3. INVERSION OF NOISY SYNTHETIC DATA. 

 

A percentage of noise was added to the chosen frequencies to simulate either 

noise or effects that could be attributed to three-dimensional structures. The 
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variation at each frequency along the profile is shown in Figure 4.4a. The 

cumulative effect over all five frequencies constitutes a noise level of 8-

10%. The same methodology is followed as in Figure 4.3 where the starting 

model is taken from the previous station. Due to the noise levels in the data 

the minimum misfit requirement was not met and the maximum amount of 

iterations (5) were applied at all stations. The inversion results are shown in 

Figure 4.4b. 

 

Appendix A contains the "Mathcad" code that was developed for the 

implementation of a two-layer damped least-squares inversion algorithm. 

The algorithm is constructed to invert single stations for a given starting 

model.  

 

Synthetic data from a publication by Huang and Fraser (1996) p. 108  is used 

as input for the program. The model is a 2-layered earth where h1 = 10m, σ1 

= 0.02 S/m and σ2 = 0.001 S/m. The ppm amplitudes from Huang and Fraser 

(1996) must be multiplied by 2 before the inversion. This is because they 

normalized their secondary magnetic field with respect to the x-component 

of the primary field and the mathematics in this algorithm assumes 

normalization with respect to the z-component. 

 

The response is calculated from the model at the three specified frequencies 

of 57600 Hz, 14400 Hz and 1800 Hz and is 1423 ppm, 894.6 ppm and 160.4 

ppm consecutively. Using a starting model where η1 = 5µ, σ1 = 0.05 S/m and  

σ2 S/m = 0.005 the true model is almost completely recovered after just 6 

iterations. 
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5. CASE STUDY 

 

A DIGHEM V survey was conducted by the University of Pretoria (funded 

by Fugro Airborne Surveys and the WRC) over the Nebo granites in the 

Limpopo Province to assess the groundwater potential of the area. The area 

has been covered simultaneously with airborne magnetics (Figure 5.1). The 

magnetic data was mainly used in identifying borehole locations for 

groundwater extraction.  

 

Application of the layered earth algorithm on the airborne EM data can 

identify whether areas adjacent to linear features, as identified on the 

magnetic data set, do exhibit positive conductivity anomalies which would 

indicate conditions possibly favorable to the presence of groundwater. 

Further, it is important to know the depth to solid granitic bedrock in order 

to decide on the best possible location for a borehole. If a borehole is drilled 

in solid unweathered granite, which has a very low permeability, poor yield 

can be expected with little recharge. 

  

For the DIGHEM V data, the maximum amount of parameters that one can 

expect to recover are 3 namely, the thickness of the first layer and the 

conductivity of the first and second layers. This limitation stems from the 

fact that only three co-planar frequencies are available with the DIGHEM V 

system. Because of the sparse frequency distribution a conductivity depth 

transform was not attempted since this would only have resulted in three 

discreet conductivity values as a function of depth. The approach that was 

followed was to introduce a control point every 30 stations. At every control 

point a halfspace model was obtained with an iterative least squares 
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Figure 5.1.  Airborne geophysical coverage of the Ga-Masemola area. Developed algorithms have been tested on the DIGHEM 
V  data collected over Area A and along line L116700.  
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inversion procedure to resemble the observed field data the best. The 

halfspace conductivity (σh) was then used as starting model for both layers 

and the thickness of the first layer was set at 25m. 

 

The model that was then selected as the solution for the control point was 

the model that yielded the minimum misfit after 4 iterations. The solution at 

the control point was subsequently used as starting model for the next 29 

stations.  

 

It is very important to note that for the DIGHEM V system the coil 

separations for the different frequencies are not the same and that the 

secondary field is normalized with respect to the x component of the primary 

field. If it is assumed that the secondary magnetic field as observed in the 

coplanar coils is normalized with respect to the z component of the primary 

field, erroneously resistivities will be obtained after inversion. The following 

table therefore has to be used to prepare the data prior to inversion: 

Table 1: Scale factors for different FDEM systems (from ©ENCOM 

(Emflow) online help files)  
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Example 1: 

  

Based on the work by Botha et al. (2001) maximum yields for the area under 

investigation occur in fractured zones in the granite. A northeast striking 

fracture/fault zone in the granite can be identified on the airborne magnetic 

data transecting Area A (Figure 5.1). Based on ground follow-up magnetic 

and EM work Borehole H06-1046 was staked and yielded 3 l/s which is 

above average for this area.  

 

The most adjacent DIGHEM V line to this borehole was processed with the 

layered earth algorithm. The electromagnetic response for the three co-

planar frequencies along line L116700 can be seen in Figure 5.2a. The 

response calculated from the inverted layered earth model has a very close 

resemblance to the field data. The physical model obtained after inversion 

(Figure 5.2b) indicates that the borehole was located at the optimum position 

along this line. Please note that layer 1 and 2 have different resistivity colour 

bars. This area of localized deeper weathering and relative more conductive 

second layer coincides with the fracture zone as seen from the magnetic 

data. The relative more conductive bedrock associated with this fracture 

zone is presumed to indicate the presence of moisture while the localized 

deeper weathering of the first layer would improve recharge.  

 

Drilling results indicated that the deepest water strike was at 20m. The fact 

that the layered earth inversion algorithm yielded a first layer depth of 30m 

could be attributed to the presence of a vertical conductivity structure 

(probably the fracture zone), to the presence of moisture deeper than the 
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Figure 5.2a. The calculated and observed EM response along line L116700.

DIFGHEM V profile along line L116700. The response calculated from the inverted 2-layer model is 
shown  as thin dashed lines. The field data is displayed as solid lines.
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Figure 5.2b. Physical model obtained along line L117600 with the position of borehole H06-1046 shown.
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deepest water strike or to a combination thereof.  Area A has been 

deliberately selected for the layered earth inversion routine due to the 

absence of prominent dike structures visible on the magnetic map. 

 

Although the borehole position was optimal along line L116700 we can now 

investigate the area surrounding this position to establish if similar or better 

prospects exist. Further, by having a 2 dimensional model one can get an 

idea of the structural influences on groundwater movement. 

 

Example 2: 

 

Area A was subsequently processed with the layered earth algorithm. Three 

figures were prepared from the inversion results. Figure 5.3a shows the 

depth to bedrock (i.e. the depth at which a significant resistivity contrast 

occurs between the first and the second layer). Figure 5.3b consists of the 

first layer resistivity contour map draped over the "bedrock" relief. In Figure 

5.3c the second layer resistivity contour map is draped over the "bedrock" 

relief.  

 

The location of borehole H 06-1046 is shown in Figure 5.3a. It is apparent 

that the borehole is located in relative thick overburden. The thick 

overburden at this location forms part of a trough extending in a SE-NW 

direction. Although a relative thick overburden is implied by the results, 

high second layer resistivities in the northern and southeastern part of this 

trough does not present a very good prospect for groundwater reserves. A 

localized deeply weather zone situated at X 72300, Y -273100 presents a 

much better prospect. Relative high conductivities in the second layer 
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implies the presence of moisture which is necessary for recharging the 

localized aquiver. 

 

Detecting the optimum location for a borehole in a region where highly 

variable geohydrological conditions exists necessitates detailed 

investigation. The detailed processing of airborne EM data prior to 

undertaking a ground follow-up will ensure the identification and 

demarcation of all viable targets for further investigation. 
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Figure 5.3a. Depth to bedrock map derived from the DIGHEM V data for Area A (Location shown in Figure 5.1). 
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Figure 5.3b. Overburden resistivity distribution draped over the depth to bedrock relief.  
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Figure 5.3c. Second layer conductivity distribution draped over the depth to bedrock relief. 
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6. CONCLUSIONS   

 

Although imaging methods provide a fast approximate image of subsurface 

conductivity distribution, faster PC's have made the automatic full 1D non-

linear damped least-squares inversion of field data possible.  

 

Approximate inversion techniques developed by Sengpiel (1988) and Huang 

and Fraser (1996) among others have proved to be very useful in obtaining 

an image of subsurface conductivity distribution, in a relative short time. 

The main shortcoming of these techniques however is that one can only 

obtain as many values of conductivity versus depth as there are frequencies 

present in the data.  

 

Processing DIGHEM V data implies that one only has three co-planar 

frequencies available. In order to recover as much information as possible 

from the data we need to minimize the error between the field data and the 

calculated model response in a least squares sense. Analysis of the partial 

derivatives used in constructing the Jacobian matrix can provide good 

indication on the resolvability of physical parameters for the frequencies 

specific to a platform. Having a good idea of resolvability enables one to 

have a more realistic view on what output can be expected from the 

inversion process.    

 

The algorithms tested on the DIGHEM V data have proved to work very 

well in resolving three parameters namely: depth to bedrock, overburden 

resistivity and bedrock resistivity. 
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Equivalence and ambiguity always plays a role in automatic geophysical 

interpretations. The Council for Geoscience have an in-house developed 3D 

compact volume joint inversion package for magnetic and gravity data. 

Future development can focus on incorporating the developed algorithms 

into this routine to yield a compact volume joint inversion of magnetics, 

gravity and electromagnetics. 
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Program inverting for a 2-layered earth ( h1, σ1, σ2 ) using damped least squares inversion with SVD. The program
uses (Hs/Hp) where Hs is the z component of the secondary induced magnetic field detected by the EM receiver above the 
horisontally layered earth and Hp is the z component of the primary field. The program can accomodate any system geometry
(i.e. height of Tx, height of Rx, dipole separation). This program is constructed to invert observations at a single location to a 
2-layer earth. Synthetic data from Huang and Fraser (1996) is used to test the algorithm.

µ0 4π 10 7−⋅:=

k0 0:=

Forward calculation starts here
************************************

k1 σ1 ω,( ) i ω⋅ µ0⋅ σ1⋅( )
1

2
:=

k2 σ2 ω,( ) i ω⋅ µ0⋅ σ2⋅( )
1

2
:=

Y2 σ2 ω, λ,( ) λ
2

k2 σ2 ω,( )2+( )
1

2
:=

Y'2 σ2 ω, λ,( ) λ
2

k2 σ2 ω,( )2+( )
1

2
:=
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Y1 σ1 ω, λ,( ) λ
2

k1 σ1 ω,( )2+( )
1

2
:=

Y'1 h1 σ1, σ2, ω, λ,( ) Y1 σ1 ω, λ,( ) Y'2 σ2 ω, λ,( ) Y1 σ1 ω, λ,( ) tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅







⋅+

Y1 σ1 ω, λ,( ) Y'2 σ2 ω, λ,( ) tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅







⋅+

















⋅:=

Y0 ω λ,( ) λ
2

k02+( )
1

2
:=

rTE3 h1 σ1, σ2, ω, λ,( ) Y0 ω λ,( ) Y'1 h1 σ1, σ2, ω, λ,( )−( )
Y0 ω λ,( ) Y'1 h1 σ1, σ2, ω, λ,( )+( ):=

IntFunc h1 ρ, z, H, σ1, σ2, ω, λ,( ) rTE3 h1 σ1, σ2, ω, λ,( )( ) eY0 ω λ,( ) z H−( )⋅⋅
λ

3

Y0 ω λ,( )⋅ J0 λ ρ⋅( )⋅:=

Forward calculation stops here
************************************
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Calculation of partial derivatives starts here
*********************************************************************************************

First we calculate partial derivatives with respect to parameters in the first layer.

The only parameters that we need to consider is σ1 and h1

First we consider h1

Y'1 h1 σ1, σ2, ω, λ,( ) Y1 σ1 ω, λ,( ) Y'2 σ2 ω, λ,( ) Y1 σ1 ω, λ,( ) tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅







⋅+

Y1 σ1 ω, λ,( ) Y'2 σ2 ω, λ,( ) tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅







⋅+

















⋅:=

A1 h1 σ1, σ2, ω, λ,( ) Y1 σ1 ω, λ,( ) 1 tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅









2

−









⋅ λ

2
k1 σ1 ω,( )2+( )

1

2
⋅:=

B1 h1 σ1, σ2, ω, λ,( ) Y1 σ1 ω, λ,( ) Y'2 σ2 ω, λ,( ) tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅







⋅+:=

C1 h1 σ1, σ2, ω, λ,( ) Y'2 σ2 ω, λ,( ) 1 tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅









2

−









⋅ λ

2
k1 σ1 ω,( )2+( )

1

2
⋅:=

D1 h1 σ1, σ2, ω, λ,( ) Y'2 σ2 ω, λ,( ) Y1 σ1 ω, λ,( ) tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅







⋅+:=
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dY'1dh1 h1 σ1, σ2, ω, λ,( ) Y1 σ1 ω, λ,( ) A1 h1 σ1, σ2, ω, λ,( ) B1 h1 σ1, σ2, ω, λ,( )⋅ D1 h1 σ1, σ2, ω, λ,( ) C1 h1 σ1, σ2, ω, λ,( )⋅−

B1 h1 σ1, σ2, ω, λ,( )2








⋅:=

drTEdh1 h1 σ1, σ2, ω, λ,( ) 2− Y0 ω λ,( )⋅

Y0 ω λ,( ) Y'1 h1 σ1, σ2, ω, λ,( )+( )2
dY'1dh1 h1 σ1, σ2, ω, λ,( )⋅:=

IntFunc1 h1 ρ, z, H, σ1, σ2, ω, λ,( ) drTEdh1 h1 σ1, σ2, ω, λ,( )( ) eY0 ω λ,( ) z H−( )⋅⋅
λ

3

Y0 ω λ,( )⋅ J0 λ ρ⋅( )⋅:=

Next we consider σ1

Y'1 h1 σ1, σ2, ω, λ,( ) Y1 σ1 ω, λ,( ) Y'2 σ2 ω, λ,( ) Y1 σ1 ω, λ,( ) tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅







⋅+

Y1 σ1 ω, λ,( ) Y'2 σ2 ω, λ,( ) tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅







⋅+

















⋅:=

dY1dσ1 σ1 ω, λ,( ) 1
2
λ

2
i ω⋅ µ0⋅ σ1⋅+( ) 0.5−

i ω⋅ µ0⋅( )⋅:=

A2 h1 σ1, σ2, ω, λ,( ) 1 tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅









2

−









 h1⋅ dY1dσ1 σ1 ω, λ,( )⋅:=
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B2 h1 σ1, σ2, ω, λ,( ) Y1 σ1 ω, λ,( ) A2 h1 σ1, σ2, ω, λ,( )⋅ dY1dσ1 σ1 ω, λ,( ) tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅







⋅+:=

C2 h1 σ1, σ2, ω, λ,( ) dY1dσ1 σ1 ω, λ,( ) Y'2 σ2 ω, λ,( ) A2 h1 σ1, σ2, ω, λ,( )⋅+:=

D2 h1 σ1, σ2, ω, λ,( ) Y'2 σ2 ω, λ,( ) Y1 σ1 ω, λ,( ) tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅







⋅+:=

E2 h1 σ1, σ2, ω, λ,( ) Y1 σ1 ω, λ,( ) Y'2 σ2 ω, λ,( ) tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅







⋅+:=

F2 h1 σ1, σ2, ω, λ,( ) B2 h1 σ1, σ2, ω, λ,( ) E2 h1 σ1, σ2, ω, λ,( )⋅ D2 h1 σ1, σ2, ω, λ,( ) C2 h1 σ1, σ2, ω, λ,( )⋅−

E2 h1 σ1, σ2, ω, λ,( )2
:=

dY'1dσ1 h1 σ1, σ2, ω, λ,( ) Y1 σ1 ω, λ,( ) F2 h1 σ1, σ2, ω, λ,( )⋅ dY1dσ1 σ1 ω, λ,( ) D2 h1 σ1, σ2, ω, λ,( )
E2 h1 σ1, σ2, ω, λ,( )⋅+:=

drTEdσ1 h1 σ1, σ2, ω, λ,( ) 2− Y0 ω λ,( )⋅

Y0 ω λ,( ) Y'1 h1 σ1, σ2, ω, λ,( )+( )2
dY'1dσ1 h1 σ1, σ2, ω, λ,( )⋅:=

IntFunc2 h1 ρ, z, H, σ1, σ2, ω, λ,( ) drTEdσ1 h1 σ1, σ2, ω, λ,( )( ) eY0 ω λ,( ) z H−( )⋅⋅
λ

3

Y0 ω λ,( )⋅ J0 λ ρ⋅( )⋅:=
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We now determine the partial derivatives for the only resolvable parameter in the second layer 
namely σ2

Y'2 σ2 ω, λ,( ) λ
2

k2 σ2 ω,( )2+( )
1

2
:=

dY'2dσ2 σ2 ω, λ,( ) 1
2
λ

2
i ω⋅ µ0⋅ σ2⋅+( )

1−
1

2
⋅

i ω⋅ µ0⋅( )⋅:=

Y'1Y'2 h1 σ1, σ2, ω, λ,( ) Y1 σ1 ω, λ,( )( )2 1 tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅









2

−









⋅

Y1 σ1 ω, λ,( ) Y'2 σ2 ω, λ,( ) tanh λ
2

k1 σ1 ω,( )2+( )
1

2
h1⋅







⋅+









2
:=

drTEdσ2 h1 σ1, σ2, ω, λ,( ) 2− Y0 ω λ,( )⋅

Y0 ω λ,( ) Y'1 h1 σ1, σ2, ω, λ,( )+( )2
Y'1Y'2 h1 σ1, σ2, ω, λ,( ) dY'2dσ2 σ2 ω, λ,( )⋅( )⋅:=

IntFunc3 h1 ρ, z, H, σ1, σ2, ω, λ,( ) drTEdσ2 h1 σ1, σ2, ω, λ,( )( ) eY0 ω λ,( ) z H−( )⋅⋅
λ

3

Y0 ω λ,( )⋅ J0 λ ρ⋅( )⋅:=

Calculation of partial derivatives stops here

*******************************************************************************************
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The z component of the primary field is given by 
*******************************************

zz z H,( ) 1− H z+( )⋅:=

Hp z H, ρ,( ) 2 zz z H,( )( )2⋅ ρ
2

−

ρ
2

zz z H,( )( )2
+ 

5

2

:=

The forward calculation is now given by
*********************************************

Hs h1 ρ, z, H, σ1, σ2, ω,( )
0

0.3
λIntFunc h1 ρ, z, H, σ1, σ2, ω, λ,( )⌠


⌡

d:=

ZZ0 h1 ρ, z, H, σ1, σ2, ω,( ) Hs h1 ρ, z, H, σ1, σ2, ω,( )
Hp z H, ρ,( ):=

The partial derivatives are given by 
*****************************************************

dHsdh1 h1 ρ, z, H, σ1, σ2, ω,( )
0

0.3
λIntFunc1 h1 ρ, z, H, σ1, σ2, ω, λ,( )⌠


⌡

d:=

dZZ0dh1 h1 ρ, z, H, σ1, σ2, ω,( ) dHsdh1 h1 ρ, z, H, σ1, σ2, ω,( )
Hp z H, ρ,( ):=
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dHsdσ1 h1 ρ, z, H, σ1, σ2, ω,( )
0

0.3
λIntFunc2 h1 ρ, z, H, σ1, σ2, ω, λ,( )⌠


⌡

d:=

dZZ0dσ1 h1 ρ, z, H, σ1, σ2, ω,( ) dHsdσ1 h1 ρ, z, H, σ1, σ2, ω,( )
Hp z H, ρ,( ):=

dHsdσ2 h1 ρ, z, H, σ1, σ2, ω,( )
0

0.3
λIntFunc3 h1 ρ, z, H, σ1, σ2, ω, λ,( )⌠


⌡

d:=

dZZ0dσ2 h1 ρ, z, H, σ1, σ2, ω,( ) dHsdσ2 h1 ρ, z, H, σ1, σ2, ω,( )
Hp z H, ρ,( ):=

**************************************************
System specs

H 30:=

z 30−:=

ρ1 8:=

ρ2 8:=

****************************************************

Frequencies where field observations are made
f

57600

14400

1800











:=
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ω1 2 π⋅ f0⋅:=

ω2 2 π⋅ f1⋅:=

ω3 2 π⋅ f2⋅:=

The synthetic model is a 2-layer model. The ppm amplitudes from Huang and Fraser (1996) must be
multiplied by 2 before the inversion. This is because they normalized their secondary magnetic field with 
respect to the x component of the primary field and the mathematics in this algorithm assumes 
normalization with respect to the z component.

Synthetic data that is observed when h1 = 10m, σ1 = 0.02 S/m and  
σ2 S/m = 0.001.dobsv

1423

894.6

160.4











:=

we can now construct the Jacobian matrix 
*************************************************

J h1 σ1, σ2,( )
h1 Im dZZ0dh1 h1 ρ1, z, H, σ1, σ2, ω1,( )( )⋅

h1 Im dZZ0dh1 h1 ρ1, z, H, σ1, σ2, ω2,( )( )⋅

h1 Im dZZ0dh1 h1 ρ2, z, H, σ1, σ2, ω3,( )( )⋅

σ1 Im dZZ0dσ1 h1 ρ1, z, H, σ1, σ2, ω1,( )( )⋅

σ1 Im dZZ0dσ1 h1 ρ1, z, H, σ1, σ2, ω2,( )( )⋅

σ1 Im dZZ0dσ1 h1 ρ2, z, H, σ1, σ2, ω3,( )( )⋅

σ2 Im dZZ0dσ2 h1 ρ1, z, H, σ1, σ2, ω1,( )( )⋅

σ2 Im dZZ0dσ2 h1 ρ1, z, H, σ1, σ2, ω2,( )( )⋅

σ2 Im dZZ0dσ2 h1 ρ2, z, H, σ1, σ2, ω3,( )( )⋅











:=
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Ftest h1 σ1, σ2,( )
Im ZZ0 h1 ρ1, z, H, σ1, σ2, ω1,( )( )
Im ZZ0 h1 ρ1, z, H, σ1, σ2, ω2,( )( )
Im ZZ0 h1 ρ2, z, H, σ1, σ2, ω3,( )( )











1000000⋅:=F h1 σ1, σ2,( )
Im ZZ0 h1 ρ1, z, H, σ1, σ2, ω1,( )( )
Im ZZ0 h1 ρ1, z, H, σ1, σ2, ω2,( )( )
Im ZZ0 h1 ρ2, z, H, σ1, σ2, ω3,( )( )











:=

Ftest 10 0.02, 0.001,( )
1.422977 103

×

894.662186

160.504036









=

We now assume that d is the observed data vector and we try to obtain the model parameter vector. 
We therefore have to guess an in initial parameter vector p0

p0

5

0.05

0.005











:= With the begin parameters h1,σ1,σ2 respectively

x0 ln p0( ):=

h1 e
x00:=

σ1 e
x01:=

σ2 e
x02:=
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Par r stations,( )

x x0←

h1 e
x00←

σ1 e
x01←

σ2 e
x02←

dt

dobsvt w,
1000000

←

t 0 2..∈for

sum 0←

sum1 1←

sum2 1←

βnn 0←

erg d F h1 σ1, σ2,( )−( )2←

er1g erg0←

er2g erg1←

er3g erg2←

Misfitg
er1g er2g+ er3g+

3
←

Model0 0, 0←

Model0 1, h1←

Model0 2, σ1←

w 0 stations..∈for:=
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Model0 3, σ2←

Model0 4, Misfitg←

n rows J h1 σ1, σ2,( )( )←

p cols J h1 σ1, σ2,( )( )←

SVD svd J h1 σ1, σ2,( )( )←

s svds J h1 σ1, σ2,( )( )←

Λ diag s( )←

U submatrix SVD 0, n 1−, 0, p 1−,( )←

V submatrix SVD n, n p+ 1−, 0, p 1−,( )←

I identity p( )←

deld d F h1 σ1, σ2,( )−←

βn 1 10 M 0.5⋅ 13−( )⋅←

delp V Λ
2
βn I⋅+( ) 1−

⋅ Λ⋅ U( )( )T⋅ deld⋅←

xn x delp+←

h1n e
xn0←

σ1n e
xn1←

σ2n e
xn2←

er d F h1n σ1n, σ2n,( )−( )2←

er1 er0←

er2 er1←

M 1 10..∈for

i 0 r..∈for
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er3 er2←

Misfitn
er1 er2+ er3+

n
←

sum1 Misfitn← Misfitn sum1<if

βnn βn← Misfitn sum1=if

β βnn←

delp V Λ
2
β I⋅+( ) 1−

⋅ Λ⋅ U( )( )[ ]T⋅ deld⋅←

x x delp+←

h1 e
x0←

σ1 e
x1←

σ2 e
x2←

er d F h1 σ1, σ2,( )−( )2←

er1 er0←

er2 er1←

er3 er2←

Misfit
er1 er2+ er3+

n
←

Modeli 1+ 0, i 1+←

Modeli 1+ 1, h1←

Modeli 1+ 2, σ1←

Modeli 1+ 3, σ2←
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Modeli 1+ 4, Misfit←

sum sum 1+←

Modeli 1+ 1, Modeli 1,← Modeli 1+ 4, Modeli 4,>if

Modeli 1+ 2, Modeli 2,← Modeli 1+ 4, Modeli 4,>if

Modeli 1+ 3, Modeli 3,← Modeli 1+ 4, Modeli 4,>if

Modeli 1+ 4, Modeli 4,← Modeli 1+ 4, Modeli 4,>if

break Modeli 1+ 4, 1 10 14−⋅<if

Model

Par(r,stations) outputs a matrix with the different columns containing inversion results for diffirent parameters The first row  contains the
starting model while the second row contains the inversion results after the first iteration etc.. The first column contains the number of 
iterations. The inversion process stops when the Misfit < 1*10E-14 (parts of primary field)^2 or when iterations = r. The Misfit after each 
iteration can be seen in the last column. 

Par 5 0,( )

0

1

2

3

4

5

6

5

7.016921

7.445276

8.162391

9.12883

9.657995

9.908012

0.05

0.023415

0.022065

0.021468

0.02062

0.02023

0.020058

5 10 3−×

6.094996 10 3−×

3.622749 10 3−×

2.772723 10 3−×

1.951741 10 3−×

1.395182 10 3−×

1.110837 10 3−×

3.690266 10 8−×

1.998194 10 9−×

1.590968 10 10−×

6.459101 10 11−×

3.062416 10 11−×

7.288085 10 12−×

7.567034 10 13−×





























=
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