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Summary

The equation of motion for the flows of incompressible Newtonian fluids (Navier
Stokes equations) under no-slip boundary conditions have been studied deeply
from many perspectives. The questions of existence and uniqueness of both
classical and weak solutions have received more than a fair share of attention. In
this study the same problem for non-Newtonian fluids of second grade has been
studied from the point of view of weak solutions and classical solutions for non-
homogeneous boundary data, i.e., dynamical boundary conditions in regions with
permeable boundaries. We consider the situation where a container is immersed
in a larger fluid body and the boundary admits fluid particles moving across it
in the direction of the normal.

In this study we give alternative approaches through formulations of ‘dynam-
ics at the boundary’, the idea being that the normal component of velocity at the
boundary is viewed as an unknown function which satisfies a differential equation
intricately coupled to the flow in the region ‘enclosed’ by the boundary.

We describe two mathematical models denoted by Problem P, and Problem
P, . These models lead to dynamics at a permeable boundary, and a kinematical
boundary condition for normal flow through the boundary. These conditions take
into account the curvature of the boundary which enforces certain stresses. We
then show with the help of the energy method that for fluids of second grade, the
dynamics at the boundary and the boundary condition lead to conditional sta-
bility of the rest state for Problem P, and Problem P,. We also prove uniqueness
of classical solutions for the two models. The existence of a weak solution for
this system of evolution equations is proved only for Problem P> with the help of
the Faedo-Galerkin method with a special basis. In this case the special basis is
formed by eigenfunctions.

The existence proof of at least one classical solution, local in time is established
by means of a version of the Fixed-point Theorem of Bohnenblust and Karlin,
and the Ascoli-Arzela Theorem.
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Opsomming

Die bewegingsvergelyking vir nie-saamdrukbare vloei vir Newtoniese vloeistowwe
onder geen-glyding randvoorwaardes is al vele kere bestudeer. Die vrae oor
bestaan en eenduidigheid van beide klassieke en swak oplossings het al baie
aandag gekry. In hierdie werk word dieselfde probleem vir nie-Newtoniese vloeis-
towwe van graad twee met nie-homogene randdata, d.i. dinamiese randvoor-
waardes in gebiede met deurlaatbare randte, aangespreek. Ons beskou die geval
waar ’n liggaam in 'n groter liggaam vol vloeistof gedompel is, waarvan die rand
vloeistof deurlaat in die rigting van die normaal.

Ons gee 'n alternatiewe benadering deur die formulering van 'n dinamiese
randvoorwaarde waarvan die normaalkomponent van die snelheid by die rand as
die onbekende beskou word wat hierdie differensiaalvergelyking bevredig. Ons
beskryf wiskundige modelle Probleem P; en Probleem P,. Hierdie modelle lei tot
'n dinamiese randvoorwaarde by die deurlaatbare rand, en kinematiese randvoor-
waardes vir normaalvloei. Hierdie voorwaardes neem die kurwe van die rand in ag
wat sekere kragte veroorsaak. Dan wys ons met die hulp van die energie-metode
dat vir vloeistowwe van graad twee hierdie randvoorwaardes lei tot voorwaarde-
like stabiliteit van die rustoestand vir Probleem P, en Probleem P,. Ons bewys
eenduidigheid van klassieke oplossings vir die twee modelle.

Die bestaan van 'n swak oplossing van die stelsels van ewolusievergelykings
vir Probleem P, word bewys met die hulp van die Faedo-Galerkin metode met
spesiale basis. In hierdie geval bestaan die spesiale basis uit eiefunksies. Die
bestaansbewys van ’n klassieke oplossing, lokaal in tyd, word verkry deur gebruik
te maak van 'n weergawe van die Dekpuntstelling van Bohnenblust en Karlin en
die Ascoli-Arzela Stelling.
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Chapter 1

Introduction

1.1 Historical Outline.

The exact solution for the problem of the viscous fluid at rest was correctly
given by the Greek mathematician Archimedes (287-212 B.C.).

In 1500, the equation of conservation of mass for incompressible one-dimensional
viscous flow was correctly deduced by Leonardo da Vinci, the Italian painter,
sculptor, musician, philosopher, anatomist, botanist, geologist, architect, en-
gineer, and scientist. Leonardo’s notes also contain accurate sketches and
descriptions of wave motion, hydraulic jumps, free jets, reduction of drag by
streamlining, and the velocity distribution in a vortex.

The next notable achievement was by Evangelista Torricelli (1608—1647) who
published his theory that the velocity of eflux of a liquid from a hole in a
tank is equal to the velocity which a liquid particle would attain in free fall
from its surface.

The above achievements do not relate directly to viscous motion. It happens
that these results are also true for a viscous or real fluid. Edme Marriotte
(1620-1684) was probably the first to make a direct study of fluid friction. He
invented a balance system to measure the drag of a model held stationary in a
moving stream, the first wind tunnel. Mariotte’s text, ” Traité du mouvement
des eaux”, was published in 1686, a year before the excellent “Principia
Mathematica” of Sir Isaac Newton.

In 1687 Newton published in his “Principia” the simple statement which de-
lineates the viscous behavior of nearly all common fluids: “The resistance
which arises from the lack of lubricity in the parts of a fluid — other things
being equal — is proportional to the velocity by which the parts of the

1



2 CHAPTER 1. INTRODUCTION

fluid are being separated from each other.” Such fluids, water and air being
prominent examples, are now called newtonian in his honour. With the law
of linear viscosity thus proposed, Newton contributed the first viscous-low
analysis by deriving the correct velocity distribution about a rotating cylin-
der. Because of Newton’s more famous discovery, the differential calculus,
the world got sidetracked in another direction for some time.

Daniel Bernoulli was the first to bring the attention back to fluid mechanics
when he demonstrated in 1738 the proportionality between pressure gradient
and acceleration in inviscid low. Subsequently, Leonhard Euler, who is said
to be the master of calculus, derived in 1755 the famous frictionless equation
which now bears Bernoulli’s name. This magnificent derivation is essentially
unchanged in ideal-fluid theory, or hydrodynamics, as Bernoulli termed it.

Jean d’Alembert published in 1752 his famous paradox, showing that a body
immersed in a frictionless flow would have zero drag. Following d’Alembert,
Lagrange (1736-1813), Laplace (1749-1827) and Gerstner (1756-1832) con-
tributed priceless work to the new hydrodynamics.

The next significant analytical advance was the addition of frictional-resistance
terms to Euler’s inviscid equations. This was done by Navier in 1827, Cauchy
in 1828, Poisson in 1829, St Venant in 1843 and Stokes in 1845. Stokes was
the first to use the coefficient of viscosity p, whereas the other four wrote
their equations in terms of an unknown molecular function. Today these
equations are called the Navier-Stokes equations. These equations, are non-
linear, complex and difficult to solve.

At the turn of the 19th century the biggest breakthrough was by Ludwig
Prandtl in 1904. He demonstrated the existence of a thin boundary layer
in fluid flow with high Reynolds numbers. Another breakthrough was the
introduction of dimensional analysis by Osborne Reynolds (1842-1912), Lord
Rayleigh (1842-1919) and Ludwig Prandlt (1875-1953).

The historic details in this section were abstracted from the excellent history
of hydraulics by Rouse and Ince (1957)[Ry].

The stress tensor for the linear viscous Newtonian model is
T = —pl + p(Vv + (VVv)7)

with p the pressure, u the coefficient of viscosity and v the velocity of the
fluid. This model describes the flow of fluids like water and other similar
fluids. H Lamb [L,,], O. A. Ladyzhenskaya [L,] wrote mathematical theories

of viscous incompressible flow.



1.2. FLOW THROUGH PERMEABLE BOUNDARIES. 3

Nonlinear, or non-Newtonian fluids on the other hand are fluids like molten
metals, multigrade oils, printing inks, paints, suspensions, polymer solutions,
molten plastics, blood, protein solutions, ice[M;], etc. These fluids cannot
be described by the above model. The study of these interesting substances
has proved to be very important with the growth of the polymer and plastics
industry over the last four decades. Consequently an interest arose to study
the flow of these nonlinear fluids and in the case of this model, second grade
fluids, through permeable boundaries. The boundary conditions alone in such
circumstances form an interesting study on its own. Works by R. Berker [B;],
Rajagopal and Gupta [R,], are a few to mention in this regard.

In the study to follow a new approach is considered. The flow through
permeable boundaries is modelled as a velocity normal through the boundary.
A dynamic boundary condition forms a major part in the analysis of this
problem.

1.2 Flow through Permeable Boundaries.

The equation of motion for incompressible flows in Newtonian fluids (Navier
- Stokes equations) under no-slip boundary conditions have been studied
deeply from many perspectives. Since the pioneering papers of Leray [Lg, L7, Lg]
and Hopf [H,] questions of existence, stability [G3, G4] and uniqueness of both
classical and weak solutions have received more than a fair share of attention.

Recently the same problem for non-Newtonian fluids of second grade has
been studied from the point of view of weak solutions [Az, Cy, Cs, Cs3, Cy, Cs)
and classical solutions for homogeneous Dirichlet boundary data [G,), and
non homogeneous boundary data [Cg, G5, Gg)-

Unlike Newtonian fluids, fluids of second grade (and other non-Newtonian
species) have the property of developing “normal stresses differences” at
boundaries. It was shown, for example, by R. Berker [B,] that if an in-
compressible flow of a fluid of grade 2 satisfies the homogeneous Dirichlet
boundary condition the stress at the boundary is given by

t = (—p+a|w|®)n + [uw + 2a8,w] An

where n is the unit exterior normal to the boundary and w = V A v the vor-
ticity. The wedge denotes vector product. Thus there is a normal component
of stress at the boundary in addition to the pressure.
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We consider the situation where the container is immersed in a larger fluid
body of the same kind and the boundary admits fluid particles moving across
it in the direction of the normal.

The following figure illustrates the situation where the curvature of the
boundary I' of ' is non negative.

FIGURE 1. Profile for normal flow through the permeable wall T.

The question becomes, what governs the flow across the boundary? Possible
attempts at circumventing this question may be to ‘prescribe’ the normal
component of the velocity field at the boundary or to prescribe mass or
momentum flux. Prescription of shear stress has also been suggested. [By],

In this study we shall give an alternative approach through the formulation
of ‘dynamics at the boundary’, the idea being that the normal component of
velocity at the boundary is viewed as an unknown function which satisfies a
differential equation intricately coupled to the flow in the region ‘enclosed’
by the boundary.

We describe two mathematical models denoted by Problem P, and Problem
P . The models P; and P, has dynamics at a permeable boundary, and
kinematical boundary condition for normal flow through the boundary. These
conditions take into account the curvature of the boundary which enforces
certain stresses. We then show with the help of the energy method that
for fluids of second grade the dynamics at the boundary and the boundary
condition leads to conditional stability of the rest state for Problem P; and
P.. We prove uniqueness of classical solutions for Problem P; and P,. The
existence of the solution of the system of evolution equations for P, is proved
with the help of the Faedo-Galerkin method with a special basis, as in the
proof of [T7] for the Euler equations.
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We shall deal here with isochoric motion (without change of volume) for

which the condition is
V-v=0.

The Mathematical Model Problem P;.

We begin our study by introducing the mathematical model as an initial
boundary value problem: The system of evolution equations, i.e. the equa-
tion of motion, V-v = 0 because of incompressibility, and the three boundary
conditions, because of the fact that we work with derivatives of the velocity
to the third degree, form an important part of this study. Each equation in
this model is discussed in detail in the sections that follow. If T denotes the
stress tensor of the fluid, the equations of conservation of linear momentum
and mass are expressed by

Dylpv(z,t)] =V -T(p,v) in Q x (0,00) (1.1)

and
V-v=0 in Q x (0,00),

where D, = 0,+v-V. The flow through the permeable boundary is assumed
to be only in the direction of the unit exterior normal n, which means that
at the boundary v is of the form v = —n. It is important to note that the
function 7 defined on the boundary is also an unknown and is determined by
the dynamical boundary condition:

oOm+kn*=n-(8T)n on T x (0,T), (1.2)

where 6T denotes the difference between stress tensors on the two sides of
the boundary. o and k are defined in the next section.

The Mathematical Model P.

Although it was possible to prove stability and uniqueness for the model of
Problem P, without any difficulty, we could not find a way to prove existence
for a solution of Problem P,. We describe an alternative model which displays
all the properties of Problem P; with respect to stability and uniqueness, and
for which existence can be proved. In the altenative model the dynamics at
the boundary is formulated by assuming a ‘shear flow’ of the form

v*(y,t) = —n(s1, 52, t)n(y)

with s;, s, the surface parameters (like arc length). It is assumed that the
‘body force’ acting on the shearing fluid at the boundary is proportional to
the difference between the pressures v,p and £(t). With v, we denote the
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value of certain commodeties on the boundary. Under these assumptions the
equation governing the evolution of 7 is

Bilon — algm) + 8 ep = plgn + 5 HL(),

where v,v = —7n, and p the resulting pressure through the boundary with
thickness 6. A, is the Laplace-Beltrami operator (A; = V, - V) and V,
denotes the surface gradient. The parameter § has the physical dimension of
length, and may be thought of as the ‘thickness’ of the ‘shear layer’ (see [T4],
Sect 123, p. 506). The kinematical boundary condition is still imposed. For
further detail see Chapter 5.

The form of the tensor T for second grade fluids will be discussed in Section
2.2. The meaning of the terms and the choice of the tensor §T in equation
(1.2) will be made clear in Section 2.3 and 2.4.

In equation (1.1) time derivatives of both the velocity v and the symmetric
part of the velocity gradient occur. As a result the system (1.1) - (1.2) has
special initial conditions which will make the problem well-posed.

By well-posedness we mean existence and uniqueness of solutions as well
as stability of the rest state. The question of stability and uniqueness for
Problem P; is investigated in Chapter 4 and for Problem P, in Chapter 5.
Existence for Problem P, is proved in Chapter 6.

Stability and uniqueness are treated by means of energy methods which are
specially adapted to accommodate the dynamical boundary conditions. In
the proof of existence the Galdi-Grobbelaar-Sauer method [G1] of reducing
the equation (1.1) to a transport equation and a Stokes-type equation is
modified so that the dynamical boundary condition is combined with the
transport equation.

Existence of at least one solution for Problem P, is proved by means of elliptic
theory.

Treatment of the modified transport equation with the aid of the Galerkin
method is done by choosing a special basis of eigenfunctions (see Appendix
I1) which deals with approximations in the domain and on the boundary at
the same time.

In the system (1.1) — (1.2) the gradient of the pressure and the boundary
value of the pressure occur, with the result that the traditional Helmholtz
decomposition of a vector field is no longer appropriate . A modified decom-
position theorem is used (Appendix III).
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In this study a kinematical boundary condition, relating the vorticity w of
the fluid to the surface gradient V,7 of the unknown function 7, is imposed.

wAn =2V,

The meaning of this condition is that there are no tangential components of
deformation at the interface boundary.



Chapter 2

Problem Formulation

In this chapter we give a mathematical formulation of the problem leading
to the equations to be studied in Chapters 3 to 6.

This entails the following:

1. The choice of a stress tensor T.

2. Dynamics at the boundary.

3. Choice of the stress tensors at the boundary.
4. The initial conditions.
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2.1 Basic Notations.

We work in Euclidean 3-space. The following notation will be used through-
out:

|x| := 4/X32? denotes the Euclidean norm.
6,- = a/a.'lii;i = 1,2, 3.
o, = 0/ot.
[Vp], := pif pis a scalar field.
[Vv], = &w; 1,7=1,2,3, if vis a vector field.
[VV]Z; = Owj; 1,7=12,3, if visa vector field.
V-v = Y3}, 8w ifvisa vector field.
v-V = ¥ v0;if v is a vector field.
V.-T);, = 2 ,8Ty; j=1,2,3, if T is a matrix (tensor)
with Euclidean components Tj;.
vev], = wy; 4,j=123, if visa vector.
D, := 0,+v-V;D,is the material time derivative.
vAu := denotes the usual vector product of the vectors v and u
VAv = curlwv.

If A and B are second order tensors we shall use the notation

3
A:B= Z A,‘jBij

$,7=1

JAP=A:A.

Let O C R3 be a bounded domain with a smooth (at least C?) boundary
I'. Let n = n(z) denote the unit exterior normal to I' at z. We shall be
concerned with smooth vector fields v = v(z) defined on  such that on I'
it has the form

Yov(z) = —n(z)n(z),

where 7, is the trace operator denoting boundary values and 7 is a smooth
scalar field defined on I'.

Associated with Vv we define the symmetric and skew-symmetric tensors A
and W as
A=AWV)=Vv+ (V)T

and
W=W(v)=Vv— (V)7
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where (Vv)T denotes the transpose of the gradient of v. The rate of defor-
mation tensor is related to A by D(v) = A (v).
We remark that if v is solenoidal (V - v = 0) then

trace A(v) =2V -v=0

and for any vector a,
W(via=w Aa

where w = V A v denotes the vorticity associated with v.

2.2 The Constitutive Equation for Fluids of
Second Grade.

Fluids of differential type Sy, Ss, Sg], of which Rivlin-Ericksen fluids are a
subclass, is a popular nonlinear model. Fluids of complezity n forms an
important subclass of the fluids of differential type. For incompressible fluids
of complexity n the Cauchy stress tensor is of the form

T = —pIl+F(A,,...,A,).

The pressure p is not a thermodynamic variable and the term —plI reflects
Pascal’s law which is inherent to all fluids. A;,..., A,, are the first n Rivlin-
Ericksen tensors [R3] defined recursively by

A; = Vv+(Vv)T=A
An = DtAn—l + An—l (VV) + (VV)TAn_]_, n _>_ 2.

Fluids of grade n are examples of fluids of complexity n. The stress tensors
for fluids of grades 1 and 2 respectively, are assumed to be of the form:

T = —pI+ pAy,
T? = Tl 4 0 Ay + 0y AL.

where p and o; are material coefficients (possibly temperature dependent).
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For incompressible fluids of second grade, the stress-deformation relation
then becomes

T=TH = —pI + pA + ;DA + a1 (AVv + (VV)TA) + apA?  (2.1)
where p and v are the pressure and the velocity fields. Here p is the coefficient
of viscosity and o; and a4 are material coefficients or 'normal stress moduli’.
In this case A = A,.
To use the relations (2.1) for the modelling of a fluid, the fluid has to be
compatible with thermodynamics in the sense that all flows of the fluid sat-
isfy the Clausius - Duhem inequality, and the assumption that the specific

Helmbholtz free energy is a minimum when the fluid is in equilibrium. Under
these assumptions, a; and as [D;] must satisfy

a1+ g = 0. (22)
Considerations on the stability of the rest state require that px and o be
nonnegative. In what follows we assume they are positive constants, i.e.
H> 0, a; > 0.

See [Ds).

Under the assumption (2.2), which we shall follow throughout, the form of
the stress tensor T given in (2.1) reduces to a more compact expression. To
obtain this we note that

Vv = -;—(A+W)

and
(V) = 5(A-W),
so that
a1 (AVv + (Vv)TA) = % [A(A + W)+ (A — W)A]
= oA+ %(AW — WA). (2.3)
Therefore by (2.1) and (2.3)
T = —pl+pA+o DA+ %(AW — WA) + (o1 + az)A?
= —pl+pA +aDA + %(AW —~ WA), (2.4)

where we have set a; = a.
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2.3 Permeability.

The flow of incompressible fluids of second grade through permeable bound-
aries and the flow of these fluids past porous walls have been studied under
various additional conditions.

A similarity solution is obtained for the two-dimensional creeping flow of a
second-order fluid with non-parallel porous walls by Bourgin and Tichy [Bj).
An additional velocity boundary condition was needed. The other conditions
they used were due to the usual no-slip conditions. This additional velocity
boundary condition was to prescribe the rate of shear at the wall. The
problem was then solved numerically by a standard routine.

K. R. Rajagopal and P. N. Kaloni wrote remarks on boundary conditions
for flows of fluids of the differential type in 1989 [R;]. [Rs] discusses a lot of
related issues.

K. R. Rajagopal and A. S. Gupta [R,], studied the flow of an incompressible
fluid of second grade past an infinite porous plate subject to either suction
or blowing at the plate. They studied fluids modelled by

T = —pl + pA + o1 [D;A + A(Vv) + (Vv)TA] + ap A% (2.5)

No assumptions on the material moduli ¢; and o, were made. For the
boundary value problem they considered, it was found that the velocity dis-
tributions do not depend on the normal stress modulus o but the pressure
does. They found that it is possible to exhibit an exact solution which is
asymptotic in nature for both ‘suction’ and ‘blowing’ at the plate if the ma-
terial modulus oy > 0.

If @; < 0, they found that such solutions cannot exist in the case of blowing,
a result in keeping with the classical incompressible fluid. Fosdick and Ra-
jagopal [F1] have shown that the model (2.5) whose material modulus oy < 0
exhibits anomalous behaviour not to be expected of any fluid of rheological
interest, (see also [F3]). Proudman studied an example of steady laminar
flow at a large Reynolds number [P;].

Beavers and Joseph [B;], studied the flow of a Newtonian fluid over a porous
surface in 1967. They determined that if the governing differential system is
not to be underdetermined, it was necessary to specify some condition on the
tangential component of the velocity of the free fluid at the porous interface.
It is usual in these analysis to approximate the fluid motion near the true
boundary by an adherence condition for the tangential component of velocity
of the free fluid at some boundary.
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Because of a certain ambiguity which is implied by the notion of a ‘true’
boundary for a permeable material, it was found useful to define a nomi-
nal boundary. They fixed a nominal boundary by first defining a smooth
geometric surface and then assuming that the outermost perimeters of all
the surface pores of the permeable material are in this surface. Thus if the
surface pores were filled with solid material to the level of their respective
perimeters a smooth impermeable boundary of the assumed shape would re-
sult. This definition is precise when the geometry is simple (planes, spheres,
cylinders, etc.) but may not be fully adequate in more complex situations.
Their experiment was designed to examine the tangential flow in the bound-
ary region of a permeable interface. The results of this experiment indicate
that the effects of viscous shear appear to penetrate into the permeable ma-
terial in a boundary layer region, producing a velocity distribution similar
to that depicted in the following figure. The tangential component of the
velocity of the free fluid at the porous boundary can be considerably greater
than the mean filter velocity within the body of the porous material.

Yy

B2
: Permeable material ’.
V1 9.9.9.9.9.9.9. 9,
0.9.9.9.9.9.9. 9.

FIGURE 2. Velocity profile for the rectilinear flow in a horizontal channel formed by a
permeable lower wall(y = 0) and an impermeable upper wall (y = h).
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In FIGURE 2 the plane y = 0 defines a nominal surface for the permeable
material. The flow through the body of the permeable material, which is
homogeneous and isotropic, is assumed to be governed by Darcy’s Law. Read
more on the status on Darcy’s Law in [Rg]. In the absence of body forces
Darcy’s Law may be written as

where k is the ‘permeability’ of the material and @ is a volume flow rate per
unit cross-sectional area. As such, ) represents the filter velocity rather than
the true velocity of the fluid in the pores. The measured pressure gradient is
denoted by dP/dz.

2.3.1 Modelling of Permeability for Problem P;.

We study the motion of a fluid of second-grade around and through a fixed
porous container filled with the same fluid. The interior of the porous con-
tainer is a open bounded set ¥ C R3 and the porous boundary, I, is smooth.
The surrounding fluid domain, Q is bounded and its outer boundary is de-
noted by I';. The exterior normal to  on I' is denoted by n. (see Figure 1,

p4).
Permeability of the walls of the container is described by assuming that at
the boundary I" the flow v has the direction of the normal:

Yov(z,t) = —n(z, t)n(z). (2.6)
The velocity component 7 is treated as an unknown and an evolution equation
for it has to be found.

We model the surface I' as having an effective area measure da which has a
density function ¢(z) with respect to the area measure ds.
Thus

da = ((z)ds.

The effective area through which fluid can permeate is not more than the
surface area and therefore

0<(¢(z)<1foranyzel.

If ¢(z) = 0, the wall is impermeable and if {(z) = 1, there is no wall.
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FIGURE 3. Heuristics of the permeable boundary.

In order to obtain expressions for mass and momentum in a boundary patch
I, we heuristically represent the patch by a volume G built from copies of
I (Figure 3). This is in line with the Beavers-Joseph thinking which was
discussed before. For this volume we set up a coordinate system consisting of
a ‘radial part’ r which has the direction of the normal vector n and a ‘surface
part’ made up by vectors tangential to I'. For the mass of G we obtain

/Gpda;:/p o‘;pdrda=/p/:pdr<ds=/wpgads

where d is some measure of thickness. With the aid of these concepts we
introduce the surface density of the fluid at z € I' as

o(z) = (z)¢(z)p
where p is the volume density of the fluid.

To obtain the equation of motion for fluid in the boundary we assume that
the rate of change of linear momentum in the boundary is explained by stress
forces at both sides of the boundary. The particular form of these tensors at
the boundary will be dealt with later.

Let T and T' denote the stress tensors at the sides of the boundary facing
Q and ' respectively, and let P and P’ denote the transfer of momentum
tensors on the two sides. On an arbitrary boundary patch IV C I" the law of
conservation of linear momentum is stated in the following way:

- —p —T(—n) —
0, /1" o(z)vovds = /1" [Pn — P'n]da + /1"[ T'(—n) — Tn)ds
and it follows that |

o(z)0¢yov — ([P — P'In = [T' — T]n. (2.7)
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From (2.7) we have
o(z)0m(z,t)+(n-[P—-Pn=n-Tn—n-T'n.

In the domain 2 the momentum flux tensor is given by P = pv® v. In
accordance with this we shall take P = (pn’n ® n at the boundary. The
tensor P’ will be taken as zero.

We take T' = /I to obtain from (2.7)

o(z)8mn+¢pn* =n-Tn — £(t). (2.8)
From the incompressibility of the flow in € it follows that

—/I:nds =0. (2.9)
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2.4 Explicit form of the Dynamical Boundary
Condition for Problem P;.

In Appendix I it is shown that for a smooth two-dimensional manifold I’
contained in a domain  C RS3 the following is true for a vector field v which
is of the form v = —nn on I*:

Yo [A(V)] = —2nM + N, (2.10)
where
M=Kn®n— (k71 ® T, — kT2 ® T3), (2.11)
and
N=n®y+9%v®n—-2n®n (2-12)

In these expressions the symbols have the following meaning:

K1, Ko are curvatures associated with orthogonal normal curves in I'
K = k1 + K,, the mean curvature

0=V v
Yp=wAn-2V,p
w=VAv

V, is the surface gradient
71 and 7T, are orthogonal unit tangents to I'.

If v is solenoidal, which is the case under consideration, § = 0. A straight-
forward application of Stokes’ Theorem shows that w is tangential at the
boundary, which implies that 1) is tangential at the boundary. Indeed, let I
be any patch of the surface I, then

/I‘I(V/\f)-nds:/arlf-d‘r

where d7 is a vector tangential to the boundary. Now if f = 4,v = —7n
then [y f-dr =0, and that implies that fn(VAv)-nds=0forall[" CT,
which in turn implies that (VA v)-n=0.

In the problem under consideration we shall assume that the “rate of defor-
mation” tensor A has precisely the form (2.10) on the boundary I' with n
the unit exterior normal. (The traditional rate of deformation is defined as
D= %A)

In a local coordinate system defined by n, 7; and 72, M and N have the
following representations:

—K1 0 0
M = 0 —ky 0 |, (2.13)
0 O K
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/ Yo Yo 0

We shall consider a kinematical boundary condition, which has a physical
meaning in that there are no tangential components of deformation at the
interface boundary. This concerns the form of the tensor N.

Towards this, we observe from (2.11), that

0 0 ¢'T1
N=( 0 0 1,b~1'2). (2.14)

Yo[A(V)n] = —2K7nn + 4. (2.15)

It follows from (2.15) that there are no tangential components of deformation
at ' if and only if ¥ = 0, i.e.

wAn=2V,,. (2.16)

This is the kinematical boundary condition.

The various terms in n - Tn with T given by (2.4), on a surface I' may be
expressed as follows (see Appendix I, Lemma 7.2):

n-vA(vin = —2Knp (2.17)

n- Y0 [A(v)n] = & [n-A(v)n]=—-2Kn, (2.18)
Yoln-[(v:-V)A(V)n] = +4Ken®+nl,n (2.19)
n-[AW - WA]n = 0 (2.20)

Guided by these expressions and (2.4), we assume that at I,
n-Tn=-— ['yop + 2uKn+ 2aKn, — 4aKgn® — anA,n] . (2.21)

For the stress tensor T" in the fluid exterior to Q we assume that n-T'n = £(t).
This amounts to the situation where the fluid in )’ is at rest. As a result we

have
n-(T)n=n-[T—-T]n

= _[701) + 2/LK7] + 2C¥K1}t - 4CYKG7]2 - anAsﬂ] - e(t) (222)

From (2.7), (2.8) and (2.22) we obtain (see Appendix III):

0_1/2(0 + 2aK)n; + o Vyp = s(m) (2.23)
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with
s(n) = o Y?[(—k + 4aKe)n® — 2unK + anen — £(t)),

and k = (p.

We shall assume throughout that the surface density is bounded and bounded
away from zero: i.e. there exist constants s and S such that

0<s<o(z)<S for all z€T. (2.24)

Also, we assume o € C*°(I).



Chapter 3

Preliminaries for Model P;.

In this section norms, bilinear forms, function spaces and additional assump-
tions are defined and explained. We derive some inequalities and identities
which will be used in the following chapters.

Apart from the smoothness of I' we make two additional assumptions regard-
ing the shape of (', namely that the curvatures x;, x, and K are constrained
in the following way:

1. There exist constants g and G such that

0<g< K(z)<Gforallzel. (3.1)

2. There exists a constant H such that

0<k2+k:<H?*onTl. (3.2)

Note that these assumptions allow cases where x; and k, can be of opposite
sign.

3.1 Definitions.

All spaces of vector fields are denoted by boldface letters.

1. Let 2 be a bounded domain in R3 with smooth boundary I' (of class
C®),Qr =0x(0,T) and I'r =T x (0,T).

21
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2. H™4(Q), for m a nonnegative integer and 1 < q¢ < o0, is the usual

Sobolev space (of real valued functions) embedded in L9(2) with norm
| - |lm,q- H™(£2), m a non-negative integer, denotes the Sobolev space
H™2(Q) of order m.

By our agreement above H™(Q2) is the Sobolev space of three vector
fields and the components elements of H™((2). In particular, the norm
and scalar product in H!(Q) are defined by

i} = llalf* + [ Vulf?

and

(u,v); =/ﬂu-vd:c+/nVu:Vvd:c.

. With the above notation H°(Q) denotes the Hilbert space L%(Q2) of

vector functions u(z) = (u;(z), us(z), us(z)), with z € Q, for which
lu)? is integrable on Q. The norm and scalar product for u, v € L?(Q2)

are defined as
2 — 2d
Julf? = [ ufd

and

(u,v) =/ﬂu-vdz.

. There exists a linear continuous operator v, € L(H(2), L2(89)), called

the trace operator, such that y,u = the ‘restriction’ of u to 9 for every
function u € H'(Q) which is continuous in . The space H}(Q) is the
kernel of «,. The image space v,(H!(2)) is a dense subspace of L%(T")
denoted by H%(F ). The trace operator is bounded, indeed, there exists
a constant C; > 0 such that

["eullr < Cy|lull; for all ue HY(Q). (3.3)

[L3, Theorem 9.4, p.41]. We shall refer to this result (3.3) as the Trace
theorem. Since Q0 =T UT; and ' NI} = @, we may write

L2(8Q) = L%(I) x L(Iy).

We shall assume throughout that v,u = 0 on I'y, and shall usually refer
to v, as if it maps to L3(T") only.
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10.

We shall use the following notation in connection with A:

(A(u), A(v)) = /n A(u) : A(v)dz

Aj2= | |A)%dz.

IAI? = [ |APda

We define the domain D by:

D={veH}Q):V-v=0inQ, v,v = (—n,0) € L) x L*(T;),
and A(v) = —27M on T'}. (3.4)

D is a closed subspace of H2(Q2). Note that because of (2.10) the tensor
N =0 if v € D. Thus elements of D satisfy the kinematical boundary
conditions (2.16).

H!(Q) denotes the closure of D in H(2) with respect to the Sobolev
norm || - ||; -

. The norm of 4,v € L2(T") on the boundary I is chosen as

v = il = [ o@)hoviids.
The associated scalar product is
(You, Y%V)r = /I;o'(z)'You " Yovds.

According to assumption (2.24) this is equivalent to the usual L? metric.
It is assumed that the function o € C*(T').

. We shall deal extensively with the energy associated with fluids of sec-

ond grade defined for the purpose of this study by
o
E, = SIAMIF + pllvI* + oviir- (3.5)

E}/? is evidently a norm on H}(Q) (see also Lemma 3.6). We shall refer
to the quantity EX/? as the energy norm of v.

The constant C which appears in inequalities denotes a generic positive
constant. This means that C may take different values even in the
same calculation. Sometimes it is necessary to indicate the quantities
on which a constant depends in brackets or by a subscript. ’
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3.2 Important Identities

Identity 3.2.1 For any symmetric tensor A and any arbitrary tensor B,

we have
A :B=A:B;,

with B, = %(B + B7T).
Proof.

A:B=AT:BT"=A:B’,
thus 1
A:B=§A(B+BT):A:B3.
1.

Expressions for inner products of the form (D.F,F) where F is either a
vector or a second order tensor are necessary. D, = 9; + v -V is the material
derivative. In order to obtain simple expressions for the scalar product we
notice that if o denotes either the usual scalar product or the “colon” product,
then

1 1
[BF + (v-V)F|oF = 5a,|F|2 + 5V - (|F|?v).
provided V - v = 0. Hence the following Identity:

Identity 3.2.2 For any smooth vector or tensor quantity F(z,t) and any
v € D we have

1 2 1 2
D,F.F)=— Fl|l- — = F ds. 3.6
( tr, ) 23t|| || 2/1" l77 S ( )

Proof.
By the divergence theorem

1 1
(BF +(v-V)E,F) = 29, /Q [Fl2do + 5 /Q V. (|F*v)ds
_ 1 2 1 2
= SOlF|?+ 5 [ IFI*v - nds
1 1
= =8,||F||2 - = | |F|*nds.
SOIFI? = 5 [ IFnds
1.

Later in this study we shall employ the energy method. It will become
necessary to use the various boundary conditions in order to prove stability.
The following is important to obtain the required results:
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Identity 3.2.3 If f € H(Q) is a scalar field, and v € D, then
/Q(v- V)fdz = ——/ands.

Proof.
Integrate by parts and use the fact that v is solenoidal:

/Q(V~V)fd:z: = /I‘fv-nds—/QfV~vd:z:

= ——/ands.
+

We note that in particular for v € D, the imbedding of H?({2) in the space
of bounded continuous functions makes the choice f = |v|? possible, and it
follows from Identity 3.2.3 that

J v ivitds =~ [ nfds. (3.7)
For v € D we may also choose f = |A(v)|?, and it follows that
[ 9AmPds = — [ AP ds
= —/1‘41)3|M|2 ds (3.8)
sinceN = 0 on D.
The following will be of immediate importance.
Identity 3.2.4 For anyv € D,

IAM)I2 = 29| +2 [ K (z)rPds. (3.9)

Proof.
From the definition of A it is evident that |[A(V)[? = 2|VV|? + 2Vv : VTv.
Now V- [(v-V)v] = Vv : VIv + (v V)(V -v), and, since V- v = 0,
Vv : VTv = V. [(v- V)v], whereupon integration over  and Identity 3.2.1
yields

IAMIP = 209vP+2 [ V- [(v- V)vide
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= 2 vvP+2 [ n-[(v- V)vds
= 2||Vv||® - 2/1‘17n - [Vv]nds
= 2|vv|?— 2/an®n: [Vv]ds
= 2|vv|*~ [ - A(v)nds
= 2||Vvu2+2/Fn2n-Mnds

= 2VvIP+2 [ K(@)ds.

.I.

Thus, if the curvature K is positive everywhere on I', it becomes apparent
that A(v) = 0 if and only v = 0.

Identity 3.2.5 For any bilinear form b on a Hilbert space H we have for
any v,w € H and with u = v—w that b(v,v) —b(w,w) = b(u, v) +b(w, u).

Identity 3.2.6 Letf and g be tensor fields of the same order and let o denote
the ‘scalar product’ in such tensor fields. For v € D it is true that

/Q[fo(v-V)g*Fgo(v.V)f]dz:——/anfogds_

Proof.

/Qfo(v-V)gd:z::/F(v-n)fogds—/ngo(v-V)fdz.

Thus
/Q[fo(v-V)g+go(v-V)f]dz:/Fn,,fogds.

3.3 Inequalities

Lemma 3.1 Under the assumptions (3.1) and (2.24), forv € D, v =0 ¢f
and only if A(v) = 0.
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Proof.
From (2.24), (3.9) and (3.1) we have
9. 2 2 1 2 2, Gy 2 (3.10)
Sl + 19vIE < SJA@E < [ovE+ iz,
and the result follows. t

The following two lemmas are important in establishing a Poincaré inequality.

Lemma 3.2 The bilinear forms a(u, v) = (A (u), A(v)) and b(u,v) = p(u, v)+
(You,Y,V)r are bounded in the space H(Q).

Proof.
For u and v € H!(Q?) and by (2.24), (3.1) and the Schwarz inequality

la(u,v)| = |(A(u),A(v))|
= |2(Vu, V) +2 /F K(2)mumods|

2G
< 2llallivih + —llveullefivevir.

Hence, by the Trace theorem

la(u, v)| < Cllull[|v]:.

Furthermore
b(u, v)| = |p(u, v) + (You, 7v)r|
< Allulllivii + [eullrl[vev e
< Cllalllivll,
by the Trace theorem. T

Lemma 3.3 The bilinear form |a(u,v)| = (A(u), A(v)) is coercive in the
sense that there erxist constants ¢; > 0 and c, > 0 such that

la(u, w)| > e1ffull} ~ cob(u, w).

Proof.
From (3.10) we have
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a(wu) = (A(w),A(w)
> 9]Vl + 22 2

29
= 2llulf? — 2|jul® + —gllnll%
2 2
> o2 - 2 u2——112
[lull; p(pll II5 pll I

=mﬁ—§mm.

We may now obtain a generalized Poincaré inequality:
Lemma 3.4 There ezxists a smallest possible constant § > 0 such that for
every v € HI(Q),

B

SIAMIE 2 pllvI* + [1ovIIE- (3.11)
Proof.
From the smoothness of I' (which is always assumed), it follows that the
embedding J : u € H(Q) — (u,vu) € L*) x L%(TI") is compact [4;].
From the boundedness and coerciveness proved above follow that there exists
a smallest eigenvalue A and associated eigenfunction u € HL(S2) for which
b(u,u) =1:

A =inf{a(v,v): v € H}(Q); b(v,v) = 1} = a(u, u) (3.12)

[S1]. A >0, for if it is zero, it follows that u = 0 which cannot be. It follows
from (3.12) that for any v € H}() the inequality

a(v,v) 2 Apllv|l* + [l7ov]IF]
holds and that A is the largest such constant. Finally we set 8 = 2/\. 1

Remark 3.1 :
It is now easy to see that ||A(-)|| is a norm on H(Q). In fact,

Lemma 3.5 For all v € H(Q) we have

o+

LA (3.13)

SIAWI < B, <
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Proof.
Add Z||A(v)[[? to both sides of the inequality (3.11):
o a+p
B, = SIAMIE + AvIE + Il < SE2 AP

From the definition of the energy norm it is clear that
a
A < B,
and the result follows. f

From Lemma 3.4 it is clear that these are the best estimates of this form.

Lemma 3.6 The norms ||A(v)|| and E}/? are equivalent to the norm in the
Sobolev space H!(S).

Proof.
From (3.10) and (3.11)
AW > 2| Vv,

and 5
AP 2 v

The addition of the two above inequalities yields

p
AW > [[Vv]|* + EIIVHz

>[99 + ZvIP
Let k£ = min (1, p/B) then
IAM)II? = Ellv]iE.
(3.10) yields
2 2, 2G, 12
IAMI® < 2(9vI1* + —|InllE
2G
< 2VvIF +201v]* + I,
and from the Trace theorem
IAMW)II® < Clivii?

From (3.13) it is evident that the energy norm is equivalent to the norm

lAM)II- t
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Remark 3.2 From the above Lemma we may claim from the embedding
HY(Q) — L3(T),[A41], that there ezists a constant T > 0 such that

/FI%VI% ds < T||A(W)|]® for every v e H:(D). (3.14)



Chapter 4

Stability and Uniqueness for
Problem P;.

4.1 Energy Identities.

The aim of this chapter is to develop tools for the study of stability and
uniqueness of the solutions of Problem P; under suitable initial conditions.
For this purpose v is a solution of Problem P; if v € H3(2)ND which satisfies
the system of evolution equations

Dt [pv(:v, t)]
o0 + ki?

V- -T(p,v) in Q x (0,00) }

n-Tn—4(t) on I' x (0,00). (4.1)

In this section we shall derive an energy identity for solutions defined in this
way. In these identities initial values are of no importance.

As stated before elements of D satisfy the kinematical boundary condition
(2.16).

The energy method (see [M,]) applied to this system is based on taking the
L?(f2) - scalar product with v on both sides of the first equation, and using
the other equation and the properties of D in further calculations. This
produces

(Dt(pv)a V) = p(atv’ V) + p((V : V)V, V) = (V - T, V). (42)
From (3.7) with ((v - V)v,v) =1 [o(v- V)|v|%dz we have
(D(pv)v) = selddvIE =~ [ o ds]

31
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= (V-T,v)
= / v.-(V-T)dz
Q
= /F'y,,v -Tn ds — (T, Vv)
1
= -/F1)n°Tnds—§/nT.Adz
1
= - 2 - = A d
/Fn[oam + kn® + £(t)] ds 3 /n T z
1 \ s, 1
= —= — — = : A dx.
28t/1‘01)ds /Pknds 2/QT T
It is important to bear in mind that [ nf(t)ds = £(t) Jrnds = 0.
Consider
1
T:A=[-pl+puA+aD,A+ Ea(AW — WA)]: A.

The trace of A is the divergence of v and therefore is zero. Hence —pl : A =
0. Since A is symmetric and W is skew-symmetric, we have

[AW —WA]: A= -A?2: W+ A?2: W =0.

By Identity 3.2.2, the scalar product of the material derivative of A with A
is:

(DA, A) = (BA,A)+((v- V)A,A)
_ larar— L [iap
= ZolAl? -3 [1APn ds
1
= SAlAl? -2 [ IMPnids,
SONAIE -2 [ IMPrds

from (3.8).
The general energy identity is therefore

(07
Slpllvl® + SIIAIP + lImlIE]

= —pul|A|? + 2a/r M |?*n? ds + p/Pn3 ds — /Pkna ds. (4.3)
Hence, the following calculations lead us to an energy identity for Problem
Plt
(T, A) = u|AJ? + SOAI - 2a [ MPn? ds,
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and
1 1 o
_Z(T,A) = —=p||A|]2 — 2o, A2 /M“d.
LT, 8) = — A - SalAI + o [ M ds

We therefore obtain the energy identity for Problem P;:
ApllvIP + ZIAJZ+ ||
= —ulAIP+2a [ [MP5* ds+p [ o ds— [ kn® ds.
This identity can also be written in the form
QE,(t)= — pullA|?+ 2a/1:(nf + k2 + K*)n’ds

+ p/rna ds — /Flcn3 ds. (4.4)

4.2 Energy and Stability for Problem P;.

In this section we study the stability of fluids of second grade in the situation
described in Chapter 2. It is assumed that v € H3(Q) N D.

The method of proof of stability is related to the energy method of Galdi
and Padula [G,). See also Le Roux and Sauer [L,] for a related treatment of
implicit evolution equations which includes problems with dynamical bound-
ary conditions. Let v € H3(Q)ND, then the energy identity (4.4), with (3.1)
and (3.2) in mind is used to obtain the following inequality:

BE,(t) < —ul|A(V) |2 + (2a(G? + H?) + p) /r mPds.  (4.5)

The boundary integrals in (4.5) may be estimated in accordance with (3.13)
and (3.14) to obtain

[ Infds < rllAJP < T\/gnAané(t). (46)

If we let € = 74/2/0]p + 2a(G? + H?)], we obtain from (4.5) and (4.6) the
following inequality:

B.E,(t) < —IAIP [ eBd 1)]. (4.7

Theorem 4.1 (Stability) If E,(0) < (u/€)?, then the energy E,(t) de-
creases exponentially to zero as t — oo.
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Proof
From the hypothesis and (4.7) it follows that

E,(t) < E,(0) for all t>0
and it follows from (3.13) that
QE,(t) < —[2/(a + B)lln — eE;(0)E.(t) = —BE, (1),

from which it is clear that E,(t) decays to zero like exp(-Ot), with © > 0.

Remark 4.1 Decay of the energy to zero implies that velocity in the domain
and at the boundary as well as the rate of deformation decay to zero, the rest
and unstrained state.

Stability therefore is obtained if the energy is initially small enough, which
is a way of saying that the initial state is only slightly perturbed from the
rest state. This implies that with an initially small velocity in the domain
and at the boundary as well as a small initial rate of deformation, stability
follows.

Remark 4.2 For Problem P, the expression for the energy appears to be
quite natural and appropriate. Stability follows almost effortlessly. This sug-
gests that the kinematical condition w A n = 2V,n is a natural condition.

4.3 Uniqueness of Classical Solutions for Prob-
lem Pl.

The purpose of this chapter is to establish uniqueness of classical solutions
to Problem P, under the initial conditions

Vo = v(0)
nvltzo = T = TI(V(O)) . (4.8)
A|t=o = Ao

By a classical solution we mean that the derivatives of v exist in the tradi-
tional sense for t > 0 and z € Q.
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Proposition 4.1 Assume that dA(v(-,t))/dt exists in L?(2) in the sense
that
lim |dA(v(-,))/dt — [A(V(, £+ ) — A(v(, 1))] /] =0,

then dA(v(-,t)/dt = 3,A(v(-,1)) a.e. in Q.

We shall consider solutions which are bounded in the following sense: v €
D N C3(Q) for which there exists a positive constant m such that

max sup |0*v(z,t)] <m for all t> 0. (4.9)
lal<3  zeq

Proposition 4.2 If v satisfies condition (4.9), then v € H3(Q) and there
exist positive constants k* and m*, both dependent on ), such that

sup |n,| = sup |yov| < k*m* |0,
zcl z€l
where |Q] denotes the volume of Q.

Proof.
From the Sobolev Imbedding theorem [A; p.97 Case C] and the compactness
of the 2-dimensional manifold I, we have H%(Q2) < C(T'). Thus by the
Trace theorem

sup yov| < Cllyevilr < K7[1Vlza-

We know that [|v]|3 = 3|4<2 ||0*V||? and
oVl = [ JorvI? da < (m*)? [ 1 dz = ()Pl

.I.

Theorem 4.2 The initial-boundary value problem Problem P;, under (4.8)
has at most one classical solution in H*(Q2) N D which satisfies condition
(4.9).

Proof.

Let (p,v,£(t)) and (g, w,h(t)) be pressure-velocity trio’s satisfying (4.1),
(4.8) and (4.9) and let u = v — w. The initial values for uin (4.8) are zero
because u and V -u are zero in .

Since (p,v) and (g,w) both satisfy (4.1), we have

poyv = —p(v-V)v+ V- T(p,v) (4.10)
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and
poyw = —p(w - V)w + V- T(q, w), (4.11)

where

T(p,v) = —pl + pA(v) + aDA(V) + SAVIW(V) - W(V)A(V)]
and

T{q,w) = —qI + pA(W)+ aD,A(w) + g[A(w)W(w) — W(w)A(W)].
Subtraction of (4.11) from (4.10) yields
pou = —p[(v-V)v - (w-V)w]+ V. [T(p,v) — T{q, w)). (4.12)

Subtraction of the dynamic boundary conditions 08,7, —kn? = n-T(p, v)n—
£(t) and 00ymw — k72 = n - T(q, w)n — h(t) yields

o0y — k(nj — n3) = n- [T(p,v) — T(g, w)ln — [€(t) — ()],  (4.13)

where £(t) is the exterior pressure associated with v and h(t) the exterior
pressure associated with w on I'. Furthermore, we obtain in the same way

7ou(z)t) = —ﬂu(x,t)n(f), (414)

and
YoA(u) = —27,M. (4.15)

Furthermore,
(v-V)v—(w-Viw=(u-V)v+(w-V)u
Clearly u € D satisfies the following equations:
plOu+(u-V)v+ (w-V)u] = V-[T(p,v) — T(g,w)] in € x (0,00)
o0 + k() —n) = n-[T(p,v) - T(g,w)n

—[é(t) — h(t)] on T x (0,00).
(4.16)

We shall prove that v = w by applying an energy method similar to the
one used before to the first equation in (4.16). By Identity 3.2.6,
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il + (o Vv (- )
= ) b,v)— q,Wj),u
= Joyou-[T{p,v) — T(g, w)n ds (4.17)
L ol T(p, v) — T{g, )] : Au) de.

In a manner similar to the deduction of the energy identity for Problem Py,
use of the boundary conditions (2.8) yields

Alpllull® + ]2 + £lIA(a)|] )
= —pllA()|]? - p[((u- V)v,u) + ((W- V)u,u)]
+af((u- V)A(v), A(u)) + ((w- V)A(u), A(u))]
+3(A(u)W(v) + A(w)W(u), A(u))
—2(W(u)A(v) + W(w)A(u), A(u))
— Jrkmu[n? — nllds. )

Every term on the right hand side of (4.18) can be estimated in terms of
E,. We proceed to derive these estimates: The boundary integral in (4.18)
is estimated as follows:

2km
| [ knuln? = nldsl = | [ kn2fn, + ] ds| < =,

(4.18)

By Identity 3.2.6 two of the four convective terms reduce to boundary
integrals: If f = g = A(u) and v = w, we obtain

(W- VAW, AW) = ~(1/2) [ mlA(w)fds
- _ 210112
= 2/annulM| ds,
from the boundary value for A(u), (4.15).
The estimates (2.24), (3.1), (3.2) and (4.9) now lead to

ol((w- V)A(w), A@)] < 2a /F om2(k2 + k2 + K?) ds

2aC,,

s
2aC,,

S

< (G + H?)||mu I}

< (G*+ H?)E,. (4.19)

Similarly with f =g =u and v = w,

p((w - V)u,u) = —B/ Thw|ul’ds. = —B/ Twtlzds,
2Jr 2Jr
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and the estimates (2.24) and (4.9) give

Al - V), )| < Eom g2 < Eom s, (4.20)

The other two terms are estimated as follows:

ol((a- V)A(V), Aw)] < aColjull|A ()] < a\/;ﬁ;cmnA(u)uﬁ

< a,/ﬁcmEu, (4.21)
2p

and p((u- V)v,u) = p fau- (Vv)udzr = (p/2) [ou- A(v)u dz. Thus

1
ol((u- V)v,u)| < gC’mHu”2 < 3C0nEu. (4.22)

By making use of the Schwarz inequality and the estimate (3.13), the other

terms in (4.18) are directly estimated in terms of the constant C,,, a generic
constant which depends on m, defined in (4.9), for example:

A(u)W(v): A(u) = =W (v)A(u) : A(u)
and
W)A®) : AW < [WE)A)|AW)] < [WE)|AWP
Thus
SIA@W(), Aw)| < 3 sup WV A7 < ZEIA@)*

< CnE, (4.23)

The remaining terms in (4.18) are estimated in a similar way:

SIACIW), Aw)) < Fsup [A@)IW@IHIA@I < 22 |A @)

< CnE,. (4.24)
An
%I(W(u)A(V)+W(W)A(u),A(u))| < %[CmHA(u)W+CmHA(u)|l2]
< (Cn)E.. (4.25)
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We are thus led to the differential inequality in terms of E,:

O,E,(t) < —CE,(t),
where C = l\ﬁ% — Cul22(G? + H) + £+ oy [ + 4} + 2],
which has the well known solution

0 < E,(t) < E,(0)e .

Clearly, E,(0) = 0, and hence E,(t) = 0 for all . Hence u =0. T

Remark 4.3 In the uniqueness proof above it was impossible to rely solely
on the boundedness of the eigenvalues of the tensor A as was done in [F\]
because of the more complex nature of the boundary conditions. However, in
that paper the eigenvalues of A(Av) played a role which essentially means
an assumption on the boundedness of spatial derivatives up to order 3.

Remark 4.4 The dynamical boundary condition o(z)n, + k> = n-Tn —
£(t) may, with the boundary condition n - A(v)n = —27K on I', and the
ezpressions (2.17) and (2.18) in mind, be ezpressed in the form

o Y2(0 4 20K 4+ oY 2y4p = s(n)

with
s(n) = 0 7Y2(—k + 4aKa)n? — 2umK + amdn — (1))



Chapter 5

Alternative Model: Problem Po

Although it was possible to prove stability and uniqueness for the model of
Problem P, without any difficulty, we could not find a way to prove existence
for a solution of Problern P;. In this Chapter we describe an alternative model
which displays all the properties of Problem P; with respect to stability and
uniqueness, and for which existence can be proved.

In the altenative model the dynamics at the boundary is formulated by as-
suming a ‘shear flow’ of the form

V*(y,t) = ‘“71(31, 32’t)n(y)

with s;, s, the surface parameters (like arc length). It is assumed that the
‘body force’ acting on the shearing fluid at the boundary is proportional to
the difference between the pressures v,p and £(t). Under these assumptions
the equation governing the evolution of 7 is

Oilpm — aAsm] + 67 y,p = pA,n + 67L4(t), (5.1)

where v,v = —nn, and p the resulting pressure through the boundary with
thickness §. A, is the Laplace-Beltrami operator (A, = V, - V,) and V,
denotes the surface gradient. The parameter ¢ has the physical dimension
of length, and may be thought of as the ‘thickness’ of the ‘shear layer’ (see
[T4], Sect 123, p. 506). The equation (5.1) is derived by calculating the stress
tensor for a shear flow and noticing that terms of the form v*-V, vanish. The
term §~'£(t) may be left out since, as before, it disappears when projections
are taken. The kinematical boundary condition is still imposed.

41
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The Model Problem P-
v € H3(Q2) N D satisfies the system of evolution equations

Dpv(z, 0] = V- T(p,v) in ©x (0,00) }
Olpn — aAsm] + 67 1yep = pA,n at T x (0,00) (5.2)
Yo[A(V)]=—-2nM at T x (0,00).

For the purpose of stability and uniqueness for Problem P, we define the
following norm

[ nds = linllo-
r

Now derive an energy identity for the solutions of (5.2). Take the L2(Q)-
scalar product with v on both sides of (5.2);. This produces

(Dpv),v) = LalivIz—2 [ n® ds
= (V : T,V)
= /P'y,,v -Tn ds — (T, Vv)

1
= - . T d——/T:Ad.
/Pnn nds—g | T

According to the formulation of Problem P; on the boundary (see Appendix
IIT) where s(n) = n- Tn, we obtain

—-/I:nn-Tn ds = —-/Fn(—'yop—2an—2aKn¢+4aKGn2—anA,n——E(t)) ds.

(5.3)
From (5.2); we obtain:
Yop = —80:[om — alAsn] + A gm. (5.4)
Substitute (5.4) into (5.3) to obtain
~ [m-Tads = -a, [ Linp ds — 0d|[ V.l — ullVunlie
+2p6/PK172 ds+3t/l:6aK|n|2 ds
—4a6/PKGn3 ds — a5/F17|V,17|2 ds. (5.5)

Also

1 1 o
“(T.A)= —= 2_ @ 2 / 2,3 ds.
5(T, A) = —Zull AP — ZOlA[* +a | IM[*n* ds
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Therefore the energy identity for Problem P, is

a )
OUGIVIP + SIAMIE+ [ (5 = ak)lnf ds + 6ol Vi)
1
= —5HIAMI? + o [ (1M~ 4asKo)lnf* ds
- 2 2 ds — 2 ds. 5.6
Sul[Vaml® +2u6 | Kinl? ds— a6 [ lV,nf? ds (5.6)
Now we can define an energy norm for Problem P, as
E.(t) = plvIP + SIAMIE + [ (60— 20K)Inf? ds +26al|Venli3r  (5.7)

Note that here we have to make the assumption that §p — 2aK > 0 which
gives us a restriction on K. We define a parameter

PzzT-

Now it is clear that stability can only be proved under the assumption that
P2 € (Oa 1/ 2)
The Poincaré (see [L3) inequality states that there exists a smallest constant

c such that ||In||g ~ > ¢||V,n||Z . With the use of the Schwarz inequality and
the above Poincaré inequality we obtain

OBs(t) < —u|AM)|? +20(G* + H? + 46G?)|[nlf} - + 28]/ VanllZ (1 + allnllor)

+40uGImll3
< —E,[u—20(G? + H? + 26G? — §)EY? — 261 — 46uG] (5.8)

With 20(G? + H? + 46G? — §) = €* and p(1 — 26 — 46G) = €** we have
o,E, < —E,,[e“p - e'E,}/z].
Theorem 5.1 (Stability for Problem P,)

If p» € (0,1/2) and E,(0) < (e p/€*)?, then the energy E,(t) decreases
ezponentially to zero as t — oo.

The uniqueness of the solution of Problem P, is treated in the same way as
the uniqueness of the solution of Problem P;.



Chapter 6

Existence

The question of the existence of solutions to the general initial-boundary-
value problem for an incompressible second grade fluid in a bounded domain,
with no slip, has only been addressed recently. The pioneer in this subject was
A.P. Oskolkov [0;], who proved the global (in time) existence and uniqueness
of a general solution to a simplified version of the problem by formulating it
in terms of

u=v-—alv.

and applying the Faedo-Galerkin method. Cioranescu & Girault [C3] followed
a similar approach, but using the quantity curl(v — a;Av) and applying the
Faedo-Galerkin method to the full problem to obtain a unique solution, global
in time if  is in R? and local in time if Q is in R3, for flows with

0120 and a1+a2:0.

Certain one-dimensional flows of a so-called power-law fluid of grade two,
with shear-dependent viscosity, was studied by ManS [M;], where similar
existence results were established.

Global existence of the weak solutions was successfully proved by Cioranescu
& Girault [Cy],— by this approach. This variational solution will also be
classical if the data is sufficiently smooth.

In [G,] the problem of existence of classical solutions was formulated as a
problem of the existence of a fixed point of a certain mapping by considering
the change of variable v.—+ u = v — ayAv. This was the first proof of
existence and uniqueness of classical solutions. The restriction that a, >0
as well as a; sufficiently large was imposed for the global existence result to
hold. No restriction on oy was imposed. Cioranescu & Quazar [Cy4] proved
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that the stationary problem is well-posed for arbitrary values of a; > 0 and
a;y. Here orthogonal projections on solenoidal fields were used to annihilate
the pressure term in the equation of motion in the region Q. They considered
a fixed point problem in w, based on the Helmholtz decomposition Av =
w+ V.

For traditional boundary conditions, the classical Helmholtz decomposition
is often useful. The Helmholtz decomposition results from orthogonal pro-
Jections from the space of square integrable vector fields onto the subspaces
consisting of gradients and solenoidal fields [73, Thm. 1.5, p 16].

When considering dynamical boundary conditions where interaction between
the boundary and the fluid is taken into account, we need a modified projec-
tion theorem for the same results.

In our case we consider a canister filled with incompressible fluid, immersed
in fluid of the same kind. It is assumed that the wall of the canister admits
normal flow through it. Modelling of the situation (Chapter 5), has led to
the equations of Problem P, which are written as follows:

P2vi+ p2 (v - V)v+ p2Vp= p V27 .T* in Q

V.v=0 in Q

Yov=-nn on [ v=0onI}y (6.1)
YWlA(V)]=—-29,M on T

p1/23t (om0 — al,my) + p—1/2132 = p—l/zl‘Aanv on I

where p denotes the density of the fluid. T* is the part of the stress tensor
which depends only on velocity i.e.

T* = pA + aD,A + %(AW — WA).

In what follows we assume that the constants x and « are strictly positive.

The projection we construct [S,] is designed to keep the pair (p2v, p'/%n)
intact and at the same time eliminate the pressure term (p~/2Vp, p=1/2y,p).
It is the following: (v,7) € L2(Q2) x L?(') has the orthogonal (therefore
unique) decomposition

1/2

(vim) = (0w, —p"2n - y,w) + (p7Y2Vq, p~Y2,q)

V-w =0
with w € H*(Q), ¢ € H**(Q) provided that v € H*(Q) and 5 € H*/2(I").

The orthogonal projection associated with the term (p!/2w, —p!/2y,w - n)
will be denoted by P.
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6.1 Some Spaces, Operators and Definitions.

All spaces of vector fields are denoted by boldface letters. We define the
space V(Q2) as

V(Q)={veC®(Q):V-v=0in O, yv=-mnn on I,

YolA(V)] = —-29,M on T, v,v=0 on I}
Note that V(Q) C D.

From now on the notation v,v will be used to denote the restriction of v to
I
We define the following Hilbert spaces:

Xm = ClH"'(Q)(V(Q)); X = {(veXn:vwv= 0}, m=123---.

Note that X, = D, by definition (3.4). The inner products of the above
spaces are the usual inner products defined for the Sobolev space H™(Q).
The metric of a product space is defined in the usual way: For X and Y
Hilbert spaces, the scalar product in X x Y is defined as

((p, q)i (l', S))XXY = (p’ r)X + (q’ S)Y'

The corresponding norm is then defined by

1P, Dy = lIpl% + llally-

We define the canonical operators C, and C,, in the following way:
Let
Y, = L2(Q) x L*T), and Y = X, x H™3(D).

The canonical operator C, : X; = Y, := L?(Q2) x L*(I') is defined by

2 2y, i), (6.2)

Cov = (p/%v, —p"’n - y,v) = (p

According to the definition (6.2) above we have

(COV, Cow)Ya = p(V, W)Lz(n) + (p1/277u, Pllznw)Lz(l") } (6 3)
ICovlIg, = AllVI® + pllmul[Zz(r)-

And the canonical operator C,,, : X,, =& Y,, (m > 1) is defined by

2 v, p/?n,). (6.4)

1/2

Cmv = (p/2v,—p*n - 7,v) = (p
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With (6.3) in mind, the norm of C,,v in Y, is given by
ICwvIE,. = Allvilk, + ollmsllFm-1r2ry-
By the Trace Theorem C, and C,, are continuous linear mappings.
Let I = [0,T)]. For Y a Banach space with norm || - ||y, and 1 < p < oo let
LP(;Y)={v:t—> v(t) € Y;t € I, v measurable, and /I;T lv(®)|% dt < oo}

and denote by W™?(1;Y) the space of functions such that the distribu-
tional time derivatives of order up to and including m are in L?(I;Y). For
p = oo, we denote by L*®(I;Y) the Banach space of measurable and es-
sentially bounded functions defined on I with values in Y. The norms in
Wk (I, H™(R)) and in W5 (I; H™/2(T")), k > 0, are denoted by ||- ||xm,r
and || - ||k,m—1/2,7,r, respectively. For k = 0 we write [|- ||z and ||« [ln-1/2,1r-

The linear operator B,, : X;n+2 = Y, is defined by
B,.v := (p Y?(pv — aAV),5p" Y (pom, — alsny)).

Now for v € X,,,;»

u, = p Y?(pv — aAv)
Uy = 6p_1/2 (mv - aAanu)
u = (u;,u) € Yp,

so that
B,v=u.

We note that since X,, is embedded in X; and Y,, is embedded in Y,,
Chv=C,v,ve X, form>1.

In motivation of what is to follow we obtain a formal energy identity by
taking the scalar product in Y, of u = B,,v with C,,¢. This identity holds
forgp, ve X,,, m > 1:

(10,Cnd)y, = (Bmv,Cod)y,
= (7 2(pv — aAV), 50"V (pm, — aAgm)), (2, —p* Yo - ) )y,
p(v, ) r20) — a(d, AV)L2(q) + p(1hv, M) L2(r) — S(AsThw, Tp) L2(T) -
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But with v,¢p = —74n and Y,A(V)n = —2Kmn,n we have

—~(¢,AV)2@) = —(6, V- AV))z@
- %(A(qﬁ), A(V)) 2@ — (108 YA (V))22(r)
- %(A(¢), A(V)) 2@ — (—em, —2Km00) 22(0)
1

- E(A(d’), A(V))ra) — 2(K, M) 12()-
Thus

(873
(1, Cod)y, = p(v,P)r2() + 000, Me)L2(x) + §(A(V), A(9))r2(0)
—20( K, ) 12(ry + 60(V s, VsTlg) L2(T)

for any ¢, v € Xpm; m 2> 1.

For ¢p = v,

(4, Cov)y, = plIvIfEscay +HI(E~ 20K sy + SIAC) ey +ol| Vool ogey
We define, accordingly, the bilinear form b, by

b(v,d) = p(v, )1z + ((6p — 20K )oY, YoP)r2(r) + %(A(V), A(d))L2 @)
+6a(V,n,,, v377¢)L2(1") for v, ¢ € Xl. (65)

As in Chapter 5 we assume that the parameter p; € (0,1/2).

Let the operator N, be defined by Nyu = ((v-V)uy,0), and uy = p 2 (pv—
aAv).

The pressure operator II is defined by
Ip = (p~/*Vp, o~/ *op)-
According to Theorem 7.1 in Appendix III
(v,m) = Cow +1lg

if ve HY(Q), ¢ € H/*([), ie. PCow = C,w, Pllg=0.
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6.2 Preparatory Results.

The fact that H™(Q) is a Banach function algebra under pointwise multi-
plication and addition [A,], provided m > 2, has, together with the Trace
Theorem important consequences in the present study.

In the first place we note that there exists a constant C, = C,(Q) such that
if u,v € H™(Q) then u-v € H™(2), and

a - vilm < Cullullm||v{lm-
By the Trace Theorem, we have for u € H™(Q), that y,u € H™3(I), and

el gy < Co@ )l ¥ u € HT(S),

provided m > 1.

6.3 The Auxiliary Problems.

Let us write the equations (6.1) in the form

O [pl/zv — ap—llev] +(v-V) [pl/Qv - ap—l/QAv] )
+p~Y2Up=8(v) in 2 x(0,T)

v=0 on Iy x(0,T) k (6.6)
~ov = —myn = —7n on ' x (0,T)
YlA(W) =-201M on T x(0,T)
58,(p?n, — p Palemy) + p 2 yop=s*(n), onT |
with
S(v) = p V22V - [A(V)W(v) - W(V)A(V)]+
aV - (VvA(v)) + pAv] (6.7)
s*(n) = p~2pd s
(Appendix III, Sect. 6.3.1).
Note that in general Y,[A(V)n] = —2K7n,n + 9 from (2.15). Hence the
condition Y,[A(V)n] = —2Knyn is equivalent to the kinematical boundary
condition 9 = 0.
Under the substitution
p/2v —ap Y2Av=1u; in Q
6(p1/2770 - P—lﬂaAsﬂu) =uy; on I (6.8)
v € Xm+2, m > 1
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the first and last equations of (6.6) become

Ay + (v-V)u, + p~/2Vp = 8§(v) in Q } (6.9)

Byug + p~H?yp=s*(n) on L.

The existence proof which we develop in the ensuing sections is based roughly
on the following algorithm:

1. With v given, at least one solution u = (uy,up) of (6.9) under the
initial condition u(z,0) =: u,(z) is found.

2. With each u = (u;,u,) in hand, a unique solution v* of (6.8) is found.
3. It is proved that the composite mapping

$:v-2 u-bv

has a fixed point which is a solution of (6.6).

The rough algorithm described above, will be developed in detail, after some
refinement of the equations (6.8) and (6.9).

6.3.1 The Stokes Problem (SP).

The problem (6.8) with u; and u, given, leads to the Stokes Problem. Since
v has to be divergence—free, we shall write the system (6.8) as a Stokes—
like system. To this end, we use the Helmholtz—decomposition [S;] in the
following form

Theorem 6.1 (Appendix III, Sect. 6.3.3)
Let u; € H¥(Q) and up € H*Y/2(D); k > 1. Then there ezists ¢ € H*"(Q)
and w € H*(Q) such that

uy = —pn - oW + p?yq on T

u;, = p/2w + p~/?Vg in Q
V-w=0 in .

The operator P : (u;,ug) € L2(Q)x L2(T) — {p"/?w, —p"*n-v,w) € L2(2) x
L*(T) is an orthogonal projection.

Remark 6.1 Note that for v € Xm; m>1, PCpv = Cpv, (see (6.4)).
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Indeed, we have the orthogonal decomposition

u=(u,u) = (p7?w,—p"2yn-w)+ (oY, p7*00)
= C,w +Ilg.

From this result, we can rewrite (6.8) in the form

(0,T)
(0,7)
yov=—nyn on T x (0,T); v=0onT,; x (0,7)
5(pt/%n, — p~H2alm,) + p P yop = —p?n - Yow on I x (0,T)
voA()n = —2n,Kn on T x (0,T)

(6.10)

(with p = —g), which is Stokes-like. We shall refer to (6.10) as the Stokes
Problem (SP).
Note that the kinematical boundary condition is incorporated in the (SP).

According to the definition of the operators C,., B, and I, (6.10) may
also be written in the form

Bov+Ip=C,w, VEXnut, m2 1.
Led by the discussion above we show the existence and uniqueness for (SP):

Theorem 6.2 Let [ be of class C, and suppose that py < 1/2. Let m > 0
and let there be givenw € WE(I; H™(Q)) and vow-n € WEe(I; H™+/2(D)).
Then the problem (6.10) has a solution for which v is unique and Vp is
unique. v € W5 (I; X pni2), 1 € WE(I; H™3/4(T)) and p € H™ Q).

Proof.
Consider the system (6.10) of equations

2v — apV2AV + pV2Vp = p?w in Q% (0,T)
5pY2(p — algmy) + p 2 op = —pY’n - yow on Tx (0,T) L g q5)

v = —nyn on I' x (0,7)

Yo[A(v)n] = —2n,Kn on T x (0,T).

We prove first that (6.11) has a unique weak solution: We use the projection
P in Theorem 7.1 to eliminate p, (Appendix III, Sect. 6.3.3). If we formally
take the L2(Q)-inner product of the first two equations of (6.11) with C,¢p

we obtain the weak formulation of the problem

bi(v, d) = p(w, @) + p(n - VoW, Ti¢) L2(T), (6.12)
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with b; defined in (6.5).

Since all the spaces X,, have a common dense subspace V(Q), we define a
weak solution of (6.10) if v € X, such that (6.12) holds for all ¢ € X;. The
bilinear form b; being equivalent to the metric in H!(Q), is clearly positive
definite on X;, and therefore a unique weak solution exists.

Regularity results for (SP) need to be investigated. A classical result is that
the solution u € HL(Q) for the Dirichlet problem —Au + u = f belongs to
H™+2(()) whenever f € H™(Q)(with Q sufficiently smooth). The question is
whether similar results exist for (SP).

A priori estimates for the solution v of (6.11) is is obtained in a proposition
with the use of Theorem 10.5 of [A3] in the following way:

Proposition 6.1 Let Q be an open bounded set in R3, with boundary TUT"
of class C™3, m a nonnegative integer. Suppose that v € X, is a weak
solution of the Stokes-like problem (6.10). If w € H™(Q) and 7w -n €
H™ V2T, then v € H™?(Q), and there ezists a p € H™(Q) and a
constant C,o(a, p,m, ) such that

[Vllms2 + 1Pllms1 < CofllWllm + 10w - Bllam-1200}- (6.13)

Proof.

This proof results from the paper of Agmon-Douglis-Nirenberg [As], giving
a priori estimates of solutions of general elliptic systems. This proof is given
in Appendix II. t

Proposition 6.2 Let T UT; be of class C®. Let k 2 0 and let w €
WEe(I; H™(Q)) and ~,w -n € W5e(I; H* /() be given. Then there
exists a unique vector field v.€ W (I; X 2) satisfying (6.11). Moreover,
there is a constant Cy = Cy(qm,p,a) Such that

IVl mizr < Co{lWllkmz + [17W - Bllwrcoram-rr2ay}-

Proof.
By Proposition 6.1 it is only necessary to prove that v € X,. This was
proved for the general L? case by Miyakawa in [My].

This concludes the proof of Theorem 6.2. 1

Let the mapping f : Y,, = X;,42 be defined as
f:ru=sw—o v = f(u)

where v* € X2 is the unique solution of (6.10) for a given u € Y.
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Theorem 6.3 f is a bounded linear operator.

Proof.
The result follows from (6.13) and the fact that w is obtained from u by the
orthogonal projection P. T

6.3.2 The Transport Problem (77P).

The formulation of the transport equation in the product space Y,, involves

two transport-like equations, one in the region and the other equation on

the boundary I'. The first equation represents the equation of motion in

and the second the dynamical boundary condition on the boundary I'. In

terms of the notations of Section 5.1, the system of equations (6.9), with

initial conditions added, can be written as
du+Nyu+Ilp=F, } (6.14)

u(0) = (u1,0, %2,0)s

where u € Y,, and p € H™(Q), with F = (S(v), s*(1)) € X ¥ H™12(D).
We recall that

pv — p VAV = w
Sp 2 (pmy — aBAmy) = U2

From 7,V -n = —1, € H™3/2(') on the boundary I' and Lemma 7.2 in
Appendix I, we obtain

—Yol1 - M = P1/277u - p—llzaAsnu (6.15)

with y,u; - n € H™ /2(I'). We now formulate the Transport Problem (TP)
in the following way

54 youy - n] + pY2yp=s*(m) at T (6.16)

o, + (v-V)u, + p/2Vp=8(v) in Q. }
o = up (0).

The formulation (6.14) includes both the equations in { and the equations
on the part I of the boundary. These problems will be solved by means of
the Galerkin method in a way similar to Temam’s construction of solutions
of the Euler equations [T1].
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The following estimates are of great importance:

Lemma 6.1 Supposem > 1. Ifv,v' € X1p, and 1y, 1y =17 € H™H3/2(D),
then S(v) € X, s*(n) € H™ 3(I") and

IS Oty 1 617
I* ()2 < IV lmss

and

1IS(v) = S(V)llxm < ClIV = V'l X[Vl Xrmsa + HV'Hx.,.Tz +1] } (6.18)
l1s*(m) = s* () lm-172 < ClIv = V'l|Xpms2

with C depending on o, S, G, u, 6, p and Q.
Proof.
From (6.7) we see that S(v) is composed of sums of products of second order

and first order derivatives of v, the function v with third order derivatives
of v plus a term consisting of a second order derivative of v. Also

0%v € Xm+2_|a| m > 1.
Thus from the Banach Algebra property of H™(Q2) for m > 2 we obtain

ISllxe < CUlIVIxmial VI Xmis + 20Vl 5o [Vl xss + IVl sa]
< O, PNIVIX o[Vl X + 1]

The estimate for s*(7),) is obvious:

”3*(17)”771—1/2 < C((sa P, #)||A377”m+1/2 < C((sa P, ﬂ)||V||m+2,
with the aid of the Trace Theorem.
For v and v/ € X, 2, we consider the following:
AVW(EV) - WHWA(V) - AV W) + W(VHA(V)
= [A(v) - AVIW(V) + A(V)[W(v) - W(V)] + W()[A(V) — A(v)]
+[W (V') = W(v)]A(V).

With the definition of A (v) and W(v) in mind and application of the Schwarz
inequality, it is easily deduced that

IV - [A(V)W(v) - W(V)A(V) = AV )W (V) + W) AV )]l|m



56 CHAPTER 6. EXISTENCE

< C|lv = V' llms2 [IVilmsz + IV llm2]

where C = C(f). In a completely analogous way we show that
o[V - (AVA(V) — AVAF)llm < C(Q,0) [V =V [lmsz [ Vllmaz + 1V l|ma2]

|#(AV = AV')|lm < C(W)I[V = V'[|m+2-

By the Trace Theorem we derive

C(6, 1, p)|| A5 — Ast |lm-1/2

Is*(m) — s*(M)lm-1/2 <
< C(6,u, PV —Vllmi2

Corollary
If v e (L®(I,Xmyi2)) then F = (S(v), s*(n)) belongs to (L*°(I,Y,,)) where
Y,, = X, x H*3(T).

We shall now derive a priori estimates for solutions of the Transport Problem

(TP) (6.16).

To this end we give the following preparatory result based on the theory of
linear elliptic equations:

Lemma 6.2 Let Q be of class C™*', m > 1. Then given

G=V-[S(¥) - (v V)] }
9="[8(v) = (v- V)ui] - n — s* ().

with
G e H™ (), ge H™ V()

the Neumann problem

p"2Ap=G in Q } (6.19)

pViyp—p Py p=g at T

admits a unique solution p € H™(Q) such that

1V0llm-1 < ClllGllm-1 + gl m-172ry]- (6.20)
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Proof.
(See proof of estimate (6.20) in Appendix II).

To prove the uniqueness let p satisfy the Neumann problem:

2V . V=0 }
p p (6.21
p2p — pH 2y, = 0. )

We take the scalar product over  with 5 on both sides of (6.21); and with
Yop over I' on both sides of (6.21),, we add the two equations and he result
follows.

If pe H*(Q) and v,p € H(") then Theorem 10.5 of [A43] can be applied.

To prove p € H?(f)) we use results from a doctoral thesis, ([J;] Theorem 5,
p.26).
1.

Lemma 6.3 Assume m > 1, v € L*(I,X42), with ||[V|lm+2a < D, S €
L>(I,Xy) and ||S||x,..t < vD and that u;|, = u;(0) € X,,. Then if there
exist solutions u; € (L*(I,X,,)), p € H™(Q) to (6.16), the following a
priori estimate is true

duy
dt llx

< CT>

m—1,1

|lur|| o,z + H

with Cr = Cr(Q, m,~, D, Dy, Dy, T, ||u;(0)||x,.r), where v = CD + C(see
(6.17)).

Proof.

We apply the derivative operator 8* with respect to z, (x is a multi-index)
to both sides of (6.16);, take the L2(f2) scalar product and sum over x, with
0 < k < m. We thus obtain

1d . _
5%”“1”3(.,. = —((V'V)ul,ul)xm +(S(V),u1)xm -p 1/2(VP, W) x,,- (6.22)

We now find estimates of all the terms on the right—hand side of (6.22).
By the Leibnitz rule we have

((v-Vu,wm)x, = Z ((v- V)0, 0"u,)

0<|sl<m
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+ Y C(,c,,g)(aﬂ(v-V)B"’ﬂul,a‘ul). (6.23)

1<|BI<IA|
o<ixi<m

wWith o = () (G2) ()

Furthermore, by (6.23), an application of the Schwarz inequality and Sobolev’s
imbedding theorem (Lemma 3.6 of{Ls))

Y Cupl@(v-V)o*Puy, 8| < Ciup) IVl Xmpallrllx,.-  (6:24)

1<18I<Ix|
0<ixl<m

The first term of the right-hand side of (6.23) can be reduced to a boundary
integral and by the Trace Theorem we obtain

(v - V)&% uy, 8 uy)| < %/1‘ |0%u,|?|v -n| ds; 0< k< m,

therefore
3 (v V), 0%w) < Cllw|ix IVlixms- (625)

0<|k|<m

From (6.24) and (6.25) it follows that

d
Zlullxn < Coamplllvnllxn Vilxa + [1S[xn + IVpllm]  (6:26)

It remains to estimate the pressure term Vp. Take the divergence on both
sides of (6.16), and recall that v and u, are solenoidal, we derive that p obeys
the Dirichlet problem (6.19) at time ¢ =0 in /.

In view of Lemma’s 6.1 and 6.2 and of the Trace Theorem we then find
Gl xm_r < ClISMV)xm + IVIx 101 ] X0 (6.27)
and

9]l gm-1r2ry < [V6[S(V) + (v - V)ws] - 0l [gm-sr2(ry + 118" ()| 1720y
< C[D|lullx,, + D*+ D]. (6.28)

From (6.27) and (6.28) we obtain
IVplix < ClyD + Dllwilx,, + (D*+ D)} (6.29)
From (6.22), (6.25) and (6.29) we deduce

d
a[lulllxm < CD||luy|x,, + C(D*+ D + vD). (6.30)
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Integrate this inequality over I and apply the version (d) of Gronwall’s lemma
in [Lg], p.54, to find that

01|07 < Di, (6.31)

with D, = D,(Q,m, D, T, ", ||u,(0)||x.., ), more specific D, = e T[||u, (0)|| x,. +
(Coe *T)/(—k)] with k£ = CD and C, = C(D*+ D + D).

Furthermore from (6.14) and (6.29)

du
Il-dTle,..-l < v - Vullxpy + 1VDllm-1 + S| xm s
< CllIVliXmselltallxm + D*+ D+ [ISlix]  (6.32)
thus
du1 9
”-d_t”Xm_l S_ C[D + (D1 + 1 +’)’)D] = Dg (633)
Let CT = D]_ + D2. -I-

In the following sections we will show that (7P) has at least one solution.
We proceed to study the existence of solutions of the Transport Problem
(7TP) with the aid of the Galerkin method.

T The projection we construct is designed to keep the pair (u;, —y,u1 - n) in-
tact and at the same time will eliminate the pressure couple (p~/2Vp, p™Y2v,p).
Here we refere to [S,] and Appendix III. Accordingly we choose H; = H'(Q)
and H, = L?(Q) x L*([). In Appendix III we have the decomposition theo-
rem:

Theorem 6.4 Let v € H*(Q); k > 1 and n € H*"Y/%(T'). Then there ezists
a unique ¢ € H***(Q) and w € H*(Q) such that

v = p2w + p~2vy
n=—o2y,w-n+p Mg (6.34)

V-w=0.
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6.4 The Galerkin Method.

We are going to study the (7°P) in the following abstract form:

d —
dy + ilﬁljy;yé } (6.35)

In the proof of existence of solutions of (7P) we shall use an expan-
sion in terms of the eigenfunctions of a very particular ‘operator’. The
eigenfunction—eigenvalue problem is discussed in detail in Appendix III, Sect.
6.3.2. We give a brief description here.

For a fixed m > 3, we consider the space Y,, = X, X H"‘”%(I‘) (Section
5.1). There exists an increasing sequence of positive real numbers {A\;} and
a corresponding sequence {,} C X, such that

(¥, ®)m = Ai(Cotp;, Cod)y, for all ¢peXn (6.36)

and {C,v;} C Y,, is a complete orthonormal basis in Y,, (see Section 6.3.2).
This means that

(Co¢jco¢k)Yo = { (1) ggi ; ; Ilz (637)

and for any v € X,,, we define the Fourier coefficients fi = (Cov, Co¥r)y, -
Then
n
nll{lolo |Cov — kz_:lfkcoil’kHYm =0.
Moreover the series v = Y52, fep, converges in X,. Also, since the range
of C, is, by definition, dense in Y,, the series u = Y32, (1, Co¥i)v,Cots
converges in Y, for any u € Y,, if fi = (u, Co¥y)y,, [S1]-

Consider y!™l defined by
n
y[n] = Zgjnco'd’j = <Y£n]ay£n]),
~

for some undetermined coefficients g;,.

It will turn out that the decomposition of y!™ into a ‘volume’ part y%"] € X
and a ‘boundary’ part yi" € H™V2(T) is extremely useful. Let us remind
ourselves that

Cop; = (91/21/’1', .01/2771')
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with 7; = 7y, and accordingly, we have

n
v = 3" ginpt e,
=1

and

n
vl =3 ginp'*n.
i=1

Then we have

Y™ =37 gin(p" ;. 9 ?05).
j=1

C, is linear and therefore
[ ] n n
y["] = Coyln = G, Z gjn"/’j = Z gano'l’j

= 3 gin{p*tj, 0*nj). (6.38)
=1
Let us approximate the right hand side of (6.35), (G € Y,.), by:
Gl = Z hiCot;,
=1

with h; := (G, Coh;)y,. Let g = Y7, hjsh,. Then GI?l = C,g}".

Let Yp, = span{Cot,,---Cot,} in Y,,. At this point we define a finite
dimensional space Xy C Xy by Xpn = span{t,,---v,}. We seek an
approximate solution y of (6.35) in Y|, as the solution of

y"(0) = y& = Py, = 31, (¥(0), Cotbi) v, Cotby-
Pl is the orthogonal projection in Y, onto Y|, and Gl = pir)(G) is the
projection of G in Y,. It is important to note that
PElv = B7,(Cov, Cotb)vop* s
= Py,

where

P ["]y = 2:1()" Co¢k)YoCO¢k
n (¥, Cotbi) (02 2k, — 0270t
(P, PMyy.
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The solution of (6.39) must be of the form y" = "}_; gkn Cotp. Since Y is
finite dimensional. Thus, (6.39) should reduce to a finite system of equations.
Indeed, if we take the scalar product of (6.39) with C,,, we obtain:

( y[n 0¢k) + (PN (y[ ]) Co¢k)Yo == (G[ﬂ], Co¢k)Yo 1 S k S n.

yi3(0) =yl = Ply,
(6.40)

The equations (6.40) reduce to a finite system of ordinary differential equa-
tions for gj, in the following way:

(dt Ean(t o"/’_-n Coty)y, + (PN, (Z g:m(t 01/)_1 Co¥i)y.

- (E h; (t)CO¢j7 Coti)y,
j=1
From the orthonormality (6.37) of the C,,’s, we obtain

L g (t) + X721 9in () (N (Coth;), PCothy )y, = hi(t) }
gkn(o) = ggn = (Y(O)a Co‘/)k)Yo‘

This is a linear system of ordinary differential equations and the solution
exists on any interval [0,T], [Hs, p79]. This defines a unique solution of
(6.39).

We now show that the sequence {y!™} is bounded in L (I; L%(2) x L*(T)).

Lemma 6.4 If G € L*(0,T;Y,) and ||V|lm+2 < D, then
sup ||y["](',t)||%°°(o,T;n) < et [”Yo“%o + C”G”%W(O,T;Yo)]
0<t<T

forn=1,2,--- and C depending on D.

Proof.
Multiply (6.40) with gx,(¢) and sum with respect to k:

(Lytol, 2: 9nk(0)Cothr)y, + (PNL(Y™), 3" g0k (1) Cothy)y,
k=1

dt e
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Gl Zgnk Coti)y,, 1<k<n
We have
(PN, (), ™)y, = ((v- V)i ¥
= -3 /r ly'™ 2, ds.
We use the Schwarz inequality and the Trace Theorem to obtain:

|(PN,(y™), ™)y | < Cly™IZ V] a ey

We use the Schwarz inequality to obtain:

|| [n]||2 = (G[n] y["])y - (PN (y["]),y[n])yo
nG["luny[“lnyo + Clly™I1Z, vl @)
§||G‘"1nyo + Cplly™|I2,.

2dt

IA

IA

Now we obtain d
2|y, - CollyIR, < G,

Thus by Gronwall’s lemma and the assumption on G we have
t
VGO, < e InHO)E, + [ e IGHC, 5)lEds]
[ Iyell + Gl mqo vy (1/C = 1/Ce~)

< (I3l + ClGIEmorvn)|

IA

for C depending on D, n = 1,2,--- and t € [0, 7], taking into account that
Iy 0)lly, < lIyolly.-
.l.

The proof of existence also requires the boundedness of y™ in Y,,,. The next
step is to obtain bounds in terms of ||-||2, : To this end we multiply (6.40) with
the eigenvalue A in order to use the identity (3;, Co@)m = A;(Cotp;, C.o)y,
to obtain

d

Mgy

o¢k) + /\k (PNv(y[n]), Co¢k)Yo = /\k(G[n], Co¢k)Yo’ (641)
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We consider each term of (6.41) on its own: After various calculations the
first term of (6.41) can be written as

d_In] [n))|2
(F;¥1 ,Zignu/fk) H I12.- (6.42)
dt’t 0~ 2dt

To show that (6.42) is true we consider

d . d .
’\k(a [ ]a CO¢k)Yo = ’\k(dt oyl 0¢k) = (dtyg ]a'l/’k)m’

from (6.36). If, in addition we multiply with g,; and sum over k, the first
term of (6.41) becomes:
il ylnly. .. (6.43)

(y

thn]a Z gnk¢k (_Y£n]’ [n])m = 2dt

d

[ﬂ] 2
= 2 e

The second term of (6.41) can be estimated as follows:

> M (PNL(y™), guxCotpi) Iy
k=1

(=™, y ).l
< 12 - VY™, vl + 107 Ve, vl
< ClVllmeally?IIZ, (6.44)

where we write PN, (y™) in the form C,(w™).

To show that (6.44) is true
We do the same with the term (PN, (y™), Cotpi)y,

M(PN,(™), Coty)y, = Me(Co(w!™), Coti)y,
= (w[n]a¢k)m

Multiply with g,k and sum over k, the second term of (6.40) becomes (=™, y7

The problem is to find w!™: We know that

N,(y™) = ((v- )y}, 0),

[ﬂ])m'
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and to make calculations easier, we set
N,(y™) = ((v- W)y, 0) = (9,0). (6.45)

Next we use the Helmholtz projection on the pair (¥, 0) which is constructed
in the following way(also see Appendix III, Sect. 6.3.3 and [S5]). For each
t € I, ¢i"l(t) solves the problem

Agtl = p/2V-¥ on Q } (6.46)

p—l/z,qu[‘n] + p—l/zﬁyoq["] = v.-n=90 on I'
The projection Pt :Y,, = Y,, is defined by
PH(v,0) = (p7 2V, o~ y0q™)

where ¢l"l is the weak solution of (6.46). Let v € H™(Q), g™ e H™(Q)
and v,q € H™*/2(T"). Now

Cow!™ = P(v,0) = (v — p 2V, p~/27,4™))
By definition we have C,w!™ = (p!/2w!", —p/2y,o!" - n), thus

(@, y M, = (0 2(v- Oy - Vg, y 1)
= (72 V), ¥ — (07 Vg, ¥

In order to obtain an estimate for (w®, y})m we obtain estimates separately
for the terms (p"/2(v - W)y}, yi)m and (57 Vg™, y ).

Let v € X,,49 and y%"] be as defined previously. By the Leibnitz rule we
have

(v - VY y M. = 3 (v W)aryl, oyl

0</nl<m

+ Y Clp@(v- )Pyl ayl). (6.47)
1<L161L]x]|
o<|x|Sm

With Cep) = (Zi) (Ei) (733)
We obtain an estimate for the term

n 1
(- Dorst, oyt < 5 [y nl ds 0 <<,
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therefore
3 ((v- )y oy <y MR IV xmse- (6.48)

0<|x|<m

Furthermore, by (6.47), an application of the Schwarz inequality and Sobolev’s
imbedding theorem (Lemma 3.6 of{Ls]) yields

o V(v VY Y™l € Com Y Cunpl@(v- V) Py, oyl

1<81L]Ix]

o< x|<m
< CppllVilmazllyt2 (6.49)
We conclude that
1672(v - )y, v ™)l < ClIvImazlly ™12 (6.50)

where C is a generic constant.
Now for each t € I, ¢"(t) satisfies the mixed boundary value problem

Aq[n] = p1/2V . \—’ on Q
p—l/zrqu[n] + p_l/zryoq[n] =0 on T

with v = (v - V)yg"]. Consequently we have

Al = PPV (v W)yl
- = p2uvT: Vy&"].
Since ¥ € H™, it is clear that Agl®l € H™1(Q) and V¢i*! € H™(Q2). Then

(see[A,]) and the fact that H™1(Q) is an algebra for m > 3 is used to show
that

194 = g1 < Cllo29VT : Tyl s < C(p,ﬂ,m)“v”m+2”yg.1;]”m')
6.51

Note that the regularity result for ¢ is similar to the result (6.20).

Now we use (6.51) to obtain
Cloal 1V, [y7)ml

C|I Vg™ ||y ™12,
C|IVlma2lly™[2.- (6.52)

171 (Vg y™),.|

IAN A A
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Following the same procedures as before we may prove the following result.

The right hand side of (6.41) can be written in terms of the scalar product
in H™(Q):

3 M(Cog™, 96nCoty) = (&, ¥ (6.53)
k=1

where

= i hi(t);

Hence, by virtue of (6.43),(6.48), (6.50) and (6.53), we finally arrive at

Lemma 6.5 Let m > 3. If v € X142 and ||v||x,.,. < D, and y, =
y™(0) € Y,,, then

sup 19561, < Ce Iy PO + el Emorn
forn=1,2...

Proof.

—(p (v - V)Y Y™ + (07, Y+ (@, Y

ClIVlimr2lly™I12 + @™, ¥ m
CIIVI|m+2IIy["]|lm + ||g‘"1||muy["1||m

C(|IVllmrz + = )uy["’nm ug["]nm.

2 I,

IA A

IA

Therefore p
ZlPIZ < C@IVImaz + DIy E + g1

Now we have for
Y™ @)l < at) for all t<T,

where a is the solution of the differential inequality

da2( )

—= < ca(t) + [1g” (1)
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a(0) < C||y¥™(0)]|m-

and [0, 7 is the interval of existence of a. By Gronwall’s lemma a satisfies

t
@) < [a2(0)+ [ g2 ds

1 1 _
< e*a%(0) + ISl Emqran (5 — &)

< eT[a*(0) + ClIS|[Foo (1,x.))-

with ¢ dependant on D.

Ndw there exists a constant C such that
sup [y, )2 < ClyP(, ol
0<t<T

< Ce[ly )1, + ClISIRmqrn]|- (659

Thus with a boundedness condition on sup,e; ||S||m, and the initial condition
on y&"], {y&"]} is a bounded sequence in L°°(I, H™(Q2)). Therefore there exists
a subsequence, which we shall also denote by {y&"]} such that y%"] —y; in
H™(Q) and " — y, in H™+/ 2(I'). Thus as n — oo, {y[™} is bounded in
L>(I,H™(Q) x H™*1/2(T')). By the Trace Theorem we have ||ys||gm-1/2r) =
oy 1l gm-1/2(ry < Clly1lix.. < Cc and therefore

s [y, 0l < CeT Iy )l + c||S||%m(I;Xm)], (6.55)

To conclude we obtain an estimate for dyl*l/dt:

Lemma 6.6 Let y" be the solution of (6.39) and P and P as defined.

Then for an > 0 and a GI" | and in some time interval I = [0, T, {9’—'%&}
18 bounded in L*(I;Y,).

Proof.
Since the (C,1;)'s are orthogonal in Y,, we see from (6.39) that

dy™(t
.%_). = Prp(GI — N, (y™)).
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Hence
dy["] n n
| < G = N3l r
Leo(1;Yo)
< |I1Gllyr + INo(¥™)ly,. 2
< NGlivr + Cliy™ Iy z-
The above result implies that {%ﬂ} is bounded in L>*(I;Y,). 1

6.5 Existence of a Solution of (77P).

In this section we will denote weak convergence by —, weak*- convergence
by —* and convergence by —. We shall assume throughout that m > 3.
The method used here is similar to the method in [Ls, Ly).

Theorem 6.5 Existence of a Solution of (77P).
If veL®(I,Xn2) and y(0) € Y,,, m > 3, with ||V||xpns < D, then
there erists a solution y € L°(I,Y,,) of (TP) and dy/dt € LI, Yp1).

Moreover

¥llym +

<C
‘dt ”Ym 1,7 =

withy = C,w a classical solution of (TP) and w is obtained from u by the
orthogonal projection P. Cp = Cr(D,Q, m, M, T, o, ||ly(0)llv;n, ||Gll¥m,7)-

Proof.
We shall make use of the following results:

Lemma 6.7 [B;, p68] Let T >0 andlet X and Y be Hilbert spaces
with dual spaces X' and Y'. Suppose that Y is continuously and densely
imbedded in X. If

u, =*u in L®(;X)

and J
u,
o \* . 00 IYI
dt X m L ( ) ),
then J
x=—ltl in L°(Y').
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Lemma 6.8 [Ly, p.57] or [T5, pp.274 — 278]. Let X,, X, Xi be three
Hilbert spaces, such that X, C X C X; and

X, == X — X,

which means that the injection of X into X; is continuous and the injection
of X, into X is compact. Then, for any 0 < T < oo, the space
d
W =W(I; X, X1) = {ve L2(; X,) : d—‘t’ e L¥(I;X,)}
is a Hilbert space with inner product

dv dw
(v, W)w = (v, W)r21;%,) + (E?’ E)Lz(nxl)-

From Lemma 6.5 and Lemma 6.6 we have

{y™} is bounded in L*(I;Y,), (6.56)
dy™
{ T } is bounded in L*(/;Y,). (6.57)

From (6.56) and the fact that L>(I;Y,,) (where Y,, is identified with its
dual Y’,, via the Riesz representation theorem) is the dual of L'(I;Y.)
which is separable, it follows that {y™} has a weakly convergent subse-
quence {y?} and that there is a function y* € L*(I;Y,,) such that

y? —=* y* in L®(1; o). (6.58)

This also implies that y? —=* y* € L*°(I;Y,). Now by the Riesz represen-
tation theorem, for any given ¢ € L!(I;Y,), we have y = (y, ), on Yy,
therefore there exists a function & € L'(I; Y,,) (with ||€(®)|lv.. = [|@(®)]]x,)
such that

/o T(V(t),¢(t))y., dt = / T(v(t),e(t))ym dt for all veL®(;Yn)

Hence, using (6.57) and Lemma 6.7 (with X = Y = Y,) in a similar
argument as above, one can extract a subsequence {y"} of {y?} such that

dy” dy* .
- (I;Y,). 6.59
o -~ in L (I;Y,) (6.59)

Furthermore, as T is finite, (6.56) and (6.57) implies that
{y"} is bounded in L*(I;Y,),
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dy”

{ dt

and therefore, by Lemma 6.8, there exists a subsequence {y*} of {y"} and
a function y € W(I; Y., Y,) such that

} is bounded in LZ%(I;Y,),

y'—=yin W{;Y,,Y,) (6.60)

y'— y in L®(; Yp-1)- (6.61)
From (6.58) we have that for each ¢ € L}(I;Y,,) D L*(I; Yr),

T *
[ 60 -y (0), 6. dt—0, g— oo,
i.e. y? — y* in L?(I; Y,,)- On the other hand (6.60) implies that y* — y in
L?(I;Y.). Hencey* =y.
Now let ¢ € C°[0,7] and ¥ € Y,. Then there is a sequence {y"} in Yl
such that §* — ¥ in Y,. Thus, defining 9, = ¢(¢)§" and 9 = ¢(1)¥,
9, — 9 in L%L;Y,). (6.62)

From (6.40) one deduces
T T
[ (MY @) + PN(y(0), 9,0)) dt = [ (@), 8,(8)) dt for all .
By virtue of (6.60) and (6.62),
T T
L@y ©,9.00 &t — [ (0,90 dt, s—roo.  (6:53)
The next term to be consider is
T T ]
[ (PN @), 9,(0)) di = [ (P(v- V)3i(e), 9..0)) b
Since (6.61) implies y™™ — y in L?(I;Y,), the estimate

IP(v- V)™ - ¥)llv, < COQIIVIwly™ - ¥l

shows that (v - V)y!™” — (v - V)y, in L2(1;L2(2)) and therefore

/., " W)y (t), 9,1 (8)) dt —> / C(P(v- VIya(0), 1(8) df, n— o0,
(6.64)
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To obtain convergence for G = (S(v), s*(n)) with
S(v) = p_l/z[g-V JAV)W (V) = W(V)AWV)] +aV - (VVA(V))

+upAv]

and
s*(n) = p~V26pl s,

for Problem (P,), we apply estimates (6.18). By Lemma 6.5, if v € X1,
then {v"} converges weakly in H™*2(Q) and therefore ||[v"* — V||mi2 — 0 as
n — 0o, and the results follow.

Lastly, it follows from (6.62) that
T T
/ (G, 9,)y. dt —> / (G,9)y.dt, ns — oo (6.65)
Hence we obtained from (6.63), (6.64) and (6.65) that

[ Gy + PNy ), 9)p) de = [ (@(0), vsolt) ot
for all y €Y, and for all ¢ € C°[0,T).
By the density of C°[0,T] in L2(0,T)
oy + PN,y=G, for a.e. t€(0,7),
t

Thus we have proved that (7P) has at least one solution. In order to obtain
the estimates we need, the following two propositions is important:

Proposition 6.3 Let 9Q be of class C®. Assume v € L®(I; X,p42) with
IVIm+2r <D, GeL®;Yy) andy(0) € Y,,. Then

d
Wiver+ | <o, (6.66)
dtly,._,.r
with y a classical solution of (TP). Cr = Cr(D,Q,m, M, T, a, ||y(0)| v, G l¥m.7),
and to be more precise Cr = (Kp+v+C)D + D?, where Kr depends on the

initial data.
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Proof
From the boundedness of y™ in L*(I;Y,,) (see (6.55)) we have{z ]y[”] -~y
in L°(I; Y,,) and by the same argument and Lemma 6.7, Qst"- —* %.
Thus

C > lim inf |[y™|ly.. > [I¥llv.

and il
dy '™
oxmu" (2], .
im in o dtlly. .
.I.
Proposition 6.4 Assume that
v E LOO(I’ Xm+2)1 m 2 3,
Ge L~(,Y,,) with ||G|y.r <7D,
Ylo =y(0) € Yy with |ly(0)||m < BD
where C,v,D > 0 and f < 1. Then, if
K2D?
T==>1 T 6.67
c " [C(Jl[ﬁ2D2 ¥ 0721)2]] (6.67)

with ¢ a suitable constant depending only on Q,m and o and t € [0, 7], the
solution y determined in Proposition 6.3 satisfies

||¥|l¥m,r < K7D.

where Kr depends on the initial data.

This proposition is proved in Appendix III, Sect 6.3.1. Thus the proof of
Theorem 6.5 is complete.



74 CHAPTER 6. EXISTENCE
6.6 The Existence of a Classical Solution.

We shall prove existence by linking the solutions of (77P) and solutions of
(SP). That means that in the transport problem

oy + PN,y=G } 6.68
y(O):yo ( )

G = P(S(v),s*(7)) with S and s* defined in (6.7), v is thought of as a
solution of the Stokes problem, and that in the Stokes problem

p2v — ap V2Av + p12Vp = pPw=y; inQx(0,T)
5(pMny — ap™V2Am,) + p 2 rop = —p’n - oW =y, on T x(0,T),

¥y = (¥1,¥2) is a solution of the transport problem.

In this section we show that (6.68) with initial data y(z,0) = y(0) =
(¥1,0,¥2,0) € Y, where

Yie = limor{pV/2v(t) — ap™2Av()} + o2 Vplmo
Y21 = lin1t—)0+ {5(91/2171: - ap_l/zAsnu(t))} + p~1/270p|t=0’

admits at least one classical solution in I = [0,T] forall# > 0in [ and T
sufficiently small depending on the size of the initial data.

Our method is to consider the composed mapping ® : v = y — v*, and to
prove that it has a fixed point. Although @ is well-defined we do not know
if the (7P) is uniquely solvable, therefore the mapping ® is a priori multi—
valued, because of the mapping v — y which can be many-valued. So we
have to resort to results concerning fixed points of such mappings. The one
we shall use is the Bohnenblust—Karlin theorem (see [Bs] and [Z;], Corollary
9.8, p. 542).

We have to define some concepts:
Definition: Fized Point: A multi-—valued map @ has a fixed point in a non—

empty set G, if the set ®(¢) is non—empty for all § € G and there exists
¢ € G such that ¢ € ®(¢).

Definition: Upper semi—continuity: If {¢#,} C G and ¢, = ¢ in G, if p, €
®(¢,) and p, — p then p € B(¢p).

The following theorem gives sufficient conditions for the existence of a fixed
point of a multi—valued map.
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Theorem 6.6 Bohnenblust—Karlin Fixed-Point Theorem.
Suppose that

(i) G is a non—empty closed, convez subset of a Banach space X;
(ii) the map ® : G C X — 29 is upper semi-continuous.
(iii) the set

U &(¢)

¢eG

is relatively compact [K,];

(iv) the set ®(¢) is non-empty, closed, and convez for all p € G.

Then there ezists ¢ € G such that ¢ € P(p).

Note that 2¢ denotes the set of all subsets of G.

In the process of verifying the conditions of above theorem we shall need the
Ascoli-Arzela theorem in the following form:

Theorem 6.7 The Ascoli-Arzela Theorem.

Let (K,d) be a compact metric space and H a bounded subset of C(K, X),
with X a Banach space. Assume that H is uniformly equicontinuous, that is,
for all € > 0, there exists a § > 0 such that

if d(zy,z9) <6 then |f(z,) — f(z2)] <€ for all feH.
Then H is relatively compact in C(K, X).
See [Bs].
We define the multi-valued mapping g : G — Y, by:
g(v) = {y:y satisfies (7P) for given v € G}
and fixed initial state y(0) € Y,,

We prove that g is upper semi-continuous:

Lemma 6.9 The multi-valued mapping g : Xpmiyo = Yy for fized m > 3,
1s upper semi-continuous. I
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Proof.

Welety € g(v) and y, € g(Vv,) be solutions of (7P). Subtract the equations
written for y and y,, set (y — yn) = 3, and G((v, ) — G((Va, ) = G,
with corresponding data (v,n) and (v, 7,). (TP) now becomes

d —
—y + PN,y =G.
prid + PN,y

Take the inner product with § in Y, to obtain

1d . —~ -
53‘5”3’”:;4, = (G’y)Yo + (PN(u—un)Yn,Y)Yo'

The Schwarz inequality, and some additional calculations, yield

1d, . = - -
=513, < ClGlvall¥lly, + Clive = Voallmllyrll1[I¥]lv.

2dt
CllGlv. ¥y, +Cllv = vallmllya ¥l

<
< Cl3l}, + ClIGHE,, + [Iv = vallZ]-

After applying Gronwall’s method, and the fact that ¥(0) = 0 we deduce for
all t € I the estimate

t —_
51, < C [ €2 [[GIE, + |Iv = vallZ] ds.
Apply the estimates (6.18) from Lemma 6.1 and the result follows. t

We define the following:

As Banach space X we choose
X = X(I)Qam) = C(I;xm+2)

with the norm
lllx = l|®l|xomsa1>

and for D > 0, we set

G = G(T,Q,m,D)
= {veX:veL®{;Xmn2) with [|V]xpmsar < D}



6.6. THE EXISTENCE OF A CLASSICAL SOLUTION. 77

The following figure illustrates the map ®.

FIGURE 4. Profile as an illustration how the mapping & is multi-valued.

Let (v,7) denote the solution of (SP) with y = (y1,¥2) on the right hand
side, where y is the solution of (7P). We denote the correspondence by
(v,n) = f({y1,¥2). We note that for a given y € Y, (v*,7") € G, is the
uniquely determined solution of (SP) while

Go= {v' € LI, Xmsa):
v* solves (SP) corresponding to (v*,7*) = f({¥1,%2))}-

The following two estimates are essential in showing that ® satisfies all as-
sumptions of Theorem 6.6:

From (6.66), (6.32) and from Proposition 6.2, we obtained the estimates

dy
dt

< KrD, < CD+~D+ D?,
||V||z,..+z,:r < C{lIy1llzm,r + ||y2”H"~-1/2(r),T}-

The theorem of Bohnenblust and Karlin will be applied in the following way:

® is a composite set-valued mapping and can be denoted by ® = f oy,

where
g:veEG > (v,n) = (yLp) €Yy }
f:lyLy) €Y, o (v, 1*) 2 v* €G,.
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We show that & satisfies all assumptions of Theorem 6.6:

(1)
(1)

(iii)

From the definition of G condition (i) is verified.

From Lemma 6.9 we have that g is upper semi-continuous and from
Theorem 6.3 we have the continuity of f, therefore ® = f o g is upper
semi-continuous.

Consider the well-known compact imbedding operator J : v € X2 —
v € X,411- We define

B' =JB = J{V S Xm+2 . ||V||m+2 S D} C Xm+1
Lemma 6.10 B’ is a compact metric space.

Proof.
We need to prove the following:

— B’ is equentially compact.

— B’ is closed.

For v! € B' there exists a v, € B such that v}, = Jv,. {vn} is
bounded, therefore there exist a subsequence vy, — Vv in Xyi2. J 18
compact, therefore Jv,y — Jv in X, 41, which implies v}, — v’ in B'.
Hence B’ is sequentially compact.

Suppose that v/ € B’ and v/, = Vv' in X,,1,, and suppose v, =
Jv,, and {v,} is bounded in X,,+, which implies that there exist a
subsequence such that v, = v in X2, and v € B because D > lim inf
[Varllmsz = |[Viim+2 and Jvp = Jvin Xy, thus vy, = Jv = v/, and
this concludes that B’ is closed. T

For D > 0 we set

G ={veB: ||V|m+ir <D}

Lemma 6.11

¢:=UG = &G

vEG’! veG’

is relatively compact in C(B', X).
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(iv)
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Proof.
We use the Ascoli-Arzelad Theorem to prove that G’ is relatively com-
pact: First we prove that G’ is equicontinuous:

Assume v(t) € L*(I,G"), where I = [0,T] and G’ is a bounded subset
of C(B', X). From the Mean Value Theorem there exists a £ € (s,t) C
I such that for v € G’

(0= vio) = [ G0 dr = e 9
thus
d d

From Proposition 6.2. 0 It remains to prove that G' := Uyee Gy
is precompact. Suppose ®(G') C G’ (which is proved in (iv)) then
®(G'") - G' C G'. G' is compact, Therefore G’ := Uyea' G, is precom-
pact in C(B’, X). t

Via the Galerkin method we proved that there exist at least one solution
for the (7°P), and we proved uniqueness for the (SP). This proves that
®(¢) is non—empty.

Lemma 6.12 The set ®(¢) is closed and convez for all ¢ € G.

Proof.

Let v% € G, with v} — v* in C[I, X;m4a], m > 3.

There exists a y, € Yy such that v} = f(y.); where the function f
represents the solution of the Stokes problem. There exist therefore a
y such that y,, = y in Y, with v* = f(y).

Also there exists a v € G such that y, = g(v) and lim, ;¥ =
limy,_00g(v) = g(v). Therefore y € Y, because of the semi-continuity
of g and it follows that v* € G,.

For the convexity of G, take v* and w* € G, and let
Y =ays» + (1 - a)yu

where f(v*) =y, and f(W*) =yur and 0 < a < 1.
Also there exist a v € G, such that

g(v) =y, and g(V)=yu-.
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Now oy, + (1 — a)yuw = ag(v) + (1 — @)g(v) = g(v), and it follows
that f(y*) = f(g(v)) € G.. t

According to Proposition 6.2 we then have :

||9(<V,77))”Y,..,T = ||<Y1,y2)||Y,,.,T
< KiD

Also from f(y) = (v*1*) , Proposition 6.2 and the Trace Theorem, we
deduce

O = 161 < sup vl + 800 1 Fmsncry

IA

S:Ié})(C(IIylllfn_z + |lyallfrm-1r2ry))
< C“)’”%@..,T

Now

12 (v, My = KV 7 |lye < CKTD-
To prove that &(G) C G we need a K7 such that CKr < 1. From the
definition of K this is possible if 7" is sufficiently small.

Since G, C G for all v € G, we have that & has values in 2¢ and that
there exists a ¢ € G such that ¢ € ®(4) .

We can now conclude that @ has a fixed point in C(I,G’) and G' C G. We
have thus proved the following existence theorem for classical solutions.

Theorem 6.8 Local Existence of a Classical Solution.
Let Q be a bounded domain in R3, m > 3, T be of class C*® then the initial
value problem

with

) [pl/zv - ap‘l/zAv] +(v-V) [pl/zv - ap_l/zAv] )
+p Y2Vp=S(v) in Qx(0,T)

v=0 on I x(0,T) { (6.70)
¥ov=—m,n=—7mmn on ' x (0,T)
Y[A(V)] =-27M on T x(0,T)

8,8(p%n, — ap 2 Am,) + o 2yp = s*(n), on T

aV - (VVA(V)) + pAv]

S(v) = p~2[gV - [A(V)W(V) — W(V)A(V)]+ }
(6.71)
s*(n) = 6p~ 2 ul g,
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and with initial data

Yie = limg,o+{p"?v(t) — ap2Av(t)} + p?Vplizo In Xm
Yoo = limy,or {020, (&) — ap 20,1 (8)} + p V2yoplizo  in H™VA(T),

and under the assumption that py € (0,1/2) has at least one classical solution
local in time in X,, o provided that y, o € X, and Yz € H™ (D).

Proof.

The multi-valued mapping @ has a fixed point in G. That means there exists
v € ®(v), which in turn means that there is a solution y of (7°P) such that
the solution of (SP) for this y as data, is again v.

To prove that the fixed point v is indeed a classical solution we consider the
following:

If we start with v € G then u; is the solution of the (7P)

d

EZP(ul, _'Yo(ul) -,Il) + PNyu; = G(V) (672)
where the projection P : (p~1/2Vq, p~/2v,p) € L%(Q2) x L*(T') = (0,0), and

u; = pH2av — p~2aAv } (6.73)

—You; - 0 = pt/2n, — p~H2alA,n,.

Substitute (6.73) into (6.72) and use the fact that the projection P is linear
to obtain

P d [ pav — pH2aAv + (v - V) (p2av — p~2aAv) _(0
dt 5(/’1/2771: - P—l/zaAanv) 0

The result is that there exist a v and a unique p such that

d [ p?av — p2aAv 4 (v-V)(p2av — pV2aAvV) \ _ [ p7/?Vp
dt \ 8(p/*n, — p~H2al\n,) 0 B

The proof is complete. t
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Appendices

7.1 Appendix I: Expressions at the Interface.

In order to obtain expressions for the stress tensors T and T’ as well as
the acceleration at the boundary through which only normal flow occurs, we
obtain a formal expression for the symmetric tensor A on a surface which
is immersed in fluid. We shall eventually use these expressions in postulat-
ing the form of T and T’ and in formulating a boundary condition which
expresses zero tangential acceleration at a wall.

We consider a smooth vector field v(x) defined on a domain 2 C R? and a
smooth two - dimensional (at least class C?) manifold I' C © so that v and
Vv are defined on I'. Let n(x) be the unit normal to I" at the point x € I'.

At any point x on I" we consider two orthogonal curves ¢; and c; in a neigh-
bourhood of z parametrized by arc length s; and s, respectively. Let 7
and 75 be the unit tangents to the principal normal curves at a point on the
surface. For local coordinates we use the orthogonal system formed by 71,
72 and n. Under the convention that

1'1/\1'2=n

we have
nNnATI =17

and
nATy,=-—73.

Let k; and k, represent the principal curvatures at a point on the surface

and let K = k; + k denote twice the mean curvature. The Frenet-Serret

83
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[Ss, Wy, W] formulae in this case is then, providing that there is no torsion

are

On Sn

95, . kT1 5, T —KaT2
ar, ar,

as1 kin Os2 0
Tz Tz _

™ 0 T Koml.

The surface gradient V, of a scalar function f may be written as

’70(Vf) = Vs(’)’of) + n’)’lfa (71)

where the trace operator 7; denotes the normal derivative. Also consider

_of . of
V,f 681 T1 + 6821'2
and ) ,
_ 0 f | 0%f
A_,f - vs' (st) - azs% + azsg'

If f is a vector field defined on T, the surface gradient V, is defined as the
tensor

of of
Vi=—@®m+— @7 (7.2)
asl 36‘2
Surface divergence and surface curl are defined as
of of
=1y — - — 7.3
V,Af=TlA£+T2A£f—. (74)
asl 36‘2

The relationship between the surface operators and the volume operators for
a function defined in  is given by

Yo(VE) = Vsvof + %[(n - V)f] @ n. (7.5)
Yo(V - £) = Vs - Yof + Yo[(n - V)] - m, (7.6)
Yo(VAE) = Vi Avof + 0 A[(n- V)] (7.7)

We use (7.1) — (7.3) to prove more important results to make the calculations
easier:



7.1. APPENDIX I: EXPRESSIONS AT THE INTERFACE. 85

Lemma 7.1 Let T, and T, be two orthogonal unit tangential vectors and let
n be the exterior unit normal vector to . Let o, B and v be scalar functions,
then

6) V.(em) =g
) V.- (bra) = 5
() V.- (m) = 1K

Proof

(1) Vo (amy) =71+ gr(am) + 72 gr(am) = £

(i1) Similar to (i).
(iii) Vs - (yn) =71 - [a,, — k1yT1] + T2 [ELn — KT

= —[Kk1 + K] = —1K.

We shall apply the expressions above to v.
By the Frenet-Serret formulae (torsion is zero)

o (rov) = _c')nn_ on
35, V) T Tas T Tas,
= *bgl'n + K177,
and, similarly,
ﬁ = ——T—I-n + KaoT:
Jsy  0sy 2727
Hence
on on
Vs')bv = [/"\317'1®T1+I€2T2®T2]—[ n®1‘1+a—-n®‘rg]
L7
on
= 7][”1"'1®T1+I€2T2®T2]—n®[ T1+—3—T2]
82

= k@M +an®T]—1n® Vsn.
The transpose is given by

(VaAv) T =nkim®m+ k@] - Va®n.
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To find an expression for A(v) at I' we need to look at Vv:
Yo(VV) = Vs(7ov) + Yol(n- V)v] @ n. (7.8)

Althbugh we know that the divergence of v will be zero, it is helpful to
observe that

0=7(V-v)=V, 7%V+1[Hn- V)v]-n,

where
0 0
Vs YoV = —T1- 3—31(7111) — T2 a(ﬂn)
0 o
= —T1- [5;1111 - 7IK11'1] -T2 (5;’—2n - 7II€2"'2)
= n(k1+ K2)
= nK.
And

0 =K +7[(n-V)v]-n.
We proceed to find expressions for 7,(v - V)v, 7,(Vv) hence Yo(VV)T:
We know that
wAn=W(E)n=(n:V)v-(Vv)in,

and
1(V¥v)Tn = (Vs%v)'n+7(n-(n-V)vln)
~(Van) + (0 — Kn)n.
Therefore,
(n-V)yv = (wAn)— V,n+ (0 — Kn)n. (7.9)
Multiply (7.9) with —7 to obtain
Yo(v-V)v=—n(n-V)yv=Kpn+1[V,n—wAn]. (7.10)

From (7.8) we now have

%(VV) = V,v+[wAn—V,;+ (0 - Knn]®n
= kM @M+ KT ®T]—-n®V,—V,®n+ (wAD)®n
+(@—-Kn)n®n
= ki1 ®T1 + KyT2 @ T2 — Kn @ n} - n®Vm+ V,n®n]
+(wAn)®n+6mn.
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The transpose is

Yo(VV)T = [k, 71 @71+ Ky T2®T2— Kn®n]—[n®V,7+V,7@0]+n®(wAn)+6n®n.

Thus we have

To(A(V)) = 7%(VV) +%(VV)"
= Vv + (V,*yov)T +7%([(n- V)v]®n) +7(n® [(n- V)v])
MlkiTL @ T+ K22 ® T2 — Kn®n] —2n® Ve + V,n ® 1]
+n® (wANn)+ (wAn)®n.+2n®n. (7.11)

It is important to note that we get an expression for the acceleration at the
boundary from (7.10):

[-8m + Kn’ln+5[V,n — w An]. (7.12)

Let us define the symmetrical tensors M and N by

M=[Kn®n— (k171 ® 71 — k272 ® 72)),

N = n®(wAn)+ (wAn)®n+2n®n—2n® V,n+V,n®n)
n®wAn—2V]+[wAn—-2V,m®n+2n®n
n®Y+9YPen—2n®n

with
Y =wAn-2V,n, (7.13)
a tangential vector. Then, for a vector field of the form v = —7n on I', we
have
AV)=-29M+N on I. (7.14)

In local coordinates we have the representations

—K1 0 0
M=| 0 —x 0 |, (7.15)
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0 0 '¢"7'1
N = 0 0 V-7 ) (7.16)
Y- Y2 —20

If V-v =0 it follows that trA = 0 which is in line with incompressibility.

We would further like to obtain expressions for the terms n-[(n- V)A]n and
n - [AW — WAJ]n on the boundary I':

Lemma 7.2 (Problem (P).) Let n be the exterior normal to the boundary
I', ve D and A = —29M + N with M and N as defined in Section 2.4. We
assume that V - v = 0 and w A n = 2V, which imply that N = 0, then

(@)  Yo(—m-Av)=A,n
() Yoln-[(n-V)Aln]=—4nKg— A
(¢)  Yoln: [AW — WA]n] =0,

where Kg denotes the Gauss-curvature.

Proof

(a) We have chosen 71, 72 and n so that 73 A1z = n. From incompressibility
and the fact that there is zero tangential velocity:

—Av = VAw

\ T1 A Oy, [ 72 — momi) + T2 A B, T2 — 1o71] + 2 tangential term
71 A [0, mT2 — Morin] + T2 A [qkon — Bs, 7] + ..

(Osyth + Os,mo)n + ...

Agnn

(b) Consider the tensor built from ‘row vectors’

Ae]_
A= Ae2 y
Ae3
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with (e;, e;,e3) a basis for R3. Therefore

Vv Ae3
V,, Ae1 n [(n V)Ael]
= ( Vs - Ae; ) + ( n-[(n-V)Ae,] )
Vs - Ae; n-[(n-V)Ae;)

Hence,
[(m-V)An=V-A-V,-A.

The value of A on I':

TlAV)] = —2M
= —2kT1®T1+ K2 ®T2— Kn®n].
Furthermore,
V.- [A(V)] = —-2(MVm+19V, - M)
and now
n-[V, - [wA] = —2(n-MVg+m-(V,-M))

= —om-(V,-M).

(Here we used the fact that Mn = —Kn). Determine n - [V, - M] term by
term to obtain

n-[V,-[vwA]] = —2n(<?+ k3 — K?)
= =29(2K1k2) = —4K1K2m

K¢ denotes the Gauss-curvature and is bounded by assumptions (3.1) and
(3.2).

Hence
n-[(n-V)Aln=n-Av —4nKg = —4nK¢g — A,7.

The term we use in the proof (2.19) is therefore

—n-[(n-V)An= +4n? K + 1.



90 CHAPTER 7. APPENDICES

(c)n- (AW — WA)n=An-Wn+ Wn: An =2An-Wn.

Here we make use of the additional boundary conditions (2.10) and (2.16),
and the fact that Wn = w A n' to obtain that

An-Wn = An-(wAn)
(w An) - [-2nKn]
=0

i

7.2 Appendix II: Agmon, Douglis & Niren-
berg [Aj3].

Proof of Proposition 6.1:
We write equation (6.10), after multiplying both sides with p'/2, in the form

(A - ﬁ)’h : : —i':D,1 = —pg'(y1)1
(A - ﬁ)vz : —%P,z = —%(%)2
(A - 5)”3 —%P,a = —pa—z(?h)a
v1,1 +vg,2 +v33 =
Let vy = —£ and f = (—plaﬁ(yl)l, —plaﬁ(yl)z, —%(91)3,0)-

Then this becomes
4
3 4i(@)vi(x) = fi(x) in Q, i=1,2,34
j=1

where & = (8, d,,83) and the matrix [¢;(§)],€ = (€1,€2,&) € R, is given
by

e‘J(g) = l§|2611 - ga |§l2 = E]? + Eg + 637 "7.7 = 17 27 37
e4](£) = - ]4(&) = 6]’ .7 = ]-a 2,3,
64’4(6) == 0

In accordance with the proof of Proposition 2.2 [T3, p.34], we define two
systems of weights by s; = sg = s3 =0, s4 = —1,and t; =t =13 = 2,
ty = 1. Then s; < 0 and degree(;;(£)) < s; + t;, as required by [As, p.38].
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The matrix [£;(£)], where £;;(§) consists of the terms in ¢;;(€) that are of
order s; + t; in €, is identical to the corresponding matrix in [T3):

€12 |0|2 0 -&

_| o K 0 =¢
€= 0 o r &
&L & &G 0

It is easily shown that £(£) = det[£;(§)] = |€[°, so that £L(§) # O for nonzero
real €, i.e. (6.10) is elliptic. Moreover , the supplementary condition on Lis
satisfied: £(€) is of even degree 6, and for every pair of linearly independent
real vectors &, ¢&'; in particular for each point x on I, £ is a tangent and ¢
is a normal at x; the polynomial £(& + 7¢’) in 7 has exactly 3 roots with
positive imaginary part, namely 7+ (&, £&') = i|€|/|€'|:

LE+7E) = [(€+7E) €+ 7€)
= (€] +|¢']*r%))?
= |€°(r — il€|/I€')°(r + il€l/1(€"))°.

Now concerning the boundary conditions we set

4

3]

YoV1,3 + YoV3,1 — 0
Yol2,3 + YoV32 = 0
(g — Az +Yp = Yo

These boundary conditions can be expressed as

& 0 & 0
[Brj(x,€)] =] 0 & & 0
0 0 %2 —-& 1
in other words

Byj = &bpj for h=1,2,3 and j=1,2,3

Bh3 = {h, for h= 1, 2,
By = 0, for h=1,2
B34 =1

By = £§-

Take r; = ro = —1,r3 =0 and t; = t; = t3 = 2, then degree(B;) < rn +t;
and [B},;] = [By;], where Bj;(x, £) consists of the terms in By;(x,§) that are
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of order r, +¢; in §.

& 0 &6 0
[Bii(x,€)]=] 0 & & 0

0 0 & 0
Now it remains to check the Complementing Boundary Condition: For an
arbitrary x € I' let n denote the outward unit normal vector at X, let €
be any nonzero real tangent vector to I' at x and define £7*(-) = £3(-),
i, k=123, 4. Then
[B},; (€ + ™) L*(€ + )] =

[ T[|€1? + 7] 0 GllEP+ 73] 26T }

0 T[|€]2 + 7% &[l€]2+ 712 —26T
0 0 2[|¢2 + 2] -8

The rows of the latter matrix are required to be linearly independent modulo
M+, Let 7+ = r+(€,n) = i|¢|, and set M+ = (r — r+)? and suppose that
C = (C;,C,,C;) is a constant vector with the property that, as polynomials
in T,

3 4
Y QB %) =0 (mod MY), k=1,2,3,
h=1 =1

i.e.
Crr(lgP +7%) = 0
Cor(J€]?+7%) = 0
CLE (€] +72) + Co&o(|€2 + 72) + G ([EP +7°) = 0.
Now it is easy to verify that C = 0, and that the Complimenting Condition
holds.

We then apply Theorem 10.5, page 78 of [A;] in order to get the final re-
sult.(For a similar application see [Lo).)

Proof of estimate (6.20) of Lemma 6.2

We are going to apply ADN to the Neumann problem (6.19)(see [A4], p 40).
We introduce new variable p; = 0,p, po = Osp and p; = 93p. In terms of
these variables we reduce (6.19); to the first order system

Op—p1=0
Oop—p2=0

7.17
O3p—p3 =0 (7.17)

p~Y20,p+ p 2Bpp+ pH205p = G
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From (7.17) we obtain the following matrix:

0 & & &
& -1 0 o
[&J(e)] - 6: 0 -1 0

& 0 0 -1
We define two systems of weights by s, =0, s; = s = s3 = —1 and ¢, = 2,
t1 =t = t3 = 1. The matrix [£;(&)] consisting of the terms in [4:5(€)] that
are of order s; +t; in £, is identical to the corresponding matrix [£;; &) It
is easily shown that £(€) = det[€};(£)] = €2 + & + &, so that L(§) # 0 and
is of even degree. Therefore the supplementary condition on L is satisfied.

Now concerning the boundary conditions we have the following conditions
on I

op—-p1=0
Op—p2=0
7.18
Osp—p3=0 (7.18)
pY2ps + p~2p =g,
which can be expressed as
1 ¢ 0 1
. |l & -1 0 o0
[th(x,ﬁ)] - 62 0 —-1 0
& 0 0 -1

Take 1, =0, 7, =ro=r3=—1land t, =2,¢t;, = 1,t, = 1,t3 =0, then

0 -& &1
Bawal=| & 5

&L 0 0 0

Now it remains to check the Complementing Boundary Condition:
[B},;(€ + mn)L7*(§ + )] =

—T 0 0 -1
-& E+1 L& LT
—& && &+ T4

—r e th T

The rows of the latter matrix are required to be linearly independent modulo
M, which is easily verified, therefore the Complimenting Condition holds.
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We then apply Theorem 10.5, page 78 of [A4]by choosing £ = m—1 to obtain
1Vpllm < 1plims1 < ClIGxm_y + gl zrm-272(ry]-

(For a similar application see [Lg].)
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7.3 Appendix III.

7.3.1 The Auxiliary Problems

Lemma 7.3 :Formulation in 2. :
Let v € X2, then the equation of motion

Di(pv)=V-T in Q
is equivalent to
8o V2(pv — aAV) + (v - V)p V2(pv — aAv) + p~2Vp = S(v)
in Q. With
S(v)=p /2 [%v (AMW) = WE)AM)] +aV - (TVA(V)) + uAv].
Proof

Seeing that A and W are both functions of v, we will write A instead of
A(v) and W instead of W(v).

V.T = v-[—p1+pA+aD,A+92‘-[Aw—WA]]
= —Vp+pV-A+aV-(6,A+(v-V)A)+%V-[AW—WA].

The term
aV-(atA—i—(vV)A) = aV-atA—i—aV-(v-V)A
= a0 Av+ a(aivkakAij)
= aBtAv + a(aiakvaiJ-)
= af,Av + a(0:0;(viAi;))

a0 Av + a(aka.'vaij) + a(akka;A.-j)
a0, Av + a(v - V)Av + oV - (VVA).
= aDiAv +aV - (VvA).

And thus we obtain
Di(pv) — a(D,AV) — pAv + Vp = %v - [AW — WA] + oV - (VVA).

Hence

pOv — aB, Av + p(v - V)v — a(v - V)Av + Vp = S(v).
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Lemma 7.4 :Formulation on I for Problem P;.
The equation of motion

o(z)n, + kn® =n- Tn — £(2)
on the boundary I' is equivalent to
o (0 + 2aK)n, + oY yep = s(n),
on ', With
s(n) = 072[(—k + 4aKa)* — 2unK + omA.n — £(1)],

for Problem P,.

Proof.
Take n to be the unit exterior normal to I' to get n - (—p/)n = —v,p. Also
bear in mind that v = —7n on the boundary, then

o(z)p+kn* = n-Tn-—£(t)
= —v,p+pn-An)+an-8An+on-|[(v-V)A]n
+%n . [AW — WAJn — £(2).
We use (2.17) - (2.20) to obtain

o(z)m+k? = —v,p— 2K — 20K —omm - [(n- V)A]n
—e(t).
= —vop — 2unK — 20K, + daKan’ — andn — £(t)

for Problem (P). Then

o V2o + 2aK)n, + o2y p = s(n).

The Proof of Proposition 6.4: Assume that
v € L*(I,X42), m >3,

G e L°(I,Y,,) with ||Gllmr <7D,
y(0) € Y, with |ly(0)||ln < BD
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where C,v,D > 0 and f < 1. Then, if

1 K2D? - C,D
T=-=- L .
c In [['321)2 +C’y2D2]]

with ¢ a suitable constant depending only on Q,m and « and t € [0, T}, the
solution 'y € Y,,,, determined in Proposition 6.3 satisfies

ll¥lly.r < KrD.

Proof.
By the estimates (2.24), (3.1) and (6.54), the Trace Theorem and the defini-
tion of y

1921 + alimrvacry
ly:ll.. +Ci(p, @)D
[y O + ClISIm(r x| + CLD

Iyll%..

IA

IA

IN

e’ [ﬁ2D2 + 072D2] + C,D

To obtain a value for T we set
ec’I‘ I:ﬁ2D2 + 0’72D2:| + C2D < K%D2

Solve for T to obtain the required result. T

7.3.2 The Eigenvalue Problem.

Let H, and H, be two Hilbert spaces with inner products and norms denoted
by (, Jo;( , Jsill lle;]l |ls respectively. Weak and strong convergence in
H, and H, respectively will be denoted by + , 5 , —>, -

We need the canonical operator C, (see (6.2) — (6.4)) to be compact and
invertible and the bilinear form b,, needs to be bounded, symmetric and G,
- coercive as it is defined in [S; p.9]. Thus:

The form b,, will be called C, - coercive if there exist constants y, > 0 and
p1 > 0 such that

b (u, 1) > py||ul|?, — po||Cull2 for all u€ Hp.
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If by, is only coercive the reader is referred to [Hi).

For the purpose of this study we work with a special bilinear form which is
the inner product in H™(Q) and is positive definite and will satisfy all the
conditions for the eigenvalue problem to exist.

Lemma 7.5 The operator C, is compact.

Proof

() is a bounded region with smooth boundary I. If {v,} is a sequence in X;
andv, o+ 0 in H!(Q)thenv, >0 in L%(Q)andv,v —>0 in L*(D).
(The embedding H'/?([') ¢ L?(T) is compact [Lz, p.101]).

Therefore 1, — 0 in L2(T") and

Cov‘n = (p1/2vn, ,01/277'0) - (0’ 0) in Yo-

We now have that the inner product of H™ is symmetrical and C,-coersive on
H™(Q) and that the linear operator C, is compact and invertible. Therefore
we can use the results from [S;] where the eigenvalues and eigenvectors are
constructed according to a recursive scheme. Now we have a real number A;
which is called the eigenvalue of (-,-)m and %; € H™(Q) the corresponding
eigenvector such that

(¢j’ ¢)m = /\j(Co"/’j, Co¢)Yo for all ¢ e Xn

with C,,1/)j and C,¢p € Y,,.

7.3.3 The Helmholtz Projection.

We consider a canister filled with incompressible fluid, immersed in fluid of
the same kind. It is assumed that the wall of the canister admits normal flow
through it. Modelling of the situation leads to the following equations:

Yv=-mn on ['; v=0onI'

p2v, + p2(v - Vv = —p2VUp + p/?V - T in Q
(7.19)
ol2n, = —67 V24, p+ 67/2n . Tn — 0~ /24(t) at T.
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Here o(x) represents a surface density of fluid particles which is assumed to
be bounded below and above by positive numbers. The dynamical boundary
condition as seen in (7.19) models the stress-induced forces at the boundary.

The projection we construct is designed to keep the pair (pl/ 2y, o1/?p) intact
and the same time will eliminate the pressure couple (p~Y2Vp, o=/ %,p).
To this end we let H, = L?(Q) x L?T), and define the operator M by
Mg = N,(Vg, v,) where

S12p 0
Np-_—-(p 0 3 0_1/2).

For a given y = (v,7) € H, we define a linear functional M*y € H; such
that

My(4) = (y,M¢)
= (V, p—1/2v¢) + (771 70¢)l"-

I, is the identity matrix in R3. The space H; will be the Sobolev space
H'(Q). We consider the bilinear form b defined on H; x H; by b(q,¢) =
(Mg, M¢),. Since M is bounded b is bounded in the norm of H; and since
IMlI3 = p7H{|Va||? + lo/?v0q|l3, it is readily seen that ||Mg||3 = 0 if and
only if ¢ = 0, which implies that ker M is trivial and that b is positive
definite. Hence for y = (v,n) € H, the following functional equation has a
unique solution ¢:

b(q, 9) = (Mq, M), = (v, p"/2V¢) + (1, Yo®b)r- (7.20)

Subsequently the function g is a weak solution for the following boundary
value problem:

Aq=p'/2V-v on Q }
pImg+ o Hz)Yeg = p Y0 y,v + 07 2(z)n on T.

We now define a linear operator P+ : Hy — Hy by Py = Mq = (p*/*Vq, 0/%7.q),
where ¢ is the solution of (7.20). P' is bounded, and if y is of the form Mp
then PLy = y. P' is indempotent and ||P|| < 1, and is therefore the orthog-
onal projection on a closed subspace of H, that consists of all images under

M of solutions of (7.20).

Let P := I — P! be the projection orthogonal to P1. We see immediately
that the range of P consists of all those y € H, for which M*y = 0. We thus
have the following form of the Helmholtz decomposition:
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Theorem 7.1 Let v € H*; k > 1 and n € H*Y/%(T'). Then there ezists a
unique ¢ € H**1(Q) and w € H*(Q) such that

v = pl2w 4 p1/2Vg
n=—o2n - y,w + 0 Y2y,q
V.-w=0

We refer the reader to [S,] for precise detail.

7.3.4 The Projection P,

The eigenvalue problem (6.36):
(¥, ®)m = Ai(Coh;j, Cod)v,
We know that the eigenfunctions are orthogonal:
(Co¥r, CO'I/’)yo = Ok,
hence :
(Y, Y1)m = Akdi,1-
This makes {4} m—orthogonal. Also
X1 = span{t ... 9} € Xum

and
Y™ = span{C,3,...Cotp,} C Yo.

Let Pl be the projection from Y, — Y[ and

P[n]y - E2:1 (Y7 CO¢k)YoCO¢k
= YXin (v, Cothi)v, <P1/2‘/’k, - 1/2’701/’1:)
(P, PNy,

Let v € X,,, then vl := Egzlakpl/ 24p,.. This must be the best approxima-
tion for v € X"l and ||p*/?v — vi*||%_ must be a minimum. Therefore

1
ar = /\_k(v, 1/’k)m = (C,,V, Co'l/’k)Yy
Now we can consider
PElv = 2, (Cov, Cothy )y, M9 = Py

where y = C,v.
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