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4.4 Multiple Weakly Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Preliminary concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Multiple weakly mixing results . . . . . . . . . . . . . . . . . . . . . 93

2



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  BBeeyyeerrss,,  FF  JJ  CC    ((22000055))  

Chapter 1

Basics of measure-theoretic
dynamical systems

1.1 Introduction

1.1.1 Background

The use of Hilbert space theory became an important tool for ergodic theoreticians ever
since John von Neumann proved the fundamental Mean Ergodic Theorem in Hilbert
space. Recurrence is one of the corner stones in the study of dynamical systems. In this
dissertation we will investigate some extended ideas besides those of the basic, well-known
results regarding recurrence. We will look at multiple recurrence, and see that a Hilbert
space approach will help to prove certain multiple recurrence results as special cases.

Another very important use of Hilbert space theory became evident only relatively re-
cently, when it was realized that non-commutative dynamical systems become accessible
to the ergodic theorist through the important Gelfand-Naimark-Segal (GNS) represen-
tation of C∗-algebras as Hilbert spaces. Through this construction we are enabled to
invoke the rich catalogue of Hilbert space ergodic results to approach the more general,
and usually more involved, non-commutative extensions of classical ergodic-theoretical
results.

In order to make this text self-contained, we have included in this text the basic, standard,
ergodic-theoretical results. Where possible we also noted the instances where these results
have a Hilbert space counterpart. Chapters 1 and 2 are devoted to the introduction of the
basic ergodic-theoretical results such as an introduction to the idea of measure-theoretic
dynamical systems, citing some basic examples, Poincairé’s recurrence, the ergodic theo-
rems of Von Neumann and Birkhoff, ergodicity, mixing and weakly mixing. We also state
some of the rudimentary results regarding these ideas, and supply many of the basic tools
used in proofs of subsequent theorems.

In Chapter 3 we show how a Hilbert space result, i.e. a variant of a result by Van der
Corput for uniformly distributed sequences modulo 1, is used to simplify the proofs of
some multiple recurrence problems.
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First we use it to simplify and clarify the proof of a multiple recurrence result by Fursten-
berg, and also to extend that result to a more general case, using the same Van der Corput
lemma. This may be considered the main result of this thesis, since it supplies an original
proof of this result. The Van der Corput lemma helps to simplify many of the tedious
terms that are found in Furstenberg’s proof.

In Chapter 4 we list and discuss a few important results where classical (commutative)
ergodic results were extended to the non-commutative case. As stated before, these
extensions are mainly due to the accessibility of Hilbert space theory through the GNS
construction. The main result in this section is a result proved by Niculescu, Ströh and
Zsidó, which is proved here using a similar Van der Corput lemma as in the commutative
case. Although we prove a special case of the theorem by Niculescu, Ströh and Zsidó, the
same method (Van der Corput) can be used to prove the generalized result.

1.1.2 Measure-theoretic dynamical systems

The main ideas for the discussion in this section were obtained from [3], p 1187 and [6],
p 657.

Ergodic theory can be described as the study of statistical properties of measure-preserving
dynamical systems.

We say that (X,B, µ, T ) is a measure-preserving dynamical system, if (X,B, µ) is a com-
plete probability space and T : X → X is a measure-preserving transformation (m.p.t) in
the sense that T satisfies the following conditions:

(a) T is bijective

(b) TA, T−1A ∈ B for all A ∈ B and

(c) µ(T−1A) = µ(A) for all A ∈ B.

In some instances the assumption that T is bijective is not always included. It is, however,
convenient to assume that T is bijective, but it should be noted that many ergodic results
also hold under weaker assumptions.

A fundamental question in statistical mechanics concerns the existence of certain types
of time averages. The problem may be formulated as follows: The momentary state of
a mechanical system is described by specifying a point in a "phase space" X. When the
mechanical system is assumed to be governed by the classical Hamiltonian equations, it
is subject to a principle of scientific determinism whereby it is known that an initial state
x will, after t seconds have elapsed, have passed into a uniquely determined new state
y. Since y is uniquely determined by x and t, a function T : X → X is defined by the
equation y = Tt(x). The flow Tt is assumed to have the property that

Tt(Ts(x)) = Tt+s(x)

for all points x in phase space and for all times s and t. This identity holds for certain
mechanical systems and in particular if the Hamiltonian function is independent of time.
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Any numerical quantity determined by the momentary state of the mechanical system will
be given as a real function f defined on X. If the initial state of the system is specified
by the point x in X, the value of the quantity f at a time t will be f(Tt(x)). For practical
purposes, we are in most cases unable to observe a state directly, but rather an average
value of f(Tt(x)) i.e

1

N

∫ N

0

f(Tt(x))dt

computed over a time interval 0 ≤ t ≤ N .

If observations regarding micro-processes are made, like gas in a vessel, we usually find
that the quantity N , which is determined by the inertial character of "macroscopic" ob-
servational instruments we use, is very large compared to the natural rate of evolution
of the mechanical system under consideration. For example, regarding the gas vessel,
in each second, the molecules travel thousands of feet and recoil from the wall millions
of times. Thus, the time N involved in the experiment is large enough to give a good
approximation for the limit

lim
N→∞

1

N

∫ N

0

f(Tt(x))dt.

Thus it is central in ergodic theory to determine whether or not, or under what circum-
stances the limit above exists.

It should be noted that ergodic theory is not only intended to be used for observation and
interpretation at "micro"-level. At macro level, useful averages, or approximate averages
can be obtained through scientific study over sufficiently large time intervals, by studying
the historical information of a system from the distant past to the present.

Additional to the uses of ergodic theory mentioned above, it also has interesting philosoph-
ical implications, such as recurrence, many of which are not understood quite correctly
amongst laymen.

Historically, a mechanical system is said to be ergodic if it has the property that the
above limit (the time mean) is the constant space mean taken with respect to the ordinary
Lebesque measure µ in the phase space X, i.e.

lim
N→∞

1

N

∫ N

0

f(Tt(x))dt =

∫
X

fdµ

µ(X)
=

∫
X

fdµ.

This tells us that, if the ergodic assumption is accepted, then we can use the averages
obtained over sufficiently large time intervals to obtain global information about a state in
X. It is hence obvious to note that a mathematical definition of ergodicity will include the
idea that the time-orbit of a state x (T nx) must traverse almost the whole of X eventually,
just as the whole space x is traversed during the calculation of the space mean.
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For our purposes, it is convenient to focus on the case where the flow Tt is taken over
discrete instead of continuous time. This restriction will not impact our study negatively,
since we will only be studying the long-term behavior of dynamical systems.

Now, Tn+m = TnTm and Tn = T n
1 , and hence, for a given measure-preserving transforma-

tion, the map (n, x) 7→ T nx defines a group action of the integers on X, where n ∈ Z and
x ∈ X. It is indeed of considerable interest to consider more general group or semigroup
actions on X of measure-preserving flows, that is actions of R on X, but we will restrict
ourselves to the case where the group acting on X is Z. Hence we will be looking at
averages of the form

1

N

N−1∑
n=0

f(T n
1 (x)), f ∈ Lp(X,B, µ)

where T1 is a mapping of X into itself, instead of the averages

1

N

∫ N

0

f(Tt(x))dt.

Hence we see that in the case where we use discrete time the problem is to determine
whether the time mean

lim
n→∞

n−1∑
k=0

f(T kx)

exists and is equal to the space mean ∫
X

fdµ

for almost all x ∈ X with respect to µ. In other words, the claim is here that the space
mean of an observable quantity can be derived almost surely from discrete measurements
along the time evolution of a single state x ∈ X.

It has been shown that some stronger assumptions about dynamical systems are also
useful. These assumptions are called strongly mixing and weakly mixing. Both these
conditions imply ergodicity. The principal part of this dissertation will involve weakly
mixing, and also multiple weakly mixing. After the concepts of ergodicity, weakly mixing
and strongly mixing have been introduced, we will also be in a position to consider weakly
mixing and recurrence of "higher orders" in more detail. We will see that a wide variety
of multiple recurrence results can be proved. This adds to the rich store of practical and
philosophical implications that ergodic theory provides for the field of dynamical systems.

Besides the question regarding time averages and space averages (which is a quantita-
tive problem) we may investigate the recurrence behavior of sets. Poincaré supplied the
first recurrence result, and as mentioned earlier, the ideas regarding recurrence provide
a rich array of profound philosophical implications for our understanding of dynamical
systems. Recurrence and multiple recurrence also provide an important link to the field
of combinatorial number theory.

As mentioned in section 1.1.1, many analogues of classical (commutative) ergodic theo-
retical results exist in a non-commutative setting. This dissertation will be concluded by
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showing how some recurrence and multiple recurrence results can be extended to more
general spaces. Ergodic theory has historically been studied with regard to classical dy-
namical systems, where the assumption of commutativity of the underlying phase space is
plausible. Only fairly recently has it been noted that many ergodic results can be extended
to non-commutative spaces such as C∗-algebras. This may have important implications
for the field of quantum dynamics.

1.1.3 Examples of measure-preserving transformations, dynam-
ical systems and associated spaces

The following examples were drawn from [11] (examples 1-4,6,7), [21] (examples 5, 8, 11)
and [9] (example 10).

Some examples of typical measure spaces we may consider are:

1. Finite-dimensional Euclidian spaces with Borel measurability or Lebesque measure.

2. The unit interval with the same definitions of measurability and measure.

3. The set of all sequences x = {xn} of 0’s and 1’s, n ∈ Z; the measurable sets are
the elements of the σ-algebra generated by sets of the form {x : xn = 1}, and
the measure is determined by the condition that its value on the intersection of k
generating sets is always 1/2k.

4. A simple example of an invertible measure-preserving transformation on the real
line is defined by Tx = x + 1. More generally, in a finite-dimensional Euclidean
space, let c be an arbitrary vector and define T by Tx = x + c which is a m.p.t.

The following example of a measure-preserving dynamical system is the well-known
Hamiltonian dynamical system.

5. Hamiltonian system

The state at any time t of a physical system consisting of N particles can be specified
by the three coordinates of position and the three of momentum of each particle,
that is by a point in R6N , which is the phase space of the system. More generally
(allowing for changes of variables and constraints on the system), let the state of
the system be described by a pair of vectors (q, p), where p = (p1, . . . , pn) (the
"generalized momentum") and q = (q1, . . . , qn) (the "generalized position") are in
Rn, in which case the phase space is R2n. There is given a (C2) Hamiltonian function
H(q, p), which we assume to be independent of time, and which is typically the sum
of the kinetic energy K(p) and potential energy U(q) of the system. Hamilton’s
equations are

dqi

dt
=

∂H

∂pi

,
dpi

dt
= −∂H

∂qi

(i = 1, 2, . . . , n).
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These equations determine the state Tt(q, p) at any time t if the system has initial
state (q, p), by the theorem on the existence and uniqueness of solutions of first-
order ordinary differential equations. We obtain in this way a one-parameter flow
{Tt : −∞ < t < ∞} on the phase space R2n.

The study of Hamiltonian systems, brings ergodic theory in contact with a wide
range of dynamical systems which can be modelled by the Hamiltonian equations.
Such systems range from micro level such as gas molecules to macro level such as
planets and galaxies.

Naturally, we can construct numerous examples of transformations which are not
both measure-preserving and bijective.

6. A typical example of a bijective but not measure-preserving transformation on the
real line is given by Tx = 2x; we have that µ(T−1E) = 1

2
µ(E) for every Borel set E

(where µ is the Lebesque measure).

We can define a closely related transformation and show that it is measure-preserving.
Let Tx = 2x (mod 1), i.e. consider the half-open interval [0, 1) and write Tx = 2x
when 0 ≤ x < 1/2 and Tx = 2x− 1 when 1/2 ≤ x < 1. For example, if

E =

[
2

8
,
5

8

)
,

then

T−1E =

[
2

16
,

5

16

)
∪
[
1

2
(
2

8
+ 1),

1

2
(
5

8
+ 1)

)
,

and we calculate that

µ(T−1E) =
3

16
+

3

16
=

3

8
= µ(E).

Similarly it follows that
µ(T−1E) = µ(E)

whenever E is a half-open interval with rational endpoints, and hence it follows that
T is measure preserving. Since T is not one-to-one, and since it cannot be made
one-to-one by any alteration of a set of measure zero, we have obtained an example
of a transformation that is measure-preserving, but not bijective. In this instance
we succeeded to make the transformation measure-preserving, but at the price of
bijectivity.

7. An elementary example of a bijective measure preserving transformation is given
by the transformation defined on R2 by T (x, y) =

(
2x, 1

2
y
)
. The inverse image

of the unit square is a rectangle with base 1
2

and altitude 2. Since, similarly, the
inverse image of every rectangle is a rectangle of the same area, it follows that T is
a measure-preserving transformation; clearly T is invertible.
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8. Stationary stochastic processes

Let (Ω,F , P ) be a probability space and . . . f−1, f0, f1, f2, . . . a sequence of mea-
surable functions on Ω. Suppose that the sequence is stationary, in that for any
n1, n2, . . . nr, any Borel subsets B1, B2, . . . Br of R, and any k ∈ Z,

P{ω : fn1(ω) ∈ B1, . . . fnr(ω) ∈ Br}
= P{ω : fn1+k(ω) ∈ B1, . . . , fnr+k(ω) ∈ Br}.

Such a stationary process corresponds to a measure-preserving system in a standard
way.

Let RZ = {(. . . x−1, x0, x1, . . .) : each xi ∈ R}, define

φ : Ω → RZ by (φω)n = fn(ω)

for all n ∈ Z, and define µ on the Borel subsets of RZ by

µ(E) = P (φ−1E).

Extend µ to the completion B of the Borel field. Let σ : RZ → RZ be the shift
transformation defined by

(σx)n = xn+1.

Because of the stationarity of {fn}, µ is shift-invariant on cylinder sets and hence
on all of B, so that we have constructed a measure-preserving system (RZ,B, µ, σ).

9. The Baker’s transformation

Let X be the space of the sequences x = {xn}, n = 0,±1,±2, · · · , described in (3);
let T be the transformation induced by a unit shift on the indices, i.e.

Tx = y = {yn}, where yn = xn+1.

The mapping is measure-preserving and bijective.

If the elements of X are restricted to sequences {xn} (with n = 0, 1, 2, · · · i.e. X is
the unilateral sequence space), the same equation defines a measure-preserving but
non-invertible (two-to-one) transformation.

There is a mapping S from the unilateral sequence space to the unit interval; S sends
the sequence {xn} of 0’s and 1’s onto the binary expansion .x1x2 · · · . The transfor-
mation S is measure-preserving and can be made one-to-one by suitably defining S.
Since the set of sequences whose image is rational and the set of rational numbers
are both countably infinite, we can suitably define S on these sequences, whereby
we obtain an invertible measure-preserving transformation from the sequences onto
the unit interval. The existence of such a transformation shows that the measure-
theoretic structures of the two spaces are isomorphic. The isomorphism (i.e. the
transformation S) carries the unilateral shift T onto an invertible measure-preserving
transformation T

′
on the interval; T

′
is defined by T

′
= STS−1. An examination

of the definitions of S and T shows that T
′
is: T

′
x = 2x (mod 1) (as seen in (6))

almost everywhere.
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There is a natural correspondence between the bilateral sequence space and the
Cartesian product of the unilateral sequence space with itself; the correspondence
sends

{· · · , x−2, x−1, x0, x1, x2, · · · } onto ({x0, x1, x2, · · · }, {x−1, x−2, · · · }) .

This correspondence is an invertible measure-preserving transformation and there-
fore, a measure-theoretic isomorphism. If we denote this isomorphism by P and if
we denote by Q the Cartesian product S × S (so that Q(x, y) = (Sx, Sy) when-
ever x and y are unilateral sequences), then the composite transformation QP is
an isomorphism from the bilateral sequence space onto the unit square. This iso-
morphism carries the bilateral shift onto an invertible measure-preserving trans-
formation T

′′
on the square. An examination of the definition shows that T

′′
is

close to the transformation in (8), given by T
′′
(x, y) =

(
2x, 1

2
y
)

when 0 ≤ x < 1
2

and T
′′
(x, y) =

(
2x, 1

2
(y + 1)

)
when 1

2
≤ x <1. (These equations, valid almost

everywhere, must be taken modulo 1).

The transformation T
′′

can be described geometrically as follows. Transform the
unit square by the linear transformation that sends (x, y) onto

(
2x, 1

2
y
)
, getting a

rectangle whose bottom edge is [0, 2) and whose left edge is [0, 1/2); cut of the right
half of this rectangle (with bottom edge [1, 2)) and move it, by translation, to the
top half of the unit square.

These actions remind one of the action of kneading dough, and hence the transfor-
mation T

′′
is often called the baker’s transformation.

10. Bernoulli shifts

A Bernoulli system is the dynamical system that corresponds to a stochastic process
of infinitely many independent, identically distributed (i.i.d.), Bernoulli trials. More
precisely, a Bernoulli system consists of a space Ω which is the space of all sequences
{ωn}n∈Z with values in a finite set, say, Γ = {0, 1, . . . r}. We assign to each ωn a

weight pn such that all pn > 0 and
r∑

n=0

pn = 1. A σ-algebra of sets B is obtained in

Ω by letting B be the smallest σ-algebra for which ω → ωn is measurable:

µ{ω : ωi1 = j1, ωi2 = j2, . . . ωik = jk} = pj1pj2 , . . . pjk
.

Hence the measure-preserving transformation T in this system is the shift T{ωn} =
{ωn+1}.

11. Automorphisms of compact groups

Let G be a compact group and T : G → G a continuous automorphism. The
uniqueness of normalized Haar measure implies that it is T -invariant.
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1.2 Recurrence

In order to discuss the asymptotic properties of a measure-preserving transformation T ,
i.e. the properties of the sequence T n, the powers of T must make sense; for this reason
we shall restrict our attention to transformations from a set X into itself [11].

The earliest and simplest asymptotic questions were raised by Poincairé (Calcul des prob-
abilités, 1912), concerning recurrence.

Definition: recurrence

If T is a measurable transformation on X and B ∈ B, then a point x ∈ B is said to be
recurrent with respect to B if there is a k ≥ 1 for which T kx ∈ B.

1.2.1 Theorem (Poincaré Recurrence Theorem)

Let (X,B, µ) be a probability space and T : X → X a measure-preserving transformation.
For each B ∈ B, almost every point of B is recurrent with respect to B.

Proof:

Let F be the set of all those points of B which are not recurrent with respect to B; then

F = B −
∞⋃

k=1

T−kB = B ∩ T−1(X −B) ∩ T−2(X −B) ∩ . . . .

If x ∈ F, then T nx /∈ F for each n ≥ 1. Thus F ∩ T−nF = ∅ for n ≥ 1, and hence
T−kF ∩ T−(n+k)F = ∅ for each n ≥ 1 and each k ≥ 0. Then the sets F, T−1F, T−2F, . . .
are pairwise disjoint and each has measure µ(F ).

Since µ(X) = 1 < ∞, µ(F ) =0. �

The recurrence theorem above implies a stronger version of itself. Not only is it true that
for almost every x ∈ B at least one term of the sequence T nx belongs to B; in fact:

1.2.2 Corollary ([11], p 10)

For almost every x ∈ B, there are infinitely many values of n such that T nx ∈ B.

Proof:

If Fn is the set of points of B that never return to B under the action of T n, then, by the
recurrence theorem, µ(Fn) = 0. If

x ∈ B − (F1 ∪ F2 ∪ . . .),

then T nx ∈ B for some positive n, since x ∈ B − F1. Similarly, since x ∈ B − Fn, it
follows that

T knx ∈ B

11
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for some positive k. The stronger version of the recurrence theorem then follows by an
inductive repetition of this twice-repeated argument. �

The conclusion of the recurrence theorem can be formulated in terms of the characteristic
function χB as follows: for almost every x ∈ B, the series

∑
χB(T nx) diverges. This

conclusion can be generalized:

1.2.3 Corollary ([11], p 12)

If f is an arbitrary non-negative measurable function, then for almost every x ∈ {x :
f(x) > 0}, the series ∑

f(T nx)

diverges.

Proof:

Consider, for every positive integer k, the set Bk where f(x) > 1
k
. The recurrence theorem

implies that for almost every x ∈ Bk the point T kx will return to Bk infinitely often; the
desired result follows by forming the union of the Bk’s. �

1.3 The fundamental ergodic theorems

1.3.1 The Mean Ergodic Theorem

The main ideas for the discussion that follows, including the introduction and discussion
of the unitary operator U and the subsequent example, was drawn from [11].

Poincairé’s Recurrence Theorem states that almost every point of each measurable set B
returns to B infinitely often under a transformation T , and under appropriate conditions.

The following question may be asked: how long do the recurring points spend in B? This
problem can be formulated more precisely as follows: given a point x (in B or not), and
given a positive integer n, form the ratio of the number of these points that belong to B
to the total number (i.e. to n), and evaluate the limit of these ratios as n tends to infinity,
if this limit exist in a meaningful sense.

Hence we should consider the ratio

1

n

n−1∑
k=0

χB(T kx).

This average is called the mean sojourn of x and we are therefore concerned with the
problem of convergence of the mean sojourn.

12
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The unitary operator U .

We will not restrict ourselves to characteristic functions. If f is any arbitrary function on
X, then another function g on X may be defined by g(x) = f(Tx). If we write g = Uf ,
then U is a mapping that operates on functions. The mapping U has some important
properties.

1. The most obvious property of U is its linearity, i.e.

U(af + bg)(x) = (af + bg)(Tx) = (af)(Tx) + (bg)(Tx)

= af(Tx) + bg(Tx) = aUf(x) + bUg(x)

for any complex-valued functions f and g on X, complex scalars a and b and any
x ∈ X.

2. If T is measure-preserving, then U also has the property that it sends L1(X,B, µ)
into itself, and moreover, is an isometry on L1(X,B, µ). This implies that if f ∈ L1,
then

Uf ∈ L1 and ‖f‖1 = ‖Uf‖1.

To show that U is an isometry, we follow a standard approximation tool. If χB is the
characteristic function of the set B of finite measure, then UχB is the characteristic
function of T−1B. Also, ‖χB‖1 = µ(B). From this and from the linearity of U it
follows that U is norm-preserving on finite linear combinations of such characteristic
functions, i.e. on simple functions. If f is a non-negative function, then f is the
pointwise limit of an increasing sequence fn of simple functions. Since Ufn is also
an increasing sequence of non-negative functions, it follows from the theorem on
integration of monotone sequences that

lim
n→∞

‖Ufn‖1 = ‖Uf‖1

as well as
lim

n→∞
‖fn‖1 = ‖f‖1.

This proves the result for non-negative functions. The general case follows from the
fact that the norm of every f in L1 is the same as the norm of |f |. (Note that it
was not necessary to assume that µ(X) < ∞).

3. The fact that U is an isometry on L1 implies that U is an isometry on L2. To see this,
note that ‖f‖2 =

√
‖f 2‖1. If T is a bijective measure-preserving transformation,

then U is a bijective isometry, with U−1f(x) = f(T−1x). An invertible isometry on
a Hilbert space is a unitary operator ([16] Theorem 3.10-6(f)). This U : L2 → L2 is
called the unitary operator induced by T.

13
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4. An auxiliary fact about isometries may be noted at this stage: if U is an isometry,
then Uf = f if and only if U∗f = f . To see this, note that Uf = f =⇒ U∗Uf =
U∗f =⇒ f = U∗f , if we recall for an isometry U , U∗U = 1. Conversely, if U∗f = f ,
then

‖Uf − f‖2 = 〈Uf − f, Uf − f〉 = ‖Uf‖2 − 〈f, Uf〉 − 〈Uf, f〉+ ‖f‖2.

Since 〈f, Uf〉 = 〈U∗f, f〉 = ‖f‖2, and 〈Uf, f〉 = 〈f, U∗f〉 = ‖f‖2.

Hence
‖Uf − f‖2 = 0 and Uf = f.

Considering the properties of the unitary operator U , we find that one of the basic
asymptotic problems of ergodic theory reduces to the limiting behavior of averages

1

n

n−1∑
k=0

Uk

where U is an isometry on a Hilbert space.

Example

If the Hilbert space under consideration is one-dimensional, the Mean Ergodic Theorem
is quite simple, but still interesting. In this case, the isometry is determined by a complex
number u such that |u| = 1. Now consider the average

1

n

n−1∑
k=0

uk.

If u = 1, then each average is equal to 1. If u 6= 1, then∣∣∣∣∣ 1n
n−1∑
k=0

uk

∣∣∣∣∣ =

∣∣∣∣ 1− un

n(1− u)

∣∣∣∣ ≤ 2

n|1− u|
−→ 0,

as n →∞. Hence the averages converge to 0.

We see that the averages converge to a function p, which can be seen to be a projection
on the space of all elements f such that uf = f .

If we consider the finite-dimensional case, every isometry is given by a unitary matrix,
which, without loss of generality, may be assumed to be a diagonal matrix. Since the
diagonal entries of such a matrix U are complex numbers with absolute value 1, it follows
that the averages converge to a diagonal matrix with diagonal entries 0’s and 1’s. The
limit matrix, say P , is also a projection in this case, i.e. the projection on the space of
all vectors f such that Uf = f .

We will now proceed to state and prove the Mean Ergodic Theorem in Hilbert space. We
will also state and prove Von Neumann’s Mean Ergodic Theorem in L2.

14
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1.3.1.1 Mean Ergodic Theorem in Hilbert space. ([3], p 1192)

Let H be a Hilbert space, U : H 7→ H a unitary operator and let M = {f ∈ H : Uf = f}.
If P : H 7→ M is the projection of H onto M, then∥∥∥∥∥1

n

n−1∑
k=0

Ukf − Pf

∥∥∥∥∥ −→ 0.

Proof:

M is a closed linear (vector) subspace of H.

Linearity of M : If f, g ∈ M , and α some constant, then αf + g = αUf + Ug = U(αf) +
Ug = U(αf + g).

M is closed : Suppose f ∈ M , then there is a sequence (fn) ⊂ M , fn → f . Hence the
sequence (Ufn) converges to f . Also, since

‖Ufn − Uf‖ = ‖U(fn − f)‖ = ‖fn − f‖ → 0, Ufn → Uf.

Thus f = Uf . Hence M ⊂ M , so M is closed.

Let N := {Uf − f |f ∈ H}. Now N is also a closed linear subspace of H.

Linearity of N : If f, g ∈ N , and α some constant, then

αf + g = α(Uh− h) + Ur − r

for some h, r ∈ H. We now obtain the following:

α(Uh− h) + Ur − r = U(αh)− αh + Ur − r = U(αh + r)− (αh + r),

which is an element of N .

N is closed : Suppose f ∈ N , then there is a sequence (fn) ⊂ M , fn → f . Hence there is
a sequence

(gn) ⊂ H (with fn = Ugn − gn), Ugn − gn → f .

It follows that the sequences (Ugn) and (gn) are both convergent in H. Let Ugn → h ∈ H
and gn → g ∈ H.

Now,
‖Ugn − Ug‖ = ‖U(gn − g)‖ = ‖gn − g‖ → 0, Ugn → Ug.

Hence h = Ug. Therefore Ugn − gn → Ug − g, so f = Ug − g. Hence N ⊂ M , so N is
closed.

We now proceed to show that H = M ⊕N .

15
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If g⊥N then 〈Uf, g〉 = 〈f, g〉 for all f ∈ H since

〈Uf, g〉 − 〈f, g〉 = 〈 Uf − f, g〉 = 0.

Hence
〈f, U−1g − g〉 = 〈f, U−1g〉 − 〈 f, g〉 = 〈Uf, g〉 − 〈f, g〉 = 0

for all f ∈ H. Therefore U−1g = g so g = Ug and N⊥ ⊂ M . If Uf = f then

〈f, Ug − g〉 = 〈f, Ug〉 − 〈 f, g〉 = 〈Uf, Ug〉 − 〈 f, g〉 = 〈f, U−1Ug〉 − 〈 f, g〉 = 0

for all g ∈ H. Hence we also have M ⊂ N⊥, so M = N⊥. Thus H = N⊥ ⊕N = M ⊕N .

This implies that if g := f −Pf (for any f ∈ H), then f = Pf + (f −Pf) = Pf + g and
since Pf ∈ M , g ∈ N (since H = M ⊕N). Note also that any unitary operator U is an
isometry, i.e

‖Uf‖2 = 〈Uf, Uf〉 = 〈f, U−1Uf〉 = 〈f, f〉 = ‖f‖2.

Therefore, there is an h ∈ H such that∥∥∥∥∥ 1

n

n−1∑
k=0

Ukg

∥∥∥∥∥ =

∥∥∥∥∥ 1

n

n−1∑
k=0

(Uk(Uh− h))

∥∥∥∥∥
=

∥∥∥∥∥ 1

n

n−1∑
k=0

(Uk+1h− Ukh)

∥∥∥∥∥
=

∥∥∥∥ 1

n
(Unh− h)

∥∥∥∥
6 1/n[‖Unh‖+ ‖h‖]

= 2/n ‖h‖ −→ 0 as n →∞.

Now, since

1

n

n−1∑
k=0

Ukg =
1

n

n−1∑
k=0

Uk(f − Pf) =
1

n

n−1∑
k=0

(Ukf − Pf) =
1

n

n−1∑
k=0

Ukf − Pf,

it follows immediately that∥∥∥∥∥ 1

n

n−1∑
k=0

Ukf − Pf

∥∥∥∥∥ =

∥∥∥∥∥1

n

n−1∑
k=0

Ukg

∥∥∥∥∥ −→ 0

as n →∞. �

From this result follows the Mean Ergodic Theorem of Von Neumann. Recall our definition
of the term measure preserving transformation (m.p.t) . Let (X,B, µ) be a probability
space such that B contains all subsets of sets of measure 0. Let T : X 7→ X be a bijective
(a.e.) map such that T and T−1 are both measurable and T−1B = TB = B. Assume
further that µ(T−1E) = µ(E) for all E ∈ B. Then T is called a measure preserving
transformation (m.p.t.).

16
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1.3.1.2 Corollary

Let (X,B, µ) be a probability space, T : X 7→ X a measure-preserving transformation,
and let f ∈ L2(X,B, µ). Then there is a function f ∈ L2(X,B, µ) for which∥∥∥∥∥ 1

n

n−1∑
k=0

f ◦ T k − f

∥∥∥∥∥
L2(X)

−→ 0

as n →∞.

Proof:

Let U : L2 → L2 be the unitary operator induced by T , as discussed above.

Now since Uf = f ◦ T , Ukf = f ◦ T k. Let H = L2(X,B, µ) and let the set M and
the projection P be as in Theorem 1.3.1.1. Let f := Pf for f ∈ H. Then it follows
immediately from Theorem 1.3.1.1 that∥∥∥∥∥ 1

n

n−1∑
k=0

f ◦ T k − f

∥∥∥∥∥
2

=

∥∥∥∥∥1

n

n−1∑
k=0

Ukf − Pf

∥∥∥∥∥ −→ 0

as n →∞. �

As promised earlier, we can now state a recurrence result for sets, called Khintchine’s
theorem. We need a preliminary notion: i.e. relative density. We give the formulation
supplied in [21]. A set E ⊂ Z is called relatively dense if there is a positive integer k such
that

E ∩ {j, j + 1, . . . , j + k − 1} 6= ∅ for each j ∈ Z.

We also say that, in this case, the set E has bounded gaps.

First, we will state and prove a generalized Hilbert space version of Khintchine’s theorem,
and give the conventional theorem thereafter as a direct corollary.

1.3.1.3 Theorem ([7], p 435)

Let H, U and P be as in the Mean Ergodic Theorem above. Consider any x, y ∈ H and
ε > 0. Then the set

E =
{
k ∈ N :

∣∣〈x, Uky
〉∣∣ > |〈x, Py〉| − ε

}
is relatively dense in N.

Proof:

Given any ε > 0. By the Mean Ergodic Theorem (Theorem 1.3.1.1) there exists an n ∈ N
such that ∥∥∥∥∥1

n

n−1∑
k=0

Uky − Py

∥∥∥∥∥ <
ε

‖x‖+ 1
.

17
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Since UPy = Py and ‖U‖ ≤ 1, it follows for any j ∈ N that∥∥∥∥∥ 1

n

j+n−1∑
k=j

Uky − Py

∥∥∥∥∥ =

∥∥∥∥∥U j

(
1

n

n−1∑
k=0

Uky − Py

)∥∥∥∥∥
≤
∥∥U j

∥∥∥∥∥∥∥1

n

n−1∑
k=0

Uky − Py

∥∥∥∥∥
≤

∥∥∥∥∥1

n

n−1∑
k=0

Uky − Py

∥∥∥∥∥
<

ε

‖x‖+ 1

therefore ∣∣∣∣∣
〈

x,
1

n

j+n−1∑
k=j

Uky − Py

〉∣∣∣∣∣ ≤ ‖x‖

∥∥∥∥∥1

n

j+n−1∑
k=j

Uky − Py

∥∥∥∥∥ < ε.

Hence ∣∣∣∣∣ 1

n

j+n−1∑
k=j

〈
x, Uky

〉
− 〈x, Py〉

∣∣∣∣∣ ≤
∣∣∣∣∣
∣∣∣∣∣ 1n

j+n−1∑
k=j

〈
x, Uky

〉∣∣∣∣∣− |〈x, Py〉|

∣∣∣∣∣ < ε,

and then we obtain that

|〈x, Py〉| − ε <

∣∣∣∣∣ 1n
j+n−1∑

k=j

〈
x, Uky

〉∣∣∣∣∣ ≤ 1

n

j+n−1∑
k=j

∣∣〈x, Uky
〉∣∣

and so
∣∣〈x, Uky

〉∣∣ > |〈x, Py〉| − ε for some k ∈ {j, j + 1, ..., j + n− 1}, i.e. E is relatively
dense in N. �

We see from Khintchine’s theorem that for every k ∈ E, the set B contains a set B∩T−kB
of measure larger than µ(B)2 − ε which is mapped back into B by T k.

1.3.1.4. Khintchine’s theorem

For any B ∈ B and any ε > 0, the set

E = {k ∈ N : µ(B ∩ T−kB) ≥ µ(B)2 − ε}

is relatively dense.

Proof:

Let H = L2(X,B, µ) and let y = x = χB ∈ L2(X,B, µ) in Theorem 1.3.1.3. �

Hence Khintchine’s theorem provides a sharper, quantitative indication of the strength of
Poincairé recurrence.
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1.3.2 The Pointwise Ergodic Theorem

Another fundamental ergodic-theoretical result is Birkhoff’s ergodic theorem, which is
also known as the Individual (or Pointwise) Ergodic Theorem.

This theorem is proved using a standard preliminary result, called the Maximal Ergodic
Theorem, which will show that the average

1

n

n−1∑
k=0

f(T kx)

is convergent almost everywhere. In Theorems 1.3.2.1 - 1.3.2.3 we will follow the formu-
lation given in [21], p 27.

The notation f ∗ will be used to indicate the following maximum of the above averages,
i.e.

f ∗(x) = sup
n≥1

1

n

n−1∑
k=0

f(T kx).

1.3.2.1 Maximal Ergodic Theorem

If f ∈ L1(X,B, µ), then ∫
{f∗>0}

fdµ > 0.

Then also ∫
{f∗>0}

fdµ > 0,

since for each ε > 0 we have

0 6
∫
{(f+ε)∗>0}

(f + ε)dµ 6
∫
{f∗>−ε}

fdµ + ε,

and we can let ε decrease to 0.

Proof:

The set {x ∈ X : f ∗(x) > 0} is the disjoint union of the sets

B1 = {x : f(x) > 0}
B2 = {x : f(x) 6 0, f(x) + f(Tx) > 0}
B3 = {x : f(x) 6 0, f(x) + f(Tx) < 0, f(x) + f(Tx) + f(T 2x) > 0}
...
Bn = {x : f(x) 6 0, ..., f(x) + ... + f(T n−2x) 6 0, f(x) + ... + f(T n−1x) > 0}
...
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We will show that ∫
B1∪...∪Bn

fdµ > 0

for all n = 1, 2, .... Since

{x : f ∗(x) > 0} =
∞⋃

n=1

Bn,

and
lim

n→∞
χB1∪...∪Bnf

it will follow by the Dominated Convergence Theorem applied to χB1∪...∪Bnf that∫
{f∗>0}

fdµ = lim
n→∞

∫
{f∗>0}

χB1∪...∪Bnfdµ

= lim
n→∞

∫
B1∪...∪Bn

fdµ

=≥ 0.

Fix an n = 1, 2, .... We break B1 ∪ ... ∪ Bn into a union of disjoint pieces, over each of
which the integral of f is non-negative.

We now make three observations:

1. T kBn ⊂ B1 ∪ ... ∪Bn−k for k = 1, 2, ..., n− 1.

This is so because if x ∈ Bn, then

f(x) + f(Tx) + ... + f(T k−1x) ≤ 0,

while
f(x) + f(Tx) + ... + f(T k−1x) + f(T kx) + ... + f(T n−1x) > 0,

and it follows that
f(T kx) + ... + f(T n−1x) > 0,

i.e.,
f(T kx) + f(T (T kx)) + ... + f(T n−k−1(T kx)) > 0.

∴ T kx ∈ B1 ∪ ... ∪Bn−k by the definition of the Bi’s.

2. The sets Bn, TBn, ..., T
n−1Bn are pairwise disjoint. Indeed, if T iBn ∩ T jBn 6= ∅

for some i < j , then Bn ∩ T j−iBn 6= ∅ , which contradicts the fact that the sets
Bn, n = 1, 2, ... are pairwise disjoint.
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3. If we let

B′
n = Bn, Cn = Bn ∪ TBn ∪ . . . ∪ T n−1Bn,

B′
n−1 = Bn−1 \ Cn, Cn−1 = B′

n−1 ∪ TB′
n−1 ∪ . . . ∪ T n−2B′

n−1,
...

B′
1 = B1 \ (C2 ∪ . . . ∪ Cn), C1 = B′

1,

we find the following: Each B′
k ⊂ Bk, hence the B′

k’s are pairwise disjoint. Also,
since Bk, TBk, . . . , T

k−1Bk are pairwise disjoint, B′
k, TB′

k, . . . , T
k−1B′

k are also pair-
wise disjoint within each Ck. Since the sets Bk are mutually disjoint, and the sets
B′

k ⊂ Bk, the sets Ck are mutually disjoint. Finally we also have that B1 ∪ . . . Bn =
C1 ∪ . . . Cn.

Finally we conclude that∫
B1∪...∪Bn

fdµ =
n∑

k=1

∫
Ck

fdµ =
n∑

k=1

∫
B′

k∪TB′
k∪...∪T k−1B′

k

fdµ

=
n∑

k=1

k−1∑
j=0

∫
T jB′

k

fdµ

=
n∑

k=1

k−1∑
j=0

∫
B′

k

fT jdµ

=
n∑

k=1

∫
B′

k

(f + fT + . . . + fT k−1)dµ

≥ 0,

since f + fT + . . . + fT k−1 > 0, by definition, on Bk ⊃ B′
k. �

1.3.2.2 Corollary

For each α ∈ R, ∫
f∗>α

fdµ ≥ αµ{f ∗ > α}.

Proof :

Let g = f − α, hence {f ∗ > α} = {g∗ > 0}, so that

0 ≤
∫

g∗>0

gdµ =

∫
f∗>α

(f − α)dµ,

and hence ∫
f∗>α

fdµ ≥ αµ{f ∗ > α}.

�

We now state and prove the Pointwise Ergodic Theorem of G.D. Birkhoff.
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1.3.2.3 Theorem

Let (X,B, µ) be a probability space, T : X → X a m.p.t. and f ∈ L1(X,B, µ). Then

(1) lim
n→∞

1

n

n−1∑
k=0

f(T kx) = f̄ exists a.e.;

(2) f̄(Tx) = f̄(x) a.e.;

(3) f̄ ∈ L1, and in fact ‖f̄‖1 ≤ ‖f‖1;

(4)
1

n

n−1∑
k=0

fT k → f̄ in L1;

(5) if A ∈ B with T−1A = A, then

∫
A

fdµ =

∫
A

f̄dµ.

Proof of the ergodic theorem:

1. For each α, β ∈ R with α < β, let

Eα,β =

{
x ∈ X : lim inf

n→∞

1

n

n−1∑
k=0

f(T kx) < α < β < lim sup
n→∞

1

n

n−1∑
k=0

f(T kx)

}
.

If we have that µ(Eα,β) = 0 for each α, β as defined above, then the union over all
rational α, β will also have measure 0, and hence the limit exists a.e. In this case we
will have that the set in X for which the limit in (1) does not exists, has measure
zero.

Now Eα,β is an invariant subset of {f ∗ > β}, and then by considering T restricted
to Eα,β, we see that ∫

Eα,β

fdµ ≥ βµ(Eα,β)

by the Maximal Ergodic Theorem.

Next we consider −f . Since if x ∈ Eα,β there is an n ≥ 1 with

1

n

n−1∑
k=0

f(T kx) < α,

we see that
Eα,β ⊂ {(−f)∗ > −α}.

Then, by the Maximal Ergodic Theorem,∫
Eα,β

−fdµ ≥ −αµ(Eα,β),
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i.e. ∫
Eα,β

fdµ ≤ αµ(Eα,β).

Therefore

βµ(Eα,β) ≤
∫

Eα,β

fdµ ≤ αµ(Eα,β),

and hence µ(Eα,β) = 0, since α < β.

2.

f̄T = lim
n→∞

1

n

n−1∑
k=0

f(T k(Tx)) = lim
n→∞

1

n

n−1∑
k=0

f(T k+1(x))

= lim
n→∞

1

n

n−1∑
k=0

f(T k(Tx)) = f̄ a.e.

3. Since ∣∣∣∣∣ 1n
n−1∑
k=0

fT k

∣∣∣∣∣ ≤ 1

n

n−1∑
k=0

|f |T k,

we have ∣∣∣∣∣ limn→∞

1

n

n−1∑
k=0

fT k

∣∣∣∣∣ ≤ lim
n→∞

1

n

n−1∑
k=0

|f |T k,

hence, |f̄ | ≤ |f |− with

|f |− = lim
n→∞

1

n

n−1∑
k=0

|f |T k

and thus∫
|f̄ |dµ ≤

∫
|f |−dµ ≤ lim inf

n→∞

∫
1

n

n−1∑
k=0

|f(T kx)|dµ =

∫
|f |dµ < ∞

using Fatou’s Lemma.

4. For bounded functions, the L1 convergence would follow from the Bounded Conver-
gence Theorem. The general case can then be proved by approximating by bounded
functions (which are dense in L1) and using (3). Since we may write f = f+ − f−

we can assume that f ≥ 0. If g is bounded and 0 ≤ g ≤ f , then∥∥∥∥∥ 1

n

n−1∑
k=0

fT k − f̄

∥∥∥∥∥
1

≤

∥∥∥∥∥ 1

n

n−1∑
k=0

(fT k − gT k)

∥∥∥∥∥
1

+

∥∥∥∥∥ 1

n

n−1∑
k=0

gT k − ḡ

∥∥∥∥∥
1

+
∥∥ḡ + f̄

∥∥
1
.
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By (3), the third term is less than or equal to ‖g − f‖1, which can be made arbi-
trarily small by appropriate choice of g. Similarly, the first term is also less than or
equal to ‖f − g‖1. But once g is fixed, the second term approaches 0 as n →∞, by
the Bounded Convergence Theorem. This proves (4).

5. ∣∣∣∣∣
∫

A

fdµ−
∑

A

f̄dµ

∣∣∣∣∣ =

∣∣∣∣∣
∫

A

(
1

n

n−1∑
k=0

fT k − f̄

)
dµ

∣∣∣∣∣
≤
∫

A

∣∣∣∣∣ 1n
n−1∑
k=0

fT k − f̄

∣∣∣∣∣ dµ =

∥∥∥∥∥ 1

n

n−1∑
k=0

fT k − f̄

∥∥∥∥∥
L1(A)

→ 0,

by (4). �
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Chapter 2

Ergodicity, Mixing, Weakly Mixing

2.1 Ergodicity

As discussed in [11], p 25, if T is a measure-preserving transformation on X and if X
is the union of two disjoint measurable sets E and F of positive measure, each of which
is invariant under T , then the study of any property of T on X reduces to the separate
studies of the corresponding properties of T on E and T on F . In such a situation T may
be called decomposable. The most significant transformations are the indecomposable
ones - usually referred to as metrically transitive or ergodic.

According to Halmos [11], p 25, "Ergodicity is one of the precise formulations of the
natural requirement that a transformation do a good job of stirring up the points of the
space it acts on."

We will define ergodicity in the following way: First, a set B ∈ B is called invariant
if µ(T−1B4B) = 0. This means that T−1B = B a.e. The transformation T (or, more
properly, the system (X,B, µ, T )) is called ergodic or metrically transitive if every invariant
set has measure 0 or 1.

Examples ([11], p 26)

1. The translation T defined by Tx = x + 1 on the space of integers is ergodic; the
translation T defined by Tx = x+2 is not, since the set of even numbers is invariant.
The translation T defined by Tx = x+1 on the real line is not ergodic (an example
of a non-trivial invariant set is

⋃
n∈N(n, n + 1

2
)).

2. If X is the circle group {z ∈ C : |z| = 1}, if c ∈ X, and T is defined by Tx = cx,
then T is ergodic for some values for c and not ergodic for others. If c is a root of
unity, i.e. cn = 1 for some n ∈ N, then T is not ergodic. To see this, note that the
function f(x) = xn is invariant under T since Tf(x) = f(cx) = cnxn = xn, and T
is non-constant. If c is not a root of unity, then T is ergodic. To see this, note that
the functions fn defined by fn(x) = xn, n ∈ Z form a complete orthonormal set in
L2. It follows that if f is in L2, then f =

∑
n anfn, where the series converge in
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the mean. Define the functional operator U as before, i.e. Uf(x) = f(Tx); since
Ufn = cnfn, it follows that Uf =

∑
n anc

nfn. If f is invariant, then an = anc
n for

all n, and hence an = 0 whenever n 6= 0. This shows that every invariant function
in L2 is a constant, hence that T is ergodic.

We will look at a few characterizations of ergodicity.

We say that a function f on X is invariant if f ◦ T = f a.e.

2.1.1 Lemma ([21], p 42)

(X,B, µ, T ) is ergodic if and only if every invariant measurable function on X is constant
a.e.

Proof :

Suppose every invariant measurable function is constant a.e., and let E ∈ B be an invariant
set. Then χE is constant a.e., so χE is either 0 a.e. or 1 a.e. Thus µ(E) is 0 or 1.

Conversely, suppose (X,B, µ, T ) is ergodic and f is an invariant measurable function.
Then for each r ∈ R, Er = {x ∈ X : f(x) > r} is measurable and invariant, hence has
measure 0 or 1. But if f is not constant a.e., there exists an r ∈ R such that 0 < µ(Er) < 1.
Therefore f must be constant a.e. �

2.1.2 Lemma ([21], p 43 and [11], p 34)

(X,B, µ, T ) is ergodic if and only if 1 is a simple eigenvalue of the transformation U
induced on L2(X,B, µ) (complex) by T.

Moreover, if (X,B, µ, T ) is ergodic, then every eigenvalue of U is simple and the set of
all eigenvalues of U is a subgroup of the circle group K = {z ∈ C : |z| = 1}.

Proof:

Since the space has finite measure, every constant function f is in L2. Since Uf = f ,
the number 1 is always an eigenvalue of U . Since the set of all constant functions is a
one-dimensional subspace of L2, and since T is ergodic if and only if the only invariant
functions in L2 are the constants, the first assertion is proved.

Since U is unitary, every eigenvalue of U has absolute value 1. This is so since if Uf = cf,
then f = cU∗f, so 〈Uf, f〉 = c〈f, f〉 and 〈Uf, f〉 = 〈f, U∗f〉 = 1/c̄〈f, f〉. Thus cc̄ = 1.
Hence, if f is an eigenfunction with eigenvalue c, i.e. f(Tx) = cf(x) a.e., then |f | is
invariant since |Uf | = |cf | = |f |. If both f and g are eigenfunctions with eigenvalues c,
then f/g is an invariant function since U(f/g) = (cf)/(cg) = f/g. (Note that since |g| is
a nonzero constant, f/g makes sense). This proves the simplicity of each eigenvalue. If,
finally, b and c are eigenvalues of U , with corresponding eigenfunctions f and g, then f/g
is an eigenfunction of U with eigenvalue b/c. This shows that the eigenvalues of U form
a group. �
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2.1.3 Theorem ([21], p 44)

(X,B, µ, T ) is ergodic if and only if for each f ∈ L1(X,B, µ) the time mean of f equals
the space mean of f a.e.:

f̄(x) = lim
n→∞

1

n

n−1∑
k=0

f(T kx) =

∫
X

fdµ a.e.

Proof:

Let (X,B, µ, T ) be ergodic. From Theorem 1.3.2.3 (2), f̄ is invariant, and hence it is
constant a.e. Also from the same theorem (5) we have∫

X

fdµ =

∫
X

f̄dµ = f̄(x) a.e.

Conversely, suppose that for each f ∈ L1(X,B, µ), we have that

f̄(x) =

∫
X

fdµ a.e.

This means that f̄ is constant a.e. Let f be any invariant function in L1(X,B, µ). Then

1

n

n−1∑
k=0

f(T kx) = f(x) a.e.,

for all n ∈ N, and so f = f̄ a.e. Thus f is constant a.e., and Lemma 2.1.1 implies that
(X,B, µ, T ) is ergodic. �

2.1.4 Theorem ([21], p 45)

(X,B, µ, T ) is ergodic if and only if for each f, g ∈ L2(X,B, µ) we have

lim
n→∞

1

n

n−1∑
k=0

〈Ukf, g〉 = 〈f, 1〉〈g, 1〉.

Proof:

If (X,B, µ, T ) is ergodic, then

lim
n→∞

1

n

n−1∑
k=0

〈Ukf, g〉 = 〈f̄ , g〉 =

〈∫
X

fdµ, g

〉
= 〈〈f, 1〉, g〉 = 〈f, 1〉〈1, g〉 = 〈f, 1〉〈g, 1〉.
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Conversely, given f ∈ L2(X,B, µ) ⊂ L1(X,B, µ), suppose 〈f̄ , g〉 = 〈f, 1〉〈g, 1〉 for all

g ∈ L2(X,B, µ). Then we must have f̄ = 〈f, 1〉 =

∫
X

fdµ a.e., so T is ergodic by the

preceding theorem. �

2.1.5 Corollary

T is ergodic if and only if

1

n

n−1∑
k=0

µ(T−kA ∩B) → µ(A)µ(B) for all A, B ∈ B.

Proof:

In Theorem 2.1.4 let f = χA and g = χB, and the result follows immediately. �

The mean sojourn time of x in E is defined to be

lim
n→∞

1

n

n−1∑
k=0

χE(T kx) = χ̄E(x).

2.1.6 Lemma

T is ergodic if and only if the mean sojourn time in a measurable set equals the measure
of the set for almost all points of X, i.e. if and only if

χ̄E =

∫
X

χEdµ = µ(E).

Proof:

If T is ergodic, then

χ̄E =

∫
X

χEdµ = µ(E)

a.e.

Conversely, if χ̄E = χE = µ(E) a.e. then, for an invariant set E ∈ B , µ(E) must be 0 or
1 (the possible values of χE). Thus T is ergodic. �
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2.2 Strong mixing

The concept of ergodicity can be strengthened by introducing two more classes of transfor-
mations which satisfy even more stringent quantitative recurrence conditions, i.e. strong
and weakly mixing.

Halmos used an example to supply a physical illustration of the concepts of a typical
dynamical system as well as ideas of ergodicity, strong- and weakly mixing. The example
runs as follows: Consider the physical system consisting of a cocktail shaker containing ice
and gin into which a few drops of vermouth have been introduced, and suppose that the
system is acted upon by the flow induced by a conscientious application of a swizzle-stick.

In this context, if ergodicity is expressed by saying that on the average a "measurable
subset" A has 10 per cent vermouth, and if strong mixing is expressed by saying that
after a while A will have 10 per cent vermouth in it, then weakly mixing can be expressed
by saying that after a while A will have 10 per cent vermouth in it, with the exception of
a few rare instants during which it may be either too strong or too sweet.

A m.p.t. T : X → X is strongly mixing if and only if

|µ(T−kA ∩B)− µ(A)µ(B)| → 0 for all A, B ∈ B.

Thus T is strongly mixing if and only if

µ(T−kA ∩B) → µ(A)µ(B),

i.e.,
µ(T−kA ∩B)

µ(B)
→ µ(A) for all A, B ∈ B, with µ(B) > 0.

This says that eventually T distributes A fairly evenly throughout the space X: for large
k, the proportion of T−kA that lies in B, namely µ(T−kA ∩ B)/µ(B), is approximately
the same as the relative size of A in X, namely µ(A). ([21], p 57)

We may mention a few results regarding strong mixing at this stage.

2.2.1 Lemma

T is strongly mixing if and only if

〈Unf, g〉 → 〈f, 1〉〈g, 1〉 for all f, g ∈ L2.

Proof:

Let A, B ∈ B and χA and χB be characteristic functions of A and B.

Then
〈UnχA, χB〉 = µ(T−nA ∩B)
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and
〈χA, 1〉〈1, χB〉 = µ(A)µ(B).

Now apply a double approximation process:

For each fixed χB, the result

〈UnχA, χB〉 −→ 〈χA, 1〉〈1, χB〉

holds for all simple functions χA, and therefore, by L2-approximation, for all functions
f ∈ L2.

Second, for each fixed χA, we can argue similarly about χB and all functions g ∈ L2

obtained by L2-approximation. �

Next we show that the statement regarding recurrence obtained from the Khintchine
theorem can be strengthened under the assumption of strongly mixing:

2.2.2 Lemma ([21], p 58)

T is strongly mixing if and only if for each A ∈ B

lim
n→∞

µ(T−nA ∩ A) = µ(A)2.

Proof:

We will show that if lim
n→∞

µ(T−nA∩A) = µ(A)2 for all A ∈ B, then (X,B, µ, T ) is strongly

mixing. The converse follows immediately from the definition of strongly mixing with
A = B.

Let A ∈ B be fixed and let M be the closed linear subspace of L2(X,B, µ) generated by
(i) the constant functions and (ii) the set {UkχA : k ∈ Z}.

Since
lim

n→∞
〈UnχA, 1〉 = lim

n→∞
µ(A) = 〈χA, 1〉〈1, 1〉 and

lim
n→∞

〈UnχA, UkχA〉 = lim
n→∞

〈Un−kχA, χA〉 = lim
n→∞

µ(T−n+kA ∩ A)

= µ(A)2 = 〈χA, 1〉〈UkχA, 1〉,

we obtain that
lim

n→∞
〈UnχA, f〉 = 〈χA, 1〉〈f, 1〉 for all f ∈ M.

For any given f ∈ L2(X,B, µ), we write f = f1 + f2, where f1 ∈ M and f2 ∈ M⊥. Then

lim
n→∞

〈UnχA, f〉 = lim
n→∞

〈UnχA, f1〉+ lim
n→∞

〈UnχA, f2〉

= 〈χA, 1〉〈f1, 1〉 = 〈χA, 1〉〈f, 1〉,

30



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  BBeeyyeerrss,,  FF  JJ  CC    ((22000055))  

since (f2, 1) = 0. Therefore, if we let f = χB, B ∈ B we see that

lim
n→∞

µ(T−nA ∩B) = lim
n→∞

〈UnχA, χB〉 = 〈χA, 1〉〈χB, 1〉 = µ(A)µ(B);

hence (X,B, µ, T ) is strongly mixing. �

2.3 Weakly mixing equivalent statements and other

results

A m.p.t. T : X → X on a probability space (X,B, µ) is said to be weakly mixing in case
for every pair of measurable sets A and B,

lim
n→∞

1

n

n−1∑
k=0

|µ(T−kA ∩B)− µ(A)µ(B)| = 0.

Example: Bernoulli shifts

As introduced in Example 10, we now briefly show that Bernoulli shifts are weakly mixing
systems. Since the cylinder sets generate B, we will restrict our attention to this class of
sets. Thus, let A, B be arbitrary cylinder sets:

A = {ω : ωi1 = j1, ωi2 = j2, . . . , ωik = jk}

and
B = {ω : ωl1 = s1, ωl2 = s2, . . . , ωlh = sh}

for some k, h ∈ N and as discussed in Example 10.

Recall that the measure-preserving transformation T in this system is given by the shift
T{ωn} = {ωn+1}. Consider the terms µ(A ∩ T−nB), n = 1, 2, . . .. For some n0 ∈ N we
will have that the defining coordinates for A and T−nB are disjoint for all n ≥ n0. Hence
for such n,

A ∩ T−nB = {ω : ωi1 = j1, ωi2 = j2, . . . , ωik = jk, ωl1 = s1, ωl2 = s2, . . . , ωlh = sh}

such that
µ(A ∩ T−nB) = pj1pj2 · · · pjk

ps1ps2 · · · psh
= µ(A)µ(B).

Therefore

lim
n→∞

1

n

n−1∑
k=0

|µ(A ∩ T−kB)− µ(A)µ(B)| = 0,

which means that the system is weakly mixing. In fact, this system is also strongly mixing.
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Multiple weakly mixing

Most of our multiple recurrence results will be stated in terms of multiple weakly mixing,
which can be defined as follows:

The system (X,B, µ, T ) is said to be multiply weakly mixing (weakly mixing of order k)
if for sets A0, A1, . . . , Ak in B, we have that

lim
N→∞

1

N

N∑
n=1

(
µ(A0 ∩ T−nA1 ∩ T−2nA2 ∩ . . . ∩ T−knAk)− µ(A0)µ(A1) . . . µ(Ak)

)2
= 0.

We can extend this idea even further and say that the system (X,B, µ, T ) is weakly mixing
of all orders (or weakly mixing of order (m1, m2, · · · , mk)) if for any sets A0, A1, . . . , Ak

in B, and for any choice of non-negative integers m1, m2, · · · , mk such that

1 ≤ m1 < m2 < · · · < mk,

we have that

lim
N→∞

1

N

N∑
n=1

(
µ(A0 ∩ T−m1nA1 ∩ T−m2nA2 ∩ . . . ∩ T−mknAk)− µ(A0)µ(A1) . . . µ(Ak)

)2
= 0.

In this section we will supply a number of results (Propositions 2.3.1 to 2.3.8) which will
help to explain most of the implications in this theorem.

Some useful results

At this stage it may be opportune to state and prove some elementary, but useful results
which are used in the proof of Theorem 2.3.9 as well as in several other proofs in the
remainder of this text.

2.3.1 Proposition

If an is a sequence of complex numbers such that

lim
n→∞

an = a,

then

lim
n→∞

1

n

n−1∑
k=0

| ak − a| = 0.

Proof:

Given any ε > 0. There exists an N ∈ N such that |an − a| < ε for all n ≥ N .
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Consider the average

1

n

n−1∑
k=0

| ak − a|.

For n > N we have that

1

n

n−1∑
k=0

| ak − a| = 1

n

N−1∑
k=0

| ak − a|+ 1

n

n−1∑
k=N

| ak − a|.

It is clear that the finite sum
1

n

N−1∑
k=0

| ak − a| → 0 if n →∞.

Furthermore,

1

n

n−1∑
k=N

| ak − a| < 1

n
(n− 1−N)ε < ε.

Hence, since ε is arbitrary,

1

n

n−1∑
k=N

| ak − a| −→ 0

and the proposition is proved. �

2.3.2 Proposition

If an is a sequence of complex numbers such that

lim
n→∞

1

n

n−1∑
k=0

| ak − a| = 0

then

lim
n→∞

1

n

n−1∑
k=0

ak = a.

Proof:

We have that

0 ≤

∣∣∣∣∣ 1n
n−1∑
k=0

(ak − a)

∣∣∣∣∣ ≤ 1

n

n−1∑
k=0

| ak − a| ,

and the Proposition follows immediately. �

Remark: From the previous two Propositions we see that strong mixing implies weakly
mixing and weakly mixing implies ergodicity.
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Zero density sets and convergence in density

1. A subset E ⊂ N of positive integers is said to have density zero if

lim
n→∞

1

n

n−1∑
k=0

χE(k) = 0.

A few basic properties of zero density sets can readily be verified:

(a) If B ⊂ N has density zero and A ⊂ B, then A has density zero. To see this
note that χA(k) ≤ χB(k) for all k ∈ N. Hence

0 ≤ 1

n

n−1∑
k=0

χA(k) ≤ 1

n

n−1∑
k=0

χB(k)

and so

lim
n→∞

1

n

n−1∑
k=0

χA(k) = 0.

(b) If A ⊂ N and B ⊂ N both have density zero then A ∪B has density zero. We
have that χA∪B(k) ≤ χA(k) + χB(k) for all k ∈ N. Therefore

1

n

n−1∑
k=0

χA∪B(k) ≤ 1

n

n−1∑
k=0

χA(k) +
1

n

n−1∑
k=0

χB(k),

and it follows immediately that

lim
n→∞

1

n

n−1∑
k=0

χA∪B(k) = 0.

(c) If either a set A ⊂ N or B ⊂ N has density zero, then A ∩B has density zero.
Suppose that A has density zero, then since χA∩B ≤ χA, it follows similarly
than above that A ∩B has density zero.

2. A sequence {an}n≥1 in a topological space X is said to converge in density to an
element a ∈ X if there exists a subset E ⊂ N of density zero such that

lim
n→∞,n/∈E

an = a.

We will also write
D − lim

n→∞
an = a.
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2.3.3 Lemma (Koopman-Von Neumann) ([21], p 65 and [20], p 47)

Let {ak}k>1 be a sequence in [0,∞). Then the following statements are equivalent:

1. There exists a subset E ⊂ N of density zero such that

lim
n→∞,n/∈E

an = 0.

2.

lim
n→∞

1

n

n−1∑
k=0

ak = 0.

3. The set Eε := {k ∈ N : ak > ε} has density zero for all ε > 0.

Proof:

(1) =⇒ (2): We have that

1

n

n−1∑
k=0

ak =
1

n

∑
k≤n−1,k∈E

ak +
1

n

∑
k≤n−1,k /∈E

ak.

The first term is close to zero for large n, since E has density 0 and the sequence {ak} is
bounded. To see this, let c = sup

k∈N
(ak). Then

0 ≤ 1

n

∑
k≤n−1,k∈E

ak =
1

n

n−1∑
k=0

χEak ≤
c

n

n−1∑
k=0

χE → 0

as n →∞.

The second term is also close to zero for large n, since we have that

lim
n→∞

f(k)χEc(k) = lim
n→∞,n/∈E

f(n) = 0

and ordinary convergence implies convergence in the mean by Proposition 2.3.1.

(2) =⇒ (3): Suppose that

lim
n→∞

1

n

n−1∑
k=0

ak = 0.

For each m = 1, 2, . . . let

Em =

{
k ∈ N : f(k) >

1

m

}
.
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We clearly have that for each m ∈ N, (1/m)χEm < ak, i.e. χEm < mak for all k ∈ N.
Also, E1 ⊂ E2 ⊂ . . . , and each Em has density zero. This is so since for each m ∈ N we
have that

lim
n→∞

1

n

n−1∑
k=0

χEm ≤ m lim
n→∞

1

n

n−1∑
k=0

ak = 0.

Now given any ε > 0, we can find an m ∈ N such that 1
m

< ε. Then we have that

Eε = {k ∈ N : ak > ε} ⊂
{

k ∈ N : f(k) >
1

m

}
= Em.

Since Em has density zero, Eε also has density zero.

(3) =⇒ (1): For each m = 1, 2, . . . let

Em =

{
k ∈ N : f(k) >

1

m

}
.

Then E1 ⊂ E2 ⊂ . . . , and each Em has density zero, by assumption. Therefore, for each
m = 1, 2, . . . we may choose im > 0 such that i1 < i2 < . . . and

1

n

n−1∑
k=0

χEm(k) <
1

m
for n ≥ im−1(m = 2, 3, . . .).

Now let i0 = 0 and define

E =
∞⋃

m=1

Em ∩ (im−1, im);

we will show that E has density zero and

lim
n→∞,n/∈E

f(n) = 0.

Let us consider f(k) for k /∈ E. In the interval (0, i1] we have removed those values of k
for which f(k) > 1; in (i1, i2] we have removed those values of k for which f(k) > 1

2
; and

in (im−1, im] we have removed those values of k for which f(k) > 1/m. Thus clearly

lim
n→∞,n/∈E

f(n) = 0.

However, we have only removed a set of values of k of density zero. For if im−1 < n ≤ im,
then

1

n

n−1∑
k=0

χE(k) =
1

n

im−1−1∑
k=0

χE(k) +
1

n

n−1∑
k=im−1

χE(k)

≤ 1

n

im−1−1∑
k=0

χEm−1(k) +
1

n

n−1∑
k=0

χEm(k)

≤ 1

im−1

im−1−1∑
k=0

χEm−1(k) +
1

n

n−1∑
k=0

χEm(k)

<
1

m− 1
+

1

m
. �
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In this proof we can isolate an interesting fact for density zero sequences. In the implica-
tion (3) =⇒ (1) we constructed a zero density set E from a sequence of zero density sets
{Ei} such that Ei\E is finite for every i. This type of construction will prove to be very
useful as will be shown in Chapter 4, Theorem 4.4.1.1.

From Theorem 2.3.3 we immediately get

2.3.4 Corollary

If an is a bounded sequence of complex numbers, then

lim
n→∞

1

n

n−1∑
k=0

| ak − a| = 0

if and only if there exists a set K ⊂ N of density zero such that

D − lim
n→∞

an = a.

2.3.5 Proposition

If an is a sequence of complex numbers with

lim
n→∞

1

n

n−1∑
k=0

ak = α, lim
n→∞

1

n

n−1∑
k=0

a2
k = α2,

then

lim
n→∞

1

n

n−1∑
k=0

(ak − α)2 = 0.

Proof:

The proof is obtained by direct computation and applying basic convergence theorems,
i.e.

lim
n→∞

1

n

n−1∑
k=0

(ak − α)2 = lim
n→∞

1

n

n−1∑
k=0

(a2
k − 2αak + α2) = 0.

�

2.3.6 Proposition

If an is a sequence of real numbers, then

D − lim
n→∞

a2
n = 0 ⇐⇒ D − lim

n→∞
|an| = 0.
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Proof: Let ε > 0.

Suppose that D − lim
n→∞

a2
n = 0. Then there is an N ∈ N such that

|a2
n| < ε2 for all n ≥ N except on a set E of zero density

⇔ |an| < ε for all n ≥ N except on E.

which yields the result since ε is arbitrary. �

2.3.7 Corollary

If an is a sequence of real numbers, then

lim
n→∞

1

n

n−1∑
k=0

a2
k = 0 ⇐⇒ lim

n→∞

1

n

n−1∑
k=0

|ak| = 0.

Proof: This result follows immediately from Corollary 2.3.4 and Proposition 2.3.6. �

We now see from Corollary 2.3.7 that if we work in a real space, then weakly mixing
implies that

lim
n→∞

1

n

n−1∑
k=0

(µ(T kA ∩B)− µ(A)µ(B))2 = 0

(and vice versa) and this is in turn a special case of the equation

lim
n→∞

1

n

n−1∑
k=0

(∫
fUng dµ−

∫
f dµ

∫
g dµ

)2

= 0,

where f, g ∈ L2(X,B, µ). The special case is obtained when f = χA and g = χB.

In the main theorems of this dissertation in Chapter 3, we will use this latter characteri-
zation of weakly mixing when it is assumed that the function space under consideration
is real.

2.3.8 Corollary

If an is a sequence of real numbers with

lim
n→∞

1

n

n−1∑
k=0

a2
k = 0,

then

lim
n→∞

1

n

n−1∑
k=0

ak = 0.
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Proof:

This follows immediately from Corollary 2.3.7 and Proposition 2.3.2. �

The next theorem is basic to many theorems regarding weakly mixing systems. In Chapter
3 some of these properties of weakly mixing systems will be needed.

2.3.9 Theorem ([21], p 65)

Let T : X → X be a m.p.t. on a probability space (X,B, µ). Then the following are
equivalent:

(1) T is weakly mixing.

(2) lim
n→∞

1

n

n−1∑
k=0

|〈Uk
T f, g〉 − 〈f, 1〉〈g, 1〉| = 0 for all f, g ∈ L2(X,B, µ).

(3) Given A, B ∈ B, there is a set J ⊂ Z+ of density 0 such that

lim
n→∞,n/∈J

µ(T nA ∩B) = µ(A)µ(B),

i.e.

D − lim
n→∞

µ(T nA ∩B) = µ(A)µ(B).

(4) T × T is weakly mixing.

(5) T × S is ergodic on X × Y for each ergodic (Y, C, v, S).

(6) T × T is ergodic.

Proof:

(1) =⇒ (2): This is true when f and g are characteristic functions of measurable sets.
The general statement follows by forming linear combinations and approximating.

(2) =⇒ (1): Again this can be seen by letting f and g be two characteristic functions of
measurable sets.

(1) ⇐⇒ (3): This follows directly from the Koopman-von Neumann Lemma 2.3.3, with

an = |µ(T nA ∩B)− µ(A)µ(B)|.

(3) =⇒ (4): Let A, B, C,D ∈ B. By (3), there are sets J1, J2 ⊂ N, each of density zero,
such that

lim
n→∞,n/∈J1

|µ(T nA ∩ C)− µ(A)µ(C)| = 0, and

lim
n→∞,n/∈J2

|µ(T nB ∩D)− µ(B)µ(D)| = 0.
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Let J = J1 ∪ J2. Then J has density zero, as seen earlier, and

lim
n→∞,n/∈J

|µ× µ(T × T )n((A×B) ∩ (C ×D))

−µ× µ(A×B)µ× µ(C ×D)|

= lim
n→∞,n/∈J

|µ(T nA ∩ C)µ(T nB ∩D)− µ(A)µ(B)µ(C)µ(D)|

≤ lim
n→∞,n/∈J

[µ(T nA ∩ C)|µ(T nB ∩D)− µ(B)µ(D)|

+µ(B)µ(D)|µ(T nA ∩ C)− µ(A)µ(C)|] = 0,

which yields the result by the equivalence (3) ⇔ (1) applied to T × T.

(4) =⇒ (5): If T ×T is weakly mixing, it is straightforward to show that T is also weakly
mixing. Let (Y, C, v, S) be ergodic. To show that T × S is ergodic on X × Y, we prove
that if A, B ∈ B and C, D ∈ C, then

1

n

n−1∑
k=0

µ× v[(T × S)k(A× C) ∩ (B ×D)] → µ(A)µ(B)v(C)v(D).

This will be sufficient by Corollary 2.1.5.

We have that

1

n

n−1∑
k=0

µ× v[(T × S)k(A× C) ∩ (B ×D)]

=
1

n

n−1∑
k=0

µ(T kA ∩B)v(SkC ∩D)

=
1

n

n−1∑
k=0

{µ(A)µ(B)v(SkC ∩D) + [µ(T kA ∩B)− µ(A)µ(B)]v(SkC ∩D)}.

By ergodicity of S, we have that

1

n

n−1∑
k=0

µ(A)µ(B)v(SkC ∩D) −→ µ(A)µ(B)v(C)v(D).

as n →∞.

Also,∣∣∣∣∣ 1n
n−1∑
k=0

[µ(T kA ∩B)− µ(A)µ(B)]v(SkC ∩D)

∣∣∣∣∣ ≤ 1

n

n−1∑
k=0

|µ(T kA ∩B)− µ(A)µ(B)| −→ 0

as n →∞ because T is weakly mixing. Hence (5) is established.

40



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  BBeeyyeerrss,,  FF  JJ  CC    ((22000055))  

(5) =⇒ (6): From (5) we have that T must be ergodic, since T ×{1} is ergodic, where {1}
represents the identity transformation on a single point. Therefore, under the assumption
of (5), T × T is also ergodic.

(6) =⇒ (3) : If A, B ∈ B, then

1

n

n−1∑
k=0

[µ(T kA ∩B)− µ(A)µ(B)]2

=
1

n

n−1∑
k=0

µ(T kA ∩B)2 − 2µ(A)µ(B)
1

n

n−1∑
k=0

µ(T kA ∩B) + [µ(A)µ(B)]2

=
1

n

n−1∑
k=0

µ× µ[(T × T )k(A× A) ∩ (B ×B)]− 2µ(A)µ(B)·

1

n

n−1∑
k=0

µ× µ[(T × T )k(A×X) ∩ (B ×X)] + [µ(A)µ(B)]2.

Since T × T is ergodic, as n →∞ this tends to

µ× µ(A× A)µ× µ(B ×B)

− 2µ(A)µ(B)µ× µ(A×X)µ× µ(B ×X) + [µ(A)µ(B)]2

= µ(A)2µ(B)2 − 2µ(A)2µ(B)2 + µ(A)2µ(B)2 = 0.

By the Koopman-von Neumann Lemma 2.3.3, there is a set J of density zero such that

lim
n→∞,n/∈J

|µ(T nA ∩B)− µ(A)µ(B)|2 = 0, which yields (3).

�
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Chapter 3

Multiple Recurrence

3.1 Background

From a statistical viewpoint the two most important types of dynamical systems are the
weakly mixing systems and the almost periodic systems when one studies recurrence and
multiple recurrence properties. In fact, it was shown in [9] that if one would like to prove
multiple recurrence for general dynamical systems, one could reduce the problem by only
considering the two mentioned cases.

A system (X,B, µ, T ) is called almost periodic or relatively compact if for any f ∈ L2(X)
the orbit {Unf}n>0 is relatively compact in L2(X), where U is the unitary operator on
L2(X) induced by T .

It can be shown that (X,B, µ, T ) is almost periodic if and only if one has for any ε > 0
that there exists a relatively dense E ⊂ N such that ‖Unf−f‖ < ε for all n ∈ E. This can
be seen from the assumed compactness of the orbit closure {Unf} ⊂ L2(X,B, µ). Since
{Unf} is totally bounded, there exists a finite subset {Un1f, Un2f, ..., Unrf} for which

‖Unif − Unjf‖ ≥ ε.

Also, there exists a greatest r for which this is true. To see this, suppose the contrary.
Hence for any k ∈ N there exists Unk

1f, Unk
2f, . . . , Unk

kf such that∥∥∥Unk
i f − Unk

j f
∥∥∥ ≥ ε.

For the sequence {Unk
1f}∞k=1 we can choose (by compactness) a subsequence {Un

kp
1 f}

which converges to, say, f1 ∈ {Unf}.

Similarly, the sequence {Un
kp
2 f}∞k=1 has a subsequence which converges to, say, f2.

In this way we find infinite sets N ⊃ N1 ⊃ N2 ⊃ . . . and f1, f2, . . . ∈ {Unf} such that

lim
Nj3 n→∞

Unn
j f = fj.
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Then
‖fj − fk‖ = lim

Nk3 n→∞

∥∥Unn
j f − Unn

k f
∥∥

≥ ε for all j < k.

Hence the sequence {fi} ⊂ {Unf} has no convergent subsequence which contradicts the
compactness of {Unf}. Hence the maximality of r is established.

Since there exist a greatest r ≥ 1 such that there are n1 < · · · < nr in N with

‖Unif − Unjf‖ ≥ ε.

for i 6= j. Since U is a unitary operator, it is also an isometry and we then get that

‖Un+nif − Un+njf‖ = ‖Unif − Unjf‖ ≥ ε

for any n and i 6= j.

Since r is maximal, we have that

‖Un+nif − f‖ < ε

for at least one 1 ≤ i ≤ r.

Hence,
‖Umf − f‖ < ε for some n ≤ m ≤ n + nr,

which shows that this property holds on a relatively dense set.

The converse of our assertion is straightforward.

This characterization of almost periodicity clearly indicates a strong recurrence nature and
some multiple recurrence properties for almost periodic systems are obtained as follows:

3.1.1 Theorem ([9], p 536)

If (X,B, µ, T ) is almost periodic for every f ∈ L∞(X,B, µ), f ≥ 0 but f not 0 a.e, then
there exists a relative dense set E ⊆ N such that∫

f Unf U2nf · · · Uknf dµ > 0

for any n ∈ E.

Proof:

Let a =
∫

fk+1dµ. Then a > 0. Since f is essentially bounded, we can assume without
loss of generality that 0 ≤ f ≤ 1. Choose ε < a/(k+1). If we choose measurable functions
g0, g1, ...., gk with 0 ≤ gi ≤ 1 such that ‖f − gi‖ < ε, i = 0, 1, ..., k, then, following from
the identity

k∏
l=0

al −
k∏

l=0

bl =
k∑

j=0

(
j−1∏
l=0

al

)
(aj − bj)

(
k∏

l=j+1

bl

)
;
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we have that∣∣∣∣∣
∫ k∏

l=0

gl dµ−
∫

fk+1 dµ

∣∣∣∣∣ =

∣∣∣∣∣
∫ k∑

j=0

(
j−1∏
l=0

gl

)
(gj − f)

(
k∏

l=j+1

f

)
dµ

∣∣∣∣∣
≤

k∑
j=0

∫ (j−1∏
l=0

gl

)
|gj − f |fk−j dµ

≤ (k + 1)ε < a.

It then follows that ∫ k∏
l=0

gl dµ ≥ a− (k + 1)ε > 0 (1)

If we now choose gl := U lnf for l = 0, 1, . . . , k and n ∈ E, then from the discussion prior
to this theorem, we have that for any ε > 0,

‖Unf − f‖ <
ε

k

for all n in a relatively dense set E. What remains to be shown is that ‖U lnf − f‖ < ε
for l = 0, 1, ..., k and for all n in a relatively dense set.

Since T is measure-preserving, we have that

‖U jn(Unf − f)‖ = ‖U (j+1)nf − U jnf‖ <
ε

k

for these n, and by the triangle inequality,

‖Uknf − f‖ ≤
k−1∑
j=0

‖U (j+1)nf − U jnf‖ < k
ε

k
= ε

‖U (k−1)nf − f‖ ≤
k−2∑
j=0

‖U (j+1)nf − U jnf‖ < (k − 1)
ε

k
< ε

...

‖Unf − f‖ < ε
k

< ε

‖f − f‖ = 0 < ε.

Therefore,
‖T lnf − f‖ < ε

for l = 0, 1, ..., k, which completes the proof by (1). �

In this instance, if we let f = χA, we obtain that for n on a relative dense set and k ∈ N

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA

)
> 0
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if A ∈ B and µ(A) > 0.

Example of an almost periodic system

Let K = {z ∈ C : |z| = 1} be the unit circle, which can be represented as the reals modulo
1. Let B be the σ-algebra of Borel subsets of X, and let µ be the Lebesque measure and
T : X → X defined by Tαx = x + α for any fixed α. Tα is measure preserving, as can
easily be verified.

Regarded as a map of K,
Tαe2πiθ = e2πi(θ+α).

If α is rational, then Tα is periodic, and all orbits will be finite and of the same cardinality.

Hence Tα is most interesting if α is irrational. Clearly for any ε > 0, from the compactness
of K, the set {n ∈ N : {e2πi(θ+nα)} is ε-separated} is finite, and it follows by a similar
argument than the one earlier in this introduction, that (X,B, µ, Tα) is relatively compact,
i.e. almost periodic. �

Multiple recurrence results for weakly mixing systems are much more involved and will
be proved in the remainder of this chapter. Let us recall from section 2.3 that we mean
by multiple weakly mixing that

lim
N→∞

1

N

N∑
n=1

(
µ(A0 ∩ T−nA1 ∩ T−2nA2 ∩ . . . ∩ T−knAk)− µ(A0)µ(A1) . . . µ(Ak)

)2
= 0.

For k = 1 we obtain weakly mixing as given in the definition (Corollary 2.3.7). If k = 2,
for example, and we let A0 = A1 = A2 := A we get that

lim
N→∞

1

N

N∑
n=1

(
µ(A ∩ T−nA ∩ T−2nA)− µ(A)3

)2
= 0,

which says that the points of A that return to itself after n and 2n time iterations, for
large n (i.e. after a sufficiently long period) will have positive measure for most n. This
measure can be approximated by the limit in the expression above. Hence there will
certainly be a "significant" number of points that return to A.

In the more general case, where the system (X,B, µ, T ) is weakly mixing of order (m1, m2, · · · , mk),
we let A := A1 = A2 = · · · = Ak and thus we get that

lim
N→∞

1

N

N∑
n=1

(
µ(A ∩ T−m1nA ∩ T−m2nA ∩ . . . ∩ T−mknA)− µ(A)k+1

)2
= 0.

This can be seen to say that the set of points of A that returns to A after m1n, m2n, · · · , mkn
time steps will also have positive measure for most n (or, what amounts to the same, on
average) after enough time has elapsed.
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3.2 Van der Corput lemma in Hilbert space

The result that follows is a variant of a well-known result of Van der Corput for uniformly
distributed sequences (mod 1) as discussed in [17].

This result will be the backbone of all the results given in this chapter.

3.2.1 Lemma ([10])

If {un} is a bounded sequence of vectors in a Hilbert space H, and for each m ∈ Z we set

γm = lim
N→∞

1

N

N−1∑
n=0

〈un, un+m〉,

then if

lim
M→∞

1

M

M−1∑
m=0

γm = 0,

we will have that

lim
N→∞

∥∥∥∥∥ 1

N

N−1∑
n=0

un

∥∥∥∥∥ = 0.

Proof:

If N is much larger than M , then

1

N

N−1∑
n=0

un ∼
1

N

1

M

N−1∑
n=0

M−1∑
m=0

un+m,

where the ∼ sign means the two expressions are close in the norm.

To see this, note that

1

N

1

M

N−1∑
n=0

M−1∑
m=0

un+m =
1

NM

[
M−1∑
n=1

nun−1 +
N−1∑

n=M−1

Mun +
N+M−2∑

n=N

(N + M − n− 1)un

]

=
1

NM

M−1∑
n=1

nun−1 +
1

N

N−1∑
n=M−1

un +
1

NM

N+M−2∑
n=N

(N + M − n− 1)un

∼
1

N

N−1∑
n=M−1

un

∼
1

N

N−1∑
n=0

un.
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Note that both the sums
M−1∑
n=1

nun−1 and
N+M−2∑

n=N

(N +M −n− 1)un (above) have less than

M terms, and since the un are bounded, the sums are close to 0 in the norm for N much
larger than M .

Also note that
1

N

N−1∑
n=M−1

un ∼
1

N

N−1∑
n=0

un since the first M terms become insignificant for

N much larger than M .

Hence we consider the convergence of the expression

∥∥∥∥∥ 1

N

1

M

N−1∑
n=0

M−1∑
m=0

un+m

∥∥∥∥∥.
Now, ∥∥∥∥∥ 1

N

N−1∑
n=0

1

M

M−1∑
m=0

un+m

∥∥∥∥∥
2

≤ 1

N

N−1∑
n=0

∥∥∥∥∥ 1

M

M−1∑
m=0

un+m

∥∥∥∥∥
2

=
1

N

N−1∑
n=0

〈
1

M

M−1∑
m=0

un+m,
1

M

M−1∑
m=0

un+m

〉

=
1

NM2

N−1∑
n=0

M−1∑
m1,m2=0

〈un+m1 , un+m2〉

=
1

M2

M−1∑
m1,m2=0

1

N

N−1∑
n=0

〈un+m1 , un+m2〉 .

As N →∞, this converges to

1

M2

M−1∑
m1,m2=0

γm2−m1 .

To see this, note that

γm2−m1 = lim
N→∞

1

N

N−1∑
n=0

〈un, un+m2−m1〉

= lim
N→∞

1

N

N−m1−1∑
n=−m1

〈un+m1 , un+m2〉

= lim
N→∞

1

N

N−1∑
n=0

〈un+m1 , un+m2〉 .

The last statement follows from the fact that for any bounded sequence {an}, n ∈ Z of
complex numbers,

lim
N→∞

1

N

N−1∑
n=0

an = lim
N→∞

1

N

N+M−1∑
n=M

an

for any fixed M ∈ Z.
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Let us prove this statement for positive values of M . The proof for negative values is
similar.

We have that

lim
N→∞

1

N

[
N−1∑
n=0

an −
N+M−1∑

n=M

an

]
= lim

N→∞

1

N

[
M−1∑
n=0

an −
N+M−1∑

n=N

an

]
.

Now both

lim
N→∞

1

N

M−1∑
n=0

an = 0 and lim
N→∞

1

N

N+M−1∑
n=N

an = 0

since the sums are finite and the sequence {an} is bounded. Hence the result follows.

To proceed with the main proof, we show that

1

M2

M−1∑
m1,m2=0

γm2−m1 → 0 as M →∞.

Now∣∣∣∣∣ 1

M2

M−1∑
m1,m2=0

γm2−m1

∣∣∣∣∣
=

∣∣∣∣ 1

M2
(Mγ0 + (M − 1)γ1 + . . . + γM−1 + (M − 1)γ−1 + (M − 2)γ−2 + . . . + γ1−M)

∣∣∣∣
≤

∣∣∣∣∣ 1

M

(
M−1∑
m=0

γm +
M−1∑
m=1

γ−m

)∣∣∣∣∣
But γm = γ−m by the following direct calculation:

γ−m = lim
N→∞

1

N

N−1∑
n=0

〈un, un−m〉 = lim
N→∞

1

N

N−m−1∑
n=−m

〈un+m, un〉

= lim
N→∞

1

N

N−1∑
n=0

〈un+m, un〉

= γm.

Hence if

lim
M→∞

1

M

M−1∑
m=0

γm = 0, then lim
M→∞

1

M

M−1∑
m=1

γ−m = 0,
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therefore

1

M2

M−1∑
m1,m2=0

γm2−m1 → 0 as M →∞.

So, finally, we can conclude that

lim
N→∞

∥∥∥∥∥ 1

N

N−1∑
n=0

un

∥∥∥∥∥ = 0.

�

3.3 Weakly mixing of all orders

H. Furstenberg (1983) proved that for any weakly mixing system (X,B, µ, T ), and sets
A0, A1, . . . , Ak in B, we have

lim
N→∞

1

N

N∑
n=1

(
µ(A0 ∩ T−nA1 ∩ T−2nA2 ∩ . . . ∩ T−knAk)− µ(A0)µ(A1) . . . µ(Ak)

)2
= 0.

A slightly different proof, which is simpler and clearer than the one Furstenberg provides,
will be given here.

This result will also be generalized to be truly "of all orders", in the sense that for any
integers m0, m1, · · · , mk ∈ N, we have that

lim
N→∞

1

N

N∑
n=1

(
µ(A0 ∩ T−m1nA1 ∩ T−m2nA2 ∩ . . . ∩ T−mknAk)− µ(A0)µ(A1) . . . µ(Ak)

)2
= 0.

Let us start by clarifying a technical point regarding U , the unitary operator induced
by T . Suppose that m, n ∈ N with n ≥ m, and f, g ∈ L2. We will frequently use the
following fact:

UmfUng = Um
(
fUn−mg

)
.

This follows from the definition of U as follows:

(UmfUng) (x) = f(Tmx)g(T nx)

= f(Tmx)g(T n−m(Tmx))

= f(Tmx)Un−mg(Tmx)

= (fUn−mg) (Tmx)

= Um (fUn−mg) (x).
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Also, in order to prove the next theorem, we should briefly discuss weakly mixing of
product systems. If (X,B, µ, T ) is weakly mixing, then from Theorem 2.3.9(4) we have
that the product system (X ×X,B × B, µ× µ, T × T ) is also weakly mixing. Let f1 and
f2 be functions on X. Denote the tensor product f1 ⊗ f2 : X ×X → C by

f1 ⊗ f2(x1, x2) = f1(x1)f2(x2).

If f1, f2 ∈ L2(X,B, µ), then f1 ⊗ f2 ∈ L2(X ×X,B × B, µ× µ), and we have that∫
f1 ⊗ f2(U × U)ng1 ⊗ g2 d(µ× µ) =

∫
f1U

ng1 dµ

∫
f2U

ng2 dµ,∫
f1 ⊗ f2 d(µ× µ) =

∫
f1 dµ

∫
f2 dµ,∫

g1 ⊗ g2 d(µ× µ) =

∫
g1 dµ

∫
g2 dµ.

Now we can state and prove the first result regarding weakly mixing of a higher order.
Thereafter we will attempt to extend the result even further. We break the theorem up
into two parts.

3.3.1 Theorem ([9], p 533)

If (X,B, µ, T ) is a weakly mixing system and A0, A1, . . . , Ak are sets in B, then

lim
N→∞

1

N

N∑
n=1

(
µ(A0 ∩ T−nA1 ∩ T−2nA2 ∩ . . . ∩ T−knAk)− µ(A0)µ(A1) . . . µ(Ak)

)2
= 0.

(1)

Proof:

If we can show that, for any weakly mixing system (X,B, µ, T ) and any essentially
bounded functions, say f0, f1, . . . , fk ∈ L∞(X,B, µ), that

lim
N→∞

1

N

N∑
n=1

[∫ k∏
l=0

U lnfl dµ−
k∏

l=0

∫
fl dµ

]2

= 0 (2[k])

then we are done. To see this, replace each fl in 2[k] by the characteristic function χAl
.
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We then get that

0 = lim
N→∞

1

N

N∑
n=1

[∫ k∏
l=0

U lnfl dµ−
k∏

l=0

∫
fl dµ

]2

= lim
N→∞

1

N

N∑
n=1

[∫ k∏
l=0

U lnχAl
dµ−

k∏
l=0

∫
χAl

dµ

]2

= lim
N→∞

1

N

N∑
n=1

[∫
χA0∩T−nA1∩T−2nA2∩...∩T−knAk

dµ− µ(A0)µ(A1) . . . µ(Ak)

]2

= lim
N→∞

1

N

N∑
n=1

(
µ(A0 ∩ T−nA1 ∩ T−2nA2 ∩ . . . ∩ T−knAk)− µ(A0)µ(A1) . . . µ(Ak)

)2
.

We will regard L∞(X,B, µ) as consisting of real-valued functions. This is sufficient since
our final result is a statement regarding real numbers.

We will use an induction argument, with the help of the following condition (which will
follow from 2[k-1], as will be proven further on):

If (X,B, µ, T ) is any weakly mixing system and f0, f1, . . . , fk ∈ L∞(X,B, µ) are arbitrary,
then

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

k∏
l=1

U lnfl −
k∏

l=1

∫
fl dµ

∥∥∥∥∥
L2(X)

= 0. (3[k])

1. Show that 3[k] implies 2[k]

First we show that 3[k]⇒ 2[k] for (X,B, µ, T ) and any f0, f1, . . . , fk ∈ L∞(X,B, µ).

For this purpose, we assume 3[k] for the moment. Since (X,B, µ, T ) is weakly mixing
we have that the strong convergence in 3[k] implies weakly convergence, hence,〈

1

N

N∑
n=1

k∏
l=1

U lnfl, f

〉
−→

〈
k∏

l=1

∫
fl dµ, f

〉

for all f ∈ L∞(X,B, µ). Hence〈
1

N

N∑
n=1

k∏
l=1

U lnfl, f0

〉
−→

〈
k∏

l=1

∫
fl dµ, f0

〉

and we obtain that

1

N

N∑
n=1

∫
f0

k∏
l=1

U lnfl dµ −→
k∏

l=0

∫
fl dµ (4)
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As mentioned above, if (X,B, µ, T ) is weakly mixing, then the product system
(X×X,B×B, µ×µ, T×T ) is also weakly mixing. Hence, since 3[k] is assumed to hold
for all weakly mixing systems and some arbitrary elements of L∞ as stated above,
3[k] also holds for the weakly mixing dynamical system (X×X,B×B, µ×µ, T ×T )
and f0 ⊗ f0, f1 ⊗ f1, . . . , fk ⊗ fk ∈ L∞(X ×X,B × B, µ× µ), i.e. 3[k] gives

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

k∏
l=1

U lnfl ⊗ fl −
k∏

l=1

∫
X×X

fl ⊗ fl d(µ× µ)

∥∥∥∥∥
L2(X×X)

= 0.

We then obtain an analogue of (4) if we replace X by X × X, µ by µ × µ, fl by
fl ⊗ fl and T by T × T , i.e.: Since (X ×X,B × B, µ× µ, T × T ) is weakly mixing
we have that the strong convergence in 3[k] implies weakly convergence, hence,〈

1

N

N∑
n=1

k∏
l=1

U lnfl ⊗ fl, f ⊗ f

〉
−→

〈
k∏

l=1

∫
X×X

fl ⊗ fl d(µ× µ), f ⊗ f

〉
for all f ⊗ f ∈ L∞(X ×X,B × B, µ× µ). Hence〈

1

N

N∑
n=1

k∏
l=1

U lnfl ⊗ fl, f0 ⊗ f0

〉
−→

〈
k∏

l=1

∫
X×X

fl ⊗ fl d(µ× µ), f0 ⊗ f0

〉

and we obtain that

lim
N→∞

1

N

N∑
n=1

∫
X×X

f0 ⊗ f0

k∏
l=1

(T × T )lnfl ⊗ fl d(µ× µ) −→
k∏

l=0

∫
X×X

fl ⊗ fl d(µ× µ)

∴ lim
N→∞

1

N

N∑
n=1

∫
f0

k∏
l=1

U lnfl dµ

∫
f0

k∏
l=1

U lnfl dµ −→
k∏

l=0

∫
fl dµ

∫
fl dµ.

Hence

∴
1

N

N∑
n=1

[∫
f0

k∏
l=1

U lnfl dµ

]2

−→
k∏

l=0

[∫
fl dµ

]2

(5)

By Proposition 2.3.5 it follows directly from (4) and (5) that 2[k] holds.

We have that the validity of 3[k] for all weakly mixing systems implies the same for
2[k], in short, 3[k]⇒ 2[k].

2. Show that 2[1] holds:

We need to establish that 2[k] holds for all k ∈ N. 2[1] consists of the following
statement:

lim
n→∞

1

N

N∑
n=1

(∫
f0U

nf1 dµ−
∫

f0 dµ

∫
f1 dµ

)2

= 0,

which is true by the assumption of weakly mixing.
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3. Show that 2[k-1] implies 3[k] (which implies 2[k])

If we can now show that 2[k-1]⇒ 2[k], we are done. Hence we will show that 2[k-1]⇒
3[k], which will (as shown above) imply 2[k].

We hence assume 2[k-1], i.e.

lim
N→∞

1

N

N∑
n=1

[∫ k−1∏
l=0

U lnfl dµ−
k−1∏
l=0

∫
fl dµ

]2

= 0

for any weakly mixing system (X,B, µ, T ) and any f0, f1, . . . , fk ∈ L∞(X,B, µ).

We will now employ our Van der Corput Lemma 3.2.1 to show that 3[k] holds.

For the purposes of this Lemma, let

un =
k∏

l=1

U lnfl −
k∏

l=1

∫
fl dµ.

For convenience, let us use

κ =
k∏

l=1

∫
fl dµ

(
=

k−1∏
l=0

∫
fl+1 dµ

)
.

It follows that we can write, γm mentioned in the Van der Corput lemma as

γm = lim
N→∞

1

N

N∑
n=1

〈un, un+m〉

= lim
N→∞

1

N

N∑
n=1

∫ ( k∏
l=1

U lnfl − κ

)(
k∏

l=1

U l(n+m)fl − κ

)
dµ

= lim
N→∞

1

N

N∑
n=1

∫ ( k∏
l=1

U lnfl − κ

)(
k∏

l=1

U l(n+m)fl − κ

)
dµ.

Now,∫ ( k∏
l=1

U lnfl − κ

)(
k∏

l=1

U l(n+m)fl − κ

)
dµ

=

∫ ( k∏
l=1

U lnfl

k∏
l=1

U l(n+m)fl − κ

k∏
l=1

U lnfl − κ

k∏
l=1

U l(n+m)fl + κ2

)

=

∫ ( k∏
l=1

U lnflU
l(n+m)fl − κ

k∏
l=1

U lnfl − κ
k∏

l=1

U l(n+m)fl + κ2

)

=

∫ k∏
l=1

U lnflU
l(n+m)fl dµ− κ

∫ k∏
l=1

U lnfldµ− κ

∫ k∏
l=1

U l(n+m)fl dµ + κ2.
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Let us scrutinize each of the three integrals above:

(a) The first integral:

∫ k∏
l=1

U lnflU
l(n+m)fl dµ =

∫ k∏
l=1

U lnfl U l(n+m)fl dµ

=

∫ k∏
l=1

U ln(fl U lmfl) dµ.

Since T is measure-preserving, T n is also measure-preserving and therefore we
can replace U ln by U (l−1)n, and obtain

∫ k∏
l=1

U ln(fl U lmfl) dµ =

∫
Un

k∏
l=1

U (l−1)n(fl U lmfl) dµ

=

∫ k∏
l=1

U (l−1)n(fl U lmfl) dµ

=

∫ k−1∏
l=0

U ln(fl+1 U (l+1)mfl+1) dµ,

and we notice that the integrals occurring are those that occur in 2[k-1], with
the functions fl replaced by gl,m = fl+1 U (l+1)mfl+1.

Then 2[k-1] and Corollary 2.3.8 gives

lim
N→∞

1

N

N∑
n=1

∫ k∏
l=1

U ln(fl U lmfl) dµ = lim
N→∞

1

N

N∑
n=1

∫ k−1∏
l=0

U lngl,mdµ

=
k−1∏
l=0

∫
gl,m dµ

=
k−1∏
l=0

∫
fl+1 U (l+1)mfl+1 dµ.
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(b) The second integral

∫ k∏
l=1

U lnfl dµ =

∫
Un

k∏
l=1

U (l−1)nfl dµ

=

∫ k∏
l=1

U (l−1)nfl dµ

=

∫ k−1∏
l=0

U lnfl+1 dµ.

We again obtain from 2[k-1] and Corollary 2.3.8 that

lim
N→∞

1

N

N∑
n=1

∫ k∏
l=1

U lnfl dµ = lim
N→∞

1

N

N∑
n=1

∫ k−1∏
l=0

U lnfl+1 dµ

=
k−1∏
l=0

∫
fl+1 dµ

= κ.

(c) The third integral

Also here we have

lim
N→∞

1

N

N∑
n=1

∫ k∏
l=1

U l(n+m)fl dµ = lim
N→∞

1

N

N∑
n=1

∫ k∏
l=1

U ln
(
U lmfl

)
dµ

= lim
N→∞

1

N

N∑
n=1

∫
Un

k∏
l=1

U (l−1)n
(
U lmfl

)
dµ

= lim
N→∞

1

N

N∑
n=1

∫ k∏
l=1

U (l−1)n
(
U lmfl

)
dµ

= lim
N→∞

1

N

N∑
n=1

∫ k−1∏
l=0

U ln
(
U (l+1)mfl+1

)
dµ

=
k−1∏
l=0

∫
U (l+1)mfl+1 dµ by 2[k-1]

=
k−1∏
l=0

∫
fl+1 dµ

= κ.
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Hence we see that

lim
N→∞

1

N

N∑
n=1

(∫ k∏
l=1

U lnflU
l(n+m)fldµ− κ

∫ k∏
l=1

U lnfldµ− κ

∫ k∏
l=1

U l(n+m)fldµ + κ2

)

=
k−1∏
l=0

∫
fl+1 U (l+1)mfl+1 dµ− κ2 − κ2 + κ2

=
k−1∏
l=0

∫
fl+1 U (l+1)mfl+1 dµ− κ2.

,

i.e.

γm =
k−1∏
l=0

∫
fl+1 U (l+1)mfl+1 dµ− κ2.

We see that

lim
m→∞

γm = lim
m→∞

(
k−1∏
l=0

∫
fl+1 U (l+1)mfl+1 dµ− κ2

)

=
k−1∏
l=0

(∫
fl+1 dµ

∫
fl+1 dµ

)
− κ2 by weakly mixing

= κ2 − κ2

= 0.

It now follows by Proposition 2.3.1 that the average

lim
M→∞

1

M

M∑
m=1

|γm| = 0,

and by Proposition 2.3.2 that

lim
M→∞

1

M

M∑
m=1

γm = 0.

Finally, by the Van der Corput Lemma, we have that

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

un

∥∥∥∥∥ = lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

k∏
l=1

U lnfl −
k∏

l=1

∫
fl dµ

∥∥∥∥∥ = 0.

�

In Theorem 1.3.1.2 we proved a Mean Ergodic Theorem for dynamical systems and in
Theorem 2.1.3 it was shown that if (X,B, µ, T ) is ergodic then

f̄(x) = lim
n→∞

1

n

n−1∑
k=0

f(T kx) =

∫
X

fdµ a.e.
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Hence ∥∥∥∥∥ 1

n

n−1∑
k=0

f ◦ T k −
∫

X

fdµ

∥∥∥∥∥
L2

(X) −→ 0

as n →∞.

The following theorem extends this result for weakly mixing systems to a multiple Mean
Ergodic Theorem.

3.3.2 Theorem

Let (X,B, µ, T ) be a weakly mixing system and f0, f1, . . . , fk be functions in L∞(X,B, µ).
Then

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

k∏
l=1

U lnfl −
k∏

l=1

∫
fl dµ

∥∥∥∥∥
L2(X)

= 0.

Proof:

This result follows by the same induction argument used in the previous theorem. 3[1]
is satisfied immediately, following our discussion prior to this theorem. In the previous
theorem we have proved that 2[k] holds for all k ∈ N and that 2[k-1] implies 3[k] for k ≥ 2.
Hence 3[k] is true for all k ∈ N. �

We will now extend Theorem 3.3.1. It will be seen that weakly mixing implies "weakly
mixing of all orders". The proof of the next theorem will follow the same general lines
as the previous theorem, but we will encounter a few difficulties which did not pose
a problem in the case where the "powers" of U were chosen in a regular fashion, i.e.
0, n, 2n, ..., nk. In this instance we will replace the powers 0, n, 2n, ... by any choice of
non-negative integers m0, m1, m2, · · · , mk such that 0 = m0 ≤ m1 ≤ · · · ≤ mk. It will
also be seen that the order requirement m0 ≤ m1 ≤ · · · ≤ mk can be dropped due to the
bijectivity of the unitary operator U .

3.3.3 Theorem

If (X,B, µ, T ) is a weakly mixing system and A0, A1, . . . , Ak are sets in B, and if m0, m1, m2, · · · , mk

is any choice of non-negative integers such that

0 = m0 < m1 < m2 < · · · < mk,

then

lim
N→∞

1

N

N∑
n=1

(
µ(A0 ∩ T−m1nA1 ∩ T−m2nA2 ∩ . . . ∩ T−mknAk)− µ(A0)µ(A1) . . . µ(Ak)

)2
= 0.

(6)
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Proof:

We will follow the same general plan of the proof of the previous theorem, and give all
steps for completeness. Once again we will regard L∞(X,B, µ) as consisting of real-valued
functions.

If we can show that, for any weakly mixing system (X,B, µ, T ) and any essentially
bounded functions, say f0, f1, . . . , fk ∈ L∞(X,B, µ), that

lim
N→∞

1

N

N∑
n=1

[∫ k∏
l=0

Umlnfl dµ−
k∏

l=0

∫
fl dµ

]2

= 0 (7[k])

for any integers 0 = m0 < m1 < m2 < · · · < mk, then we are done.

To see this, replace each fl in 7[k] by the characteristic function χAl
.

We then get that

0 = lim
N→∞

1

N

N∑
n=1

[∫ k∏
l=0

Umlnfl dµ−
k∏

l=0

∫
fl dµ

]2

= lim
N→∞

1

N

N∑
n=1

[∫ k∏
l=0

UmlnχAl
dµ−

k∏
l=0

∫
χAl

dµ

]2

= lim
N→∞

1

N

N∑
n=1

[∫
χT−m0nA0∩T−m1nA1∩T−m2nA2∩...∩T−mknAk

dµ− µ(A0)µ(A1) . . . µ(Ak)

]2

= lim
N→∞

1

N

N∑
n=1

(
µ(T−m0nA0 ∩ T−m1nA1 ∩ T−m2nA2 ∩ . . . ∩ T−mknAk)− µ(A0)µ(A1) . . . µ(Ak)

)2
= lim

N→∞

1

N

N∑
n=1

(
µ(A0 ∩ T−m1nA1 ∩ T−m2nA2 ∩ . . . ∩ T−mknAk)− µ(A0)µ(A1) . . . µ(Ak)

)2

We will use basically the same induction argument as before, i.e. with the help of the
following condition (which will follow from 7[k-1], as will be proven further on):

If (X,B, µ, T ) is any weakly mixing system and f0, f1, . . . , fk ∈ L∞(X,B, µ) are arbitrary,
then

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

k∏
l=1

Umlnfl −
k∏

l=1

∫
fl dµ

∥∥∥∥∥
L2(X)

= 0 (8[k])
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1. Show that 8[k] implies 7[k]

First we show that 8[k]⇒ 7[k] for (X,B, µ, T ) and any f0, f1, . . . , fk ∈ L∞(X,B, µ).

For this purpose, we assume 8[k] for the moment. Since (X,B, µ, T ) is weakly mixing
we have that the strong convergence in 8[k] implies weak convergence, hence,〈

1

N

N∑
n=1

k∏
l=1

Umlfl, f

〉
−→

〈
k∏

l=1

∫
fl dµ, f

〉
for all f ∈ L∞(X,B, µ). Hence〈

1

N

N∑
n=1

k∏
l=1

Umlnfl, f0

〉
−→

〈
k∏

l=1

∫
fl dµ, f0

〉
.

Hence

1

N

N∑
n=1

∫
f0

k∏
l=1

Umlnfl dµ −→
∫

f0 dµ
k∏

l=1

∫
fl dµ,

and so we obtain that

1

N

N∑
n=1

∫ k∏
l=0

Umlnfl dµ −→
k∏

l=0

∫
fl dµ (9)

noting that m0 = 0.

Now, as in the previous theorem, it follows from the fact that the product system
is weakly mixing, that we can replace fl by fl⊗ fl and T by T ×T . We then obtain
that

lim
N→∞

1

N

N∑
n=1

∫
X×X

f0 ⊗ f0

k∏
l=1

(T × T )mlnfl ⊗ fl d(µ× µ) −→
k∏

l=0

∫
X×X

fl ⊗ fl d(µ× µ)

∴ lim
N→∞

1

N

N∑
n=1

∫
f0

k∏
l=1

Umlnfl dµ

∫
f0

k∏
l=1

Umlnfl dµ −→
k∏

l=0

∫
fl dµ

∫
fl dµ.

Hence

∴
1

N

N∑
n=1

[∫
f0

k∏
l=1

Umlnfl dµ

]2

−→
k∏

l=0

[∫
fl dµ

]2

(10)

By Proposition 2.3.5 it follows directly from (9) and (10) that 7[k] holds.

Hence we see that the validity of 8[k] for all weakly mixing systems implies the same
for 7[k], i.e., 8[k]⇒ 7[k].
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2. Show that 7[1] holds

Now back to the induction argument. We need to establish that 7[k] holds for all
k ∈ N. Now, 7[1] consists of the following statement:

lim
n→∞

1

N

N∑
n=1

(∫
Um0nf0U

m1nf1 dµ−
∫

f0 dµ

∫
f1 dµ

)2

= 0,

i.e.

lim
n→∞

1

N

N∑
n=1

(∫
f0U

m1nf1 dµ−
∫

f0 dµ

∫
f1 dµ

)2

= 0,

which is immediately true by the assumption of weakly mixing of T , hence of Tm1 .

3. Show that 7[k-1] implies 8[k] (which implies 7[k])

If we can now show that 7[k-1]⇒ 7[k], we are done. Hence we will show that 7[k-1]⇒
8[k], which will (as shown above) imply 7[k].

We now assume 7[k-1], i.e.

lim
N→∞

1

N

N∑
n=1

[∫ k−1∏
l=0

Umlnfl dµ−
k−1∏
l=0

∫
fl dµ

]2

= 0,

for any k non-negative integers m0, m1, m2, · · · , mk such that 0 = m0 < m1 < m2 <
· · · < mk−1 and any f0, f1, . . . , fk ∈ L∞(X,B, µ).

We will employ the Van der Corput Lemma 3.2.1 to show that 8[k] holds.

We let

un =
k∏

l=1

Umlnfl −
k∏

l=1

∫
fl dµ,

and for convenience we use

κ =
k∏

l=1

∫
fl dµ

(
=

k−1∏
l=0

∫
fl+1 dµ

)
.

For r ∈ N, let

γr = lim
N→∞

1

N

N∑
n=1

〈un, un+r〉

= lim
N→∞

1

N

N∑
n=1

∫ ( k∏
l=1

Umlnfl − κ

)(
k∏

l=1

Uml(n+r)fl − κ

)
dµ.
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Now∫ ( k∏
l=1

Umlnfl − κ

)(
k∏

l=1

Uml(n+r)fl − κ

)
dµ

=

∫ ( k∏
l=1

Umlnfl

k∏
l=1

Uml(n+r)fl − κ
k∏

l=1

Umlnfl − κ

k∏
l=1

Uml(n+r)fl + κ2

)
dµ

=

∫ ( k∏
l=1

UmlnflU
ml(n+r)fl − κ

k∏
l=1

Umlnfl − κ

k∏
l=1

Uml(n+r)fl + κ2

)
dµ

=

∫ k∏
l=1

UmlnflU
ml(n+r)fl dµ− κ

∫ k∏
l=1

Umlnfl dµ− κ

∫ k∏
l=1

Uml(n+r)fl dµ + κ2,

the second step in the array above following from commutativity.

Use the notation

an,r =

∫ k∏
l=1

UmlnflU
ml(n+r)fl dµ− κ

∫ k∏
l=1

Umlnfl dµ− κ

∫ k∏
l=1

Uml(n+r)fl dµ + κ2.

Similar to the proof of the previous theorem, we will scrutinize the three integrals
in the last expression each separately.

(a) The first integral

∫ k∏
l=1

Umlnfl Uml(n+r)fl dµ =

∫ k∏
l=1

Umln(fl Umlrfl) dµ

=

∫
Um1n

(
k∏

l=1

U (ml−m1)n(fl Umlrfl)

)
dµ

=

∫ k∏
l=1

U (ml−m1)n(fl Umlrfl) dµ

=

∫ k−1∏
l=0

U (ml+1−m1)n(fl+1 Uml+1rfl+1) dµ.

If we now replace the integers m0, m1, m2, · · · , mk−1 in 7[k-1] by the following
integers:

m′
0 = m1 −m1 = 0, m′

1 = m2 −m1, m′
2 = m3 −m1, . . . , m′

k−1 = mk −m1,

we obtain integers m′
0, m

′
1, m

′
2, . . . m

′
k−1 that are non-negative with

0 = m′
0 < m′

1 < m′
2 < · · · < m′

k−1.
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If we also replace each fl in 7[k-1] by

gl,r = fl+1 Uml+1rfl+1,

we obtain that

lim
N→∞

1

N

N∑
n=1

[∫ k−1∏
l=0

Um′
ln (fl+1 Uml+1rfl+1) dµ−

k−1∏
l=0

∫
fl+1 Uml+1rfl+1 dµ

]2

= lim
N→∞

1

N

N∑
n=1

[∫ k−1∏
l=0

Um′
lngl,r dµ−

k−1∏
l=0

∫
gl,r dµ

]2

= 0.

Thus by 7[k-1] and Corollary 2.3.8 we find that

lim
N→∞

1

N

N∑
n=1

∫ k−1∏
l=0

Um′
ln (fl+1 Uml+1rfl+1) dµ =

k−1∏
l=0

∫
fl+1 Uml+1rfl+1 dµ.

(b) The second integral

We proceed in a similar fashion with the second integral, again using 7[k-1]
and Corollary 2.3.8.

lim
N→∞

1

N

N∑
n=1

∫ k∏
l=1

Umlnfl dµ = lim
N→∞

1

N

N∑
n=1

∫
Um1n

k∏
l=1

U (ml−m1)nfl dµ

= lim
N→∞

1

N

N∑
n=1

∫ k∏
l=1

U (ml−m1)nfl dµ

= lim
N→∞

1

N

N∑
n=1

∫ k−1∏
l=0

U (ml+1−m1)nfl+1 dµ

=
k−1∏
l=0

∫
fl+1 dµ

= κ.
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(c) The third integral

lim
N→∞

1

N

N∑
n=1

∫ k∏
l=1

Uml(n+r)fl dµ

= lim
N→∞

1

N

N∑
n=1

∫ k∏
l=1

Umln (Umlrfl) dµ

= lim
N→∞

1

N

N∑
n=1

∫
Um1n

k∏
l=1

U (ml−m1)n (Umlrfl) dµ

= lim
N→∞

1

N

N∑
n=1

∫ k∏
l=1

U (ml−m1)n (Umlrfl) dµ

= lim
N→∞

1

N

N∑
n=1

∫ k−1∏
l=0

U (ml+1−m1)n (Uml+1rfl+1) dµ

=
k−1∏
l=0

∫
Uml+1rfl+1 dµ

=
k−1∏
l=0

∫
fl+1 dµ

= κ.

After considering these integrals and averaging them over N we hence obtained that

γr = lim
N→∞

1

N

N∑
n=1

an,r

=
k−1∏
l=0

∫
fl+1 Uml+1rfl+1 dµ− κ2 − κ2 + κ2

=
k−1∏
l=0

∫
fl+1 Uml+1rfl+1 dµ− κ2.

We now see that by weakly mixing of U , and hence of Uml+1 , that

lim
r→∞

γr = lim
r→∞

(
k−1∏
l=0

∫
fl+1 Uml+1rfl+1 dµ− κ2

)

=
k−1∏
l=0

∫
fl+1 dµ

∫
fl+1 dµ− κ2

= κ2 − κ2

= 0.
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Hence the average

lim
M→∞

1

M

M∑
r=1

γr = 0

by Propositions 2.3.1 and 2.3.2.

Finally, by the Van der Corput Lemma, we have that

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

un

∥∥∥∥∥ = lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

k∏
l=1

Umlnfl −
k∏

l=1

∫
fl dµ

∥∥∥∥∥ = 0.

�

It should be noted that the restriction that 0 = m0 < m1 < m2 < · · · < mk is introduced
for the sake of convenience. If mj 6= mj′ for j 6= j′, and if we do not require this ordering,
we can rearrange and renumber terms (which is possible due to commutativity) so that
we can follow the same argument as we did above to prove weakly mixing of all orders.

Hence the order restriction 0 = m0 < m1 < m2 < · · · < mk may indeed be dropped.

Of course, Theorem 3.3.2 can be extended, by the same reasoning, to the statement

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

k∏
l=1

Umlnfl −
k∏

l=1

∫
fl dµ

∥∥∥∥∥
L2(X)

= 0

where the integers ml are to be understood as in Theorem 3.3.3.
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Chapter 4

Non-commutative ergodic theory

In Chapter 4, a basic familiarity with operator algebras and in particular C∗-algebra
theory is assumed. An introduction to these theories may be found in [18] as well as in
Fundamentals of the theory of operator algebras, by Kadison and Ringrose.

4.1 The Gelfand-Naimark-Segal (GNS) construction

A powerful tool for the study of ergodic theory in non-commutative dynamical systems
as discussed in [18], p 93, will be introduced next.

We will see that the GNS construction provides us with a way to regard every C∗-algebra
as a C∗-subalgebra of B(H) for some Hilbert space H (with B(H) denoting the set of all
bounded linear maps H → H).

A representation of a C∗-algebra A is a pair (H, π) where H is a Hilbert space and
π : A → B(H) is a ∗-homomorphism. (H, π) is said to be faithful if π is injective.

We will now set out to construct a representation for any given C∗-algebra.

Now, if H is an inner product space (pre-Hilbert space), then there is a unique inner
product on the Banach space completion Ĥ of H extending the inner product of H and
having as its associated norm the norm of Ĥ ([16], Theorem 3.2.3). We call Ĥ endowed
with this inner product the Hilbert space completion of H.

With each positive linear functional we can associate a representation. Suppose that ϕ is
a positive linear functional on a C∗-algebra A.

If
Nϕ = {a ∈ A |ϕ(a∗a) = 0},

then Nϕ is a closed left ideal of A and the map

(A/Nϕ)× (A/Nϕ) → C, 〈a + Nϕ, b + Nϕ〉 7→ ϕ(b∗a),

is a well-defined inner product on A/Nϕ. We now denote the Hilbert space completion of
A/Nϕ by Hϕ.
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If a ∈ A, then an operator π(a) ∈ B(A/Nϕ) can be defined by

π(a)(b + Nϕ) = ab + Nϕ.

The inequality ‖π(a)‖ ≤ ‖a‖ holds since we have

‖π(a)(b + Nϕ)‖2 = ϕ(b∗a∗ab) ≤ ‖a‖2ϕ(b∗b) = ‖a‖2 ‖b + Nϕ‖2 .

The operator π(a) has a unique extension to a bounded operator πϕ(a) on Hϕ. The map

πϕ : A → B(Hϕ), a 7→ πϕ(a),

is a ∗-isomorphism.

The representation (Hϕ, πϕ) of A is the Gelfand-Naimark-Segal representation (or GNS
representation) associated to ϕ.

Some remarks on notation

As in [20], for any u in a Hilbert space H, ωu stands for the linear functional B(H) 3
x 7→ 〈xu, u〉. We let uϕ denote the canonical cyclic vector of πϕ, satisfying ϕ = ωuϕ ◦ πϕ.
We then see that ‖uϕ‖2 = ‖ϕ‖ (= 1 if ϕ is a state). If the C∗-algebra U is unital, then
πϕ(1U) = 1Hϕ , and so πϕ(1U)uϕ = uϕ and ϕ(1U) = ‖ϕ‖ (= 1 if ϕ is a state).

4.2 C∗-dynamical systems

Let us proceed to introduce the basic notions of ergodic theory in a C∗-algebra theoretical
framework.

In the framework of C∗-algebra theory, the measure-preserving transformation T acting
on the probability space (X,B, µ) will be replaced by a ∗-endomorphism Φ with

Φ : L∞(X,B, µ) → L∞(X,B, µ), Φ(f) = f ◦ T.

If we define the map

ϕ : L∞(X,B, µ) → C, ϕ(f) =

∫
X

f dµ,

it follows that ϕ is a faithful normal state.

The fact that ϕ is faithful can easily be seen from the basic properties of integrals, i.e. if
f > 0 then ϕ(f) =

∫
X

f dµ > 0, noting that ff = ff shows that ϕ is normal.

The map ϕ also leaves Φ invariant since

ϕ (Φ(f)) =

∫
Φ(f) dµ =

∫
f ◦ T dµ =

∫
f dµ = ϕ(f).
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Let U be a C∗-algebra, ϕ a state on U and Φ : U → U a positive linear map such that

ϕ ◦ Φ = ϕ and ϕ (Φ(x)∗Φ(x)) ≤ ϕ(x∗x) for every x ∈ U .

We can then define the notions ergodicity and weakly mixing as follows: We say that

- Φ is ergodic with respect to ϕ if

lim
N→∞

1

N

N−1∑
n=0

(ϕ(yΦn(x))− ϕ(y)ϕ(x)) = 0 for all x, y ∈ U ;

- Φ is weakly mixing with respect to ϕ if

lim
N→∞

1

N

N−1∑
n=0

|ϕ(yΦn(x))− ϕ(y)ϕ(x)| = 0 for all x, y ∈ U .

It is clear that these definitions of ergodicity and weakly mixing are extensions of the
commutative case where U = L∞(X,B, µ) and x and y replaced by χA, χB ∈ L∞(X,B, µ)
respectively, i.e.

ϕ(yΦn(x))− ϕ(y)ϕ(x) =

∫
X

χB(x)χA(T nx) dµ−
∫

X

χB(x) dµ

∫
X

χA(x) dµ

=

∫
X

χB∩T−nA(x) dµ− µ(B)µ(A)

= µ(T−nA ∩B)− µ(A)µ(B).

A pair (U , Φ) where U is a C∗-algebra and Φ a ∗-homomorphism Φ : U → U is called a
C∗-dynamical system.

If, in addition, we have a state ϕ such that ϕ ◦ Φ = ϕ, i.e. we have a C∗-dynamical
system that leaves a state invariant, then we call the triplet (U , ϕ, Φ) a state preserving
C∗-dynamical system.

We say that the state preserving C∗-dynamical system (U , ϕ, Φ) is ergodic if Φ is ergodic
with respect to ϕ and weakly mixing if Φ is weakly mixing with respect to ϕ, as defined
above.

We see that any measure-preserving dynamical system (X,B, µ, T ) can be thought of as
a state preserving C∗-dynamical system (L∞(µ), ϕ, Φ) by letting, as before,

Φ(f) = f ◦ T and ϕ(f) =

∫
X

f dµ.
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4.3 Non-commutative Khintchine and Poincairé Re-

currence Theorem

Using Hilbert space techniques, we can prove the following non-commutative generaliza-
tion of the Khintchine recurrence theorem. From this result we will then derive a similar
generalization for the Poincairé Recurrence Theorem.

4.3.1 Theorem ([19], p 2)

Let U be an algebra with unit 1, and let Φ : U → U be a C∗-morphism of unital algebras.

If there exists a state ϕ ∈ U∗ such that ϕ ◦ Φ = ϕ, then for every a ∈ U and every ε > 0
there exists a relatively dense subset E of N such that

Re ϕ (Φn(a∗)a) ≥ |ϕ(a)|2 − ε

for every n ∈ E.

To prove this theorem, we will first prove the following, more general result, which is
similar to Theorem 1.3.1.3.

4.3.2 Lemma ([19], p 3)

Let H be a vector space endowed with a hermitian form 〈·, ·〉 and let ‖ · ‖ be the corre-
sponding norm. Suppose that there exists a linear operator U : H → H such that

‖Ux‖ = ‖x‖ for every x ∈ H
Uv = v for some v ∈ H, ‖v‖ = 1.

Then, for every x ∈ H and every ε > 0 there exists a relatively dense subset E of N such
that

Re 〈Unx, x〉 ≥ |〈x, x〉|2 − ε

for every n ∈ E.

Proof:

By the Mean Ergodic Theorem there exists a projection P on {z|Uz = z} such that for
every ε > 0 and every x ∈ H we can find an N ∈ N such that∥∥∥∥∥ 1

N

N−1∑
k=0

Ukx− Px

∥∥∥∥∥
2

≤ ε

2
.
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Let us write

xN =
1

N

N−1∑
k=0

Ukx.

Since ‖Ux‖ = ‖x‖ for every x ∈ H, i.e. U is a contraction, and since UP = P , we also
have that ∥∥U lxN − Px

∥∥2 ≤ ε

2

for every l ∈ N. We then obtain that∥∥U lxN − xN

∥∥2
=
∥∥U lxN − Px + Px− xN

∥∥2

≤
(
‖U lxN − Px‖+ ‖xN − Px‖

)2
=
∥∥U lxN − Px

∥∥2
+ 2

∥∥U lxN − Px
∥∥ ‖xN − Px‖+ ‖xN − Px‖2

≤ ε
2

+ 2 ε
2

+ ε
2

= 2ε

for every l ∈ N.

Since ∥∥U lxN − xN

∥∥2
= 〈U lxN − xN , U lxN − xN〉

= ‖U lxN‖ − 〈U lxN , xN〉 − 〈xN , U lxN〉+ ‖xN‖2

= 2 ‖xN‖2 − 2Re〈U lxN , xN〉,

we have that
Re

〈
U lxN , xN

〉
≥ ‖xN‖2 − ε

for every l ≥ N − 1.

On the other hand, we have that

0 ≤ ‖xN − 〈xN , v〉v‖2 = 〈xN − 〈xN , v〉v, xN − 〈xN , v〉v〉

= ‖xN‖2 − 〈〈xN , v〉v, xN〉 − 〈xN , 〈xN , v〉v〉+ 〈〈xN , v〉v, 〈xN , v〉v〉

= ‖xN‖2 − |〈xN , v〉|2,

and

〈xN , v〉 =

〈
1

N

N−1∑
k=0

Ukx, v

〉
=

1

N

N−1∑
k=0

〈
Ukx, v

〉
=

1

N

N−1∑
k=0

〈
x, (U∗)kv

〉
=

1

N

N−1∑
k=0

〈x, v〉 = 〈x, v〉

since U∗v = v ([22], p 408). This can be seen from the following:

We know that
1 = ‖U‖ = ‖U∗‖
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and hence that

1 = ‖v‖2 = 〈v, v〉 = 〈Uv, v〉 = 〈v, U∗v〉 ≤ ‖v‖‖U∗v‖ ≤ ‖v‖‖U∗‖‖v‖ = ‖v‖2 = 1.

Therefore
〈v, U∗v〉 = ‖v‖‖U∗v‖

and
‖v‖‖U∗v‖ = ‖v‖2, i.e ‖U∗v‖ = ‖v‖,

which implies that

‖v − U∗v‖2 = ‖v‖2 − 〈v, U∗v〉 − 〈U∗v, v〉+ ‖U∗v‖2 = 0.

Thus we conclude that U∗v = v.

Now back to the main line of proof.

We have that
|〈x, v〉|2 ≤ ‖xN‖2 ≤ ε + Re

〈
U lxN , xN

〉
.

Since we have that

Re
〈
U lxN , xN

〉
= Re

〈
1

N

N−1∑
k=0

Uk+lx,
1

N

N−1∑
j=0

U jx

〉

=
1

N2

N−1∑
j,k=0

Re
〈
U l+kx, U jx

〉
=

1

N2

N−1∑
j,k=0

Re
〈
U l+k−jx, x

〉
and hence for each integer n ∈ N∗ there exist integers j(n), k(n) ∈ [0, N − 1] such that

Re
〈
UnN+k(n)−j(n)x, x

〉
≥ ‖xN‖2 − ε.

Furthermore, the set E = {nN + k(n)− j(n)|n ∈ N∗} is relatively dense in N because

(n− 1)N ≤ nN + k(n)− j(n) ≤ (n + 1)N

and hence E contains an element in every interval of length 2N . �

Proof of Theorem 4.3.1:

If we endow U with the GNS-hermitian product 〈x, y〉 = ϕ(y∗x), and choose as U the
mapping Φ and as v the unit 1 of U , then Theorem 4.3.1 follows from Lemma 4.3.2. �

70



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  BBeeyyeerrss,,  FF  JJ  CC    ((22000055))  

This theorem can be further extended for arbitrary C∗-algebras U and linear mappings
Φ : U → U such that

ϕ(Φ(a)∗Φ(a)) ≤ ϕ(a∗a) for every a ∈ U .

In that instance, the proof of this assertion is much more involved [20].

For the purposes of the next theorem, let us introduce the terms upper and lower density
of sets ([8], p 73 and [20], p 46). If S is a finite set, we denote its cardinality by |S| or
by Card(S). We define the upper density D∗(S) and the lower density D∗(S) of some set
S ⊂ N by

D∗(S) = lim sup
n→∞

1

n + 1

n∑
k=0

χS(k) = lim sup
n→∞

Card(S ∩ [0, n])

n + 1
,

and

D∗(S) = lim inf
n→∞

1

n + 1

n∑
k=0

χS(k) = lim inf
n→∞

Card(S ∩ [0, n])

n + 1
.

The set S is said to have density D(S) if D∗(S) = D∗(S).

We recall that we say that a set S ⊂ N is relatively dense if the set has bounded gaps, i.e
there is an L > 0 such that every interval of natural numbers with length L or higher will
intersect S. Hence if S is relatively dense, then if n > L, Card(S ∩ [0, n]) ≥ n

L
− 1, i.e.

D∗(S) ≥ lim inf
n→∞

n− L

L(n + 1)
=

1

L
> 0. Thus we have that relatively dense sets have positive

lower density.

We may note at this stage that it is not true that every set of positive lower density is
relatively dense. A counter-example was supplied by R. Duvenhage. Let E = {kj}∞j=1 be
such that k1 = 1 and the sequence of differences bj = kj+1 − kj is given by

{b1, b2, . . .} = {2, 1, 3, 1, 1, 4, 1, 1, 1, 5, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 7, . . .},

i.e.

E = {1, 3, 4, 7, 8, 9, 13, 14, 15, 16, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 36, 43, . . .}.

This example was constructed to ensure that the number of elements of E grows at the
same rate as the magnitude of the total number of gaps or jumps in the sequence. We
find that all terms

an :=
1

n

n∑
k=1

χE(k) ≥ 1

2
, n = 1, 2, . . . .

In particular, each term an(n+1) = 1
2
, n = 1, 2, .... This means that

lim inf
n→∞

an =
1

2
,

which means that D∗(E) = 1
2

> 0. Since it is clear that E does not have bounded gaps,
the counter-example is complete.

From the non-commutative Khintchine theorem follows the non-commutative analogue of
Poincaré’s Recurrence Theorem.
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4.3.3 Theorem ([19], p 3)

Let (U , ϕ, Φ) be a state preserving C∗-dynamical system. Then

lim inf
N→∞

1

N

N−1∑
k=0

∣∣ϕ(Φk(a∗)a)
∣∣ > 0

for every a ∈ U with ϕ(a) 6= 0.

Proof:

We will show that for any bounded sequence {ak}k>1 of nonnegative integers, the following
two conditions are equivalent:

1. lim inf
N→∞

1

N

N−1∑
k=0

ak > 0;

2. lim inf
N→∞

Card {k ∈ [0, N ]|ak > ε}
N

> 0 for some ε > 0.

Hence we prove that

lim inf
N→∞

1

N

N−1∑
k=0

ak = 0

if and only if

lim inf
N→∞

Card {k ∈ [0, N ]|ak > ε}
N

= 0 for all ε > 0.

Note: For every nonnegative sequence {ak}k>0 we have the following: If lim inf
N→∞

ak = 0,

then we can construct a subsequence (using the definition of the limit inferior repeatedly)
{ank

}k>0 with 1 ≤ n0 < n1 < n2 < . . . such that lim
k→∞

ank
= 0. Conversely, since lim inf

k→∞
ak

is the smallest number that can be obtained as a limit of a subsequence of {ak}k>0, we
have that lim

k→∞
ank

= 0 implies that lim inf
k→∞

ak = 0, since the sequence is nonnegative.

From this, our required equivalence follows: We have that

lim inf
N→∞

1

N

N−1∑
k=0

ak = 0

if and only if there is a subsequence {ank
}k>0 with 1 ≤ n0 < n1 < n2 < . . . such that

lim
N→∞

1

N

N−1∑
k=0

ank
= 0

if and only if (by Lemma 2.3.3)

lim
N→∞

1

N

N−1∑
k=0

χE′
ε
(k) = 0 for all ε > 0, with E ′

ε = {nk : ank
> ε}
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if and only if

lim inf
N→∞

1

N

N−1∑
k=0

χEε(k) = 0 for all ε > 0, with Eε = {k : ak > ε}

(since {χE′
ε
(k)} is a subsequence of {χEε(k)}). Hence the equivalence above, being the

contrapositive of the equivalence of 1 and 2 earlier above, is proved.

Now, from the generalized Khintchine theorem, since there is a relatively dense subset F
of N such that

Re ϕ
(
Φk(a∗)a

)
≥ |ϕ(a)|2 − ε

for every k ∈ F , and for every ε > 0, we also have (following the remark preceding this
theorem) that the set

{k ∈ N : Re ϕ
(
Φk(a∗)a

)
> ε}

has positive lower density, for some ε > 0, i.e.

lim inf
N→∞

Card
{
k ∈ [0, N ] : Re ϕ

(
Φk(a∗)a

)
> ε
}

N
> 0 for some ε > 0,

which implies that

lim inf
N→∞

Card
{
k ∈ [0, N ] :

∣∣ϕ (Φk(a∗)a
)∣∣ > ε

}
N

> 0 for some ε > 0.

The theorem now follows by the equivalence stated above. �.

4.4 Multiple Weakly Mixing

We will conclude this dissertation by illustrating some remarkable results by Niculescu,
Ströh and Zsidó [20], where it is illustrated that many of the multiple recurrence and mul-
tiple weakly mixing results discussed in Chapter 3 can be extended to non-commutative
dynamical systems under rather weak restrictions.

In this dissertation it should be noted that all discussions are restricted to C∗-algebras
with unity. However, Niculescu, Ströh and Zsidó [20] have shown that the requirement
that the C∗-algebra contains a unit element, can be dropped.
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4.4.1 Preliminary concepts

We state a few definitions and results that will serve as background to the definitions and
results for non-commutative dynamical systems.

1. Van der Corput type results

As mentioned earlier, we now construct a zero density set similar to the construction
in the Koopman-Von Neumann Lemma.

4.4.1.1 Theorem ([20], p 46)

Let E1, E2, ... ⊂ N be a sequence of zero density subsets. Then there exists a zero
density subset E ⊂ N such that Ej\E is finite for every j ≥ 1.

Proof:

Choose by induction a sequence 1 ≤ n1 < n2 < ... of integers such that

1

n + 1

n∑
k=0

χEj
(k) ≤ 1

p2
for n ≥ np and j = 1, 2, ..., p

and let E =
∞⋃

j=1

(Ej ∩ (nj, +∞)). We then have that Ej\E ⊂ [0, nj], j = 1, 2, . . .

and hence Ej\E is finite.

For np < n ≤ np+1 we have that χE(k) ≤
p∑

j=1

χEj
(k). This is so since if k ∈ E, then

also k ∈
p⋃

j=1

Ej. We then have that

1

n + 1

n∑
k=0

χE(k) ≤ 1

n + 1

n∑
k=0

p∑
j=1

χEj
(k) =

p∑
j=1

1

n + 1

n∑
k=0

χEj
(k) ≤ p

1

p2
=

1

p
,

so E has density zero. �

74



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  BBeeyyeerrss,,  FF  JJ  CC    ((22000055))  

4.4.1.2 Theorem ([20], p 47)

If {un}n≥0 is a bounded sequence in a Hilbert space H then the following statements
are equivalent:

(a) D − lim
n→∞

〈un, u〉 = 0 for all u ∈ H ;

(b) D − lim
n→∞

un = 0 with respect to the weak topology of H.

Proof:

(b) ⇒ (a) follows immediately by [16], 3.8-1 p.188.

We prove (a) ⇒ (b).

Let H0 denote the closed linear span of {un : n ≥ 0}. By (a) there are subsets
Ej ⊂ N of density zero such that lim

n→∞, n/∈Ej

〈un, uj〉 = 0 for all j ≥ 0 and by

Theorem 4.4.1.1 there exists a subset E ⊂ N of density zero with Ej\E finite for
all j ≥ 0. Then lim

n→∞, n/∈E
〈un, uj〉 = 0 for all j ≥ 0, so the closed linear subspace

{u ∈ H : lim
n→∞, n/∈E

〈un, u〉 = 0} ⊂ H contains the sequence {uj}j≥0, hence all of H0.

Since it trivially contains H\H0, it is equal to H. Hence, (b) holds. �

4.4.1.3 Proposition ([20], p 43)

If 1 ≤ n ≥ h ≥ d ≥ 0 are natural numbers and a1−h, ..., an+h−d are elements of an
additive semigroup then

n+h∑
k=1

k−d∑
j=k−h

aj = (h− d + 1)
n∑

j=1−d

aj +
h−d∑
j=1

(h− d + 1− j)(a1−d−j + an+j).

Proof:

By rewriting and re-assigning indexes, we get that

n+h∑
k=1

k−d∑
j=k−h

aj =
−d∑

j=1−h

j+h∑
k=1

aj +
n∑

j=1−d

j+h∑
k=j+d

aj +
n+h−d∑
j=n+1

n+h∑
k=j+d

aj

=
−d∑

j=1−h

(j + h)aj +
n∑

j=1−d

(h− d + 1)aj +
n+h−d∑
j=n+1

(n + h− j − d + 1)aj.
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We also have that

−d∑
j=1−h

(j + h)aj =

−(1−h)∑
j=−(−d)

(−j + h)a−j

=
h−1∑
j=d

(h− j)a−j

=
h−d∑
j=1

(h− d + 1− j)a1−d−j

and
n+h−d∑
j=n+1

(n + h− j − d + 1)aj =
h−d∑
j=1

(h− d + 1− j)an+j.

Therefore,

n+h∑
k=1

k−d∑
j=k−h

aj = (h− d + 1)
n∑

j=1−d

aj +
h−d∑
j=1

(h− d + 1− j)(a1−d−j + an+j).

�

Proposition 4.4.1.3 yields the following:

4.4.1.4 Proposition ([20], p 43)

If 1 ≤ n ≥ h ≥ d ≥ 0 are natural numbers and a1, ..., an are elements of an additive
semigroup with neutral element, then putting aj = 0 for j ≤ 0 and for j ≥ n + 1,
we have

n+h∑
k=1

k−d∑
j=k−h

aj = (h− d + 1)
n∑

j=1

aj.

We also have a counterpart of Proposition 4.4.1.3 for double sums:
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4.4.1.5 Proposition ([20], p 43)

If 1 ≤ n ≥ h ≥ 0 are natural numbers and aj,j′ , 1− h ≤ j, j′ ≤ n + h are elements
of an additive semigroup then

n+h∑
k=1

k∑
j,j′=k−h

aj,j′ = (h + 1)
n∑

j=1

aj,j′ +
h∑

d=1

(h− d + 1)
n∑

j=1−d

(aj,j′+d + aj+d,j)

+
h∑

d=1

(h− d + 1)(a1−d,1−d + an+d,n+d)

+
h∑

d=1

h−d∑
j=1

(h− d + 1− j)(a1−d−j,1−j + a1−j,1−d−j + an+j,n+d+j + an+d+j,n+j).

Proof:

We show this by direct computation. First we separate the "diagonal" terms in the
sum, and rewrite the rest. We have that

n+h∑
k=1

k∑
j,j′=k−h

aj,j′ =
n+h∑
k=1

k∑
j=k−h

aj,j +
n+h∑
k=1

k∑
j,j′=k−h, j<j′

(aj,j′ + aj′,j)

=
n+h∑
k=1

k∑
j=k−h

aj,j +
n+h∑
k=1

h∑
d=1

k−d∑
j=k−h

(aj,j+d + aj+d,j)

=
n+h∑
k=1

k∑
j=k−h

aj,j +
h∑

d=1

n+h∑
k=1

k−d∑
j=k−h

(aj,j+d + aj+d,j).

By Proposition 4.4.1.3 we have that

n+h∑
k=1

k∑
j=k−h

aj,j = (h + 1)
n∑

j=1

aj,j +
h∑

j=1

(h + 1− j)(a1−j,1−j + an+j,n+j)

and

n+h∑
k=1

k−d∑
j=1

(aj,j+d + aj+d,j) = (h− d + 1)
n∑

j=1−d

(aj,j+d + aj+d,j)

+
h−d∑
j=1

(h− d− j + 1)(a1−d−j,1−j + a1−j,1−d−j + an+j,n+d+j + an+d+j,n+j).

This yields the required equality. �
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By Proposition 4.4.1.5 we have the following special case:

4.4.1.6 Proposition ([20], p 44)

If 1 ≤ n ≥ h ≥ 0 are natural numbers and aj,j′ , 1 ≤ j, j′ ≤ n are elements of an
additive semigroup with neutral element then, putting aj,j′ = 0 for j or j′ ≤ 0 and
for j or j′ ≥ n + 1, we have

n+h∑
k=1

k∑
j,j′=k−h

aj,j′ = (h + 1)
n∑

j=1

aj,j +
h∑

d=1

(h− d + 1)
n∑

j=1

(aj,j+d + aj+d,j).

�

The following result gives a counterpart for the Cauchy inequality for normed vector
spaces.

4.4.1.7 Proposition ([20], p 44)

If n ≥ 1 is a natural number and a1, ..., an are elements of a ∗-algebra then(
n∑

k=1

ak

)∗( n∑
k=1

ak

)
≤ n

n∑
k=1

a∗kak. (4.1)

Proof:

We prove by induction.

The case where n = 1 follows immediately. Assume, then, that it holds for some
n ≥ 1 and let a1, ..., an, an+1 be elements of a ∗-algebra.

Note:

a∗kan+1 + a∗n+1ak = a∗kak + a∗n+1an+1 − (ak − an+1)
∗(ak − an+1)

≤ a∗kak + a∗n+1an+1,

since (ak − an+1)
∗(ak − an+1) is a positive element.

78



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  BBeeyyeerrss,,  FF  JJ  CC    ((22000055))  

Then(
n+1∑
k=1

ak

)∗(n+1∑
k=1

ak

)
=

(
n∑

k=1

ak + an+1

)∗( n∑
k=1

ak + an+1

)

=

(
n∑

k=1

ak

)∗( n∑
k=1

ak

)
+

n∑
k=1

(a∗kan+1 + a∗n+1ak) + a∗n+1an+1

≤ n

n∑
k=1

a∗kak +
n∑

k=1

(a∗kak + a∗n+1an+1) + a∗n+1an+1

= n

n∑
k=1

a∗kak +
n∑

k=1

a∗kak + na∗n+1an+1 + a∗n+1an+1

= (n + 1)
n+1∑
k=1

a∗kak,

where the inequality follows by using the induction assumption and the note above.

�

4.4.1.8 Proposition ([20], p 45)

If 1 ≤ n ≥ h ≥ 0 are natural numbers and a1, ..., an are elements of a ∗-algebra
then

(h + 1)2

(
n∑

j=1

aj

)∗( n∑
j=1

aj

)

≤ (n + h)(h + 1)
n∑

j=1

a∗jaj + 2(n + h)
h∑

d=1

(h− d + 1)Re

n∑
j=1

a∗jaj+d,

where Re(a) = 1
2
(a + a∗).

Proof:

Put aj = 0 for j ≤ 0 and for j ≥ n + 1. Using successively Proposition 4.4.1.4,
Proposition 4.4.1.7 and Proposition 4.4.1.6, we get
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(h + 1)2

(
n∑

j=1

aj

)∗( n∑
j=1

aj

)
=

(
n+h∑
k=1

k∑
j=k−h

aj

)∗(n+h∑
k=1

k∑
j=k−h

aj

)

≤ (n + h)
n+h∑
k=1

(
k∑

j=k−h

aj

)∗( k∑
j=k−h

aj

)
= (n + h)

n+h∑
k=1

k∑
j,j′=k−h

a∗jaj′

= (n + h)

(
(h + 1)

n∑
j=1

a∗jaj +
h∑

d=1

(h− d + 1)
n∑

j=1

(a∗jaj+d + a∗j+daj)

)

= (n + h)

(
(h + 1)

n∑
j=1

a∗jaj +
h∑

d=1

(h− d + 1)
n∑

j=1

(a∗jaj+d + (a∗jaj+d)
∗)

)

= (n + h)(h + 1)
n∑

j=1

a∗jaj + (n + h)
h∑

d=1

(h− d + 1)
n∑

j=1

2Re(a∗jaj+d).

�

A Van der Corput type inequality in Hilbert space then follows:

4.4.1.9 Proposition ([20], p 46)

If 1 ≤ n ≥ h ≥ 0 are natural numbers and u1, ..., un are vectors in a Hilbert space
H, then

(h + 1)2

∥∥∥∥∥
n∑

j=1

uj

∥∥∥∥∥
2

≤ (n + h)(h + 1)
n∑

j=1

‖uj‖2 + 2(n + h)
h∑

d=1

(h− d + 1)Re
n∑

j=1

〈uj, uj+d〉.

Proof:

Choose bounded linear operators aj with uj = aju1 in the following way:

Let Hu1 be the close linear span of u1. Let H = Hu1 ⊕ H⊥
u1

. For any u ∈ H, let
u = αu1 + y, where y ∈ H⊥

u1
. Now define aju1 = uj on Hu1 and ajy = 0 on H⊥

u1
. We

then have that
aju = αaju1 = αuj.

It is clear that each operator aj is bounded (since each uj is bounded) and linear,
since for each u, v ∈ H, with u = αu1 + y and v = βu1 + z, where y, z ∈ H⊥

u1
,

aj(γu + v) = (γα + β)uj = γaju + ajv.
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Hence aj ∈ B(H), j = 1, 2, ..., n.

Now apply Proposition 4.4.1.8 to these a1, ..., an, and take the value of the positive
linear operator ωu1 on both sides of the inequality. We then get that

ωu1

(
(h + 1)2

(
n∑

j=1

aj

)∗( n∑
j=1

aj

))

≤ ωu1

(
(n + h)(h + 1)

n∑
j=1

a∗jaj + 2(n + h)
h∑

d=1

(h− d + 1)Re

n∑
j=1

a∗jaj+d

)

i.e.

(h + 1)2

∥∥∥∥∥
n∑

j=1

aj

∥∥∥∥∥
2

≤ (n + h)(h + 1)
n∑

j=1

‖aj‖2 + 2(n + h)
h∑

d=1

(h− d + 1)Re

n∑
j=1

〈aj+d, aj〉.

Since we have that

‖aj‖2 = ωu1(a
∗
jaj) = 〈aju1, aju1〉 = 〈uj, uj〉 = ‖uj‖2

and similarly that ∥∥∥∥∥
n∑

j=1

aj

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

j=1

uj

∥∥∥∥∥
2

,

the result follows.

�

4.4.1.10 Theorem ([20], p 37)

Let u1, u2, ... be a bounded sequence in a Hilbert space H. If

lim
h→∞

lim sup
n→∞

1

h

h∑
d=1

1

n

n∑
k=1

|Re〈uk+d, uk〉| = 0, (4.2)

then

lim
n→∞

∥∥∥∥∥ 1

n

n∑
j=1

ukj

∥∥∥∥∥ = 0

for every relatively dense set 1 ≤ k1 < k2 < ... ∈ N.
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Proof:

First we have to prove that a strictly increasing sequence {kj}j>1 is relatively dense
if and only if L = sup

j>1
(kj+1 − kj) < +∞.

If {kj}j>1 is relatively dense, then there is a positive integer K such that every
interval of natural numbers of length > K contains some element of {kj}j>1. Hence
L ≤ K < +∞. Conversely, if M < +∞, then every interval of length M will contain
some element of {kj}j>1, and hence it is relatively dense.

Now we continue with the main proof. Let 1 ≤ k1 < k2 < ... in N be relatively dense.
Let k0 = 0 and let L = sup

j>1
(kj+1 − kj). Then we have that d ≤ kj+d − kj ≤ L · d for

all j, d ≥ 0, in particular j ≤ kj ≤ L · j.

Denote c = sup ‖uk‖ < +∞. By Proposition 4.4.1.9 we get for any natural numbers
n ≥ h ≥ 1:∥∥∥∥∥ 1

n

n∑
j=1

ukj

∥∥∥∥∥
2

≤ n + h

n2(h + 1)

n∑
j=1

‖ukj
‖2 +

2(n + h)

n2(h + 1)

h∑
d=1

h− d + 1

h + 1
Re

n∑
j=1

〈ukj+d
, ukj

〉

≤ n + h

n(h + 1)
c2 + 2

(
1 +

h

n

)
1

n(h + 1)

L·h∑
l=1

n∑
j=1

|Re〈ukj+l, ukj
〉|

≤
(

1

n
+

1

h + 1

)
c2 +

4

n(h + 1)

L·h∑
l=1

L·n∑
k=1

|Re〈uk+l, uk〉| .

Given any ε > 0, choose an integer hε such that c2

hε
≤ ε. Then for any h ≥ hε we

have that

lim sup
n→∞

∥∥∥∥∥ 1

n

n∑
j=1

ukj

∥∥∥∥∥
2

≤ ε + lim sup
n→∞

4

h

L·h∑
d=1

1

n

L·n∑
k=1

|Re〈uk+d, uk〉| .

Hence

lim sup
n→∞

∥∥∥∥∥ 1

n

n∑
j=1

ukj

∥∥∥∥∥
2

≤ ε + 4 lim
h→∞

lim sup
n→∞

1

h

L·h∑
d=1

1

n

L·n∑
k=1

|Re〈uk+d, uk〉| = ε

by (4.2).

Therefore

lim sup
n→∞

∥∥∥∥∥ 1

n

n∑
j=1

ukj

∥∥∥∥∥ = 0.
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Since

0 ≤ lim inf
n→∞

∥∥∥∥∥ 1

n

n∑
j=1

ukj

∥∥∥∥∥ ≤ lim sup
n→∞

∥∥∥∥∥ 1

n

n∑
j=1

ukj

∥∥∥∥∥ = 0,

we see from the equality of the limit inferior and the limit superior that

lim
n→∞

∥∥∥∥∥ 1

n

n∑
j=1

ukj

∥∥∥∥∥ = 0.

�

Weakly mixing and uniformly weakly mixing sequences

Let H be a Hilbert space and {uk}k>1 a bounded sequence in H. Then we say that
{uk}k>1 is weakly mixing to zero if

lim
N→∞

1

N

N∑
k=1

|〈uk, u〉| = 0 ⇔ D − lim
k→∞

〈uk, u〉 = 0 for all u ∈ H.

We say that {uk}k>1 is uniformly weakly mixing to zero if

lim
N→∞

(
sup
‖u‖61

(
1

N

N∑
k=1

|〈uk, u〉|

))
= 0.

4.4.1.11 Proposition

Let H be a Hilbert space and {uk}k>1 a bounded sequence in H. If {uk}k>1 is
uniformly weakly mixing to zero, then it is also weakly mixing to zero.

Proof:

Suppose that {uk}k>1 is uniformly weakly mixing to zero. Let u ∈ H. If u = 0 then
trivially 1

N

∑N
k=1 |〈uk, u〉| = 0. If u 6= 0, let u′ = u

‖u‖ , so that ‖u′‖ = 1.

Since {uk}k>1 is uniformly weakly mixing to zero, and

0 ≤ 1

N

N∑
k=1

|〈uk, u
′〉| ≤ sup

‖u‖61

(
1

N

N∑
k=1

|〈uk, u〉|

)
,

it follows by the squeeze theorem that

lim
N→∞

1

N

N∑
k=1

|〈uk, u
′〉| = 0.
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Therefore,

0 = lim
N→∞

1

N

N∑
k=1

∣∣∣∣〈uk,
u

‖u‖

〉∣∣∣∣ =
1

‖u‖
lim

N→∞

1

N

N∑
k=1

|〈uk, u〉|,

and so

lim
N→∞

1

N

N∑
k=1

|〈uk, u〉| = 0.

Since u is arbitrary, we have that {uk}k>1 is weakly mixing to zero. �

4.4.1.12 Theorem ([20], p 49)

For a bounded sequence {uk}k>1 in a Hilbert space H, the following are equivalent :

(i) {uk}k>1 is uniformly weakly mixing to zero.

(ii) For every sequence 1 ≤ k1 < k2 < ... in N of positive lower density,

lim
N→∞

∥∥∥∥∥ 1

N

N∑
j=1

ukj

∥∥∥∥∥ = 0.

(iii) For every relatively dense sequence 1 ≤ k1 < k2 < ... in N,

lim
N→∞

∥∥∥∥∥ 1

N

N∑
j=1

ukj

∥∥∥∥∥ = 0.

Hence we see that for every bounded sequence u1, u2, ... in a Hilbert space H, (4.2)
implies that {uk}k>1 is uniformly weakly mixing to zero (hence weakly mixing to
zero).

The proof of this result is given in [23]. This paper is being submitted for publication
and hence the proof will not be given here. The result above is a slight extension
of the following interesting characterization for uniform weak convergence (not in
density):
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4.4.1.13 Proposition ([2], p 240)

For a bounded sequence {uk}k>1 in a Hilbert space H, the following are equivalent :

(a) For any ε > 0, there exists a K = K(ε) such that for any v ∈ H with ‖v‖ ≤ 1
there exists a set P ⊂ N with |P | 6 K such that

|〈uk, v〉| ≥ ε ⇒ k ∈ P.

(b) For any increasing sequence {kj} ⊂ N

lim
N→∞

∥∥∥∥∥ 1

N

N∑
j=1

ukj

∥∥∥∥∥ = 0.

Proof:

First we note that from (a) we have that for any ε > 0, there exists a K = K(ε)
such that for any m ∈ N there exists a set P ⊂ N with |P | 6 K such that

|〈uk, um〉| ≥ ε ⇒ k ∈ P.

To see this, let ε > 0 be arbitrary and choose any m ∈ N. Define u′m = um

‖um‖ , so

that ‖u′m‖ = 1. Then, by (a) there is a K as well as a set P ⊂ N with |P | 6 K such
that

|〈uk, u
′
m〉| ≥

ε

‖um‖
⇒ k ∈ P,

i.e. ∣∣∣∣〈uk,
um

‖um‖

〉∣∣∣∣ ≥ ε

‖um‖
⇒ k ∈ P,

so
|〈uk, um〉| ≥ ε ⇒ k ∈ P.

Since ε and m are arbitrary, the implication is proved.

Now we proceed to show that (a)⇒(b):

Let ε > 0. Take K = K( ε2

2
) as discussed above, and L > 2K

ε2 . If N > L and
k1 < k2 < · · · < kN , then

∥∥∥∥∥ 1

N

N∑
j=1

ukj

∥∥∥∥∥
2

≤ 1

N2

N∑
i,j=1

∣∣〈uki
, ukj

〉
∣∣

≤ 1

N2

(
KN +

N2ε2

2

)
<

K

L
+

ε2

2
< ε2
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and thus ∥∥∥∥∥ 1

N

N∑
j=1

ukj

∥∥∥∥∥ < ε.

(b)⇒(a): Suppose that (1) does not hold. From the first part of this proof we then
see that we can find an ε > 0 such that for each m ∈ N there exists a vm ∈ H with
‖vm‖ ≤ 1 and a set Pm ⊂ N such that lim

m→∞
|Pm| → ∞ and

|〈uk, vm〉| ≥ ε, k ∈ Pm.

For each m the set Pm is finite and hence we can replace Pm by a subset thereof
and assume that all the numbers 〈uk, vm〉 lie in the same quadrant in the complex
plane for k ∈ Pm, and so that∥∥∥∥∥ 1

|Pm|
∑

k∈Pm

uk

∥∥∥∥∥ = sup
‖v‖61

∣∣∣∣∣
〈

1

|Pm|
∑

k∈Pm

uk, v

〉∣∣∣∣∣
≥ 1

|Pm|

∣∣∣∣∣∑
k∈Pm

〈uk, vm〉

∣∣∣∣∣
=

1

|Pm|
∑

k∈Pm

|〈uk, vm〉|

≥ ε
4
.

The sets Pm may be constructed in such a way that the sequence {|Pm|}∞m=1 grows
arbitrarily fast and that max(Pm) < min(Pm−1) for each m. Now let

P =
∞⋃

m=1

Pm.

We then have that for each N ∈ N and each sequence k1, k2, . . . , kN there exists an
m such that the said sequence is completely contained in the set Pm. Hence we have
that ∥∥∥∥∥ 1

N

N∑
j=1

ukj

∥∥∥∥∥ ≥ ε

4

for some ε > 0 as discussed above. This contradicts (2). �
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4.4.1.14 Corollary ([20], p 39)

Let u1, u2, ... be a bounded sequence in a Hilbert space H such that

D − lim
d→∞

(
D − lim sup

n→∞
|Re〈un+d, un〉|

)
= 0.

Then {uk}k>1 is uniformly weakly mixing to zero, hence weakly mixing to zero.

Proof:

Since

D − lim
d→∞

(
D − lim sup

n→∞
|Re〈un+d, un〉|

)
= 0

implies (4.2), which implies (by Theorem 4.4.1.10) that

lim
N→∞

∥∥∥∥∥ 1

N

N∑
j=1

ukj

∥∥∥∥∥ = 0

for every relatively dense sequence 1 ≤ k1 < k2 < ... in N, it follows from Theorem
4.4.1.12 that {uk}k>1 is uniformly weakly mixing to zero, and by Proposition 4.4.1.11
that it is also weakly mixing to zero.

�

2. Weakly mixing and symmetrically weakly mixing in non-commutative
dynamical systems

We continue this section by introducing a few new concepts. Some of the concepts
are introduced in [20] to simplify the proofs, which may become quite tedious with-
out these inventions. In the proofs of Theorems 3.3.1 and 3.3.3 regarding weakly
mixing of higher orders we worked in commutative spaces, where we were able to
write

k∏
l=1

Umlnfl

k∏
l=1

Uml(n+r)fl =
k∏

l=1

UmlnflU
ml(n+r)fl.

Commutativity was a key factor in the strategy used to solve those problems. In
the present situation, where we study non-commutative spaces, we need to devise
ways to work around non-commutativity. Hence we will introduce a new concept
symmetrically weakly mixing. We will later also introduce a weak form of commu-
tativity, i.e. asymptotic abelianness in density, under which we will see that we can
extend Theorems 3.3.1 and 3.3.3.

We first introduce the ideas of Multiple Weakly Mixing (WM) and Symmetrically
Weakly Mixing (SWM) as introduced in [20].
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Let (U , ϕ, Φ) be a state preserving C∗-dynamical system. For any integers k ≥ 1
and nonnegative integers m1, ...,mk ≥ 1, mj 6= mj′ for j 6= j′, we define:

- (WMm1,...,mk
) (U , ϕ, Φ) is weakly mixing of order (m1, ...,mk) if

lim
n→∞

1

N

N−1∑
n=0

∣∣∣∣∣ϕ
(

k∏
l=0

Φmln(xl)

)
−

k∏
l=0

ϕ(xl)

∣∣∣∣∣ = 0

for all x0, x1, ..., xk ∈ U and with m0 = 0;

For any integer k ≥ 1 and m0, m1, ...,mk ∈ N, mj 6= mj′ for j 6= j′, we define

- (SWMm0,...,mk
) (U , ϕ, Φ) is symmetrically weakly mixing of order (m1, ...,mk) if

D − lim
n→∞

ϕ

(
k∏

l=−k

Φm|l|n(xl)

)
= ϕ(x0)

k∏
l=1

ϕ(x−lxl)

for all x0, x±1, ..., x±k ∈ U .

As discussed in Section 4.1 we use the GNS representation associated to ϕ denoted
by

πϕ : U → B(Hϕ)

and denote by uϕ its canonical cyclic vector. Hence if a ∈ U , then πϕ(a)uϕ ∈ Hϕ.

Hence we see by Proposition 4.4.1.11 that (WMm1,...,mk
) is implied if the bounded

sequence

un = πϕ

(
k∏

l=1

Φmln(xl)

)
uϕ −

k∏
l=1

ϕ(xl)uϕ ∈ Hϕ

is weakly mixing to zero. We will give more detail about this in the proof of Theorem
4.4.2.1.

We now state a few results which will be used in the proof of our subsequent results.

4.4.1.15 Remark

Let U be a unital C∗-algebra and (U , ϕ, Φ) a state preserving C∗-dynamical system.
For any integers k ≥ 1 and m0, m1, ...,mk ∈ N, mj 6= mj′ for j 6= j′, we have that:

(a) (SWMm0,...,mk
) implies that

D − lim
n→∞

ϕ

(
Φmkn(x−k)

(
k−1∏

l=−k+1

Φm|l|n(xl)

)
Φmkn(xk)

)

= ϕ(x0)
k∏

l=1

ϕ(x−lxl)

for all x0, x±1, ..., x±k ∈ U .
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(b) (SWMm0,...,mk
) ⇒ (SWMm0,...,mq) for every 1 ≤ q ≤ k.

Proof:

The proof of (a) is trivial, since it is an immediate repetition of the definition of
(SWMm0,...,mk

).

Since the result in (a) holds for all x0, x±1, ..., x±k ∈ U , we let x−k = xk = 1U in (a).

Hence (SWMm0,...,mk
) implies that

D− lim
n→∞

ϕ

(
Φmkn(1U)

(
k−1∏

l=−k+1

Φm|l|n(xl)

)
Φmkn(1U)

)
= ϕ(x0)

(
k−1∏
l=1

ϕ(x−lxl)

)
ϕ(1U),

i.e.

D − lim
n→∞

ϕ

(
k−1∏

l=−k+1

Φm|l|n(xl)

)
= ϕ(x0)

(
k−1∏
l=1

ϕ(x−lxl)

)
,

which is (SWMm0,...,mk−1
). Hence the result is established. �

Note: By (SWMm1,...,mk
) we mean that all the terms involving m0 and x0 are simply

omitted from the expressions in the definition of SWM, and it follows directly from
the Remark above that (SWMm1,...,mk

) implies that

D − lim
n→∞

ϕ

(
Φmkn(x−k)

(
k−1∏

l=−k+1, l 6=0

Φm|l|n(xl)

)
Φmkn(xk)

)
=

k∏
l=1

ϕ(x−lxl).

Also (SWMm1,...,mk
) ⇒ (SWMm1,...,mq) for any 1 ≤ q ≤ k.

This note will become relevant in a later result.

Next we will state and prove a result involving a weak form of commutativity, i.e.
the property called norm-asymptotically abelian in density. (U , Φ) is said to be
norm-asymptotically abelian in density if

lim
n→∞

1

n

n∑
k=0

∥∥[Φk(x), y
]∥∥ = 0

for all x, y ∈ U , with the notation [x, y] = xy − yx denoting the commutator. Note
that we also have that

D − lim
n→∞

∥∥[Φk(x), y
]∥∥ = 0

by Corollary 2.3.4.
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4.4.1.16 Lemma ([20], p 40)

Let (U , Φ) be a C∗-algebra which is norm-asymptotically abelian in density. Let
k ≥ 1 and m1, ...,mk ∈ N, mj 6= mj′ for j 6= j′. Then

D − lim
n→∞

∥∥∥∥∥
k∏

l=−k

Φm|l|n(xl)− Φm0n(x0)
k∏

l=1

Φmln(x−lxl)

∥∥∥∥∥ = 0

for all x0, x±1, ..., x±k ∈ U .

Proof:

(a) Use the notation Tl = Φm|l|n(xl) for simplicity.

We know that
Φmln(x−lxl) = Φmln(x−l)Φ

mln(xl) = T−lTl,

for l = 1, 2, ..., k, hence

Φm0n(x0)
k∏

l=1

Φmln(x−lxl) = T0

k∏
l=1

(T−lTl)

and hence we must check whether

D − lim
n→∞

∥∥∥∥∥
k∏

l=−k

Tl − T0

k∏
l=1

(T−lTl)

∥∥∥∥∥ = 0.

The following calculations are used to show this:

We have that, for any 1 ≤ q ≤ k,

q∏
l=−q

Tl −

(
q−1∏

l=−q+1

Tl

)
T−qTq =

q−1∑
s=−q+1

(
s−1∏

l=−q+1

Tl

)
[T−q, Ts]

(
q∏

l=s+1

Tl

)
.

This can be verified easily for the cases q = 1, 2, 3, .. and in general we find that the
first term of the sum on the right hand side always yields

q∏
l=−q

Tl

and the last term yields

−

(
q−1∏

l=−q+1

Tl

)
T−qTq,
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whereas the middle terms all cancel out by addition.

We then obtain that

k∏
l=−k

Tl −

(
q−1∏

l=−q+1

Tl

)(
k∏

l=q

(T−lTl)

)

=

−q−1∏
l=−k

Tl

q∏
l=−q

Tl

k∏
l=q+1

Tl −

(
q−1∏

l=−q+1

Tl

)
(T−qTq)

(
k∏

l=q+1

(T−lTl)

)

=
k∑

r=q

r−1∑
s=−r+1

(
s−1∏

l=−r+1

Tl

)
[T−r, Ts]

(
r∏

l=s+1

Tl

)(
k∏

l=r+1

(T−lTl)

)
,

which can be verified in the same way as, and with the help of, the previous equation.

If we let q = 1 in the equation above, we get

k∏
l=−k

Tl − T0

k∏
l=1

(T−lTl)

=
k∑

r=1

r−1∑
s=−r+1

(
s−1∏

l=−r+1

Tl

)
[T−r, Ts]

(
r∏

l=s+1

Tl

)(
k∏

l=r+1

(T−lTl)

)
.

Now let c = max
−k≤l≤k

‖xl‖, and note that

‖Tl‖ = ‖Φm|l|n(xl)‖ ≤ ‖Φm|l|n‖‖xl‖ = ‖xl‖ ≤ c

since ‖Φ‖ = Φ(1) = 1 and since Φ is bounded. We now see that∥∥∥∥∥
k∏

l=−k

Tl − T0

k∏
l=1

(T−lTl)

∥∥∥∥∥
=

∥∥∥∥∥
k∑

r=1

r−1∑
s=−r+1

(
s−1∏

l=−r+1

Tl

)
[T−r, Ts]

(
r∏

l=s+1

Tl

)(
k∏

l=r+1

(T−lTl)

)∥∥∥∥∥
≤

k∑
r=1

r−1∑
s=−r+1

(
s−1∏

l=−r+1

‖Tl‖

)
‖[T−r, Ts]‖

(
r∏

l=s+1

‖Tl‖

)(
k∏

l=r+1

‖T−l‖‖Tl‖

)

≤
k∑

r=1

r−1∑
s=−r+1

c(s−1+r−1)+(r−s−1)+(2k−2r−2) ‖[T−r, Ts]‖

= c2k−3

k∑
r=1

r−1∑
s=−r+1

‖[T−r, Ts]‖ .
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It is also seen, since Φ is a positive linear homomorphism, that

‖[T−r, Ts]‖ = ‖[Φmrn(x−r), Φ
msn(xs)]‖

= ‖Φmrn(x−r)Φ
msn(xs)− Φmsn(xs)Φ

mrn(x−r)‖

=
∥∥Φmsn

(
Φ(mr−ms)n(x−r) · xs − xsΦ

(mr−ms)n(x−r)
)∥∥

≤
∥∥[Φ(mr−ms)n(x−r), xs

]∥∥ .

Therefore, from the norm-asymptotic abelianness in density assumption for (U , Φ)
and the squeeze theorem we get that

D − lim
n→∞

‖[T−r, Ts]‖ = 0.

As shown above, we have that

0 ≤

∥∥∥∥∥
k∏

l=−k

Tl − T0

k∏
l=1

(T−lTl)

∥∥∥∥∥
≤ c2k−3

k∑
r=1

r−1∑
s=−r+1

‖[T−r, Ts]‖ .

Hence

D − lim
n→∞

∥∥∥∥∥
k∏

l=−k

Tl − T0

k∏
l=1

(T−lTl)

∥∥∥∥∥ = 0.

�
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4.4.2 Multiple weakly mixing results

We are now in a position to state and prove two important multiple weakly mixing results.
We will first prove a strong supporting theorem from which our final conclusion will follow.
Once again it may be mentioned that [20] gave a proof for a more general case (where the
existence of a unit element is not assumed).

4.4.2.1 Theorem ([20], p 40)

Let U be a unital C∗-algebra and (U , ϕ, Φ) a weakly mixing state preserving C∗-dynamical
system. For any integers k ≥ 1 and m1, ...,mk ∈ N, mj 6= mj′ for j 6= j′, we have that:

(SWMm1,...,mk
) ⇒ (WMm1,...,mk

).

Furthermore, if (U , Φ) is norm-asymptotically abelian in density then

(WMm1,...,mk
) ⇔ (SWM0,m1,...,mk

).

Proof:

Let x0, x1, . . . , xk ∈ U be arbitrary.

We will use the GNS representation associated with ϕ, and prove that the following
sequence

un = πϕ

(
k∏

l=1

Φmln(xl)

)
uϕ −

(
k∏

l=1

ϕ(xl)

)
uϕ ∈ Hϕ

= πϕ (Φm1n(x1)Φ
m2n(x2) · · ·Φmkn(xk)) uϕ − ϕ(x1)ϕ(x2) · · ·ϕ(xk)uϕ

is uniformly weakly mixing (hence weakly mixing) to zero under the assumption that the
system satisfies (SWMm1,...,mk

).

We now introduce a new symbol which will enable us to use the Van der Corput result to
show the uniformly weakly mixing required above.

For every 1 ≤ q ≤ k, let

u
(q)
n = πϕ (Φm1n(x1) · · ·Φmqn(xq)) uϕ − ϕ(xq)πϕ (Φm1n(x1) · · ·Φmq−1n(xq−1)) uϕ

= πϕ

(
q∏

l=1

Φmln(xl)

)
uϕ − ϕ(xq)πϕ

(
q−1∏
l=1

Φmln(xl)

)
uϕ

= πϕ

((
q−1∏
l=1

Φmln(xl)

)
(Φmqn(xq)− ϕ(xq)1U)

)
uϕ

= πϕ

((
q−1∏
l=1

Φmln(xl)

)
Φmqn (xq − ϕ(xq)1U)

)
uϕ,
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the last step following from the fact that Φ is assumed to be state-preserving.

Use x̃q = xq − ϕ(xq)1U for simplicity. Now we consider the inner product terms relevant
to the Van der Corput type results, culminating in Corollary 4.4.1.14:

〈u(q)
n+m, u

(q)
n 〉 = ϕ

(
(u

(q)
n )∗ · u(q)

n+m

)
= ϕ

(((
q−1∏
l=1

Φmln(xl)

)
Φmqn(x̃q)

)∗

·

(
q−1∏
l=1

Φml(n+m)(xl)

)
Φmq(n+m)(x̃q)

)

= ϕ

(
Φmqn(x̃∗q)

(
q−1∏
l=1

Φmln(x∗l )

)
·

(
q−1∏
l=1

Φml(n+m)(xl)

)
Φmq(n+m)(x̃q)

)

= ϕ

(
Φmqn(x̃∗q)

(
−1∏

l=−q+1

Φm|l|n(x∗−l)

)
·

(
q−1∏
l=1

Φml(n+m)(xl)

)
Φmq(n+m)(x̃q)

)

= ϕ

(
Φmqn(x̃∗q)

(
−1∏

l=−q+1

Φm|l|n(x∗−l)

)
·

(
q−1∏
l=1

Φmln (Φmlm(xl))

)
Φmqn (Φmqm(x̃q))

)
.

Now, since we have (SWMm1,...,mk
), we also have (SWMm1,...,mq).

We can now use Remark 4.4.1.15, and the note after the proof of the same Remark: Let
x−q 
 x̃∗q, xq 
 Φmqm(x̃q), and for each −q + 1 ≤ l ≤ −1 let xl 
 x̃∗−l and finally for
each 1 ≤ l ≤ q − 1 let xl 
 Φmlm(x̃l).

Then we obtain from the above calculation, from (SWMm1,...,mq) and from Remark 4.4.1.15
that

D − lim
n→∞

〈u(q)
n+m, u(q)

n 〉 =

(
q−1∏
l=1

ϕ(x̃∗−(−l)Φ
mlm(x̃l))

)
· ϕ(x̃∗qΦ

mqm(x̃q))

=

(
q−1∏
l=1

ϕ(x̃∗l Φ
mlm(x̃l))

)
· ϕ(x̃∗qΦ

mqm(x̃q)).

Also, since Φ is assumed to be weakly mixing with respect to ϕ, we have that Φmq is
weakly mixing with respect to ϕ as well. Therefore

D − lim
m→∞

q−1∏
l=1

ϕ(x̃∗l Φ
mlm(x̃l)) =

q−1∏
l=1

ϕ(x̃∗l )ϕ(x̃l),

and

D − lim
m→∞

ϕ(x̃∗qΦ
mqm(x̃q)) = D − lim

m→∞
ϕ ((xq − ϕ(xq)1U)∗Φmqm(xq − ϕ(xq)1U))

= D − lim
m→∞

ϕ
(
x∗q − ϕ(xq)1U)(Φmqm(xq)− ϕ(xq)1U

)
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= D − lim
m→∞

ϕ
(
(x∗qΦ

mqm(xq)− x∗qϕ(xq)1U − ϕ(xq)1UΦmqm(xq) + ϕ(xq)ϕ(xq)1U

)
= D− lim

m→∞

(
ϕ(x∗qΦ

mqm(xq))− ϕ(x∗qϕ(xq)1U)− ϕ(ϕ(xq)1UΦmqm(xq)) + ϕ(ϕ(xq)ϕ(xq)1U)
)

= D − lim
m→∞

ϕ
(
x∗qΦ

mqm(xq)
)
− ϕ(xq)ϕ(xq)

= 0.

Thus we have that
D − lim

m→∞

(
D − lim

n→∞
〈u(q)

n+m, u(q)
n 〉
)

= 0,

and by Corollary 4.4.1.14 it follows that {u(q)
n }n≥1 is uniformly weakly weakly mixing to

zero.

The choice of the terms u
(q)
n becomes apparent if we notice that

un =
k∑

q=1

(
k∑

l=q+1

ϕ(xl)

)
u(q)

n .

We then see that

sup
‖u‖61

(
1

N

N−1∑
n=0

|〈un, u〉|

)
= sup

‖u‖61

(
1

N

N−1∑
n=0

∣∣∣∣∣
k∑

q=1

(
k∑

l=q+1

ϕ(xl)

)
〈u(q)

n , u〉

∣∣∣∣∣
)

≤ sup
‖u‖61

(
k∑

q=1

∣∣∣∣∣
k∑

l=q+1

ϕ(xl)

∣∣∣∣∣ 1

N

N−1∑
n=0

|〈u(q)
n , u〉|

)
−→ 0

as N → ∞. Therefore, the sequence {un}n≥1 is also uniformly weakly mixing, hence
weakly mixing to zero.

Thus, we have that, with u = πϕ(x∗0)uϕ, and m0 = 0,

1

N

N−1∑
n=0

∣∣∣∣∣ϕ
(

k∏
l=0

Φmln(xl)

)
−

k∏
l=0

ϕ(xl)

∣∣∣∣∣
=

1

N

N−1∑
n=0

∣∣∣∣∣ϕ
(

x0

k∏
l=1

Φmln(xl)− x0

k∏
l=1

ϕ(xl)

)∣∣∣∣∣
=

1

N

N−1∑
n=0

∣∣∣∣∣ϕ
(

x0

(
k∏

l=1

Φmln(xl)−
k∏

l=1

ϕ(xl)

))∣∣∣∣∣
=

1

N

N−1∑
n=0

|〈un, πϕ(x∗0)uϕ〉|

−→ 0
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which yields (WMm1,...,mk
) immediately.

Hence we have shown that

(SWMm1,...,mk
) ⇒ (WMm1,...,mk

).

Finally, it must be shown that, if (U , Φ) is norm-asymptotically abelian in density then

(WMm1,...,mk
) ⇔ (SWM0,m1,...,mk

).

But this is a consequence of Lemma 4.4.1.16. �

Next follows a multiple weakly mixing result, which will be seen to be a non-commutative
extension of the "weakly mixing of all orders" result, Theorem 3.3.3, which was proved in
the commutative case.

To extend this property (weakly mixing of all orders) we still need some measure of
commutativity, i.e. we will require that (U , Φ) is norm-asymptotically abelian in density.

4.4.2.2 Theorem ([20], p 42)

Let U be a unital C∗-algebra and (U , ϕ, Φ) a weakly mixing state preserving C∗-dynamical
system. Assume that (U , Φ) is norm-asymptotically abelian in density. Let k ≥ 1 and
let m1, ...,mk ∈ N satisfying m1 < · · · < mk. Then (U , ϕ, Φ) is weakly mixing of order
(m1, ...,mk).

Proof:

We prove this by induction.

For any integer m1 ≥ 1, we have that

D − lim
n→∞

ϕ (Φm1n(x−1)Φ
m1n(x1)) = D − lim

n→∞
ϕ (Φm1n(x−1x1)) = ϕ(x−1x1)

for all x−1, x1 ∈ U , and we see that (SWMm1) is trivially satisfied. It then follows from
Theorem 4.4.2.1 that (WMm1) is satisfied.

The theorem is then true for the case of one arbitrary integer m1 ≥ 1.

Now assume that the theorem is true for some k ≥ 1 and any integers m1 < · · · < mk. If we
can conclude from this that the theorem also holds for any k +1 integers n1 < · · · < nk+1,
the induction proof is complete.

Hence assume that (WMm1,··· ,mk
) holds for some k ≥ 1 and integers m1 < · · · < mk. Then,

it follows from this assumption, for any integers n1 < · · · < nk+1, that (WMn2−n1,··· ,np+1−n1)
is satisfied.
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We now use Theorem 4.4.2.1 to get that

(WMn2−n1,··· ,np+1−n1) ⇒ (SWM0,n2−n1,··· ,np+1−n1)

⇔ (SWMn1,n2,··· ,np+1)

⇒ (WMn1,n2,··· ,np+1).

�

It is trivial to check that any commutative system is norm-asymptotically abelian in
density, since all terms [x, y] = 0 whenever x and y commute. This shows that Theorem
3.3.3 is a special case of the last Theorem.
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ABSTRACT

The use of Hilbert space theory became an important tool for ergodic theoreticians ever
since John von Neumann proved the fundamental Mean Ergodic theorem in Hilbert space.
Recurrence is one of the corner stones in the study of dynamical systems. In this dis-
sertation some extended ideas besides those of the basic, well-known recurrence results
are investigated. Hilbert space theory proves to be a very useful approach towards the
solution of multiple recurrence problems in ergodic theory.

Another very important use of Hilbert space theory became evident only relatively re-
cently, when it was realized that non-commutative dynamical systems become accessible
to the ergodic theorist through the important Gelfand-Naimark-Segal (GNS) represen-
tation of C∗-algebras as Hilbert spaces. Through this construction we are enabled to
invoke the rich catalogue of Hilbert space ergodic results to approach the more general,
and usually more involved, non-commutative extensions of classical ergodic-theoretical
results.

In order to make this text self-contained, the basic, standard, ergodic-theoretical results
are included in this text. In many instances Hilbert space counterparts of these basic re-
sults are also stated and proved. Chapters 1 and 2 are devoted to the introduction of these
basic ergodic-theoretical results such as an introduction to the idea of measure-theoretic
dynamical systems, citing some basic examples, Poincairé’s recurrence, the ergodic theo-
rems of Von Neumann and Birkhoff, ergodicity, mixing and weakly mixing. In Chapter 2
several rudimentary results, which are the basic tools used in proofs, are also given.

In Chapter 3 we show how a Hilbert space result, i.e. a variant of a result by Van der
Corput for uniformly distributed sequences modulo 1, is used to simplify the proofs of
some multiple recurrence problems. First we use it to simplify and clarify the proof of a
multiple recurrence result by Furstenberg, and also to extend that result to a more general
case, using the same Van der Corput lemma. This may be considered the main result of
this thesis, since it supplies an original proof of this result. The Van der Corput lemma
helps to simplify many of the tedious terms that are found in Furstenberg’s proof.
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In Chapter 4 we list and discuss a few important results where classical (commutative)
ergodic results were extended to the non-commutative case. As stated before, these
extensions are mainly due to the accessibility of Hilbert space theory through the GNS
construction. The main result in this section is a result proved by Niculescu, Ströh and
Zsidó, which is proved here using a similar Van der Corput lemma as in the commutative
case. Although we prove a special case of the theorem by Niculescu, Ströh and Zsidó, the
same method (Van der Corput) can be used to prove the generalized result.
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