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Abstract

The purpose of this study was to develop a robust fluid-structure-
interaction (FSI) technology that can accurately model non-linear flutter
responses for sub- and transonic fluid flow. The Euler equation set governs
the fluid domain, which was spatially discretised by a vertex-centred edge-
based finite volume method. A dual-timestepping method was employed
for the purpose of temporal discretisation. Three upwind schemes were
compared in terms of accuracy, efficiency and robustness, viz. Roe, HLLC
(Harten-Lax-Van Leer with contact) and AUSM+-up (Advection Up-stream
Splitting Method). For this purpose, a second order unstructured MUSCL
(Monotonic Upstream-centred Scheme for Conservation Laws) scheme, with
van Albada limiter, was employed. The non-linear solid domain was resolved
by a quadratic modal reduced order model (ROM), which was compared to
a semi-analytical and linear modal ROM. The ROM equations were solved
by a fourth order Runge-Kutta method. The fluid and solid were strongly
coupled in a partitioned fashion with the information being passed at solver
sub-iteration level. The developed FSI technology was verified and validated
by applying it to test cases found in literature. It was demonstrated that
accurate results may be obtained, with the HLLC upwind scheme offering
the best balance between accuracy and robustness. Further, the quadratic
ROM offered significantly improved accuracy when compared to the linear
method.
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Nomenclature

Greek Symbols

α Angle-of-attack (◦)

α0 Mean angle-of-attack (◦)

αmax Maximum angle-of-attack (◦)
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γ Ratio of specific heats. Taken as 1.4 for air

ε Difference of calculated solutions

κ Runge-Kutta weighting coefficient

λ̂ Eigenvalues of the Jacobian Matrix

µ Airfoil mass ratio, µ = m
πρb2
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ρ̂ Roe average density
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τ Pseudo time
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Φ Vector of force vectors

ψ Limiter function
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ĉ Roe average acoustic velocity

c̃ Critical acoustic velocity
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CFL Courant-Friedrichs-Lewy number

CL Sectional lift coefficient

CM Sectional moment coefficient

Cp Specific heat at constant pressure (J/kgK)

Cv Specific heat at constant volume (J/kgK)

D Distances to identified boundary points

D Number of dimensions represented by the mesh

E Total specific energy

f Estimated solution
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F Flux vector

F Upwinded flux vector

Fs Safety factor

ĝ Normalised quadratic mode shape
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GCI Grid Convergence Index

h Vertical displacement (positive down)

h Structural timestep size

H Total specific enthalpy

Ĥ Roe average specific enthalpy

Iα Sectional moment of inertia of the airfoil

I Identity matrix

kc Reduced frequency

Kα Pitching spring coefficient

Kh Plunging spring coefficient

Kp Pressure diffusion coefficient

Ku Velocity diffusion coefficient

K Stiffness matrix

K̂ Eigenvectors of the Jacobian Matrix

L Characteristic length

L Sectional lift per unit span

m Mass of the airfoil per unit span

ṁ Mass flux

M Mach number
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M Mass matrix
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n Unit normal vector

N Mesh size

p Pressure

p Order accuracy of the solution

p Pressure flux

P Split pressure function

q Displacement vector

Q Generalised force vector

Q̂ Generalised force vector

r Ratio of consecutive solution variables

rα Structural parameters, r2α = Iα

mb2

r Distance from where the force is applied to the elastic centre

r Grid refinement ratio

rb Ratio of distances to the identified boundary points

r Dependent variable solved for in structure response

R Gas constant (J/kgK). Taken as 287J/kgK for air

R̂ Ratio of left and right state densities
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S Wave speed

S Surface
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S Source term

Sα Static imbalance

SM Middle wave speed used in HLLC scheme

t Time

T Temperature

u Velocity

u Velocity vector

un Velocity magnitude normal to the boundary
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û Normalised linear mode shape

U Dependant conservative variables vector

U∞ Free stream velocity

v Moving reference frame velocity

v Moving reference frame velocity vector
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Superscripts

i Superscript index

j Superscript index

k Superscript index

L Left state index

mn Quantities denote edge-face values

n Timestep number

R Right state index

∗ Dimensional quantity
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b Boundary entity
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Chapter 1

Introduction

1.1 Background and Project Motivation

Aeroelastics is the study of the dynamic interaction between a flexible struc-
ture and the aerodynamic forces resulting from surrounding fluid flow [2].
The field of aeroelastics has many facets which are aptly summed up in
Collar’s aeroelastic triangle [1], shown in Figure 1.1. In the figure, Inertial
Forces refers to the field of Dynamics, as Elastic Forces to Solid Mechanics
and Aerodynamic Forces to Fluid Dynamics. The combination of these sep-
arate fields is represented on the edges of the triangle. Aeroelastics is the
combination of all three fields, as shown in the centre.

There are many industries that have an interest in Aeroelastics, but one
of the largest is the Aerospace industry. This is due to wings of aircraft being

Aerodynamic Forces

Inertial ForcesElastic Forces
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Figure 1.1: Collar’s [1] Aeroelastic Triangle
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CHAPTER 1. INTRODUCTION 2

long and flexible structures that operate under aerodynamic loads to lift the
aircraft. This results in a multitude of complex fluid-structure interaction
dynamics which should be given careful consideration in the interest of safety
and desired operation [3]. One such a phenomenon is the unstable amplifying
vibration of a wing due to the aerodynamic loads, which is known as flutter.
Flutter is arguably one of the aeroelastic phenomena of central interest to the
aerospace industry as it may result in catastrophic failure of the structure [1,
4–6]. Buffeting is another example of an unwanted aeroelastic phenomenon,
which is caused by unsteady loading on a structure due to sustained rapid
velocity fluctuations. These vibrations greatly decrease the service life of an
aircraft [7]. As a result, computational modelling technologies today play a
pivotal role in its prediction and prevention.

The present day aerospace industry has a well-established understanding
of linear flutter phenomena at sub-sonic flow speeds, with numerous estab-
lished techniques being available [8]. There is still, though, much progress
required to effect efficient fluid-structure-interaction (FSI) modelling in the
transonic flow regime, particularly where a combination of sonic shocks in
the fluid domain and non-linear structural responses are present. These, for
example, violate the predictions of standard linear velocity potential meth-
ods [9,10]. This has led to the growth of Computational Aeroelastics, which
looks to find more detailed and effective methods with which to model non-
linear aeroelastics [11]. This includes the development of full aeroelastic
modelling techniques on realistic geometries [10,12–23].

Non-linear aeroelastic FSI algorithms may be broadly sub-divided in
terms of the coupling effected between the fluid and the solid domains, viz.
strong and weak coupling. Weakly coupled fluid-solid modelling does not
enforce rigorous simultaneous satisfaction of fluid and solid governing equa-
tions at each timestep. An example is staggered time-stepping, which is
widely used and found to be computationally efficient [16, 24]. However,
when applied to strongly coupled FSI systems, the aforementioned may be
prone to inaccurate or divergent solutions [25–28]. Strongly coupled mod-
elling techniques, on the other hand, enforce simultaneous solution of both
fluid and structure, and may be classified into two groups: partitioned and
simultaneous solution monolithic methods. The latter [25, 26] effects so-
lutions via a single matrix. Partitioned methods discretise the fluid and
structure domains separately, where coupling may be effected in an efficient
manner via non-linear iterations [28–31].

For the purpose of aerodynamics, it is typical to describe the fluid as
a continuum, from which the Navier-Stokes partial differential equation set
results. This constitutes the defacto standard to quantitatively describe the
mechanics of a fluid under flow conditions which range from sub- to tran-
sonic. As flutter under typical aerodynamic operation conditions is generally
driven by pressure distribution (lift and moment), the Euler equation sub-
set is viewed as suitable to describe aerodynamic flows which do not contain

 
 
 



CHAPTER 1. INTRODUCTION 3

large-scale flow separation [3,32–36]. In this work an Arbitrary Lagrangian-
Eulerian (ALE) formulation is employed to accommodate an arbitrary mov-
ing reference frame, i.e. the solid in the fluid domain. It is not currently
tractable to construct an analytical solution to the Euler equation set in the
general case, thus we discretise the fluid domain and solve it numerically.

The numerical methods most commonly used to obtain solutions to the
Euler equation set belong to the methods of weighted residuals, viz. finite
difference, finite element and finite volume methods. The finite difference
method is the earliest method to be utilised and remains problematic to
generate on complex geometries. The finite element (FE) method was origi-
nally only used for structural analysis but has been adapted, since the 90’s,
to model fluids as well. In certain cases, the FE method has been found to be
numerically equivalent to the finite volume approach but is more complex
and can be computationally more expensive [37]. Thus the finite volume
method is the popular choice in the context of spatially second-order ac-
curate Computational Fluid Dynamics (CFD), of which two variants exist,
viz. the cell-centred and the vertex-centred scheme. Within each of these
methods various schemes exist by which the convective flux can be discre-
tised. These schemes, aim to avoid non-physical instabilities in the fluid
domain or odd-even decoupling. For the purpose of this study we will focus
on vertex-centred second-order accurate method, which is preferable as it is
computationally more efficient than the cell-centred version on unstructured
meshes [38].

The Euler equation set is convection-dominated, for which two main
groups of methods are used to spatially discretise the convective flux. The
first is known as the central schemes, which is based on the central difference
formula and uses artificial dissipation [39] to prevent odd-even decoupling.
The second group is referred to as upwind schemes which fall into one of
four categories, viz. Flux-Vector Splitting schemes, Flux-Difference Split-
ting schemes, Total Variation Diminishing (TVD) schemes and Fluctuation-
Splitting schemes. Flux-vector splitting schemes decompose the convective
flux vector into two parts according to criteria related to the characteristic
variables. Examples are the Advection Upstream Splitting Method (AUSM)
[40–42] and Convection Upwind Split Pressure (CUSP) schemes [43]. These
are popular due to the improved resolution of the shear layer with mod-
erate computational effort, while being extendible to real gas flows. The
Flux-differencing method aims to solve the one-dimensional Euler equation
for discontinuous states locally. Godunov [44] introduced the idea and ap-
proximate Riemann solvers resulted, such as Roe [45], Osher [46] and HLL
(Harten-Lax-Van Leer) [47] which led to the HLLC scheme (C stands for
contact) [48]. Roe’s [45] upwind scheme has been widely used for its robust
ability to represent shocks and its resolution of the boundary layer. TVD
schemes have limited use as they cannot be readily extended to second-
order spacial accuracy, though methods have been developed to overcome

 
 
 



CHAPTER 1. INTRODUCTION 4

the problem [49]. These schemes can be combined with matrix dissipation
schemes. This creates a scheme that has favourable upwind algorithmic be-
haviour in the region of the flow discontinuity, while using the computation-
ally more efficient central-difference scheme over the remainder of the flow
domain [50]. The use of Fluctuation-Splitting schemes has various benefits
due to its ability to account for flow features that are not aligned with the
mesh. It is, however, generally only implemented for research applications
because of its high computational cost, complexity and poor convergence.
The importance of transonic flow, to this study, necessitates the use of a
robust and accurate flux discretisation method with shock-capturing ability.

The solid domain can be resolved using one of two general methods,
viz. detailed finite element modelling (FEM) or reduced order modelling
(ROM). In this study, we consider aircraft wings, which in reality are com-
plex structures composed of a multitude of plates and fasteners. Resolving
the stresses in each component for the purpose of aeroelastic analysis would
be superfluous. The use of a ROM from which airfoil surface deflections may
be calculated is thus more pragmatic. A ROM constitutes a mathematical
representation which describes the dominant physics of interest at consider-
ably reduced computational cost when compared to the detailed model [51].
Modal analysis has been used with success in aerospace to construct ROMs
of the structure [52]. Such ROMs are typically able to describe linear mo-
tion, i.e. displacement along a straight line, which has shown to be accurate
in certain cases [53, 54]. However, where torsional modes are significant, as
in the flutter response of certain airfoil geometries, the linear ROMs become
inaccurate and a quadratic ROM is required [54]. This is due to the ability
of the quadratic ROM to prescribe the motion of a point on the structure
with a curved path [54–56].

1.2 Overview and Purpose of Study

The FSI algorithm developed in this work is a strongly coupled partitioned
method where information is passed between the fluid and solid domains
at solver sub-iteration level. This results in a fully-converged solution at
each timestep where both dynamic and kinematic continuity are satisfied
at the fluid-solid interface. To account for the transonic shocks, the fluid is
described via the compressible Euler equations written in an ALE reference
frame [32–36]. A vertex-centred edge-based finite volume method for spacial
discretisation was used due to it being both computationally efficient, as well
as being well suited to parallel computing. To effect shock capturing and
suppress non-physical oscillations, three upwind schemes were investigated,
viz. Roe scheme [45], HLLC scheme [48] and AUSM+-up scheme [42]. These
schemes were selected on robustness and accuracy considerations, and ALE
versions were implemented. The MUSCL scheme [57] with the van Albada
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limiter [58] was used for the purpose of upwinding with shock capturing.
Fourth-order Runge-Kutta and dual-time-stepping methods were employed
respectively for solution and temporal discretisation, in conjunction with
parallel computing.

The structure is represented via a quadratic modal ROM [55, 56, 59].
This is of particular interest due to its ability to describe non-linear motion
from linear modal data. It is also readily extendible to three-dimensional
systems. The fluid and solid domains, where information is passed between
the detailed CFD and structural ROM at each sub-iteration, are strongly
coupled numerically.

The developed FSI technology was implemented into the multi-physics
code Elemental, followed by a verification and validation exercise. The ac-
curacy and robustness of the three upwind schemes was assessed via appli-
cation to both the classic shock tube test case [60], as well as the forced
oscillation of a NACA0012 airfoil under transonic flow. The evaluation in-
cluded a grid convergence study. Next, the two-dimensional flutter-response
of a pitch-plunge airfoil was considered at sub- to transonic flow speeds
over a NACA64A010 airfoil section. The improvement in accuracy of the
quadratic modal ROM over the traditional linear modal ROM was assessed
by comparison to a semi-analytical method.

1.3 Thesis Layout

The thesis is divided into five chapters, a short summary of each chapter is
given below.

• Chapter 1. Introduction. In this chapter the background of the
work is discussed along with an overview of the work completed in this
thesis. The publications resulting from this work are given at the end
of the chapter.

• Chapter 2. Governing Equations. The equations employed to
describe the fluid and solid domain are detailed in this chapter.

• Chapter 3. Numerical Solution Procedure. The chosen spacial
and temporal discretisation algorithms for the fluid domain, as well
as the semi-analytical, linear and quadratic ROMs of the solid do-
main are detailed in this chapter. The fluid-solid interaction modelling
methodology is described along with the solution procedure. Lastly,
the parallelisation of the developed FSI algorithm is detailed.

• Chapter 4. Results and Evaluation. This chapter describes the
validation and verification of the developed modelling technology. This
is done via its application to various benchmark problems found in
literature.
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• Chapter 5. Summary, Conclusions and Recommendations for
Future Work. The final chapter summarises the contributions of the
work done and makes recommendations for its continuation.

1.4 Publication List

Publications forthcoming from the research are as follow:

1.4.1 Journal Paper

Mowat, A. G. B., Malan, A. G., Van Zyl, L. H. and Meyer, J. P. (2011).
A Hybrid Finite-Volume-ROM Approach to Non-Linear Aerospace Fluid-
Structure Interaction Modelling, in progress.

1.4.2 Conference Paper

Mowat, A. G. B., Malan, A. G., Van Zyl, L. H. and Meyer, J. P. (2011).
A Hybrid Finite-Volume-ROM Approach to Non-Linear Aerospace Fluid-
Structure Interaction Modelling, In Proceedings of the International Forum
Aeroelasticity and Structural Dynamics (IFASD2011), Paris, 26–30 June.

1.4.3 Technical Report

Malan, A. G., Mowat, A. G. B. and Oxtoby, O. F. (2011). A Unified
Strongly Coupled Fluid-Structure-Interaction Methodology. for European
Union Framework Project 7, Deliverable D3.3, 1–30.

 
 
 



Chapter 2

Governing Equations

2.1 Introduction

The fundamental aim of this project is to accurately model the flutter phe-
nomenon of a flexible wing undergoing a non-linear response to aerodynamic
forces resulting from sub- and transonic flow. Researchers [32, 33, 35, 36] in
the field typically employ a subset of the Navier-Stokes equation set, namely
the transient inviscid Euler equation set, for this purpose. This is, as the
latter describes to sufficient accuracy, the lift and moment forces that dom-
inate flutter at moderate angles of attack. In this chapter, these equations
are detailed. In addition, the pitch-plunge equations that may represent the
mechanics of a three-dimensional airfoil in two dimensions are described.

2.2 Fluid Governing Equations

As noted previously, for the purpose of this study, the transient inviscid
Euler equation set was used to describe the compressible fluid domain as a
continuum. Assuming that no chemical reactions occur in addition to the
flow being convection dominated (negating buoyancy effects), the resulting
equation set may be written for a two-dimensional ALE coordinate frame
in the following non-dimensional conservative form

∂U

∂t
+
∂Fj

∂xj
= 0 (2.1)

where t is time and the vector of flow variables U is

U =















ρu1

ρu2

ρ

ρE















(2.2)

7
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Further, the ALE Eulerian flux vector Fj is

Fj =















wjρu1 + pδ1j

wjρu2 + pδ2j

wjρ

wjρE + puj















(2.3)

In this equation set, xj is a fixed Eulerian Cartesian reference frame axis
j, wj = uj − vj is the velocity relative to the moving reference frame, uj is
the fluid velocity, vj is the moving reference frame velocity, ρ is the density,
p is the pressure and E is the specific total energy of the fluid.

Equation (2.1) was cast into weak form by integrating over an arbitrary
and moving volume V(t), with surface S(t), which is translated at velocity
v as

∂

∂t

∫

V(t)
UdV +

∫

S(t)
FjnjdS = 0 (2.4)

Note that in the above set of equations, the symbols were non-
dimensionalised using free-stream conditions. Accordingly, non-dimensional
quantities were related to their dimensional counter-parts (denoted by ∗) as
follows

t = t∗U∗
∞

L∗ xj =
x∗

j

L∗ uj =
u∗

j

U∗
∞

ρ = ρ∗

ρ∗∞

p = p∗

(ρ∗∞U∗2
∞ )

T = T ∗

(U∗2
∞ /Cp)

E = E∗

U∗2
∞

(2.5)

where ∞ denotes free stream, L is the characteristic length and T is the tem-
perature. SI units of measurement were used for the dimensional quantities.
Finally, Cp is specific heat at constant pressure.

2.2.1 Fluid Constitutive Equations

The governing equations were closed for the fluid domain via constitutive
equations which relate density, pressure, temperature and acoustic velocity.
For this purpose, the ideal gas law was assumed for this study, as for typical
aerospace applications, the density is low relative to its critical point, viz.

p∗ = ρ∗RT ∗ (2.6)

where R is known as the gas constant which is defined as R = Cp − Cv,
where Cv is the specific heat at constant volume.

The ratio of specific heats was assumed to be constant and was defined
as

γ =
Cp

Cv
(2.7)

which resulted in

R = Cp
γ − 1

γ
(2.8)
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If Equation (2.8) is substituted into Equation (2.6), the ideal gas law
can be written in terms of the non-dimensional quantities as

ρ =
p

T

γ

γ − 1
(2.9)

The total specific energy is given by

E =
p

ρ(γ − 1)
+
ujuj

2
(2.10)

where the first term on the right-hand side represents the internal energy
and the second term the kinetic energy. The total specific enthalpy now
follows as

H = E +
p

ρ
(2.11)

Lastly, the acoustic velocity is defined in terms of dimensional quantities
as

c∗ =

√

γp∗

ρ∗
(2.12)

and in terms of the non-dimensional variables as

c =

√

γp

ρ
(2.13)

which results in c = c∗/U∗
∞.

2.2.2 Fluid Boundary Conditions

In order to obtain a unique solution to the ALE Euler equations, appropriate
boundary conditions had to be specified. In the absence of heat transfer from
the airfoil surface, two boundary types were used in this study, viz. slip and
characteristic boundary conditions. The former is applicable at solid wall
boundaries, which implies that the velocity component of the flow normal
to the boundary is set to the velocity of the moving boundary as

u · n = v · n (2.14)

where the nomenclature is as defined previously.
Characteristic boundary conditions were employed at the far-field in

order to avoid non-physical disturbance propagation. For the purpose of
this study a sub-sonic altered characteristic-type analysis based on one-
dimensional Riemann invariants (to determine which characteristics must
enter or leave the domain) was employed [61, 62]. The Riemann invariants
G were based on the free-stream and extrapolated values as

G∞ = u∞ · n− 2c∞
γ−1

Ge = ue · n − 2ce

γ−1

(2.15)
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where the subscript e denotes values determined by extrapolating the prim-
itive variables. The acoustic velocities were defined as

c∞ =
√

γp∞
ρ∞

ce =
√

γpe

ρe

(2.16)

for which the acoustic velocity at the boundary could be written as

cb = 0.25 (γ − 1) (Ge −G∞) (2.17)

The velocity magnitude normal to the boundary, then followed as

un = 0.5 (Ge −G∞) (2.18)

from which the velocity at the in- and outflow boundaries, respectively, could
be calculated from

ub = u∞ + (un − u∞ · n)n and ub = ue + (un − ue · n)n (2.19)

The temperature at the in- and outflow boundaries, respectively, followed
as

Tb = T∞

(

c2b
c2∞

)

and Tb = Te

(

c2b
c2e

)

(2.20)

and by applying the ideal-gas constant entropy relation, it followed that the
pressure of the in- and outflow boundaries, respectively, were calculated as

pb = p∞

(

Tb

T∞

)
γ

γ−1

and pb = pe

(

Tb

Te

)
γ

γ−1

(2.21)

where the nomenclature is as defined previously.

2.3 Solid Governing Equations

For the purpose of this study the aeroelastic structural model is described
by a two degrees-of-freedom pitch-plunge system, as shown in Figure 2.1.
The equations of motion for this system are given by

mḧ+ Sαα̈+Khh = −L

Sαḧ+ Iαα̈+Kαα = Mα

(2.22)

where
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U∞

α

b b

Mα

ba

L

Kh

Kα

bxα

CG

h

x0

x1

x2

Figure 2.1: Schematic diagram of the airfoil pitch-plunge modal model. Here
b denotes the semi-chord length, a denotes the position of the elastic centre
measured from the mid-chord along the chord when the airfoil is at rest and
xα is the distance from the elastic centre to the centre of gravity (CG)

m : mass of the airfoil per unit span
Sα : static imbalance
Iα : sectional moment of inertia of the airfoil
Kh : plunging spring coefficient
Kα : pitching spring coefficient
h : vertical displacement (positive down)
α : angle-of-attack
L : sectional lift per unit span
Mα : sectional moment about the elastic centre (positive nose up).

and ¨ quantities relate to second-derivatives with respect to time. The sec-
tional lift and moment about the airfoil elastic centre were calculated as

L =

∫

pn2dS and Mα =

∫

(pnj) × rjdS (2.23)

where p denotes the pressure of the fluid on the surface S with outward
pointing unit vector n. Further, rj = xj − x0j

is the distance from where
the pressure is applied to the elastic centre, x0.

2.4 Conclusion

This chapter details the equations employed to describe the non-linear aeroe-
lastic phenomena caused by sub- to transonic fluid flows. Both the fluid and
structural domain were detailed, with the ALE formulation of the Euler
equation set employed for the aforementioned. In the case of the struc-
ture, two degrees-of-freedom pitch-plunge equations were defined. The next
chapter details the procedure employed to discretise and solve the complete
system of equations in a fully coupled manner.

 
 
 



Chapter 3

Numerical Solution

Procedure

3.1 Introduction

In this chapter, the numerical solution procedure is defined. This entails
the spacial and temporal discretisation of both fluid and solid domains, as
well as their fully coupled solution. The fluid is discretised spatially and
temporally, while a ROM representation of the structure is employed.

Sm

Smn1

Smn2

Υmn

m

n

Vm

Figure 3.1: Schematic diagram of the construction of the median dual mesh
on hybrid grids. Here, Υmn depicts the edge connecting nodes m and n
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3.2 Fluid Spatial Discretisation

The discrete form of the surface integral in Equation (2.4), computed for
the volume Vm (Figure 3.1) surrounding the node m, may be written as

∫

Sm(t)
FjnjdS ≈

∑

Υmn∩Vm(t)

Fj
mnC

j
mn (3.1)

where all •mn quantities denote edge-face values.
The above equation employs a vertex-centred edge-based finite volume

algorithm [63, 64] for the purposes of spatial discretisation of the fluid do-
main. This algorithm was selected as it allows natural generic mesh appli-
cability, second-order accuracy without odd-even decoupling, and computa-
tional efficiency which is factors greater than element-based approaches [65].
Note that the proposed edge-based approach is also particularly well suited
to shared memory parallel computing.

Surface integrals were calculated in an edge-wise manner and, for this
purpose, bounding surface information was similarly stored in an edge-wise
manner, termed edge-coefficients. For a given internal edge, Υmn connecting
nodes m and n, edge-coefficients are defined as a function of time, i.e.

Cmn(t) = nmn1Smn1(t) + nmn2Smn2(t) = nmnSmn(t) (3.2)

where Smn1 is a bounding surface-segment intersecting the edge (Figure 3.1)
and the normal unit vectors were similarly a function of time.

For the purpose of calculating the edge-face flux values, Fj
mn, three

schemes are considered and compared, viz. Roe, HLLC and AUSM+-up
schemes. In all cases, the second order MUSCL scheme with van Albada
limiter function was employed to interpolate the left and right states, as
detailed below.

MUSCL scheme

A limited second order MUSCL scheme [66] for unstructured meshes was
used to calculate the left and right states, as required in each of the employed
upwind methods. The left and right states were defined as

φL
mn = φm + 1

2ψ
(

rL
mn

)

(2∇φm − ∆+
m)

φR
mn = φn − 1

2ψ
(

rR
mn

)

(2∇φn − ∆+
m)

(3.3)

 
 
 



CHAPTER 3. NUMERICAL SOLUTION PROCEDURE 14

φ∗
m

φm

φn

φ∗
n

L
R

Figure 3.2: Schematic diagram of an unstructured mesh illustrating the
position of φ∗m and φ∗n for the MUSCL formulation

where, ∇φ is the computed gradient and ψ is the van Albada limiter [58],
and

∆+
m = φn − φm

∆−
m = φm − φ∗m = 2∇φm − (φn − φm)

= 2∇φm − ∆+
m

∆+
n = φ∗n − φn = 2∇φn − (φn − φm)

= 2∇φn − ∆+
m

(3.4)

In Equation (3.4), the φ∗ quantities denote upwind and downwind ex-
trapolated values, as in Figure 3.2, and

ψ(r) =
r(r + 1)

r2 + 1
(3.5)

with

rL
mn =

∆−
m

∆+
m

=
2∇φm − ∆+

m

∆+
m

rR
mn =

∆−
n

∆+
m

=
2∇φn − ∆+

m

∆+
m

where the nomenclature is as defined previously.
For the chosen upwind schemes, viz. Roe, HLLC and AUSM+-up, the

ALE formulations for the unstructured edged-based approach is detailed
next.

Roe Scheme

The Roe scheme is widely used and is thus a well-established upwind scheme.
This is due to its ability to accurately resolve the boundary layer and good
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resolution of shocks. The ALE Roe flux was defined as follows [67–69]

Fj
mn = 1

2

[

Fj(UL) + Fj(UR)
]

− 1
2

4
∑

i=1

|λ̂j
i |α̂

j
i K̂

j
i (3.6)

where the Fj() quantities denote left and right states (calculated via second-
order MUSCL) and the summation term contains eigenvalue/eigenvector
information. The computation of the latter commences by calculating the
Roe averages, which requires computation of the ratio, R̂, of the left and
right density as

R̂ =

√

ρR

ρL
(3.7)

Once R̂ was determined, the Roe-averaged density, velocity, specific en-
thalpy and acoustic velocity could be calculated as follows:

ρ̂ = R̂ρL (3.8)

ûj =
R̂uRj

+ uLj

R̂+ 1
(3.9)

Ĥ =
R̂HR +HL

R̂+ 1
(3.10)

ĉ =

√

(γ − 1)(Ĥ − 1
2 [û2

1 + û2
2]) (3.11)

The eigenvalues of the Jacobian for the ALE formulation are given by

λ̂j
1 = ûj−vj λ̂j

2 = ûj−vj λ̂j
3 = ûj− ĉ−vj λ̂j

4 = ûj + ĉ−vj (3.12)

with the eigenvectors being

K̂
j
1 =















δ1j û1 + δ2j

δ1j û2

δ1j

δ1j
1
2 [û2

1 + û2
2] + δ2j û1















K̂
j
2 =















δ2j û1

δ2j û2 + δ1j

δ2j

δ2j
1
2 [û2

1 + û2
2] + δ1j û2















K̂
j
3 =















û1 − δ1j ĉ

û2 − δ2j ĉ

1

Ĥ − (δ1j û1 + δ2j û2)ĉ















K̂
j
4 =















û1 + δ1j ĉ

û2 + δ2j ĉ

1

Ĥ + (δ1j û1 + δ2j û2)ĉ















(3.13)
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Finally, the wave strengths, α̂, were defined as

α̂j
1 =

(

∆ρ− 1

ĉ2
∆p

)

δ1j + (ρ̂∆u1) δ2j (3.14)

α̂j
2 =

(

∆ρ− 1

ĉ2
∆p

)

δ2j + (ρ̂∆u2) δ1j (3.15)

α̂j
3 =

1

2ĉ2
(∆p− ρ̂ĉ∆uj) (3.16)

α̂j
4 =

1

2ĉ2
(∆p+ ρ̂ĉ∆uj) (3.17)

where ∆(·) = (·)R − (·)L.
The above Roe scheme is problematic when used to resolve transonic

rarefaction waves, as is the case in certain shock tube problems. However,
this deficiency was addressed by Harten and Hyman [70] where the left
and right non-linear waves associated with the respective eigenvalues λ̂j

3 =

ûj − ĉ− vj and λ̂j
4 = ûj + ĉ− vj were modified. In terms of aeroelastic cases,

this deficiency is, however typically, not relevant.

HLLC Scheme

The HLLC scheme [48, 71] is a more recent development compared to Roe,
and has similar computational cost. The method resolves the shock and
contact waves exactly and is positively conservative. The HLLC flux is
defined as

Fj
mn =



























Fj
L if SL > 0

Fj(U⋆
L) if SL ≤ 0 < SM

Fj(U⋆
R) if SM ≤ 0 ≤ SR

Fj
R if SR < 0

(3.18)

where

Fj(U⋆
L/R) =















SM(ρu1)
⋆ + p⋆δ1j

SM(ρu2)
⋆ + p⋆δ2j

SMρ
⋆

SM (ρE)⋆ + (SM + vj)p
⋆















L/R

(3.19)

and














(ρu1)
⋆

(ρu2)
⋆

ρ⋆

(ρE)⋆















L/R

=
1

SL/R − SM















(S − w)(ρu1) + (p⋆ − p)δ1j

(S − w)(ρu2) + (p⋆ − p)δ2j

(S − w)ρ

(S − w)(ρE) − pw + p⋆SM















L/R

(3.20)
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UL

U⋆
L

U⋆
R

UR

SL SM SRt

0
x

Figure 3.3: Diagram showing the HLLC Riemann Solver and how the wave
speeds, SL, SM and SR, separate the different regions

Here (·)L/R quantities denote the left or right states of that particular
variable, respectively. Further,

p⋆ = ρL(wL − SL)(wL − SM) + pL = ρR(wR − SR)(wR − SM ) + pR (3.21)

where w = (u−v)·n is the relative velocity and n is the volume-face outward
pointing normal unit vector.

The wave speeds, SM , SL and SR, as shown in Figure 3.3, are defined as

SM =
ρRwR(SR − wR) − ρLwL(SL − wL) + pL − pR

ρR(SR − wR) − ρL(SL − wL)
(3.22)

where
SL = min[wL − cL, (û − v) · n− ĉ] (3.23)

and
SR = max[wR + cR, (û − v) · n + ĉ] (3.24)

Here û and ĉ are the Roe averages for the velocity vector and the acoustic
speed respectively, which are a function of the left and right states.

AUSM+-up Scheme

The AUSM+-up scheme [42] is the latest development in the AUSM fam-
ily [40, 41] of schemes and, as such, constitutes the most modern of the
schemes employed in this study. The -up scheme is an improvement on its
predecessors in terms of robustness and convergence rate. For the AUSM+-
up scheme, the ALE Eulerian flux vector Fj is written as

Fj =















wjρu1 + pδ1j

wjρu2 + pδ2j

wjρ

wjρH + pvj















(3.25)
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The AUSM+-up scheme recognises the difference between the convection
and pressure fluxes and thus treats them independently as

Fj
mn = ṁmn

~ψmn + pmnj
(3.26)

with

~ψmn =

{

~ψL if ṁmn > 0
~ψR otherwise

where ~ψ =















u1

u2

1

ρH















(3.27)

and

pmnj
=















pδ1j

pδ1j

0

pvj















mn

(3.28)

To calculate ṁmn and pmn, the relative Mach number at the interface
between the left and the right state was defined with

ML =
wL

cmn
and MR =

wR

cmn
(3.29)

where w = (u− v) · n is the relative velocity for the left and right states as
defined previously. Numerous expressions are in use to calculate cmn [42].
In this study we employed

cmn = min (cL, cR) (3.30)

where

cL =
c̃2

max(c̃, wL)
cR =

c̃2

max(c̃,−wR)
(3.31)

In Equation (3.31), c̃ is the critical acoustic velocity which, for an ideal
gas, can be expressed in terms of total enthalpy as

c̃2 =
2 (γ − 1)

γ + 1
H (3.32)

The mean local Mach number was used

M
2

=
w2

L +w2
R

2c2mn

(3.33)

to determine a reference Mach number

M2
o = min

(

1,max
(

M
2
,M2

∞

))

∈ [0, 1] (3.34)

 
 
 



CHAPTER 3. NUMERICAL SOLUTION PROCEDURE 19

where M∞ is the free-stream value. The reference Mach number was ulti-
mately used to calculate a scaling factor

fa (Mo) = Mo (2 −Mo) ∈ [0, 1] (3.35)

To calculate the mass flux at the interface, the split Mach number func-
tion was defined as

M±(M) =

{

1
2(M ± |M |) if |M | ≥ 1

M±

β (M) otherwise
(3.36)

where
M±

β = ±1
4(M ± 1)2 ± β(M2 − 1)2 − 1

16 ≤ β ≤ 1
2 (3.37)

and for the purpose of this study, β = 1
8 was used. Next, the Mach number

at the interface was

Mmn = M+(ML) + M−(MR) +Mp (3.38)

where

Mp = −Kp max(1 − σM
2
, 0)

pR − pL

0.5(ρL + ρR)c2mn

(3.39)

and the constants were defined as 0 ≤ Kp ≤ 1 and σ ≤ 1. In this study,
Kp = 0.25 and σ = 1 [42] was set. The mass flux was defined as

ṁmn = cmnMmn

{

ρL if Mmn > 0
ρR otherwise

(3.40)

Considering pmn next, the split pressure function was

P±(M) =

{

1
2(1 ± sign(M)) if |M | ≥ 1

P±

α̃ (M) otherwise
(3.41)

where

P±

α̃ = 1
4(M ± 1)2(2 ∓M) ± α̃M(M2 − 1)2, −3

4 ≤ α̃ ≤ 3
16 (3.42)

and

α̃ =
3

16

(

−4 + 5f2
a

)

(3.43)

The pressure flux could be written as

pmn = P+pL + P−pR −KuP+P−(ρL + ρR)cmn(wR − wL) (3.44)

where P+ = P+(ML), P− = P−(MR) and 0 ≤ Ku ≤ 1. For the purpose
of this study Ku = 0.75 [42] was set. The above scheme may appear the
most computationally intensive of the three considered. However, it does
not contain square root computations, resulting in an efficient method.
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3.3 Fluid Temporal Discretisation

For the purpose of describing temporal discretisation the fluid governing
equation (2.4) may be written in semi-discrete form as

dUi

dt
= −

∫

S(t)
F j

i njdS (3.45)

where i = 1 . . . 4. Dual-time-stepping [64] was employed for real time dis-
cretisation as

∆Ui

∆tτ
V τ = −

∫

S(t)
F j

i njdS

∣

∣

∣

∣

τ

+ SτV τ = Ri(U
n+1)V τ (3.46)

where the τ superscript denotes the latest (existing) solution or pseudo-
timestep and ∆tτ = tτ+1− tτ . The source term S constitutes a second-order
backward difference method

SτV τ = −3UτV τ − 4UnV n + Un−1V n−1

2∆t
(3.47)

where ∆t denotes the real-timestep-size, the n superscript is the existing
real-timestep and the timestep being solved for is n+ 1.

The fourth-order Runge-Kutta solution method then followed as

U
(0)
m = Uτ

m

U
(k)
m = U

(0)
m + κk∆t

τRk−1
m for k = 1 to 3

U
(τ+1)
m = U4

m

(3.48)

where the coefficients κk are 0.11, 0.2766 and 0.5 as defined by Lallemand
et al. [72]. The pseudo-timestep local to each computational cell was deter-
mined in the interest of optimal convergence, while ensuring a stable solution
process. To this end, the following expression was employed

∆tτ = CFL

[ |uj − vj | + c

∆xj

]−1

(3.49)

where CFL denotes the Courant-Friedrichs-Lewy number and ∆xj is the
effective mesh spacing in direction j.

3.4 Geometric Conservation Law

The Geometric Conservation Law (GCL) requires that the numerical scheme
chosen to solve the fluid equations and the algorithm employed to update
the mesh position must preserve the trivial solution of a uniform flow field
in the presence of a moving mesh [35, 73]. This implies that no erroneous
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fluxes are introduced by the movement of an edge when the control volume is
deformed. The GCL conditions were applied to Equation (3.46) by satisfying

∂V

∂t
−
∫

dS(t)
v · ndS = 0 (3.50)

This equation was discretised to obtain the latest cell volume by a second
order backward difference scheme as

(

3
2V

n − 2V n−1 + 1
2V

n−2

∆t

)

−
nedge
∑

i=1

vmni
Cmni

= 0 (3.51)

The above equation implies that the change in area of the control volume,
V, is discretely equal to the swept area of its bounding edges, thus satisfying
the geometric conservation law. In this study a second-order interpolation
scheme was employed to calculate the edge velocity, vmni

.

3.5 Solid Solution Procedure

Considering the structure system next, the non-dimensional form of the
modal response to Equation (2.22) may be written as

[M] {q̈} + [K] {q} = {Q} (3.52)

where, as before, ¨ quantities denote second-derivatives with respect to time.
Here, the non-dimensional mass matrix, stiffness matrix and displacement
vectors are defined as

M =

[

1 xα

xα r2α

]

; K =

[
(

ωh

ωα

)2
0

0 r2α

]

; q =

{

h
b
α

}

(3.53)

where xα and r2α denote structural parameters defined as Sα

mb and Iα

mb2
, respec-

tively. Further, ωh and ωα are the uncoupled natural frequencies of plunge
and pitch, respectively. The definition of the generalised force vector, Q,
will be defined later in the chapter.

The reduced frequency, kc, is typically written in terms of the flutter
speed, Vf , as

kc =
ωαc

2U∞

=
1

Vf
√
µ

(3.54)

where c is the chord length of the airfoil, U∞ is the free-stream velocity and
µ denotes the airfoil mass ratio, defined as µ = m

πρb2
. The flutter speed, Vf ,

is defined as

Vf =
U∞

ωαb
√
µ

(3.55)
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The non-dimensional ROM Equation (3.52) may be cast in a manner
suitable for solution as

ṙ = [Ψ] r + {Φ} (3.56)

where the state vector r = {r1, r2}, with r1 = {h/b, α} and r2 = ṙ1. Further

Ψ =

[

0 [I]

− [M]−1 [K] 0

]

; Φ =

{

0

[M]−1 {Q}

}

(3.57)

The generalised force vector, Q, may be calculated for the general case
as

Qk =

nodes
∑

i

fi · dx
i

dr1k

(3.58)

where xi and fi, respectively, denote the displaced coordinate and aerody-
namic force at node i on the airfoil surface. The manner in which xi is related
to the state vector, r, determines the type of ROM which results. In the 2D
pitch-plunge case, the following analytical expression may be employed

[

x1

x2

]

=

{

cosα −sinα
sinα cosα

}[

xr1 − x01

xr2 − x02

]

+

[

x01

x02 − h

]

(3.59)

where xrj
is the initial coordinate of the surface and x0j

is the coordinate
of the airfoil elastic axis at rest, that is α = 0. To obtain the generalised
force the lift and moment was non-dimensionalise into the lift and moment
coefficient as

CL =
L

ρ∗∞U
∗2
∞ b

CM =
Mα

2ρ∗∞U
∗2
∞ b2

(3.60)

where nomenclature is as previously defined. The generalised force is given
as

Q =
1

πµk2
c

{

−Cl

2Cm

}

(3.61)

However, when considering extension to three dimensions, an analytical
expression such as Equation (3.59) is typically not easily available, making
the linear modal approximation considerably more convenient, viz.

xi = xi
r +

modes
∑

k

r1k
ûi

k (3.62)

where û is a normalised linear mode shape (eigenvector) which for the two-
dimensional pitch-plunge case, was û1 = (0,−b) and û2 = (xr2 − x02 , x01 −
xr1). This resulted in the following linear expression for the generalised force
vector:

Q̂k =
nodes
∑

i

fi · ûi
k (3.63)
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where
fi =

pin

ρ∗∞U
∗2
∞ b

(3.64)

is the non-dimensionalised aerodynamic force at node i. In this study how-
ever, the accuracy of the linear ROM is improved upon via the use of a
so-called quadratic [54] extension, viz.

xi = xi
r +

modes
∑

k

r1k
ûi

k +

modes
∑

k

modes
∑

l

r1k
r1l

ĝi
kl (3.65)

which resulted in no significant additional FSI computational cost. The
resulting generalised force expression reads

Q̂k =

nodes
∑

i

fi · ûi
k +

nodes
∑

i

modes
∑

l

2r1l
fi · ĝi

kl (3.66)

where the normalised quadratic mode shapes for the 2D pitch-plunge case
are

ĝ11 = (0, 0) ĝ12 = (0, 0)

ĝ21 = (0, 0) ĝ22 =
(

x01−xr1
2 ,

x02−xr2
2

) (3.67)

In the case of the linear and quadratic ROMs, the generalised forces were
similarly normalised as

Q =
1

πµk2
c

{

Q̂1

b

2Q̂2

}

(3.68)

The above, resulted in an initial value problem, for which the spatial
accuracy depended on whether the semi-analytical, linear or quadratic ex-
pressions were employed.

Note that the above expressions are written in non-dimensional struc-
tural time, ∆τs. This relates to the fluid non-dimensional time, i.e. ∆τs =
2kc∆t. The resulting initial value problem was solved accurately via a
fourth-order Runge-Kutta method as follows:

rn+1
k = rn

k + 1
6 (κ1k + 2κ2k + 2κ3k + κ4k) (3.69)

where k = 1, 2 relating to r1 and r2 in Equation (3.56) and h = τn+1
s − τn

s
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was the timestep size. The κ values were defined as

κ11 = h{rn
2}

κ12 = h

(

− [M]−1 [K] {rn
1} + [M]−1 {Qn}

)

κ21 = h{rn
2 + 1

2κ12}

κ22 = h

(

− [M]−1 [K] {rn
1 + 1

2κ11} + [M]−1 {Qn+1/2}
)

κ31 = h{rn
2 + 1

2κ22}

κ32 = h

(

− [M]−1 [K] {rn
1 + 1

2κ21} + [M]−1 {Qn+1/2}
)

κ41 = h{rn
2 + κ32}

κ42 = h

(

− [M]−1 [K] {rn
1 + κ31} + [M]−1 {Qn+1}

)

(3.70)

where Qn+1/2 was calculated using fourth-order Lagrange polynomials, based
on the generalised forces at timesteps n+ 1, n, n− 1 and n− 2.

3.6 Fluid-solid Interface Treatment

At the fluid-solid interface, the following equations for traction, displacement
and velocity are prescribed:

(pf )nj = − (ps)nj

uf = vs (3.71)

xf = xs

where the subscripts f and s, respectively, denote fluid and solid interface
and nj is the related outward pointing normal unit vector. The above are
prescribed as part of the pseudo-stepping iterative procedure.

3.7 FSI Solution and Dynamic Mesh Movement

For the purpose of simultaneous solution of the discretised fluid-solid equa-
tions in a manner which effects strong coupling, stability and computational
efficiency, the following solution sequence was employed in an iterative fash-
ion:

1. The fluid and solid discrete equations were solved via a single iteration
of Equations (3.48) and (3.70), respectively.

2. Next, the calculated fluid tractions were applied to the solid boundary,
and the calculated solid velocity and displacement to the fluid.
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3. The above was repeated until the displacement of a solid mesh bound-
ary node exceeded 30% of the element size or the residual of the fluid
was reduced by two orders of magnitude (a real-timestep is considered
converged when the residual of both the fluid and solid equations has
dropped by at least three orders of magnitude).

4. The solid and fluid meshes were moved. In the case of the latter, non-
boundary nodes were re-positioned via the mesh movement algorithm
outlined below. The fluid mesh boundary velocities were calculated to
second-order accuracy.

5. The residuals were then calculated for all equations and if larger than
the convergence tolerance, steps 1 through 4 were repeated.

6. If the residuals were below the convergence tolerance, the real-timestep
was terminated, and the next timestep entered into by proceeding to
step 1. The procedure was started from projected estimates for spatial
location and velocity (via second-order extrapolation) in the interest
of convergence speed.

In FSI calculations, mesh movement based on optimisation of mesh qual-
ity [74] or on spring-damper systems is typically used [75]. To solve these
systems, which have as many unknowns as the flow calculations, typically
takes a substantial fraction of the simulation time – in many cases as much
as 40% of total computation time [76]. However, such approaches are not
warranted when displacements are comparatively small.

In light of the above, a simple and efficient interpolation scheme which
is well suited to parallel computing [76] was employed for this study. Here,
an internal node was moved as a function of the displacement of the closest
two boundary points (identified at the start of the simulation) as follows:

δx = rbδx1 + (1 − rb)δx2 (3.72)

where δx1 and δx2 are, respectively, the displacements of the closest internal
and external boundary points and rb, which varies between zero and one,
was computed as

rb =
Da

2

Da
1 +Da

2

with a = 3/2 (3.73)

Here D1 and D2 denote the distances to the identified boundary points.
Since the closest points and the values of rb were calculated only once at
the beginning of the analysis, the application of the mesh movement func-
tion was essentially instantaneous, and the mesh did not deteriorate due to
repeated oscillations.
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3.8 Parallel Computing

FSI simulations are computationally intensive due to the large number of
timesteps involved. Making use of parallel computing was therefore of signif-
icant value. Because of the fully matrix-free nature of the numerical method
at solver sub-iteration level, data reference was local (nodes only see neigh-
bouring nodes, with some exceptions), which means that computation could
be efficiently parallelised. To this end, the mesh may be divided into sepa-
rate domains by applying the METIS library [77] to its connectivity graph.
As far as the solver is concerned, the ‘MPICH’ MPI library was employed
to transfer the data between domains [78].

3.9 Conclusion

In this chapter, the employed partitioned coupled FSI solution procedure
was detailed. In the case of the fluid, an edge-based vertex-centred finite
volume algorithm for spacial discretisation was employed along with a dual-
timestepping method for temporal discretisation. The three chosen upwind
schemes were detailed. In the case of the solid, the semi-analytical, linear
and quadratic ROM formulation were detailed, including the fourth-order
Runge-Kutta method employed to solve the initial value problem. The eval-
uation of the given numerical solution procedure, by application to bench-
mark problems, follows in the next chapter.

 
 
 



Chapter 4

Results and Evaluation

4.1 Introduction

The developed FSI algorithm, along with the three upwind schemes, is eval-
uated via application to problems found in the literature. The predicted
results were compared to analytical solutions or experimental data, as well
as to the work of other respected researchers. The meshes used for the
benchmark problems ranged from structured to unstructured, and solutions
were only considered converged once the residual had been reduced by three
orders of magnitude, unless otherwise stated. The developed FSI algorithm
was found to be robust and accurate with no tuning of parameters required.
The analyses were run on a cluster, using 2.1 GHz AMD Opteron Proces-
sors operating with shared memory. The evaluation of parallel computing
performance falls outside the scope of this project.

4.2 Riemann Shock Tube problem

The Riemann Shock tube problem [60] is a one-dimensional transient case
that is useful as an initial test case, as it evaluates a variety of different
aspects specific to shock waves in compressible flow, while an analytical
solution exists. The premise of the problem is that there is an infinitely
long tube with a membrane positioned in the middle as shown in Figure 4.1.
The left and right states are set to specific initial conditions, as stipulated
in Table 4.1. At t = 0, the membrane breaks and shock waves propagate
through the domain.

Of the two initial conditions applied in this study, the first case is the
simplest and evaluates the ability of each upwind scheme to sharply represent
the shock waves. The second case assesses the presence of entropy violations,
which will be evident as jump-discontinuities in the sonic rarefaction wave.

For these cases, a structured mesh was used with a mesh size of N = 101
nodes (which is similar to others [34]) and a CFL = 0.85. The spacial do-

27
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L

ρL
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pL
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ρR

uR

pR

Figure 4.1: Schematic diagram depicting the Riemann Shock Tube problem

Case ρL uL pL ρR uR pR

1 1.0 0.0 1.0 0.125 0.0 0.1
2 1.0 0.75 1.0 0.125 0.0 0.1

Table 4.1: Initial values for case 1 and 2 of the Riemann shock tube problem

main is −0.5 ≤ x ≤ 0.5 and the position of the membrane at t = 0 is at
x = 0. The predicted results are shown in Figures 4.2 and 4.3. As depicted,
all the implemented upwind schemes exhibited the ability to capture shocks
with similar accuracy than that of others [34]. From Figure 4.3 it may be
inferred that none of the upwind schemes violated the entropy condition.
Lastly, it is evident from Figures 4.2 and 4.3 that each upwind scheme ac-
curately represent the shocks in the domain, as compared to the analytical
solution. The Roe and HLLC schemes predicted very similar results, while
the AUSM+-up scheme predicted a slightly more accurate result. The rel-
ative accuracy and efficiency of the three schemes is rigorously assessed in
the following test case via a grid convergence study.

4.3 Forced Oscillation of a NACA0012 Airfoil

Prior to applying the developed ALE flow modelling technology to FSI
problems, its ability to predict time-dependent loads on an airfoil under-
going transient accelerations had to be verified. The problem selected was
the transonic AGARD test case No. 5 [79], which involved a NACA0012
airfoil undergoing forced sinusoidal pitching in flow at a Mach number of
M∞ = 0.755. The angle-of-attack of the airfoil was varied as a function of
non-dimensional time t as

α = α0 + αmaxsin(2kct) (4.1)

where kc = 0.0814 denotes the reduced frequency, and the mean and maxi-
mum angles of attack are α0 = 0.016◦ and αmax = 2.51◦, respectively.

The efficacy of the three upwind schemes was evaluated via a grid con-
vergence study as proposed by Raoche [81]. This served to evaluate both
relative accuracy of the schemes, as well as to assess the formal order of
accuracy and level of certainty of predicted results. For this purpose, a se-
ries of unstructured meshes were employed containing 5,000, 10,000, 15,000,
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Figure 4.2: Results of the Riemann Shock Tube case 1 at t = 0.2
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Figure 4.3: Results of the Riemann Shock Tube case 2 at t = 0.2

20,000 and 40,000 vertexes, respectively (Fig. 4.4). In the interest of tem-
poral accuracy, the non-dimensional timestep size was ∆t = 0.19, which
correlates to 0.5% of a single oscillation. The analyses were run using 46
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Figure 4.4: (left) Forced Oscillation NACA0012 test-case unstructured
mesh consisting of 40,000 vertexes. (right) Pressure contours around the
NACA0012 airfoil at α = 2.51◦
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Figure 4.5: (left) Graph of CL versus α for the forced oscillation of the
NACA0012 airfoil on a 40,000 node unstructured mesh. (right) Graph com-
paring the HLLC predicted CL limit-cycle for the 5,000, 20,000 and 40,000
vertex meshes

cores and CFL = 0.9.
The pressure contours calculated on the 40,000 mesh were depicted in

Figure 4.4. As shown, the sharpness of the shock was accurately captured
in the vicinity of the airfoil surface. As expected, smearing was observed
as the mesh resolution decreases. With reference to future work, the shock
resolution could be maintained with intelligent local mesh refinement.

The predicted lift and moment coefficient limit-cycles are compared to
that of others in Figures 4.5 and 4.6. The results were clearly accurate, and
revealed that there was a slight difference in the solutions of the AUSM+-up
scheme and that of the Roe and HLLC schemes. The disparity was however
to within engineering precision (less than 4%). Also noteworthy, particularly
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Figure 4.6: (left) Graph of CM versus α for the forced oscillation of the
NACA0012 airfoil on a 40,000 node unstructured mesh. (right) Graph com-
paring the HLLC predicted CM limit-cycle for the 5,000, 20,000 and 40,000
vertex meshes

for the predicted moment evolution, is a seemingly non-physical mild oscil-
lation visible at smaller angles of attack. To highlight the mesh resolution
cause of this problem, the moment coefficient limit-cycles predicted using
HLLC for the 5,000, 20,000 and 40,000 meshes were compared in Figure 4.6.
This demonstrates that the coarser meshes suffer from larger superimposed
oscillations with lower frequency. Considering this in conjunction with the
oscillations being most pronounced at highest shock translation speed (in
the vicinity of zero angle of attack), it is proposed that it is indeed non-
physical and likely due to inaccuracies related to shock capturing. In other
words, as the shock moves across the mesh, it ”jumps” from one element to
another, resulting in artificial effects. For the purpose of future work, it is
proposed that this be alleviated via adaptive mesh refinement on the shock.

The total CPU time costs to model seven oscillation cycles are given
per mesh and upwind scheme in Table 4.2. The exponential time increase,
with the number of vertexes was as expected due to the poor convergence of
the simple jacobi solver, which may be addressed in future by employing an
advanced solver [82]. Of importance to this work however, was the consid-
erably higher cost (circa 300%) due the AUSM+-up scheme on the coarsest
mesh. On investigation, this was found to be the result of the scheme requir-
ing far more iterations per timestep to converge. From this it was concluded
that the Roe and HLLC schemes are less sensitive to mesh resolution and
thus more robust.

The level of certainty of prediction was quantified via a so-called grid-
convergence-index (GCI) which may be calculated from the following equa-
tion [81]:

GCI = Fs

∣

∣

∣

f2−f1

f1

∣

∣

∣

rp − 1
(4.2)
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Upwind Scheme Mesh size (nodes) Total CPU Hours

Roe 5,000 74.02
10,000 212.61
15,000 403.28
20,000 710.70
40,000 1969.54

HLLC 5,000 72.46
10,000 223.87
15,000 518.38
20,000 689.99
40,000 1872.43

AUSM+-up 5,000 199.09
10,000 280.76
15,000 309.23
20,000 673.36
40,000 1763.41

Table 4.2: Summary of the analysis computational cost for the three upwind
schemes

where Fs is a safety factor and is set to 1.25 for this study. Further, r

and p are the grid refinement ratio and order of solution (defined below),
while f1 and f2, respectively, denote the discrete solutions on the fine and
coarse meshes. For the GCI calculation, the minimum and maximum lift
coefficient, CL, was employed. Note that the minimum and maximum CM

only varied from the 3rd significant digit (see Appendix A).
For the purpose of calculating r, the following expression was employed:

r =

(

N1

N2

)1/D

(4.3)

where N is the total number of nodes in the mesh and D is the number of
dimensions represented by the mesh. As before, N1 refers to the finer mesh
and N2 to the coarse mesh. The order of the solution was calculated as

p
i+1 = ωpi + (1 − ω)

ln(θ)

ln(r)
(4.4)

where ω = 0.5 [81] denotes the relaxation factor and i is the iteration num-
ber. Further, p0 = 2, as the order accuracy was expected to be around
second-order. θ was defined as

θ =
(r

pi

12 − 1)

(r
pi

23 − 1)

ε23
ε12

(4.5)
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where
ε12 = f2 − f1 ε23 = f3 − f2 (4.6)

Upwind Scheme GCI of Maximum CL GCI of Minimum CL

Roe 0.31% 0.46%

HLLC 0.16% 0.21%

AUSM+-up 0.20% 0.51%

Table 4.3: Summary of the Grid Convergence Study

As stated above, the GCIs for the lift coefficient limit-cycle were calcu-
lated using the maximum and minimum lift coefficients. However, as shown
in Appendix A, the shock capturing related non-physical oscillations (noted
above) resulted in mild nonmonotonic behaviour. As a result, the three most
monotone data points were selected for the GCI calculation viz. solutions
from the 5,000, 15,000 and 40,000 vertex meshes for HLLC and Roe, and
solutions from the 5,000, 10,000 and 20,000 vertex meshes for AUSM+-up.

The resulting GCIs are listed in Table 4.3 and show that a high degree
of mesh independence was reached. Further, the HLLC method appears
to be superior overall in accuracy and consistency. The oscillations in the
moment coefficient limit-cycle made it difficult to evaluate the GCIs. It was
however noted, that the maximum and minimum moment coefficient values
for HLLC and Roe schemes on the 5,000 and 40,000 vertex meshes were,
respectively, within 0.24%. Thus, indicated the solutions for the HLLC and
Roe scheme had sufficiently converged. The solutions of the AUSM+-up
scheme, on the other hand, varied more yet only within the third decimal
place. It therefore again appears, that the AUSM+-up scheme was more
sensitive to mesh resolution.

From the above results, it was possible to estimate the order of accuracy
of each of the upwind schemes. This was done via approximating the solution
at zero grid spacing, fextrap, using Richardson Extrapolation [83] given as

fextrap
∼= f1 +

(f1 − f2)

(rp − 1)
(4.7)

The resulting change in error as a function of, ∆x, the average edge
length over the surface of the airfoil is plotted in Figure 4.7. As shown,
notional second-order accuracy was achieved for all of the evaluated upwind
schemes. Though the AUSM+-up scheme appears to have offered superior
grid convergence for the maximum lift coefficient, it was also found to be
less robust, suffering from excessively slow convergence on coarser meshes
as reflected in the CPU times, as well as being the most sensitive to mesh

 
 
 



CHAPTER 4. RESULTS AND EVALUATION 34

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-2.3 -2.25 -2.2 -2.15 -2.1 -2.05 -2 -1.95 -1.9 -1.85 -1.8

log(∆x)

lo
g

“
˛ ˛ ˛

f
−

f
e

x
t
r

a
p

f
e

x
t
r

a
p

˛ ˛ ˛
×

1
0
0

”

AUSM+-up
HLLC

ROE

1st Order

2nd Order

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-2.3 -2.25 -2.2 -2.15 -2.1 -2.05 -2 -1.95 -1.9 -1.85 -1.8

log(∆x)

lo
g

“
˛ ˛ ˛

f
−

f
e

x
t
r

a
p

f
e

x
t
r

a
p

˛ ˛ ˛
×

1
0
0

”

AUSM+-up
HLLC

ROE

1st Order

2nd Order

Figure 4.7: Graph of the percentage difference between the discrete f and
Richardson Extrapolated fextrap for the (left) maximum and (right) mini-
mum value of CL

resolution. Overall, HLLC offered competitive accuracy while being robust
and achieving engineering precision on the 5,000 node mesh. As a result,
this scheme was used in conjunction with the latter mesh for the remainder
of the study.

4.4 FSI Spring-Mass NACA64A010 Airfoil

Having validated the flow solver, the last step was evaluation of the FSI
capability and of the various structural models. For this purpose, a sub-
and transonic test case were considered, and the response predicted via
the linear and quadratic ROMs were compared to the analytical version.
The mesh employed for these cases was unstructured, consisting of 5,000
vertexes as shown in Figure 4.8. This mesh was selected as it was found
to offer engineering precision accuracy in the grid convergence study above.
As noted previously, the HLLC scheme was employed due to its balance
between accuracy and robustness.

4.4.1 Subsonic Case

The first FSI test case consisted was the subsonic flutter problem for a
NACA64A010 airfoil at M∞ = 0.3. The test case was based on the classical
incompressible two degrees-of-freedom example of Rodden [84]. For this
purpose, damping was included in the structural governing equations with
the employed structural parameters being

The reduced frequency, k2
c = 0.196714, corresponded to the linear flut-

ter speed. The airfoil was given one forced pitching oscillation, employing
Equation (4.1), where αmax = 1.0◦ and the mean angle-of-attack was zero,
after which it was allowed to interact freely with the fluid. The flutter re-
sponse calculated via the linear and quadratic ROMs were compared to the
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Figure 4.8: (left) Unstructured mesh employed for the sub- and transonic
FSI test cases of the NACA64A010 consisting of 5,000 vertexes. (right)
Pressure contours around the M∞ = 0.82 case under flutter response at
α = 0.57◦

xα r2α
ωh

ωα
µ a

0.1 0.25 0.4 20 0.0

Table 4.4: Structural parameters for the subsonic FSI test case

semi-analytical method in Figures 4.9 and 4.10.
It is noteworthy that the quadratic ROM offered not only an accurate

solution for the response of the airfoil, but a significant improvement on the
linear ROM. The large rotational component of the airfoil motion in this test
case revealed the deficiencies of the linear ROM to describe the deflection of
the airfoil for such behaviour. The result was the dramatic artificial damping
of the flutter response, which had a significant effect already within the
first oscillation, resulting in a large error. Clearly, a linear ROM would be
unsuitable as a flutter prediction tool for such cases. The quadratic ROM,
on the other hand, conserved the flutter response and proved accurate in
predicting the non-linear motion. The developed FSI solver proved to be
stable and robust.

4.4.2 Transonic Case

The last FSI test case considered the transonic at M∞ = 0.82 flow over
a two-dimensional representation of a swept-wing proposed by Isogai [85].
The structural parameters employed in this test case are given as

As in the former test case, the NACA64A010 airfoil was given one forced
oscillation before being released and allowed to naturally respond to the fluid
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Figure 4.9: Graph of the Plunge Displacement versus time for the
NACA64A010 airfoil, M∞ = 0.3
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Figure 4.10: Graph of the Pitch Angle versus time for the NACA64A010
airfoil, M∞ = 0.3
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xα r2α
ωh

ωα
µ a

1.8 3.48 1.0 60 −2.0

Table 4.5: Structural parameters for the transonic swept-wing FSI test case
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Figure 4.11: Graph of the Plunge Displacement versus time for the
NACA64A010 airfoil, M∞ = 0.82

flow. The flutter velocity, Vf , was set to 0.71 in order to obtain a stable
response, where the response neither diverges nor decays.

The pressure contours around the airfoil are shown in Figure 4.8, with
the sonic shock at the top and bottom surface of the airfoil. Again, the
sharpness of the shock decreased further from the surface of the airfoil,
this can likewise be improved with intelligent local mesh refinement. The
calculated aeroelastic response is shown in Figures 4.11 and 4.12. These
results compared well with those of [35] in frequency and amplitude. As
before, the quadratic ROM offered an accurate solution and an improvement
over the linear ROM by conserving the flutter response. The latter suffered
from artificial damping, visibly reducing the amplitude of the response over
time. As compared to the subsonic case, the magnitude of the artificial
damping was, however, less due to the plunge-dominated deflection of the
airfoil. The developed modelling technology was again stable and robust.

 
 
 



CHAPTER 4. RESULTS AND EVALUATION 38

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0  10  20  30  40  50  60  70
τs

P
it
ch

A
n
g
le

[r
a
d
]

Semi-analytical

Quadratic ROM

Linear ROM

Figure 4.12: Graph of the Pitch Angle versus time for the NACA64A010
airfoil, M∞ = 0.82

4.5 Conclusion

The developed FSI technology presented in this study was validated by
application to sub- and transonic non-linear flutter problems. It is demon-
strated that the three chosen upwind schemes adequately resolve the shocks
in the fluid domain. The grid convergence study identified that the three
implemented upwind schemes were notionally second-order accurate and ob-
tained satisfactory solutions for unsteady loading of an airfoil. The HLLC
scheme was found to offer the best balance between obtaining asymptotic
convergence and robustness. The considered FSI cases proved the devel-
oped scheme accurate, robust and stable. Furthermore, the quadratic modal
ROM was found to offer dramatic improvements in accuracy over the more
conventional linear modal method when significant rotational displacements
were present.

 
 
 



Chapter 5

Summary, Conclusions and

Recommendations for Future

Work

5.1 Summary

The aim of this study was to develop FSI modelling technology to simulate
non-linear aeroelastic systems accurately and robustly. The considered non-
linearities included transonic shocks in the fluid domain and geometrically
non-linear structural responses. The fluid domain was described via an
ALE formulation of the unsteady compressible Euler equation set. The
latter was discretised via an edge-based vertex centred finite volume method.
Three upwind schemes were compared for the purpose of computing the
convective fluxes, viz. Roe, HLLC and AUSM+-up. A fourth-order Runge-
Kutta dual-time-stepping scheme was employed for the purpose of temporal
discretisation. The non-linear structural response was modelled using a
quadratic modal reduced-order pitch-plunge model.

The validation of this methodology first considered the fluid and then
full FSI systems. The former was evaluated by application to the shock tube
problem and the transonic forced oscillation of the NACA0012 airfoil. The
shock tube test case showed that shocks in the fluid domain were adequately
resolved by all three upwind schemes. These were subsequently applied to
modelling the transonic pitching NACA0012 airfoil, and a grid convergence
study was preformed. This proved the three schemes notionally second-order
accurate, with achieved GCIs less than 1%. The HLLC achieved superior
overall performance. The method achieving competitive notional second-
order accuracy throughout, while being consistently stable and robust.
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5.2 Conclusions

In light of the above, the HLLC scheme was chosen for the aeroelastic
test cases. This involved the sub- and transonic flutter response of the
NACA64A010 airfoil. The aforementioned highlighted the dramatic superi-
ority of the quadratic ROM over that of the linear method where significant
rotational deflection was present. The transonic case showed that the devel-
oped FSI technology could successfully resolve the non-linear effects of the
moving shocks on the top and bottom of the airfoil. The quadratic ROM
still showed an accurate prediction of the solid motion while maintaining an
improvement on the linear ROM, although the difference was less apparent
due to the largely plunge-dominated deflection.

5.3 Recommendations for Future Work

The following are suggestions to extend this work in the future:

• Extend the FSI algorithm to three dimensions. This will entail extend-
ing the fluid solver to include the third dimension and implementing a
fully three-dimensional quadratic ROM to resolve the solid deflection.

• The time cost involved in obtaining a solution is to be reduced by
the implementation of an advance solver such as Algebraic Multigrid
(AMG), Generalised Minimum Residual (GMRES) or a combination
of the two where the one preconditions the other. This will reduce the
number of iterations needed to drive the residual to the convergence
tolerance, thus reducing the time required to complete an analysis.

• When dealing with a sonic shock on the fluid domain, it is important
that the mesh resolution in the region of the shock is sufficient to cap-
ture the discontinuity. An automated adaptive mesh refinement algo-
rithm could effect this in a computationally effective manner. Careful
consideration would be needed to weigh up the improved accuracy and
computational cost.

 
 
 



Chapter 6

Appendix A

This appendix contains the graphs of the maximum and minimum values for
the lift and moment coefficient limit-cycles. These solutions were calculated
on meshes consisting of 5,000, 10,000, 15,000, 20,000 and 40,000 vertexes,
respectively.
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Figure 6.1: Graph of the maximum CL values for the limit-cycles calculated
on meshes consisting of 5,000, 10,000, 15,000, 20,000 and 40,000 vertexes,
respectively
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Figure 6.2: Graph of the minimum CL values for the limit-cycles calculated
on meshes consisting of 5,000, 10,000, 15,000, 20,000 and 40,000 vertexes,
respectively
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Figure 6.3: Graph of the maximum CM values for the limit-cycles calculated
on meshes consisting of 5,000, 10,000, 15,000, 20,000 and 40,000 vertexes,
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[25] Hübner, B., Walhorn, E., and Dinkler, D. (2004). A monolithic ap-
proach to fluid-structure interaction using space-time finite elements.
Computer Methods in Applied Mechanics and Engineering, 193(23–26),
2087–2104.

[26] Greenshields, C. J. and Weller, H. G. (2005). A unified formulation for
continuum mechanics applied to fluid–structure interaction in flexible
tubes. International Journal for Numerical Methods in Engineering,
64(12), 1575–1593.

[27] Dettmer, W. and Peric, J. D. (2006). A computational framework for
fluid–structure interaction: Finite element formulation and application.
Computer Methods in Applied Mechanics and Engineering., 195(41–43),
5754–5779.

[28] Wall, W. A., Genkinger, S., and Ramm, E. (2007). A strong coupling
partitioned approach for fluid–structure interaction with free surfaces.
Computers & Fluids, 36(1), 169–183.

[29] Le Tallec, P. and Mouro, J. (2001). Fluid structure interaction with
large structural displacements. Computer Methods in Applied Mechan-
ics and Engineering, 190(24–25), 3039–3067.

[30] Matthies, H. G. and Steindorf, J. (2002). Partitioned but strongly cou-
pled iteration schemes for nonlinear fluid–structure interaction. Com-
puters and Structures, 80(27–30), 1991–1999.

[31] Matthies, H. G. and Steindorf, J. (2003). Partitioned strong coupling
algorithms for fluid–structure interaction. Computers and Structures,
81(8–11), 805–812.

[32] Alonso, J. J. and Jameson, A. (1994). Fully implicit time-marching
aeroelastic solutions. In Proceedings of the 32nd AIAA Aerospace Sci-
ences Meeting and Exhibit. Reno, 10–13 January.

 
 
 



REFERENCES 47

[33] Willcox, K. and Peraire, J. (1997). Aeroelastic computations in the
time domain using unstructured meshes. International Journal for Nu-
merical Methods in Engineering, 40(13), 2413–2431.
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